WorldWideScience

Sample records for blood circulation model

  1. A blood circulation model for reference man

    International Nuclear Information System (INIS)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-01-01

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86

  2. A blood circulation model for reference man

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States); Williams, L.R. [Indiana Univ., South Bend, IN (United States). Div. of Liberal Arts and Sciences

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  3. Exploring the Impact of Students' Learning Approach on Collaborative Group Modeling of Blood Circulation

    Science.gov (United States)

    Lee, Shinyoung; Kang, Eunhee; Kim, Heui-Baik

    2015-01-01

    This study aimed to explore the effect on group dynamics of statements associated with deep learning approaches (DLA) and their contribution to cognitive collaboration and model development during group modeling of blood circulation. A group was selected for an in-depth analysis of collaborative group modeling. This group constructed a model in a…

  4. A computational model of the fetal circulation to quantify blood redistribution in intrauterine growth restriction.

    Directory of Open Access Journals (Sweden)

    Patricia Garcia-Canadilla

    2014-06-01

    Full Text Available Intrauterine growth restriction (IUGR due to placental insufficiency is associated with blood flow redistribution in order to maintain delivery of oxygenated blood to the brain. Given that, in the fetus the aortic isthmus (AoI is a key arterial connection between the cerebral and placental circulations, quantifying AoI blood flow has been proposed to assess this brain sparing effect in clinical practice. While numerous clinical studies have studied this parameter, fundamental understanding of its determinant factors and its quantitative relation with other aspects of haemodynamic remodeling has been limited. Computational models of the cardiovascular circulation have been proposed for exactly this purpose since they allow both for studying the contributions from isolated parameters as well as estimating properties that cannot be directly assessed from clinical measurements. Therefore, a computational model of the fetal circulation was developed, including the key elements related to fetal blood redistribution and using measured cardiac outflow profiles to allow personalization. The model was first calibrated using patient-specific Doppler data from a healthy fetus. Next, in order to understand the contributions of the main parameters determining blood redistribution, AoI and middle cerebral artery (MCA flow changes were studied by variation of cerebral and peripheral-placental resistances. Finally, to study how this affects an individual fetus, the model was fitted to three IUGR cases with different degrees of severity. In conclusion, the proposed computational model provides a good approximation to assess blood flow changes in the fetal circulation. The results support that while MCA flow is mainly determined by a fall in brain resistance, the AoI is influenced by a balance between increased peripheral-placental and decreased cerebral resistances. Personalizing the model allows for quantifying the balance between cerebral and peripheral

  5. Exploring Secondary Students' Epistemological Features Depending on the Evaluation Levels of the Group Model on Blood Circulation

    Science.gov (United States)

    Lee, Shinyoung; Kim, Heui-Baik

    2014-01-01

    The purpose of this study is to identify the epistemological features and model qualities depending on model evaluation levels and to explore the reasoning process behind high-level evaluation through small group interaction about blood circulation. Nine groups of three to four students in the eighth grade participated in the modeling practice.…

  6. Heat dissipation by blood circulation and airway tissue heat absorption in a canine model of inhalational thermal injury.

    Science.gov (United States)

    Wan, Jiangbo; Zhang, Guoan; Qiu, Yuxuan; Wen, Chunquan; Fu, Tairan

    2016-05-01

    This study aimed to further explore heat dissipation by blood circulation and airway tissue heat absorption in an inhalational thermal injury model. Twelve adult male Beagle dogs were divided into four groups to inhale heated air for 10min: the control group, group I (100.5°C), group II (161.5°C), and group III (218°C). The relative humidity and temperature of the inhaled heated air were measured in the heating tube and trachea, as were blood temperatures and flow velocities in both common jugular veins. Formulas were used to calculate the total heat quantity reduction of the heated air, heat dissipation by the blood, and airway tissue heat absorption. The blood temperatures of both the common jugular veins increased by 0.29°C±0.07°C to 2.96°C±0.24°C and the mean blood flow volume after injury induction was about 1.30-1.74 times greater than before injury induction. The proportions of heat dissipated by the blood and airway tissue heat absorption were 68.92%±14.88% and 31.13%±14.87%, respectively. The heat dissipating ability of the blood circulation was demonstrated and improved upon along with tissue heat absorption owing to increased regional blood flow. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  7. Exploring Secondary Students' Epistemological Features Depending on the Evaluation Levels of the Group Model on Blood Circulation

    Science.gov (United States)

    Lee, Shinyoung; Kim, Heui-Baik

    2014-05-01

    The purpose of this study is to identify the epistemological features and model qualities depending on model evaluation levels and to explore the reasoning process behind high-level evaluation through small group interaction about blood circulation. Nine groups of three to four students in the eighth grade participated in the modeling practice. Their group models, which were represented by discourse and blood circulation diagrams, were analyzed for the development of the framework that informed the model evaluation levels and epistemological features. The model evaluation levels were categorized into levels one to four based on the following evaluation criteria: no evaluation, authoritative sources, superficial criteria, and more comprehensive criteria. The qualities of group models varied with the criteria of model evaluation. While students who used authoritative sources for evaluating the group model appeared to have an absolutist epistemology, students who evaluated according to the superficial criteria and more comprehensive criteria appeared to have an evaluative epistemology. Furthermore, groups with Level four showed a chain reaction of cognitive reasoning during the modeling practice concerning practical epistemology. The findings have implications for science teachers and education researchers who want to understand the context for developing students' practical epistemologies.

  8. Evaluation of coronary blood flow velocity during cardiac arrest with circulation maintained through mechanical chest compressions in a porcine model

    Directory of Open Access Journals (Sweden)

    Wagner Henrik

    2011-12-01

    Full Text Available Abstract Background Mechanical chest compressions (CCs have been shown capable of maintaining circulation in humans suffering cardiac arrest for extensive periods of time. Reports have documented a visually normalized coronary blood flow during angiography in such cases (TIMI III flow, but it has never been actually measured. Only indirect measurements of the coronary circulation during cardiac arrest with on-going mechanical CCs have been performed previously through measurement of the coronary perfusion pressure (CPP. In this study our aim was to correlate average peak coronary flow velocity (APV to CPP during mechanical CCs. Methods In a closed chest porcine model, cardiac arrest was established through electrically induced ventricular fibrillation (VF in eleven pigs. After one minute, mechanical chest compressions were initiated and then maintained for 10 minutes upon which the pigs were defibrillated. Measurements of coronary blood flow in the left anterior descending artery were made at baseline and during VF with a catheter based Doppler flow fire measuring APV. Furthermore measurements of central (thoracic venous and arterial pressures were also made in order to calculate the theoretical CPP. Results Average peak coronary flow velocity was significantly higher compared to baseline during mechanical chests compressions and this was observed during the entire period of mechanical chest compressions (12 - 39% above baseline. The APV slowly declined during the 10 min period of mechanical chest compressions, but was still higher than baseline at the end of mechanical chest compressions. CPP was simultaneously maintained at > 20 mmHg during the 10 minute episode of cardiac arrest. Conclusion Our study showed good correlation between CPP and APV which was highly significant, during cardiac arrest with on-going mechanical CCs in a closed chest porcine model. In addition APV was even higher during mechanical CCs compared to baseline. Mechanical

  9. Blood vessels, circulation and blood pressure.

    Science.gov (United States)

    Hendry, Charles; Farley, Alistair; McLafferty, Ella

    This article, which forms part of the life sciences series, describes the vessels of the body's blood and lymphatic circulatory systems. Blood pressure and its regulatory systems are examined. The causes and management of hypertension are also explored. It is important that nurses and other healthcare professionals understand the various mechanisms involved in the regulation of blood pressure to prevent high blood pressure or ameliorate its damaging consequences.

  10. Ocean General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  11. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    Science.gov (United States)

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  12. Differential inhibitory action of apixaban on platelet and fibrin components of forming thrombi: Studies with circulating blood and in a platelet-based model of thrombin generation.

    Directory of Open Access Journals (Sweden)

    Lluis Pujadas-Mestres

    Full Text Available Mechanisms of action of direct oral anticoagulants (DOAC suggest a potential therapeutic use in the prevention of thrombotic complications in arterial territories. However, effects of DOACs on platelet activation and aggregation have not been explored in detail. We have investigated the effects of apixaban on platelet and fibrin components of thrombus formation under static and flow conditions.We assessed the effects of apixaban (10, 40 and 160 ng/mL on: 1 platelet deposition and fibrin formation onto a thrombogenic surface, with blood circulating at arterial shear-rates; 2 viscoelastic properties of forming clots, and 3 thrombin generation in a cell-model of coagulation primed by platelets.In studies with flowing blood, only the highest concentration of apixaban, equivalent to the therapeutic Cmax, was capable to significantly reduce thrombus formation, fibrin association and platelet-aggregate formation. Apixaban significantly prolonged thromboelastometry parameters, but did not affect clot firmness. Interestingly, results in a platelet-based model of thrombin generation under more static conditions, revealed a dose dependent persistent inhibitory action by apixaban, with concentrations 4 to 16 times below the therapeutic Cmax significantly prolonging kinetic parameters and reducing the total amount of thrombin generated.Our studies demonstrate the critical impact of rheological conditions on the antithrombotic effects of apixaban. Studies under flow conditions combined with modified thrombin generation assays could help discriminating concentrations of apixaban that prevent excessive platelet accumulation, from those that deeply impair fibrin formation and may unnecessarily compromise hemostasis.

  13. Enhanced localization of liposomes with prolonged blood circulation time in infected lung tissue

    NARCIS (Netherlands)

    I.A.J.M. Bakker-Woudenberg (Irma); A.F. Lokerse (A.); M.T. ten Kate (Marian); G. Storm (Gert)

    1992-01-01

    markdownabstractAbstract In an experimental model of unilateral pneumonia caused by Klebsiella pneumoniea in rats we investigated whether intravenous administration of liposomes with prolonged blood circulation time resulted in significant localization of liosomes in infected lung tissu.

  14. Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation – Description of a novel in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Ehnert, Sabrina, E-mail: sabrina.ehnert@gmail.com [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Freude, Thomas, E-mail: tfreude@bgu-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Ihle, Christoph, E-mail: cihle@bgu-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Mayer, Larissa, E-mail: lara.nk@gmail.com [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Braun, Bianca, E-mail: bianca.braun@med.uni-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Graeser, Jessica, E-mail: jessica.graeser@student.reutlingen-university.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Flesch, Ingo, E-mail: iflesch@bgu-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); and others

    2015-03-15

    Type 2 diabetes mellitus (T2DM) is one of the most frequent metabolic disorders in industrialized countries. Among other complications, T2DM patients have an increased fracture risk and delayed fracture healing. We have demonstrated that supraphysiological glucose and insulin levels inhibit primary human osteoblasts' maturation. We aimed at developing a more physiologically relevant in vitro model to analyze T2DM-mediated osteoblast changes. Therefore, SCP-1-immortalized pre-osteoblasts were differentiated with T2DM or control (non-obese and obese) sera. Between both control groups, no significant changes were observed. Proliferation was significantly increased (1.69-fold), while AP activity and matrix mineralization was significantly reduced in the T2DM group. Expression levels of osteogenic marker genes and transcription factors were altered, e.g. down-regulation of RUNX2 and SP-7 or up-regulation of STAT1, in the T2DM group. Active TGF-β levels were significantly increased (1.46-fold) in T2DM patients' sera. SCP-1 cells treated with these sera showed significantly increased TGF-β signaling (2.47-fold). Signaling inhibition effectively restored osteoblast maturation in the T2DM group. Summarizing our data, SCP-1 cells differentiated in the presence of T2DM patients' serum exhibit reduced osteoblast function. Thus, this model has a high physiological impact, as it can identify circulating factors in T2DM patients' blood that may affect bone function, e.g. TGF-β. - Highlights: • We present here a physiologically relevant in vitro model for diabetic osteopathy. • Blood of T2DM patients contains factors that affect osteoblasts' function. • The model developed here can be used to identify these factors, e.g. TGF-β. • Blocking TGF-β signaling partly rescues the osteoblasts' function in the T2DM group. • The model is useful to demonstrate the role of single factors in diabetic osteopathy.

  15. Influence of obesity and androgen deficiency on prostatic blood circulation

    Directory of Open Access Journals (Sweden)

    I. A. Tyuzikov

    2012-01-01

    Full Text Available In Study at 120 Diabetes Mellitus II type men the high frequency Obesity (71,7% and Androgen Deficiency (52,8—64,5% of the patients depending on a degree of the indemnification and them pathogenic authentic communications were shown. The blood level of total testosterone was represented by the critical factor of Prostatic arterial Blood Circulation. Obesity and Androgen Deficiency are seem as independent risk factors to development of ischemic prostatopathy, such as Prostatic blood circulation Disorders can develop earlier than other variants of the diabetic microangiophaty.

  16. Red blood cell damage from extracorporeal circulation in hemodialysis.

    Science.gov (United States)

    Polaschegg, Hans-Dietrich

    2009-01-01

    Blood damage is an unavoidable side effect of extracorporeal circulation. The effects of blood damage on patients' hematocrit and erythropoietin requirement as well as other potential side effects have not been studied for uneventful treatments. Comparing long nocturnal dialysis with regular 4-hour, three times per week dialysis allows for the conclusion that the influence of blood damage caused by extracorporeal circulation is small compared with biochemical effects. Acute hemolysis is one of the few remaining mechanical problems of dialysis. Acute hemolysis is caused by obstructions within the extracorporeal circuit caused by manufacturing errors, kinking of blood tubing or user errors, or by a combination of excessive flow and improper cannula or catheter dimensions. The risk of acute hemolysis can be further reduced by industrial quality control, better design of dialysis equipment, and hemodialysis machine control. Adverse effects caused by chronic mechanical hemolysis need to be studied.

  17. Filter characteristics influencing circulating tumor cell enrichment from whole blood.

    NARCIS (Netherlands)

    Coumans, F.A.W.; van Dalum, Guus; Beck, Markus; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    A variety of filters assays have been described to enrich circulating tumor cells (CTC) based on differences in physical characteristics of blood cells and CTC. In this study we evaluate different filter types to derive the properties of the ideal filter for CTC enrichment. Between 0.1 and 10 mL of

  18. Filter Characteristics Influencing Circulating Tumor Cell Enrichment from Whole Blood

    NARCIS (Netherlands)

    Coumans, Frank A. W.; van Dalum, Guus; Beck, Markus; Terstappen, Leon W. M. M.

    2013-01-01

    A variety of filters assays have been described to enrich circulating tumor cells (CTC) based on differences in physical characteristics of blood cells and CTC. In this study we evaluate different filter types to derive the properties of the ideal filter for CTC enrichment. Between 0.1 and 10 mL of

  19. [Applications of platelets in studies on traditional Chinese medicines promoting blood circulation to remove blood stasis].

    Science.gov (United States)

    Wang, Feng-Qin; Chen, Cen; Xia, Zhi-Ning; Yang, Feng-Qing

    2014-08-01

    Thrombotic diseases in different forms become a great threat to human health. Such anti-platelet aggregation drugs as aspirin and clopidogrel are common drugs in clinic. However, along with the appearance of resistance and side effects of western anti-platelet aggregation drugs, anti-platelet aggregation traditional Chinese medicines promoting blood circulation to remove blood stasis have gradually become an important study orientation. Platelet is one of major participant in thrombosis, and plays an important role as a bioactive material in studies on traditional Chinese medicines promoting blood circulation to remove blood stasis, mainly involving two aspects--the evaluation for the anti-platelet aggregation activity of traditional Chinese medicines and the screening of their active components. This paper summarized the applications of platelets in studies on traditional Chinese medicines promoting blood circulation to remove blood stasis, so as to provide basis for further studies.

  20. The Effects of Exercise on Judoists’ Circulating Blood Neutrophils

    OpenAIRE

    A Zar

    2012-01-01

    Background and Objectives: Type, intensity and duration of exercises exert pivotal effects on athletes’ immune system and probably athletes’ susceptibility to upper respiratory tract infections. In this study we examined the effects of one session of moderate-intensity exercise on male judoists’ circulating blood neutrophil counts (BNC) and respiratory burst, and self-reported upper respiratory clinical infections 24 hours ...

  1. The Effects of Exercise on Judoists’ Circulating Blood Neutrophils

    OpenAIRE

    Zar A.; Karimi F.; Hovanloo F.; Ansian A.; Piraki P.

    2010-01-01

    Background and Objectives: Type, intensity and duration of exercises exert pivotal effects on athletes’ immune system and probably athletes’ susceptibility to upper respiratory tract infections. In this study we examined the effects of one session of moderate-intensity exercise on male judoists’ circulating blood neutrophil counts (BNC) and respiratory burst, and self-reported upper respiratory clinical infections 24 hours after the exercise and during the sport seasons.Methods: Ten male judo...

  2. Newly discovered hepatitis C virus minicores circulate in human blood

    Science.gov (United States)

    Eng, Francis J.; El‐Shamy, Ahmed; Doyle, Erin H.; Klepper, Arielle; Muerhoff, A. Scott

    2017-01-01

    Hepatitis C virus (HCV) is one of the most prevalent causes of chronic blood‐borne infections worldwide. Despite developments of highly effective treatments, most infected individuals are unaware of their infection. Approximately 75% of infections are in low‐ and middle‐income countries; therefore, continuing research in HCV molecular virology and the development of vaccines and affordable diagnostics is required to reduce the global burden. Various intracellular forms of the HCV nucleocapsid (core) protein are produced in cell culture; these comprise the conventional p21 core and the newly discovered shorter isoforms (minicores). Minicores lack the N‐terminus of p21 core. This study was conducted to determine if minicores are secreted in cell culture and more importantly if they circulate in the blood of individuals infected with HCV. We also developed a new monoclonal antibody that detects minicores targeting a C‐terminal region common to p21 core and minicores. Direct evidence of minicores requires western blot analysis to distinguish the detection of p21 core from minicores. However, the sensitivity for western blot detection of HCV proteins from blood is nil without their prior purification/enrichment from blood. Therefore, we developed a purification method based on a heparin/Mn+2 precipitation of apolipoprotein B‐containing lipoproteins because HCV is thought to circulate as a hybrid lipoviral particle. Minicores are secreted in culture when cells are grown in the presence of human serum. The heparin/Mn+2 precipitate from HCV‐infected cell culture supernatants and from the blood of 4 patients with high‐titer genotype‐1 HCV contained minicores. Conclusion: Minicores are major newly discovered HCV proteins that are secreted and circulate in blood during natural infections. Minicore proteins have translational potential as targets in diagnostic assays and in vaccine development. (Hepatology Communications 2018;2:21–28) PMID:29404509

  3. Statistical analysis of dose heterogeneity in circulating blood: Implications for sequential methods of total body irradiation

    International Nuclear Information System (INIS)

    Molloy, Janelle A.

    2010-01-01

    Purpose: Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these ''sequential'' techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Methods: Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. Results: The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than ±10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times

  4. Statistical analysis of dose heterogeneity in circulating blood: implications for sequential methods of total body irradiation.

    Science.gov (United States)

    Molloy, Janelle A

    2010-11-01

    Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these "sequential" techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than +/- 10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times. However, the EUD was

  5. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation.

    Science.gov (United States)

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-06-01

    Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow.

  6. Obstructive Apneas Induce Early Release of Mesenchymal Stem Cells into Circulating Blood

    Science.gov (United States)

    Carreras, Alba; Almendros, Isaac; Acerbi, Irene; Montserrat, Josep M.; Navajas, Daniel; Farré, Ramon

    2009-01-01

    Study Objectives: To investigate whether noninvasive application of recurrent airway obstructions induces early release of mesenchymal stem cells into the circulating blood in a rat model of obstructive sleep apnea. Design: Prospective controlled animal study. Setting: University laboratory. Patients or Participants: Twenty male Sprague-Dawley rats (250–300 g). Interventions: A specially designed nasal mask was applied to the anesthetized rats. Ten rats were subjected to a pattern of recurrent obstructive apneas (60 per hour, lasting 15 seconds each) for 5 hours. Ten anesthetized rats were used as controls. Measurements and Results: Mesenchymal stem cells from the blood and bone marrow samples were isolated and cultured to count the total number of colony-forming unit fibroblasts (CFU-F) of adherent cells after 9 days in culture. The number of CFU-F from circulating blood was significantly (P = 0.02) higher in the rats subjected to recurrent obstructive apneas (5.00 ± 1.16; mean ± SEM) than in controls (1.70 ± 0.72). No significant (P = 0.54) differences were observed in CFU-F from bone marrow. Conclusions: Application of a pattern of airway obstructions similar to those experienced by patients with sleep apnea induced an early mobilization of mesenchymal stem cells into circulating blood. Citation: Carreras A; Almendros I; Acerbi I; Montserrat JM; Navajas D; Farré R. Obstructive apneas induce early release of mesenchymal stem cells into circulating blood. SLEEP 2009;32(1):117-119. PMID:19189787

  7. Blood pressure and collateral circulation in acute ischemic stroke.

    Science.gov (United States)

    Wufuer, A; Mijiti, P; Abudusalamu, R; Dengfeng, H; Jian, C; Jianhua, M; Xiaoning, Z

    2018-03-20

    This study aimed to evaluate the effect of different blood pressure (BP) parameters on the collateral circulation in a retrospective cohort of patients with acute ischemic stroke and ipsilateral internal carotid artery (ICA) occlusion. The degree of intracranial collaterals was graded according to the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR) Collateral Flow Grading System. At 12-72 h after stroke onset, six BP measurements were obtained in 124 patients with ICA occlusion. Baseline clinical and imaging characteristics were collected. Group comparisons were performed, and the collateral score (CS) was assessed and entered into a logistic regression analysis. In all, 80 (64.5%) patients displayed good collateral filling (CS ≥ 2). Good intracranial collaterals were more frequently associated with the development of collaterals in the anterior communicating artery, posterior communicating artery, and leptomeningeal artery. The systolic blood pressure (SBP; p = 0.018), diastolic blood pressure (DBP; p = 0.013), and mean arterial pressure (MAP; p = 0.016) were significantly associated with good CS. Median CS was highest when SBP was 120-130 mm Hg (p = 0.034). Logistic regression analysis showed that hypertension (p = 0.026, OR: 0.380, 95% CI: 0.163-0.890) was a significant predictor of poor CS. The development of collateral circulation in patients with acute ischemic stroke with ICA occlusion may be influenced by BP. A moderately decreased SBP is associated with good integrity of the collateral circulation in patients with acute ischemic stroke with occlusion of the ICA.

  8. EOP MIT General Circulation Model (MITgcm)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) at a 1-km spatial resolution for the...

  9. Does Every Cell Get Blood? Young Students' Discussions about Illustrations of Human Blood Circulation

    Science.gov (United States)

    Westman, Anna-Karin; Karlsson, Karl-Goran

    2016-01-01

    This article presents a study of how groups of young students discuss illustrations of human blood circulation. Transparency is not an innate quality of illustrations, visual information is always coded and interpretations are always related to culture and context. Results of this study are discussed with reference to Kress and van Leeuwens'…

  10. Effect of a deproteinized blood extract on the recovery of blood circulation in an ischaemic skin lesion.

    OpenAIRE

    Smahel, J.

    1982-01-01

    An experimental model was used to study the revascularization of an ischaemic skin lesion and the effect on this process of the blood extract Solcoseryl. Under the conditions given in the experiment, restoration of the circulation was by 2 modes--re-flow in the original vessels, and neovascularization. Solcoseryl given daily i.p. encouraged the re-flow phenomenon and therefore, by improving the microcirculation and nutrition, the healing of the ischaemic lesions.

  11. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    International Nuclear Information System (INIS)

    Tormoen, Garth W; Khader, Ayesha; Gruber, András; McCarty, Owen J T

    2013-01-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis. (paper)

  12. Filter characteristics influencing circulating tumor cell enrichment from whole blood.

    Directory of Open Access Journals (Sweden)

    Frank A W Coumans

    Full Text Available A variety of filters assays have been described to enrich circulating tumor cells (CTC based on differences in physical characteristics of blood cells and CTC. In this study we evaluate different filter types to derive the properties of the ideal filter for CTC enrichment. Between 0.1 and 10 mL of whole blood spiked with cells from tumor cell lines were passed through silicon nitride microsieves, polymer track-etched filters and metal TEM grids with various pore sizes. The recovery and size of 9 different culture cell lines was determined and compared to the size of EpCAM+CK+CD45-DNA+ CTC from patients with metastatic breast, colorectal and prostate cancer. The 8 µm track-etched filter and the 5 µm microsieve had the best performance on MDA-231, PC3-9 and SKBR-3 cells, enriching >80% of cells from whole blood. TEM grids had poor recovery of ∼25%. Median diameter of cell lines ranged from 10.9-19.0 µm, compared to 13.1, 10.7, and 11.0 µm for breast, prostate and colorectal CTC, respectively. The 11.4 µm COLO-320 cell line had the lowest recovery of 17%. The ideal filter for CTC enrichment is constructed of a stiff, flat material, is inert to blood cells, has at least 100,000 regularly spaced 5 µm pores for 1 ml of blood with a ≤10% porosity. While cell size is an important factor in determining recovery, other factors must be involved as well. To evaluate a filtration procedure, cell lines with a median size of 11-13 µm should be used to challenge the system.

  13. Filtration Parameters Influencing Circulating Tumor Cell Enrichment from Whole Blood

    Science.gov (United States)

    Beck, Markus; Terstappen, Leon W. M. M.

    2013-01-01

    Filtration can achieve circulating tumor cell (CTC) enrichment from blood. Key parameters such as flow-rate, applied pressure, and fixation, vary largely between assays and their influence is not well understood. Here, we used a filtration system, to monitor these parameters and determine their relationships. Whole blood, or its components, with and without spiked tumor cells were filtered through track-etched filters. We characterize cells passing through filter pores by their apparent viscosity; the viscosity of a fluid that would pass with the same flow. We measured a ratio of 5·104∶102∶1 for the apparent viscosities of 15 µm diameter MDA-231 cells, 10 µm white cells and 90 fl red cells passing through a 5 µm pore. Fixation increases the pressure needed to pass cells through 8 µm pores 25-fold and halves the recovery of spiked tumor cells. Filtration should be performed on unfixed samples at a pressure of ∼10 mbar for a 1 cm2 track-etched filter with 5 µm pores. At this pressure MDA-231 cells move through the filter in 1 hour. If fixation is needed for sample preservation, a gentle fixative should be selected. The difference in apparent viscosity between CTC and blood cells is key in optimizing recovery of CTC. PMID:23658615

  14. Filtration parameters influencing circulating tumor cell enrichment from whole blood.

    Directory of Open Access Journals (Sweden)

    Frank A W Coumans

    Full Text Available Filtration can achieve circulating tumor cell (CTC enrichment from blood. Key parameters such as flow-rate, applied pressure, and fixation, vary largely between assays and their influence is not well understood. Here, we used a filtration system, to monitor these parameters and determine their relationships. Whole blood, or its components, with and without spiked tumor cells were filtered through track-etched filters. We characterize cells passing through filter pores by their apparent viscosity; the viscosity of a fluid that would pass with the same flow. We measured a ratio of 5·10(4∶10(2∶1 for the apparent viscosities of 15 µm diameter MDA-231 cells, 10 µm white cells and 90 fl red cells passing through a 5 µm pore. Fixation increases the pressure needed to pass cells through 8 µm pores 25-fold and halves the recovery of spiked tumor cells. Filtration should be performed on unfixed samples at a pressure of ∼10 mbar for a 1 cm(2 track-etched filter with 5 µm pores. At this pressure MDA-231 cells move through the filter in 1 hour. If fixation is needed for sample preservation, a gentle fixative should be selected. The difference in apparent viscosity between CTC and blood cells is key in optimizing recovery of CTC.

  15. Global Solution of Atmospheric Circulation Models with Humidity Effect

    OpenAIRE

    Luo, Hong

    2014-01-01

    The atmospheric circulation models are deduced from the very complex atmospheric circulation models based on the actual background and meteorological data. The models are able to show features of atmospheric circulation and are easy to be studied. It is proved that existence of global solutions to atmospheric circulation models with the use of the $T$-weakly continuous operator.

  16. Characterization of smooth muscle-like cells in circulating human peripheral blood.

    Science.gov (United States)

    Sugiyama, Seigo; Kugiyama, Kiyotaka; Nakamura, Shinichi; Kataoka, Keiichiro; Aikawa, Masanori; Shimizu, Koichi; Koide, Shunichi; Mitchell, Richard N; Ogawa, Hisao; Libby, Peter

    2006-08-01

    Smooth muscle cells play an important role in human vascular diseases. Several lines of evidence demonstrate that circulating smooth muscle precursor cells contribute to intimal hyperplasia in animal models. We obtained large spindle cells expressing alpha-smooth muscle actin (alpha-SMA), denoted here as "smooth muscle-like cells" (SMLC), from human peripheral blood mononuclear cells (PBMC). SMLC derived from human PBMC proliferated readily and expressed pro-inflammatory genes during early culture. After long-term culture, SMLC could contract and express characteristic smooth muscle cell markers. We found peripheral blood mononuclear cell expressing alpha-smooth muscle actin in the circulating blood that bore CD14 and CD105. Sorted CD14/CD105 double-positive PBMC could differentiate into SMLC. The number of CD14-CD105-bearing PBMC increased significantly in patients with coronary artery disease compared to patients without coronary artery disease. These results support the novel concept that smooth muscle precursor cells exist in circulating human blood and may contribute to the pathogenesis of vascular diseases.

  17. Modelling blood safety

    NARCIS (Netherlands)

    Janssen, M.P.

    2010-01-01

    This thesis describes the development and application of methods and models to support decision making on safety measures aimed at preventing the transmission of infections by blood donors. Safety measures refer to screening tests for blood donors, quarantine periods for blood plasma, or methods for

  18. Circulating Blood Monocyte Subclasses and Lipid-Laden Adipose Tissue Macrophages in Human Obesity.

    Directory of Open Access Journals (Sweden)

    Tal Pecht

    Full Text Available Visceral adipose tissue foam cells are increased in human obesity, and were implicated in adipose dysfunction and increased cardio-metabolic risk. In the circulation, non-classical monocytes (NCM are elevated in obesity and associate with atherosclerosis and type 2 diabetes. We hypothesized that circulating NCM correlate and/or are functionally linked to visceral adipose tissue foam cells in obesity, potentially providing an approach to estimate visceral adipose tissue status in the non-surgical obese patient.We preformed ex-vivo functional studies utilizing sorted monocyte subclasses from healthy donors. Moreover, we assessed circulating blood monocyte subclasses and visceral fat adipose tissue macrophage (ATM lipid content by flow-cytometry in paired blood and omental-fat samples collected from patients (n = 65 undergoing elective abdominal surgery.Ex-vivo, NCM and NCM-derived macrophages exhibited lower lipid accumulation capacity compared to classical or intermediate monocytes/-derived macrophages. Moreover, of the three subclasses, NCM exhibited the lowest migration towards adipose tissue conditioned-media. In a cohort of n = 65, increased %NCM associated with higher BMI (r = 0.250,p<0.05 and ATM lipid content (r = 0.303,p<0.05. Among patients with BMI≥25Kg/m2, linear regression models adjusted for age, sex or BMI revealed that NCM independently associate with ATM lipid content, particularly in men.Collectively, although circulating blood NCM are unlikely direct functional precursor cells for adipose tissue foam cells, their increased percentage in the circulation may clinically reflect higher lipid content in visceral ATMs.

  19. The Effects of Exercise on Judoists’ Circulating Blood Neutrophils

    Directory of Open Access Journals (Sweden)

    Zar A.

    2010-06-01

    Full Text Available Background and Objectives: Type, intensity and duration of exercises exert pivotal effects on athletes’ immune system and probably athletes’ susceptibility to upper respiratory tract infections. In this study we examined the effects of one session of moderate-intensity exercise on male judoists’ circulating blood neutrophil counts (BNC and respiratory burst, and self-reported upper respiratory clinical infections 24 hours after the exercise and during the sport seasons.Methods: Ten male judoists after obtaining informed consent were included in the study. The athletes took part in a session of moderate-intensity exercise (60 minutes running on a treadmill at 60% of maximum heart rate. Blood samples were drawn at rest immediately after the exercise. Blood neutrophil count and percentage of Phorbol Myristate Acetate (PMA stimulated neutrophils in whole blood were assessed [as a marker of oxidative burst (OB quality]. Athletes were asked about any signs of upper respiratory infections 24 hours after the exercise and during sport seasons. Paired-t test was used for statistical analysis and statistical significance was set at p<0.05.Results: BNC were in normal range at rest, and meaningfully increased immediately after the exercise (p<0.05. At rest, the OB activity was in normal range, and increased immediately after the exercise (not significant. During 24 hours after the exercise, athletes showed no signs of upper respiratory system infections. Also they mentioned no history of increased susceptibility of upper respiratory infections during sport seasons. Conclusion: Continuous judo exercises have no negative effects on BNC and OB activity. This finding is in accordance with the absence of self-reported upper respiratory infections in judoists during sport seasons. Significant increase in BNC after a session of exercise was a predictable event as a normal response of immune system to exercise stress. Normal OB activity after the exercise was

  20. The Effects of Exercise on Judoists’ Circulating Blood Neutrophils

    Directory of Open Access Journals (Sweden)

    A Zar

    2012-05-01

    Full Text Available

    Background and Objectives: Type, intensity and duration of exercises exert pivotal effects on athletes’ immune system and probably athletes’ susceptibility to upper respiratory tract infections. In this study we examined the effects of one session of moderate-intensity exercise on male judoists’ circulating blood neutrophil counts (BNC and respiratory burst, and self-reported upper respiratory clinical infections 24 hours after the exercise and during the sport seasons. Methods: Ten male judoists after obtaining informed consent were included in the study. The athletes took part in a session of moderate-intensity exercise (60 minutes running on a treadmill at 60% of maximum heart rate. Blood samples were drawn at rest immediately after the exercise. Blood neutrophil count and percentage of Phorbol Myristate Acetate (PMA stimulated neutrophils in whole blood were assessed [as a marker of oxidative burst (OB quality]. Athletes were asked about any signs of upper respiratory infections 24 hours after the exercise and during sport seasons. Paired-t test was used for statistical analysis and statistical significance was set at p<0.05. Results: BNC were in normal range at rest, and meaningfully increased immediately after the exercise (p<0.05. At rest, the OB activity was in normal range, and increased immediately after the exercise (not significant. During 24 hours after the exercise, athletes showed no signs of upper respiratory system infections. Also they mentioned no history of increased susceptibility of upper respiratory infections during sport seasons. Conclusion: Continuous judo exercises have no negative effects on BNC and OB activity. This finding is in accordance with the absence of self-reported upper respiratory infections in judoists during sport seasons. Significant increase in BNC after a session of exercise was a

  1. Effect of a deproteinized blood extract on the recovery of blood circulation in an ischaemic skin lesion.

    Science.gov (United States)

    Smahel, J.

    1982-01-01

    An experimental model was used to study the revascularization of an ischaemic skin lesion and the effect on this process of the blood extract Solcoseryl. Under the conditions given in the experiment, restoration of the circulation was by 2 modes--re-flow in the original vessels, and neovascularization. Solcoseryl given daily i.p. encouraged the re-flow phenomenon and therefore, by improving the microcirculation and nutrition, the healing of the ischaemic lesions. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:6176254

  2. Hydrodynamic and label-free sorting of circulating tumor cells from whole blood

    Science.gov (United States)

    Geislinger, Thomas M.; Stamp, Melanie E. M.; Wixforth, Achim; Franke, Thomas

    2015-11-01

    We demonstrate continuous, passive, and label-free sorting of different in vitro cancer cell lines (MV3, MCF7, and HEPG2) as model systems for circulating tumor cells (CTCs) from undiluted whole blood employing the non-inertial lift effect as driving force. This purely viscous, repulsive cell-wall interaction is sensitive to cell size and deformability differences and yields highly efficient cell separation and high enrichment factors. We show that the performance of the device is robust over a large range of blood cell concentrations and flow rates as well as for the different cell lines. The collected samples usually contain more than 90% of the initially injected CTCs and exhibit average enrichment factors of more than 20 for sorting from whole blood samples.

  3. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  4. Rapid multi-wavelength optical assessment of circulating blood volume without a priori data

    Science.gov (United States)

    Loginova, Ekaterina V.; Zhidkova, Tatyana V.; Proskurnin, Mikhail A.; Zharov, Vladimir P.

    2016-03-01

    The measurement of circulating blood volume (CBV) is crucial in various medical conditions including surgery, iatrogenic problems, rapid fluid administration, transfusion of red blood cells, or trauma with extensive blood loss including battlefield injuries and other emergencies. Currently, available commercial techniques are invasive and time-consuming for trauma situations. Recently, we have proposed high-speed multi-wavelength photoacoustic/photothermal (PA/PT) flow cytometry for in vivo CBV assessment with multiple dyes as PA contrast agents (labels). As the first step, we have characterized the capability of this technique to monitor the clearance of three dyes (indocyanine green, methylene blue, and trypan blue) in an animal model. However, there are strong demands on improvements in PA/PT flow cytometry. As additional verification of our proof-of-concept of this technique, we performed optical photometric CBV measurements in vitro. Three label dyes—methylene blue, crystal violet and, partially, brilliant green—were selected for simultaneous photometric determination of the components of their two-dye mixtures in the circulating blood in vitro without any extra data (like hemoglobin absorption) known a priori. The tests of single dyes and their mixtures in a flow system simulating a blood transfusion system showed a negligible difference between the sensitivities of the determination of these dyes under batch and flow conditions. For individual dyes, the limits of detection of 3×10-6 M‒3×10-6 M in blood were achieved, which provided their continuous determination at a level of 10-5 M for the CBV assessment without a priori data on the matrix. The CBV assessment with errors no higher than 4% were obtained, and the possibility to apply the developed procedure for optical photometric (flow cytometry) with laser sources was shown.

  5. Determination of blood circulation in oral formations using Rb86 distribution method and labelled micropearl method

    International Nuclear Information System (INIS)

    Fazekas, A.; Posch, E.; Harsing, L.

    1979-01-01

    The blood circulation of incisors, dental pulp and tongue was detemined using the measurement of 86 Rb distribution in rats. The results were compared with those obtained by a simultaneous micropearl method. It was found that 37 per cent of 86 Rb in dental tissues is localized in the hard propiodentium, with a high proportion diffusing from the periodontium. The 86 Rb fraction localized in the tongue represents its blood circulation. (author)

  6. Arterial blood-pressure change and endogenous circulating substance P in man

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Kastrup, J; Schaffalitzky De Muckadell, O B

    1985-01-01

    Substance P (SP) is a powerful vasodilator and this peptide is today considered to be a chemical messenger. The potential effects on circulating SP of acute changes in arterial blood-pressure was investigated in nine subjects. An increase in arterial mean blood-pressure (+33%, P less than 0.001, ...... change in plasma SP, this seems to indicate that endogenous circulating SP has no significant role in the vascular tonus controlled by the arterial baroreflex....

  7. Circulating fluidized bed boiler numerical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Di Maggio, T. [Electricite de France, 75 - Paris (France). Direction des Etudes et Recherches; Bursi, J.M.; Lafanechere, L.; Jestin, L. [Electricite de France (EDF), 69 - Villeurbanne (France); Roulet, V. [E.D.F./DE/CNET, 92 - La Defense (France)

    1996-12-31

    Electricite de France (EdF) is actively involved in the development of CFB power plants. Thanks to a wide Research and Development program around the 125 MWe Emile Huchet and the 250 MWe Provence units (two boilers designed by Stein-Lurgi), EdF has been able to get a good knowledge of hydrodynamics and heat transfer in the circulating loop as well as the back pass. One of the main objectives of the R and D program was to gather this information and results in a steady state operating model of a CFB boiler and to simulate the operation of the 250 MWe Provence power plant. This model has been developed before the first ignition of the Provence power plant in order to check the design and to help on-field engineers during the start-up phase. Furthermore, this model allows R and D engineers to make parametric studies and to evaluate new designs. (authors) 5 refs.

  8. Control modeling and Chinese acupuncture treatment on cerebral circulation.

    Science.gov (United States)

    Yang, Li; Sui, Jinxue; Shi, Hongzhi

    2015-01-01

    Cerebral hemodynamic parameters are related to the occurrence and development of the cerebral vascular diseases. This paper proposes a new possible method for control treatment on cerebral circulation network diseases. Cerebral circulation is taken as a kind of fluid network that should be controlled. The acupuncture treatment in traditional Chinese medicine is used as an actuator, whose design principle is changing the artery pressure and resistance of the cerebral circulation to increase the blood flow, so as to achieve the purpose of treating cerebral circulation diseases. Clinical data of acupuncture and moxibustion treatment has also preliminarily proved the correctness of this method.

  9. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  10. The epistemological status of general circulation models

    Science.gov (United States)

    Loehle, Craig

    2017-05-01

    Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

  11. The epistemological status of general circulation models

    Science.gov (United States)

    Loehle, Craig

    2018-03-01

    Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

  12. Ocean circulation modeling by use of radar altimeter data

    Science.gov (United States)

    Olbers, Dirk; Alpers, W.; Hasselmann, K.; Maier-Reimer, E.; Kase, R.; Krauss, W.; Siedler, G.; Willebrand, J.; Zahel, W.

    1991-01-01

    The project will investigate the use of radar altimetry (RA) data in the determination of the ocean circulation models. RA data will be used to verify prognostic experiments of the steady state and seasonal cycle of large-scale circulation models and the statistical steady state of eddy-resolving models. The data will serve as initial and update conditions in data assimilation experiments and as constraints in inverse calculations. The aim of the project is a better understanding of ocean physics, the determination and mapping of ocean currents, and a contribution to the establishment of ocean circulation models for climate studies. The goal of the project is to use satellite radar altimetry data for improving our knowledge of ocean circulation both in a descriptive sense and through the physics that govern the circulation state. The basic tool is a series of ocean circulation models. Depending on the model, different techniques will be applied to incorporate the RA data.

  13. Influence of probe motion on laser probe temperature in circulating blood.

    Science.gov (United States)

    Hehrlein, C; Splinter, R; Littmann, L; Tuntelder, J R; Tatsis, G P; Svenson, R H

    1991-01-01

    The purpose of this study was to evaluate the effect of probe motion on laser probe temperature in various blood flow conditions. Laser probe temperatures were measured in an in vitro blood circulation model consisting of 3.2 nm-diameter plastic tubes. A 2.0 mm-diameter metal probe attached to a 300 microns optical quartz fiber was coupled to an argon laser. Continuous wave 4 watts and 8 watts of laser power were delivered to the fiber tip corresponding to a 6.7 +/- 0.5 and 13.2 +/- 0.7 watts power setting at the laser generator. The laser probe was either moved with constant velocity or kept stationary. A thermocouple inserted in the lateral portion of the probe was used to record probe temperatures. Probe temperature changes were found with the variation of laser power, probe velocity, blood flow, and duration of laser exposure. Probe motion significantly reduced probe temperatures. After 10 seconds of 4 watts laser power the probe temperature in stagnant blood decreased from 303 +/- 18 degrees C to 113 +/- 17 degrees C (63%) by moving the probe with a velocity of 5 cm/sec. Blood flow rates of 170 ml/min further decreased the probe temperature from 113 +/- 17 degrees C to 50 +/- 8 degrees C (56%). At 8 watts of laser power a probe temperature reduction from 591 +/- 25 degrees C to 534 +/- 36 degrees C (10%) due to 5 cm/sec probe velocity was noted. Probe temperatures were reduced to 130 +/- 30 degrees C (78%) under the combined influence of 5 cm/sec probe velocity and 170 ml/min blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Modeling the Middle Jurassic ocean circulation

    Directory of Open Access Journals (Sweden)

    Maura Brunetti

    2015-10-01

    Full Text Available We present coupled ocean–sea-ice simulations of the Middle Jurassic (∼165 Ma when Laurasia and Gondwana began drifting apart and gave rise to the formation of the Atlantic Ocean. Since the opening of the Proto-Caribbean is not well constrained by geological records, configurations with and without an open connection between the Proto-Caribbean and Panthalassa are examined. We use a sea-floor bathymetry obtained by a recently developed three-dimensional (3D elevation model which compiles geological, palaeogeographical and geophysical data. Our original approach consists in coupling this elevation model, which is based on detailed reconstructions of oceanic realms, with a dynamical ocean circulation model. We find that the Middle Jurassic bathymetry of the Central Atlantic and Proto-Caribbean seaway only allows for a weak current of the order of 2 Sv in the upper 1000 m even if the system is open to the west. The effect of closing the western boundary of the Proto-Caribbean is to increase the transport related to barotropic gyres in the southern hemisphere and to change water properties, such as salinity, in the Neo-Tethys. Weak upwelling rates are found in the nascent Atlantic Ocean in the presence of this superficial current and we discuss their compatibility with deep-sea sedimentological records in this region.

  15. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  16. NAO-ocean circulation interactions in a coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, A. [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Gualdi, S.; Navarra, A. [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Scoccimarro, E. [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2008-12-15

    The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead-lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean-atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode. (orig.)

  17. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance

    NARCIS (Netherlands)

    Bruinsma, P.; Arts, T.; Dankelman, J.; Spaan, J. A.

    1988-01-01

    The effect of pressure-dependent changes in vascular volume, resistance and capacitance in the coronary micro-circulation, has been studied by a distributed mathematical model of the coronary micro-vasculature in the left ventricular wall. The model does not include regulation of coronary blood flow

  18. The association between circulating endostatin and a disturbed circadian blood pressure pattern in patients with type 2 diabetes.

    Science.gov (United States)

    Wuopio, Jonas; Östgren, Carl Johan; Länne, Toste; Lind, Lars; Ruge, Toralph; Carlsson, Axel C; Larsson, Anders; Nyström, Fredrik H; Ärnlöv, Johan

    2018-02-28

    Endostatin, cleaved from collagen XVIII in the extracellular matrix, is a promising circulating biomarker for cardiovascular damage. It possesses anti-angiogenic and anti-fibrotic functions and has even been suggested to be involved in blood pressure regulation. Less is known if endostatin levels relate to circadian blood pressure patterns. In the present paper we studied the association between circulating levels of endostatin and nocturnal dipping in blood pressure. We used the CARDIPP-study, a cohort of middle aged, type 2 diabetics (n = 593, 32% women), with data on both 24-hour and office blood pressure, serum-endostatin, cardiovascular risk factors, and incident major cardiovascular events. Nocturnal dipping was defined as a >10% difference between day- and night-time blood pressures. Two-hundred four participants (34%) were classified as non-dippers. The mean endostatin levels were significantly higher in non-dippers compared to dippers (mean ± standard deviation: 62.6 ± 1.8 µg/l vs. 58.7 ± 1.6 µg/l, respectively, p = .007). Higher serum levels of endostatin were associated with a diminished decline in nocturnal blood pressure adjusted for age, sex, HbA1c, mean systolic day blood pressure, hypertension treatment, glomerular filtration rate, and prevalent cardiovascular disease (regression coefficient per SD increase of endostatin -0.01, 95% CI, -0.02-(-0.001), p = .03). Structural equation modelling analyses suggest that endostatin mediates 7% of the association between non-dipping and major cardiovascular events. We found an independent association between higher circulating levels of endostatin and a reduced difference between day- and night-time systolic blood pressure in patients with type 2 diabetes. Yet endostatin mediated only a small portion of the association between non-dipping and cardiovascular events arguing against a clinical utility of our findings.

  19. [Contact lens dynamometry influences the systemic blood circulation: clinical significance].

    Science.gov (United States)

    Rüfer, F; Köpke, B

    2014-11-01

    The diastolic and systolic pressure in the ophthalmic artery (OAPdia, OAPsys) as well as the venous pulsation pressure (VPP) can be determined by contact lens dynamometry (CLD). With these parameters, carotid artery stenosis, ocular perfusion, e.g., in glaucoma patients and the cerebrospinal pressure can be examined indirectly. In the underlying study comparative data were collected and it was investigated to what extent CLD itself leads to changes of the systemic blood pressure. In the course of a prospective trial CLD was performed in 162 eyes of 81 healthy volunteers (mean age 41.0 ± 17.3 years). VPP, OAPdia and OAPsys were measured. A mean was calculated from 5 single readings. Directly before and after CLD automated blood pressure measurements according to Riva-Rocci (RR) and the heart rate were obtained in both arms. In the entire group, the mean VPP was 21 ± 9 mmHg on the right side and 19 ± 8 mmHg on the left side. The mean OAPdia was 60 ± 14 mmHg on the right and 67 ± 14 mmHg on the left side. The mean OAPsys was 91 ± 17 and 101 ± 21 mmHg, respectively. The mean variation coefficient from 5 single readings was 13/16 % for VPP (right/left), 7.4/8.2 % for OAPdia and 6.2/6.2 % for OAPsys. The difference between right and left eyes concerning OAPdia and OAPsys was statistically significant (Wilcoxon test; p < 0.001). VPP and OAPsys were not correlated with age, OAPdia showed a weak correlation with age on the right side (Spearman R = 0.23; p = 0.03). Blood pressure (RR) dropped from a mean 137/84 to 135/82 mmHg in the right arm and from 135/84 to 132/83 mmHg in the left arm. The change of the diastolic values of the right side and of the systolic values of the left side reached statistical significance (p < 0.05). The difference of the systolic blood pressure and the heart rate before and after CLD were weakly correlated (Spearman R = - 0.28; p = 0.01). The extent of the systemic

  20. Conceptual models of the wind-driven and thermohaline circulation

    NARCIS (Netherlands)

    Drijfhout, S.S.; Marshall, D.P.; Dijkstra, H.A.

    2013-01-01

    Conceptual models are a vital tool for understanding the processes that maintain the global ocean circulation, both in nature and in complex numerical ocean models. In this chapter we provide a broad overview of our conceptual understanding of the wind-driven circulation, the thermohaline

  1. BIM-Enabled Conceptual Modelling and Representation of Building Circulation

    Directory of Open Access Journals (Sweden)

    Jin Kook Lee

    2014-08-01

    Full Text Available This paper describes how a building information modelling (BIM-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs, which follow an object-oriented data modelling methodology. Advances in BIM authoring tools, using space objects and their relations defined in an IFC's schema, have made it possible to model, visualize and analyse circulation within buildings prior to their construction. Agent-based circulation has long been an interdisciplinary topic of research across several areas, including design computing, computer science, architectural morphology, human behaviour and environmental psychology. Such conventional approaches to building circulation are centred on navigational knowledge about built environments, and represent specific circulation paths and regulations. This paper, however, places emphasis on the use of ‘space objects’ in BIM-enabled design processes rather than on circulation agents, the latter of which are not defined in the IFCs' schemas. By introducing and reviewing some associated research and projects, this paper also surveys how such a circulation representation is applicable to the analysis of building circulation-related rules.

  2. Daily variation in radiosensitivity of circulating blood cells and bone marrow cell density in mice

    International Nuclear Information System (INIS)

    Tabatabai, R.N.

    1984-01-01

    Mice on a 12/12 light/dark cycle were bled during a twenty-four hour period each week for eight weeks to establish daily values of circulating blood cells. No significant daily variation was found in total red blood cells, hematocrit, or percentage of reticulocytes. A significant (P < 0.001) daily variation was found in total white blood cells, with the minimum occurring at 8 PM and the maximum occurring during the daylight hours from 8 a.m. to 2 p.m. Mice were then exposed to 0 R, 20 R, 50 R, or 100 R of x-radiation to determine what dose significantly reduces the total white cell count in circulating blood. It was found that 100 R significantly (P < .05) reduces the total white cell count over a four week period post-exposure. To determine if circulating blood cells and bone marrow cells show a diurnal radiosensitivity, mice were exposed to 100 R or 200 R of x-radiation at noon or midnight. Hematocrits, reticulocyte and white blood cell counts, daily white blood cell rhythm, and bone marrow cell density indicate that these mice were more radiosensitive at night

  3. Strengthening of the Walker circulation under globalwarming in an aqua-planet general circulation model simulation

    Science.gov (United States)

    Li, Tim; Zhang, Lei; Murakami, Hiroyuki

    2015-11-01

    Most climate models project a weakening of theWalker circulation under global warming scenarios. It is argued, based on a global averaged moisture budget, that this weakening can be attributed to a slower rate of rainfall increase compared to that of moisture increase, which leads to a decrease in ascending motion. Through an idealized aqua-planet simulation in which a zonal wavenumber-1 SST distribution is prescribed along the equator, we find that the Walker circulation is strengthened under a uniform 2-K SST warming, even though the global mean rainfall-moisture relationship remains the same. Further diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere. As a result, a "double-cell" circulation change pattern with a clockwise (anti-clockwise) circulation anomaly in the upper (lower) troposphere forms, and the upper tropospheric circulation change dominates. The mechanism for the formation of the "double cell" circulation pattern is attributed to a larger (smaller) rate of increase of diabatic heating than static stability in the upper (lower) troposphere. The result indicates that the future change of the Walker circulation cannot simply be interpreted based on a global mean moisture budget argument.

  4. KRAS mutational status analysis of peripheral blood isolated circulating tumor cells in metastatic colorectal patients

    OpenAIRE

    GUTI?RREZ, CRISTINA; RODRIGUEZ, JAVIER; PATI?O-GARC?A, ANA; GARC?A-FONCILLAS, JES?S; SALGADO, JOSEFA

    2013-01-01

    The present study describes an optimized method for isolating peripheral blood circulating tumor cells (CTCs) and performing KRAS mutation analysis. The approach combines isolation of peripheral blood mononuclear cells and immunomagnetic labeling with CD45 and CD326 human microbeads with KRAS analysis performed with a Therascreen KRAS kit by quantitative PCR. KRAS mutations were detected in the CTCs of patients with metastatic colorectal cancer (mCRC). CTCs may represent an alternative to inv...

  5. An elementary model of money circulation

    Science.gov (United States)

    Pokrovskii, Vladimir N.; Schinckus, Christophe

    2016-12-01

    This paper investigates money circulation for a system, consisting of a production system, the government, a central bank, commercial banks and many customers of the commercial banks. A set of equations for the system is written; the theory determines the main features of interaction between production and money circulation. Investigation of the equations in a steady-state situation reveals some relationship among output of the production system and monetary variables. The relation of quantity theory of money is confirmed, whereas a new concept of the efficiency of the system is introduced.

  6. Quantitative measurement of blood circulation in tests of rats using nuclear medical methods

    International Nuclear Information System (INIS)

    Ripke, R.

    1980-01-01

    The experiments show that is it is possible to quantitatively assess the blood circulation and, within limits, the germinative function of tests by measuring the impulses of an incorporated radionuclide (99-Tc-pertechnetate) using an uptake measuring instrument. This is a rapid and unbloody method to be adopted in human medicine. 'Acute tests' or pre-damaged tests can thus be exactly diagnosed. In the former case the circulation modification and in the latter the evaluation of the germinative function ability is of main interest. The most important measuring criterion is the 15-minute-uptake U; it represents the blood circulation in the tests measured. The germinative function ability is evaluated on the basis of the accumulation activity Nsub(max). (orig./MG) [de

  7. Influence of circulating antigen on blood pool activity of a radioiodinated monoclonal antibody

    International Nuclear Information System (INIS)

    Zalutsky, M.R.; Knapp, R.C.; Bast, R.C. Jr.

    1988-01-01

    Athymic mice with and without circulating CA 125 antigen were injected with 0.1-100 μg of 131 I-labeled OC 125 F(ab') 2 antibody fragment. Both the blood clearance of 131 I activity and the change in serum CA 125 were monitored over 24 h. Influence of CA 125 on blood pool activity could be avoided only at the 100 μg dose. In patient studies, circulating CA 125 levels decreased for the first 2 h after injection of OC 125 F(ab') 2 but generally returned to preinjection levels shortly thereafter. In vitro binding studies using the sera from patients injected with 131 I-labeled OC 125 F(ab') 2 suggest that circulating CA 125 could interfere with the tumor uptake of the labeled antibody. (author)

  8. Modelling seasonal circulation and thermohaline structure of the Caspian Sea

    Directory of Open Access Journals (Sweden)

    M. Gunduz

    2014-06-01

    Full Text Available The wind- and buoyancy-driven seasonal circulation of the Caspian Sea is investigated for a better understanding of its basin-wide and mesoscale dynamics, mixing and transport. The model successfully reproduces the following basic elements of the circulation: the southward-flowing current systems along the eastern and western coasts, the upwelling along the eastern coast, the cyclonic circulation in the Middle Caspian Sea (MCS, especially in winter, and the cyclonic and anticyclonic cells of circulation in the South Caspian Sea (SCS. The observed seasonal variability of sea level and sea surface temperature (SST is well reproduced. Mesoscale structures, not always evident from hydrographic observations, are identified.

  9. The history of the theory of the circulation of the blood.

    Science.gov (United States)

    Rampling, M W

    2016-01-01

    An obvious candidate for the seminal event in the history of haemorheology is Harvey's presentation of the concept of the circulation of the blood. Prior to this, the ideas concerning the movement of blood were based, in Europe and Middle East, largely on the principles laid down by Galen, and these had been, in effect, dogma for nearly a millennium and a half. These principles were basically that blood is formed in the liver, thence it travels to the bodily organs and is consumed -hence there is one-way flow and no circulation of the blood at all. Harvey's revolutionary idea that blood circulates repeatedly around the cardiovascular system laid the foundation for haemorheology because once that idea was accepted then the fluidity of the blood immediately became potentially of crucial importance - and haemorheology was conceived. In this paper the ideas that preceded Harvey will be presented, i.e. those of Galen, Ibn al-Nafis, Vesalius, Fabricius and Colombo etc. Harvey's awareness of this background, due mainly to time spent in Padua, triggered his many experimental investigations and discoveries. Ultimately, these led to his astonishing insights published in De Mortu Cordis in 1628 which changed the understanding of the cardio-vascular system forever.

  10. Significant reduction in blood loss in patients undergoing minimal extracorporeal circulation

    NARCIS (Netherlands)

    Gerritsen, W. B.; van Boven, W. J.; Smelt, M.; Morshuis, W. J.; van Dongen, H. P.; Haas, F. J.; Aarts, L. P.

    2006-01-01

    Several recent studies have shown differences in blood loss and allogeneic transfusion requirements between on-pump and off-pump coronary artery bypass grafting (CABG). Recently a new concept, the mini-extracorporeal circulation, was introduced to minimize the side effects of extracorporeal

  11. Reduction of Skin Impedance by the Improvement of the Blood Circulation

    National Research Council Canada - National Science Library

    Bau, J

    2001-01-01

    ... 50% if the skin is soaked in warm water for 5 minutes. This method can be applied to all situations in which surface electrodes such as EKG, EEG, and EMG are used, especially in the case of patients with poor blood circulation...

  12. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system

    Science.gov (United States)

    Kostyukevych, Sergey A.; Kostyukevych, Kateryna V.; Khristosenko, Roman V.; Lysiuk, Viktor O.; Koptyukh, Anastasiya A.; Moscalenko, Nadiya L.

    2017-12-01

    The problems related to the development of a multielement immunosensor device with the prism type of excitation of a surface plasmon resonance in the Kretschmann configuration and with the scanning of the incidence angle of monochromatic light aimed at the reliable determination of the levels of three molecular markers of the system of hemostasis (fibrinogen, soluble fibrin, and D-dimer) are considered. We have analyzed the influence of a technology for the production of a gold coating, modification of its surface, and noise effects on the enhancement of sensitivity and stability of the operation of devices. A means of oriented immobilization of monoclonal antibodies on the surface of gold using a multilayer film of copper aminopentacyanoferrate is developed. For the model proteins of studied markers, the calibrating curves (maximum sensitivity of 0.5 μg/ml) are obtained, and the level of fibrinogen in blood plasma of donors is determined. A four-channel modification of the device with an application of a reference channel for comparing the elimination of the noise of temperature fluctuations has been constructed. This device allows one to execute the express-diagnostics of prethrombotic states and the monitoring of the therapy of diseases of the blood circulation system.

  13. Assessment of Blood Flow in Hepatocellular Carcinoma: Correlations of Computed Tomography Perfusion Imaging and Circulating Angiogenic Factors

    Directory of Open Access Journals (Sweden)

    Chen-Pin Chou

    2013-08-01

    Full Text Available Hepatocellular carcinoma (HCC is a highly vascular tumor through the process of angiogenesis. To evaluate more non-invasive techniques for assessment of blood flow (BF in HCC, this study examined the relationships between BF of HCC measured by computer tomography (CT perfusion imaging and four circulating angiogenic factors in HCC patients. Interleukin 6 (IL-6, interleukin 8 (IL-8, vascular endothelial growth factor (VEGF, and platelet derived growth factor (PDGF in plasma were measured using Bio-Plex multiplex immunoassay in 21 HCC patients and eight healthy controls. Circulating IL-6, IL-8 and VEGF showed higher concentrations in HCC patients than in controls (p < 0.05, and predicted HCC occurrence better than chance (p < 0.01. Twenty-one patients with HCC received 21-phase liver imaging using a 64-slice CT. Total BF, arterial BF, portal BF, arterial fraction (arterial BF/total BF of the HCC and surrounding liver parenchyma, and HCC-parenchyma ratio were measured using a dual-vessel model. After analyzing the correlations between BF in HCC and four circulating angiogenic factors, we found that the HCC-parenchyma ratio of arterial BF showed a significantly positive correlation with the level of circulating IL-8 (p < 0.05. This circulating biomarker, IL-8, provides a non-invasive tool for assessment of BF in HCC.

  14. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  15. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  16. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao

    2015-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. For the winter overturning circulation, the climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation.

  17. Computational prediction of human salivary proteins from blood circulation and application to diagnostic biomarker identification.

    Directory of Open Access Journals (Sweden)

    Jiaxin Wang

    Full Text Available Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva, we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer.

  18. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  19. Precision of a new bedside method for estimation of the circulating blood volume

    DEFF Research Database (Denmark)

    Christensen, P; Eriksen, B; Henneberg, S W

    1993-01-01

    The present study is a theoretical and experimental evaluation of a modification of the carbon monoxide method for estimation of the circulating blood volume (CBV) with respect to the precision of the method. The CBV was determined from measurements of the CO-saturation of hemoglobin before...... and after ventilation with a gas mixture containing 20-50 ml of CO for a period of 10-15 min. A special Water's to and fro system was designed in order to avoid any leakage when measuring during intermittent positive pressure ventilation (IPPV). Blood samples were taken before and immediately after...... patients. The coefficients of variation were 6.2% and 4.7% in healthy and diseased subjects, respectively. Furthermore, the day-to-day variation of the method with respect to the total amount of circulating hemoglobin (nHb) and CBV was determined from duplicate estimates separated by 24-48 h. In conclusion...

  20. Changes in circulating blood volume after infusion of hydroxyethyl starch 6% in critically ill patients

    DEFF Research Database (Denmark)

    Christensen, P; Andersson, J; Rasmussen, S E

    2001-01-01

    The cardiovascular response to a volume challenge with hydroxyethyl starch (HES) (200/0.5) 6% depends on the relation between the volume of HES 6% infused and the expansion of the blood volume in critically ill patients. However, only relatively limited data exist on the plasma expanding effect...... of infusion of HES 6% in critically ill patients. The purpose of the study was to evaluate the variation in the expansion of the circulating blood volume (CBV) in critically ill patients after infusion of 500 ml of colloid (HES (200/0.5) 6%) using the carbon monoxide method....

  1. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure

    Science.gov (United States)

    Newton-Cheh, Christopher; Larson, Martin G; Vasan, Ramachandran S; Levy, Daniel; Bloch, Kenneth D; Surti, Aarti; Guiducci, Candace; Kathiresan, Sekar; Benjamin, Emelia J; Struck, Joachim; Morgenthaler, Nils G; Bergmann, Andreas; Blankenberg, Stefan; Kee, Frank; Nilsson, Peter; Yin, Xiaoyan; Peltonen, Leena; Vartiainen, Erkki; Salomaa, Veikko; Hirschhorn, Joel N; Melander, Olle; Wang, Thomas J

    2009-01-01

    We examined the association of common variants at the NPPA-NPPB locus with circulating concentrations of the natriuretic peptides, which have blood pressure–lowering properties. We genotyped SNPs at the NPPA-NPPB locus in 14,743 individuals of European ancestry, and identified associations of plasma atrial natriuretic peptide with rs5068 (P = 8 × 10−70), rs198358 (P = 8 × 10−30) and rs632793 (P = 2 × 10−10), and of plasma B-type natriuretic peptide with rs5068 (P = 3 × 10−12), rs198358 (P = 1 × 10−25) and rs632793 (P = 2 × 10−68). In 29,717 individuals, the alleles of rs5068 and rs198358 that showed association with increased circulating natriuretic peptide concentrations were also found to be associated with lower systolic (P = 2 × 10−6 and 6 × 10−5, respectively) and diastolic blood pressure (P = 1 × 10−6 and 5 × 10−5), as well as reduced odds of hypertension (OR = 0.85, 95% CI = 0.79–0.92, P = 4 × 10−5; OR = 0.90, 95% CI = 0.85–0.95, P = 2 × 10−4, respectively). Common genetic variants at the NPPA-NPPB locus found to be associated with circulating natriuretic peptide concentrations contribute to interindividual variation in blood pressure and hypertension. PMID:19219041

  2. A fully-implicit model of the global ocean circulation

    NARCIS (Netherlands)

    Weijer, Wilbert; Dijkstra, Henk A.; Öksüzoğlu, Hakan; Wubs, Fred W.; Niet, Arie C. de

    2003-01-01

    With the recent developments in the solution methods for large-dimensional nonlinear algebraic systems, fully-implicit ocean circulation models are now becoming feasible. In this paper, the formulation of such a three-dimensional global ocean model is presented. With this implicit model, the

  3. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  4. The ECHAM3 atmospheric general circulation model

    International Nuclear Information System (INIS)

    1993-09-01

    The ECHAM model has been developed from the ECMWF model (cycle 31, November 1988). It contains several changes, mostly in the parameterization, in order to adjust the model for climate simulations. The technical details of the ECHAM operational model are described. (orig./KW)

  5. PWR hot leg natural circulation modeling with MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Lee, Jong In [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models. 6 refs., 2 figs. (Author)

  6. Luteal blood flow and growth in correlation to circulating angiogenic hormones after spontaneous ovulation in mares

    Directory of Open Access Journals (Sweden)

    E. A. Abdelnaby

    2017-06-01

    Full Text Available For evaluating corpus luteum (CL function, blood flow, circulating nitric oxide (NO, estradiol (E2, progesterone, leptin and insulin like growth factor-I (IGF-1 concentrations were measured for 11 days that were equally divided into early and mid-luteal phases. Five mares underwent blood sam-pling and rectal Doppler ultrasound examination for 18 days for two estrous cycles. CL diameter, circumference, area and volume increased till day 11. Both blood flow blue area and power area in-creased from day 1 to 11 but colour blood flow red area declined till day 11. NO concentration in-creased till day 5 then decreased till day 11. Leptin concentrations declined from day 1 to 11. Power blood flow area and colour blood flow blue area exhibited a significant negative correlation with E2 (r= –0.79; –0.75, leptin (r= –0.73; –0.51, and IGF-1 (r= –0.56; –0.60, but had a positive one with progesterone (r=0.47; 0.52. Days after ovulation and luteal phase affected significantly luteal blood flow and hormone concentrations. The relatively high E2, leptin, IGF-1 and NO during growth com-pared to static phase indicated a role enhancing angiogenesis and early CL development.

  7. Pulse dye densitometry using indigo carmine is useful for cardiac output measurement, but not for circulating blood volume measurement.

    Science.gov (United States)

    Fujita, Y; Yamamoto, T; Fuse, M; Kobayashi, N; Takeda, S; Aoyagi, T

    2004-08-01

    We evaluated the validity of a newly developed pulse dye densitometer for indigo carmine for measuring cardiac output and circulating blood volume. Measurements of cardiac output and circulating blood volume were performed with the indigo carmine densitometer during normovolaemia, hypovolaemia and hypervolaemia in nine mongrel dogs under general anaesthesia. The validity was evaluated by comparison of the values of cardiac output and circulating blood volume obtained by the thermodilution technique and the 51Cr-labelled red blood cell method, respectively. We also examined indigo carmine removal by continuous veno-venous haemofiltration after indigo carmine injection. There was good agreement between dye densitometer- and thermodilution-derived cardiac output (r = 0.885, P dye-densitometer-derived circulating blood volume was greater than that of the 51Cr-labelled red blood cell method, and both values showed weak agreement (r = 0.587, P indigo carmine through continuous veno-venous haemofiltration was 0.34+/-0.06. These data indicate that indigo carmine densitometry is a reliable method for cardiac output determination, but it overestimates circulating blood volume, probably due to the transition of indigo carmine into the extravascular space in the systemic circulation.

  8. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting.

    Science.gov (United States)

    Anselmo, Aaron C; Zhang, Mengwen; Kumar, Sunny; Vogus, Douglas R; Menegatti, Stefano; Helgeson, Matthew E; Mitragotri, Samir

    2015-03-24

    The impact of physical and chemical modifications of nanoparticles on their biological function has been systemically investigated and exploited to improve their circulation and targeting. However, the impact of nanoparticles' flexibility (i.e., elastic modulus) on their function has been explored to a far lesser extent, and the potential benefits of tuning nanoparticle elasticity are not clear. Here, we describe a method to synthesize polyethylene glycol (PEG)-based hydrogel nanoparticles of uniform size (200 nm) with elastic moduli ranging from 0.255 to 3000 kPa. These particles are used to investigate the role of particle elasticity on key functions including blood circulation time, biodistribution, antibody-mediated targeting, endocytosis, and phagocytosis. Our results demonstrate that softer nanoparticles (10 kPa) offer enhanced circulation and subsequently enhanced targeting compared to harder nanoparticles (3000 kPa) in vivo. Furthermore, in vitro experiments show that softer nanoparticles exhibit significantly reduced cellular uptake in immune cells (J774 macrophages), endothelial cells (bEnd.3), and cancer cells (4T1). Tuning nanoparticle elasticity potentially offers a method to improve the biological fate of nanoparticles by offering enhanced circulation, reduced immune system uptake, and improved targeting.

  9. Blood circulation of the inner ear under the influence of medications. Radiotracer experiments using guinea pig cochlea

    International Nuclear Information System (INIS)

    Neumeier, A.

    1987-01-01

    The dependence of the blood circulation in the inner ear on various medications is discussed. By means of a radiotracer clearance technique the cochlear clearance curves for the guinea pig cochlea after the administration of various circulation stimulants were determined. (MBC) [de

  10. TNF, IL-1 and IL-6 in circulating blood after total-body and localized irradiation in rats

    NARCIS (Netherlands)

    Haveman, J.; Geerdink, A. G.; Rodermond, H. M.

    1998-01-01

    The levels of TNF, IL-1 and IL-6 in circulating blood of female WAG/Rij rats were assessed both after total-body irradiation (TBI) and localized irradiation of the right hind leg. The results show that enhanced levels of IL-1 in the circulation reflect a stress situation presumably resulting from

  11. Active ingredients in Chinese medicines promoting blood circulation as Na+/K+ -ATPase inhibitors.

    Science.gov (United States)

    Chen, Ronald J Y; Jinn, Tzyy-rong; Chen, Yi-ching; Chung, Tse-yu; Yang, Wei-hung; Tzen, Jason T C

    2011-02-01

    The positive inotropic effect of cardiac glycosides lies in their reversible inhibition on the membrane-bound Na(+)/K(+)-ATPase in human myocardium. Steroid-like compounds containing a core structure similar to cardiac glycosides are found in many Chinese medicines conventionally used for promoting blood circulation. Some of them are demonstrated to be Na(+)/K(+)-ATPase inhibitors and thus putatively responsible for their therapeutic effects via the same molecular mechanism as cardiac glycosides. On the other hand, magnesium lithospermate B of danshen is also proposed to exert its cardiac therapeutic effect by effectively inhibiting Na(+)/K(+)-ATPase. Theoretical modeling suggests that the number of hydrogen bonds and the strength of hydrophobic interaction between the effective ingredients of various medicines and residues around the binding pocket of Na(+)/K(+)-ATPase are crucial for the inhibitory potency of these active ingredients. Ginsenosides, the active ingredients in ginseng and sanqi, substantially inhibit Na(+)/K(+)-ATPase when sugar moieties are attached only to the C-3 position of their steroid-like structure, equivalent to the sugar position in cardiac glycosides. Their inhibitory potency is abolished, however, when sugar moieties are linked to C-6 or C-20 position of the steroid nucleus; presumably, these sugar attachments lead to steric hindrance for the entrance of ginsenosides into the binding pocket of Na(+)/K(+)-ATPase. Neuroprotective effects of cardiac glycosides, several steroid-like compounds, and magnesium lithospermate B against ischemic stroke have been accordingly observed in a cortical brain slice-based assay model, and cumulative data support that effective inhibitors of Na(+)/K(+)-ATPase in the brain could be potential drugs for the treatment of ischemic stroke.

  12. Response of an ocean general circulation model to wind and ...

    Indian Academy of Sciences (India)

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels.

  13. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  14. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    Science.gov (United States)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  15. Precision of a new bedside method for estimation of the circulating blood volume

    DEFF Research Database (Denmark)

    Christensen, P; Eriksen, B; Henneberg, S W

    1993-01-01

    The present study is a theoretical and experimental evaluation of a modification of the carbon monoxide method for estimation of the circulating blood volume (CBV) with respect to the precision of the method. The CBV was determined from measurements of the CO-saturation of hemoglobin before...... ventilation with the CO gas mixture. The amount of CO administered during each determination of CBV resulted in an increase in the CO saturation of hemoglobin of 2.1%-3.9%. A theoretical noise propagation analysis was performed by means of the Monte Carlo method. The analysis showed that a CO dose...... patients. The coefficients of variation were 6.2% and 4.7% in healthy and diseased subjects, respectively. Furthermore, the day-to-day variation of the method with respect to the total amount of circulating hemoglobin (nHb) and CBV was determined from duplicate estimates separated by 24-48 h. In conclusion...

  16. Empirical justification of the elementary model of money circulation

    Science.gov (United States)

    Schinckus, Christophe; Altukhov, Yurii A.; Pokrovskii, Vladimir N.

    2018-03-01

    This paper proposes an elementary model describing the money circulation for a system, composed by a production system, the government, a central bank, commercial banks and their customers. A set of equations for the system determines the main features of interaction between the production and the money circulation. It is shown, that the money system can evolve independently of the evolution of production. The model can be applied to any national economy but we will illustrate our claim in the context of the Russian monetary system.

  17. Multispectral Imaging Analysis of Circulating Tumor Cells in Negatively Enriched Peripheral Blood Samples.

    Science.gov (United States)

    Miller, Brandon; Lustberg, Maryam; Summers, Thomas A; Chalmers, Jeffrey J

    2017-01-01

    A variety of biomarkers are present on cells in peripheral blood of patients with a variety of disorders, including solid tumor malignancies. While rare, characterization of these cells for specific protein levels with the advanced technology proposed, will lead to future validation studies of blood samples as "liquid biopsies" for the evaluation of disease status and therapeutic response. While circulating tumor cells (CTCs) have been isolated in the blood samples of patients with solid tumors, the exact role of CTCs as clinically useful predictive markers is still debated. Current commercial technology has significant bias in that a positive selection technology is used that preassumes specific cell surface markers (such as EpCAM) are present on CTCs. However, CTCs with low EpCAM expression have been experimentally demonstrated to be more likely to be missed by this method. In contrast, this application uses a previously developed, technology that performs a purely negative enrichment methodology on peripheral blood, yielding highly enriched blood samples that contain CTCs as well as other, undefined cell types. The focus of this contribution is the use of multispectral imaging of epifluorescent, microscopic images of these enriched cells in order to help develop clinically relevant liquid biopsies from peripheral blood samples.

  18. The Hamburg oceanic carbon cycle circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Heinze, C.

    1992-02-01

    The carbon cycle model calculates the prognostic fields of oceanic geochemical carbon cycle tracers making use of a 'frozen' velocity field provided by a run of the LSG oceanic circulation model (see the corresponding manual, LSG=Large Scale Geostrophic). The carbon cycle model includes a crude approximation of interactions between sediment and bottom layer water. A simple (meridionally diffusive) one layer atmosphere model allows to calculate the CO 2 airborne fraction resulting from the oceanic biogeochemical interactions. (orig.)

  19. Changes in blood circulation of the contralateral Achilles tendon during and after acupuncture and heating.

    Science.gov (United States)

    Kubo, K; Yajima, H; Takayama, M; Ikebukuro, T; Mizoguchi, H; Takakura, N

    2011-10-01

    The purpose of this study was to investigate the effects of acupuncture and heating (application of hot pack) treatments on blood circulation in the contralateral Achilles tendon. During the treatments (10 min for acupuncture, 20 min for heating) and recovery period (40 min), the blood volume (THb) and oxygen saturation (StO2) of the treated and the non-treated tendons were measured using red laser lights. During both treatments, THb and StO2 of the treated tendon increased significantly from the resting level. The increased THb and StO2 of the treated tendon were maintained until the end of the recovery period after removal of the acupuncture needle, although these values decreased after removal of the hot pack. Although THb of the non-treated sides did not change during both acupuncture and heating treatments, it increased gradually after removal of the acupuncture needle or the hot pack. For both treatments, the amount of increase in THb of the non-treated tendon was significantly correlated to that of the treated tendon during the last phase of recovery period. These results obtained from the healthy subjects imply that blood circulation in the injured tendon in a plaster cast may be improved by applying acupuncture or heating treatments to the contralateral healthy limb. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Model for large scale circulation of nuclides in nature, 1

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Teruaki

    1988-12-01

    A model for large scale circulation of nuclides was developed, and a computer code named COCAIN was made which simulates this circulation system-dynamically. The natural environment considered in the present paper consists of 2 atmospheres, 8 geospheres and 2 lithospheres. The biosphere is composed of 4 types of edible plants, 5 cattles and their products, 4 water biota and 16 human organs. The biosphere is assumed to be given nuclides from the natural environment mentioned above. With the use of COCAIN, two numerical case studies were carried out; the one is the study on nuclear pollution in nature by the radioactive nuclides originating from the past nuclear bomb tests, and the other is the study on the response of environment and biota to the pulse injection of nuclides into one compartment. From the former case study it was verified that this model can well explain the observation and properly simulate the large scale circulation of nuclides in nature.

  1. Aspirin Resistance and Promoting Blood Circulation and Removing Blood Stasis: Current Situation and Prospectives

    OpenAIRE

    Jie Wang; Xingjiang Xiong; Bo Feng

    2014-01-01

    Aspirin plays a crucial physiological and pathophysiological role in cardiovascular diseases and cerebrovascular diseases by irreversibly inhibiting thromboxane A2. However, some patients may be “resistant” to its effect. The resistance has close association with adverse cardiovascular outcomes and increased mortality, so that resolving the problem of aspirin resistance (AR) is widely concerned. By studying the correlation between AR and blood stasis syndrome (BSS), it is demonstrated that BS...

  2. Seasonal predictability of Kiremt rainfall in coupled general circulation models

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel S.; Demissie, Teferi D.; Counillon, François; Wang, Yiguo; Viste, Ellen

    2017-11-01

    The Ethiopian economy and population is strongly dependent on rainfall. Operational seasonal predictions for the main rainy season (Kiremt, June-September) are based on statistical approaches with Pacific sea surface temperatures (SST) as the main predictor. Here we analyse dynamical predictions from 11 coupled general circulation models for the Kiremt seasons from 1985-2005 with the forecasts starting from the beginning of May. We find skillful predictions from three of the 11 models, but no model beats a simple linear prediction model based on the predicted Niño3.4 indices. The skill of the individual models for dynamically predicting Kiremt rainfall depends on the strength of the teleconnection between Kiremt rainfall and concurrent Pacific SST in the models. Models that do not simulate this teleconnection fail to capture the observed relationship between Kiremt rainfall and the large-scale Walker circulation.

  3. 14C-age tracers in global ocean circulation models

    Science.gov (United States)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  4. Interactions Between the Thermohaline Circulation and Tropical Atlantic SST in a Coupled General Circulation Model

    Science.gov (United States)

    Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)

    2001-01-01

    Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.

  5. Diagnostics And Treatment Of Patients With Blood Circulation Insufficiency In Vertebrobasilar Bed

    Directory of Open Access Journals (Sweden)

    A.M. Khachatryan

    2009-12-01

    Full Text Available For improvement of treatment results of patients with vertebrobasilar insufficiency we have analyzed data of medical examination and treatment of 182 patients stayed in clinics of Hospital Surgery and Nervous System Diseases from the 1st of January of 2005 till the 30th of June of 2009. Method of screening diagnostics, quantitative and qualitative blood flow estimation by means of Doppler ultrasonic investigation and angiography have been performed. The cause of blood circulation insufficiency in the vertebrobasilar bed at 87 patients was vertebral artery syndrome and in 95 cases there were the significant hemodynamical damages of blood flow in aorta arch branches and intracranial arteries. The neuroangiotropic therapy has been made for all patients, but the clinical improvement period was short in most cases, more prolonged effect was observed in addition of conservative therapy with plasmapheresis by indications. In the complex treatment of patients with vertebrobasilar insufficiency accompanied by degenerative diseases of spine chemical sympathectomy of vertebral artery in the III segment in the form of procaine and spirit-procaine blockades was made in 116 and 69 cases accordingly. The surgical sympathectomy was made in 15 patients. The surgical operations were made in 62 of 95 patients with significant hemodynamic pathology of blood flow in the vertebrobasilar region. In most cases isolative and combinative reconstructive surgery on carotid arteries was carried out. It played a significant role in blood flow correction. Favorable postoperative results were observed in most cases (93, 5%

  6. Whole blood stabilization for the microfluidic isolation and molecular characterization of circulating tumor cells.

    Science.gov (United States)

    Wong, Keith H K; Tessier, Shannon N; Miyamoto, David T; Miller, Kathleen L; Bookstaver, Lauren D; Carey, Thomas R; Stannard, Cleo J; Thapar, Vishal; Tai, Eric C; Vo, Kevin D; Emmons, Erin S; Pleskow, Haley M; Sandlin, Rebecca D; Sequist, Lecia V; Ting, David T; Haber, Daniel A; Maheswaran, Shyamala; Stott, Shannon L; Toner, Mehmet

    2017-11-23

    Precise rare-cell technologies require the blood to be processed immediately or be stabilized with fixatives. Such restrictions limit the translation of circulating tumor cell (CTC)-based liquid biopsy assays that provide accurate molecular data in guiding clinical decisions. Here we describe a method to preserve whole blood in its minimally altered state by combining hypothermic preservation with targeted strategies that counter cooling-induced platelet activation. Using this method, whole blood preserved for up to 72 h can be readily processed for microfluidic sorting without compromising CTC yield and viability. The tumor cells retain high-quality intact RNA suitable for single-cell RT-qPCR as well as RNA-Seq, enabling the reliable detection of cancer-specific transcripts including the androgen-receptor splice variant 7 in a cohort of prostate cancer patients with an overall concordance of 92% between fresh and preserved blood. This work will serve as a springboard for the dissemination of diverse blood-based diagnostics.

  7. A general circulation model (GCM) parameterization of Pinatubo aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  8. The effects of long-term microgravity on autonomic regulation of blood circulation in crewmembers of the international space station

    Directory of Open Access Journals (Sweden)

    Roman М. Baevsky

    2014-11-01

    Full Text Available The article presents the results of space experiment “Pneumocard”. The investigation involved all 25 Russian members of the ISS crew. The total of 226 sessions were made including 130 aboard the ISS, 50 prior to launch and 46 on return from mission. The objective was to study effects of the spaceflight factors on autonomic regulation of blood circulation, respiration and cardiac contractility during long-duration mission. The purpose was to secure new research data that would clarify our present view of adaptation mechanisms. Registered were the following signals: electrocardiogram, impedance cardiogram, seismic cardiogram, pneumotachogram, finger photoplethysmogram. A set of hard- and software was used. Autonomic regulation of blood circulation by HRV analysis was investigated. It was shown that at the onset of a space mission parasympathetic involvement in regulation increases typically with subsequent mobilization of additional functional reserve. It guided the development of a functional states mathematical model incorporating the established types of autonomic regulation. Our data evidence that the combination of HRV analysis, pre-nosology diagnosis and probabilistic estimate of the pathology risk can reinforce the medical care program in space missions.

  9. Arterial blood-pressure change and endogenous circulating substance P in man

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Kastrup, J; Schaffalitzky De Muckadell, O B

    1985-01-01

    Substance P (SP) is a powerful vasodilator and this peptide is today considered to be a chemical messenger. The potential effects on circulating SP of acute changes in arterial blood-pressure was investigated in nine subjects. An increase in arterial mean blood-pressure (+33%, P less than 0.001, n...... = 9) was obtained by infusion of angiotensin II and a decrease in pressure (-10%, P less than 0.005, n = 6) was obtained by ganglionic blockade. The concentration of SP in plasma, from supine subjects in the normotensive condition, ranged from 3 to 13 pmol/l (with a mean of 5.6 pmol/l). SP was thus...

  10. Development of a new control device for stabilizing blood level in reservoir during extracorporeal circulation.

    Science.gov (United States)

    Momose, Naoki; Yamakoshi, Rie; Kokubo, Ryo; Yasuda, Toru; Iwamoto, Norio; Umeda, Chinori; Nakajima, Itsuro; Yanagisawa, Mitsunobu; Tomizawa, Yasuko

    2010-03-01

    We developed a simple device that stabilizes the blood level in the reservoir of the extracorporeal circulation open circuit system by measuring the hydrostatic pressure of the reservoir to control the flow rate of the arterial pump. When the flow rate of the venous return decreases, the rotation speed of the arterial pump is automatically slowed down. Consequently, the blood level in the reservoir is stabilized quickly between two arbitrarily set levels and never falls below the pre-set low level. We conducted a basic experiment to verify the operation of the device, using a mock circuit with water. Commercially available pumps and reservoir were used without modification. The results confirmed that the control method effectively regulates the reservoir liquid level and is highly reliable. The device possibly also functions as a safety device.

  11. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation.

    Science.gov (United States)

    Prencipe, Giuseppe; Tabakman, Scott M; Welsher, Kevin; Liu, Zhuang; Goodwin, Andrew P; Zhang, Li; Henry, Joy; Dai, Hongjie

    2009-04-08

    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NPs), and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly(gamma-glutamic acid) (gammaPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gammaPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gammaPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs, and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pH values, at elevated temperatures, and in serum. Moreover, the polymer-coated SWNTs exhibit remarkably long blood circulation (t(1/2) = 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultralong blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery.

  12. High circulating osteoprotegerin levels are associated with non-zero blood groups.

    Science.gov (United States)

    Nagy, Elod Erno; Varga-Fekete, Timea; Puskas, Attila; Kelemen, Piroska; Brassai, Zoltan; Szekeres-Csiki, Katalin; Gombos, Timea; Csanyi, Maria Csilla; Harsfalvi, Jolan

    2016-05-26

    Osteoprotegerin (OPG) and von Willebrand factor (VWF) form complex within endothelial cells and following secretion. The nature of blood group antigens strongly influences the levels of circulating VWF, but there is no available data concerning its ascendancy on OPG levels. We aimed to assess the relationship of AB0 blood groups with OPG, VWF levels (VWF: Ag) and collagen binding activity (VWF: CB) in peripheral arterial disease (PAD) patients. Functional and laboratory parameters of 105 PAD patients and 109 controls were examined. Results of OPG, VWF: Ag, VWF: CB (ELISA-s) were analysed by comparative statistics, together with clinical data. OPG levels were higher in patients than in controls (4.64 ng/mL vs. 3.68 ng/mL, p blood groups compared to 0-groups both in patients and controls (4.95 ng/mL vs. 3.90 ng/mL, p = 0.012 and 4.09 ng/mL vs. 3.40 ng/mL, p = 0.002). OPG levels are associated to blood group phenotypes and higher in non-0 individuals. Increased OPG levels in PAD characterize disease severity. The significant correlation between OPG and VWF:CB might have functional importance in an atherothrombosis-prone biological environment.

  13. DECREASED LEVEL OF CORD BLOOD CIRCULATING ENDOTHELIAL COLONY-FORMING CELLS IN PREECLAMPSIA

    Science.gov (United States)

    Muñoz-Hernandez, Rocio; Miranda, Maria L.; Stiefel, Pablo; Lin, Ruei-Zeng; Praena-Fernández, Juan M.; Dominguez-Simeon, Maria J.; Villar, Jose; Moreno-Luna, Rafael; Melero-Martin, Juan M.

    2014-01-01

    Preeclampsia is a pregnancy-related disorder associated with increased cardiovascular risk for the offspring. Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that participate in the formation of vasculature during development. However, the effect of preeclampsia on fetal levels of ECFCs is largely unknown. In this study, we sought to determine whether cord blood ECFC abundance and function are altered in preeclampsia. We conducted a prospective cohort study that included women with normal (n=35) and preeclamptic (n=15) pregnancies. We measured ECFC levels in the umbilical cord blood of neonates and characterized ECFC phenotype, cloning-forming ability, proliferation and migration towards VEGF-A and FGF-2, in vitro formation of capillary-like structures, and in vivo vasculogenic ability in immunodeficient mice. We found that the level of cord blood ECFCs was statistically lower in preeclampsia than in control pregnancies (P = .04), a reduction that was independent of other obstetric factors. In addition, cord blood ECFCs from preeclamptic pregnancies required more time to emerge in culture than control ECFCs. However, once derived in culture, ECFC function was deemed normal and highly similar between preeclampsia and control, including the ability to form vascular networks in vivo. This study demonstrates that preeclampsia affects ECFC abundance in neonates. A reduced level of ECFCs during preeclamptic pregnancies may contribute to an increased risk of developing future cardiovascular events. PMID:24752434

  14. Monolithic Chip for High-throughput Blood Cell Depletion to Sort Rare Circulating Tumor Cells.

    Science.gov (United States)

    Fachin, Fabio; Spuhler, Philipp; Martel-Foley, Joseph M; Edd, Jon F; Barber, Thomas A; Walsh, John; Karabacak, Murat; Pai, Vincent; Yu, Melissa; Smith, Kyle; Hwang, Henry; Yang, Jennifer; Shah, Sahil; Yarmush, Ruby; Sequist, Lecia V; Stott, Shannon L; Maheswaran, Shyamala; Haber, Daniel A; Kapur, Ravi; Toner, Mehmet

    2017-09-07

    Circulating tumor cells (CTCs) are a treasure trove of information regarding the location, type and stage of cancer and are being pursued as both a diagnostic target and a means of guiding personalized treatment. Most isolation technologies utilize properties of the CTCs themselves such as surface antigens (e.g., epithelial cell adhesion molecule or EpCAM) or size to separate them from blood cell populations. We present an automated monolithic chip with 128 multiplexed deterministic lateral displacement devices containing ~1.5 million microfabricated features (12 µm-50 µm) used to first deplete red blood cells and platelets. The outputs from these devices are serially integrated with an inertial focusing system to line up all nucleated cells for multi-stage magnetophoresis to remove magnetically-labeled white blood cells. The monolithic CTC-iChip enables debulking of blood samples at 15-20 million cells per second while yielding an output of highly purified CTCs. We quantified the size and EpCAM expression of over 2,500 CTCs from 38 patient samples obtained from breast, prostate, lung cancers, and melanoma. The results show significant heterogeneity between and within single patients. Unbiased, rapid, and automated isolation of CTCs using monolithic CTC-iChip will enable the detailed measurement of their physicochemical and biological properties and their role in metastasis.

  15. Numerical experimentation of a diagnostic model of 3-D circulation in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Dube, S.K.; Rao, A.D.

    Climatic circulation in the upper levels of the Arabian Sea and western equatorial Indian Ocean are computed using a 3-dimensional, 33 level diagnostic circulation model. A steady state solution is obtained within 30 days of model integration. Model...

  16. On cerebrae blood circulation from data of radiocirculography in some diseases of central nervous system in children

    International Nuclear Information System (INIS)

    Dolgov, A.G.; Stroganova, L.I.; Chirkin, N.I.

    1980-01-01

    Results of radioisotope investigation of cerebral blood circulation in 202 children with different pathology of central nervous system are presented. Velocity of cerebral blood flow and time of semiaccumulation and semimoving a preparate were investigated by means of sup(113m)In. It is established that radiocirculography shows clearly the changes in the system of cerebral blood supply and in such diseases as vegetovascular distonia and hypertension syndrome, the radiocirculography data pass ahead the clinical picture

  17. A cell transportation solution that preserves live circulating tumor cells in patient blood samples.

    Science.gov (United States)

    Stefansson, Steingrimur; Adams, Daniel L; Ershler, William B; Le, Huyen; Ho, David H

    2016-05-06

    Circulating tumor cells (CTCs) are typically collected into CellSave fixative tubes, which kills the cells, but preserves their morphology. Currently, the clinical utility of CTCs is mostly limited to their enumeration. More detailed investigation of CTC biology can be performed on live cells, but obtaining live CTCs is technically challenging, requiring blood collection into biocompatible solutions and rapid isolation which limits transportation options. To overcome the instability of CTCs, we formulated a sugar based cell transportation solution (SBTS) that stabilizes cell viability at ambient temperature. In this study we examined the long term viability of human cancer cell lines, primary cells and CTCs in human blood samples in the SBTS for transportation purposes. Four cell lines, 5 primary human cells and purified human PBMCs were tested to determine the viability of cells stored in the transportation solution at ambient temperature for up to 7 days. We then demonstrated viability of MCF-7 cells spiked into normal blood with SBTS and stored for up to 7 days. A pilot study was then run on blood samples from 3 patients with metastatic malignancies stored with or without SBTS for 6 days. CTCs were then purified by Ficoll separation/microfilter isolation and identified using CTC markers. Cell viability was assessed using trypan blue or CellTracker™ live cell stain. Our results suggest that primary/immortalized cell lines stored in SBTS remain ~90% viable for > 72 h. Further, MCF-7 cells spiked into whole blood remain viable when stored with SBTS for up to 7 days. Finally, live CTCs were isolated from cancer patient blood samples kept in SBTS at ambient temperature for 6 days. No CTCs were isolated from blood samples stored without SBTS. In this proof of principle pilot study we show that viability of cell lines is preserved for days using SBTS. Further, this solution can be used to store patient derived blood samples for eventual isolation of viable CTCs after

  18. The Donders model of the circulation in normo- and pathophysiology

    DEFF Research Database (Denmark)

    Noordergraaf, Gerrit J.; Ottesen, Johnny T.; Kortsmit, Wil J.P.M.

    2006-01-01

    and output, changes during exercise. First, it rotates counterclockwise and stretches along the output axis, second, it shifts along the filling axis. The first is induced by sympathetic control, the second by respiratory control. The model shows that depth of respiration, sympathetic stimulation of cardiac......A model of the closed human cardiovascular loop is developed. This model, using one set of 88 equations, allows variations from normal resting conditions to exercise, as well as to the extreme condition of a circulation following cardiac arrest. The principal purpose of the model is to evaluate...

  19. Maternal Body-Mass Index and Cord Blood Circulating Endothelial Colony-Forming Cells

    Science.gov (United States)

    Lin, Ruei-Zeng; Miranda, Maria L.; Vallejo-Vaz, Antonio J.; Stiefel, Pablo; Praena-Fernández, Juan M.; Bernal-Bermejo, Jose; Jimenez-Jimenez, Luis M.; Villar, Jose; Melero-Martin, Juan M.

    2013-01-01

    Objective Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that are particularly abundant in umbilical cord blood. We sought to determine whether ECFC abundance in cord blood is associated with maternal body-mass index (BMI) in non-pathological pregnancies. Study design We measured the level of ECFCs in the cord blood of neonates (n=27) born from non-obese healthy mothers with non-pathological pregnancies and examined whether ECFC abundance correlated with maternal BMI. We also examined the effect of maternal BMI on ECFC phenotype and function using angiogenic and vasculogenic assays. Results We observed variation in ECFC abundance among subjects and found a positive correlation between pre-pregnancy maternal BMI and ECFC content (r=0.51, P=0.007), which was independent of other obstetric factors. Despite this variation, ECFC phenotype and functionality were deemed normal and highly similar between subjects with maternal BMI <25 kg/m2 and BMI between 25–30 kg/m2, including the ability to form vascular networks in vivo. Conclusions This study underlines the need to consider maternal BMI as a potential confounding factor for cord blood levels of ECFCs in future comparative studies between healthy and pathological pregnancies. Endothelial colony-forming cells (ECFCs) are a subset of progenitor cells that circulate in peripheral blood and can give rise to endothelial cells (1,2), contributing to the formation of new vasculature and the maintenance of vascular integrity (3–5). The mechanisms that regulate the abundance of these cells in vivo remain poorly understood. ECFCs are rare in adult peripheral blood (1,2,10). In contrast, there is an elevated number of these cells in fetal blood during the third trimester of pregnancy (11–13). Emerging evidence indicates that deleterious conditions during fetal life can impair ECFC content and function. For instance, offspring of diabetic mothers have been shown to have

  20. Central blood circulation in children at chronic combined low dose radiation and chemical action

    International Nuclear Information System (INIS)

    Arinchin, A.N.

    2000-01-01

    The state of central blood circulation and its hormonal regulation were studied in 1465 children living permanently under chronic low dose radiation and chemical action. Basic group consisted of 1093 children (579 boys and 514 girls) . 372 children (115 boys and 227 girls permanently living on 'clean' areas) were investigated in control group. Average age was 10,8 years old in basic group and 10,4 years old in the control group. Such parameters as arterial pressure, level of lead in blood and urine, adrenaline, noradrenaline and dophamine content in urine, thyroxine, iodothyronine, prostaglandins and cyclic AMP content in the blood serum has been controlled. Hypotensive states were determined to prevail in children living permanently under chronic low dose radiation and chemical action. The main pathogenic mechanism of this defeat is consider to be a reduction of the sympathoadrenal system activity combined with a decreasing of the thyroid system activity and of cyclic AMP level as well as predominance of prostaglandin depressive activity

  1. A SYSTEM AND A DEVICE FOR ISOLATING CIRCULATING TUMOR CELLS FROM THE PERIPHERAL BLOOD IN VIVO

    Directory of Open Access Journals (Sweden)

    Michal Mego

    2015-08-01

    Full Text Available Circulating tumor cells (CTC play a crucial role in disseminating tumors and in the metastatic cascade. CTCs are found only in small numbers, and the limited amount of isolated CTCs makes it impossible to characterize them closely. This paper presents a proposal for a new system for isolating CTCs from the peripheral blood in vivo. The system enables CTCs to be isolated from the whole blood volume for further research and applications. The proposed system consists of magnetic nanoparticles covered by monoclonal antibodies against a common epithelial antigen, large supermagnets, which are used to control the position of the nanoparticles within the human body, and a special wire made of a magnetic core wrapped in a non-magnetic shell. The system could be used not only for isolating CTCs, but also for in vivo isolation of other rare cells from the peripheral blood, including hematopoietic and/or mesenchymal stem cells, with applications in regenerative medicine and/or in stem cell transplantation.

  2. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  3. Clinical CVVH model removes endothelium-derived microparticles from circulation

    Directory of Open Access Journals (Sweden)

    Abdelhafeez H. Abdelhafeez

    2014-02-01

    Full Text Available Background: Endothelium-derived microparticles (EMPs are submicron vesicles released from the plasma membrane of endothelial cells in response to injury, apoptosis or activation. We have previously demonstrated EMP-induced acute lung injury (ALI in animal models and endothelial barrier dysfunction in vitro. Current treatment options for ALI are limited and consist of supportive therapies. We hypothesize that standard clinical continuous venovenous hemofiltration (CVVH reduces serum EMP levels and may be adapted as a potential therapeutic intervention. Materials and methods: EMPs were generated from plasminogen activation inhibitor-1 (PAI-1-stimulated human umbilical vein endothelial cells (HUVECs. Flow cytometric analysis was used to characterize EMPs as CD31- and annexin V-positive events in a submicron size gate. Enumeration was completed against a known concentration of latex beads. Ultimately, a concentration of ~650,000 EMP/mL perfusate fluid (total 470 mL was circulated through a standard CVVH filter (pore size 200 μm, flow rate 250 mL/hr for a period of 70 minutes. 0.5 mL aliquots were removed at 5- to 10-minute intervals for flow cytometric analysis. EMP concentration in the dialysate was measured at the end of 4 hours to better understand the fate of EMPs. Results: A progressive decrease in circulating EMP concentration was noted using standard CVVH at 250 mL/hr (a clinical standard rate from a 470 mL volume modelling a patient's circulation. A 50% reduction was noted within the first 30 minutes. EMPs entering the dialysate after 4 hours were 5.7% of the EMP original concentration. Conclusion: These data demonstrate that standard CVVH can remove EMPs from circulation in a circuit modelling a patient. An animal model of hemofiltration with induction of EMP release is required to test the therapeutic potential of this finding and potential of application in early treatment of ALI.

  4. Clinical significance of the molecular detection of melanoma cells circulating in the peripheral blood in melanoma patients.

    Science.gov (United States)

    Konstantopoulos, K; Psatha, M; Kalotychou, V; Frangia, N; Ioannovits, I; Meletis, I; Loukopoulos, D

    2001-06-01

    Blood circulating melanoma cells may be important for the spread of the disease. The current methods are not sensitive in detecting micro metastases. Tyrosinase mRNA can be detected in peripheral blood by a molecular test. As tyrosinase is expressed only in melanocytes and melanocytes normally do not circulate in the blood, the test may prove reliable in detecting circulating melanoma cells. we used a reverse-transcription polymerase chain reaction (RT-PCR) detecting tyrosinase mRNA in the blood. A prospective investigation in melanoma patients undergoing surgery was conducted; follow-up duration was 12 months. University Department Laboratory and Melanoma Clinic of a Tertiary Hospital. a total of 27 Greek patients with a diagnosis of malignant melanoma at different stages of the disease; 12 months follow-up after surgery. Samples form 12 healthy volunteers and 13 patients with chronic myelogenous leukemia served as controls. none. none. We detected mRNA tyrosinase in the peripheral blood in 16 out of 27 melanoma patients studied. No tyrosinase mRNA was detected in any of the 25 samples from the controls. Two of the 16 positive cases developed a metastasis within the next 12 months following testing. The other 14 positive cases remain metastasis free for this period, as also did the test negative cases. Detection of blood circulating melanoma cells by a RT-PCR technique, may be helpful in defining melanoma patients who are at risk for the spread of the disease.

  5. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation

    DEFF Research Database (Denmark)

    Olufsen, M.S.; Ottesen, Johnny T.; Tran, H.T.

    2005-01-01

    Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict...... dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation....... To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types...

  6. [Magnetic field numerical calculation and analysis for magnetic coupling of centrifugal blood pump for extracorporeal circulation].

    Science.gov (United States)

    Hu, Zhaoyan; Lu, Lijun; Zhang, Tianyi; Chen, Zhenglong; Zhang, Tao

    2013-12-01

    This paper mainly studies the driving system of centrifugal blood pump for extracorporeal circulation, with the core being disc magnetic coupling. Structure parameters of disc magnetic coupling are related to the ability of transferring magnetic torque. Therefore, it is necessary to carry out disc magnetic coupling permanent magnet pole number (n), air gap length (L(g)), permanent magnet thickness (L(m)), permanent magnet body inside diameter (R(i)) and outside diameter (R(o)), etc. thoroughly. This paper adopts the three-dimensional static magnetic field edge element method of Ansys for numerical calculation, and analyses the relations of magnetic coupling each parameter to transmission magnetic torque. It provides a good theory basis and calculation method for further optimization of the disc magnetic coupling.

  7. Active compounds in Chinese herbs and medicinal animal products which promote blood circulation via inhibition of Na+, K+-ATPase.

    Science.gov (United States)

    Tzen, Jason Tc; Chen, Ronald Jy; Chung, Tse-Yu; Chen, Yi-Ching; Lin, Nan-Hei

    2010-01-01

    The therapeutic effect of cardiac glycosides for congestive heart failure lies in their reversible inhibition on Na+, K+-ATPase located in human myocardium. Several steroid-like compounds containing a core structure similar to cardiac glycosides have been found in many Chinese herbs and medicinal animal products conventionally used to promote blood circulation. They are putatively responsible for the therapeutic effect of those medicinal products via the same mechanism of inhibiting Na+, K+-ATPase. Inhibitory potency on Na+, K+-ATPase by ginsenosides, one of the identified steroid-like compounds, is significantly affected by sugar attachment that might cause steric hindrance of their binding to Na+, K+-ATPase. Ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure, equivalent to the sugar position in cardiac glycosides, substantially inhibit Na+, K+-ATPase. However, their inhibitory potency is abolished when sugar moieties are linked to the C-6 or C-20 position of the steroid-like structure. In contrast, no appreciable contents of steroid-like compounds are found in danshen, a well-known Chinese herb traditionally regarded as an effective medicine promoting blood circulation. Instead, magnesium lithospermate B (MLB), the major soluble ingredient in danshen, is assumed to be responsible for the therapeutic effect by inhibiting Na+, K+-ATPase in a manner comparable to cardiac glycosides. Neuroprotective effects of cardiac glycosides, ginsenosides and MLB against ischemic stroke were accordingly observed in a cortical brain slice-based assay model. Whether the neuroprotection is also triggered by inhibition of Na+, K+-ATPase remains to be investigated. Molecular modeling suggests that cardiac glycosides, ginsenosides and MLB presumably bind to the same extracellular pocket of the Na+, K+-ATPase alpha subunit.

  8. Effects of Resistance Training on Matrix Metalloproteinase Activity in Skeletal Muscles and Blood Circulation During Aging

    Directory of Open Access Journals (Sweden)

    Ivo V. de Sousa Neto

    2018-03-01

    Full Text Available Aging is a complex, multifactorial process characterized by the accumulation of deleterious effects, including biochemical adaptations of the extracellular matrix (ECM. The purpose of this study was to investigate the effects of 12 weeks of resistance training (RT on metalloproteinase 2 (MMP-2 activity in skeletal muscles and, MMP-2 and MMP-9 activity in the blood circulation of young and old rats. Twenty-eight Wistar rats were randomly divided into four groups (n = 7 per group: young sedentary (YS; young trained (YT, old sedentary (OS, and old trained (OT. The stair climbing RT consisted of one training session every 2 other day, with 8–12 dynamic movements per climb. The animals were euthanized 48 h after the end of the experimental period. MMP-2 and MMP-9 activity was measured by zymography. There was higher active MMP-2 activity in the lateral gastrocnemius and flexor digitorum profundus muscles in the OT group when compared to the OS, YS, and YT groups (p ≤ 0.001. Moreover, there was higher active MMP-2 activity in the medial gastrocnemius muscle in the OT group when compared to the YS and YT groups (p ≤ 0.001. The YS group presented lower active MMP-2 activity in the soleus muscle than the YT, OS, OT groups (p ≤ 0.001. With respect to active MMP-2/9 activity in the bloodstream, the OT group displayed significantly reduced activity (p ≤ 0.001 when compared to YS and YT groups. In conclusion, RT up-regulates MMP-2 activity in aging muscles, while down-regulating MMP-2 and MMP-9 in the blood circulation, suggesting that it may be a useful tool for the maintenance of ECM remodeling.

  9. Effect of colorectal cancer on the number of normal stem cells circulating in peripheral blood.

    Science.gov (United States)

    Marlicz, Wojciech; Sielatycka, Katarzyna; Serwin, Karol; Kubis, Ewa; Tkacz, Marta; Głuszko, Rafał; Białek, Andrzej; Starzyńska, Teresa; Ratajczak, Mariusz Z

    2016-12-01

    Bone marrow (BM) residing stem cells are mobilized from their BM niches into peripheral blood (PB) in several pathological situations including tissue organ injury and systemic inflammation. We recently reported that the number of BM-derived stem cells (SCs) increases in patients with pancreatic and stomach cancer. Accordingly, we observed higher numbers of circulating very small embryonic/epiblast‑like stem cells (VSELs) and mesenchymal stem cells (MSCs) that were associated with the activation of pro-mobilizing complement cascade and an elevated level of sphingosine-1 phosphate (S1P) in PB plasma. We wondered if a similar correlation occurs in patients with colorectal cancer (CRC). A total of 46 patients were enrolled in this study: 17 with CRC, 18 with benign colonic adenomas (BCA) and 11 healthy individuals. By employing fluorescence-activated cell sorting (FACS) we evaluated the number of BM-derived SCs circulating in PB: i) CD34+/Lin-/CD45- and CD133-/Lin-/CD45- VSELs; ii) CD45-/CD105+/CD90+/CD29+ MSCs; iii) CD45-/CD34+/CD133+/KDR+ endothelial progenitor cells (EPCs); and iv) CD133+/Lin-/CD45+ or CD34+/Lin-/CD45+ cells enriched for hematopoietic stem/progenitor cells (HSPCs). In parallel, we measured in the PB parameters regulating the egress of SCs from BM into PB. In contrast to pancreatic and gastric cancer patients, CRC subjects presented neither an increase in the number of circulating SCs nor the activation of pro-mobilizing factors such as complement, coagulation and fibrinolytic cascade, circulating stromal derived factor 1 (SDF‑1), vascular endothelial growth factor (VEGF) and intestinal permeability marker (zonulin). In conclusion, mobilization of SCs in cancer patients depends on the type of malignancy and its ability to activate pro-mobilization cascades.

  10. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Kharin, V.V.

    1994-01-01

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  11. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans.

    Science.gov (United States)

    Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla; Lee, Tammy C; Morgan, Timothy M; Nicklas, Barbara J; Mathias, Rasika A; Chilton, Floyd H

    2016-01-28

    Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol) and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies evaluating fatty acids and their relationships with disease biomarkers or risk.

  12. Analysis of snow feedbacks in 14 general circulation models

    Science.gov (United States)

    Randall, D. A.; Cess, R. D.; Blanchet, J. P.; Chalita, S.; Colman, R.; Dazlich, D. A.; Del Genio, A. D.; Keup, E.; Lacis, A.; Le Treut, H.; Liang, X.-Z.; McAvaney, B. J.; Mahfouf, J. F.; Meleshko, V. P.; Morcrette, J.-J.; Norris, P. M.; Potter, G. L.; Rikus, L.; Roeckner, E.; Royer, J. F.; Schlese, U.; Sheinin, D. A.; Sokolov, A. P.; Taylor, K. E.; Wetherald, R. T.; Yagai, I.; Zhang, M.-H.

    1994-10-01

    Snow feedbacks produced by 14 atmospheric general circulation models have been analyzed through idealized numerical experiments. Included in the analysis is an investigation of the surface energy budgets of the models. Negative or weak positive snow feedbacks occurred in some of the models, while others produced strong positive snow feedbacks. These feedbacks are due not only to melting snow, but also to increases in boundary temperature, changes in air temperature, changes in water vapor, and changes in cloudiness. As a result, the net response of each model is quite complex. We analyze in detail the responses of one model with a strong positive snow feedback and another with a weak negative snow feedback. Some of the models include a temperature dependence of the snow albedo, and this has significantly affected the results.

  13. Relaxation oscillations in an idealized ocean circulation model

    Science.gov (United States)

    Roberts, Andrew; Saha, Raj

    2017-04-01

    This work is motivated by a desire to understand transitions between stable equilibria observed in Stommel's 1961 thermohaline circulation model. We adapt the model, including a forcing parameter as a dynamic slow variable. The resulting model is a piecewise-smooth, three time-scale system. The model is analyzed using geometric singular perturbation theory to demonstrate the existence of attracting periodic orbits. The system is capable of producing classical relaxation oscillations as expected, but there is also a parameter regime in which the model exhibits small amplitude oscillations known as canard cycles. Forcing the model with obliquity variations from the last 100,000 years produces oscillations that are modulated in amplitude and frequency. The output shows similarities with important features of the climate proxy data of the same period.

  14. [Experimental study on two-way application of traditional Chinese medicines capable of promoting blood circulation and removing blood stasis with neutral property in cold and hot blood stasis syndrome I].

    Science.gov (United States)

    Hao, Er-Wei; Deng, Jia-Gang; Du, Zheng-Cai; Yan, Ke; Zheng, Zuo-Wen; Wang, Qin; Huang, Li-Zhen; Bao, Chuan-Hong; Deng, Xiu-Qiong; Lu, Xiao-Yan; Tang, Zhi-Ling

    2012-11-01

    To study the action characteristics of "two-way application and conditioned dominance" of traditional Chinese medicines with neutral property by observing the action characteristic of 10 traditional Chinese medicines capable of promoting blood circulation and removing blood stasis with neutral property in the microcirculation in rats with heat stagnation and blood stasis syndrome. The rat model with heat stagnation and blood stasis syndrome was established by injecting carrageenan and dry yeast, and the rat model with cold stagnation and blood stasis syndrome was built by the body freezing method. Ten traditional Chinese medicines with neutral property, including 5 with hot property and 5 with cold property, were selected for intervention to observe blood flow rate and flow state indicators in rat auricles and make a comparative analysis on action characteristics of traditional Chinese medicines with neutral property. ANOVA showed that among the 10 traditional Chinese medicines with neutral property, 6 such as Typhae Pollen, Sappan Lignum and Vaccariae Semen can obviously increase the blood flow rate (P traditional Chinese medicines with cold property can increase the blood flow rate (P medicines showed no notable effect; among the 5 traditional Chinese medicines with hot property, Carthamus tinctorius and Ligusticum chuanxiong can increase the blood flow rate (P traditional Chinese medicines with natural and cold properties showed similar effect on heat stagnation and blood stasis syndrome and better effect in increasing blood flow rate than those with hot property; those with natural and hot properties showed similar effect and better effect in increasing blood flow rate than those with cold property. Under the condition of heat stagnation and blood stasis syndrome, traditional Chinese medicines with neutral property have the similar action characteristics with those with cold property; wile under the condition of cold stagnation and blood stasis syndrome

  15. Is Kinesio Taping to Generate Skin Convolutions Effective for Increasing Local Blood Circulation?

    Science.gov (United States)

    Yang, Jae-Man; Lee, Jung-Hoon

    2018-01-01

    Background It is unclear whether traditional application of Kinesio taping, which produces wrinkles in the skin, is effective for improving blood circulation. This study investigated local skin temperature changes after the application of an elastic therapeutic tape using convolution and non-convolution taping methods (CTM/NCTM). Material/Methods Twenty-eight pain-free men underwent CTM and NCTM randomly applied to the right and left sides of the lower back. Using infrared thermography, skin temperature was measured before, immediately after application, 5 min later, 15 min later, and after the removal of the tape. Results Both CTM and NCTM showed a slight, but significant, decrease in skin temperature for up to 5 min. The skin temperature at 15 min and after the removal of the tape was not significantly different from the initial temperature for CTM and NCTM. There were also no significant differences in the skin temperatures between CTM and NCTM. Conclusions Our findings do not support a therapeutic effect of wrinkling the skin with elastic tape application as a technique to increase local blood flow. PMID:29332101

  16. Is Kinesio Taping to Generate Skin Convolutions Effective for Increasing Local Blood Circulation?

    Science.gov (United States)

    Yang, Jae-Man; Lee, Jung-Hoon

    2018-01-14

    BACKGROUND It is unclear whether traditional application of Kinesio taping, which produces wrinkles in the skin, is effective for improving blood circulation. This study investigated local skin temperature changes after the application of an elastic therapeutic tape using convolution and non-convolution taping methods (CTM/NCTM). MATERIAL AND METHODS Twenty-eight pain-free men underwent CTM and NCTM randomly applied to the right and left sides of the lower back. Using infrared thermography, skin temperature was measured before, immediately after application, 5 min later, 15 min later, and after the removal of the tape. RESULTS Both CTM and NCTM showed a slight, but significant, decrease in skin temperature for up to 5 min. The skin temperature at 15 min and after the removal of the tape was not significantly different from the initial temperature for CTM and NCTM. There were also no significant differences in the skin temperatures between CTM and NCTM. CONCLUSIONS Our findings do not support a therapeutic effect of wrinkling the skin with elastic tape application as a technique to increase local blood flow.

  17. Blood circulation of patellar and achilles tendons during contractions and heating.

    Science.gov (United States)

    Kubo, Keitaro; Ikebukuro, Toshihiro

    2012-11-01

    Recent studies using ultrasonography have demonstrated that training-induced changes in the mechanical properties of tendons in plantar flexors (i.e., Achilles tendon) are lower than those in knee extensors (i.e., patellar tendon). However, the mechanisms for these phenomena are unknown. The purpose of this study was to compare changes in blood circulation of patellar and Achilles tendons by repeated muscle contractions and heating. Eleven healthy males participated in this study. During and after repeated muscle contractions (50 repetitions at 50% of the isometric maximum voluntary contraction for 3 s with 3-s relaxations) and heating (20 min), blood volume (total hemoglobin (THb)) and oxygen saturation (StO2) of the patellar and Achilles tendons were measured using red laser lights. During repeated muscle contractions, StO2 of the patellar tendon decreased significantly, but that of the Achilles tendon did not. During heating, THb and StO2 increased significantly for both tendons. Increases in THb and StO2 of the patellar tendon were significantly higher than those of the Achilles tendon (both P heating were higher than those of the Achilles tendon. This result appears to be related to the differences in the plasticity of the mechanical properties of the patellar and Achilles tendons.

  18. High levels of peripheral blood circulating plasma cells as a specific risk factor for progression of smoldering multiple myeloma.

    Science.gov (United States)

    Bianchi, G; Kyle, R A; Larson, D R; Witzig, T E; Kumar, S; Dispenzieri, A; Morice, W G; Rajkumar, S V

    2013-03-01

    Smoldering multiple myeloma (SMM) carries a 50% risk of progression to multiple myeloma (MM) or related malignancy within the first 5 years following diagnosis. The goal of this study was to determine if high levels of circulating plasma cells (PCs) are predictive of SMM transformation within the first 2-3 years from diagnosis. Ninety-one patients diagnosed with SMM at Mayo Clinic from January 1994 through January 2007, who had testing for circulating PCs using an immunofluorescent assay and adequate follow-up to ascertain disease progression, were studied. High level of circulating PCs was defined as absolute peripheral blood PCs >5 × 10(6)/l and/or >5% PCs per 100 cytoplasmic immunoglobulin (Ig)-positive peripheral blood mononuclear cells. Patients with high circulating PCs (14 of 91 patients, 15%) were significantly more likely to progress to active disease within 2 years compared with patients without high circulating PCs, 71% versus 24%, respectively, P=0.001. Corresponding rates for progression within 3 years were 86% versus 34%, respectively, P<0.001. Overall survival (OS) after both SMM diagnosis and MM diagnosis was also significantly different. High levels of circulating PCs identify SMM patients with an elevated risk of progression within the first 2-3 years following diagnosis.

  19. Modelling circulation in an ice-covered lake

    Directory of Open Access Journals (Sweden)

    Boris Arkhipov

    2010-12-01

    Full Text Available In deep ice-covered lakes with temperatures below 4 °C the heat flux from the bottom sediment results in a horizontal density gradient and a consequent flow along the bottom slope. Measurements in Lake Pääjärvi, Finland, show a stable temperature field where a heat gain through the bottom and a heat loss through the ice nearly balance each other. The circulation is thermal with low velocities (less than 1.5 cm s–1. We used the 3D hydrodynamic Princeton Ocean Model as a tool to simulate the water circulation and the temperature distribution under the ice. The model forcing was based on field temperature measurements. The model simulations suggest that in midwinter the velocity field of the upper water layers is anticyclonic while that of deep layers is cyclonic. Comparison with current measurements at one site showed good agreement between the modelled and observed results. On the basis of the modelled results it is possible to better understand the distributions of some micro-organisms and the accumulation of oxygen depleted waters in the deepest part of the lake.

  20. Administration of Traditional Chinese Blood Circulation Activating Drugs for Microvascular Complications in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Lisha He

    2016-01-01

    Full Text Available Traditional Chinese medicine (TCM is an important complementary strategy for treating diabetes mellitus (DM in China. Traditional Chinese blood circulation activating drugs are intended to guide an overall approach to the prevention and treatment of microvascular complications of DM. The core mechanism is related to the protection of the vascular endothelium and the basement membrane. Here, we reviewed the scientific evidence underpinning the use of blood circulation activating drugs to prevent and treat DM-induced microvascular complications, including diabetic nephropathy (DN, diabetic peripheral neuropathy (DPN, and diabetic retinopathy (DR. Furthermore, we summarized the effects and mechanism of TCM on improving blood rheology, inhibiting aggregation of platelet, forming advanced glycation end products (AGEs, regulating oxidative stress, reducing blood fat, and improving lipid metabolism. The paper provides a new theoretical basis for the clinical practice of TCM in the prevention and treatment of DM and its microvascular complications.

  1. Dynamic pathology for circulating free DNA in a dextran sodium sulfate colitis mouse model.

    Science.gov (United States)

    Koike, Yuhki; Uchida, Keiichi; Tanaka, Koji; Ide, Shozo; Otake, Kohei; Okita, Yoshiki; Inoue, Mikihiro; Araki, Toshimitsu; Mizoguchi, Akira; Kusunoki, Masato

    2014-12-01

    In sepsis, circulating free DNA (cf-DNA) is increased, and is a marker of severity and prognosis of septic patients. This study aimed to evaluate cf-DNA in a dextran sodium sulfate-induced colitis mouse model, and its clinical implications. Dynamic pathology of the cecum wall in the DSS-induced colitis mouse model was analyzed using multiphoton microscopy (MPM). Plasma cf-DNA concentrations in colitis mouse were quantified using PicoGreen dsDNA Assay Kit. Plasma cf-DNA was also measured in 123 human ulcerative colitis (UC) patients [mean age: 35.9 years (3-75 years) with 20 pediatric patients] to assess its relationships with clinical severity and Matt's grade. Real-time images of cf-DNA were detected in the colitis model. The amount of labeled cf-DNA in the circulation of the colitis mice group was significantly higher compared with that in the control group (P UC blood samples, plasma cf-DNA concentrations in UC patients were significantly positively correlated with the clinical severity of UC and Matt's grade (P colitis mouse model. Plasma cf-DNA is a potential non-invasive blood marker for reflecting clinical severity and mucosal damage in UC patients.

  2. A Pacific Ocean general circulation model for satellite data assimilation

    Science.gov (United States)

    Chao, Y.; Halpern, D.; Mechoso, C. R.

    1991-01-01

    A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.

  3. Residual estuarine circulation in the Mandovi, a monsoonal estuary: A three-dimensional model study

    Digital Repository Service at National Institute of Oceanography (India)

    Vijith, V.; Shetye, S.R.; Baetens, K.; Luyten, P.; Michael, G.S.

    then analyse the model results to define characteristics of residual estuarine circulation in the Mandovi. Our motivation to study this aspect of the Mandovi`s dynamics is derived from the following three considerations. First, residual circulation is important...

  4. Enhanced conjugation stability and blood circulation time of macromolecular gadolinium-DTPA contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Jenjob, Ratchapol [Department of New Drug Development, School of Medicine, Inha University, 2F A-dong, Jeongseok Bldg., Sinheung-dong 3-ga, Jung-gu, Incheon 400-712 (Korea, Republic of); Kun, Na [Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743 (Korea, Republic of); Ghee, Jung Yeon [Utah-Inha DDS and Advanced Therapeutics, B-403 Meet-You-All Tower, SongdoTechnopark, 7–50, Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Shen, Zheyu; Wu, Xiaoxia [Division of Functional Materials and Nano-Devices, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, 519 Zhuangshi Street, Zhenhai District, Ningbo, Zhejiang 315201 (China); Cho, Steve K., E-mail: scho@gist.ac.kr [Division of Liberal Arts and Science, GIST College, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Don Haeng [Utah-Inha DDS and Advanced Therapeutics, B-403 Meet-You-All Tower, SongdoTechnopark, 7–50, Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Department of Internal Medicine, School of Medicine, Inha University Hospital, Incheon 420-751 (Korea, Republic of); Yang, Su-Geun, E-mail: Sugeun.Yang@Inha.ac.kr [Department of New Drug Development, School of Medicine, Inha University, 2F A-dong, Jeongseok Bldg., Sinheung-dong 3-ga, Jung-gu, Incheon 400-712 (Korea, Republic of)

    2016-04-01

    In this study, we prepared macromolecular MR T1 contrast agent: pullulan-conjugated Gd diethylene triamine pentaacetate (Gd-DTPA-Pullulan) and estimated residual free Gd{sup 3+}, chelation stability in competition with metal ions, plasma and tissue pharmacokinetics, and abdominal MR contrast on rats. Residual free Gd{sup 3+} in Gd-DTPA-Pullulan was measured using colorimetric spectroscopy. The transmetalation of Gd{sup 3+} incubated with Ca{sup 2+} was performed by using a dialysis membrane (MWCO 100–500 Da) and investigated by ICP-OES. The plasma concentration profiles of Gd-DTPA-Pullulan were estimated after intravenous injection at a dose 0.1 mmol/kg of Gd. The coronal-plane abdominal images of normal rats were observed by MR imaging. The content of free Gd{sup 3+}, the toxic residual form, was less than 0.01%. Chelation stability of Gd-DTPA-Pullulan was estimated, and only 0.2% and 0.00045% of Gd{sup 3+} were released from Gd-DTPA-Pullulan after 2 h incubation with Ca{sup 2+} and Fe{sup 2+}, respectively. Gd-DTPA-Pullulan displayed the extended plasma half-life (t{sub 1/2,α} = 0.43 h, t{sub 1/2,β} = 2.32 h), much longer than 0.11 h and 0.79 h of Gd-EOB-DTPA. Abdominal MR imaging showed Gd-DTPA-Pullulan maintained initial MR contrast for 30 min. The extended plasma half-life of Gd-DTPA-Pullulan probably allows the prolonged MR acquisition time in clinic with enhanced MR contrast. - Highlights: • Macromolecule (pullulan) conjugated Gd contrast agent (Gd-DTPA-Pullulan) showed the extended plasma half-life (t{sub 1/2,α} = 0.43 h, t{sub 1/2,β} = 2.32 h) in comparison with Gd-EOB-DTPA • Gd-DTPA-pullulan T1 contrast agent exhibited strong chelation stability against Gd. • The extended blood circulation attributed the enhanced and prolonged MR contrast on abdominal region of rats. • The extended blood circulation may provide prolonged MR acquisition time window in clinics.

  5. Transient modelling of a natural circulation loop under variable pressure

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian, E-mail: avianna@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br, E-mail: faccini@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2017-07-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  6. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    Science.gov (United States)

    Rood, Richard B.; Lin, Shian-Kiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model of Lin and Rood (QJRMS, 1997) is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  7. Impact of negative affectivity and trait forgiveness on aortic blood pressure and coronary circulation.

    Science.gov (United States)

    Sanchez-Gonzalez, Marcos A; May, Ross W; Koutnik, Andrew P; Fincham, Frank D

    2015-02-01

    Prior research suggests that negative affectivity (NA) may have a direct adverse effect on coronary circulation, whereas forgiveness may provide cardioprotection. This study examined whether NA and forgiveness were independently related to aortic hemodynamics and the subendocardial viability index (SVI), a marker of coronary perfusion. A sample of 131 adults (M = 21.11 years, SD = 2.52) were evaluated for NA (depression, anxiety, and anger symptoms) and forgiveness (Tendency to Forgive Scale; TTF). Aortic hemodynamic parameters via applanation tonometry were assessed at rest and during sympathostimulation (cold pressor test; CPT). Hierarchical multiple regression analyses of resting values showed that NA was related to higher aortic blood pressure (ABP) and lower SVI. After controlling for demographics and for NA, TTF scores were significantly associated with decreased ABP, but increased SVI. CPT changes from baseline indicated that, after controlling for demographics and NA, TTF scores were significantly associated with SVI. Results indicate that NA significantly predicts ABP and decreased SVI. Conversely, forgiveness seems to provide cardioprotection by evoking decreased ABP while improving SVI. © 2014 Society for Psychophysiological Research.

  8. Detection of EpCAM-Negative and Cytokeratin-Negative Circulating Tumor Cells in Peripheral Blood

    Directory of Open Access Journals (Sweden)

    Stephen D. Mikolajczyk

    2011-01-01

    Full Text Available Enrichment of rare circulating tumor cells (CTCs in blood is typically achieved using antibodies to epithelial cell adhesion molecule (EpCAM, with detection using cytokeratin (CK antibodies. However, EpCAM and CK are not expressed in some tumors and can be downregulated during epithelial-to-mesenchymal transition. A micro-fluidic system, not limited to EpCAM or CK, was developed to use multiple antibodies for capture followed by detection using CEE-Enhanced (CE, a novel in situ staining method that fluorescently labels the capture antibodies bound to CTCs. Higher recovery of CTCs was demonstrated using antibody mixtures compared to anti-EpCAM. In addition, CK-positive breast cancer cells were found in 15 of 24 samples (63%; range 1–60 CTCs, while all samples contained additional CE-positive cells (range 1–41; median = 11; =.02. Thus, antibody mixtures against a range of cell surface antigens enables capture of more CTCs than anti-EpCAM alone and CE staining enables the detection of CK-negative CTCs.

  9. Stability of Circulating Blood-Based MicroRNAs - Pre-Analytic Methodological Considerations

    DEFF Research Database (Denmark)

    Glinge, Charlotte; Clauss, Sebastian; Boddum, Kim

    2017-01-01

    BACKGROUND AND AIM: The potential of microRNAs (miRNA) as non-invasive diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets, has recently been recognized. Previous studies have highlighted the importance of consistency in the methodology used, but to our knowledge...... was evaluated by measuring expression changes of miR-1, miR-21 and miR-29b at different conditions: varying processing time of whole blood (up to 72 hours (h)), long-term storage (9 months at -80°C), physical disturbance (1 and 8 h), as well as in a series of freeze/thaw cycles (1 and 4 times). RESULTS...... = 4) freeze-thaw cycles resulted in a significant reduction of miRNA concentration both in plasma and serum samples. CONCLUSION: This study highlights the importance of proper and systematic sample collection and preparation when measuring circulating miRNAs, e.g., in context of clinical trials. We...

  10. [Treatment of cloud radiative effects in general circulation models

    International Nuclear Information System (INIS)

    Wang, W.C.

    1993-01-01

    This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment

  11. A stratiform cloud parameterization for General Circulation Models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in General Circulation Models (GCMs) is widely recognized as a major limitation in the application of these models to predictions of global climate change. The purpose of this project is to develop a paxameterization for stratiform clouds in GCMs that expresses stratiform clouds in terms of bulk microphysical properties and their subgrid variability. In this parameterization, precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  12. A stratiform cloud parameterization for general circulation models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in general circulation models (GCMs) is widely recognized as a major limitation in applying these models to predictions of global climate change. The purpose of this project is to develop in GCMs a stratiform cloud parameterization that expresses clouds in terms of bulk microphysical properties and their subgrid variability. Various clouds variables and their interactions are summarized. Precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  13. Different approaches to model the nearshore circulation in the south shore of O'ahu, Hawaii

    Science.gov (United States)

    Marcos Azevedo Correia de Souza, Joao; Powell, Brian

    2017-01-01

    The dynamical interaction between currents, bathymetry, waves, and estuarine outflow has significant impacts on the surf zone. We investigate the impacts of two strategies to include the effect of surface gravity waves on an ocean circulation model of the south shore of O'ahu, Hawaii. This area provides an ideal laboratory for the development of nearshore circulation modeling systems for reef-protected coastlines. We use two numerical models for circulation and waves: Regional Ocean Modeling System (ROMS) and Simulating Waves Nearshore (SWAN) model, respectively. The circulation model is nested within larger-scale models that capture the tidal, regional, and wind-forced circulation of the Hawaiian archipelago. Two strategies are explored for circulation modeling: forcing by the output of the wave model and online, two-way coupling of the circulation and wave models. In addition, the circulation model alone provides the reference for the circulation without the effect of the waves. These strategies are applied to two experiments: (1) typical trade-wind conditions that are frequent during summer months, and (2) the arrival of a large winter swell that wraps around the island. The results show the importance of considering the effect of the waves on the circulation and, particularly, the circulation-wave coupled processes. Both approaches show a similar nearshore circulation pattern, with the presence of an offshore current in the middle beaches of Waikiki. Although the pattern of the offshore circulation remains the same, the coupled waves and circulation produce larger significant wave heights ( ≈ 10 %) and the formation of strong alongshore and cross-shore currents ( ≈ 1 m s-1).

  14. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    M. H. England

    1994-08-01

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of

  15. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    Matthew H. England

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean

  16. A hierarchy of thermohaline circulation models. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cessi, P.; Young, W.R.

    1998-04-01

    The objectives of this effort were: (1) to understand the variability caused by the competitive roles of salt and heat in the ocean circulation; (2) to understand the effect of differential advection of active tracers, such as temperature, salinity and angular momentum; and (3) to improve the parametrization of convection in models of the ocean circulation. One result of the project is the discovery that the characteristics of the quasi-periodic centennial and millennial oscillations found in OGCM`s, associated with alternating suppression and activation of high latitude convection, are extremely sensitive to the salinity flux and specific choice of convective adjustment scheme. In particular, the period of the oscillation depends crucially on the salinity fluxes (whether deterministic or with a stochastic component) and can be arbitrarily long. This result has clarified that these long-period oscillations (termed flushes) are not the result of the excitation of an intrinsic linear eigenmode of the system, but rather are relaxation-oscillations towards one of the several equilibria available to the system. This implies that it is the amplitude, rather than the period, of the oscillation which is almost independent of the salinity flux.

  17. Correlation of circulating MMP-9 with white blood cell count in humans: effect of smoking.

    Directory of Open Access Journals (Sweden)

    Soren Snitker

    Full Text Available Matrix metalloproteinase-9 (MMP-9 is an emerging biomarker for several disease conditions, where white blood cell (WBC count is also elevated. In this study, we examined the relationship between MMP-9 and WBC levels in apparently healthy smoking and non-smoking human subjects.We conducted a cross-sectional study to assess the relationship of serum MMP-9 with WBC in 383 men and 356 women. Next, we divided the male population (women do not smoke in this population into three groups: never (n = 243, current (n = 76 and former (n = 64 smokers and compared the group differences in MMP-9 and WBC levels and their correlations within each group.Circulating MMP-9 and WBC count are significantly correlated in men (R(2 = 0.13, p<0.001 and women (R(2 = 0.19, p<0.001. After stratification by smoking status, MMP-9 level was significantly higher in current smokers (mean ± SE; 663.3±43.4 ng/ml, compared to never (529.7±20.6 and former smokers (568±39.3. WBC count was changed in a similar pattern. Meanwhile, the relationship became stronger in current smokers with increased correlation coefficient of r = 0.45 or R(2 = 0.21 (p<0.001 and steeper slope of ß = 1.16±0.30 (p<0.001 in current smokers, compared to r = 0.26 or R(2 = 0.07 (p<0.001 and ß = 0.34±0.10 (p<0.001 in never smokers.WBC count accounts for 13% and 19% of MMP-9 variance in men and women, respectively. In non-smoking men, WBC count accounts for 7% of MMP-9 variance, but in smoking subjects, it accounts for up to 21% of MMP-9 variance. Thus, we have discovered a previously unrecognized correlation between the circulating MMP-9 and WBC levels in humans.

  18. A Model of the Solar Chromosphere: Structure and Internal Circulation

    International Nuclear Information System (INIS)

    Song, P.

    2017-01-01

    A model of the solar chromosphere that consists of two fundamentally different regions, a lower region and an upper region, is proposed. The lower region is covered mostly by weak locally closed magnetic field and small network areas of extremely strong, locally open field. The field in the upper region is relatively uniform and locally open, connecting to the corona. The chromosphere is heated by strong collisional damping of Alfvén waves, which are driven by turbulent motions below the photosphere. The heating rate depends on the field strength, wave power from the photosphere, and altitude in the chromosphere. The waves in the internetwork area are mostly damped in the lower region, supporting radiation in the lower chromosphere. The waves in the network area, carrying more Poynting flux, are only weakly damped in the lower region. They propagate into the upper region. As the thermal pressure decreases with height, the network field expands to form the magnetic canopy where the damping of the waves from the network area supports radiation in the whole upper region. Because of the vertical stratification and horizontally nonuniform distribution of the magnetic field and heating, one circulation cell is formed in each of the upper and lower regions. The two circulation cells distort the magnetic field and reinforce the funnel-canopy-shaped magnetic geometry. The model is based on classical processes and is semi-quantitative. The estimates are constrained according to observational knowledge. No anomalous process is invoked or needed. Overall, the heating mechanism is able to damp 50% of the total wave energy.

  19. A Model of the Solar Chromosphere: Structure and Internal Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Song, P. [Space Science Laboratory and Department of Physics, University of Massachusetts Lowell (United States)

    2017-09-10

    A model of the solar chromosphere that consists of two fundamentally different regions, a lower region and an upper region, is proposed. The lower region is covered mostly by weak locally closed magnetic field and small network areas of extremely strong, locally open field. The field in the upper region is relatively uniform and locally open, connecting to the corona. The chromosphere is heated by strong collisional damping of Alfvén waves, which are driven by turbulent motions below the photosphere. The heating rate depends on the field strength, wave power from the photosphere, and altitude in the chromosphere. The waves in the internetwork area are mostly damped in the lower region, supporting radiation in the lower chromosphere. The waves in the network area, carrying more Poynting flux, are only weakly damped in the lower region. They propagate into the upper region. As the thermal pressure decreases with height, the network field expands to form the magnetic canopy where the damping of the waves from the network area supports radiation in the whole upper region. Because of the vertical stratification and horizontally nonuniform distribution of the magnetic field and heating, one circulation cell is formed in each of the upper and lower regions. The two circulation cells distort the magnetic field and reinforce the funnel-canopy-shaped magnetic geometry. The model is based on classical processes and is semi-quantitative. The estimates are constrained according to observational knowledge. No anomalous process is invoked or needed. Overall, the heating mechanism is able to damp 50% of the total wave energy.

  20. Influence of promoting blood circulation to remove blood stasis combined with laparoscopy on serum MCP-1, RANTES, oxidative stress and hormones in infertile patients with endometriosis

    Directory of Open Access Journals (Sweden)

    Xiao-Sha Zhang

    2017-11-01

    Full Text Available Objective: To observe the influence of promoting blood circulation to remove blood stasis combined with laparoscopy on serum MCP-1, RANTES, oxidative stress and hormones in infertile patients with endometriosis. Methods: A total of 60 infertile patients with endometriosis were randomly divided into observation group (30 cases and control group (30 cases. Observation group: promoting blood circulation to remove blood stasis combined with laparoscopy; control group: patients were treated only by laparoscopy. Recording and comparing the levels of MCP-1, RANTES, oxidative stress and hormones before and after treatment. Results: (1 Before treatment, there was no statistically significant difference in the serum MCP-1, RANTES, AOPP, MDA, SOD, levels between the two groups. After treatment, compared with the same group before treatment, the serum RANTES, AOPP, MDA levels of the two groups were significantly lower, the serum SOD level of the two groups were significantly higher, and those levels of observation group were significantly better than the control group, there was significant difference between the two groups. (2 Before treatment, there was no statistically significant difference in the serum FSH, LH, E2, P, PRL levels between the two groups. After treatment, compared with the same group before treatment, the serum FSH, LH, P, PRL levels of the two groups were significantly higher, the serum E2 level of the two groups were significantly lower, and those levels of observation group were significantly better than the control group, there was significant difference between the two groups. Conclusion: Promoting blood circulation to remove blood stasis combined with laparoscopy for infertile patients with endometriosis can reduce the levels of serum MCP-1, RANTES, oxidative stress, hormones and be beneficial to protect their uterine function.

  1. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation

    DEFF Research Database (Denmark)

    Olufsen, M.S.; Ottesen, Johnny T.; Tran, H.T.

    2005-01-01

    Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict...... dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation......, which affect cerebrovascular resistance. Finally, we formulate an inverse least-squares problem to estimate parameters and demonstrate that our mathematical model is in agreement with physiological data from a young subject during postural change from sitting to standing....

  2. Optimized quantification of fragmented, free circulating DNA in human blood plasma using a calibrated duplex real-time PCR.

    Directory of Open Access Journals (Sweden)

    Martin Horlitz

    Full Text Available BACKGROUND: Duplex real-time PCR assays have been widely used to determine amounts and concentrations of free circulating DNA in human blood plasma samples. Circulatory plasma DNA is highly fragmented and hence a PCR-based determination of DNA concentration may be affected by the limited availability of full-length targets in the DNA sample. This leads to inaccuracies when counting PCR target copy numbers as whole genome equivalents. METHODOLOGY/PRINCIPAL FINDINGS: A model system was designed allowing for assessment of bias in a duplex real-time PCR research assay. We collected blood plasma samples from male donors in pools of 6 to 8 individuals. Circulatory plasma DNA was extracted and separated by agarose gel electrophoresis. Separated DNA was recovered from the gel in discrete size fractions and analyzed with different duplex real-time PCR Taqman assays detecting a Y chromosome-specific target and an autosomal target. The real-time PCR research assays used differed significantly in their ability to determine the correct copy number ratio of 0.5 between Y chromosome and autosome targets in DNA of male origin. Longer PCR targets did not amplify quantitatively in circulatory DNA, due to limited presence of full-length target sequence in the sample. CONCLUSIONS: PCR targets of the same small size are preferred over longer targets when comparing fractional circulatory DNA concentrations by real-time PCR. As an example, a DYS14/18S duplex real-time PCR research assay is presented that correctly measures the fractional concentration of male DNA in a male/female mixture of circulatory, fragmented DNA.

  3. Modelling Cerebral Blood Flow Autoregulation in Humans

    National Research Council Canada - National Science Library

    Panerai, R

    2001-01-01

    ...% of CBF regulatory,' mechanisms and their interaction with other haemodynamic variables such as intracranial pressure and blood gases, Mathematical models have been able to reproduce many known...

  4. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Science.gov (United States)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  5. Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients

    Czech Academy of Sciences Publication Activity Database

    Hensler, M.; Vancurova, I.; Becht, E.; Palata, O.; Strnad, P.; Tesarova, P.; Cabinakova, M.; Švec, David; Kubista, Mikael; Bartunkova, J.; Spisek, R.; Sojka, L.

    2016-01-01

    Roč. 5, č. 4 (2016), e1102827 ISSN 2162-402X Institutional support: RVO:86652036 Keywords : Breast cancer * gene expression profiling * circulating tumor cells Subject RIV: FD - Oncology ; Hematology Impact factor: 7.719, year: 2016

  6. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1993-01-01

    Most of today's general circulation models (GCMS) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, there has arisen an urgent need for improvements in the treatment of clouds in GCMS, especially as the clouds relate to radiation. In the present paper, we investigate the effects of introducing pregnostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the long wave emissivity calculations. Results from several sensitivity simulations show that realistic cloud water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds become stronger, due to more realistic tropical convection

  7. System model of a natural circulation integral test facility

    Science.gov (United States)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  8. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1994-01-01

    Most of today's general circulation models (GCMs) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, an urgent need for improvements in the treatment of clouds in GCMs has arisen, especially as the clouds relate to radiation. In this paper, we investigate the effects of introducing prognostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the longwave emissivity calculations. Results from several sensitivity simulations show that realistic water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds becomes stronger because of more realistic tropical convection

  9. [Changes in gingival blood circulation in patients with provisional fixed acrylic dentures].

    Science.gov (United States)

    Shcherbakov, A S; Rudakova, Iu A; Ivanova, S B; Nekrasov, A N

    2015-01-01

    The adhesion of oral microorganisms to the surface of teeth and dental restorative materials is often the starting point in the developments of caries and periodontal disease. Formation of biofilm on the surface provisional acrylic bridge is especially quickly and can potentially generate decay or periodontal disease on the teeth. Occlusion trauma and occlusion disorders effects on increasing of injure regional periodontal tissues. Using ultrasonic doppler diagnostics oral mucosal blood flow was measured in 79 patients with periodontitis of medium severity with different hygiene conditions before and during orthopedic treatment by provisional fixed dentures was model by different methods. According to the results of this study was stated optimization of oral mucosal blood flow after pre-prosthetic treatments and the supportive hygiene periodontal care during the treatment. Results was used for reduce of functional stress in the in periodontal tissues during the orthopedic alignment by the use of fixed dentures. Specific prosthodontic hygiene protocol and model by individual articulator must be used to treat patients with widespread chronic periodontitis by interim prostheses.

  10. DNAzyme-based probe for circulating microRNA detection in peripheral blood

    Directory of Open Access Journals (Sweden)

    Shao G

    2015-11-01

    Full Text Available Guoli Shao,1,* Shufeng Ji,1,* Aiguo Wu,1 Cuiping Liu,2 Mengchuan Wang,1 Pusheng Zhang,1 Qingli Jiao,1 Yuzhan Kang2 1Department of General Surgery, 2Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China *These authors contributed equally to this work Background: The recent discovery of microRNAs (miRNAs and their extracellular presence suggest a potential role of these regulatory molecules in defining the metastatic potential of cancer cells and mediating the cancer–host communication. This study aims to improve the sensitivity of miRNA detection via DNAzyme-based method and enhance the selectivity by using the DNAzyme-based probe to reduce nonspecific amplification. Methods: The miRNA probes were chemically synthesized with a phosphate at the 5' end and purified by polyacrylamide gel electrophoresis. Exosomal RNA from peripheral blood was isolated. Carboxylated magnetic microsphere beads (MBs were functionalized with streptavidin (SA according to a previously reported method with some modification. T capture probe-coated SA-MBs (DNA-MBs were also prepared. The fluorescent spectra were measured using a spectrofluorophotometer. Results: We designed an incomplete DNAzyme probe with two stems and one bubble structure as a recognition element for the specific detection of miRNA with high sensitivity. The background effects were decreased with increase of the added of DNA-MBs and capturing times. Therefore, 20 minutes was selected as the optimal concentration in the current study. The fluorescence intensity increases as the hybridization time changed and reached a constant level at 40 minutes, and 1 µM is the optimum signal probe concentration for self-assembled DNA concatemers formation. In the presence of miRNA, the fluorescence of the solution increased with increasing miRNA concentration. There is no obvious fluorescence in the presence of 10 mM of

  11. [Clinical research of acupuncture at stellate ganglion in the treatment of posterior circulation ischemia and its impacts on blood pressure].

    Science.gov (United States)

    Huang, Fan; Yuan, Zheng; Yang, Hai-Tao; Tang, Ming; Lu, Zi-Ji; Xiao, Ting

    2014-08-01

    To compare the difference in the clinical efficacy on posterior circulation ischemia between acupuncture at stellate ganglion and conventional acupuncture as well as the impacts on blood pressure. Eighty cases of posterior circulation ischemia were randomized into an observation group (40 cases) and a control group (40 cases). In the observation group, acupuncture was applied to the bilateral stellate ganglions on the neck, stimulated with reinforcing technique by rotating the needles. In the control group, the acupuncture of reducing technique was applied to Fengchi (GB 20), Baihui (GV 20), Neiguan (PC 6) and Taichong (LR 3) in the excess syndrome. The even needling or reinforcing technique was applied to Fengchi (GB 20), Baihui (GV 20), Ganshu (BL 18), Shenshu (BL 23) and Zusanli (ST 36) for the deficiency syndrome. The treatment was given once every 3 days and 4 treatments were required totally in the two groups. The changes in total syndrome score, peak Systolic blood flow velocity (Vp) of vertebral artery and basilar artery, systolic and diastolic blood pressures were compared before and after treatment in the two groups. The clinical efficacy was compared between the two groups. The total syndrome score was reduced apparently after treatment compared with that before treatment in the two groups (P vascular spasm, stenosis or reduced velocity) of vertebral artery and basilar artery was all improved as compared with that before treatment in the two groups (P Acupuncture at stellate ganglion achieves the satisfactory efficacy in the treatment of posterior circulation ischemia and the significant efficacy of reducing blood pressure, more advanced than the conventional acupuncture.

  12. Meridional overturning circulation: stability and ocean feedbacks in a box model

    NARCIS (Netherlands)

    Cimatoribus, A.A.; Drijfhout, S.S.; Dijkstra, H.A.|info:eu-repo/dai/nl/073504467

    2014-01-01

    A box model of the inter-hemispheric Atlantic meridional overturning circulation is developed, including a variable pycnocline depth for the tropical and subtropical regions. The circulation is forced by winds over a periodic channel in the south and by freshwater forcing at the surface. The model

  13. The DTU12MDT global mean dynamic topography and ocean circulation model

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole B.

    2013-01-01

    The Gravity and Ocean Circulation Experiment - GOCE satellite mission measure the Earth gravity field with unprecedented accuracy leading to substantial improvements in the modelling of the ocean circulation and transport. In this study of the performance of GOCE, a newer gravity model has been...

  14. A Third Note on Ageing in a Library Circulation Model: Applications to Future Use and Relegation.

    Science.gov (United States)

    Burrell, Quentin L.

    1987-01-01

    Describes a circulation model for academic research libraries which uses the mixed Poisson model, incorporating ageing of library materials, to predict future use of monographs and to suggest weeding procedures based on frequency of circulation. Longitudinal studies are examined and statistical details are appended. (Author/LRW)

  15. Glycosyltransferases as marker genes for the quantitative polymerase chain reaction-based detection of circulating tumour cells from blood samples of patients with breast cancer undergoing adjuvant therapy.

    Science.gov (United States)

    Kölbl, Alexandra C; Hiller, Roman A; Ilmer, Mathias; Liesche, Friederike; Heublein, Sabine; Schröder, Lennard; Hutter, Stefan; Friese, Klaus; Jeschke, Udo; Andergassen, Ulrich

    2015-08-01

    Altered glycosylation is a predominant feature of tumour cells; it serves for cell adhesion and detachment, respectively, and facilitates the immune escape of these cells. Therefore changes in the expression of glycosyltransferase genes could help to identify circulating tumour cells (CTCs) in the blood samples of cancer patients using a quantitative polymerase chain reaction (PCR) approach. Blood samples of healthy donors were inoculated with certain numbers of established breast cancer cell line cells, thus creating a model system. These samples were analysed by quantitative PCR for the expression of six different glycosyltransferase genes. The three genes with the best results in the model system were consecutively applied to samples from adjuvant breast cancer patients and of healthy donors. FUT3 and GALNT6 showed the highest increase in relative expression, while GALNT6 and ST3GAL3 were the first to reach statistically significant different ∆CT-values comparing the sample with and without addition of tumour cells. These three genes were applied to patient samples, but did not show any significant results that may suggest the presence of CTCs in the blood. Although the relative expression of some of the glycosyltransferase genes exhibited reasonable results in the model system, their application to breast cancer patient samples will have to be further improved, e.g. by co-analysis of patient blood samples by gold-standard methods.

  16. Identification of Stages of Erythroid Differentiation in Bone Marrow and Erythrocyte Subpopulations in Blood Circulation that Are Preferentially Lost in Autoimmune Hemolytic Anemia in Mouse

    Science.gov (United States)

    Chatterjee, Sreoshi; Bhardwaj, Nitin; Saxena, Rajiv K.

    2016-01-01

    Repeated weekly injections of rat erythrocytes produced autoimmune hemolytic anemia (AIHA) in C57BL/6 mice after 5–6 weeks. Using the double in vivo biotinylation (DIB) technique, recently developed in our laboratory, turnover of erythrocyte cohorts of different age groups during AIHA was monitored. Results indicate a significant decline in the proportion of reticulocytes, young and intermediate age groups of erythrocytes, but a significant increase in the proportion of old erythrocytes in blood circulation. Binding of the autoantibody was relatively higher to the young erythrocytes and higher levels of intracellular reactive oxygen species (ROS) were also seen in these cells. Erythropoietic activity in the bone marrows and the spleen of AIHA induced mice was examined by monitoring the relative proportion of erythroid cells at various stages of differentiation in these organs. Cells at different stages of differentiation were enumerated flow cytometrically by double staining with anti-Ter119 and anti-transferrin receptor (CD71) monoclonal antibodies. Erythroid cells in bone marrow declined significantly in AIHA induced mice, erythroblast C being most affected (50% decline). Erythroblast C also recorded high intracellular ROS level along with increased levels of membrane-bound autoantibody. No such decline was observed in spleen. A model of AIHA has been proposed indicating that binding of autoantibodies may not be a sufficient condition for destruction of erythroid cells in bone marrow and in blood circulation. Last stage of erythropoietic differentiation in bone marrow and early stages of erythrocytes in blood circulation are specifically susceptible to removal in AIHA. PMID:27870894

  17. Identification of Stages of Erythroid Differentiation in Bone Marrow and Erythrocyte Subpopulations in Blood Circulation that Are Preferentially Lost in Autoimmune Hemolytic Anemia in Mouse.

    Directory of Open Access Journals (Sweden)

    Sreoshi Chatterjee

    Full Text Available Repeated weekly injections of rat erythrocytes produced autoimmune hemolytic anemia (AIHA in C57BL/6 mice after 5-6 weeks. Using the double in vivo biotinylation (DIB technique, recently developed in our laboratory, turnover of erythrocyte cohorts of different age groups during AIHA was monitored. Results indicate a significant decline in the proportion of reticulocytes, young and intermediate age groups of erythrocytes, but a significant increase in the proportion of old erythrocytes in blood circulation. Binding of the autoantibody was relatively higher to the young erythrocytes and higher levels of intracellular reactive oxygen species (ROS were also seen in these cells. Erythropoietic activity in the bone marrows and the spleen of AIHA induced mice was examined by monitoring the relative proportion of erythroid cells at various stages of differentiation in these organs. Cells at different stages of differentiation were enumerated flow cytometrically by double staining with anti-Ter119 and anti-transferrin receptor (CD71 monoclonal antibodies. Erythroid cells in bone marrow declined significantly in AIHA induced mice, erythroblast C being most affected (50% decline. Erythroblast C also recorded high intracellular ROS level along with increased levels of membrane-bound autoantibody. No such decline was observed in spleen. A model of AIHA has been proposed indicating that binding of autoantibodies may not be a sufficient condition for destruction of erythroid cells in bone marrow and in blood circulation. Last stage of erythropoietic differentiation in bone marrow and early stages of erythrocytes in blood circulation are specifically susceptible to removal in AIHA.

  18. Modelling of impaired cerebral blood flow due to gaseous emboli

    International Nuclear Information System (INIS)

    Hague, J P; Banahan, C; Chung, E M L

    2013-01-01

    Bubbles introduced to the arterial circulation during invasive medical procedures can have devastating consequences for brain function but their effects are currently difficult to quantify. Here we present a Monte Carlo simulation investigating the impact of gas bubbles on cerebral blood flow. For the first time, this model includes realistic adhesion forces, bubble deformation, fluid dynamical considerations, and bubble dissolution. This allows investigation of the effects of buoyancy, solubility, and blood pressure on embolus clearance. Our results illustrate that blockages depend on several factors, including the number and size distribution of incident emboli, dissolution time and blood pressure. We found it essential to model the deformation of bubbles to avoid overestimation of arterial obstruction. Incorporation of buoyancy effects within our model slightly reduced the overall level of obstruction but did not decrease embolus clearance times. We found that higher blood pressures generate lower levels of obstruction and improve embolus clearance. Finally, we demonstrate the effects of gas solubility and discuss potential clinical applications of the model. (paper)

  19. Modeling and simulation of blood collection systems.

    Science.gov (United States)

    Alfonso, Edgar; Xie, Xiaolan; Augusto, Vincent; Garraud, Olivier

    2012-03-01

    This paper addresses the modeling and simulation of blood collection systems in France for both fixed site and mobile blood collection with walk in whole blood donors and scheduled plasma and platelet donors. Petri net models are first proposed to precisely describe different blood collection processes, donor behaviors, their material/human resource requirements and relevant regulations. Petri net models are then enriched with quantitative modeling of donor arrivals, donor behaviors, activity times and resource capacity. Relevant performance indicators are defined. The resulting simulation models can be straightforwardly implemented with any simulation language. Numerical experiments are performed to show how the simulation models can be used to select, for different walk in donor arrival patterns, appropriate human resource planning and donor appointment strategies.

  20. Influence of Molecular Structure on O2-Binding Properties and Blood Circulation of Hemoglobin‒Albumin Clusters.

    Directory of Open Access Journals (Sweden)

    Kana Yamada

    Full Text Available A hemoglobin wrapped covalently by three human serum albumins, a Hb-HSA3 cluster, is an artificial O2-carrier with the potential to function as a red blood cell substitute. This paper describes the synthesis and O2-binding properties of new hemoglobin‒albumin clusters (i bearing four HSA units at the periphery (Hb-HSA4, large-size variant and (ii containing an intramolecularly crosslinked Hb in the center (XLHb-HSA3, high O2-affinity variant. Dynamic light scattering measurements revealed that the Hb-HSA4 diameter is greater than that of either Hb-HSA3 or XLHb-HSA3. The XLHb-HSA3 showed moderately high O2-affinity compared to the others because of the chemical linkage between the Cys-93(β residues in Hb. Furthermore, the blood circulation behavior of 125I-labeled clusters was investigated by assay of blood retention and tissue distribution after intravenous administration into anesthetized rats. The XLHb-HSA3 was metabolized faster than Hb-HSA3 and Hb-HSA4. Results suggest that the molecular structure of the protein cluster is a factor that can influence in vivo circulation behavior.

  1. Superparamagnetic anisotropic nano-assemblies with longer blood circulation in vivo: a highly efficient drug delivery carrier for leukemia therapy.

    Science.gov (United States)

    Xiong, Fei; Tian, Jilai; Hu, Ke; Zheng, Xiawen; Sun, Jianfei; Yan, Caiyun; Yao, Juan; Song, Lina; Zhang, Yu; Gu, Ning

    2016-10-06

    Leukemia, unlike solid tumors, has no definite shape and spreads throughout the whole circulatory system, therefore the therapy of leukemia requires medication to stay longer in the circulatory system. Anisotropic nanoparticles, showing longer blood circulating life than that of isotropic nanoparticles reported in previous research, meet the demands of leukemia therapy. Based on this strategy, superparamagnetic anisotropic nano-assemblies (SANs) were fabricated and loaded with vincristine (VCR) to form VCR-SANs. When compared to the same dose of VCR-loaded isotropic nano-assemblies (SINs), the decrease in the leukocytes count and the positive expression ratio of CD13 in the VCR-SANs group were 19.38% and 16.4%, respectively, which indicated the improved anti-leukemia activity of the VCR-SANs. From the results of the pharmacokinetics study, the VCR-SANs remarkably held the amount of drug removed from the whole body per unit time half of the isotropic group and the concentration of drug in blood plasma against time was 2.1 times the isotropic group, demonstrating the rapid and sustained release behavior and longer blood circulation when combined with the results of in vivo tissue distribution studies. In summary, anisotropic nano-assemblies were found to be more promising than isotropic nano-assemblies via our in vivo and in vitro examinations.

  2. A Statistical Evaluation of Atmosphere-Ocean General Circulation Models: Complexity vs. Simplicity

    OpenAIRE

    Robert K. Kaufmann; David I. Stern

    2004-01-01

    The principal tools used to model future climate change are General Circulation Models which are deterministic high resolution bottom-up models of the global atmosphere-ocean system that require large amounts of supercomputer time to generate results. But are these models a cost-effective way of predicting future climate change at the global level? In this paper we use modern econometric techniques to evaluate the statistical adequacy of three general circulation models (GCMs) by testing thre...

  3. Explicit prediction of ice clouds in general circulation models

    Science.gov (United States)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  4. Steroid-like compounds in Chinese medicines promote blood circulation via inhibition of Na+/K+ -ATPase.

    Science.gov (United States)

    Chen, Ronald J Y; Chung, Tse-yu; Li, Feng-yin; Yang, Wei-hung; Jinn, Tzyy-rong; Tzen, Jason T C

    2010-06-01

    To examine if steroid-like compounds found in many Chinese medicinal products conventionally used for the promotion of blood circulation may act as active components via the same molecular mechanism triggered by cardiac glycosides, such as ouabain. The inhibitory potency of ouabain and the identified steroid-like compounds on Na(+)/K(+)-ATPase activity was examined and compared. Molecular modeling was exhibited for the docking of these compounds to Na(+)/K(+)-ATPase. All the examined steroid-like compounds displayed more or less inhibition on Na(+)/K(+)-ATPase, with bufalin (structurally almost equivalent to ouabain) exhibiting significantly higher inhibitory potency than the others. In the pentacyclic triterpenoids examined, ursolic acid and oleanolic acid were moderate inhibitors of Na(+)/K(+)-ATPase, and their inhibitory potency was comparable to that of ginsenoside Rh2. The relatively high inhibitory potency of ursolic acid or oleanolic acid was due to the formation of a hydrogen bond between its carboxyl group and the Ile322 residue in the deep cavity close to two K(+) binding sites of Na(+)/K(+)-ATPase. Moreover, the drastic difference observed in the inhibitory potency of ouabain, bufalin, ginsenoside Rh2, and pentacyclic triterpenoids is ascribed mainly to the number of hydrogen bonds and partially to the strength of hydrophobic interaction between the compounds and residues around the deep cavity of Na(+)/K(+)-ATPase. Steroid-like compounds seem to contribute to therapeutic effects of many cardioactive Chinese medicinal products. Chinese herbs, such as Prunella vulgaris L, rich in ursolic acid, oleanolic acid and their glycoside derivatives may be adequate sources for cardiac therapy via effective inhibition on Na(+)/K(+)-ATPase.

  5. Elimination of Young Erythrocytes from Blood Circulation and Altered Erythropoietic Patterns during Paraquat Induced Anemic Phase in Mice

    Science.gov (United States)

    Bhardwaj, Nitin; Saxena, Rajiv K.

    2014-01-01

    Paraquat a widely used herbicide causes a variety of toxic effects on humans and animals. The present study is focused on the interaction of paraquat with the mouse erythroid system. Administration of paraquat (10 mg/kg body weight i.p. on alternate days in C57Bl/6 mice) induced a significant fall in blood erythrocyte count on 7, 14, and 21 day time points but the erythrocyte count reverted back to normal by 28th day indicating the emergence of refractoriness to paraquat. A marked surge in the blood reticulocyte count was observed in paraquat treated mice that also subsided by 28th day. Young erythrocytes in circulation were randomly eliminated from blood circulation in paraquat treated mice and a significant elevation in the level of reactive oxygen species (ROS) was also observed maximally the erythrocytes of this age group. Cells representing various stages of erythroid differentiation in bone marrow and spleen were identified and enumerated flow cytometrically based on their expression of Ter119 and transferrin (CD71) receptor. Proliferative activity of erythroid cells, their relative proportion as well as their absolute numbers fell significantly in bone marrow of paraquat treated mice but all these parameters were significantly elevated in spleens of paraquat treated mice. These changes were essentially restricted to the cells belonging to the two earliest stages of erythroid differentiation. Taken together our results indicate that paraquat treatment causes a transient anemia in mice resulting from random elimination of young circulating erythrocytes as well as depressed erythropoietic activity in bone marrow. Spleen erythropoietic activity however was elevated in paraquat treated mice. PMID:24945144

  6. Ventricular Fibrillation Waveform Changes during Controlled Coronary Perfusion Using Extracorporeal Circulation in a Swine Model.

    Directory of Open Access Journals (Sweden)

    Raúl J Gazmuri

    Full Text Available Several characteristics of the ventricular fibrillation (VF waveform have been found predictive of successful defibrillation and hypothesized to reflect the myocardial energy state. In an open-chest swine model of VF, we modeled "average CPR" using extracorporeal circulation (ECC and assessed the time course of coronary blood flow, myocardial metabolism, and myocardial structure in relation to the amplitude spectral area (AMSA of the VF waveform without artifacts related to chest compression.VF was induced and left untreated for 8 minutes in 16 swine. ECC was then started adjusting its flow to maintain a coronary perfusion pressure of 10 mmHg for 10 minutes. AMSA was calculated in the frequency domain and analyzed continuously with a 2.1 s timeframe and a Tukey window that moved ahead every 0.5 s.AMSA progressively declined during untreated VF. With ECC, AMSA increased from 7.0 ± 1.9 mV·Hz (at minute 8 to 12.8 ± 3.3 mV·Hz (at minute 14 (p < 0.05 without subsequent increase and showing a modest correlation with coronary blood flow of borderline statistical significance (r = 0.489, p = 0.0547. Myocardial energy measurements showed marked reduction in phosphocreatine and moderate reduction in ATP with increases in ADP, AMP, and adenosine along with myocardial lactate, all indicative of ischemia. Yet, ischemia did not resolve during ECC despite a coronary blood flow of ~ 30% of baseline.AMSA increased upon return of coronary blood flow during ECC. However, the maximal level was reached after ~ 6 minutes without further change. The significance of the findings for determining the optimal timing for delivering an electrical shock during resuscitation from VF remains to be further explored.

  7. Numerical model for wind-driven circulation in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Varadachari, V.V.R.

    experiments have shown that when a uniform wind stress in suddenly imposed over the sea surface, a steady circulation is generated after 50 h of numerical integration of model equations. The sensitivity of this model to bathymetry and coastal configuration...

  8. A Three-Box Model of Thermohaline Circulation under the Energy Constraint

    International Nuclear Information System (INIS)

    Shen Yang; Guan Yu-Ping; Liang Chu-Jin; Chen Da-Ke

    2011-01-01

    The driving mechanism of thermohaline circulation is still a controversial topic in physical oceanography. Classic theory is based on Stommel's two-box model under buoyancy constraint. Recently, Guan and Huang proposed a new viewpoint in the framework of energy constraint with a two-box model. We extend it to a three-box model, including the effect of wind-driven circulation. Using this simple model, we further study how ocean mixing impacts on thermohaline circulation under the energy constraint. (geophysics, astronomy, and astrophysics)

  9. Thermohaline circulation in the North Atlantic and its simulation with a box model

    Science.gov (United States)

    Averyanova, E. A.; Polonsky, A. B.; Sannikov, V. F.

    2017-05-01

    Features of the North Atlantic thermohaline circulation response to periodic, stochastic, and instantaneous forcing are studied using a four-box model. The present-day circulation is shown to be characterized by a stable quasi-periodic oscillatory mode that manifests itself as the Atlantic Multidecadal Oscillation. The thermohaline catastrophe is unlikely in the modern climate epoch.

  10. Numerical modelling of tidal circulation and studies on salinity distribution in Mandovi and Zuari estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Manoj, N.T.

    application to Rotterdam Waterway. Geophy. J. Roy. Astro. Soc, 40:1–21, 1975. P. Hamilton. Modelling salinity and circulation for Colombia river estuary. Progress in Oceanography, 25:113–156, 1990. D. V. Hansen and M. Rattray. Gravitational circulation...

  11. Integrative assessment of kick boxers’ brain blood circulation and bio-electrical activity in conditions of correction technologies’ application

    Directory of Open Access Journals (Sweden)

    Y.N. Romanov

    2016-06-01

    Full Text Available Purpose: to scientifically substantiate the role of para-vertebral impacts on blood circulation and bio-electrical activity of kick boxers’ cortex. Material: in the research participated kick boxers (main group, n=62 and university students (control group, n=25 of 18-23 years’ age. Assessment of para-vertebral impacts with device Armos and classic massage was fulfilled with the help of the following methodic: trans-cranial dopplerography of head main arteries and cortex EEG of the tested. Results: it was found that with the help of para-vertebral impacts by device Armos linear velocity of cerebral blood flow reduces to normal limits and in- and inter-hemispheres’ interaction strength increases. Conclusions: para-vertebral impacts by device Armos activate integrative processes and inter-hemispheres’ interactions of different cortex areas of kick boxers. It can witness about better formation of functional systems, ensuring sports efficiency.

  12. Modelling wildfire activity in Iberia with different Atmospheric Circulation WTs

    Science.gov (United States)

    Sousa, P. M.; Trigo, R.; Pereira, M. G.; Rasilla, D.; Gouveia, C.

    2012-04-01

    This work focuses on the spatial and temporal variability of burnt area (BA) for the entire Iberian Peninsula (IP) and on the construction of statistical models to reproduce the inter-annual variability, based on Weather Types Classification (WTC). A common BA dataset was assembled for the first time for the entire Iberian Peninsula, by merging BA records for the 66 administrative regions of Portugal and Spain. A normalization procedure was then applied to the various size regions before performing a k-means cluster analysis to identify large areas characterized by similar fire regimes. The most compelling results were obtained for 4 clusters (Northwestern, Northern, Southwestern and Eastern) whose spatial patterns and seasonal fire regimes are shown to be related with constraining factors such as topography, vegetation cover and climate conditions. The response of fire burnt surface at monthly time scales to both long-term climatic pre-conditions and short-term synoptic forcing was assessed through correlation and regression analysis using: (i) temperature and precipitation from 2 to 7 months in advance to fire peak season; (ii) synoptic weather patterns derived from 11 distinct classifications derived under the COSTaction-733. Different responses were obtained for each of the considered regions: (i) a relevant link between BA and short-term synoptic forcing (represented by monthly frequencies of WTC) was identified for all clusters; (ii) long-term climatic preconditioning was relevant for all but one cluster (Northern). Taking into account these links, we developed stepwise regression models with the aim of reproducing the observed BA series (i.e. in hindcast mode). These models were based on the best climatic and synoptic circulation predictors identified previously. All models were cross-validated and their performance varies between clusters, though models exclusively based on WTCs tend to better reproduce annual BA time series than those only based on pre

  13. Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients

    Directory of Open Access Journals (Sweden)

    Tinhofer Ingeborg

    2011-05-01

    Full Text Available Abstract Background A limitation of positive selection strategies to enrich for circulating tumor cells (CTCs is that there might be CTCs with insufficient expression of the surface target marker which may be missed by the procedure. We optimized a method for enrichment, subsequent detection and characterization of CTCs based on depletion of the leukocyte fraction. Methods The 2-step protocol was developed for processing 20 mL blood and based on red blood cell lysis followed by leukocyte depletion. The remaining material was stained with the epithelial markers EpCAM and cytokeratin (CK 7/8 or for the melanoma marker HMW-MAA/MCSP. CTCs were detected by flow cytometry. CTCs enriched from blood of patients with carcinoma were defined as EpCAM+CK+CD45-. CTCs enriched from blood of patients with melanoma were defined as MCSP+CD45-. One-hundred-sixteen consecutive blood samples from 70 patients with metastatic carcinomas (n = 48 or metastatic melanoma (n = 22 were analyzed. Results CTCs were detected in 47 of 84 blood samples (56% drawn from carcinoma patients, and in 17 of 32 samples (53% from melanoma patients. CD45-EpCAM-CK+ was detected in pleural effusion specimens, as well as in peripheral blood samples of patients with NSCLC. EpCAM-CK+ cells have been successfully cultured and passaged longer than six months suggesting their neoplastic origin. This was confirmed by CGH. By defining CTCs in carcinoma patients as CD45-CK+ and/or EpCAM+, the detection rate increased to 73% (61/84. Conclusion Enriching CTCs using CD45 depletion allowed for detection of epithelial cancer cells not displaying the classical phenotype. This potentially leads to a more accurate estimation of the number of CTCs. If detection of CTCs without a classical epithelial phenotype has clinical relevance need to be determined.

  14. Profiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis.

    Directory of Open Access Journals (Sweden)

    Elkin Navarro-Quiroz

    Full Text Available Renal involvement in Systemic Lupus Erythematous (SLE patients is one of the leading causes of morbidity and a significant contributor to mortality. It's estimated that nearly 50% of SLE individuals develop kidney disease in the first year of the diagnosis. Class IV lupus nephritis (LN-IV is the class of lupus nephritis most common in Colombian patients with SLE. Altered miRNAs expression levels have been reported in human autoimmune diseases including lupus. Variations in the expression pattern of peripheral blood circulating miRNAs specific for this class of lupus nephritis could be correlated with the pathophysiological status of this group of individuals. The aim of this study was to evaluate the relative abundance of circulating microRNAs in peripheral blood from Colombian patients with LN-IV. Circulating miRNAs in plasma of patients with diagnosis of LN-IV were compared with individuals without renal involvement (LNN group and healthy individuals (CTL group. Total RNA was extracted from 10 ml of venous blood and subsequently sequenced using Illumina. The sequences were processed and these were analyzed using miRBase and Ensembl databases. Differential gene expression analysis was carried out with edgeR and functional analysis were done with DIANA-miRPath. Analysis was carried out using as variables of selection fold change (≥2 o ≤-2 and false discovery rate (0.05. We identified 24 circulating microRNAs with differential abundance between LN-IV and CTL groups, fourteen of these microRNAs are described for the first time to lupus nephritis (hsa-miR-589-3p, hsa-miR-1260b, hsa-miR-4511, hsa-miR-485-5p, hsa-miR-584-5p, hsa-miR-543, hsa-miR-153-3p, hsa-miR-6087, hsa-miR-3942-5p, hsa-miR-7977, hsa-miR-323b-3p, hsa-miR-4732-3p and hsa-miR-6741-3p. These changes in the abundance of miRNAs could be interpreted as alterations in the miRNAs-mRNA regulatory network in the pathogenesis of LN, preceding the clinical onset of the disease. The findings

  15. Multi-year predictability in a coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Power, Scott; Colman, Rob [Bureau of Meteorology Research Centre, Melbourne, VIC (Australia)

    2006-02-01

    Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial ''wings'' in the subtropical eastern Pacific. The model and observations exhibit ''ENSO-like'' decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency of variability off the equator relative to its equatorial counterpart. Both the eastern boundary interactions and the accumulation of

  16. The DTU12MDT global mean dynamic topography and ocean circulation model

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole B.

    2013-01-01

    The Gravity and Ocean Circulation Experiment - GOCE satellite mission measure the Earth gravity field with unprecedented accuracy leading to substantial improvements in the modelling of the ocean circulation and transport. In this study of the performance of GOCE, a newer gravity model has been...... to results obtained using pre-GOCE gravity field models. The results of this study show that geostrophic surface currents associated with the mean circulation have been further improved and that currents having speeds down to 5 cm/s have been recovered....

  17. Do trichothecenes reduce viability of circulating blood cells and modify haemostasis parameters?

    Science.gov (United States)

    Froquet, R; Arnold, F; Batina, P; Parent-Massin, D

    2003-01-01

    This manuscript describes the results of experiments conducted using human blood cells to determine the ability of T-2 toxin and DON to cause changes in clotting time, platelet aggregation, red blood cell haemolysis, RBC glucose content, lactate release, glutathione depletion, as well as white blood cell viability. In vitro results showed that haemostasis parameters and erythrocytes were not affected at concentrations able to induce inhibition of haematopoietic progenitor proliferation. In the presence of 10(-8) M and 10(-6) M T-2, the leucocyte number decreased at 24 h by 30% and 50% respectively. A 50% decrease in leucocyte number was observed for 10(-5) M DON. Results were compared with haematopoietic progenitor sensitivities. Due to the differences in sensitivities between mature blood cells and haematopoietic progenitors, haematological problems associated with trichothecene intoxication could be attributed to haematopoiesis inhibition.

  18. Blood Microbiome Quantity and the Hyperdynamic Circulation in Decompensated Cirrhotic Patients.

    Directory of Open Access Journals (Sweden)

    Daniela Traykova

    Full Text Available Recently, a complex microbiome was comprehensibly characterized in the serum and ascitic fluid of cirrhotic patients. In the current study, we investigated for the first time the induction of inflammatory pathways and Nitric Oxide, as well as the systemic hemodynamics in conjunction with the blood microbiome in a Child-Pugh class B cirrhotic cohort.We used the Intestinal Infections Microbial DNA qPCR Array to screen for 53 bacterial DNA from the gut in the blood. Assays were designed using the 16S rRNA gene as a target, and PCR amplification primers (based on the Human Microbiome Project and hydrolysis-probe detection. Eighteen systemic hemodynamic parameters were measured non-invasively by impedance cardiography using the BioZ ICG monitor. The inflammatory response was assessed by measuring blood cytokines, Nitric Oxide RNA arrays, and Nitric Oxide. In the blood of this cirrhotic cohort, we detected 19 of 53 bacterial species tested. The number of bacterial species was markedly increased in the blood of cirrhotic patients compared to control individuals (0.2+/-0.4 vs 3.1+/-2.3; 95% CI: 1.3 to 4.9; P = 0.0030. The total bacterial DNA was also increased in the blood of cirrhotic subjects compared to control subjects (0.2+/- 1.1 vs 41.8+/-132.1; 95% CI: 6.0 to 77.2; P = 0.0022. In the cirrhotic cohort, the Cardiac Output increased by 37% and the Systemic Vascular Resistance decreased by 40% (P< 0.00001 for both compared to control subjects. Systemic Vascular Resistance was inversely correlated to blood bacterial DNA quantity (- 0.621; 95% CI -0.843 to -0.218; P = 0.0060, blood bacterial species number (- 0.593; 95% CI -0.83 to -0.175; P = 0.0095; logistic regression: Chi Square = 5.8877; P = 0.0152, and serum Nitric Oxide (- 0.705; 95% CI -0.881 to -0.355; P = 0.0011. Many members of the Nitric Oxide signaling pathway gene family were increased in cirrhotic subjects.Our study identified blood bacterial DNA in ~ 90% of the cirrhotic patients

  19. [Controlled clinical trials of therapeutic effects of Chinese herbs promoting blood circulation and removing blood stasis on the treatment of reflex sympathetic dystrophy with type of stagnation of vital energy and blood stasis].

    Science.gov (United States)

    Xu, Rui-Sheng; Zong, Xu-Hua; Li, Xiao-Gang

    2009-12-01

    To observe clinical results of Chinese herbs promoting blood circulation and removing blood stasis on the treatment of reflex sympathetic dystrophy (RSD) with type of stagnation of vital energy and blood stasis. RSD with type of stagnation of vital energy and blood stasis was distinguished as erubescence, high temperature, perspiration, damp and acro-edema, with middle level pain. From 2006 to 2008, 58 patients with RSD of stagnation of vital energy and blood stasis were randomly divided into the treatment group (30 cases) and the control group (28 cases). The former were treated with Chinese medicine to activate blood circulation and improve bone and muscle nourishment. Chinese medicine includes: Caesalpinia Sappan 10 g, Ligusticum Chuanxiong 6 g, Frankincense 6 g, Angelica 10 g, Safflower 6 g, Myrrh 6 g, Ground Beetle 10 g, Araliaceae 3 g, Radix Paeoniae Rubra 10 g, Pericarpium Citri Reticulatae 5 g, Lawn Pennywort Herb 15 g, Manis Pentadactyla 10 g, Corydalis Yanhusuo 10 g, Rhizoma Drynariae 15 g, which were boiled into decoction and the patients were take orally everyday with a course of treatment for 10 days, together with the boiled Chinese traditional medicine of stretching muscle and activating blood circulation to fume and wash the limbs twice everyday. The compatibility of medicines in prescription includes: Lycopodium Japanicum Grass 10 g, Gentiana Macrophylla Pall 10 g, Radix Angelicae Pubescentis 10 g, Angelica 10 g, Uncaria 10 g, Frankincense 6 g, Myrrh 6 g, Safflower 6 g. Control group were treated with a placebo of the same color for oral use and external application. The delivery times, method and the time of therapy were all the same as the treatment group. After 30 days' treatment, the effective indexes of VAS pain score and swelling condition were observed in both groups. VAS pain score: the treatment group decreased (3.8 +/- 0.8) points and the control group decreased (1.0 +/- 0.3) points, the difference between the two groups was significantly

  20. FLAIR vascular hyperintensities and dynamic 4D angiograms for the estimation of collateral blood flow in posterior circulation occlusion

    International Nuclear Information System (INIS)

    Foerster, Alex; Wenz, Holger; Kerl, Hans Ulrich; Al-Zghloul, Mansour; Habich, Sonia; Groden, Christoph

    2014-01-01

    The objectives of this paper are to assess collateral blood flow in posterior circulation occlusion by MRI-based approaches (fluid-attenuated inversion recovery (FLAIR) vascular hyperintensities (FVHs), collateralization on dynamic 4D angiograms) and investigate its relation to ischemic lesion size and growth. In 28 patients with posterior cerebral artery (PCA) and 10 patients with basilar artery (BA) occlusion, MRI findings were analyzed, with emphasis on distal FVH and collateralization on dynamic 4D angiograms. In PCA occlusion, distal FVH was observed in 18/29 (62.1 %), in BA occlusion, in 8/10 (80 %) cases. Collateralization on dynamic 4D angiograms was graded 1 in 8 (27.6 %) patients, 2 in 1 (3.4 %) patient, 3 in 12 (41.4 %) patients, and 4 in 8 (27.6 %) patients with PCA occlusion and 0 in 1 (10 %) patient, 2 in 3 (30 %) patients, 3 in 1 (10 %) patient, and 4 in 5 (50 %) patients with BA occlusion. FVH grade showed neither correlation with initial or follow-up diffusion-weighted image (DWI) lesion size nor DWI-perfusion-weighted imaging (PWI) mismatch ratio. Collateralization on dynamic 4D angiograms correlated inversely with initial DWI lesion size and moderately with the DWI-(PWI) mismatch ratio. The combination of distal FVH and collateralization grade on dynamic 4D angiograms correlated inversely with initial as well as follow-up DWI lesion size and highly with the DWI-PWI mismatch ratio. In posterior circulation occlusion, FVH is a frequent finding, but its prognostic value is limited. Dynamic 4D angiograms are advantageous to examine and graduate collateral blood flow. The combination of both parameters results in an improved characterization of collateral blood flow and might have prognostic relevance. (orig.)

  1. Sequential Blood Filtration for Extracorporeal Circulation: Initial Results from a Proof-of-Concept Prototype

    Science.gov (United States)

    Herbst, Daniel P.

    2014-01-01

    Abstract: Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient’s systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique. PMID:26357790

  2. Study on the change of HPV DNA virus content, circulating blood and tissue miR indexes of patients with cervical cancer

    Directory of Open Access Journals (Sweden)

    Ru-Qiong Luo

    2015-08-01

    Full Text Available Objective: To study and observe the change status of HPV DNA virus content, circulating blood and tissue miR indexes of patients with cervical cancer. Methods: A total of 72 patients with cervical cancer in our hospital from February 2014 to September 2015 were selected as the observation group, 72 healthy women at the same period were selected as the control group, then the HPV DNA virus content and constitution, circulating blood and tissue miR indexes of two groups were analyzed and compared, and the detection results of observation group with stage Ⅰ, Ⅱ, Ⅲ and Ⅳ of cervical cancer were compared. Results: The rates of HPV DNA virus content and >500 in the observation group were all higher than those of control group, the circulating blood and tissue miR-21 were all higher than those of control group, while the circulating blood and tissue miR-126, miR-143 and miR-145 were all lower than those of control group, and the detection results of observation group with stage Ⅰ, Ⅱ, Ⅲ and Ⅳ of cervical cancer all had obvious differences, the differences were all significant. Conclusion: The changes of the status of HPV DNA virus content, circulating blood and tissue miR indexes of patients with cervical cancer are great, and the influence of cervical cancer stage for the detection results are great, so it has active guiding significance for the diagnosis and treatment of disease.

  3. A multi-level adaptation model of circulation for the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Dube, S.K.; Rao, A.D.

    on the observed circulation in the western tropical Indian Ocean. The model consists of equations of motion and continuity, sea surface topography, equations of state and temperature, and salinity diffusion equations. While the sea surface topography equation...

  4. Simulation of the Bohai Sea Circulation and Thermohaline Structure Using COHERENS Model

    National Research Council Canada - National Science Library

    Obino, Rodrigo

    2002-01-01

    The goals of this work are to simulate the Bohai Sea circulation and thermohaline structure and to Investigate the physical mechanisms using the Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas (COHERENS...

  5. Myxobolus sp. (Myxozoa) in the circulating blood of Colossoma macropomum (Osteichthyes, Characidae).

    Science.gov (United States)

    Maciel, Patricia Oliveira; Affonso, Elizabeth Gusmão; Boijink, Cheila de Lima; Tavares-Dias, Marcos; Inoue, Luis Antonio Kioshi Aoki

    2011-01-01

    Myxosporea parasitize many organs in fresh and saltwater fish. Species of the genus Myxobolus parasitizing the gills and other organs of the tambaqui Colossoma macropomum have been described. In the present study, blood smears were made from juvenile tambaqui and were stained with May Grunwald-Giemsa-Wright in order to identify myxozoan parasites. Out of a total of 36 fish examined, one specimen (2.7%) that was reared in a cage presented spores that were identified as M. colossomatis, whereas fish kept in 250 L tanks showed prevalence of 5.5%. This is the first report of M. colossomatis in the blood of farmed tambaqui in the Amazon region. These results indicate that myxozoan parasites should also be investigated in fish blood smears. Some myxosporean species may cause diseases in fish, and these species need to be identified so that adequate preventive sanitary control can be instituted.

  6. Computer simulated modeling of healthy and diseased right ventricular and pulmonary circulation.

    Science.gov (United States)

    Chou, Jody; Rinehart, Joseph B

    2018-01-12

    We have previously developed a simulated cardiovascular physiology model for in-silico testing and validation of novel closed-loop controllers. To date, a detailed model of the right heart and pulmonary circulation was not needed, as previous controllers were not intended for use in patients with cardiac or pulmonary pathology. With new development of controllers for vasopressors, and looking forward, for combined vasopressor-fluid controllers, modeling of right-sided and pulmonary pathology is now relevant to further in-silico validation, so we aimed to expand our existing simulation platform to include these elements. Our hypothesis was that the completed platform could be tuned and stabilized such that the distributions of a randomized sample of simulated patients' baseline characteristics would be similar to reported population values. Our secondary outcomes were to further test the system in representing acute right heart failure and pulmonary artery hypertension. After development and tuning of the right-sided circulation, the model was validated against clinical data from multiple previously published articles. The model was considered 'tuned' when 100% of generated randomized patients converged to stability (steady, physiologically-plausible compartmental volumes, flows, and pressures) and 'valid' when the means for the model data in each health condition were contained within the standard deviations for the published data for the condition. A fully described right heart and pulmonary circulation model including non-linear pressure/volume relationships and pressure dependent flows was created over a 6-month span. The model was successfully tuned such that 100% of simulated patients converged into a steady state within 30 s. Simulation results in the healthy state for central venous volume (3350 ± 132 ml) pulmonary blood volume (405 ± 39 ml), pulmonary artery pressures (systolic 20.8 ± 4.1 mmHg and diastolic 9.4 ± 1.8 mmHg), left

  7. Caval blood flow distribution in patients with Fontan circulation: quantification by using particle traces from 4D flow MR imaging.

    Science.gov (United States)

    Bächler, Pablo; Valverde, Israel; Pinochet, Natalia; Nordmeyer, Sarah; Kuehne, Titus; Crelier, Gérard; Tejos, Cristián; Irarrazaval, Pablo; Beerbaum, Philipp; Uribe, Sergio

    2013-04-01

    To validate the use of particle traces derived from four-dimensional (4D) flow magnetic resonance (MR) imaging to quantify in vivo the caval flow contribution to the pulmonary arteries (PAs) in patients who had been treated with the Fontan procedure. The institutional review boards approved this study, and informed consent was obtained. Twelve healthy volunteers and 10 patients with Fontan circulation were evaluated. The particle trace method consists of creating a region of interest (ROI) on a blood vessel, which is used to emit particles with a temporal resolution of approximately 40 msec. The flow distribution, as a percentage, is then estimated by counting the particles arriving to different ROIs. To validate this method, two independent observers used particle traces to calculate the flow contribution of the PA to its branches in volunteers and compared it with the contribution estimated by measuring net forward flow volume (reference method). After the method was validated, caval flow contributions were quantified in patients. Statistical analysis was performed with nonparametric tests and Bland-Altman plots. P < .05 was considered to indicate a significant difference. Estimation of flow contributions by using particle traces was equivalent to estimation by using the reference method. Mean flow contribution of the PA to the right PA in volunteers was 54% ± 3 (standard deviation) with the reference method versus 54% ± 3 with the particle trace method for observer 1 (P = .4) and 54% ± 4 versus 54% ± 4 for observer 2 (P = .6). In patients with Fontan circulation, 87% ± 13 of the superior vena cava blood flowed to the right PA (range, 63%-100%), whereas 55% ± 19 of the inferior vena cava blood flowed to the left PA (range, 22%-82%). Particle traces derived from 4D flow MR imaging enable in vivo quantification of the caval flow distribution to the PAs in patients with Fontan circulation. This method might allow the identification of patients at risk of

  8. Comparative Analysis of Compatibility Effects on Invigorating Blood Circulation for Cyperi Rhizoma Series of Herb Pairs Using Untargeted Metabolomics

    Directory of Open Access Journals (Sweden)

    Pei Liu

    2017-09-01

    Full Text Available The mutual-assistance compatibility of Cyperi Rhizoma (Xiangfu, XF and Angelicae Sinensis Radix (Danggui, DG, Chuanxiong Rhizoma (Chuanxiong, CX, Paeoniae Radix Alba (Baishao, BS, or Corydalis Rhizoma (Yanhusuo, YH, found in a traditional Chinese medicine (TCM named Xiang-Fu-Si-Wu Decoction (XFSWD, can produce synergistic and promoting blood effects. Nowadays, XFSWD has been proved to be effective in activating blood circulation and dissipating blood stasis. However, the role of the herb pairs synergistic effects in the formula were poorly understood. In order to quantitatively assess the compatibility effects of herb pairs, mass spectrometry-based untargeted metabolomics studies were performed. The plasma and urine metabolic profiles of acute blood stasis rats induced by adrenaline hydrochloride and ice water and administered with Cyperi Rhizoma—Angelicae Sinensis Radix (XD, Cyperi Rhizoma—Chuanxiong Rhizoma (XC, Cyperi Rhizoma—Paeoniae Radix Alba (XB, Cyperi Rhizoma—Corydalis Rhizoma (XY were compared. Relative peak area of identified metabolites was calculated and principal component analysis (PCA score plot from the potential markers was used to visualize the overall differences. Then, the metabolites results were used with biochemistry indicators and genes expression values as parameters to quantitatively evaluate the compatibility effects of XF series of herb pairs by PCA and correlation analysis. The collective results indicated that the four XF herb pairs regulated glycerophospholipid metabolism, steroid hormone biosynthesis and arachidonic acid metabolism pathway. XD was more prominent in regulating the blood stasis during the four XF herb pairs. This study demonstrated that metabolomics was a useful tool to efficacy evaluation and compatibility effects of TCM elucidation.

  9. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    DEFF Research Database (Denmark)

    Wewer Albrechtsen, Nicolai J.; Kuhre, Rune E.; Hornburg, Daniel

    2017-01-01

    that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in...

  10. Clinical significance of circulating blood and endothelial cell microparticles in sickle-cell disease.

    Science.gov (United States)

    Kasar, Mutlu; Boğa, Can; Yeral, Mahmut; Asma, Suheyl; Kozanoglu, Ilknur; Ozdogu, Hakan

    2014-01-01

    Increased thrombocyte activation leads to a higher likelihood of coagulation in sickle-cell disease. On the other hand, chronic inflammation and endothelial cell activation promote vaso-occlusion. The effect of circulating microparticles derived from erythrocytes, monocytes, thrombocytes, and endothelial cells on the vaso-occlusive process is unclear. This study aims to analyze the relationship between sickle-cell disease and miscellaneous organ complications by defining the circulating microparticles during the steady-state and painful crisis periods in 45 patients with sickle-cell disease. Microparticle analysis was conducted using an eight-parameter flow cytometric method, using CD61 PERCP, CD142PE, CD106 FITC, CD14 APC-H7, CD235a FITC, and Annexin-V APC monoclonal antibodies. Microparticle levels of sickle-cell patients were found to be significantly higher during both painful crisis and steady-state situations compared with the control group (for all, p microparticles, levels of erythrocyte microparticles (eMPs) were significantly higher during crisis than in the steady-state period (eMP steady state vs. painful crisis: 7.59 ± 12.24 vs. 7.59 ± 12.24, respectively; p Microparticles, including eMPs, were not affected by hydroxyurea treatment. Their level did not reflect the high frequency of crisis (>3 times/year). Thrombocyte microparticle levels were found to be higher in patients with nephropathia than in those without (48.05 ± 40.23 vs. 7.67 ± 6.75, respectively; p microparticles seem to be involved in the pathogenesis of sickle-cell disease. eMPs may help with the management of crisis. Thrombocyte microparticles might predict renal damage induced by vaso-occlusion.

  11. Systematic review and meta-analysis of circulating S100B blood levels in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Katina Aleksovska

    Full Text Available S100B is a calcium-binding protein secreted in central nervous system from astrocytes and other glia cells. High blood S100B levels have been linked to brain damage and psychiatric disorders. S100B levels have been reported to be higher in schizophrenics than healthy controls. To quantify the relationship between S100B blood levels and schizophrenia a systematic literature review of case-control studies published on this topic within July 3rd 2014 was carried out using three bibliographic databases: Medline, Scopus and Web of Science. Studies reporting mean and standard deviation of S100B blood levels both in cases and controls were included in the meta-analysis. The meta-Mean Ratio (mMR of S100B blood levels in cases compared to controls was used as a measure of effect along with its 95% Confidence Intervals (CI. 20 studies were included totaling for 994 cases and 785 controls. Schizophrenia patients showed 76% higher S100B blood levels than controls with mMR = 1.76 95% CI: 1.44-2.15. No difference could be found between drug-free patients with mMR = 1.84 95%CI: 1.24-2.74 and patients on antipsychotic medication with mMR = 1.75 95% CI: 1.41-2.16. Similarly, ethnicity and stage of disease didn't affect results. Although S100B could be regarded as a possible biomarker of schizophrenia, limitations should be accounted when interpreting results, especially because of the high heterogeneity that remained >70%, even after carrying out subgroups analyses. These results point out that approaches based on traditional categorical diagnoses may be too restrictive and new approaches based on the characterization of new complex phenotypes should be considered.

  12. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He, E-mail: mzhang_he@126.com; Fu, Xin; Hu, Jiayi; Zhu, Zhenjun

    2013-05-24

    Graphical abstract: A microfluidic beads-based nucleic acid sensor for sensitive detection of circulating tumor cells (CTCs) in the blood using multienzyme-nanoparticle amplification and quantum dots labels was developed. The chip-based CTCs analysis could detect reverse transcription-polymerase chain reaction (RT-PCR) products of tumor cell as low as 1 tumor cell (e.g. CEA expressing cell) in 1 mL blood sample. This microfluidic beads-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence. -- Highlights: •Combination of microfluidic bead-based platform and enzyme–probe–AuNPs is proposed. •The developed nucleic acid sensor could respond to 5 fM of tumor associated DNA. •Microfluidic platform and multienzyme-labeled AuNPs greatly enhanced sensitivity. •The developed nucleic acid sensor could respond to RT-PCR products of tumor cell as low as 1 tumor cell in 1 mL blood sample. •We report a sensitive nucleic acid sensor for detection of circulating tumor cells. -- Abstract: This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro

  13. Dynamics of indicators of a metabolic exchange and condition of blood circulation of the bottom extremities after traction extension at patients with lumbar and sacral dorsopathy

    Directory of Open Access Journals (Sweden)

    Kotenko К.V.

    2013-12-01

    Full Text Available Aim: to study influence of traction therapy in a pulse mode in a complex with electrotherapy on a condition of blood circulation of the bottom extremities and level of a metabolic exchange. Material and methods. There had been examined 120 patients with a lumbar and sacral dorsopathy aged from 22 to 69 years (middle age of 49,5 years with prescription of a disease from 1 to 5 years, among them men of 34,2%, women of 65,8%. Results. The analysis of effects of various medical methods on a condition of local blood circulation in the bottom extremities showed that the most expressed its compensation is noted at complex application of mechanical pulse traction influence and electrotherapy for patients with a dorsopathy of lumbar and sacral department of a backbone that is confirmed by restoration to normal values of all indicators rheovasogramm. Conclusion. High clinical results of application of the combined medical and rehabilitation complex are based on compensation of local blood circulation that is shown in elimination of deficiency of blood supply due to improvement of a tone of arterial vessels and elimination of venous stagnation, and also due to increase of linear speed of a blood-groove and development of collateral blood circulation. Application of electrical impulse and mechanical traction influences, more at their combination promotes fermentative activity of the systems responsible for a protein exchange that is important for prevention of degenerate and dystrophic process progressing.

  14. Integrating Magnetic and Modelling Approaches to Reconstruct Ocean Circulation at the LGM

    Science.gov (United States)

    Watkins, S.; Maher, B.; Bigg, G.

    2008-12-01

    Formation of N. Atlantic Deep Water (NADW) is an important component of the ocean thermohaline circulation but debate exists over the ocean circulation state during glacial stages. Some geological and modelling studies suggest decreased NADW and increased formation of Southern Ocean deep water during the Last Glacial Maximum (LGM); others indicate similar, or higher, rates of NADW advection. Here, we use an innovative, integrated approach combining ocean and general circulation model results with ground- truthing measurements of sediment magnetic properties, in order to test two different potential LGM ocean states. We compare modelled iceberg trajectories produced by each of the stable modeled ocean states with magnetically-mapped patterns and sources of LGM ice-rafted debris (IRD). One LGM state is characterised by vigorous NADW formation; the other by dominant deep water production in the Southern Ocean. Cluster analysis of sediment magnetic properties was used to characterise N. Atlantic IRD patterns and sources, which match most closely iceberg trajectories arising from some combination of the 'southern-sinking' and 'intermediate' ocean circulation states. The magnetic data indicate two major IRD sources, Fennoscandia and Greenland/Iceland, and one minor source, the St Lawrence region. The model and magnetic data suggest that the LGM N. Atlantic circulation was dominated by a cyclonic central N. Atlantic gyre, separated from the N. Atlantic Current which was displaced south of ~ 42 oN. This approach can provide discriminatory evidence and validation of past ocean circulation states, on an ocean-wide and non-sample destructive basis.

  15. Aluminium in an ocean general circulation model compared with the West Atlantic Geotraces cruises

    NARCIS (Netherlands)

    van Hulten, M. M. P.; Sterl, A.; Tagliabue, A.; Dutay, J. -C.; Gehlen, M.; de Baar, H. J. W.; Middag, R.

    2013-01-01

    A model of aluminium has been developed and implemented in an Ocean General Circulation Model (NEMO-PISCES). In the model, aluminium enters the ocean by means of dust deposition. The internal oceanic processes are described by advection, mixing and reversible scavenging. The model has been evaluated

  16. Twenty-four hour cardiopulmonary stability in a model of assisted newborn Fontan circulation.

    Science.gov (United States)

    Myers, Cynthia D; Mattix, Kelly; Presson, Robert G; Vijay, Palaniswamy; Maynes, Domingo; Litwak, Kenneth N; Brown, John W; Rodefeld, Mark D

    2006-01-01

    Morbidity and mortality after stage-1 palliation of hypoplastic left heart syndrome is high as a result of adverse physiologic conditions imposed by the systemic-to-pulmonary arterial shunt. Conversion to a systemic venous source of pulmonary blood flow (Glenn/Fontan) substantially decreases instability and mortality risk. Cavopulmonary assist has the potential to eliminate critical dependence on the problematic systemic arterial shunt. We studied this support modality during a 24-hour period in a neonatal animal model of univentricular Fontan circulation. Lambs (8.1 +/- 0.9 kg, 8.3 +/- 2.1 days, n = 7) underwent total cavopulmonary diversion. A miniature centrifugal pump was used to assist cavopulmonary flow. Control animals (6.6 +/- 1.0 kg, 7.3 +/- 2.1 days, n = 11) underwent placement of monitoring lines only. Hemodynamic and gas exchange data were measured. Within-group and between-group comparisons were made using two-way repeated measures analysis of variance. After an initial phase of reactivity, pulmonary vascular resistance returned to low levels and was not significantly different from baseline values after hour 13 or significantly different from control values after hour 4. Systemic venous pressure remained low. Oxygenation and ventilation remained normal with no histologic evidence of parenchymal lung injury. Pump-assisted cavopulmonary diversion is well tolerated up to 24 hours in the neonatal period. Despite initial reactivity, pulmonary vascular resistance trended toward normal and approached control values. Cavopulmonary assist holds the potential to serve as a bridge to neonatal Fontan repair of single ventricle. Chronic studies are warranted to determine the duration and rate of weaning of support to transition to an unassisted univentricular Fontan circulation.

  17. [Reduction of per- and postoperative blood loss with aprotinin (Trasylol) during extracorporeal circulation].

    Science.gov (United States)

    Deleuze, P; Loisance, D Y; Feliz, A; Hillion, M L; Castanié, J B; Richemond, J; Cachera, J P

    1991-12-01

    Aprotinin is a pharmacological agent which, when given in high doses during cardiopulmonary bypass (CPB), seems to reduce postoperative blood loss significantly and thereby reduces the need for blood transfusion. This study was undertaken to confirm these claims and to show that there was also decreased peroperative bleeding and a shorter operation time. The immediate postoperative clinical course was also assessed. The study was a prospective, randomised double-blind trial versus placebo in 60 coronary patients undergoing at least 2 aorto-coronary bypass grafts for the first time within a 3 month period. During surgery after stopping the CPB the blood loss recorded by aspiration was 49 +/- 61 ml in the aprotinin group and 90 +/- 84 ml in the placebo group (p less than 0.05). The quality of haemostasis in the operated area evaluated independently by the anaesthetist was judged to be excellent in 30 patients in the aprotinin group compared with only 19 in the placebo group (p less than 0.001). The time between coming off CPB and skin closure was significantly shorter in the aprotinin group (42 +/- 10 min versus 49 +/- 12 min) and the dose of protamine injected at the end of the operation was 19 +/- 38 mg in the aprotinin group compared to 43 +/- 46 mg in the placebo group (p less than 0.05). The blood loss recorded over 48 hours in the intensive care unit was nearly three times less in the aprotinin group (380 +/- 125 ml) than with placebo (852 +/- 523 ml).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Flow cytometric analysis of circulating platelet-monocyte aggregates in whole blood: methodological considerations.

    Science.gov (United States)

    Harding, Scott A; Din, Jehangir N; Sarma, Jaydeep; Jessop, Alasdair; Weatherall, Mark; Fox, Keith A A; Newby, David E

    2007-08-01

    Platelet-monocyte aggregates are increasingly being used to quantify platelet activation. The variables that influence platelet-monocyte aggregates have not been well defined. We sought to determine the effect of blood collection, handling and processing techniques on detected levels of platelet-monocyte aggregates using a flow cytometric assay. Whole blood was labelled with anti-CD14-PE and anti-CD42a-FITC. Thereafter, samples were fixed and red cells lysed. Analysis was performed with the flow cytometer initially triggering on light scatter and then on FL-2 to identify CD14-PE positive monocytes. Platelet-monocyte aggregates were defined as monocytes positive for CD42a. The effect of collection, handling and processing techniques on this assay were assessed. Anticoagulation with heparin (20.1 +/- 2.0%), PPACK (16.8 +/- 1.9%), sodium citrate (12.3 +/- 1.6%) and EDTA (9.5 +/- 1.0%) resulted in markedly different levels of platelet-monocyte aggregation (P venepuncture (20.9 +/- 3.9% vs.13.8 +/- 2.4%, P = 0.03). For every 10 minutes of delay prior to processing platelet-monocyte aggregates increased by 2.8% (P = 0.0001) in PPACK anticoagulated blood and 1.7% (P = 0.01) in citrate anticoagulated blood. Erythrocyte lysis together with fixation does not affect platelet-monocyte aggregation. Platelet-monocyte aggregates remained stable over 24 hours when fixed and stored at 4 degrees C. Multiple handling and processing factors may affect platelet-monocyte aggregation. We recommend the measurement of platelet-monocyte aggregates on samples collected by direct venepuncture, using a direct thrombin inhibitor as the anticoagulant and minimising the time delay before sample fixation.

  19. Myxobolus sp. (Myxozoa) in the circulating blood of Colossoma macropomum (Osteichthyes, Characidae).

    OpenAIRE

    MACIEL, P. O.; AFFONSO, E. G.; BOIJINK, C. de L.; DIAS, M. T.; INOUE, L. A. K. A.

    2011-01-01

    Myxosporea parasitize many organs in fresh and saltwater fish. Species of the genus Myxobolus parasitizing the gills and other organs of the tambaqui Colossoma macropomum have been described. In the present study, blood smears were made from juvenile tambaqui and were stained with May Grunwald-Giemsa-Wright in order to identify myxozoan parasites. Out of a total of 36 fish examined, one specimen (2.7%) that was reared in a cage presented spores that were identified as M. colossomatis, whereas...

  20. Analysis and Modeling of Circulating Current in Two Parallel-Connected Inverters

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand

    2015-01-01

    Parallel-connected inverters are gaining attention for high power applications because of the limited power handling capability of the power modules. Moreover, the parallel-connected inverters may have low total harmonic distortion of the ac current if they are operated with the interleaved pulse...... this model, the circulating current between two parallel-connected inverters is analysed in this study. The peak and root mean square (rms) values of the normalised circulating current are calculated for different PWM methods, which makes this analysis a valuable tool to design a filter for the circulating...

  1. Modeling Cerebral Blood Flow Control During Posture Change from Sitting to Standing

    DEFF Research Database (Denmark)

    Olufsen, Mette; Tran, Hien; Ottesen, Johnny T.

    2004-01-01

    Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture change from sitting...... to standing. The mathematical model uses a compartmental approach to describe pulsatile blood flow and pressure in a number of compartments representing the systemic circulation. Our model includes compartments representing the trunk and upper extremities, the lower extremities, the brain, the atria......, the heart, and venous valves. We use physiologically based control mechanisms to describe the regulation of cerebral blood velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. Beyond active control mechanisms we also have to include certain passive non...

  2. Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models

    Science.gov (United States)

    Cess, R. D.; Potter, G. L.; Ghan, S. J.; Blanchet, J. P.; Boer, G. J.

    1989-01-01

    Understanding the cause of differences among general circulation model projections of carbon dioxide-induced climatic change is a necessary step toward improving the models. An intercomparison of 14 atmospheric general circulation models, for which sea surface temperature perturbations were used as a surrogate climate change, showed that there was a roughly threefold variation in global climate sensitivity. Most of this variation is attributable to differences in the models' depictions of cloud-climate feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as climatic predictors.

  3. Precision of a new bedside method for estimation of the circulating blood volume

    DEFF Research Database (Denmark)

    Christensen, P; Eriksen, B; Henneberg, S W

    1993-01-01

    and after ventilation with a gas mixture containing 20-50 ml of CO for a period of 10-15 min. A special Water's to and fro system was designed in order to avoid any leakage when measuring during intermittent positive pressure ventilation (IPPV). Blood samples were taken before and immediately after...... corresponding to an increase of less than 2% will result in an unacceptable coefficient of variation of repeated estimates. In the experimental study the coefficient of variation of repeated estimates of CBV was determined from duplicate measurements of CBV in nine healthy subjects and in nine intensive care...

  4. A global mean ocean circulation estimation using goce gravity models - the DTU12MDT mean dynamic topography model

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar

    2012-01-01

    The Gravity and Ocean Circulation Experiment - GOCE satellite mission measure the Earth gravity field with unprecedented accuracy leading to substantial improvements in the modelling of the ocean circulation and transport. In this study of the performance of GOCE, a newer gravity model have been...... have been improved significantly compared to results obtained using pre-GOCE gravity field models. The results of this study show that geostrophic surface currents associated with the mean circulation have been further improved and that currents having speeds down to 5 cm/s have been recovered....

  5. Coastal circulation off Ratnagiri, west coast of India during monsoon seasons: a numerical model study.

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Sharif, J.; Vethamony, P.

    Present study is the coastal circulation modelling off Ratnagiri under the influence of winds and tides. A two-dimensional hydrodynamic model MIKE 21HD has been used to simulate tides and currents, and model results are in a good agreement...

  6. Detection of circulating trophoblast particles in maternal blood using density gradient centrifugation in preeclampsia and in normotensive pregnancies.

    Science.gov (United States)

    Kuessel, Lorenz; Kasimir-Bauer, Sabine; Zeillinger, Robert; Pateisky, Petra; Ott, Johannes; Zeisler, Harald; Birdir, Cahit

    2016-08-01

    Preeclampsia (PE) is a frequent pregnancy-related disease and a major cause of maternal and fetal morbidity and mortality. Despite that, exact mechanisms of its pathophysiology remain largely unknown. In pregnancies complicated by PE, changes in the regulation of apoptosis seem to result in increased apoptotic shedding of trophoblast particles (TPs) into maternal circulation. Since the number of TP in peripheral blood is low, their detection necessitates pre-analytical enrichment. In this prospective multicenter pilot study we aimed to analyze TP in peripheral blood of 29 women with PE and of 13 unaffected controls using the OncoQuick®plus system for cell enrichment. Using immunocytochemistry, slides were evaluated microscopically for TP. Statistical analyses were performed using Welch's t-test or Fisher's exact test. TP were detected in 10 (34.5%) women with PE and in two (15.4%) of unaffected controls. More than one TP were only found in PE. Comparing the mean counts of TP between groups, we detected significantly more TP in PE (p = 0.046). The OncoQuick®plus system can be applied to detect TP in both women with PE and in normotensive pregnancies. Longitudinal studies investigating the role of TP as a screening method for patients at risk for PE are warranted.

  7. Development of an Automated and Sensitive Microfluidic Device for Capturing and Characterizing Circulating Tumor Cells (CTCs from Clinical Blood Samples.

    Directory of Open Access Journals (Sweden)

    Priya Gogoi

    Full Text Available Current analysis of circulating tumor cells (CTCs is hindered by sub-optimal sensitivity and specificity of devices or assays as well as lack of capability of characterization of CTCs with clinical biomarkers. Here, we validate a novel technology to enrich and characterize CTCs from blood samples of patients with metastatic breast, prostate and colorectal cancers using a microfluidic chip which is processed by using an automated staining and scanning system from sample preparation to image processing. The Celsee system allowed for the detection of CTCs with apparent high sensitivity and specificity (94% sensitivity and 100% specificity. Moreover, the system facilitated rapid capture of CTCs from blood samples and also allowed for downstream characterization of the captured cells by immunohistochemistry, DNA and mRNA fluorescence in-situ hybridization (FISH. In a subset of patients with prostate cancer we compared the technology with a FDA-approved CTC device, CellSearch and found a higher degree of sensitivity with the Celsee instrument. In conclusion, the integrated Celsee system represents a promising CTC technology for enumeration and molecular characterization.

  8. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    Science.gov (United States)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  9. A long term model of circulation. [human body

    Science.gov (United States)

    White, R. J.

    1974-01-01

    A quantitative approach to modeling human physiological function, with a view toward ultimate application to long duration space flight experiments, was undertaken. Data was obtained on the effect of weightlessness on certain aspects of human physiological function during 1-3 month periods. Modifications in the Guyton model are reviewed. Design considerations for bilateral interface models are discussed. Construction of a functioning whole body model was studied, as well as the testing of the model versus available data.

  10. Sampling related issues in pod-based model reduction of simplified circulating fluidised bed combustor model

    Directory of Open Access Journals (Sweden)

    Bizon Katarzyna

    2015-09-01

    Full Text Available Over the last decades the method of proper orthogonal decomposition (POD has been successfully employed for reduced order modelling (ROM in many applications, including distributed parameter models of chemical reactors. Nevertheless, there are still a number of issues that need further investigation. Among them, the policy of the collection of representative ensemble of experimental or simulation data, being a starting and perhaps most crucial point of the POD-based model reduction procedure. This paper summarises the theoretical background of the POD method and briefly discusses the sampling issue. Next, the reduction procedure is applied to an idealised model of circulating fluidised bed combustor (CFBC. Results obtained confirm that a proper choice of the sampling strategy is essential for the modes convergence however, even low number of observations can be sufficient for the determination of the faithful dynamical ROM.

  11. Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis

    Science.gov (United States)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2015-11-01

    In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.

  12. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    Science.gov (United States)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  13. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  14. Modeling of Natural Self-Pressurized Circulation Circuits

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo; Delmastro, Dario

    2003-01-01

    In this work, HUARPE code models for self-pressurized two-phase natural convection systems are improved.A drift-flux model is included, allowing the modeling of the relative velocity between phases.The model of steam dome structures is improved, with a thermal resistance scheme, in order to model the material thermal conductivity.This allows improving thermal losses modeling and structures dynamic.'Shape functions' are implemented based on analytic solutions for pressure derivative and density in each node, which allows less diffusive solving schemes, more appropriate for analyzing cases involving density waves phenomena.Finally, pressure evolutions during a pressurization transient are analyzed, comparing the new models and the previous version results.These results are also checked against RELAP code ones, obtained with different dome nodalizations. Moreover, modeling problems are analyzed for each case

  15. Regional climates in the GISS general circulation model: Surface air temperature

    Science.gov (United States)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  16. A Simple Diagnostic Model of the Circulation Beneath an Ice Shelf

    Science.gov (United States)

    Jenkins, Adrian; Nøst, Ole Anders

    2017-04-01

    The ocean circulation beneath ice shelves supplies the heat required to melt ice and exports the resulting freshwater. It therefore plays a key role in determining the mass balance and geometry of the ice shelves and hence the restraint they impose on the outflow of grounded ice from the interior of the ice sheet. Despite this critical role in regulating the ice sheet's contribution to eustatic sea level, an understanding of some of the most basic features of the circulation is lacking. The conventional paradigm is one of a buoyancy-forced overturning circulation, with inflow of warm, salty water along the seabed and outflow of cooled and freshened waters along the ice base. However, most sub-ice-shelf cavities are broad relative to the internal Rossby radius, so a horizontal circulation accompanies the overturning. Primitive equation ocean models applied to idealised geometries produce cyclonic gyres of comparable magnitude, but in the absence of a theoretical understanding of what controls the gyre strength, those solutions can only be validated against each other. Furthermore, we have no understanding of how the gyre circulation should change given more complex geometries. To begin to address this gap in our theoretical understanding we present a simple, linear, steady-state model for the circulation beneath an ice shelf. Our approach in analogous to that of Stommel's classic analysis of the wind-driven gyres, but is complicated by the fact that his most basic assumption of homogeneity is inappropriate. The only forcing on the flow beneath an ice shelf arises because of the horizontal density gradients set up by melting. We thus arrive at a diagnostic model which gives us the depth-dependent horizontal circulation that results from an imposed geometry and density distribution. We describe the development of the model and present some preliminary solutions for the simplest cavity geometries.

  17. Study on time-based variation of blood circulation index, pulse wave energy, and RAI of healthy adult men after different eating times

    Directory of Open Access Journals (Sweden)

    Gyeong-Cheol Kim

    2013-12-01

    Conclusions: Different eating times can bring about changes on blood circulation index, E, and RAI. These changes show a certain tendency and coincide with the physiological factors that eating causes a rise of HR, an increase of systolic cardiac pump performance, and a reduction of peripheral vascular resistance.

  18. A Fully Implicit Model of the Three-Dimensional Thermohaline Ocean Circulation

    NARCIS (Netherlands)

    Dijkstra, Henk A.; Oksuzoglu, Hakan; Wubs, Fred. W.; Botta, Eugen F.F.

    2001-01-01

    In this paper, a fully implicit numerical model of the three-dimensional thermohaline ocean circulation is presented. With this numerical model it is possible to follow branches of steady states in parameter space and monitor their linear stability. Also, transient flows can be computed allowing

  19. Resveratrol-Loaded Albumin Nanoparticles with Prolonged Blood Circulation and Improved Biocompatibility for Highly Effective Targeted Pancreatic Tumor Therapy

    Science.gov (United States)

    Geng, Tao; Zhao, Xia; Ma, Meng; Zhu, Gang; Yin, Ling

    2017-06-01

    Human serum albumin (HSA) is an intrinsic protein and important carrier that transports endogenous as well as exogenous substances across cell membranes. Herein, we have designed and prepared resveratrol (RV)-loaded HSA nanoparticles conjugating RGD (arginine-glycine-aspartate) via a polyethylene glycol (PEG) "bridge" (HRP-RGD NPs) for highly effective targeted pancreatic tumor therapy. HRP-RGD NPs possess an average size of 120 ± 2.6 nm with a narrow distribution, a homodisperse spherical shape, a RV encapsulation efficiency of 62.5 ± 4.21%, and a maximum RV release ratio of 58.4.2 ± 2.8% at pH 5.0 and 37 °C. In vitro biocompatibility of RV is improved after coating with HSA and PEG. Confocal fluorescence images show that HRP-RGD NPs have the highest cellular uptake ratio of 47.3 ± 4.6% compared to HRP NPs and HRP-RGD NPs with free RGD blocking, attributing to an RGD-mediated effect. A cell counting kit-8 (CCK-8) assay indicates that HRP-RGD NPs without RV (HP-RGD NPs) have nearly no cytotoxicity, but HRP-RGD NPs are significantly more cytotoxic to PANC-1 cells compared to free RV and HRP NPs in a concentration dependent manner, showing apoptotic morphology. Furthermore, with a formulated PEG and HSA coating, HRP-RGD NPs prolong the blood circulation of RV, increasing approximately 5.43-fold (t1/2). After intravenous injection into tumor-bearing mice, the content of HRP-RGD NPs in tumor tissue was proven to be approximately 3.01- and 8.1-fold higher than that of HRP NPs and free RV, respectively. Based on these results, HRP-RGD NPs were used in an in vivo anti-cancer study and demonstrated the best tumor growth suppression effect of all tested drugs with no relapse, high in vivo biocompatibility, and no significant systemic toxicity over 35 days treatment. These results demonstrate that HRP-RGD NPs with prolonged blood circulation and improved biocompatibility have high anti-cancer effects with promising future applications in cancer therapy.

  20. The response of Mediterranean thermohaline circulation to climate change: a minimal model

    Directory of Open Access Journals (Sweden)

    P. Th. Meijer

    2009-11-01

    Full Text Available Physics-based understanding of the effects of paleoclimate and paleogeography on the thermohaline circulation of the Mediterranean Sea requires an ocean model capable of long integrations and involving a minimum of assumptions about the atmospheric forcing. Here we examine the sensitivity of the deep circulation in the eastern Mediterranean basin to changes in atmospheric forcing, considered a key factor in the deposition of organic-rich sediments (sapropels. To this extent we explore the setup of an ocean general circulation model (MOMA with realistic (present-day bathymetry and highly idealized forcing. The model proves able to qualitatively capture some important features of the large-scale overturning circulation, in particular for the eastern basin. The response to (i a reduction in the imposed meridional temperature gradient, or (ii a reduction in net evaporation, proves to be non-linear and, under certain conditions, of transient nature. Consistent with previous model studies, but now based on a minimum of assumptions, we find that a reduction in net evaporation (such as due to an increase in freshwater input may halt the deep overturning circulation. The ability to perform long model integrations allows us to add the insight that, in order to have the conditions favourable for sapropel formation persist, we must also assume that the vertical mixing of water properties was reduced. The "minimal" model here presented opens the way to experiments in which one truly follows the basin circulation into, or out of, the period of sapropel formation and where forcing conditions are continously adjusted to the precession cycle.

  1. Seasonal variability of salinity and circulation in a silled estuarine fjord: A numerical model study

    Science.gov (United States)

    Kawase, Mitsuhiro; Bang, Bohyun

    2013-12-01

    A three-dimensional hydrodynamic model is used to study seasonal variability of circulation and hydrography in Hood Canal, Washington, United States, an estuarine fjord that develops seasonally hypoxic conditions. The model is validated with data from year 2006, and is shown to be capable of quantitatively realistic simulation of hydrographic variability. Sensitivity experiments show the largest cause of seasonal variability to be that of salinity at the mouth of the fjord, which drives an annual deep water renewal in late summer-early autumn. Variability of fresh water input from the watershed also causes significant but secondary changes, especially in winter. Local wind stress has little effect over the seasonal timescale. Further experiments, in which one forcing parameter is abruptly altered while others are kept constant, show that outside salinity change induces an immediate response in the exchange circulation that, however, decays as a transient as the system equilibrates. In contrast, a change in the river input initiates gradual adjustment towards a new equilibrium value for the exchange transport. It is hypothesized that the spectral character of the system response to river variability will be redder than to salinity variability. This is demonstrated with a stochastically forced, semi-analytical model of fjord exchange circulation. While the exchange circulation in Hood Canal appears less sensitive to the river variability than to the outside hydrography at seasonal timescales, at decadal and longer timescales both could become significant factors in affecting the exchange circulation.

  2. Transcephalic electrical impedance in the study of cerebral circulation in a juvenile pig model.

    Science.gov (United States)

    Grönlund, J; Bartocci, M; Kääpä, P; Jahnukainen, T; Rautanen, M; Halkola, L; Välimäki, I

    1997-11-01

    Transcephalic electrical impedance offers a technique for non-invasive, cot-side monitoring of neonatal cerebral circulation but the exact nature of the signal is somewhat ambiguous. The impedance signal is examined in an animal project where the ventilator settings are adjusted (20 min-1-10 min-1-40 min-1 for 10 min periods each) to produce circulatory changes. Six juvenile pigs are intubated, and ECG, arterial blood pressure, carotid flow (CF) by electromagnetic flowmeter and impedance are continuously monitored and stored on analogue tape. Cardiac output by thermodilution, blood oxygen (pO2) and carbon dioxide (pCO2) tensions are measured. ECG is converted to heart rate, mean blood pressure is integrated, and the high-frequency (1.50-4.00 Hz) component of the impedance signal delta Z is computed using autoregressive spectral estimation. Stroke volume, peripheral vascular resistance (PVR) and cerebral vascular resistance (CVR) are calculated. pCO2 and CF increase and pO2 decreases during hypoventilation. CF correlates positively with cardiac output, stroke volume, delta Z and pCO2, and negatively with pO2 and CVR. delta Z correlates positively with heart rate and cardiac output, and negatively with PVR and CVR. It is concluded that the impedance signal is related to the amount of blood transmitted to the brain by every beat of the heart, depending on the changes in both the systemic circulation and the cerebral vascular compliance.

  3. COBRA-WC model and predictions for a fast-reactor natural-circulation transient

    International Nuclear Information System (INIS)

    George, T.L.; Basehore, K.L.; Prather, W.A.

    1980-01-01

    The COBRA-WC (Whole Core) code has been used to predict the core-wide coolant and rod temperature distribution in a liquid metal fast reactor during the early part (first 220 seconds) of a natural circulation transient. Approximately one-sixth of the core was modeled including bypass flows and the pressure losses above and below the core region. Detailed temperature and flow distributions were obtained for the two test fuel assemblies. The COBRA-WC model, the approach, and predictions of core-wide transient coolant and rod temperatures during a natural circulation transient are presented in this paper

  4. Inhibition of PAI-1 Activity by Toddalolactone as a Mechanism for Promoting Blood Circulation and Removing Stasis by Chinese Herb Zanthoxylum nitidum var. tomentosum

    Science.gov (United States)

    Yu, Bo; Zhang, Guangping; Jin, Lingling; Zhang, Bo; Yan, Dong; Yang, Hong; Ye, Zuguang; Ma, Tonghui

    2017-01-01

    Traditional Chinese medicine has been used to treat a variety of human diseases for many centuries. Zanthoxylum nitidum var. tomentosum is used as an adjuvant to promote blood circulation and remove stasis. However, the mechanisms of improving circulation and other biological activities of Z. nitidum var. tomentosum are still unclear. Plasminogen activator inhibitor-1 (PAI-1) regulates the plasminogen activation system through inhibition of tissue-type and urokinase-type plasminogen activators (tPA and uPA). PAI-1 has been linked to fibrin deposition that evolves into organ fibrosis and atherosclerosis. In the present study, we showed that ethanol extract prepared from Z. nitidum var. tomentosum exhibited PAI-1 inhibitory activity, and identified toddalolactone as the main active component that inhibited the activity of recombinant human PAI-1 with IC50 value of 37.31 ± 3.23 μM, as determined by chromogenic assay, and the effect was further confirmed by clot lysis assay. In vitro study showed that toddalolactone inhibited the binding between PAI-1 and uPA, and therefore prevented the formation of the PAI-1/uPA complex. Intraperitoneal injection of toddalolactone in mice significantly prolonged tail bleeding and reduced arterial thrombus weight in a FeCl3-induced thrombosis model. In addition, the hydroxyproline level in the plasma and the degree of liver fibrosis in mice were decreased after intraperitoneal injection of toddalolactone in CCl4-induced mouse liver fibrosis model. Taken together, PAI-1 inhibition exerted by toddalolactone may represent a novel molecular mechanism by which Z. nitidum var. tomentosum manifests its effect in the treatment of thrombosis and fibrosis. PMID:28785222

  5. Prediction of cloud droplet number in a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.

  6. Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Kelly; Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States); Schnell, Susanne; Barker, Alex J.; Garcia, Julio; Chowdhary, Varun; Carr, James [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Lorenz, Ramona [University Medical Center Freiburg, Department of Radiology, Freiburg (Germany); Rose, Michael [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Robinson, Joshua D. [Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Cardiology, Chicago, IL (United States); Rigsby, Cynthia K. [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-10-15

    Asymmetrical caval to pulmonary blood flow is suspected to cause complications in patients with Fontan circulation. The aim of this study was to test the feasibility of 4-D flow MRI for characterizing the relationship between 3-D blood flow distribution and vascular geometry. We hypothesized that both flow distribution and geometry can be calculated with low interobserver variability and will detect a direct relationship between flow distribution and Fontan geometry. Four-dimensional flow MRI was acquired in 10 Fontan patients (age: 16 ± 4 years [mean ± standard deviation], range: 9-21 years). The Fontan connection was isolated by 3-D segmentation to evaluate flow distribution from the inferior vena cava (IVC) and superior vena cava (SVC) to the left and right pulmonary arteries (LPA, RPA) and to characterize geometry (cross-sectional area, caval offset, vessel angle). Flow distribution results indicated SVC flow tended toward the RPA while IVC flow was more evenly distributed (SVC to RPA: 78% ± 28 [9-100], IVC to LPA: 54% ± 28 [4-98]). There was a significant relationship between pulmonary artery cross-sectional area and flow distribution (IVC to RPA: R{sup 2}=0.50, P=0.02; SVC to LPA: R{sup 2}=0.81, P=0.0004). Good agreement was found between observers and for flow distribution when compared to net flow values. Four-dimensional flow MRI was able to detect relationships between flow distribution and vessel geometry. Future studies are warranted to investigate the potential of patient specific hemodynamic analysis to improve diagnostic capability. (orig.)

  7. A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting

    Directory of Open Access Journals (Sweden)

    P. Oddo

    2009-10-01

    Full Text Available A new numerical general circulation ocean model for the Mediterranean Sea has been implemented nested within an Atlantic general circulation model within the framework of the Marine Environment and Security for the European Area project (MERSEA, Desaubies, 2006. A 4-year twin experiment was carried out from January 2004 to December 2007 with two different models to evaluate the impact on the Mediterranean Sea circulation of open lateral boundary conditions in the Atlantic Ocean. One model considers a closed lateral boundary in a large Atlantic box and the other is nested in the same box in a global ocean circulation model. Impact was observed comparing the two simulations with independent observations: ARGO for temperature and salinity profiles and tide gauges and along-track satellite observations for the sea surface height. The improvement in the nested Atlantic-Mediterranean model with respect to the closed one is particularly evident in the salinity characteristics of the Modified Atlantic Water and in the Mediterranean sea level seasonal variability.

  8. Improvement in Geoid Models for Ocean Circulation Studies

    Science.gov (United States)

    Tapley, Byron D.; Chambers, Don P.; Poole, Steve; Ries, John c.

    2003-01-01

    At wavelengths of 500 km and longer, the GRACE GGM01 Model produces a significantly better marine geoid than any previous model. This conclusion follows from evaluating the geostrophic currents determined by combining the model with a mean sea surface from altimetry. The agreement with currents computed from a traditional hydrographic map is very close, which suggests that one of the primary missions of the TOPEX/POSEIDON mission, to determine the absolute dynamic ocean topography, may soon be met. This solution has been made available to the public at http://www.csr.utexs.edu/grace/gravity. The results reported in this paper have been presented at the 2003 EGS-AGU-EUG Joint Assembly. Two articles are currently being prepared for Geophysical Research Letters to summarize these results.

  9. Evaluation of a stratiform cloud parameterization for general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States); McCaa, J. [Univ. of Washington, Seattle, WA (United States)

    1996-04-01

    To evaluate the relative importance of horizontal advection of cloud versus cloud formation within the grid cell of a single column model (SCM), we have performed a series of simulations with our SCM driven by a fixed vertical velocity and various rates of horizontal advection.

  10. Modelling of hydrodynamic circulation in Benoa Bay, Bali

    DEFF Research Database (Denmark)

    Ningsih, Nining Sari; Muchamad, Al Azhar

    2013-01-01

    A simulation of water level, velocity, salinity, and temperature in the Bay of Benoa has been carried out using a three-dimensional hydrodynamic Estuarine and Coastal Ocean Model incorporating a main characteristic of southward transport of the Indonesian throughflow at the offshore area of the bay...

  11. Coupling of Wave and Circulation Models in the Atlantic European North-West Shelf Predicting System

    Science.gov (United States)

    Staneva, Joanna; Krüger, Oliver; Behrens, Arno; Lewis, Huw; Castillo, Juan M.

    2017-04-01

    This study addresses the coupling between wind wave and circulation models on the example of the Atlantic - European North-West Shelf (NWS). This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The uncertainties in most of the presently used models result from the nonlinear feedback between strong tidal currents and wind-waves, which can no longer be ignored, in particular in the coastal zone where its role seems to be dominant. Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on thermohaline distribution and ocean circulation at the NWS. Four scenarios - including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination of the three wave-induced forcing were performed to study the role of the wave-induced processes on model simulations. The individual and collective role of those processes is quantified and the results are compared with the NWS circulation model results without wave effects as well as against various in-situ measurements. The performance of the forecasting system is illustrated for the cases of several extreme events. The improved skills resulting from the new developments in the forecasting system, in particular during extreme events, justify further enhancements of the coastal operational systems. The study is performed in the frame of the COPERNICUS CMEMS Service Evolution Projects Wave2NEMO and OWAIRS.

  12. Development and verification of a space-dependent dynamic model of a natural circulation steam generator

    International Nuclear Information System (INIS)

    Mewdell, C.G.; Harrison, W.C.; Hawley, E.H.

    1980-01-01

    This paper describes the development and verification of a Non-Linear Space-Dependent Dynamic Model of a Natural Circulation Steam Generator typical of boilers used in CANDU nuclear power stations. The model contains a detailed one-dimensional dynamic description of both the primary and secondary sides of an integral pre-heater natural circulation boiler. Two-phase flow effects on the primary side are included. The secondary side uses a drift-flux model in the boiling sections and a detailed non-equilibrium point model for the steam drum. The paper presents the essential features of the final model called BOILER-2, its solution scheme, the RD-12 loop and test boiler, the boiler steady-state and transient experiments, and the comparison of the model predictions with experimental results. (author)

  13. An implementation of a barotropic quasigeostrophic model of ocean circulation on the MPP

    Science.gov (United States)

    Grosch, C. E.; Fatoohi, R.

    1987-01-01

    The implementation on the Massively Parallel Processor (MPP) of a barotropic quasigeostrophic model of ocean circulation is discussed. The mathematical model, including scalings and boundary conditions is discussed. The numerical scheme, which uses compact differencing is also discussed. The implementation of this model on the MPP is then presented. Finally, some performance results are given and compared to results obtained using the VPS-32 and one processor of a CRAY-2.

  14. Simulation of the Low-Level-Jet by general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.

  15. Low-frequency oscillations of the Atlantic Ocean meridional overturning circulation in a coupled climate model

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2007-01-01

    Full Text Available Using a 3-dimensional climate model of intermediate complexity we show that the overturning circulation of the Atlantic Ocean can vary at multicentennial-to-millennial timescales for modern boundary conditions. A continuous freshwater perturbation in the Labrador Sea pushes the overturning circulation of the Atlantic Ocean into a bi-stable regime, characterized by phases of active and inactive deep-water formation in the Labrador Sea. In contrast, deep-water formation in the Nordic Seas is active during all phases of the oscillations. The actual timing of the transitions between the two circulation states occurs randomly. The oscillations constitute a 3-dimensional phenomenon and have to be distinguished from low-frequency oscillations seen previously in 2-dimensional models of the ocean. A conceptual model provides further insight into the essential dynamics underlying the oscillations of the large-scale ocean circulation. The model experiments indicate that the coupled climate system can exhibit unforced climate variability at multicentennial-to-millennial timescales that may be of relevance for Holocene climate variations.

  16. Selected translated abstracts of Russian-language climate-change publications. 4: General circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Burtis, M.D. [comp.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Razuvaev, V.N.; Sivachok, S.G. [All-Russian Research Inst. of Hydrometeorological Information--World Data Center, Obninsk (Russian Federation)

    1996-10-01

    This report presents English-translated abstracts of important Russian-language literature concerning general circulation models as they relate to climate change. Into addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included to assist the reader in locating abstracts of particular interest.

  17. High-resolution interpolation of climate scenarios for Canada derived from general circulation model simulations

    Science.gov (United States)

    D. T. Price; D. W. McKenney; L. A. Joyce; R. M. Siltanen; P. Papadopol; K. Lawrence

    2011-01-01

    Projections of future climate were selected for four well-established general circulation models (GCMs) forced by each of three greenhouse gas (GHG) emissions scenarios recommended by the Intergovernmental Panel on Climate Change (IPCC), namely scenarios A2, A1B, and B1 of the IPCC Special Report on Emissions Scenarios. Monthly data for the period 1961-2100 were...

  18. The response of Mediterranean thermohaline circulation to climate change: a minimal model

    NARCIS (Netherlands)

    Meijer, P.Th.; Dijkstra, H.A.

    2009-01-01

    Physics-based understanding of the effects of paleoclimate and paleogeography on the thermohaline circulation of the Mediterranean Sea requires an ocean model capable of long integrations and involving a minimum of assumptions about the atmospheric forcing. Here we examine the sensitivity of

  19. The response of Mediterranean thermohaline circulation to climate change: a minimal model

    NARCIS (Netherlands)

    Meijer, P.Th.; Dijkstra, H.A.

    2009-01-01

    Physics-based understanding of the effects of paleoclimate and paleogeography on the thermohaline circulation of the Mediterranean Sea requires an ocean model capable of long integrations and involving a minimum of assumptions about the atmospheric forcing. Here we examine the sensitivity of the

  20. Prognostic value of circulating tumor cells in the peripheral blood of patients with esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Qiao Y

    2017-03-01

    Full Text Available Yuanyuan Qiao,1,* Jun Li,2,* Chenghe Shi,1,* Wei Wang,2 Xiuhua Qu,1 Ming Xiong,1 Yulin Sun,3 Dandan Li,1 Xiaohang Zhao,1,3 Dajin Zhang1 1Center of Basic Medical Sciences, 2Department of Thoracic Surgery, Navy General Hospital of Chinese PLA, 3State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China *These authors contributed equally to this work Objective: Circulating tumor cells (CTCs of patients with malignant tumors can be used as a prognostic marker. However, there are few relevant reports to date on esophageal squamous cell carcinoma (ESCC. Our study assesses the clinical significance of CTCs in ESCC patients. Patients and methods: CTCs were detected in 103 peripheral blood (PB samples from 59 ESCC patients. Correlation between CTCs and clinical parameters was analyzed using the χ2 test or Fisher’s exact test. Overall survival (OS and progression-free survival (PFS were analyzed using Kaplan–Meier analysis and univariate and multivariate methods. Results: The CTC detection rate was 79.7% (47/59 at baseline. The frequency of CTC-positive patients increased as the disease stage advanced (88.0% in stages III–IV, 58.9% in stages I–II. CTC counts ≥0/7.5 mL of PB were correlated with the degree of tumor differentiation, tumor infiltration, and lymph node and distant metastases. Overall, the OS and PFS of patients with CTC counts ≥3 or ≥5/7.5 mL of PB before surgery were significantly shorter than those of patients with CTC counts <3 or <5/7.5 mL. Multivariate analysis showed CTC counts ≥5/7.5 mL of PB to be a strong prognostic indicator of OS (hazard ratio [HR] 12.478; 95% confidence interval [CI], 8.2–34.3; P<0.05 and PFS (HR 6.524; 95% CI, 1.2–34.3; P<0.05 in ESCC patients. Patients in whom CTCs changed from positive at baseline to a negative value after surgery had an excellent prognosis

  1. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  2. Leukocytes-depleting filters preferentially remove activated leukocytes and reduce the expression of surface adhesion molecules during the simulated extracorporeal circulation of human blood.

    Science.gov (United States)

    Alexiou, Christos; Sheppard, Stuart; Tang, Augustine; Rengarajan, Arvind; Smith, David; Haw, Marcus; Gibbs, Roz

    2006-01-01

    The effect of leukocyte-depleting filters on the total and activated leukocyte counts and the expression of surface adhesion molecules CD11b, CD18, and CD62L during the in vitro extracorporeal circulation of human blood was studied. A 200 ml blood sample was taken from 10 patients undergoing CABG surgery. The blood was circulated for 60 minutes within an experimental extracorporeal circuit. A leukocyte-depleting filter was attached in five circuits (filtered group). In five other circuits, no filter was used (controls). Total leukocyte counts were determined manually. Activated leukocytes were identified using nitroblue tetrazolium staining. The expression of CD11b, CD18, and CD62L was measured with flow cytometry. At 60 minutes, total leukocyte counts were reduced by 49% from the baseline values in the filtered group and 10% in the control group (p filtered group and increased by 116% in the control group (p filtered group, the expression of CD11b, CD18, and CD612L decreased by 60%, 21%, and 79%, respectively, and in the control group it increased by 24%, 6%, and 28% (p filters preferentially remove activated leukocytes and reduce the expression of CD11b, CD18, and CD62L during the in vitro extracorporeal circulation of human blood.

  3. Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model

    Directory of Open Access Journals (Sweden)

    J. J. Morcrette

    2007-05-01

    Full Text Available In order to improve the representation of ozone absorption in the stratosphere of the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased from 4 to 6 bands. Two 20-years simulations with the general circulation model have been performed, one with the standard and the other with the newly introduced parameterization respectively, to evaluate the temperature and dynamical changes arising from the two different representations of the shortwave radiative transfer. In the simulation with the increased spectral resolution in the radiation parameterization, a significant warming of almost the entire model domain is reported. At the summer stratopause the temperature increase is about 6 K and alleviates the cold bias present in the model when the standard radiation scheme is used. These general circulation model results are consistent both with previous validation of the radiation scheme and with the offline clear-sky comparison performed in the current work with a discrete ordinate 4 stream scattering line by line radiative transfer model. The offline validation shows a substantial reduction of the daily averaged shortwave heating rate bias (1–2 K/day cooling that occurs for the standard radiation parameterization in the upper stratosphere, present under a range of atmospheric conditions. Therefore, the 6 band shortwave radiation parameterization is considered to be better suited for the representation of the ozone absorption in the stratosphere than the 4 band parameterization. Concerning the dynamical response in the general circulation model, it is found that the reported warming at the summer stratopause induces stronger zonal mean zonal winds in the middle atmosphere. These stronger zonal mean zonal winds thereafter appear to produce a dynamical feedback that results in a dynamical warming (cooling of the polar winter (summer mesosphere, caused by an

  4. Circulation of carbon dioxide in the mantle: multiscale modeling

    Science.gov (United States)

    Morra, G.; Yuen, D. A.; Lee, S.

    2012-12-01

    Much speculation has been put forward on the quantity and nature of carbon reservoirs in the deep Earth, because of its involvement in the evolution of life at the surface and inside planetary interiors. Carbon penetrates into the Earth's mantle mostly during subduction of oceanic crust, which contains carbonate deposits [1], however the form that it assumes at lower mantle depths is scarcely understood [2], hampering our ability to estimate the amount of carbon in the entire mantle by orders of magnitude. We present simulations of spontaneous degassing of supercritical CO2 using in-house developed novel implementations of the Fast-Multipole Boundary Element Method suitable for modeling two-phase flow (here mantle mineral and free CO2 fluid) through disordered materials such as porous rocks. Because the mutual interaction of droplets immersed either in a fluid or a solid matrix and their weakening effect to the host rock alters the strength of the mantle rocks, at the large scale the fluid phases in the mantle may control the creeping of mantle rocks [3]. In particular our study focuses on the percolation of supercritical CO2, estimated through the solution of the Laplace equation in a porous system, stochastically generated through a series of random Karhunen-Loeve decomposition. The model outcome is employed to extract the transmissivity of supercritical fluids in the mantle from the lowest scale up to the mantle scale and in combination with the creeping flow of the convecting mantle. The emerging scenarios on the global carbon cycle are finally discussed. [1] Boulard, E., et al., New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences, 2011. 108(13): p. 5184-5187. [2] Walter, M.J., et al., Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 2011. 334(6052): p. 54-57. [3] Morra, G., et al., Ascent of Bubbles in Magma Conduits Using Boundary Elements and Particles. Procedia Computer

  5. Circulating tumor cells as a biomarker of response to treatment in patient-derived xenograft mouse models of pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Robert J Torphy

    Full Text Available Circulating tumor cells (CTCs are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC, early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207 while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081. This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens.

  6. Implementing Numerical Experiments Based on the Coupled Model of Atmospheric General Circulation and Thermohaline Ocean One

    Directory of Open Access Journals (Sweden)

    V. P. Parhomenko

    2015-01-01

    Full Text Available The paper presents a realized hydrodynamic three-dimensional global climatic model, which comprises the model blocks of atmospheric general circulation, thermohaline large-scale circulation of the ocean, and sea ice evolution. Before rather strongly aggregated heat-moisturebalance model of the atmosphere for temperature and humidity of a surface layer was used as a model of the atmosphere. The atmospheric general circulation model is significantly more complicated and allows us to describe processes in the atmosphere more adequately. Functioning of a coupled climatic model is considered in conditions of the seasonal cycle of solar radiation.The paper considers a procedure for coupled calculation of the ocean model and atmospheric general circulation model. Synchronization of a number of parameters in both models is necessary for their joint action. In this regard a procedure of two-dimensional interpolation of data defined on the grids of the ocean model and atmosphere model and back is developed. A feature of this task is discrepancy of grid nodes and continental configurations in models. Coupled model-based long-term calculations for more than 400 years have shown its stable work. Calculation results and comparison with observation data are under discussion.The paper shows distribution of mean global atmosphere temperature versus time in stable conditions to demonstrate that there is inter-annual variability of atmosphere temperature at the steady state of a climate system. It presents distribution of temperature difference of the ocean surface from the observations and from the model of the ocean thermohaline circulation for January. Noticeable deviations of temperature are observed near Antarctica. Apparently, it is because of inaccurate calculation of the sea ice distribution in model. The geographical distribution of the ocean surface temperature for January with coupled calculation shows, in general, a zonal uniform structure of isolines

  7. A mesoscale model study of atmospheric circulations for the northern hemisphere summer on Mars

    Science.gov (United States)

    Tyler, Daniel, Jr.

    The Penn-State/NCAR MM5 mesoscale model was adapted for mesoscale simulations of the Martian atmosphere (the OSU MMM5). The NASA Ames Mars GCM provides initial and boundary conditions. High-resolution maps for albedo, thermal inertia and topography were developed from Mars Global Surveyor (MGS) data; these baseline maps are processed to appropriate resolutions for use in the GCM and the mesoscale model. The OSU MMM5 is validated in Chapter 2 by comparing with surface meteorology observed at the Viking Lander 1 (VL1) and Mars Pathfinder (MPF) landing sites. How the diurnal cycle of surface pressure (the surface pressure tide) is affected by boundaries, domain/nest choices and the resolution of surface properties (topography, albedo and thermal inertia) is examined. Chapter 2 additionally shows the influence of regional slope flows in the diurnal surface pressure cycle for certain locations on Mars. Building on the methods of Chapter 2, Chapter 3 describes the northern midsummer polar circulation and the circulations (both large and small scale) that influence it. Improvements to the model for these studies include: the topographical gradient is now considered when computing surface insolation, and the thermal inertia maps and model initialization are improved for high latitudes; this yields a realistic simulation of surface temperatures for the North Pole Residual Cap (NPRC) and the surrounding region. The midsummer polar circulation is vigorous, with abundant and dynamically important transient eddies. The preferred locations of transients varies significantly during this study, between L s = 120 and L s = 150. At L s = 120 transient circulations are seen primarily along the NPRC margin, consistently producing strong flow over the residual cap (~15 m/s). By L s = 135, transient eddies form a "storm track" between the northern slopes of Tharsis and the NPRC. By L s = 150, the circulation is becoming strong and winter-like. These transient eddies may be important in

  8. Adaptive subdomain modeling: A multi-analysis technique for ocean circulation models

    Science.gov (United States)

    Altuntas, Alper; Baugh, John

    2017-07-01

    Many coastal and ocean processes of interest operate over large temporal and geographical scales and require a substantial amount of computational resources, particularly when engineering design and failure scenarios are also considered. This study presents an adaptive multi-analysis technique that improves the efficiency of these computations when multiple alternatives are being simulated. The technique, called adaptive subdomain modeling, concurrently analyzes any number of child domains, with each instance corresponding to a unique design or failure scenario, in addition to a full-scale parent domain providing the boundary conditions for its children. To contain the altered hydrodynamics originating from the modifications, the spatial extent of each child domain is adaptively adjusted during runtime depending on the response of the model. The technique is incorporated in ADCIRC++, a re-implementation of the popular ADCIRC ocean circulation model with an updated software architecture designed to facilitate this adaptive behavior and to utilize concurrent executions of multiple domains. The results of our case studies confirm that the method substantially reduces computational effort while maintaining accuracy.

  9. Circulating microparticle signature in coronary and peripheral blood of ST elevation myocardial infarction patients in relation to pain-to-PCI elapsed time.

    Science.gov (United States)

    Suades, R; Padró, T; Crespo, J; Ramaiola, I; Martin-Yuste, V; Sabaté, M; Sans-Roselló, J; Sionis, A; Badimon, L

    2016-01-01

    Circulating microparticle (cMP) levels are increased in the acute phase of ST-elevation myocardial infarction (STEMI) and associate with microvascular obstruction; however, the precise cMP-parental cell signature and activation level are not elucidated. Here, we aimed to study the cMP signature in STEMI-patients and whether cMP phenotype changes in relation to onset of pain-to-PCI [ischemic time (IT)]-elapsed time. Blood was taken at PCI from the culprit coronary and the peripheral circulation in STEMI-patients (N=40). Two control groups were included: peripheral blood of age-matched patients recovering from STEMI [after 72 h] and of control individuals (N=20/group). cMP-parental origin and activation level were characterized by triple-labeling flow cytometry. Procoagulant annexin V-positive cMPs bearing parental cell markers as well as markers of activated cells displayed a significantly different profile in STEMI-patients, in control individuals and in patients recovering from STEMI. cMPs derived from monocytes, endothelium, and activated vascular cells were higher in the culprit coronary artery than in peripheral blood in STEMI-patients, especially in patients intervened at short IT. Indeed, cMP levels in coronary blood were inversely related to IT duration (more abundant in thrombi with pain-to-PCI time<180 min). A characteristic [CD66b+/CD62E+/CD142+] cMP signature in the systemic circulation reflects the formation of coronary thrombotic occlusions in STEMI-patients. Changes in the cMP signature in the culprit coronary artery blood reveal the sensitivity of MPs to detect the ischemia-elapsed time. Interestingly, cMPs in peripheral blood may be sensitive markers of the thrombo-occlusive vascular process developing in the coronary arteries of STEMI-patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Measuring of main parameters of blood circulation at small laboratory animals in chronic experiment by means of computerized gamma-camera

    International Nuclear Information System (INIS)

    Rutskij, A.V.; Kovalenko, Yu.D.; Rudenko, F.V.; Ioda, G.I.; Kaminskij, M.P.

    1996-01-01

    Technique for studding of a state systemic and regional hemodynamics at small laboratory animals (rats) by using short-lived isotopes (technetium 99 m) and computerized gamma-camera are described. One gives possibility to make the repeated measuring in condition long-tome experiment. The proposed technique of radiocardiocirculography gives possibility simultaneously to measure linear parameters of both arterial and vein blood circulation too. 3 refs., 1 tab., 2 figs

  11. Comparison of three-dimensional ocean general circulation models on a benchmark problem

    International Nuclear Information System (INIS)

    Chartier, M.

    1990-12-01

    A french and an american Ocean General Circulation Models for deep-sea disposal of radioactive wastes are compared on a benchmark test problem. Both models are three-dimensional. They solve the hydrostatic primitive equations of the ocean with two different finite difference techniques. Results show that the dynamics simulated by both models are consistent. Several methods for the running of a model from a known state are tested in the French model: the diagnostic method, the prognostic method, the acceleration of convergence and the robust-diagnostic method

  12. Exploring the Venus global super-rotation using a comprehensive general circulation model

    Science.gov (United States)

    Mendonça, J. M.; Read, P. L.

    2016-12-01

    The atmospheric circulation in Venus is well known to exhibit strong super-rotation. However, the atmospheric mechanisms responsible for the formation of this super-rotation are still not fully understood. In this work, we developed a new Venus general circulation model to study the most likely mechanisms driving the atmosphere to the current observed circulation. Our model includes a new radiative transfer, convection and suitably adapted boundary layer schemes and a dynamical core that takes into account the dependence of the heat capacity at constant pressure with temperature. The new Venus model is able to simulate a super-rotation phenomenon in the cloud region quantitatively similar to the one observed. The mechanisms maintaining the strong winds in the cloud region were found in the model results to be a combination of zonal mean circulation, thermal tides and transient waves. In this process, the semi-diurnal tide excited in the upper clouds has a key contribution in transporting axial angular momentum mainly from the upper atmosphere towards the cloud region. The magnitude of the super-rotation in the cloud region is sensitive to various radiative parameters such as the amount of solar radiative energy absorbed by the surface, which controls the static stability near the surface. In this work, we also discuss the main difficulties in representing the flow below the cloud base in Venus atmospheric models. Our new radiative scheme is more suitable for 3D Venus climate models than those used in previous work due to its easy adaptability to different atmospheric conditions. This flexibility of the model was crucial to explore the uncertainties in the lower atmospheric conditions and may also be used in the future to explore, for example, dynamical-radiative-microphysical feedbacks.

  13. [Effect of a preoperative separation of platelets on the postoperative blood loss subsequent to extracorporeal circulation in open heart surgery (author's transl)].

    Science.gov (United States)

    Harke, H; Tanger, D; Fürst-Denzer, S; Paoachrysanthou, C; Bernhard, A

    1977-02-01

    After operations with extracorporeal circulation there is a risk of clotting disorders, due to traumatisation of blood. The extent of cell damage are shown, in particular, by qualitative and quantitative impairment of platelet function. The clinical application of modern blood processors offer the possibility of selecting platelets from patients blood in the immediate preoperative period. Open heart operations were preceded by separation of platelets in 17 patients using a Haemonetics blood processor. After a postoperative retransfusion of the platelets an evident improvement in platelet function and a significant decrease in the predisposition to bleeding was demonstrated in the further postoperative period. During and after extracorporeal circulation the extent of microembolisation was registered by screen filtration pressure. In the clinical experiments, regularly, there is a significant increase of screen filtration pressure in the immediate postoperative period. These reactions were not seen in patients in whom preoperative separation of platelets was carried out. The most important clinical advantage of preoperative plateletpheresis consists in a significant decrease of postoperative blood loss. In particular the development of postperfusion lung will be prevented.

  14. The Hamburg large scale geostrophic ocean general circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Mikolajewicz, U.

    1992-02-01

    The rationale for the Large Scale Geostrophic ocean circulation model (LSG-OGCM) is based on the observations that for a large scale ocean circulation model designed for climate studies, the relevant characteristic spatial scales are large compared with the internal Rossby radius throughout most of the ocean, while the characteristic time scales are large compared with the periods of gravity modes and barotropic Rossby wave modes. In the present version of the model, the fast modes have been filtered out by a conventional technique of integrating the full primitive equations, including all terms except the nonlinear advection of momentum, by an implicit time integration method. The free surface is also treated prognostically, without invoking a rigid lid approximation. The numerical scheme is unconditionally stable and has the additional advantage that it can be applied uniformly to the entire globe, including the equatorial and coastal current regions. (orig.)

  15. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    Science.gov (United States)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  16. Robust and self-tuning blood flow control during extracorporeal circulation in the presence of system parameter uncertainties.

    Science.gov (United States)

    Misgeld, B J E; Werner, J; Hexamer, M

    2005-09-01

    Three different discrete controllers were designed and tuned to be used in conjunction with a rotary blood pump during cardiopulmonary heart-lung support. The controllers were designed to operate in both steady and pulsatile modes. The system and methods were tested in a circulatory haemodynamic simulator. To guarantee stable control of the non-linear circulatory system in the presence of patient parameter uncertainties, a proportional plus integral (PI) and an H infinity controller were robustly tuned, using a non-linear time-varying model. (H infinity refers to the Hardy space, the set of bounded functions, analytic in the right half plane. The H infinity controller is the solution to the H infinity norm optimisation problem.) A self-tuning general predictive controller (GPC), together with an adaptive Kalman filter (KF) estimator, was compared with the two robustly tuned controllers. The closed-loop blood flow control circuit was set up in simulation routines first. The blood flow controllers were validated in a circulatory hydrodynamic simulator (MOCK) combined with a rotary blood pump. Parameters of the system simulator were changed continuously, and the controllers were tested over a wide range of different operating points. Disturbances in the form of discontinuous additive parameter uncertainties were applied. The closed-loop systems remained robustly stable. The robustly tuned H infinity controller showed the best control performance, in contrast to the GPC controller, which was near instability in regions of strongly varying non-linear system gain. Compared with the H infinity controller, the PI controller showed slightly worse behaviour, but the closed-loop response was acceptable, even in regions of strongly varying non-linear system gain and during pulsatile perfusion. The rotary blood pump could provide stationary and pulsatile perfusion under control conditions. Controlled variables were hereby mean blood flow, pulsatility index and heart rate. All

  17. Verification of RBMK-1500 reactor main circulation circuit model with Cathare V1.3L

    International Nuclear Information System (INIS)

    Jasiulevicius, A.

    2001-01-01

    Among other computer codes, French code CATHARE is also applied for RBMK reactor calculations. In this paper results of such application for Ignalina NPP reactor (RBMK-1500 type) main circulation circuit are presented. Three transients calculations were performed: all main circulation pumps (MCP) trip, trip of one main circulation pump and trip of one main circulation pump without a closure of check valve on the pump line. Calculation results were compared to data from the Ignalina NPP, where all these transients were recorded in the years 1986, 1996 and 1998. The presented studies prove the capability of the CATHARE code to treat thermal-hydraulic transients with a reactor scram in the RBMK, in case of single or multiple pump trips. However, the presented model needs further improvements in order to simulate loss of coolant accidents. For this reason, emergency core cooling system should be included in the model. Additional model improvement is also needed in order to gain more independent pressure behavior in both loops. Also, flow rates through the reactor channels should be modeled by dividing channels into several groups, referring to channel power (in RBMK power produced in a channel, located in different parts of the core is not the same). The point-neutron kinetic model of the CATHARE code is not suitable to predict transients when the reactor is operating at a nominal power level. Such transients would require the use of 3D-neutron kinetics model to describe properly the strong space-time effect on the power distribution in the reactor core

  18. Verification of RBMK-1500 reactor main circulation circuit model with Cathare V1.3L

    Energy Technology Data Exchange (ETDEWEB)

    Jasiulevicius, A. [Kaunas University of Technology, Dept. of Thermal and Nuclear Energy, Kaunas (Lithuania)

    2001-07-01

    Among other computer codes, French code CATHARE is also applied for RBMK reactor calculations. In this paper results of such application for Ignalina NPP reactor (RBMK-1500 type) main circulation circuit are presented. Three transients calculations were performed: all main circulation pumps (MCP) trip, trip of one main circulation pump and trip of one main circulation pump without a closure of check valve on the pump line. Calculation results were compared to data from the Ignalina NPP, where all these transients were recorded in the years 1986, 1996 and 1998. The presented studies prove the capability of the CATHARE code to treat thermal-hydraulic transients with a reactor scram in the RBMK, in case of single or multiple pump trips. However, the presented model needs further improvements in order to simulate loss of coolant accidents. For this reason, emergency core cooling system should be included in the model. Additional model improvement is also needed in order to gain more independent pressure behavior in both loops. Also, flow rates through the reactor channels should be modeled by dividing channels into several groups, referring to channel power (in RBMK power produced in a channel, located in different parts of the core is not the same). The point-neutron kinetic model of the CATHARE code is not suitable to predict transients when the reactor is operating at a nominal power level. Such transients would require the use of 3D-neutron kinetics model to describe properly the strong space-time effect on the power distribution in the reactor core.

  19. Two regimes of the Arctic's circulation from ocean models with ice and contaminants.

    Science.gov (United States)

    Proshutinsky, A Y; Johnson, M

    2001-01-01

    A two-dimensional barotropic, coupled, ocean-ice model with a space resolution of 55.5 km and driven by atmospheric forces, river run-off, and sea-level slope between the Pacific and the Arctic Oceans, has been used to simulate the vertically averaged currents and ice drift in the Arctic Ocean. Results from 43 years of numerical simulations of water and ice motions demonstrate that two wind-driven circulation regimes are possible in the Arctic, a cyclonic and an anti-cyclonic circulation. These two regimes appear to alternate at 5-7 year intervals with the 10-15 year period. It is important to pollution studies to understand which circulation regime prevails at any time. It is anticipated that 1995 is a year with a cyclonic regime, and during this cyclonic phase and possibly during past cyclonic regimes as well, pollutants may reach the Alaskan shelf. The regime shifts demonstrated in this paper are fundamentally important to understanding the Arctic's general circulation and particularly important for estimating pollution transport.

  20. Causes and impacts of changes in the stratospheric meridional circulation in a chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Hella

    2011-05-13

    The stratospheric meridional circulation is projected to be subject to changes due to enhanced greenhouse-gas concentrations in the atmosphere. This study aims to diagnose and explain long-term changes in the stratospheric meridional circulation using the chemistry-climate model E39CA. The diagnosed strengthening of the circulation is found to be driven by increases in tropical sea surface temperatures which lead to a strengthening and upward shift of the subtropical jets. This enables enhanced vertical propagation of large scale waves into the lower stratosphere, and therefore stronger local wave forcing of the meridional circulation in the tropical lower stratosphere. The impact of changes in transport on the ozone layer is analysed using a newly developed method that allows the separation of the effects of transport and chemistry changes on ozone. It is found that future changes of mean stratospheric ozone concentrations are largely determined by changes in chemistry, while changes in transport of ozone play a minor role. (orig.)

  1. Numerical model of the circulation and dispersion in the east Adriatic coastal waters

    Science.gov (United States)

    Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan

    2017-04-01

    The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.

  2. CISOCUR - Hydrodynamic circulation in the Curonian Lagoon inferred through stable isotope measurements and numerical modelling

    Science.gov (United States)

    Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas

    2013-04-01

    The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model

  3. Modified allocation capacitated planning model in blood supply chain management

    Science.gov (United States)

    Mansur, A.; Vanany, I.; Arvitrida, N. I.

    2018-04-01

    Blood supply chain management (BSCM) is a complex process management that involves many cooperating stakeholders. BSCM involves four echelon processes, which are blood collection or procurement, production, inventory, and distribution. This research develops an optimization model of blood distribution planning. The efficiency of decentralization and centralization policies in a blood distribution chain are compared, by optimizing the amount of blood delivered from a blood center to a blood bank. This model is developed based on allocation problem of capacitated planning model. At the first stage, the capacity and the cost of transportation are considered to create an initial capacitated planning model. Then, the inventory holding and shortage costs are added to the model. These additional parameters of inventory costs lead the model to be more realistic and accurate.

  4. Ability of the CCSR-NIES atmospheric general circulation model in the stratosphere. Chapter 3

    International Nuclear Information System (INIS)

    Sugata, S.

    1997-01-01

    A quantitative evaluation of climate change such as global warming is impossible without a high-quality numerical model which describes the dynamics of the climate system and the circulation of energy and materials. The Center for Climate Research - National Institute for Environmental Studies (CCSR-NIES) atmospheric general circulation model (hereafter, GCM for a general circulation model) has been developed to obtain such a high-quality model. The emphasis of the development has been laid on the troposphere and the lower stratosphere below about 30 km altitude. This is natural because human beings live on the Earth's surface and the condition of the lower atmosphere directly affects human life. However, the stratosphere and the upper atmosphere beyond it have recently been the focus even in investigations of climate change, because they are relevant to many issues which relate closely to tropospheric climate change, such as the ozone hole, material exchange between the stratosphere and the troposphere, and physical interaction between the stratosphere and troposphere. This study extended the region of the CCSR-NIES GCM to the lower mesosphere (about 70 km from the surface). This is our first attempt to investigate this GCM's climatology in the upper atmosphere, although some studies for QBO in the middle and lower stratosphere had been done with the GCM

  5. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    International Nuclear Information System (INIS)

    Massoud, M.

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients

  6. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.

  7. Peripheral circulation.

    Science.gov (United States)

    Laughlin, M Harold; Davis, Michael J; Secher, Niels H; van Lieshout, Johannes J; Arce-Esquivel, Arturo A; Simmons, Grant H; Bender, Shawn B; Padilla, Jaume; Bache, Robert J; Merkus, Daphne; Duncker, Dirk J

    2012-01-01

    Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations. © 2012 American Physiological Society

  8. Assimilation of TOPEX/POSEIDON Altimeter Data into a Global Ocean Circulation Model: Are the Results Any Good?

    Science.gov (United States)

    Fukumori, I.; Fu, L. L.; Chao, Y.

    1998-01-01

    The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.

  9. Regional eddy vorticity transport and the equilibrium vorticity budgets of a numerical model ocean circulation

    Science.gov (United States)

    Harrison, D. E.; Holland, W. R.

    1981-01-01

    A mean vorticity budget analysis is presented of Holland's (1978) numerical ocean general circulation experiment. The stable budgets are compared with classical circulation theory to emphasize the ways in which the mesoscale motions of the model alter (or leave unaltered) classical vorticity balances. The basinwide meridional transports of vorticity by the mean flow and by the mesoscale flow in the mean are evaluated to establish the role(s) of the mesoscale in the larger scale equilibrium vorticity transports. The vorticity equation for this model fluid system is presented and the budget analysis method is described. Vorticity budgets over the selected regions and on a larger scale are given, and a summary of budget results is provided along with remarks about the utility of this type of analysis.

  10. Characterizing the surface circulation in Ebro Delta (NW Mediterranean) with HF radar and modeled current data

    Science.gov (United States)

    Lorente, P.; Piedracoba, S.; Sotillo, M. G.; Aznar, R.; Amo-Balandron, A.; Pascual, A.; Soto-Navarro, J.; Alvarez-Fanjul, E.

    2016-11-01

    Quality-controlled current observations from a High Frequency radar (HFR) network deployed in the Ebro River Delta (NW Mediterranean) were combined with outputs from IBI operational ocean forecasting system in order to comprehensively portray the ocean state and its variability during 2014. Accurate HFR data were used as benchmark for a rigorous validation of the Iberia-Biscay-Ireland (IBI) regional system, routinely operated in the frame of the Copernicus Marine Environment Monitoring Service (CMEMS). The analysis of skill metrics and monthly averaged current maps showed that IBI reasonably captured the prevailing dynamic features of the coastal circulation previously observed by the HFR, according to the moderate resemblance found in circulation patterns and the spatial distribution of eddy kinetic energy. The model skill assessment was completed with an exploration of dominant modes of spatiotemporal variability. The EOF analysis confirmed that the modeled surface current field evolved both in space and time according to three significantly dominant modes of variability which accounted for the 49.2% of the total variance, in close agreement with the results obtained for HFR (46.1%). The response of the subtidal surface current field to prevailing wind regime in the study area was examined in terms of induced circulation structures and immediacy of reaction by performing a conditional averaging approach and a time-lagged vector correlation analysis, respectively. This observations-model synergistic strategy has proved to be valid to operationally monitor the complex coastal circulation in Ebro Delta despite the observed model drawbacks in terms of reduced energy content in surface currents and some inaccuracies in the wind-driven low frequency response. This integrated methodology aids to improve the prognostic capabilities of IBI ocean forecasting system and also to facilitate high-stakes decision-making for coastal management in the Ebro River Delta marine

  11. Oceanic circulation models help to predict global biogeography of pelagic yellow-bellied sea snake

    OpenAIRE

    Brischoux, François; Cotté, Cédric; Lillywhite, Harvey B.; Bailleul, Frédéric; Lalire, Maxime; Gaspar, Philippe

    2016-01-01

    It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic cur...

  12. Characterizing the surface circulation in the Ebro Delta using a HF radar data-model approach

    Science.gov (United States)

    Lorente Jimenez, Pablo; Piedracoba Varela, Silvia; Soto-Navarro, Javier; Garcia-Sotillo, Marcos; Alvarez Fanjul, Enrique

    2016-04-01

    One year-long (2014) quality-controlled current observations from a CODAR SeaSonde High Frequency (HF) radar network deployed in the Ebro Delta (northwestern Mediterranean) were combined with operational products provided by a regional ocean forecasting system named IBI (Iberia-Biscay-Ireland) in order to comprehensively portray the ocean state and its variability. First, accurate HF radar data were used as benchmark for the rigorous validation of IBI performance by means of the computation of skill metrics and quality indicators. The analysis of the monthly averaged current maps for 2014 showed that IBI properly captured the prevailing dynamic features of the coastal circulation observed by the HF radar, according to the resemblance of circulation patterns and the eddy kinetic energy spatial distribution. The model skill assessment was completed with an exploration of dominant modes of variability both in time and space. The EOF analysis confirmed that the modeled surface current field evolved in space and time according to three significantly dominant modes of variability which accounted for the 49.2% of the total variance, in close agreement with the results obtained for the HF radar (46.1%). The response of the subtidal surface current field to prevalent wind regimes in the study area was examined in terms of induced circulation structures by performing a conditional averaging approach. This data-model synergistic approach has proved to be valid to operationally monitor and describe the complex coastal circulation in Ebro Delta despite the observed model drawbacks in terms of reduced energy content in surface currents and some inaccuracies in the wind-driven low frequency response. This integrated methodology constitutes a powerful tool for improving operational ocean forecasting systems at European level within the frame of the Copernicus Marine Environment Monitoring Service (CMEMS). It also facilitates high-stakes decision-making for coastal management and

  13. Ocean circulation model predicts high genetic structure observed in a long-lived pelagic developer.

    Science.gov (United States)

    Sunday, J M; Popovic, I; Palen, W J; Foreman, M G G; Hart, M W

    2014-10-01

    Understanding the movement of genes and individuals across marine seascapes is a long-standing challenge in marine ecology and can inform our understanding of local adaptation, the persistence and movement of populations, and the spatial scale of effective management. Patterns of gene flow in the ocean are often inferred based on population genetic analyses coupled with knowledge of species' dispersive life histories. However, genetic structure is the result of time-integrated processes and may not capture present-day connectivity between populations. Here, we use a high-resolution oceanographic circulation model to predict larval dispersal along the complex coastline of western Canada that includes the transition between two well-studied zoogeographic provinces. We simulate dispersal in a benthic sea star with a 6-10 week pelagic larval phase and test predictions of this model against previously observed genetic structure including a strong phylogeographic break within the zoogeographical transition zone. We also test predictions with new genetic sampling in a site within the phylogeographic break. We find that the coupled genetic and circulation model predicts the high degree of genetic structure observed in this species, despite its long pelagic duration. High genetic structure on this complex coastline can thus be explained through ocean circulation patterns, which tend to retain passive larvae within 20-50 km of their parents, suggesting a necessity for close-knit design of Marine Protected Area networks. © 2014 John Wiley & Sons Ltd.

  14. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    Science.gov (United States)

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  15. Improving the representation of turbulence and clouds in cloud resolving models and general circulation models

    Science.gov (United States)

    Bogenschutz, Peter A.

    Over the past few years a new type of general circulation model (GCM) has emerged that is known as the multiscale modeling framework (MMF). The Colorado State University (CSU) MMF represents a coupling between the Community Atmosphere Model (CAM) GCM and the System of Atmospheric Modeling (SAM) cloud resolving model (CRM). Within this MMF the embedded CRM replaces the traditionally used parameterized moist physics in CAM to represent subgrid-scale (SGS) convection. However, due to substantial increases of computational burden associated with the MMF, the embedded CRM is typically run with a horizontal grid size of 4 km. With a horizontal grid size of 4 km, a low-order closure CRM cannot adequately represent shallow convective processes, such as trade-wind cumulus or stratocumulus. A computationally inexpensive parameterization of turbulence and clouds is presented in this dissertation. An extensive a priori test is performed to determine which functional form of an assumed PDF is best suited for coarse-grid CRMs for both deep shallow and deep convection. The diagnostic approach to determine the input moments needed for the assumed PDFs uses the subgrid-scale (SGS) turbulent kinetic energy (TKE) as the basis for the parameterization. The term known as the turbulent length scale (L) is examined, as it is needed to parameterize the dissipation of turbulence and therefore is needed to better balance the budgets of SGS TKE. A new formulation of this term is added to the model code which appears to be able to partition resolved and SGS TKE fairly accurately. Results from "offline" tests of the simple diagnostic closure within SAM shows that the cloud and turbulence properties of shallow convection can be adequately represented when compared to large eddy simulation (LES) benchmark simulations. Results are greatly improved when compared to the standard version of SAM. The preliminary test of the scheme within the embedded CRM of the MMF shows promising results with the

  16. Evaluation of water vapor distribution in general circulation models using satellite observations

    Science.gov (United States)

    Soden, Brian J.; Bretherton, Francis P.

    1994-01-01

    This paper presents a comparison of the water vapor distribution obtained from two general circulation models, the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM), with satellite observations of total precipitable water (TPW) from Special Sensor Microwave/Imager (SSM/I) and upper tropospheric relative humidity (UTH) from GOES. Overall, both models are successful in capturing the primary features of the observed water vapor distribution and its seasonal variation. For the ECMWF model, however, a systematic moist bias in TPW is noted over well-known stratocumulus regions in the eastern subtropical oceans. Comparison with radiosonde profiles suggests that this problem is attributable to difficulties in modeling the shallowness of the boundary layer and large vertical water vapor gradients which characterize these regions. In comparison, the CCM is more successful in capturing the low values of TPW in the stratocumulus regions, although it tends to exhibit a dry bias over the eastern half of the subtropical oceans and a corresponding moist bias in the western half. The CCM also significantly overestimates the daily variability of the moisture fields in convective regions, suggesting a problem in simulating the temporal nature of moisture transport by deep convection. Comparison of the monthly mean UTH distribution indicates generally larger discrepancies than were noted for TPW owing to the greater influence of large-scale dynamical processes in determining the distribution of UTH. In particular, the ECMWF model exhibits a distinct dry bias along the Intertropical Convergence Zone (ITCZ) and a moist bias over the subtropical descending branches of the Hadley cell, suggesting an underprediction in the strength of the Hadley circulation. The CCM, on the other hand, demonstrates greater discrepancies in UTH than are observed for the ECMWF model, but none that are as

  17. Refining the Subseafloor Circulation Model of the Middle Valley Hydrothermal System Using Fluid Geochemistry

    Science.gov (United States)

    Inderbitzen, K. E.; Wheat, C. G.; Baker, P. A.; Fisher, A. T.

    2014-12-01

    Currently, fluid circulation patterns and the evolution of rock/fluid compositions as circulation occurs in subseafloor hydrothermal systems are poorly constrained. Sedimented spreading centers provide a unique opportunity to study subsurface flow because sediment acts as an insulating blanket that traps heat from the cooling magma body and limits: (a) potential flow paths for seawater to recharge the aquifer in permeable upper basaltic basement and (b) points of altered fluid egress. This also allows for a range of thermal and geochemical gradients to exist near the sediment-water interface. Models of fluid circulation patterns in this type of hydrologic setting have been generated (eg. Stein and Fisher, 2001); however fluid chemistry datasets have not previously been used to test the model's viability. We address this issue by integrating the existing circulation model with fluid compositional data collected from sediment pore waters and high temperature hydrothermal vents located in Middle Valley on the Juan de Fuca Ridge. Middle Valley hosts a variety of hydrologic regimes: including areas of fluid recharge (Site 855), active venting (Site 858/1036; Dead Dog vent field), recent venting (Site 856/1035; Bent Hill Massive Sulfide deposit) and a section of heavily sedimented basement located between recharge and discharge sites (Site 857). We will present new results based on thermal and geochemical data from the area of active venting (Sites 858 and 1036), that was collected during Ocean Drilling Program Legs 139 and 169 and a subsequent heat flow/gravity coring effort. These results illuminate fine scale controls on secondary recharge and fluid flow within the sediment section at Site 858/1036. The current status of high temperature vents in this area (based on observations made in July, 2014) will also be outlined.

  18. Circulating tumor cells (Ctc) and kras mutant circulating free Dna (cfdna) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer

    International Nuclear Information System (INIS)

    Earl, Julie; Garcia-Nieto, Sandra; Martinez-Avila, Jose Carlos; Montans, José; Sanjuanbenito, Alfonso; Rodríguez-Garrote, Mercedes; Lisa, Eduardo; Mendía, Elena; Lobo, Eduardo; Malats, Núria; Carrato, Alfredo; Guillen-Ponce, Carmen

    2015-01-01

    Pancreatic cancer remains one of the most difficult cancers to treat with the poorest prognosis. The key to improving survival rates in this disease is early detection and monitoring of disseminated and residual disease. However, this is hindered due to lack reliable diagnostic and predictive markers which mean that the majority of patients succumb to their condition within a few months. We present a pilot study of the detection circulating free DNA (cfDNA) combined with tumor specific mutation detection by digital PCR as a novel minimally invasive biomarker in pancreatic ductal adenocarcinoma (PDAC). This was compared to the detection of CTC by the CellSearch® system and a novel CTC enrichment strategy based on CD45 positive cell depletion. The aim of the study was to assess tumor specific DNA detection in plasma and CTC detection as prognostic markers in PDAC. We detected KRAS mutant cfDNA in 26 % of patients of all stages and this correlated strongly with Overall Survival (OS), 60 days (95 % CI: 19–317) for KRAS mutation positive vs 772 days for KRAS mutation negative (95 % CI: 416–1127). Although, the presence of CTC detected by the CellSearch® system did correlate significantly with OS, 88 days (95 % CI: 27–206) CTC positive vs 393 days CTC negative (95 % CI: 284–501), CTC were detected in only 20 % of patients, the majority of which had metastatic disease, whereas KRAS mutant cfDNA was detected in patients with both resectable and advanced disease. Tumor specific cfDNA detection and CTC detection are promising markers for the management of patients with PDAC, although there is a need to validate these results in a larger patient cohort and optimize the detection of CTC in PDAC by applying the appropriate markers for their detection. The online version of this article (doi:10.1186/s12885-015-1779-7) contains supplementary material, which is available to authorized users

  19. Status of the IAEA coordinated research project on natural circulation phenomena, modelling, and reliability of passive systems that utilize natural circulation

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.; Cleveland, J.; Aksan, N.

    2004-01-01

    The International Atomic Energy Agency (IAEA) has established a Coordinated Research Project (CRP) titled ''Natural Circulation Phenomena, Modelling and Reliability of Passive Safety Systems that Utilize Natural Circulation. '' This work has been organized within the framework of the IAEA Department of Nuclear Energy's Technical Working Groups for Advanced Technologies for Light Water Reactors and Heavy Water Reactors (the TWG-LWR and the TWG-HWR). This CRP is part of IAEA's effort to foster international collaborations that strive to improve the economic performance of future water-cooled nuclear power plants while meeting stringent safety requirements. Thus far, IAEA has established 12 research agreements with organizations from industrialized Member States and 3 research contracts with organizations from developing Member States. The objective of the CRP is to enhance our understanding of natural circulation phenomena in water-cooled reactors and passive safety systems. The CRP participants are particularly interested in establishing a natural circulation and passive safety system thermal hydraulic database that can be used to benchmark computer codes for advanced reactor systems design and safety analysis. An important aspect of this CRP relates to developing methodologies to assess the reliability of passive safety systems in advanced reactor designs. This paper describes the motivation and objectives of the CRP, the research plan, and the role of each of the participating organizations. (author)

  20. Acute strength training promotes responses in whole blood circulating levels of miR-146a among older adults with type 2 diabetes mellitus

    Science.gov (United States)

    Morais Junior, Gilberto Santos; Souza, Vinicius Carolino; Machado-Silva, Wilcelly; Henriques, Adriane Dallanora; Melo Alves, Andressa; Barbosa Morais, Danilo; Nóbrega, Otávio Toledo; Brito, Ciro José; dos Santos Silva, Roberto Jerônimo

    2017-01-01

    Type 2 diabetes mellitus (T2DM) consists of a set of metabolic and endocrine disorders which evolve into deficiency in insulin action and hyperglycemia. Physical exercise is considered the main intervention to prevent and control T2DM. Literature has suggested that circulating microRNAs (miRs) help to understand responses to physical activity among diabetic patients. Thus, the aim of this study was to analyze the acute effect of two interventions (strength and cardiovascular) on the total, whole blood circulating concentrations of miR-126, miR-146a and miR-155 in older adults with and without T2DM. A total of 23 male and female older adults (68.2±5.3 years) participated in the trial, 13 of whom presented with controlled T2DM and 10 were nondiabetics. They underwent both interventions separately, performed with intensity from 60% to 70% of reserve heart rate. Glucose and miRs levels were quantified and compared across groups with baseline titers as covariables. Diabetic patients showed more reduction in serum blood glucose than nondiabetics, with a great magnitude of reduction after the strength training intervention, which was paralleled by a positive change of the whole blood circulating levels of miR-146a, but not of the other miRs. Our report supports evidence that miR-146a levels in peripheral blood leukocytes are negatively associated with a state of insulin resistance, which is suggested as a novel marker to trace response to antidiabetic interventions. PMID:28979106

  1. Results of an interactively coupled atmospheric chemistry – general circulation model: Comparison with observations

    Directory of Open Access Journals (Sweden)

    R. Hein

    2001-04-01

    Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic

  2. Results of an interactively coupled atmospheric chemistry – general circulation model: Comparison with observations

    Directory of Open Access Journals (Sweden)

    R. Hein

    Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic

  3. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    Science.gov (United States)

    Voigt, A.

    2017-12-01

    Climate models project that global warming will lead to substantial changes in extratropical jet streams. Yet, many quantitative aspects of warming-induced jet stream changes remain uncertain, and recent work has indicated an important role of clouds and their radiative interactions. Here, I will investigate how cloud-radiative changes impact the zonal-mean extratropical circulation response under global warming using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. I will further juxtapose these prescribed-SST simulations with interactive-SST simulations and show that atmospheric and surface cloud-radiative interactions impact the jet poleward jet shifts in about equal measure. Finally, I will discuss the cloud impact on regional and seasonal circulation changes.

  4. Numerical Modelling Approaches for Assessing Improvements to the Flow Circulation in a Small Lake

    Directory of Open Access Journals (Sweden)

    Cheng He

    2011-01-01

    Full Text Available Kamaniskeg Lake is a long, narrow, and deep small lake located in the northern part of Ontario, Canada. The goals of this paper were to examine various options to improve the water quality in the northern part of the lake by altering the local hydraulic flow conditions. Towards this end, a preliminary screening suggested that the flow circulation could be increased around a central island (Mask Island in the northern part of the lake by opening up an existing causeway connecting the mainland and central island. Three-dimensional (3D hydraulic and transport models were adopted in this paper to investigate the hydraulic conditions under various wind forces and causeway structures. The modelling results show that opening the causeway in a few places is unlikely to generate a large flow circulation around the central island. Full circulation only appears to be possible if the causeway is fully removed and a strong wind blows in a favourable direction. The possible reasons for existing water quality variations at the intake of a local WTP (water treatment plant are also explored in the paper.

  5. An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models

    Science.gov (United States)

    Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.

    2001-01-01

    This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.

  6. Numerical modeling of general circulation, thermohaline structure, and residence time in Gorgan Bay, Iran

    Science.gov (United States)

    Ranjbar, Mohammad Hassan; Hadjizadeh Zaker, Nasser

    2018-01-01

    Gorgan Bay is a semi-enclosed basin located in the southeast of the Caspian Sea, Iran. The bay is recognized as a resting place for migratory birds as well as a spawning habitat for native fish. However, apparently, no detailed research on its physical processes has previously been conducted. In this study, a 3D coupled hydrodynamic and solute transport model was used to investigate general circulation, thermohaline structure, and residence time in Gorgan Bay. Model outputs were validated against a set of field observations. Bottom friction and attenuation coefficient of light intensity were tuned in order to achieve optimum agreement with the observations. Results revealed that, due to the interaction between bathymetry and prevailing winds, a barotropic double-gyre circulation, dominating the general circulation, existed during all seasons in Gorgan Bay. Furthermore, temperature and salinity fluctuations in the bay were seasonal, due to the seasonal variability of atmospheric fluxes. Results also indicated that under the prevailing winds, the domain-averaged residence time in Gorgan Bay would be approximately 95 days. The rivers discharging into Gorgan Bay are considered as the main sources of nutrients in the bay. Since their mouths are located in the area with a residence time of over 100 days, Gorgan Bay could be at risk of eutrophication; it is necessary to adopt preventive measures against water quality degradation.

  7. Development of a transient calculation model for a closed sodium natural circulation loop

    International Nuclear Information System (INIS)

    Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Heo, Sun; Lee, Yong Bum

    2003-09-01

    A natural circulation loop has usually adopted for a Liquid Metal Reactor (LMR) because of its high reliability. Up-rating of the current KALIMER capacity requires an additional PDRC to the existing PVCS to remove its decay heat under an accident. As the system analysis code currently used for LMR in Korea does not feature a stand alone capability to simulate a closed natural circulation loop, it is not eligible to be applied to PDRC. To supplement its limitation, a steady state calculation model had been developed during the first phase, and development of the transient model has successively carried out to close the present study. The developed model will then be coupled with the system analysis code, SSC-K to assess a long term cooling for the new conceptual design. The incompressibility assumption of sodium which allows the circuit to be modeled with a single loop flow, makes the model greatly simplified comparing with LWR. Some thermal-hydraulic models developed during this study can be effectively applied to other system analysis codes which require such component models, and the present development will also contribute to establishment of a code system for the LMR analysis

  8. Modelling the circulation on the continental shelf of the province Khanh Hoa in Vietnam

    Science.gov (United States)

    Barthel, Knut; Rosland, Rune; Thai, Ngoc Chien

    2009-04-01

    A model simulation of the circulation on the continental shelf of the Khanh Hoa province in central Vietnam during the year 2004 is presented. The model, a three-dimensional baroclinic z-coordinate model (the Hamburg Shelf Ocean Model), is implemented with a horizontal resolution of about 1 km. It is initialised with temperature and salinity fields taken from the Levitus data, and by the two main tidal constituents. The model is forced by daily fields of wind stress, air temperature, wind speed, and cloudiness taken from NCEP, and by monthly mean river runoff values. At the open boundary sea surface displacements are prescribed by the tidal variation and by the steric height determined from the density anomalies determined from climatological values of temperature and salinity. The modelled circulation reflects the monsoonal forcing fields, and reveals downwelling during winter and upwelling during summer. The modelled hydrography is compared with measured profiles, and some biases are found. The flushing times of three bays along the Khanh Hoa coast are calculated. The relative influence of river runoff, tides, and weather on the flushing times is discussed.

  9. Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Sylvia eGarza-Manero

    2015-02-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized clinically by the progressive decline of memory and cognition. Histopathologically, two main hallmarks have been identified in AD: amyloid-β peptide extracellular neuritic plaques and neurofibrillary tangles formed by posttranslational modified tau protein. A definitive diagnosis can only be achieved after the post mortem verification of the histological mentioned alterations. Therefore the development of biomarkers that allow an early diagnosis and/or predict disease progression is imperative. The prospect of a blood-based biomarker is possible with the finding of circulating microRNAs (miRNAs, a class of small non-coding RNAs of 22-25 nucleotides length that regulate mRNA translation rate. miRNAs travel through blood and recent studies performed in potential AD cases suggest the possibility of finding pathology-associated differences in circulating miRNA levels that may serve to assist in early diagnosis of the disease. However, these studies analyzed samples at a single time-point, limiting the use of miRNAs as biomarkers in AD progression. In this study we evaluated miRNA levels in plasma samples at different time-points of the evolution of an AD-like pathology in a transgenic mouse model of the disease (3xTg-AD. We performed multiplex qRT-PCR and compared the plasmatic levels of 84 miRNAs previously associated to central nervous system development and disease. No significant differences were detected between WT and transgenic young mice. However, age-related significant changes in miRNA abundance were observed for both WT and transgenic mice, and some of these were specific for the 3xTg-AD. In agreement, variations in the levels of particular miRNAs were identified between WT and transgenic old mice thus suggesting that the age-dependent evolution of the AD-like pathology, rather than the presence and expression of the transgenes, modifies the circulating miRNA levels in

  10. Modelling the Effect of Large Submarine Sandslides on the Ocean Circulation

    Science.gov (United States)

    Mozzato, A.; Munday, D. R.; Johnson, H. L.; Talling, P. J.

    2016-02-01

    Submarine landslide can be orders of magnitude larger than terrestrial landslide, moving up to thousands of kilometers of sediment. Submarine landslides have been suggested to be able to play an important role in extreme climate events although at present no study has been focused on this aspect. The Storegga Slide is the biggest Holocene Slide mapped off the Norwegian Margin, with an estimated volume of 3000 km3. The slide failure is coincident with the last major cold event, the 8.2k cold event. The work presented is focused on the investigation of the connection between the Storegga Slide and the 8.2k cold event. The main focus is the study of the dense mud cloud generated after the release of the landslide. Studies have suggested that the generated mud cloud have had a concentration as high as 4% and a height of 800m. The hypothesis tested is if this dense mud cloud can interfere with the meridional overturning circulation at to which extent. For this study a regional Arctic coupled ocean-sea-ice model was set up using the MITgcm general circulation model. The mud cloud was simulated using salinity perturbation as a proxy for the increased density of the water column. Results indicate a strong response from the ocean currents to the perturbation. The dense water mass formed by the perturbation moves northward slowly infilling the Arctic and affecting the whole water column up to the top. The results so far exclude a direct effect of the Storegga Slide on the MOC via a perturbation of the dense water formation in the North Atlantic. However, given the response of the circulation to the perturbation the results suggest that the Storegga Slide could have played a role in the 8.2k cold event. Work is still needed to precisely assess the magnitude of the impact of the perturbation on the circulation and the dynamics of this effect.

  11. Potential feedback mechanism between phytoplankton and upper ocean circulation with oceanic radiative transfer processes influenced by phytoplankton - Numerical ocean, general circulation models and an analytical solution

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Kano, M.; PrasannaKumar, S.; Oberhuber, J.M.; Muneyama, K.; Ueyoshi, K.; Subrahmanyam, B.; Nakata, K.; Lai, C.A.; Frouin, R.

    and Dickey (1987) demonstrate that the at- tenuation of visible energy and photosynthetically available radiation (PAR) (Morel, 1978) are primarily functions of chlorophyll pigments. iturriaga and Potential Feedback Mechanism 257 Siegel (1989) reported... isoPYcnal coordinate (BPYC) general circulation model (Oberhuber, 1993), Nakamoto et al. (2001) showed that surface chlorophyll pigments in the equatorial Pacific not only influence vertical penetration of solar ra- diation, but also modify...

  12. Quantitative image cytometry measurements of lipids, DNA, CD45 and cytokeratin for circulating tumor cell identification in a model system

    Science.gov (United States)

    Futia, Gregory L.; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A.

    2016-04-01

    Circulating tumor cell (CTC) identification has applications in both early detection and monitoring of solid cancers. The rarity of CTCs, expected at ~1-50 CTCs per million nucleated blood cells (WBCs), requires identifying methods based on biomarkers with high sensitivity and specificity for accurate identification. Discovery of biomarkers with ever higher sensitivity and specificity to CTCs is always desirable to potentially find more CTCs in cancer patients thus increasing their clinical utility. Here, we investigate quantitative image cytometry measurements of lipids with the biomarker panel of DNA, Cytokeratin (CK), and CD45 commonly used to identify CTCs. We engineered a device for labeling suspended cell samples with fluorescent antibodies and dyes. We used it to prepare samples for 4 channel confocal laser scanning microscopy. The total data acquired at high resolution from one sample is ~ 1.3 GB. We developed software to perform the automated segmentation of these images into regions of interest (ROIs) containing individual cells. We quantified image features of total signal, spatial second moment, spatial frequency second moment, and their product for each ROI. We performed measurements on pure WBCs, cancer cell line MCF7 and mixed samples. Multivariable regressions and feature selection were used to determine combination features that are more sensitive and specific than any individual feature separately. We also demonstrate that computation of spatial characteristics provides higher sensitivity and specificity than intensity alone. Statistical models allowed quantification of the required sensitivity and specificity for detecting small levels of CTCs in a human blood sample.

  13. Numerical Modeling of Water Circulation and Pollutant Transport in a Shallow Basin

    Science.gov (United States)

    Charafi, My. M.; Sadok, A.; Kamal, A.; Menai, A.

    A two-dimensional numerical model was developed1-3 to simulate the sediment and pollutant transport in a shallow basin. The developed model consist of two modules: Hydrodynamic module and sediment/pollutant transport module. A numerical hydrodynamic module based on the Saint-Venant equations, is resolved by a MacCormack numerical scheme and is used to simulate the circulation pattern in the basin. The obtained flow circulation is used as an input to the sediment/pollutant transport module to simulate the transport and dispersion of a pollutant emitted into the basin. To calibrate the numerical model, the distorted scale model of the Windermere Basin4 was used. In this physical model, the flow visualization and pollutant transport experiments provide a good calibration. The simulated results were found to be in good agreement with the experimental measurements and the results in Ref. 4. With the aid of the validated model, the influence of the construction of dikes on the residence time distributions in the basin was examined.

  14. A new risk scoring model for prediction of poor coronary collateral circulation in acute non-ST-elevation myocardial infarction.

    Science.gov (United States)

    İleri, Mehmet; Güray, Ümit; Yetkin, Ertan; Gürsoy, Havva Tuğba; Bayır, Pınar Türker; Şahin, Deniz; Elalmış, Özgül Uçar; Büyükaşık, Yahya

    2016-01-01

    We aimed to investigate the clinical features associated with development of coronary collateral circulation (CCC) in patients with acute non-ST-elevation myocardial infarction (NSTEMI) and to develop a scoring model for predicting poor collateralization at hospital admission. The study enrolled 224 consecutive patients with NSTEMI admitted to our coronary care unit. Patients were divided into poor (grade 0 and 1) and good (grade 2 and 3) CCC groups. In logistic regression analysis, presence of diabetes mellitus, total white blood cell (WBC) and neutrophil counts and neutrophil to lymphocyte ratio (NLR) were found as independent positive predictors of poor CCC, whereas older age (≥ 70 years) emerged as a negative indicator. The final scoring model was based on 5 variables which were significant at p risk score ≤ 1, 29 had good CCC (with a 97% negative predictive value). On the other hand, 139 patients had risk score ≥ 4; out of whom, 130 (with a 93.5% positive predictive value) had poor collateralization. Sensitivity and specificity of the model in predicting poor collateralization in patients with scores ≤ 1 and ≥ 4 were 99.2% (130/131) and +76.3 (29/38), respectively. This study represents the first prediction model for degree of coronary collateralization in patients with acute NSTEMI.

  15. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study.

    Science.gov (United States)

    Huber, Vincent J; Igarashi, Hironaka; Ueki, Satoshi; Kwee, Ingrid L; Nakada, Tsutomu

    2018-03-20

    The blood-brain barrier (BBB), which imposes significant water permeability restriction, effectively isolates the brain from the systemic circulation. Seemingly paradoxical, the abundance of aquaporin-4 (AQP-4) on the inside of the BBB strongly indicates the presence of unique water dynamics essential for brain function. On the basis of the highly specific localization of AQP-4, namely, astrocyte end feet at the glia limitans externa and pericapillary Virchow-Robin space, we hypothesized that the AQP-4 system serves as an interstitial fluid circulator, moving interstitial fluid from the glia limitans externa to pericapillary Virchow-Robin space to ensure proper glymphatic flow draining into the cerebrospinal fluid. The hypothesis was tested directly using the AQP-4 facilitator TGN-073 developed in our laboratory, and [O]H2O JJ vicinal coupling proton exchange MRI, a method capable of tracing water molecules delivered into the blood circulation. The results unambiguously showed that facilitation of AQP-4 by TGN-073 increased turnover of interstitial fluid through the system, resulting in a significant reduction in [O]H2O contents of cortex with normal flux into the cerebrospinal fluid. The study further suggested that in addition to providing the necessary water for proper glymphatic flow, the AQP-4 system produces a water gradient within the interstitial space promoting circulation of interstitial fluid within the BBB.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  16. Thermospheric tides simulated by the national center for atmospheric research thermosphere-ionosphere general circulation model at equinox

    International Nuclear Information System (INIS)

    Fesen, C.G.; Roble, R.G.; Ridley, E.C.

    1993-01-01

    The authors use the National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM) to model tides and dynamics in the thermosphere. This model incorporates the latest advances in the thermosphere general circulation model. Model results emphasized the 70 degree W longitude region to overlap a series of incoherent radar scatter installations. Data and the model are available on data bases. The results of this theoretical modeling are compared with available data, and with prediction of more empirical models. In general there is broad agreement within the comparisons

  17. Assessing Low Frequency Climate Signals in Global Circulation Models using an Integrated Hydrologic Model

    Science.gov (United States)

    Niswonger, R. G.; Huntington, J. L.

    2010-12-01

    Climate signals with periodicities of approximately one decade are pervasive in long-term streamflow records for streams in the western United States that receive significant baseflow. The driver of these signals is unknown but hypotheses have been presented, such as variations in solar input to the Earth, or harmonics of internal (i.e., processes in the ocean and troposphere) forcings like the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO). Climate signals of about 1 decade are important for several reasons, including their relation to climate extremes (i.e., droughts and floods), and because the drivers of these climate signals are clearly important for projecting future climate conditions. Furthermore, identifying the drivers of these climate signals is important for separating the relative impacts of human production of greenhouse gases on global warming verses external drivers of climate change, such as sunspot cycles. Studies using Global Circulation Models (GCMs) that do not incorporate solar forcings associated with sun spots have identified oscillations of about a decade long in certain model output. However, these oscillations can be difficult to identify in simulated precipitation data due to high frequency variations (less than 1 year) that obscure low frequency (decade) signals. We have found that simulations using an integrated hydrologic model (IHM) called GSFLOW reproduce decade-long oscillations in streamflow when driven by measured precipitation records, and that these oscillations are also present in simulated streamflow when driven by temperature and precipitation data projected by GCMs. Because the IHM acts as a low-pass filter that reveals low frequency signals (i.e. decadal oscillations), they can be used to assess GCMs in terms of their ability to reproduce important low-frequency climate oscillations. We will present results from GSFLOW applied to three basins in the eastern Sierra Nevada driven by 100 years of

  18. Comparison of quantification algorithms for circulating cell-free DNA methylation biomarkers in blood plasma from cancer patients.

    Science.gov (United States)

    de Vos, Luka; Gevensleben, Heidrun; Schröck, Andreas; Franzen, Alina; Kristiansen, Glen; Bootz, Friedrich; Dietrich, Dimo

    2017-01-01

    SHOX2 and SEPT9 methylation in circulating cell-free DNA (ccfDNA) in blood are established powerful and clinically valuable biomarkers for diagnosis, staging, prognosis, and monitoring of cancer patients. The aim of the present study was to evaluate different quantification algorithms (relative quantification, absolute quantification, quasi-digital PCR) with regard to their clinical performance. Methylation analyses were performed in a training cohort (141 patients with head and neck squamous cell carcinoma [HNSCC], 170 control cases) and a testing cohort (137 HNSCC cases, 102 controls). DNA was extracted from plasma samples, bisulfite-converted, and analyzed via quantitative real-time PCR. SHOX2 and SEPT9 methylations were assessed separately and as panel [mean SEPT9 / SHOX2 ] using the ΔCT method for absolute quantification and the ΔΔCT-method for relative quantification. Quasi-digital PCR was defined as the number of amplification-positive PCR replicates. The diagnostic (sensitivity, specificity, area under the curve (AUC) of the receiver operating characteristic (ROC)) and prognostic accuracy (hazard ratio (HR) from Cox regression) were evaluated. Sporadic methylation in control samples necessitated the introduction of cutoffs resulting in 61-63% sensitivity/90-92% specificity ( SEPT9 /training), 53-57% sensitivity/87-90% specificity ( SHOX2 /training), and 64-65% sensitivity/90-91% specificity (mean SEPT9 / SHOX2 /training). Results were confirmed in a testing cohort with 54-56% sensitivity/88-90% specificity ( SEPT9 /testing), 43-48% sensitivity/93-95% specificity ( SHOX2 /testing), and 49-58% sensitivity/88-94% specificity (mean SEPT9 / SHOX2 /testing). All algorithms showed comparable cutoff-independent diagnostic accuracy with largely overlapping 95% confidence intervals ( SEPT9 : AUC training  = 0.79-0.80; AUC testing  = 0.74-0.75; SHOX2 : AUC training  = 0.78-0.81, AUC testing  = 0.77-0.79; mean SEPT9 / SHOX2 : AUC training  = 0

  19. Experimental studies in the bronchial circulation. Which is the ideal animal model?

    Science.gov (United States)

    Panagiotou, Ioannis; Tsipas, Panteleimon; Melachrinou, Maria; Alexopoulos, Dimitrios; Dougenis, Dimitrios

    2014-01-01

    Background The importance of the role of bronchial arteries is notable in modern days thoracic surgery. The significance of their anastomoses with adjusted structures has not yet been sufficiently rated, especially in cases of haemoptysis, heart-lung transplantations and treatment of aneurysms of the thoracic aorta. The need of a thorough study is more relevant than ever and appropriate laboratory animals are required. Methods We review the literature in order to highlight the ideal experimental animal for the implementation of pilot programs relative to the bronchial circulation. A comparative analysis of the anatomy of the bronchial arterial system in humans along with these of pigs, dogs, rats, and birds, as being the most commonly used laboratory animals, is presented in details. Results The pig has the advantage that the broncho-oesophageal artery usually originates from the aorta as a single vessel, which makes the recognition and dissection of the artery easy to perform. In dogs, there is significant anatomical variation of the origin of the bronchial arteries. In rats, bronchial artery coming from the aorta is a rare event while in birds the pattern of the bronchial artery tree is clearly different from the human analog. Conclusions The pig is anatomically and physiologically suited for experimental studies on the bronchial circulation. The suitable bronchial anatomy and physiology along with the undeniable usefulness of the pig in experimental research and the low maintenance cost make the pig the ideal model for experiments in bronchial circulation. PMID:25364530

  20. A coupled model study on the Atlantic Meridional Overturning Circulation under extreme atmospheric CO2 conditions

    Directory of Open Access Journals (Sweden)

    Rita Lecci

    2016-05-01

    Full Text Available This study investigates the climate sensitivity to a strong CO2 atmospheric forcing focusing on the North Atlantic Ocean (NA. The analysis is based on a set of 600 years long experiments performed with a state-of-the-art coupled general circulation model (CGCM with the 1990 reference value of atmospheric CO2 multiplied by 4, 8 and 16. Extreme increases in atmospheric CO2 concentration have been applied to force the climate system towards stable states with different thermo-dynamical properties and analyze how the different resulting oceanic stratification and diffusion affect the Atlantic Meridional Overturning Circulation (AMOC. The AMOC weakens in response to the induced warming with distinctive features in the extreme case: a southward shift of convective sites and the formation of a density front at mid-latitudes. The analysis of the density fluxes reveals that NA loses density at high latitudes and gains it southward of 40°N mainly due to the haline contribution. Our results indicate that the most important processes that control the AMOC are active in the high latitudes and are related to the stability of the water column. The increased ocean stratification stabilizes the ocean interior leading to a decreased vertical diffusivity, a reduction in the formation of deep water and a weaker circulation. In particular, the deep convection collapses mainly in the Labrador Sea as a consequence of the water column stratification under high latitudes freshening.

  1. Results from a 2 x CO2 simulation with the Canadian Climate Centre general circulation model

    International Nuclear Information System (INIS)

    Boer, G.J.

    1990-01-01

    The Canadian Climate Centre's general circulation model (GCM), GCMII, was used to simulate a doubling of atmospheric carbon dioxide concentration. The experiment was a standard greenhouse gas climate change study, using a three-dimensional atmospheric circulation model coupled to a simple 'slab' ocean and a thermodynamic ice model. This standard experiment retains the sophistication and generality of an atmospheric GCM, is straightforward in its use of simplified ocean and ice models, is comparatively economical of computer time, and permits comparison of results from different models. Features of the second generation GCMII include: higher resolution at T32L10 with a transform grid of 3.75 x 3.75 degree; full diurnal and annual cycles; ocean and sea ice treatment involving specification of ocean transports; modified treatment of land surface processes and hydrology; a parameterization of cloud optical feedback; and a retention of the special application data sets of surface parameters for North America and Europe. Results of the simulation were a globally averaged surface temperature increase of 3.5 degree C; a precipitation and evaporation increase of 3%; an average decrease in soil moisture of 6.6%; a decrease in cloud cover of 2.2%; a 66% decrease in mass of sea ice; and marked changes in other quantities in the polar region. 2 refs., 2 figs., 2 tabs

  2. Radioisotopic perfusional assessment of blood circulation changes in skin under progressive expansion: experimental model with rabbits Avaliação da perfusão radio-isotópica das mudanças da circulação sanguínea na pele submetida à expansão progressiva: modelo experimental em coelhos

    Directory of Open Access Journals (Sweden)

    Edith Kawano Horibe

    2004-12-01

    Full Text Available The purpose of this experimental model with rabbits is investigating the variation of blood flow in the expanded skin versus expansion time. New Zealand breed rabbits are used. Two groups are studied: F-1 receiving expanders on the right tight and F-2 receiving expanders bilateraly. Progressively, five expansions are performed. The first radioiosotopic perfusional evaluation is performed just after the surgery and the following evaluation are performed at the second, sixth, thirteenth, twentieth and twenty-seventh post-surgical days. As radiotracer, technetium 99m are used in the chemical form of sodium pertechnetate. Scintillographic images are obtained by CGR scintillation camera. The quantitative analysis is done by calculation of the reperfusion rate.Este modelo experimental em coelhos tem como proposição investigar a variação do fluxo sanguíneo na pele expandida em relação ao tempo de expansão. Utilizam-se coelhos da raça Nova Zelândia. Estudam-se dois grupos: F-1 que recebe expansor na coxa direita e F-2 que recebe expansores bilateralmente. São feitas progressivamente cinco expansões. Realiza-se a primeira avaliação perfusional radioisotópica logo após o ato operatório e as seguintes no segundo, sexto, décimo-terceiro, vigésimo e vigésimo-sétimo dia pós-operatórios. Utiliza-se como radiotraçador o tecnécio 99m na forma química de pertecnetato de sódio. Obtêm-se as imagens cintilográficas em câmara de cintilação CGR. Faz-se a análise quantitativa pelo cálculo do Índice de reperfusão.

  3. Dynamics and thermodynamics of the Indian Ocean warm pool in a high-resolution global general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Ishida, A.; Yoneyama, K.; RameshKumar, M.R.; Kashino, Y.; Mitsudera, H.

    The time evolution of the Indian Ocean warm pool, studied using a global high-resolution general circulation model, shows strong seasonality. The warm pool has the largest spatial extent during April-May, and least in December. The spatio...

  4. The association of two polymorphisms in adiponectin-encoding gene with hypertension risk and the changes of circulating adiponectin and blood pressure: A meta-analysis.

    Science.gov (United States)

    Wu, Jianmin; Xu, Guoyan; Cai, Wenqin; Huang, Yun; Xie, Ningyu; Shen, Yihua; Xie, Liangdi

    2017-02-28

    This meta-analysis was prepared to synthesize published data on the association of two polymorphisms (T45G and G276T) in adiponectin-encoding gene (ADIPOQ) with hypertension risk and the changes of circulating adiponectin and blood pressure. Methodology and Major Findings: Data were collected and corrected by two authors, and were managed with Stata software. In total, 12 articles were synthesized, including 12 studies (3358 cases and 5121 controls) for the association of two study polymorphisms with hypertension risk and 11 studies (3053 subjects) for the between-genotype changes of adiponectin and/or blood pressure. Based on all qualified studies, the risk prediction for hypertension was nonsignificant for both polymorphisms, with significant heterogeneity for G276T polymorphism (I2 = 53.8%). Overall changes in adiponectin and blood pressure were also nonsignificant for T45G, while contrastingly 276GT genotype was associated with significantly higher levels of adiponectin (weighted mean difference [WMD] = 0.72 μg/mL, 95% confidence interval [CI]: 0.04 to 1.41, P = 0.038), systolic (WMD = 5.15 mm Hg, 95% CI: 0.98 to 9.32, P = 0.016) and diastolic (WMD = 3.45 mm Hg, 95% CI: 0.37 to 6.53, P = 0.028) blood pressure with evident heterogeneity (I2 = 72.0%, 78.3% and 80.0%, respectively), and these associations were more obvious in hypertensive patients. Publication bias was a low probability event for overall comparisons. Our findings suggested that in spite of the nonsignificant association between ADIPOQ T45G or G276T polymorphism and hypertension, the heterozygous mutation of G276T was observed to account for increased levels of circulating adiponectin and blood pressure, especially in hypertensive patients.

  5. Data-driven interdisciplinary mathematical modelling quantitatively unveils competition dynamics of co-circulating influenza strains.

    Science.gov (United States)

    Ho, Bin-Shenq; Chao, Kun-Mao

    2017-07-28

    Co-circulation of influenza strains is common to seasonal epidemics and pandemic emergence. Competition was considered involved in the vicissitudes of co-circulating influenza strains but never quantitatively studied at the human population level. The main purpose of the study was to explore the competition dynamics of co-circulating influenza strains in a quantitative way. We constructed a heterogeneous dynamic transmission model and ran the model to fit the weekly A/H1N1 influenza virus isolation rate through an influenza season. The construction process started on the 2007-2008 single-clade influenza season and, with the contribution from the clade-based A/H1N1 epidemiological curves, advanced to the 2008-2009 two-clade influenza season. Pearson method was used to estimate the correlation coefficient between the simulated epidemic curve and the observed weekly A/H1N1 influenza virus isolation rate curve. The model found the potentially best-fit simulation with correlation coefficient up to 96% and all the successful simulations converging to the best-fit. The annual effective reproductive number of each co-circulating influenza strain was estimated. We found that, during the 2008-2009 influenza season, the annual effective reproductive number of the succeeding A/H1N1 clade 2B-2, carrying H275Y mutation in the neuraminidase, was estimated around 1.65. As to the preceding A/H1N1 clade 2C-2, the annual effective reproductive number would originally be equivalent to 1.65 but finally took on around 0.75 after the emergence of clade 2B-2. The model reported that clade 2B-2 outcompeted for the 2008-2009 influenza season mainly because clade 2C-2 suffered from a reduction of transmission fitness of around 71% on encountering the former. We conclude that interdisciplinary data-driven mathematical modelling could bring to light the transmission dynamics of the A/H1N1 H275Y strains during the 2007-2009 influenza seasons worldwide and may inspire us to tackle the

  6. Improved stratospheric atmosphere forecasts in the general circulation model through a methane oxidation parametrization

    Science.gov (United States)

    Wang, S.; Jun, Z.

    2017-12-01

    Climatic characteristics of tropical stratospheric methane have been well researched using various satellite data, and numerical simulations have furtherly conducted using chemical climatic models, while the impact of stratospheric methane oxidation on distribution of water vapor is not paid enough attention in general circulation models. Simulated values of water vapour in the tropical upper stratosphere, and throughout much of the extratropical stratosphere, were too low. Something must be done to remedy this deficiency in order to producing realistic stratospheric water vapor using a general circulation model including the whole stratosphere. Introduction of a simple parametrization of the upper-stratospheric moisture source due to methane oxidation and a sink due to photolysis in the mesosphere was conducted. Numerical simulations and analysis of the influence of stratospheric methane on the prediction of tropical stratospheric moisture and temperature fields were carried out. This study presents the advantages of methane oxidation parametrization in producing a realistic distribution of water vapour in the tropical stratosphere and analyzes the impact of methane chemical process on the general circulation model using two storm cases including a heavy rain in South China and a typhoon caused tropical storm.It is obvious that general circulation model with methane oxidation parametrization succeeds in simulating the water vapor and temperature in stratosphere. The simulating rain center value of contrast experiment is increased up to 10% than that of the control experiment. Introduction of methane oxidation parametrization has modified the distribution of water vapour and then producing a broadly realistic distribution of temperature. Objective weather forecast verifications have been performed using simulating results of one month, which demonstrate somewhat positive effects on the model skill. There is a certain extent impact of methane oxidation

  7. A model study of present-day Hall-effect circulators

    Energy Technology Data Exchange (ETDEWEB)

    Placke, B. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Bosco, S. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); DiVincenzo, D.P. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); Peter Gruenberg Institute, Theoretical Nanoelectronics, Forschungszentrum Juelich, Juelich (Germany)

    2017-12-15

    Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ{sub H} = tan{sup -1} σ{sub xy}/σ{sub xx} always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ{sub H} = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)

  8. Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies

    Directory of Open Access Journals (Sweden)

    K. Grosfeld

    2007-01-01

    Full Text Available We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960. Two atmospheric general circulation models of different complexity forced with global SST over the last century show SLP anomaly patterns from the warm and cold phases of the North Atlantic similar to the corresponding observed patterns. The analysis of a sediment core from Cariaco Basin, a coral record from the northern Red Sea, and a long-term sea level pressure (SLP reconstruction reveals that the multidecadal mode of the atmospheric circulation characterizes climate variability also in the pre-industrial era. The analyses of SLP reconstruction and proxy data depict a persistent atmospheric mode at least over the last 300 years, where SLP shows a dipolar structure in response to monopolar North Atlantic SST, in a similar way as the models' responses do. The combined analysis of observational and proxy data with model experiments provides an understanding of multidecadal climate modes during the late Holocene. The related patterns are useful for the interpretation of proxy data in the North Atlantic realm.

  9. Circulation and microplastic dispersion in the Chiemsee (Germany) investigated with numerical modeling.

    Science.gov (United States)

    Marcello Falcieri, Francesco; Laforsch, Christian; Piehl, Sarah; Ricchi, Antonio; Atwood, Elizabeth C.; Carniel, Sandro; Sclavo, Mauro

    2017-04-01

    The Chiemsee (measuring about 80 km2 and a maximum depth of 73 m) is a NATURA 2000 site and one of the major German lakes and plays a significant environmental role for the region. Moreover it is an important touristic destination, making its beaches and water quality highly valuable from a socio-economical viewpoint. As for most inland European aquatic environments, the Chiemsee was recently found to be contaminated by microplastic (i.e. plastic fragments smaller than 0.5 mm). Two main microplastics sources were identified in the Chiemsee: riverine inputs, and degradation of litter from touristic beaches. Hence, it is of interest to study lake circulation and the resulting microplastic dispersion from these sources in order to support activities to achieve a good environmental status. Here we present the first attempt to characterize the hydrodynamic processes of the Chiemsee with a high resolution 3D implementation of the Regional Ocean Modeling System (ROMS). The simulations were forced with observed riverine inputs and modeled atmospherical fields computed with a local implementation of the Weather Research and Forecasting (WRF) model. Modeling results provide a first insight into the Chiemsee circulation system and contribute to understanding the dispersion pathways of microplastic particles from different sources. Furthermore, results can be used to highlight coastlines with higher risk of microplastic accumulation, identified using a set of Lagrangian simulations. The work was partially supported by the CNR Short Term Mobility grant.

  10. Coupling of river flow and inundation analysis in a distributed water circulation model

    Science.gov (United States)

    Yoshida, T.; Masumoto, T.; Horikawa, N.

    2011-12-01

    The increasing recognition of the importance of inundation hazards has stimulated recent progress in distributed hydrological models in analyzing flood inundation with basin-scale hydrological cycles. One of the major handicaps facing inundation analysis, however, is the lack of precise topographical and river course data to describe inundated areas especially in low-lying areas in developing countries. On the other hand, high-resolution raster Digital Elevation Models, which are becoming available on a global scale, provide practical information on detailed topographical features in grid-cells of distributed hydrological models. In this study, we developed a model of inundation process integrated with a basin-scale distributed hydrological model that incorporates a sub-model of cropping area and agricultural water use analysis. First, we configured a distributed water circulation model. The model was based on grid-cells of approximately 2 km, each of which consisted of 3 soil layers for runoff calculation. The surface flow model consists of a one-dimensional kinematic wave approximation of channel flow and a simple representation of inundated area. In addition to calculation of river discharges, the model explicitly represents water cycles in paddy areas, which enables us to assess cropping situation in the basin. The procedure applied to assess the flood hazard uses simple model that assumes the inundated area is a reservoir, in which water levels for the inundation in the surrounding areas are equivalent. Because the inundated area is almost flat, no active flood movement is assumed in the inundated area. The inundated volume is calculated with a continuous equation with H-V relations in the area, in which excess rate of surface flow above the maximum capacity of conveyance of rivers is input by utilization the distributed water circulation model. To apply this inundation model, we used ASTER GDEM. We applied the model to the Xebanfai River in the Laos PDR

  11. Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections

    Science.gov (United States)

    Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.

    2012-01-01

    Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with

  12. Orographic effects on tropical climate in a coupled ocean-atmosphere general circulation model

    Science.gov (United States)

    Okajima, Hideki

    Large-scale mountain modifies the atmospheric circulation directly through dynamic and thermodynamic process, and also indirectly through the interaction with the ocean. To investigate orographic impacts on tropical climate, a fully coupled general circulation model (CGCM) is developed by coupling a state-of-the-art atmospheric general circulation model and an ocean general circulation model. With realistic boundary conditions, the CGCM produces a reasonable climatology of sea surface temperature (SST), surface winds, and precipitation. When global mountains are removed, the model climatology displays substantial changes in both the mean-state and the seasonal cycle. The equatorial eastern Pacific SST acquires a semi-annual component as inter-tropical convergence zone (ITCZ) flips and flops across the equator following the seasonal migration of the sun. Without the Andes, wet air flows into the southeastern tropical Pacific from the humid Amazon, which weakens the meridional asymmetry during the Peruvian warm season (February-April). In addition, the northeasterly trade winds are enhanced north of the equator without the orographic blocking of Central American mountains and cools SST. Triggered by the SST cooling north and moistening south of the equator, the wind-evaporation-SST (WES) feedback further weakens the meridional asymmetry and prolongs the southern ITCZ. In the Atlantic Ocean, the equatorial cold tongue is substantially strengthened and develops a pronounced annual cycle in the absence of mountains. The easterly winds are overall enhanced over the equatorial Atlantic without orographic heating over the African highlands, developing a zonal asymmetry strengthened by the Bjerknes feedback. In the Indian Ocean, the thermocline shoals eastward and an equatorial cold tongue appears twice a year. During boreal summer, the Findlater jet is greatly weakened off Somalia and SST warms in the western Indian Ocean, forcing the equatorial easterly winds amplified

  13. Projected evolution of circulation types and their temperatures over Central Europe in climate models

    Czech Academy of Sciences Publication Activity Database

    Plavcová, Eva; Kyselý, Jan

    2013-01-01

    Roč. 114, 3-4 (2013), s. 625-634 ISSN 0177-798X R&D Project s: GA ČR GAP209/10/2265 Grant - others:ENSEMBLES: EU-FP6(XE) 505539 Program:FP6 Institutional support: RVO:68378289 Keywords : Regional climate models * Atmospheric circulation * Climate change scenarios * Surface air temperature * ENSEMBLES * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.742, year: 2013 http://link.springer.com/article/10.1007%2Fs00704-013-0874-4#page-1

  14. From global circulation to flood loss: Coupling models across the scales

    Science.gov (United States)

    Felder, Guido; Gomez-Navarro, Juan Jose; Bozhinova, Denica; Zischg, Andreas; Raible, Christoph C.; Ole, Roessler; Martius, Olivia; Weingartner, Rolf

    2017-04-01

    The prediction and the prevention of flood losses requires an extensive understanding of underlying meteorological, hydrological, hydraulic and damage processes. Coupled models help to improve the understanding of such underlying processes and therefore contribute the understanding of flood risk. Using such a modelling approach to determine potentially flood-affected areas and damages requires a complex coupling between several models operating at different spatial and temporal scales. Although the isolated parts of the single modelling components are well established and commonly used in the literature, a full coupling including a mesoscale meteorological model driven by a global circulation one, a hydrologic model, a hydrodynamic model and a flood impact and loss model has not been reported so far. In the present study, we tackle the application of such a coupled model chain in terms of computational resources, scale effects, and model performance. From a technical point of view, results show the general applicability of such a coupled model, as well as good model performance. From a practical point of view, such an approach enables the prediction of flood-induced damages, although some future challenges have been identified.

  15. Effects of wave-induced forcing on a circulation model of the North Sea

    Science.gov (United States)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-01-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.

  16. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  17. Integrated cumulus ensemble and turbulence (ICET): An integrated parameterization system for general circulation models (GCMs)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.L.; Frank, W.M.; Young, G.S. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.

  18. Application of a circulation model in waters, based in the difference method, for bays

    International Nuclear Information System (INIS)

    Rosa, P.A.C.

    1985-01-01

    The Knowledge of circulation of water in bays, in addition to the possibility of simulation future conditions, can be of great interest in solving problems related to the cooling water for Nuclear Power Plants, study of sediments and water polution, in addition to the study of civil engineering works planned in bays. A Numerical Circulation Model of water in bays, is applied to the conditions of Sepetiba Bay at Rio de Janeiro coast. This System of Partial Differential Equations that constitute the Model, were solved by the Finite Difference Method, using a uniform cartesian grid for uniform time steps generating a bi-dimensional flow measurement of depth. The results obtained by comparing the values of the Model and measurements taken a bay were satisfactory, assuring its credibility and efficiency. A programming code was developed for the application providing outputing at any preditermined time steps, with discrimination of 30 seconds, the average levels, flows, velocities and depths of water of each grid spacing along the length of the bay in addition to a graphic of the flow. (Author) [pt

  19. Hydrogeological flow in gypsum karst areas: some examples from northern Italy and main circulation models

    Directory of Open Access Journals (Sweden)

    Bartolomeo Vigna

    2017-06-01

    Full Text Available A Messinian succession containing gypsum beds crops out in northern Italy, mainly in Piedmont and along the northern flank of the Apennine mountains in Emilia-Romagna. These gypsum bodies have been extensively quarried at the surface, in outcrops, and through underground quarries. In Emilia-Romagna these gypsum outcrops can be rather extensive, several km long and up to 1 km wide, while in Piedmont they are mostly covered by silty-marly deposits of Upper Messinian and Pliocene age and show only sparse and small outcrops. The underground quarrying of these evaporite bodies in Piedmont has allowed studying in detail their hydrogeology, and the ways in which water flows through these karst rocks. In contrast, in Emilia-Romagna the hydrogeology of these aquifers has been studied with traditional spring water monitoring and speleological methods. On the basis of the results it has been possible to define three conceptual models regarding the water circulation in these evaporites, similar to the models existing for carbonate aquifers. The models represent aquifers with decreasing vulnerability to pollution, from the more vulnerable system with dominant conduit drainage, characterizing most of the known gypsum aquifers, to those with interconnected conduit drainage and with dispersive circulation.

  20. Biochemical assessment of growth factors and circulation of blood components contained in the different fractions obtained by centrifugation of venous blood.

    Science.gov (United States)

    Corigiano, M; Ciobanu, G; Baldoni, E; Pompa, G

    2014-01-01

    The aim of this study was to evaluate a biochemical marker with different elements of a normal blood serum and centrifuged blood serum after a different rotation system. For this technique, we used five fractions of a blood Concentrated Growth Factors system (bCGF) and a particular device for the different rotation program. Blood samples were collected from 10 volunteers aged between 35 and 55 in the Operative Unit of the “Sapienza” University of Rome with only a fraction of different biochemical elements. Through an individual blood phase separator tube of venous blood, active factions of serum and 4 fractions of red buffy coat were taken. The biochemical markers with 14 elements were examined at times: P1-11 minutes, P2-12minutes, P3-15 minutes. Exclusively biological materials which are normally applied in the regeneration techniques for different defects and lesions were used with this technique. After specific rotation programs, a different result was obtained for each cycle: P1, P2, P3. In test tubes obtained by separated blood, we observed a higher concentration of proteins, ions, and other antigens compared to normal blood plasma. Examining the biochemical results of different elements, we observed an increase (P≤0,01). Since each person’s DNA is different, we could not have the same results in 5 fractions of blood concentration, we did, however, find a good increase in only a fraction of proteins, immunoglobulin and different ions. We obtained five fractions after centrifugation, and we had an increase in different biochemical elements compared to normal blood (P≤0,01) which is significant at different times. These biochemical elements were stimulated by different growth factors, which are used by the immune system, and they induced the formation of hard and soft tissues and good regeneration.

  1. Distensibility and pressure-flow relationship of the pulmonary circulation. I. Single-vessel model.

    Science.gov (United States)

    Bshouty, Z; Younes, M

    1990-04-01

    To ascertain the relative contributions of vascular distensibility and nonhomogeneous behavior within the pulmonary circulation to the distinctive nonlinear relationship between inflow pressure (Pin) and flow [pressure-flow (P-F) relationship] and between Pin and outflow pressure (Pout) at constant flow (Pin-Pout relationship), we developed a multibranched model in which the elastic behavior of, and forces acting on, individual branches can be varied independently. The response of the multibranched model is described in the companion article (J. Appl. Physiol. 68: 1514-1527, 1990). Here we describe the methods used and the responses of single components of the larger model. Perivascular pressure is modeled as a function of intravascular and transpulmonary pressures (Pv and Ptp, respectively) and vessel length as a function of lung volume. These and the relationship between vascular area (A) and transmural pressure (Ptm) were modeled primarily from the dog data of Smith and Mitzner (J. Appl. Physiol. 48: 450-467, 1980). Vasomotor tone is modeled as a radial collapsing pressure (Pt) in the same plane as Ptm. In view of lack of information about the relationship between Pt and A for a given active state, different patterns were assumed that span a wide range of possible relationships. The P-F and Pin-Pout relationships of single vessels were very similar to those reported for the entire intact circulation. Of note, the slope of the Pin-Pout relationship in the low Pout range (0-5 Torr) was very low (less than 0.25) and increased gradually with Pout toward unity. Vasomotor tone caused an apparent parallel shift in the P-F relationship in the physiological flow range of the dog (2-8 l/min) regardless of the pattern used to model the Pt vs. A relationship; different patterns affected the P-F relationship only over the low flow range before the parallel shift was established.

  2. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    Science.gov (United States)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  3. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  4. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations

    Directory of Open Access Journals (Sweden)

    S. L. Weber

    2007-01-01

    Full Text Available This study analyses the response of the Atlantic meridional overturning circulation (AMOC to LGM forcings and boundary conditions in nine PMIP coupled model simulations, including both GCMs and Earth system Models of Intermediate Complexity. Model results differ widely. The AMOC slows down considerably (by 20–40% during the LGM as compared to the modern climate in four models, there is a slight reduction in one model and four models show a substantial increase in AMOC strength (by 10–40%. It is found that a major controlling factor for the AMOC response is the density contrast between Antarctic Bottom Water (AABW and North Atlantic Deep Water (NADW at their source regions. Changes in the density contrast are determined by the opposing effects of changes in temperature and salinity, with more saline AABW as compared to NADW consistently found in all models and less cooling of AABW in all models but one. In only two models is the AMOC response during the LGM directly related to the response in net evaporation over the Atlantic basin. Most models show large changes in the ocean freshwater transports into the basin, but this does not seem to affect the AMOC response. Finally, there is some dependence on the accuracy of the control state.

  5. Interpretation of Snow-Climate Feedback as Produced by 17 General Circulation Models

    Science.gov (United States)

    Cess, R. D.; Potter, G. L.; Zhang, M.-H.; Blanchet, J.-P.; Chalita, S.; Colman, R.; Dazlich, D. A.; del Genio, A. D.; Dymnikov, V.; Galin, V.; Jerrett, D.; Keup, E.; Lacis, A. A.; Le Treut, H.; Liang, X.-Z.; Mahfouf, J.-F.; McAvaney, B. J.; Meleshko, V. P.; Mitchell, J. F. B.; Morcrette, J.-J.; Norris, P. M.; Randall, D. A.; Rikus, L.; Roeckner, E.; Royer, J.-F.; Schlese, U.; Sheinin, D. A.; Slingo, J. M.; Sokolov, A. P.; Taylor, K. E.; Washington, W. M.; Wetherald, R. T.; Yagai, I.

    1991-08-01

    Snow feedback is expected to amplify global warming caused by increasing concentrations of atmospheric greenhouse gases. The conventional explanation is that a warmer Earth will have less snow cover, resulting in a darker planet that absorbs more solar radiation. An intercomparison of 17 general circulation models, for which perturbations of sea surface temperature were used as a surrogate climate change, suggests that this explanation is overly simplistic. The results instead indicate that additional amplification or moderation may be caused both by cloud interactions and longwave radiation. One measure of this net effect of snow feedback was found to differ markedly among the 17 climate models, ranging from weak negative feedback in some models to strong positive feedback in others.

  6. Scales of Langmuir circulation generated using a large-eddy simulation model

    International Nuclear Information System (INIS)

    Skyllingstad, Eric D.

    2001-01-01

    Sensitivity experiments were performed using a large-eddy simulation (LES) turbulence model of the ocean surface boundary layer. Parameters defining wind and wave forcing were varied to help understand how different forcing affects the formation and dispersive qualities of Langmuir circulation (LC). Comparison of the model with observed surface velocity variance shows a consistent linear increase in velocity scale with increasing wave Stokes drift, however, the model systematically under predicts the velocity scale for large Stokes drift. Results using particle trajectories show that in open-ocean conditions, wave forcing dominates the structure of near surface turbulence causing organized LC cells that actively collect surface material. With weak waves, surface particles display a more random pattern in comparison to strong wave cases. Analysis of the turbulence kinetic energy budget shows that the reduction in wave forcing is offset by shear production, which produces less organized patterns in surface material in comparison to LC. (Author)

  7. Simulation of the global ocean thermohaline circulation with an eddy-resolving INMIO model configuration

    Science.gov (United States)

    Ushakov, K. V.; Ibrayev, R. A.

    2017-11-01

    In this paper, the first results of a simulation of the mean World Ocean thermohaline characteristics obtained by the INMIO ocean general circulation model configured with 0.1 degree resolution in a 5-year long numerical experiment following the CORE-II protocol are presented. The horizontal and zonal mean distributions of the solution bias against the WOA09 data are analyzed. The seasonal cycle of heat content at a specified site of the North Atlantic is also discussed. The simulation results demonstrate a clear improvement in the quality of representation of the upper ocean compared to the results of experiments with 0.5 and 0.25 degree model configurations. Some remaining biases of the model solution and possible ways of their overcoming are highlighted.

  8. Fingermarks in blood: Mechanical models and the color of ridges.

    Science.gov (United States)

    Geller, Boris; Leifer, Amihud; Attias, David; Mark, Yanku

    2018-03-14

    This article treats fingermarks in blood on non-porous surfaces and addresses the question of "which came first": the fingermark or the blood. Three mechanical models were systematically examined: (1) A blood-contaminated finger pressed against a clean surface; (2) blood contaminates a latent print that had been placed on a clean surface; (3) A clean finger pressed against a blood-contaminated surface. The questions of reliability and limits of all three models were discussed. The relevancy of the approach to "which came first", based solely on the color of ridges was questioned. The first mechanical model most simulated a real situation, when previously cleaned, a blood contaminated finger touched a clean Formica or glass surface with pressure of 100-500g. Concerning the second model, it was observed that in the case of a greasy latent print, placed on an inclined surface and contaminated with appropriate amount of blood, the color of ridges were normally darker than the color of its valleys. As for the third model, it was concluded that it works only in about 25% of cases. While investigating this model, two phenomena were observed: ridge color inversion and valley color inversion. In conclusion the color of ridges can not be the only and ultimate indicator to the question of "which came first", the fingermark or the blood stain. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Surface Lander Missions to Mars: Support via Analysis of the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.

    1997-01-01

    We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this

  10. Comparison of blood biochemics between acute myocardial infarction models with blood stasis and simple acute myocardial infarction models in rats

    International Nuclear Information System (INIS)

    Qu Shaochun; Yu Xiaofeng; Wang Jia; Zhou Jinying; Xie Haolin; Sui Dayun

    2010-01-01

    Objective: To construct the acute myocardial infarction models in rats with blood stasis and study the difference on blood biochemics between the acute myocardial infarction models with blood stasis and the simple acute myocardial infarction models. Methods: Wistar rats were randomly divided into control group, acute blood stasis model group, acute myocardial infarction sham operation group, acute myocardial infarction model group and of acute myocardial infarction model with blood stasis group. The acute myocardial infarction models under the status of the acute blood stasis in rats were set up. The serum malondialdehyde (MDA), nitric oxide (NO), free fatty acid (FFA), tumor necrosis factor-α (TNF-α) levels were detected, the activities of serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and the levels of prostacycline (PGI2), thromboxane A 2 (TXA 2 ) and endothelin (ET) in plasma were determined. Results: There were not obvious differences in MDA, SOD, GSH-Px and FFA between the acute myocardial infarction models with blood stasis in rats and the simple acute myocardial infarction models (P 2 and NO, and the increase extents of TXA 2 , ET and TNF-α in the acute myocardial infarction models in rats with blood stasis were higher than those in the simple acute myocardial infarction models (P 2 and NO, are significant when the acute myocardial infarction models in rats with blood stasis and the simple acute myocardial infarction models are compared. The results show that it is defective to evaluate pharmacodynamics of traditional Chinese drug with only simple acute myocardial infarction models. (authors)

  11. Modeling Blood Flow in the Aorta.

    Science.gov (United States)

    McConnell, Colin J.; Carmichael, Jonathan B.; DeMont, M. Edwin

    1997-01-01

    Presents an exercise to demonstrate two fundamental concepts of fluid mechanics: the Reynolds number and the Principle of Continuity. The exercise demonstrates flow in a major blood vessel, such as the aorta, with and without a stenosis. Students observe the transition from laminar to turbulent flow as well as downstream persistence of turbulence.…

  12. Circulation controls on southern African precipitation in coupled models: The role of the Angola Low

    Science.gov (United States)

    Munday, Callum; Washington, Richard

    2017-01-01

    In southern Africa, models from the latest Coupled Model Intercomparison Project produce a wide variety of rainfall climatologies. Differences between models in rainfall amount reach 70% in the rainy season (December-February; DJF), and the median model overestimates rainfall by between 15 and 40% throughout the annual cycle. This paper investigates the role of an understudied regional circulation feature, the Angola Low, in differentiating between model estimates of precipitation. In austral spring, the Angola Low is a heat low, driven by strong surface heating whereas in DJF it is more similar to a tropical low and is associated with moist instability. In the austral summer, we find that the simulated strength of the Angola Low is associated with between 40 and 60% of the intermodel variability in model mean rainfall across the subcontinent. The relationship is particularly strong along a northwest, southeast axis aligned from Angola down to the Mozambican Channel. Along this axis, models with stronger Angola Lows simulate enhanced, by up to 50 g kg-1 ms-1, northeasterly and northwesterly moisture transport. The enhanced southward moisture flux in models with relatively deep Angola Lows increases the rate of moisture convergence in central areas of the subcontinent and reduces moisture divergence across the Mozambican coast. The results highlight the need to better understand the links between the Angola Low and southern African rainfall and suggest that improving the simulation of the Angola Low can help to constrain model estimates of southern African rainfall.

  13. Impulse-response function of splanchnic circulation with model-independent constraints: theory and experimental validation

    DEFF Research Database (Denmark)

    Munk, O L; Keiding, S; Bass, L

    2003-01-01

    Modeling physiological processes using tracer kinetic methods requires knowledge of the time course of the tracer concentration in blood supplying the organ. For liver studies, however, inaccessibility of the portal vein makes direct measurement of the hepatic dual-input function impossible in hu...

  14. Concordance of mutation detection in circulating tumor DNA in early clinical trials using different blood collection protocols

    DEFF Research Database (Denmark)

    Ahlborn, Lise B.; Madsen, Mette; Jonson, Lars

    2017-01-01

    in a clinical setting. Here we investigate the concordance between standard blood collection for molecular analysis using immediate separation of plasma, compared to the use of collection tubes allowing for delayed processing. Methods: In this study, we measured the fractional abundance of tumor specific...... patients with advanced solid cancers enrolled in early clinical trials. Results: Concordance in the fractional abundance of mutations in ctDNA isolated from blood collected in either K3EDTA or BCT tubes from patients with different solid cancers was observed. Conclusions: This study indicates that BCT...... mutations (BRAF p.V600E and PIK3CA p.H1047R) in ctDNA isolated from blood samples collected in either cell-stabilizing Cell-Free DNA BCT tubes (delayed processing within 72 hours) or standard K3EDTA tubes (immediate processing within 15 minutes). Twenty-five blood sample pairs (EDTA/BCT) were collected from...

  15. Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model

    Science.gov (United States)

    Ganju, Neil K.; Lentz, Steven J.; Kirincich, Anthony R.; Farrar, J. Thomas

    2011-01-01

    Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.

  16. Ocean regional circulation model sensitizes to resolution of the lateral boundary conditions

    Science.gov (United States)

    Pham, Van Sy; Hwang, Jin Hwan

    2017-04-01

    Dynamical downscaling with nested regional oceanographic models is an effective approach for forecasting operationally coastal weather and projecting long term climate on the ocean. Nesting procedures deliver the unwanted in dynamic downscaling due to the differences of numerical grid sizes and updating steps. Therefore, such unavoidable errors restrict the application of the Ocean Regional Circulation Model (ORCMs) in both short-term forecasts and long-term projections. The current work identifies the effects of errors induced by computational limitations during nesting procedures on the downscaled results of the ORCMs. The errors are quantitatively evaluated for each error source and its characteristics by the Big-Brother Experiments (BBE). The BBE separates identified errors from each other and quantitatively assess the amount of uncertainties employing the same model to simulate for both nesting and nested model. Here, we focus on discussing errors resulting from two main matters associated with nesting procedures. They should be the spatial grids' differences and the temporal updating steps. After the diverse cases from separately running of the BBE, a Taylor diagram was adopted to analyze the results and suggest an optimization intern of grid size and updating period and domain sizes. Key words: lateral boundary condition, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.

  17. Analysis of Circulation Patterns in the Gulf of Finland, Baltic Sea, Simulated with a High-Resolution Hydrodynamic Model

    Science.gov (United States)

    Westerlund, A.

    2017-12-01

    The Gulf of Finland in the Baltic Sea is a long, estuary-like sea area that is a direct continuation of the Baltic Proper. Short-term surface circulation in the gulf is mainly wind driven. The stability of currents varies from season to season. The relatively large freshwater input from the eastern end and the more saline deep water flow from the main basin at the western end maintain horizontal density gradients. We studied circulation patterns in the gulf with a high-resolution 3D hydrodynamic model setup. The configuration was based on the NEMO model and had 0.25 NM horizontal resolution and vertical resolution of 1 m. Our multi-year simulation revealed high year to year variability in the circulation. The persistency of currents in the Gulf of Finland is known to be low, with high variability in time and space. This was clearly demonstrated by our results. Processes affecting circulation patterns were analysed. These included upwelling-related alongshore currents. Several strong upwelling related coastal currents were present in the results on both northern and southern coast of the Gulf. The effect of wind forcing on the circulation in the gulf was also considered. We analysed wind forcing and found that annual differences contributed to the modelled circulation patterns.

  18. Exploring the Circulation Dynamics of Mississippi Sound and Bight Using the CONCORDE Synthesis Model

    Science.gov (United States)

    Pan, C.; Dinniman, M. S.; Fitzpatrick, P. J.; Lau, Y.; Cambazoglu, M. K.; Parra, S. M.; Hofmann, E. E.; Dzwonkowski, B.; Warner, S. J.; O'Brien, S. J.; Dykstra, S. L.; Wiggert, J. D.

    2017-12-01

    As part of the modeling effort of the GOMRI (Gulf of Mexico Research Initiative)-funded CONCORDE consortium, a high resolution ( 400 m) regional ocean model is implemented for the Mississippi (MS) Sound and Bight. The model is based on the Coupled Ocean Atmosphere Wave Sediment Transport Modeling System (COAWST), with initial and lateral boundary conditions drawn from data assimilative 3-day forecasts of the 1km-resolution Gulf of Mexico Navy Coastal Ocean Model (GOM-NCOM). The model initiates on 01/01/2014 and runs for 3 years. The model results are validated with available remote sensing data and with CONCORDE's moored and ship-based in-situ observations. Results from a three-year simulation (2014-2016) show that ocean circulation and water properties of the MS Sound and Bight are sensitive to meteorological forcing. A low resolution surface forcing, drawn from the North America Regional Reanalysis (NARR), and a high resolution forcing, called CONCORDE Meteorological Analysis (CMA) ) that resolves the diurnal sea breeze, are used to drive the model to examine the sensitivity of the circulation to surface forcing. The model responses to the low resolution NARR forcing and to the high resolution CMA are compared in detail for the CONCORDE Fall and Spring field campaigns when contemporaneous in situ data are available, with a focus on how simulated exchanges between MS Sound and MS Bight are impacted. In most cases, the model shows higher simulation skill when it is driven by CMA. Freshwater plumes of the MS River, MS Sound and Mobile Bay influence the shelf waters of the MS Bight in terms of material budget and dynamics. Drifters and dye experiments near Mobile Bay demonstrate that material exchanges between Mobile Bay and the Sound, and between the Sound and Bight, are sensitive to the wind strength and direction. A model - data comparison targeting the Mobile Bay plume suggests that under both northerly and southerly wind conditions the model is capable of

  19. An evaluation of the North Sea circulation in global and regional models relevant for ecosystem simulations

    Science.gov (United States)

    Pätsch, Johannes; Burchard, Hans; Dieterich, Christian; Gräwe, Ulf; Gröger, Matthias; Mathis, Moritz; Kapitza, Hartmut; Bersch, Manfred; Moll, Andreas; Pohlmann, Thomas; Su, Jian; Ho-Hagemann, Ha T. M.; Schulz, Achim; Elizalde, Alberto; Eden, Carsten

    2017-08-01

    Simulations of the North Sea circulation by the global ocean model MPI-OM and the regional ocean models GETM, HAMSOM, NEMO, TRIM are compared against each other and with observational data for the period 1998-2009. The aim of the study is to evaluate the quality of the simulations in particular with respect to their suitability to drive biogeochemical shelf sea models. Our results demonstrate the benefit of the global model to avoid the specification of lateral open boundary conditions. Due to its stretched grid configuration, which provides a higher grid resolution at the Northwest European Shelf, the global model is able to reproduce the large-scale features, such as the water mass distribution and the thermal stratification in the central and northern North Sea, qualitatively similar to the regional models. The simulation of temperature and salinity near the coast however, shows large biases in almost all models because of the coarse meteorological forcing and too coarse vertical resolutions. The simulation of the Baltic Sea exchange and the spread of freshwater along the Norwegian coast proved difficult for all models except GETM, which reproduces impacts of the Baltic Sea outflow reasonably well.

  20. Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.

    Science.gov (United States)

    Gent, Peter R

    2016-01-01

    Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.

  1. Theoretical model of two-phase drift flow on natural circulation

    International Nuclear Information System (INIS)

    Yang Xingtuan; Jiang Shengyao; Zhang Youjie

    2002-01-01

    Some expressions, such as sub-cooled boiling in the heating section, condensation near the riser inlet, flashing in the riser, and pressure balance in the steam-space, have been theoretically deduced from the physical model of 5 MW heating reactor test loop. The thermodynamics un-equilibrium etc have been considered too. A entire drift model with four equations has been formed, which can be applied to natural circulation system with low pressure and low steam quality. By means of introducing the concept of condensation layer, condensing of bubbles in the sub-cooled liquid has been formulated for the first time. The restrictive equations of the steam space pressure and liquid level have been offered. The equations can be solved by means of integral method, then by using Rung-Kutta-Verner method the final results is obtained

  2. The water cycle in the general circulation model of the martian atmosphere

    Science.gov (United States)

    Shaposhnikov, D. S.; Rodin, A. V.; Medvedev, A. S.

    2016-03-01

    Within the numerical general-circulation model of the Martian atmosphere MAOAM (Martian Atmosphere: Observation and Modeling), we have developed the water cycle block, which is an essential component of modern general circulation models of the Martian atmosphere. The MAOAM model has a spectral dynamic core and successfully predicts the temperature regime on Mars through the use of physical parameterizations typical of both terrestrial and Martian models. We have achieved stable computation for three Martian years, while maintaining a conservative advection scheme taking into account the water-ice phase transitions, water exchange between the atmosphere and surface, and corrections for the vertical velocities of ice particles due to sedimentation. The studies show a strong dependence of the amount of water that is actively involved in the water cycle on the initial data, model temperatures, and the mechanism of water exchange between the atmosphere and the surface. The general pattern and seasonal asymmetry of the water cycle depends on the size of ice particles, the albedo, and the thermal inertia of the planet's surface. One of the modeling tasks, which results from a comparison of the model data with those of the TES experiment on board Mars Global Surveyor, is the increase in the total mass of water vapor in the model in the aphelion season and decrease in the mass of water ice clouds at the poles. The surface evaporation scheme, which takes into account the turbulent rise of water vapor, on the one hand, leads to the most complete evaporation of ice from the surface in the summer season in the northern hemisphere and, on the other hand, supersaturates the atmosphere with ice due to the vigorous evaporation, which leads to worse consistency between the amount of the precipitated atmospheric ice and the experimental data. The full evaporation of ice from the surface increases the model sensitivity to the size of the polar cap; therefore, the increase in the

  3. The Finite Element Sea Ice-Ocean Model (FESOM v.1.4: formulation of an ocean general circulation model

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2014-04-01

    Full Text Available The Finite Element Sea Ice-Ocean Model (FESOM is the first global ocean general circulation model based on unstructured-mesh methods that has been developed for the purpose of climate research. The advantage of unstructured-mesh models is their flexible multi-resolution modelling functionality. In this study, an overview of the main features of FESOM will be given; based on sensitivity experiments a number of specific parameter choices will be explained; and directions of future developments will be outlined. It is argued that FESOM is sufficiently mature to explore the benefits of multi-resolution climate modelling and that its applications will provide information useful for the advancement of climate modelling on unstructured meshes.

  4. The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1 using wind data measured onshore on the NUI Galway campus (NUIG and (2 using offshore wind data provided by a high resolution wind model (HR. A scenario with no wind forcing (NW was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF radar Coastal Ocean Dynamics Applications Radar (CODAR observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.

  5. Modeling blood pressure: Comparative study of seemingly unrelated ...

    African Journals Online (AJOL)

    Most authors have focused on Systolic Blood Pressure(SBP) and Diastolic Blood Pressure(DBP) separately. The effect of some identified risk factors on SBP and DBP can be estimated separately since they are affected by different factors.This study is aimed at developing a model that can appropriately capture the ...

  6. Computational model on pulsatile flow of blood through a tapered ...

    Indian Academy of Sciences (India)

    S PRIYADHARSHINI

    2017-11-02

    Nov 2, 2017 ... Abstract. An unsteady two-fluid model of blood flow through a tapered arterial stenosis with variable vis- cosity in the presence of variable magnetic field has been analysed in the present paper. In this article, blood in the core region is assumed to obey the law of Jeffrey fluid and plasma in the peripheral ...

  7. A statistical intercomparison of temperature and precipitation predicted by four general circulation models with historical data

    International Nuclear Information System (INIS)

    Grotch, S.L.

    1991-01-01

    This study is a detailed intercomparison of the results produced by four general circulation models (GCMs) that have been used to estimate the climatic consequences of a doubling of the CO 2 concentration. Two variables, surface air temperature and precipitation, annually and seasonally averaged, are compared for both the current climate and for the predicted equilibrium changes after a doubling of the atmospheric CO 2 concentration. The major question considered here is: how well do the predictions from different GCMs agree with each other and with historical climatology over different areal extents, from the global scale down to the range of only several gridpoints? Although the models often agree well when estimating averages over large areas, substantial disagreements become apparent as the spatial scale is reduced. At scales below continental, the correlations observed between different model predictions are often very poor. The implications of this work for investigation of climatic impacts on a regional scale are profound. For these two important variables, at least, the poor agreement between model simulations of the current climate on the regional scale calls into question the ability of these models to quantitatively estimate future climatic change on anything approaching the scale of a few (< 10) gridpoints, which is essential if these results are to be used in meaningful resource-assessment studies. A stronger cooperative effort among the different modeling groups will be necessary to assure that we are getting better agreement for the right reasons, a prerequisite for improving confidence in model projections. 11 refs.; 10 figs

  8. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.

  9. A statistical intercomparison of temperature and precipitation predicted by four general circulation models with historical data

    International Nuclear Information System (INIS)

    Grotch, S.L.

    1990-01-01

    This study is a detailed intercomparison of the results produced by four general circulation models (GCMs) that have been used to estimate the climatic consequences of a doubling of the CO 2 concentration. Two variables, surface air temperature and precipitation, annually and seasonally averaged, are compared for both the current climate and for the predicted equilibrium changes after a doubling of the atmospheric CO 2 concentration. The major question considered here is: how well do the predictions from different GCMs agree with each other and with historical climatology over different areal extents, from the global scale down to the range of only several gridpoints? Although the models often agree well when estimating averages over large areas, substantial disagreements become apparent as the spatial scale is reduced. At scales below continental, the correlations observed between different model predictions are often very poor. The implications of this work for investigation of climatic impacts on a regional scale are profound. For these two important variables, at least, the poor agreement between model simulations of the current climate on the regional scale calls into question the ability of these models to quantitatively estimate future climatic change on anything approaching the scale of a few (< 10) gridpoints, which is essential if these results are to be used in meaningful resource-assessment studies. A stronger cooperative effort among the different modeling groups will be necessary to assure that we are getting better agreement for the right reasons, a prerequisite for improving confidence in model projections

  10. Understanding Thiel embalming in pig kidneys to develop a new circulation model.

    Science.gov (United States)

    Willaert, Wouter; De Vos, Marie; Van Hoof, Tom; Delrue, Louke; Pattyn, Piet; D'Herde, Katharina

    2015-01-01

    The quality of tissue preservation in Thiel embalmed bodies varies. Research on the administered embalming volume and its vascular distribution may elucidate one of the mechanisms of tissue preservation and allow for new applications of Thiel embalming. Vascular embalming with (group 1, n = 15) or without (group 2, n = 20) contrast agent was initiated in pig kidneys. The distribution of Thiel embalming solution in group 1 was visualized using computed tomography. The kidneys in both groups were then immersed in concentrated salt solutions to reduce their weight and volume. Afterwards, to mimic a lifelike circulation in the vessels, group 2 underwent pump-driven reperfusion for 120 minutes with either paraffinum perliquidum or diluted polyethylene glycol. The circulation was imaged with computed tomography. All of the kidneys were adequately preserved. The embalming solution spread diffusely in the kidney, but fluid accumulation was present. Subsequent immersion in concentrated salt solutions reduced weight (P embalming of kidneys results in successful preservation due to complete parenchymatous spreading. More research is needed to determine whether other factors affect embalming quality. Dehydration is an effective method to regain the organs' initial status. Prolonged vascular reperfusion with paraffinum perliquidum can be established in this model without increases in weight, volume and pressure.

  11. Blood Volume, Plasma Volume and Circulation Time in a High-Energy-Demand Teleost, the Yellowfin Tuna (Thunnus Albacares)

    DEFF Research Database (Denmark)

    Brill, R.W.; Cousins, K.L.; Jones, D.R.

    1998-01-01

    We measured red cell space with 51Cr-labeled red blood cells, and dextran space with 500 kDa fluorescein-isothiocyanate-labeled dextran (FITC-dextran), in two groups of yellowfin tuna (Thunnus albacares). Red cell space was 13.8+/-0.7 ml kg-1 (mean +/- s.e.m.) Assuming a whole- body hematocrit...... equal to the hematocrit measured at the ventral aortic sampling site and no significant sequestering of 51Cr-labeled red blood cells by the spleen, blood volume was 46.7+/-2.2 ml kg-1. This is within the range reported for most other teleosts (30-70 ml kg-1), but well below that previously reported...

  12. Differential expression of circulating microRNAs in blood and haematoma samples from patients with intracerebral haemorrhage.

    Science.gov (United States)

    Wang, Jialu; Zhu, Ying; Jin, Feng; Tang, Ling; He, Zhenwei; He, Zhiyi

    2016-06-01

    To measure the differential expression of microRNAs (miRNAs) in peripheral blood samples from patients with intracerebral haemorrhage (ICH) and to measure the levels of hsa-miR-21-5p in peripheral blood and haematoma samples from patients with ICH. This case-control study enrolled individuals with ICH in the putamen treated by craniotomy and age- and sex-matched healthy control subjects. Serum miRNA expression profiles were determined in the patient and control groups using miRNA polymerase chain reaction (PCR) arrays. The ICH-related miRNA hsa-miR-21-5p was selected and its differential expression was assessed in peripheral blood and haematoma specimens from patients with ICH compared with peripheral blood samples controls using real-time PCR. Seven patients and five control subjects were included in the miRNA expression profile analysis; and 31 patients and 22 control subjects provided samples for the real-time PCR of hsa-miR-21-5p expression. A total of 59 miRNAs were significantly downregulated in patients with ICH. Relative hsa-miR-21-5p levels of 0.43 and 0.31 for peripheral blood and haematoma samples, respectively, were obtained in the patient group compared with the control subjects. Hsa-miR-21-5p levels were significantly reduced in both peripheral blood and haematoma samples in patients with ICH. © The Author(s) 2016.

  13. Analysis of circulating cholesterol levels as a mediator of an association between ABO blood group and coronary heart disease.

    Science.gov (United States)

    Chen, Yequn; Chen, Chang; Ke, Xiayi; Xiong, Longgen; Shi, Yongying; Li, Jiafu; Tan, Xuerui; Ye, Shu

    2014-02-01

    Non-O type of ABO blood group has been associated with a predisposition to coronary heart disease. It is thought that this association is partly mediated by increased cholesterol levels in non-O-type individuals. In this study, we sought to estimate the mediation effect size. In a group of individuals (n=6476) undergoing coronary angiography, we detected associations of non-O type with significant coronary artery disease with >50% stenosis in ≥1 coronary arteries (odds ratio, 1.24; 95% confidence interval, 1.10-1.39; P=2.6×10(-4)) and with prevalent or incident myocardial infarction (odds ratio, 1.22; 95% confidence interval, 1.09-1.37; P=1.2×10(-3)). Subjects of non-O type had higher levels of total cholesterol, low-density lipoprotein cholesterol, and non-high-density lipoprotein cholesterol (mean [SEM] in mmol/L: 4.931[0.021], 3.041 [0.018], and 3.805 [0.020] in non-O type compared with 4.778 [0.026], 2.906 [0.021], and 3.669 [0.024] in O type; P=3.8×10(-7), P=1.5×10(-7), and P=3.1×10(-7), respectively). Mediation analyses indicated that 10% of the effect of non-O type on coronary artery disease susceptibility was mediated by increased low-density lipoprotein cholesterol level (P=7.8×10(-4)) and that 11% of the effect of non-O type on myocardial infarction risk was mediated by raised low-density lipoprotein cholesterol level (P=2.0×10(-3)). In a model in which it is presumed that cholesterol is a mediator of the associations of ABO group with coronary artery disease and myocardial infarction, around 10% of the effect of non-O type on coronary artery disease and myocardial infarction susceptibility was mediated by its influence on low-density lipoprotein cholesterol level.

  14. Chronic stress is associated with reduced circulating hematopoietic progenitor cell number: A maternal caregiving model.

    Science.gov (United States)

    Aschbacher, Kirstin; Milush, Jeffrey M; Gilbert, Amanda; Almeida, Carlos; Sinclair, Elizabeth; Epling, Lorrie; Grenon, S Marlene; Marco, Elysa J; Puterman, Eli; Epel, Elissa

    2017-01-01

    Chronic psychological stress is a risk factor for cardiovascular disease and mortality. Circulating hematopoietic progenitor cells (CPCs) maintain vascular homeostasis, correlate with preclinical atherosclerosis, and prospectively predict cardiovascular events. We hypothesize that (1) chronic caregiving stress is related to reduced CPC number, and (2) this may be explained in part by negative interactions within the family. We investigated levels of stress and CPCs in 68 healthy mothers - 31 of these had children with an autism spectrum disorder (M-ASD) and 37 had neurotypical children (M-NT). Participants provided fasting blood samples, and CD45 + CD34 + KDR + and CD45 + CD133 + KDR + CPCs were assayed by flow cytometry. We averaged the blom-transformed scores of both CPCs to create one index. Participants completed the perceived stress scale (PSS), the inventory for depressive symptoms (IDS), and reported on daily interactions with their children and partners, averaged over 7 nights. M-ASD exhibited lower CPCs than M-NT (Cohen's d=0.83; p⩽0.01), controlling for age, BMI, and physical activity. Across the whole sample, positive interactions were related to higher CPCs, and negative interactions to lower CPCs (allp'scaregivers, child-related interpersonal stress appears to be a key psychological predictor of stress-related CVD risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Origin of Circulating Free DNA in Sepsis: Analysis of the CLP Mouse Model.

    Science.gov (United States)

    Hamaguchi, Shigeto; Akeda, Yukihiro; Yamamoto, Norihisa; Seki, Masafumi; Yamamoto, Kouji; Oishi, Kazunori; Tomono, Kazunori

    2015-01-01

    Recently, it has been reported that circulating free DNA (cf-DNA) in the blood is increased in various infectious diseases, including sepsis. Moreover, a relationship between cf-DNA and neutrophil extracellular traps (NETs) has been suggested. However, it is still unclear what the source and physiological role of cf-DNA in sepsis are. In this study, we examined the source of cf-DNA by detecting citrullinated histone H3, a characteristic feature of NET formation, in cecal ligation and puncture- (CLP-)operated mice. In addition, neutrophil depletion using anti-Ly6G antibodies was performed to assess the association between neutrophils and cf-DNA. Increased cf-DNA levels were observed only in CLP mice and not in the control groups; the qPCR findings revealed that the cf-DNA was mainly host-derived, even in bacteremic conditions. Citrullinated histone H3 was not increased in the neutrophils upon CLP, and the depletion of neutrophils showed limited effects on decreasing the amount of cf-DNA. Taken together, these results suggested that elevated cf-DNA levels during early-phase sepsis may represent a candidate biomarker for the severity of sepsis and that, contrary to previous findings, cf-DNA is not derived from neutrophils or NETs.

  16. Selective renal blood perfusion induces renal tubules injury in a porcine model.

    Science.gov (United States)

    Kalder, Johannes; Kokozidou, Maria; Keschenau, Paula; Tamm, Miriam; Greiner, Andreas; Koeppel, Thomas A; Tolba, Rene; Jacobs, Michael J

    2016-03-01

    Extracorporeal circulation is routinely used in thoracoabdominal aortic aneurysm repair to preserve blood perfusion. Despite this protective measure, acute and chronic kidney disorders can develop. Therefore, the aim of this study was to establish a new large-animal model to assess the efficacy of selective renal perfusion (SRP) with extracorporeal circulation in a setting of thoracoabdominal aortic aneurysm repair. Eighteen pigs underwent a thoracolaparotomy, during with the aorta and renal arteries were exposed. The animals were divided into three cohorts of six pigs each: cohort I--control; cohort II--thoracic aortic clamping with distal aortic perfusion (DAP) using a roller pump; and cohort III--thoracic aortic clamping with DAP plus SRP. Kidney metabolism, kidney injury, and red blood cell damage were measured by oxygen extraction ratio (O2ER), neutrophil gelatinase-associated lipocalin, a marker for acute kidney damage, and serum free hemoglobin. With normal mean arterial blood pressures, flow rates in the renal arteries during perfusion decreased to 75% (group II) with DAP and to 50% (group III) with SRP compared with the control animals (group I; P = .0279 for I vs II; P = .0002 for I vs III). Microcirculation, measured by microspheres, did not differ significantly among the groups. In contrast, O2ER (P = .0021 for I vs III) and neutrophil gelatinase-associated lipocalin (P = .0083 for I vs III) levels were significantly increased in group III, whereas free hemoglobin was increased in groups II and III (P = .0406 for I vs II; P = .0018 for I vs III). SRP with a roller pump induces kidney tubule injury. Thus, distal aortic and SRP in our model does not provide adequate kidney protection. Furthermore, the perfusion system provokes red blood cell damage with increased free hemoglobin. Hence, the SRP perfusion technique should be revised and tested. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  17. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.

    2015-05-22

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields\\' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  18. Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites

    International Nuclear Information System (INIS)

    Po-Chedley, Stephen; Fu Qiang

    2012-01-01

    Recent studies have examined tropical upper tropospheric warming by comparing coupled atmosphere–ocean global circulation model (GCM) simulations from Phase 3 of the Coupled Model Intercomparison Project (CMIP3) with satellite and radiosonde observations of warming in the tropical upper troposphere relative to the lower-middle troposphere. These studies showed that models tended to overestimate increases in static stability between the upper and lower-middle troposphere. We revisit this issue using atmospheric GCMs with prescribed historical sea surface temperatures (SSTs) and coupled atmosphere–ocean GCMs that participated in the latest model intercomparison project, CMIP5. It is demonstrated that even with historical SSTs as a boundary condition, most atmospheric models exhibit excessive tropical upper tropospheric warming relative to the lower-middle troposphere as compared with satellite-borne microwave sounding unit measurements. It is also shown that the results from CMIP5 coupled atmosphere–ocean GCMs are similar to findings from CMIP3 coupled GCMs. The apparent model-observational difference for tropical upper tropospheric warming represents an important problem, but it is not clear whether the difference is a result of common biases in GCMs, biases in observational datasets, or both. (letter)

  19. The Tropical Subseasonal Variability Simulated in the NASA GISS General Circulation Model

    Science.gov (United States)

    Kim, Daehyun; Sobel, Adam H.; DelGenio, Anthony D.; Chen, Yonghua; Camargo, Suzana J.; Yao, Mao-Sung; Kelley, Maxwell; Nazarenko, Larissa

    2012-01-01

    The tropical subseasonal variability simulated by the Goddard Institute for Space Studies general circulation model, Model E2, is examined. Several versions of Model E2 were developed with changes to the convective parameterization in order to improve the simulation of the Madden-Julian oscillation (MJO). When the convective scheme is modified to have a greater fractional entrainment rate, Model E2 is able to simulate MJO-like disturbances with proper spatial and temporal scales. Increasing the rate of rain reevaporation has additional positive impacts on the simulated MJO. The improvement in MJO simulation comes at the cost of increased biases in the mean state, consistent in structure and amplitude with those found in other GCMs when tuned to have a stronger MJO. By reinitializing a relatively poor-MJO version with restart files from a relatively better-MJO version, a series of 30-day integrations is constructed to examine the impacts of the parameterization changes on the organization of tropical convection. The poor-MJO version with smaller entrainment rate has a tendency to allow convection to be activated over a broader area and to reduce the contrast between dry and wet regimes so that tropical convection becomes less organized. Besides the MJO, the number of tropical-cyclone-like vortices simulated by the model is also affected by changes in the convection scheme. The model simulates a smaller number of such storms globally with a larger entrainment rate, while the number increases significantly with a greater rain reevaporation rate.

  20. A commentary on the Atlantic meridional overturning circulation stability in climate models

    Science.gov (United States)

    Gent, Peter R.

    2018-02-01

    The stability of the Atlantic meridional overturning circulation (AMOC) in ocean models depends quite strongly on the model formulation, especially the vertical mixing, and whether it is coupled to an atmosphere model. A hysteresis loop in AMOC strength with respect to freshwater forcing has been found in several intermediate complexity climate models and in one fully coupled climate model that has very coarse resolution. Over 40% of modern climate models are in a bistable AMOC state according to the very frequently used simple stability criterion which is based solely on the sign of the AMOC freshwater transport across 33° S. In a recent freshwater hosing experiment in a climate model with an eddy-permitting ocean component, the change in the gyre freshwater transport across 33° S is larger than the AMOC freshwater transport change. This casts very strong doubt on the usefulness of this simple AMOC stability criterion. If a climate model uses large surface flux adjustments, then these adjustments can interfere with the atmosphere-ocean feedbacks, and strongly change the AMOC stability properties. AMOC can be shut off for many hundreds of years in modern fully coupled climate models if the hosing or carbon dioxide forcing is strong enough. However, in one climate model the AMOC recovers after between 1000 and 1400 years. Recent 1% increasing carbon dioxide runs and RCP8.5 future scenario runs have shown that the AMOC reduction is smaller using an eddy-resolving ocean component than in the comparable standard 1° ocean climate models.

  1. Determination of vascular endothelial growth factor (VEGF) in circulating blood: significance of VEGF in various leucocytes and platelets

    DEFF Research Database (Denmark)

    Werther, K; Christensen, Ib Jarle; Nielsen, Hans Jørgen

    2002-01-01

    AIM: The sources of increased vascular endothelial growth factor (VEGF) concentrations in peripheral blood from cancer patients are not known in detail. The aim of the present study was to evaluate correlations between the VEGF content in isolated leucocyte subpopulations and VEGF concentrations...

  2. Oceanic circulation models help to predict global biogeography of pelagic yellow-bellied sea snake.

    Science.gov (United States)

    Brischoux, François; Cotté, Cédric; Lillywhite, Harvey B; Bailleul, Frédéric; Lalire, Maxime; Gaspar, Philippe

    2016-08-01

    It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic currents to disperse and maintain population mixing between localities that spread over two-thirds of the Earth's circumference. The very close association of these snakes with surface currents seems to provide a highly efficient dispersal mechanism that allowed this species to range extensively and relatively quickly well beyond the central Indo-Pacific area, the centre of origin, abundance and diversity of sea snakes. Our results further suggest that the pan-oceanic population of this species must be extraordinarily large. © 2016 The Author(s).

  3. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    Science.gov (United States)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  4. Effect of cloud-radiation feedback on the climate of a general circulation model

    Science.gov (United States)

    Shukla, J.; Sud, Y.

    1981-01-01

    Experiments are described which show significant changes in the simulated large-scale dynamical circulation of a global model. Fixed clouds acting as zonally asymmetric radiative heat sources increase the generation of eddy available potential energy (EAPE) and the energy's conversion to eddy kinetic energy. Generation of EAPE by net radiative heating increases by 50% (0.11 W/sq m) for the fixed cloud experiment. The increase caused by the stationary component is much larger (approximately 100%), but it is partially compensated by a decrease caused by the transient component. A substantial increase is found in the variances of the planetary-scale stationary waves and the medium-scale waves of 2.7 day period. Although the sea surface temperatures are prescribed identically in both integrations, the changes in evaporation and precipitation are found to be much larger over the oceans than over the land.

  5. A simplified model of nitric oxide emission from a circulating fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, J.; Basu, P. [Technical University of Nova Scotia, Halifax, NS (Canada)

    1995-10-01

    A simplified mathematical model leading to a closed form of solution is developed for estimation of nitric oxide emission from a coal fired circulating fluidized bed (CFB) furnace. The furnace is divided into two sections: a lower section below and an upper section above the secondary air injection level. Reactions in the cyclone and the return leg are neglected. Furnace dimensions, coal feed rate, coal composition and furnace temperature are inputs to the model which was validated against several pilot scale and commercial units. Experimental results from two pilot plants and two commercial power plants agree with model predictions. A sensitivity analysis was carried out using the model to examine the effect of different operating parameters and coal properties on the overall NO emission from the furnace. It was found that excess air and furnace temperature are most important factors influencing the NO emission level. The primary to secondary air ratio influences the NO emission level reasonably. Properties of coal are other factors which affect the NO emission to a large extent. The model, though it involves some simplification, predicts the overall emission of NO with a level of accuracy accepted in commercial operation. 27 refs., 8 figs., 2 tabs.

  6. Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model

    Science.gov (United States)

    Irrgang, C.; Saynisch, J.; Thomas, M.

    2016-01-01

    Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal global ocean currents, an electromagnetic induction model is implemented into the Ocean Model for Circulation and Tides (OMCT). This provides the opportunity to not only model ocean-induced magnetic signals but also to assess the impact of oceanographic phenomena on the induction process. In this paper, the sensitivity of the induction process due to spatial and temporal variations in seawater conductivity is investigated. It is shown that assuming an ocean-wide uniform conductivity is insufficient to accurately capture the temporal variability of the magnetic signal. Using instead a realistic global seawater conductivity distribution increases the temporal variability of the magnetic field up to 45 %. Especially vertical gradients in seawater conductivity prove to be a key factor for the variability of the ocean-induced magnetic field. However, temporal variations of seawater conductivity only marginally affect the magnetic signal.

  7. Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models

    Science.gov (United States)

    Akinsanola, A. A.; Ajayi, V. O.; Adejare, A. T.; Adeyeri, O. E.; Gbode, I. E.; Ogunjobi, K. O.; Nikulin, G.; Abolude, A. T.

    2018-04-01

    This study presents evaluation of the ability of Rossby Centre Regional Climate Model (RCA4) driven by nine global circulation models (GCMs), to skilfully reproduce the key features of rainfall climatology over West Africa for the period of 1980-2005. The seasonal climatology and annual cycle of the RCA4 simulations were assessed over three homogenous subregions of West Africa (Guinea coast, Savannah, and Sahel) and evaluated using observed precipitation data from the Global Precipitation Climatology Project (GPCP). Furthermore, the model output was evaluated using a wide range of statistical measures. The interseasonal and interannual variability of the RCA4 were further assessed over the subregions and the whole of the West Africa domain. Results indicate that the RCA4 captures the spatial and interseasonal rainfall pattern adequately but exhibits a weak performance over the Guinea coast. Findings from the interannual rainfall variability indicate that the model performance is better over the larger West Africa domain than the subregions. The largest difference across the RCA4 simulated annual rainfall was found in the Sahel. Result from the Mann-Kendall test showed no significant trend for the 1980-2005 period in annual rainfall either in GPCP observation data or in the model simulations over West Africa. In many aspects, the RCA4 simulation driven by the HadGEM2-ES perform best over the region. The use of the multimodel ensemble mean has resulted to the improved representation of rainfall characteristics over the study domain.

  8. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    Science.gov (United States)

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  9. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS.

    Directory of Open Access Journals (Sweden)

    Chrispine Nyamweya

    Full Text Available Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May and mixing (June-August. Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  10. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation

    International Nuclear Information System (INIS)

    Zorita, E.; Hughes, J.P.

    1993-01-01

    Two statistical approaches for linking large-scale atmospheric circulation patterns and daily local rainfall are described and applied to several GCM (general circulation model) climate simulations. The ultimate objective is to simulate local precipitation associated with alternative climates. The index stations are located near the West and East North American coasts. The first method is based on CART analysis (Classification and Regression trees). It finds the classification of observed daily SLR (sea level pressure) fields in weather types that are most strongly associated with the presence/absence of rainfall in a set of index stations. The best results were obtained for winter rainfall for the West Coast, where a set of physically reasonable weather types could be identified, whereas for the East Coast the rainfall process seemed to be spatially less coherent. The GCM simulations were validated against observations in terms of probability of occurrence and survival time of these weather states. Some discrepancies werefound but there was no systematic bias, indicating that this behavior depends on the particular dynamics of each model. This classification method was then used for the generation of daily rainfall time series from the daily SLP fields from historical observation and from the GCM simulations. Whereas the mean rainfall and probability distributions were rather well replicated, the simulated dry periods were in all cases shorter than in the rainfall observations. The second rainfall generator is based on the analog method and uses information on the evolution of the SLP field in several previous days. It was found to perform reasonably well, although some downward bias in the simulated rainfall persistence was still present. Rainfall changes in a 2xCO 2 climate were investigated by applying both methods to the output of a greenhouse-gas experiment. The simulated precipitation changes were small. (orig.)

  11. Comparison of an isotopic atmospheric general circulation model with new quasi-global satellite measurements of water vapor isotopologues

    NARCIS (Netherlands)

    Yoshimura, K.; Frankenberg, C.; Kanamitsu, M.; Worden, J.; Roeckmann, T.

    2011-01-01

    We performed an intensive comparison of an isotope‐incorporated atmospheric general circulation model with vapor isotopologue ratio observation data by two quasi‐global satellite sensors in preparation for data assimilation of water isotope ratios. A global Isotope‐incorporated Global Spectral Model

  12. An advanced computational bioheat transfer model for a human body with an embedded systemic circulation.

    Science.gov (United States)

    Coccarelli, Alberto; Boileau, Etienne; Parthimos, Dimitris; Nithiarasu, Perumal

    2016-10-01

    In the present work, an elaborate one-dimensional thermofluid model for a human body is presented. By contrast to the existing pure conduction-/perfusion-based models, the proposed methodology couples the arterial fluid dynamics of a human body with a multi-segmental bioheat model of surrounding solid tissues. In the present configuration, arterial flow is included through a network of elastic vessels. More than a dozen solid segments are employed to represent the heat conduction in the surrounding tissues, and each segment is constituted by a multilayered circular cylinder. Such multi-layers allow flexible delineation of the geometry and incorporation of properties of different tissue types. The coupling of solid tissue and fluid models requires subdivision of the arterial circulation into large and small arteries. The heat exchange between tissues and arterial wall occurs by convection in large vessels and by perfusion in small arteries. The core region, including the heart, provides the inlet conditions for the fluid equations. In the proposed model, shivering, sweating, and perfusion changes constitute the basis of the thermoregulatory system. The equations governing flow and heat transfer in the circulatory system are solved using a locally conservative Galerkin approach, and the heat conduction in the surrounding tissues is solved using a standard implicit backward Euler method. To investigate the effectiveness of the proposed model, temperature field evolutions are monitored at different points of the arterial tree and in the surrounding tissue layers. To study the differences due to flow-induced convection effects on thermal balance, the results of the current model are compared against those of the widely used modelling methodologies. The results show that the convection significantly influences the temperature distribution of the solid tissues in the vicinity of the arteries. Thus, the inner convection has a more predominant role in the human body heat

  13. Identification of very small embryonic/epiblast-like stem cells (VSELs) circulating in peripheral blood during organ/tissue injuries.

    Science.gov (United States)

    Ratajczak, Mariusz Z; Liu, Rui; Marlicz, Wojciech; Blogowski, Wojciech; Starzynska, Teresa; Wojakowski, Wojciech; Zuba-Surma, Ewa

    2011-01-01

    We have identified in adult tissues a population of pluripotent very small embryonic/epiblast-like stem cells (VSELs) that we hypothesize are deposited at onset of gastrulation in developing tissues and play an important role as backup population of tissue-specific/committed stem cells. We envision that during steady-state conditions these cells may be involved in tissue rejuvenation and in processes of regeneration/repair after organ injuries. VSELs similarly as epiblast-derived migrating primordial germ cells change the epigenetic signature of some of the imprinted genes and therefore remain quiescent in adult tissues. These epigenetic changes in methylation status of imprinted genes prevent them also from teratoma formation. Mounting evidence indicates that VSELs are mobilized into peripheral blood during tissue/organ injuries and enumeration of these cells may be of prognostic value (e.g., in stroke or heart infarct). In this chapter, we will present FACS-based strategies to detect and enumerate these cells in human peripheral blood and umbilical cord blood. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Effect of AMOC collapse on ENSO in a high resolution general circulation model

    Science.gov (United States)

    Williamson, Mark S.; Collins, Mat; Drijfhout, Sybren S.; Kahana, Ron; Mecking, Jennifer V.; Lenton, Timothy M.

    2018-04-01

    We look at changes in the El Niño Southern Oscillation (ENSO) in a high-resolution eddy-permitting climate model experiment in which the Atlantic Meridional Circulation (AMOC) is switched off using freshwater hosing. The ENSO mode is shifted eastward and its period becomes longer and more regular when the AMOC is off. The eastward shift can be attributed to an anomalous eastern Ekman transport in the mean equatorial Pacific ocean state. Convergence of this transport deepens the thermocline in the eastern tropical Pacific and increases the temperature anomaly relaxation time, causing increased ENSO period. The anomalous Ekman transport is caused by a surface northerly wind anomaly in response to the meridional sea surface temperature dipole that results from switching the AMOC off. In contrast to a previous study with an earlier version of the model, which showed an increase in ENSO amplitude in an AMOC off experiment, here the amplitude remains the same as in the AMOC on control state. We attribute this difference to variations in the response of decreased stochastic forcing in the different models, which competes with the reduced damping of temperature anomalies. In the new high-resolution model, these effects approximately cancel resulting in no change in amplitude.

  15. Thermosphere-Ionosphere-Electrodynamics General Circulation Model for the Ionospheric Connection Explorer: TIEGCM-ICON

    Science.gov (United States)

    Maute, Astrid

    2017-10-01

    The NASA Ionospheric Connection explorer (ICON) will study the coupling between the thermosphere and ionosphere at low- and mid-latitudes by measuring the key parameters. The ICON mission will also employ numerical modeling to support the interpretation of the observations, and examine the importance of different vertical coupling mechanisms by conducting numerical experiments. One of these models is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model-ICON (TIEGCM-ICON) which will be driven by tidal perturbations derived from ICON observations using the Hough Mode Extension method (HME) and at high latitude by ion convection and auroral particle precipitation patterns from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). The TIEGCM-ICON will simulate the thermosphere-ionosphere (TI) system during the period of the ICON mission. In this report the TIEGCM-ICON is introduced, and the focus is on examining the effect of the lower boundary on the TI-system to provide some guidance for interpreting future ICON model results.

  16. Stability of the interhemispheric thermohaline circulation in a coupled box model

    Science.gov (United States)

    Stone, Peter H.; Krasovskiy, Yuriy P.

    1999-07-01

    The coupled atmosphere-ocean box model of the interhemispheric thermohaline circulation (THC) formulated by Scott et al. [Scott, J.R., Marotzke, J., Stone, P.H., 1999. Interhemispheric THC in a coupled box model. J. Phys. Oceanogr., 29, 351-365.] is solved analytically, by introducing the approximation that the time variations of salinity in the ocean are much slower than the time variations in the temperature. The analytic solution shows that there is an unstable limit cycle near the bifurcation where the flow becomes unstable, as suggested by Scott et al.'s numerical solutions. The solution also leads to an analytic expression for the conditions under which the instability discovered by Scott et al. sets in, which is more general than that found by Scott et al. In particular, it includes the effect of coupling the THC to the atmospheric meridional transports of heat and moisture. It shows that the stability of THC is much more sensitive to the representation of the atmospheric heat transport, i.e., to how it depends on the meridional temperature gradient, than it is in hemispheric models. In particular, it shows that interhemispheric ocean models that use mixed boundary conditions, or couple the ocean to a diffusive representation of the atmospheric heat transport, are less susceptible to this kind of instability than when the ocean is coupled to a representation of the atmospheric meridional heat transport which is more sensitive to the meridional temperature gradient, as is implied by observations and theory.

  17. A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation

    Directory of Open Access Journals (Sweden)

    R. P. M. Topper

    2011-03-01

    Full Text Available High concentrations of organic matter accumulated in marine sediments during Oceanic Anoxic Events (OAEs in the Cretaceous. Model studies examining these events invariably make use of global ocean circulation models. In this study, a regional model for the North Atlantic Basin during OAE2 at the Cenomanian-Turonian boundary has been developed. A first order check of the results has been performed by comparison with the results of a recent global Cenomanian CCSM3 run, from which boundary and initial conditions were obtained. The regional model is able to maintain tracer patterns and to produce velocity patterns similar to the global model. The sensitivity of the basin tracer and circulation patterns to changes in the geometry of the connections with the global ocean is examined with three experiments with different bathymetries near the sponges. Different geometries turn out to have little effect on tracer distribution, but do affect circulation and upwelling patterns. The regional model is also used to test the hypothesis that ocean circulation may have been behind the deposition of black shales during OAEs. Three scenarios are tested which are thought to represent pre-OAE, OAE and post-OAE situations. Model results confirm that Pacific intermediate inflow together with coastal upwelling could have enhanced primary production during OAE2. A low sea level in the pre-OAE scenario could have inhibited large scale black shale formation, as could have the opening of the Equatorial Atlantic Seaway in the post-OAE scenario.

  18. Optimized multiparametric flow cytometric analysis of circulating endothelial cells and their subpopulations in peripheral blood of patients with solid tumors: a technical analysis

    Directory of Open Access Journals (Sweden)

    Zhou F

    2018-03-01

    Full Text Available Fangbin Zhou,1,2 Yaying Zhou,3 Ming Yang,1 Jinli Wen,3 Jun Dong,4 Wenyong Tan1 1Department of Oncology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, People’s Republic of China; 2Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, People’s Republic of China; 3Clinical Medical Research Center, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, People’s Republic of China; 4Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, People’s Republic of China Background: Circulating endothelial cells (CECs and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM assay for CECs and subpopulations in peripheral blood for patients with solid cancers.Patients and methods: An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann–Whitney U tests were used to determine statistically significant differences.Results: In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients

  19. Risk Factor Analyses for the Return of Spontaneous Circulation in the Asphyxiation Cardiac Arrest Porcine Model

    Directory of Open Access Journals (Sweden)

    Cai-Jun Wu

    2015-01-01

    Full Text Available Background: Animal models of asphyxiation cardiac arrest (ACA are frequently used in basic research to mirror the clinical course of cardiac arrest (CA. The rates of the return of spontaneous circulation (ROSC in ACA animal models are lower than those from studies that have utilized ventricular fibrillation (VF animal models. The purpose of this study was to characterize the factors associated with the ROSC in the ACA porcine model. Methods: Forty-eight healthy miniature pigs underwent endotracheal tube clamping to induce CA. Once induced, CA was maintained untreated for a period of 8 min. Two minutes following the initiation of cardiopulmonary resuscitation (CPR, defibrillation was attempted until ROSC was achieved or the animal died. To assess the factors associated with ROSC in this CA model, logistic regression analyses were performed to analyze gender, the time of preparation, the amplitude spectrum area (AMSA from the beginning of CPR and the pH at the beginning of CPR. A receiver-operating characteristic (ROC curve was used to evaluate the predictive value of AMSA for ROSC. Results: ROSC was only 52.1% successful in this ACA porcine model. The multivariate logistic regression analyses revealed that ROSC significantly depended on the time of preparation, AMSA at the beginning of CPR and pH at the beginning of CPR. The area under the ROC curve in for AMSA at the beginning of CPR was 0.878 successful in predicting ROSC (95% confidence intervals: 0.773∼0.983, and the optimum cut-off value was 15.62 (specificity 95.7% and sensitivity 80.0%. Conclusions: The time of preparation, AMSA and the pH at the beginning of CPR were associated with ROSC in this ACA porcine model. AMSA also predicted the likelihood of ROSC in this ACA animal model.

  20. Simulated pre-industrial climate in Bergen Climate Model (version 2: model description and large-scale circulation features

    Directory of Open Access Journals (Sweden)

    O. H. Otterå

    2009-11-01

    Full Text Available The Bergen Climate Model (BCM is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  1. Optimized multiparametric flow cytometric analysis of circulating endothelial cells and their subpopulations in peripheral blood of patients with solid tumors: a technical analysis.

    Science.gov (United States)

    Zhou, Fangbin; Zhou, Yaying; Yang, Ming; Wen, Jinli; Dong, Jun; Tan, Wenyong

    2018-01-01

    Circulating endothelial cells (CECs) and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM) assay for CECs and subpopulations in peripheral blood for patients with solid cancers. An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann-Whitney U tests were used to determine statistically significant differences. In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients with solid tumors. Several key technical issues regarding preanalytical elements, FCM data acquisition, and analysis were addressed. Furthermore, we clinically validated the utility of our method. The baseline levels of mature CECs, endothelial progenitor cells, and activated CECs were higher in cancer patients than healthy subjects ( P technical issues found in previously published assays and validated the reproducibility and sensitivity of our proposed method. Future work is required to explore the potential of our optimized method in clinical oncologic applications.

  2. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach

    Science.gov (United States)

    Penven, P.; Echevin, V.; Pasapera, J.; Colas, F.; Tam, J.

    2005-10-01

    The Humboldt Current System is the most productive of the eastern boundary currents. In the northern part, the Peru Current System (PCS) is located between 5°S and 20°S. Along the Peruvian coast, an equatorward wind forces a strong coastal upwelling. A high resolution model is designed to investigate the mean circulation, the seasonal cycle, and the mesoscale dynamics for the PCS. The model is able to reproduce the equatorward Peru Coastal Current (PCC), the Peru Chile Under-Current (PCUC) which follows the shelf break towards the pole, and the Peru-Chile Counter-Current (PCCC) which flows directly towards the south and veers to the west around 15°S. While the upper part of the PCUC is close to the surface and might even outcrop as a counter current, the bottom part follows ? isolines. The PCCC appears to be directly forced by the cyclonic wind stress curl. The model is able to produce the upwelling front, the cold water tongue which extends toward the equator and the equatorial front as described in the literature. Model seasonal changes in SST and SSH are compared to measurements. For the central PCS, model EKE is 10% to 30% lower than the observations. The model eddy diameters follow a strong equatorward increase. The injection length scales, derived from the energy spectra, strongly correlate to the Rossby radius of deformation, confirming the predominant role of baroclinic instability. At 3°S, the model solution appears to switch from a turbulent oceanic regime to an equatorial regime dominated by zonal currents.

  3. Comparison of two general circulation models to downscale temperature and precipitation under climate change

    Science.gov (United States)

    Matyasovszky, Istvan; Bogardi, Istvan; Duckstein, Lucien

    1994-12-01

    A semiempirical approach for downscaling general circulation model (GCM) based daily atmospheric circulation patterns (CP) and predicting local climatological variables under climate change is developed. Specifically, the daily 500-hPa surface outputs of the Canadian Climate Center (CCC) and Max Planck Institute (MPI) (Germany) GCMs are linked stochastically, using a split sampling approach, to local temperature and precipitation in Nebraska. Three series of data are analyzed: historical data, 1 × CO2 GCM results and 2 × CO2 GCM results. Between these three data sets, no significant difference can be detected in either CP typology (constructed by principal component analysis and k means method) or stochastic properties of daily time series (Markov matrix). On the other hand, the average geopotential height of the 500-hPa pressure field exhibits significant change, labeled the ΔCO2 effect, between the 1 × CO2 and 2 × CO2 cases. Accordingly, climate change is assumed to be represented by the historical average geopotential height augmented by the ΔCO2 increment. It is found that both the CCC and MPI GCMs lead to predicting a winter temperature increase of 3°-6°C, a smaller but significant increase in spring and fall temperatures, and no increase in summer. The probability of precipitation occurrence is found to remain almost unchanged, as well as the dry period duration. The estimates of local response to climate change depend upon the location and the GCM used for downscaling the CP. The MPI GCM, which includes an ocean-atmosphere coupling, appears to yield smaller downscaled changes than the purely atmosphere-based CCC GCM.

  4. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    Science.gov (United States)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  5. Understanding Thiel embalming in pig kidneys to develop a new circulation model.

    Directory of Open Access Journals (Sweden)

    Wouter Willaert

    Full Text Available The quality of tissue preservation in Thiel embalmed bodies varies. Research on the administered embalming volume and its vascular distribution may elucidate one of the mechanisms of tissue preservation and allow for new applications of Thiel embalming. Vascular embalming with (group 1, n = 15 or without (group 2, n = 20 contrast agent was initiated in pig kidneys. The distribution of Thiel embalming solution in group 1 was visualized using computed tomography. The kidneys in both groups were then immersed in concentrated salt solutions to reduce their weight and volume. Afterwards, to mimic a lifelike circulation in the vessels, group 2 underwent pump-driven reperfusion for 120 minutes with either paraffinum perliquidum or diluted polyethylene glycol. The circulation was imaged with computed tomography. All of the kidneys were adequately preserved. The embalming solution spread diffusely in the kidney, but fluid accumulation was present. Subsequent immersion in concentrated salt solutions reduced weight (P < 0.01 and volume (P < 0.01. Reperfusion for 120 minutes was established in group 2. Paraffinum perliquidum filled both major vessels and renal tissue, whereas diluted polyethylene glycol spread widely in the kidney. There were no increases in weight (P = 0.26 and volume (P = 0.79; and pressure further decreased (P = 0.032 after more than 60 minutes of reperfusion with paraffinum perliquidum, whereas there were increases in weight (P = 0.005, volume (P = 0.032 and pressure (P < 0.0001 after reperfusion with diluted polyethylene glycol. Arterial embalming of kidneys results in successful preservation due to complete parenchymatous spreading. More research is needed to determine whether other factors affect embalming quality. Dehydration is an effective method to regain the organs' initial status. Prolonged vascular reperfusion with paraffinum perliquidum can be established in this model without increases in weight, volume and pressure.

  6. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    Science.gov (United States)

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  7. On the dynamics of droughts in northeast Brazil - Observations, theory and numerical experiments with a general circulation model

    Science.gov (United States)

    Moura, A. D.; Shukla, J.

    1981-01-01

    The establishment of a thermally direct local circulation which has its ascending branch at about 10 deg N and its descending branch over northeast Brazil and the adjoining oceanic region is proposed as a possible mechanism for the occurrence of severe droughts over this Brazilian region. The driving for this anomalous circulation is provided by enhanced moist convection due to the effect of warmer sea surface anomalies over the northern tropical Atlantic and cooling associated with colder sea surface temperature anomalies in the southern tropical Atlantic. A simple primitive equation model is used to calculate the frictionally-controlled and thermally-driven circulation due to a prescribed heating function in a resting atmosphere, and a series of numerical experiments are carried out to test the sensitivity of the Goddard Laboratory's model to prescribed sea surface temperature anomalies over the tropical Atlantic.

  8. Circulating thrombopoietin levels in normal healthy blood donors and in aplastic anemia patients in relation to disease severity

    Directory of Open Access Journals (Sweden)

    Abhay Singh

    2015-01-01

    Full Text Available Background: Thrombopoietin (TPO is the key hematopoietic growth factor regulating the production of platelets from bone marrow megakaryocytes and maintaining platelet hemostasis. This study was done to find any relationship between the levels of thrombopoietin and the severity of disease in patients with aplastic anemia. Materials and Methods: Serum samples were collected from 52 patients with a confirmed diagnosis of aplastic anemia and 45 normal healthy blood donors of both sexes over a period of 2 years, and TPO was estimated by using commercially available TPO-specific-enzyme-linked immunosorbent assay. Results: The median TPO level of 1190 pg/ml (range 625-7651 pg/ml in aplastic anemia patients was significantly higher than the median TPO level of 121.1 pg/ml (81.25-237.7 pg/ml in normal healthy blood donors (P = 0.000. No significant difference was observed in TPO levels of male and female patients (P = 0.453. The median TPO concentrations observed in very severe aplastic anemia, severe aplastic anemia, and nonsevere aplastic anemia were 2765 pg/ml (range 625-6451 pg/ml, 1190 pg/ml (range 672.1-7651 pg/ml, and 1111.5 pg/ml (range 761.1-2289.2 pg/ml, respectively. TPO in patients of very severe aplastic anemia was significantly higher than patients of nonsevere aplastic anemia (P = 0.043, with no significant relation among rest of the groups. Discussion: TPO levels in aplastic anemia patients were significantly higher than in healthy blood donors; however, in aplastic anemia patients TPO levels were significantly higher only in patients with very severe disease.

  9. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity.

    Science.gov (United States)

    Hammer, C; Stepniak, B; Schneider, A; Papiol, S; Tantra, M; Begemann, M; Sirén, A-L; Pardo, L A; Sperling, S; Mohd Jofrry, S; Gurvich, A; Jensen, N; Ostmeier, K; Lühder, F; Probst, C; Martens, H; Gillis, M; Saher, G; Assogna, F; Spalletta, G; Stöcker, W; Schulz, T F; Nave, K-A; Ehrenreich, H

    2014-10-01

    In 2007, a multifaceted syndrome, associated with anti-NMDA receptor autoantibodies (NMDAR-AB) of immunoglobulin-G isotype, has been described, which variably consists of psychosis, epilepsy, cognitive decline and extrapyramidal symptoms. Prevalence and significance of NMDAR-AB in complex neuropsychiatric disease versus health, however, have remained unclear. We tested sera of 2817 subjects (1325 healthy, 1081 schizophrenic, 263 Parkinson and 148 affective-disorder subjects) for presence of NMDAR-AB, conducted a genome-wide genetic association study, comparing AB carriers versus non-carriers, and assessed their influenza AB status. For mechanistic insight and documentation of AB functionality, in vivo experiments involving mice with deficient blood-brain barrier (ApoE(-/-)) and in vitro endocytosis assays in primary cortical neurons were performed. In 10.5% of subjects, NMDAR-AB (NR1 subunit) of any immunoglobulin isotype were detected, with no difference in seroprevalence, titer or in vitro functionality between patients and healthy controls. Administration of extracted human serum to mice influenced basal and MK-801-induced activity in the open field only in ApoE(-/-) mice injected with NMDAR-AB-positive serum but not in respective controls. Seropositive schizophrenic patients with a history of neurotrauma or birth complications, indicating an at least temporarily compromised blood-brain barrier, had more neurological abnormalities than seronegative patients with comparable history. A common genetic variant (rs524991, P=6.15E-08) as well as past influenza A (P=0.024) or B (P=0.006) infection were identified as predisposing factors for NMDAR-AB seropositivity. The >10% overall seroprevalence of NMDAR-AB of both healthy individuals and patients is unexpectedly high. Clinical significance, however, apparently depends on association with past or present perturbations of blood-brain barrier function.

  10. A numerical model of the effects of reactor cooling water on fjord circulation. Part 1

    International Nuclear Information System (INIS)

    Wilmot, W.

    1976-01-01

    In the search for possible sites for new nuclear power plants in Sweden a site on Braaviken, a narrow fjord, is being considered. A numerical hydrodynamic model has been developed to predict the probable effects of the waste heat disharged into the estuary on the natural estuarine flow. The model employs the basic equations of motion and conservation of salt and heat with appropriate approximations to make predictions. The primary approximation in the model consists of considering the estuary as a channel in which cross channel effects do not explicitly appear. The along channel motion is thus primary determined by the along channel density gradients. With the construction of a bottom intake located at the depth of about 40 meters there will be little noticable effect on the circulation, temperature or salinity fields in the estuary in the summer. However in the winter the bottom intake offers only a partial improvement over a surface intake. During the winter the heated water would cause changes of as much as 50 % in the natural state. The surface intake would cause changes which sometimes are almost twice as big. The problem arises because the 10 deg C heated water creates sizable horizontal density gradients which are sufficient to counteract the weak natural flow

  11. Quasi-steady model for predicting temperature of aqueous foams circulating in geothermal wellbores

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, B.F.; Ortega, A.

    1983-01-01

    A quasi-steady model has been developed for predicting the temperature profiles of aqueous foams circulating in geothermal wellbores. The model assumes steady one-dimensional incompressible flow in the wellbore; heat transfer by conduction from the geologic formation to the foam is one-dimensional radially and time-dependent. The vertical temperature distribution in the undisturbed geologic formation is assumed to be composed of two linear segments. For constant values of the convective heat-transfer coefficient, a closed-form analytical solution is obtained. It is demonstrated that the Prandtl number of aqueous foams is large (1000 to 5000); hence, a fully developed temperature profile may not exist for representative drilling applications. Existing convective heat-transfer-coefficient solutions are adapted to aqueous foams. The simplified quasi-steady model is successfully compared with a more-sophisticated finite-difference computer code. Sample temperature-profile calculations are presented for representative values of the primary parameters. For a 5000-ft wellbore with a bottom hole temperature of 375{sup 0}F, the maximum foam temperature can be as high as 300{sup 0}F.

  12. Simulations of future climate with a coupled atmosphere-ocean general circulation model

    International Nuclear Information System (INIS)

    Stendel, M.; Schmith, T.; Hesselbjerg Christensen, J.

    2001-01-01

    A coupled atmosphere/ocean general circulation model to study the time-dependent climate response to changing concentrations of greenhouse gases, chlorofluorocarbons and aerosols according to the new IPCC SRES scenarios A2 and B2 has been used. The results of these experiments are compared to an unforced 300-year control experiment. The changes in the last three decades of the scenario simulations (2071-2100) are furthermore compared to the simulation of present-day climate (1961-1990). In accordance with previous experiments we find that greenhouse warming is reduced when aerosol effects are considered. Sulfur emissions, however, are lower than in the IS92a scenario. Consequently, the greenhouse warming effect, which leads to a bigger temperature increase than in the GSDIO experiment can outweigh the aerosol cooling effect. The result shows that there still are serious difficulties and uncertainties in this type of model simulation. Those are partially due to oversimplifications in the model, concerning the radiative properties of aerosols in particular, and therefore the indirect aerosol effect. Another inherent problem, however, is the uncertainty in the scenarios themselves. This is the case for short-lived substances with an inhomogeneous spatial and temporal distribution, such as aerosols. Therefore, on a decadal horizon, changes in the emissions of those substance can exert a significant effect on anthropogenic climate change. (LN)

  13. Tracer simulation using a global general circulation model: Results from a midlatitude instantaneous source experiment

    International Nuclear Information System (INIS)

    Mahlman, J.D.; Moxim, W.J.

    1978-01-01

    An 11-level general circulation model with seasonal variation is used to perform an experiment on the dispersion of passive tracers. Specially constructed time-dependent winds from this model are used as input to a separate tracer model. The methodologies employed to construct the tracer model are described.The experiment presented is the evolution of a hypothetical instantaneous source of tracer on 1 Janaury with maximum initial concentration at 65 mb, 36 0 N, 180 0 E. The tracer is assumed to have no sources or sinks in the stratosphere, but is subject to removal processes in the lower troposphere.The experimental results reveal a number of similarities to observed tracer behavior, including the average poleward-downward slope of mixing ratio isopleths, strong tracer gradients across the tropopause, intrusion of tracer into the Southern Hemisphere lower stratosphere, and the long-term interhemispheric exchange rate. The model residence times show behavior intermediate to those exhibited for particulate radioactive debris and gaseous C 14 O 2 . This suggests that caution should be employed when either radioactive debris or C 14 O 2 data are used to develop empirical models for prediction of gaseous tracers which are efficiently removed in the troposphere.In this experiment, the tracer mixing ratio and potential vorticity evolve to very high correlations. Mechanisms for this correlation are discussed. The zonal mean tracer balances exhibit complex behavior among the various transport terms. At early stages, the tracer evolution is dominated by eddy effects. Later, a very large degree of self-cancellation between mean cell and eddy effects is observed. During seasonal transitions, however, this self-cancellation diminishes markedly, leading to significant changes in the zonal mean tracer distribution. A possible theoretical explanation is presented

  14. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Aubrey L. [WSU Research Corporation, Morgantown, WV (USA)

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  15. Central Hemodynamics in the Use of Different Methods for Recovering the Circulating Blood Volume in Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    V. I. Bolotskikh

    2009-01-01

    Full Text Available Objective: to study the specific features of correction of central hemodynamics in hemorrhagic shock when various treatments are used. Materials and methods. Experiments were made on 38 mongrel dogs in 4 series of experiments: 1 12 dogs under hemorrhagic shock (a control group; 2 10 anemic animals receiving later infusion therapy; 3 10 anemic dogs exposed to HBO (p02=300 kPa; a 60-min session; 4 6 anemic dogs receiving complex treatment (HBO and infusion. Circulatory blood volume (CBV, cardiac index (CI, left ventricular stroke output index (LVSOI, heart rate, and blood pressure (BP were determined in all the animals at the baseline, in 30-, 90-, and 150-min shock (controls at 5 and 60 min after treatment. Results. In the posthemorrhagic period, all hemodynamic parameters were found to be decreased (p<0.01. After infusion therapy (Series 2, the central hemodynamic parameters with CBV normalization remained at the level of 30-min shock. After oxygenation (Series 3 and complex therapy (Series 4, CBV normalization was attended by the recovery of the study circulatory parameters. This was caused by lower hypoxia, activated myocardial metabolic processes, and stimulated adaptive hemodynamic reactions. Reducing the volume of an infusion mixture in Series 4 animals lowers a cardiac load, provides a positive effect in the treatment of terminal conditions. Conclusion. HBO used in the complex therapy of hemorrhagic shock is an important component ensuring the normalization of metabolic processes and hemodynamic homeostasis in posthemorrhagic states.

  16. Sensitivity experiments with an adaptation model of circulation of western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Shaji, C.; Rao, A.D.; Dube, S.K.

    circulation at 10 m depth is controlled by both wind stress and sea surface topography. Circulation at 50 m depth is mainly controlled by thermohaline forcing and sea surface topography. The current speed in the western tropical Indian Ocean is of the order...

  17. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model

    DEFF Research Database (Denmark)

    Knudsen, Per; Bingham, R.; Andersen, Ole Baltazar

    2011-01-01

    The Gravity and steady-state Ocean Circulation Explorer (GOCE) satellite mission measures Earth’s gravity field with an unprecedented accuracy at short spatial scales. In doing so, it promises to significantly advance our ability to determine the ocean’s general circulation. In this study, an ini...

  18. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress

    Science.gov (United States)

    Rukhlenko, Oleksii S.; Dudchenko, Olga A.; Zlobina, Ksenia E.; Guria, Georgy Th.

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines. PMID:26222505

  19. Numerical 3D models support two distinct hydrothermal circulation systems at fast spreading ridges

    Science.gov (United States)

    Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars

    2013-04-01

    We present 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The setup of the 3D models is based our previous 2D studies, in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data of the East Pacific Rise (EPR). The 1000°C isotherm obtained from the 2D results is now used as the lower boundary of the 3D model domain, while the upper boundary is a smoothed bathymetry of the EPR. The same permeability field as in the 2D models is used, with the highest permeability at the ridge axis and a decrease with both depth and distance to the ridge. Permeability is also reduced linearly between 600 and 1000°C. Using a newly developed parallel finite element code written in Matlab that solves for thermal evolution, fluid pressure and Darcy flow, we simulate the flow patterns of hydrothermal circulation in a segment of 5000m along-axis, 10000m across-axis and up to 5000m depth. We observe two distinct hydrothermal circulation systems: An on-axis system forming a series of vents with a spacing ranging from 100 to 500m that is recharged by nearby (100-200m) downflows on both sides of the ridge axis. Simultaneously a second system with much broader extensions both laterally and vertically exists off-axis. It is recharged by fluids intruding between 1500m to 5000m off-axis and sampling both upper and lower crust. These fluids are channeled in the deepest and hottest regions with high permeability and migrate up-slope following the 600°C isotherm until reaching the edge of the melt lens. Depending on the width of the melt lens these off-axis fluids either merge with the on-axis hydrothermal system or form separate vents. We observe separate off-axis vent fields if the magma lens half-width exceeds 1000m and confluence of both systems for half-widths smaller than 500m. For

  20. Use of Cs-137 for the calibration of the circulation model of Lithuanian coastal waters

    International Nuclear Information System (INIS)

    Davuliene, L.; Trinkunas, G.; Remeikis, V.; Valkunas, L.; Dick, S.

    2002-01-01

    It is well established that radioactive contamination of waters and sediments in the Lithuanian coastal area of the Baltic Sea is distributed unevenly. To describe the distribution of the radionuclides in waters of the Lithuanian coastal area of the Baltic Sea, the model based on the operational circulation model of the Bundesamt fuer Seeschffahrt und Hydrographie (BSH) for the North and Baltic seas was developed. The area under consideration contains both the Lithuanian coast of the Baltic Sea as well as the Curonian Gulf of the fresh water. The interplay between the salt and fresh water flows via the Kaipeda strait has impact on the distribution of radionuclides. For instance, Cs-137 is a typical radionuclide demonstrating this effect. It is experimentally well established that this radionuclide in the salt water is mainly in the dissolved form (about 90%) and just its minor part is concentrated in the suspended matter (about 10%). In fresh water the dissolved/suspended matter ratio for Cs-137 is totally opposite. Therefore, Cs-137 can be considered as the tracer following the fresh and salt water mixing. With samples of the radionuclide concentration in the sea area under consideration at hand, Cs-137 is used to normalize the tracer concentration simulated by the developed circulation model. The model was based on the grade of 1 nautic mile (nm), while the boundary conditions were taken from the more extended BSH model on the 6 nm grade. In order to understand the sensitivity of this local model to the initial conditions, the artificial conditions taken from the more general and coarse model were used. It has been obtained that the effect of the initial conditions is lost within 2-3 weeks. This result is independent of the coarse grain of the grade as calculations carried out on 1 nm and 0.5 nm grades show. The model was adopted for the PC Pentium III, and calculations of the salinity distribution depending on the meteorological conditions were carried out. Real

  1. A dynamic model of renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    To test whether a mathematical model combining dynamic models of the tubuloglomerular feedback (TGF) mechanism and the myogenic mechanism was sufficient to explain dynamic autoregulation of renal blood flow, we compared model simulations with experimental data. To assess the dynamic characteristics...... of renal autoregulation, a broad band perturbation of the arterial pressure was employed in both the simulations and the experiments. Renal blood flow and tubular pressure were used as response variables in the comparison. To better approximate the situation in vivo where a large number of individual...... data, which shows a unimodal curve for the admittance phase. The ability of the model to reproduce the experimental data supports the hypothesis that dynamic autoregulation of renal blood flow is due to the combined action of TGF and the myogenic response....

  2. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.

    2012-07-01

    Accurate, real-time forecasting of coastal inundation due to hurricanes and tropical storms is a challenging computational problem requiring high-fidelity forward models of currents and water levels driven by hurricane-force winds. Despite best efforts in computational modeling there will always be uncertainty in storm surge forecasts. In recent years, there has been significant instrumentation located along the coastal United States for the purpose of collecting data—specifically wind, water levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge forecasting based on the use of ensemble Kalman filters and the advanced circulation (ADCIRC) storm surge model is described. The singular evolutive interpolated Kalman (SEIK) filter has been shown to be effective at producing accurate results for ocean models using small ensemble sizes initialized by an empirical orthogonal function analysis. The SEIK filter is applied to the ADCIRC model to improve storm surge forecasting, particularly in capturing maximum water levels (high water marks) and the timing of the surge. Two test cases of data obtained from hindcast studies of Hurricanes Ike and Katrina are presented. It is shown that a modified SEIK filter with an inflation factor improves the accuracy of coarse-resolution forecasts of storm surge resulting from hurricanes. Furthermore, the SEIK filter requires only modest computational resources to obtain more accurate forecasts of storm surge in a constrained time window where forecasters must interact with emergency responders.

  3. Controlling ferrofluid permeability across the blood-brain barrier model

    Science.gov (United States)

    Shi, Di; Sun, Linlin; Mi, Gujie; Sheikh, Lubna; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J.

    2014-02-01

    In the present study, an in vitro blood-brain barrier model was developed using murine brain endothelioma cells (b.End3 cells). Confirmation of the blood-brain barrier model was completed by examining the permeability of FITC-Dextran at increasing exposure times up to 96 h in serum-free medium and comparing such values with values from the literature. After such confirmation, the permeability of five novel ferrofluid (FF) nanoparticle samples, GGB (ferrofluids synthesized using glycine, glutamic acid and BSA), GGC (glycine, glutamic acid and collagen), GGP (glycine, glutamic acid and PVA), BPC (BSA, PEG and collagen) and CPB (collagen, PVA and BSA), was determined using this blood-brain barrier model. All of the five FF samples were characterized by zeta potential to determine their charge as well as TEM and dynamic light scattering for determining their hydrodynamic diameter. Results showed that FF coated with collagen passed more easily through the blood-brain barrier than FF coated with glycine and glutamic acid based on an increase of 4.5% in permeability. Through such experiments, diverse magnetic nanomaterials (such as FF) were identified for: (1) MRI use since they were less permeable to penetrate the blood-brain barrier to avoid neural tissue toxicity (e.g. GGB) or (2) brain drug delivery since they were more permeable to the blood-brain barrier (e.g. CPB).

  4. Mathematical modelling in blood coagulation : simulation and parameter estimation

    NARCIS (Netherlands)

    W.J.H. Stortelder (Walter); P.W. Hemker (Piet); H.C. Hemker

    1997-01-01

    textabstractThis paper describes the mathematical modelling of a part of the blood coagulation mechanism. The model includes the activation of factor X by a purified enzyme from Russel's Viper Venom (RVV), factor V and prothrombin, and also comprises the inactivation of the products formed. In this

  5. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  6. ESTIMATING THE DEEP SOLAR MERIDIONAL CIRCULATION USING MAGNETIC OBSERVATIONS AND A DYNAMO MODEL: A VARIATIONAL APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/IRFU Université Paris-Diderot CNRS/INSU, F-91191 Gif-Sur-Yvette (France); Fournier, Alexandre [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot UMR 7154 CNRS, F-75005 Paris (France); Talagrand, Olivier [Laboratoire de météorologie dynamique, UMR 8539, Ecole Normale Supérieure, Paris Cedex 05 (France)

    2015-12-01

    We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales.

  7. Finding the 'lost years' in green turtles: insights from ocean circulation models and genetic analysis.

    Science.gov (United States)

    Putman, Nathan F; Naro-Maciel, Eugenia

    2013-10-07

    Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as 'the lost years'. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their 'lost years'. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many 'lost years hotspots' are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period.

  8. Performance of the general circulation models in simulating temperature and precipitation over Iran

    Science.gov (United States)

    Abbasian, Mohammadsadegh; Moghim, Sanaz; Abrishamchi, Ahmad

    2018-03-01

    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901-2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen's slope estimator, and the Taylor diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. The majority of the GCMs have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and the MRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological studies and can help water resources planners and managers to choose the proper GCM based on their criteria.

  9. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  10. A parallel domain decomposition algorithm for coastal ocean circulation models based on integer linear programming

    Science.gov (United States)

    Jordi, Antoni; Georgas, Nickitas; Blumberg, Alan

    2017-05-01

    This paper presents a new parallel domain decomposition algorithm based on integer linear programming (ILP), a mathematical optimization method. To minimize the computation time of coastal ocean circulation models, the ILP decomposition algorithm divides the global domain in local domains with balanced work load according to the number of processors and avoids computations over as many as land grid cells as possible. In addition, it maintains the use of logically rectangular local domains and achieves the exact same results as traditional domain decomposition algorithms (such as Cartesian decomposition). However, the ILP decomposition algorithm may not converge to an exact solution for relatively large domains. To overcome this problem, we developed two ILP decomposition formulations. The first one (complete formulation) has no additional restriction, although it is impractical for large global domains. The second one (feasible) imposes local domains with the same dimensions and looks for the feasibility of such decomposition, which allows much larger global domains. Parallel performance of both ILP formulations is compared to a base Cartesian decomposition by simulating two cases with the newly created parallel version of the Stevens Institute of Technology's Estuarine and Coastal Ocean Model (sECOM). Simulations with the ILP formulations run always faster than the ones with the base decomposition, and the complete formulation is better than the feasible one when it is applicable. In addition, parallel efficiency with the ILP decomposition may be greater than one.

  11. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer

    Science.gov (United States)

    Nilsson, R. Jonas A.; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L.; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A.M.; Thunnissen, Erik; Dingemans, Anne-Marie C.; Viteri, Santiago; Tannous, Bakhos A.; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F.; Wurdinger, Thomas

    2016-01-01

    Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone. PMID:26544515

  12. Asymmetric response of the Atlantic Meridional Ocean Circulation to freshwater anomalies in a strongly-eddying global ocean model

    NARCIS (Netherlands)

    Brunnabend, Sandra Esther|info:eu-repo/dai/nl/371740878; Dijkstra, Henk A.|info:eu-repo/dai/nl/073504467

    2017-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) responds sensitively to density changes in regions of deepwater formation. In this paper, we investigate the nonlinear response of the AMOC to large amplitude freshwater changes around Greenland using a strongly-eddying global ocean model. Due

  13. Circulation stabilizing therapy and pulmonary high-resolution computed tomography in a porcine brain-dead model

    NARCIS (Netherlands)

    Bozovic, G.; Steen, S. van der; Sjoberg, T.; Schaefer-Prokop, C.M.; Verschakelen, J.; Liao, Q.; Hoglund, P.; Siemund, R.; Bjorkman-Burtscher, I.M.

    2016-01-01

    BACKGROUND: Currently 80% of donor lungs are not accepted for transplantation, often due to fluid overload. Our aim was to investigate if forced fluid infusion may be replaced by a new pharmacological therapy to stabilize circulation after brain death in an animal model, and to assess therapy

  14. Links between circulation types and precipitation in Central Europe in the observed data and regional climate model simulations

    Czech Academy of Sciences Publication Activity Database

    Plavcová, E.; Kyselý, Jan; Štěpánek, Petr

    2014-01-01

    Roč. 34, č. 9 (2014), s. 2885-2898 ISSN 0899-8418 Institutional support: RVO:67179843 Keywords : precipitation extremes * atmospheric circulation * regional climate models * ENSEMBLES * Central Europe Subject RIV: EH - Ecology, Behaviour Impact factor: 3.157, year: 2014

  15. High resolution interpolation of climate scenarios for the conterminous USA and Alaska derived from general circulation model simulations

    Science.gov (United States)

    Linda A. Joyce; David T. Price; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin Lawrence; David P. Coulson

    2011-01-01

    Projections of future climate were selected for four well-established general circulation models (GCM) forced by each of three greenhouse gas (GHG) emissions scenarios, namely A2, A1B, and B1 from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES). Monthly data for the period 1961-2100 were downloaded mainly from the web...

  16. Circulating and broncho-alveolar interleukin-6 in relation to body temperature in an experimental model of bovine Chlamydia psittaci infection.

    Directory of Open Access Journals (Sweden)

    Annette Prohl

    Full Text Available In rodent models of experimentally induced fever, the important role of interleukin-6 (IL-6 as a circulating endogenous pyrogen is well established. Studies employing larger animal species and real infections are scarce. Therefore, we assessed bioactive IL-6 in peripheral blood and in broncho-alveolar lavage fluid (BALF of calves after intra-bronchial inoculation with vital Chlamydia psittaci (Cp, with inactivated Cp, or with BGM cells. Only calves inoculated with vital Cp developed fever (peak at 2-3 days after challenge and significantly increased IL-6 activity. Controls inoculated with either inactivated Cp or BGM cells also expressed increased bioactive IL-6, but no fever developed. Activity of IL-6 in BALF was significantly higher compared to blood serum. This experimental model of Cp infection revealed no apparent relation between IL-6 in blood and body temperature, but did reveal a relation between IL-6 and other markers of inflammation in BALF. We conclude that a local inflammatory response in the lungs of infected calves caused fever, which developed by mechanisms including other mediators besides IL-6.

  17. Circulating brain microvascular endothelial cells (cBMECs as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors.

    Directory of Open Access Journals (Sweden)

    Sheng-He Huang

    Full Text Available Despite aggressive research, central nervous system (CNS disorders, including blood-brain barrier (BBB injury caused by microbial infection, stroke, abused drugs [e.g., methamphetamine (METH and nicotine], and other pathogenic insults, remain the world's leading cause of disabilities. In our previous work, we found that dysfunction of brain microvascular endothelial cells (BMECs, which are a major component of the BBB, could be caused by nicotine, meningitic pathogens and microbial factors, including HIV-1 virulence factors gp41 and gp120. One of the most challenging issues in this area is that there are no available cell-based biomarkers in peripheral blood for BBB disorders caused by microbial and non-microbial insults. To identify such cellular biomarkers for BBB injuries, our studies have shown that mice treated with nicotine, METH and gp120 resulted in increased blood levels of CD146+(endothelial marker/S100B+ (brain marker circulating BMECs (cBMECs and CD133+[progenitor cell (PC marker]/CD146+ endothelial PCs (EPCs, along with enhanced Evans blue and albumin extravasation into the brain. Nicotine and gp120 were able to significantly increase the serum levels of ubiquitin C-terminal hydrolase 1 (UCHL1 (a new BBB marker as well as S100B in mice, which are correlated with the changes in cBMECs and EPCs. Nicotine- and meningitic E. coli K1-induced enhancement of cBMEC levels, leukocyte migration across the BBB and albumin extravasation into the brain were significantly reduced in alpha7 nAChR knockout mice, suggesting that this inflammatory regulator plays an important role in CNS inflammation and BBB disorders caused by microbial and non-microbial factors. These results demonstrated that cBMECs as well as EPCs may be used as potential cell-based biomarkers for indexing of BBB injury.

  18. Modeling of urban heat island and its impacts on thermal circulations in the Beijing-Tianjin-Hebei region, China

    Science.gov (United States)

    Li, Mengmeng; Wang, Tijian; Xie, Min; Zhuang, Bingliang; Li, Shu; Han, Yong; Cheng, Nianliang

    2017-05-01

    Through regulating the land-atmosphere energy balance, urbanization plays an important role in modifying local circulations and cross-border transport of air pollutants. The Beijing-Tianjin-Hebei (BTH) metropolitan area in northern China is frequently influenced by complex atmospheric thermal circulations due to its special topography and geographic position. In this study, the Weather Research and Forecasting (WRF) model combined with remote sensing is used to explore the urbanization impacts on local circulations in the BTH region. The urban heat island (UHI) effect generated around Beijing and Tianjin shows complex interactions with local thermal circulations. Due to the combined effects of UHI and topography, the UHI circulation around Beijing and valley breeze at the southern slopes of Yan Mountain are coupled together to reinforce each other. At the coastal cities, the increased land/sea temperature gradient considerably accelerates the sea breeze along Bohai Bay and moves the sea breeze front further inland to reach as far as Beijing. This study may lay a foundation for the better understanding of air pollutant dispersion on complex terrain.

  19. The GEM-Mars general circulation model for Mars: Description and evaluation

    Science.gov (United States)

    Neary, L.; Daerden, F.

    2018-01-01

    GEM-Mars is a gridpoint-based three-dimensional general circulation model (GCM) of the Mars atmosphere extending from the surface to approximately 150 km based on the GEM (Global Environmental Multiscale) model, part of the operational weather forecasting and data assimilation system for Canada. After the initial modification for Mars, the model has undergone considerable changes. GEM-Mars is now based on GEM 4.2.0 and many physical parameterizations have been added for Mars-specific atmospheric processes and surface-atmosphere exchange. The model simulates interactive carbon dioxide-, dust-, water- and atmospheric chemistry cycles. Dust and water ice clouds are radiatively active. Size distributed dust is lifted by saltation and dust devils. The model includes 16 chemical species (CO2, Argon, N2, O2, CO, H2O, CH4, O3, O(1D), O, H, H2, OH, HO2, H2O2 and O2(a1Δg)) and has fully interactive photochemistry (15 reactions) and gas-phase chemistry (31 reactions). GEM-Mars provides a good simulation of the water and ozone cycles. A variety of other passive tracers can be included for dedicated studies, such as the emission of methane. The model has both a hydrostatic and non-hydrostatic formulation, and together with a flexible grid definition provides a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. Model results are evaluated by comparison to a selection of observations from instruments on the surface and in orbit, relating to atmosphere and surface temperature and pressure, dust and ice content, polar ice mass, polar argon, and global water and ozone vertical columns. GEM-Mars will play an integral part in the analysis and interpretation of data that is received by the NOMAD spectrometer on the ESA-Roskosmos ExoMars Trace Gas Orbiter. The present paper provides an overview of the current status and capabilities of the GEM-Mars model and lays the foundations for more in-depth studies in support

  20. Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions

    International Nuclear Information System (INIS)

    Brinkop, S.; Roeckner, E.

    1993-01-01

    Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)

  1. Arctic storms simulated in atmospheric general circulation models under uniform high, uniform low, and variable resolutions

    Science.gov (United States)

    Roesler, E. L.; Bosler, P. A.; Taylor, M.

    2016-12-01

    The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A

  2. Computer modelling of anterior circulation stroke: Proof of concept in Cerebrovascular Occlusion

    Directory of Open Access Journals (Sweden)

    THANH G PHAN

    2014-09-01

    Full Text Available Background: Current literature emphasizes the role of the Circle of Willis (CoW in salvaging ischemic brain tissue but not that of leptomeningeal anastomoses (LA. We developed a computational model of the cerebral circulation to 1 evaluate the roles of the CoW and LA in restoring flow to the superficial compartment of the middle cerebral artery territory and 2 estimate the size of the LA required to maintain flow above the critical ischemic threshold (>30% of baseline under simulated occlusion. Methods: Cerebral vasculature was modelled as a network of junctions connected by cylindrical pipes. The experiments included occlusion of successive distal branches of the intracranial arteries while the diameters of LA were varied. Results: The model showed that the region of reduced flow became progressively smaller as the site of occlusion was moved from the large proximal to the smaller distal arteries. There was no improvement in flow in the MCA territory when the diameters of the inter-territorial LA were varied from 0.0625 mm to 0.5 mm while keeping the intra-territorial LA constant. By contrast, the diameter of the inter-territorial LA needed to be greater than 1.0 mm in order to provide adequate (>30% flow to selected arteries in the occluded MCA territory. Conclusions: The CoW and inter-territorial LA together play important supportive roles in intracranial artery occlusion. Computational modelling provides the ability to experimentally investigate the effect of arterial occlusion on CoW and LA function.

  3. Modeling of adipose/blood partition coefficient for environmental chemicals.

    Science.gov (United States)

    Papadaki, K C; Karakitsios, S P; Sarigiannis, D A

    2017-12-01

    A Quantitative Structure Activity Relationship (QSAR) model was developed in order to predict the adipose/blood partition coefficient of environmental chemical compounds. The first step of QSAR modeling was the collection of inputs. Input data included the experimental values of adipose/blood partition coefficient and two sets of molecular descriptors for 67 organic chemical compounds; a) the descriptors from Linear Free Energy Relationship (LFER) and b) the PaDEL descriptors. The datasets were split to training and prediction set and were analysed using two statistical methods; Genetic Algorithm based Multiple Linear Regression (GA-MLR) and Artificial Neural Networks (ANN). The models with LFER and PaDEL descriptors, coupled with ANN, produced satisfying performance results. The fitting performance (R 2 ) of the models, using LFER and PaDEL descriptors, was 0.94 and 0.96, respectively. The Applicability Domain (AD) of the models was assessed and then the models were applied to a large number of chemical compounds with unknown values of adipose/blood partition coefficient. In conclusion, the proposed models were checked for fitting, validity and applicability. It was demonstrated that they are stable, reliable and capable to predict the values of adipose/blood partition coefficient of "data poor" chemical compounds that fall within the applicability domain. Copyright © 2017. Published by Elsevier Ltd.

  4. Modeling of Arctic Storms with a Variable High-Resolution General Circulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roesler, Erika Louise [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bosler, Peter Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The Department of Energy’s (DOE) Biological and Environmental Research project, “Water Cycle and Climate Extremes Modeling” is improving our understanding and modeling of regional details of the Earth’s water cycle. Sandia is using high resolution model behavior to investigate storms in the Arctic.

  5. Using a global ocean circulation model to conduct a preliminary risk assessment of oil spills in the Atlantic

    Science.gov (United States)

    Jacobs, Zoe; Popova, Katya; Hirschi, Joel; Coward, Andrew; Yool, Andrew; van Gennip, Simon; Anifowose, Babtunde; Harrington-Missin, Liam

    2017-04-01

    Although oil blowouts from deep-water drilling happen very rarely, they can cause catastrophic damage to the environment. Despite such potentially high impacts, relatively little research effort has gone into understanding subsurface oil plumes in the deep ocean. In this study, we demonstrate the significance of this problem and offer potential solutions using a novel approach based on a leading-edge, high-resolution global ocean circulation model. We present examples demonstrating: (a) the importance of ocean circulation in the propagation of oil spills; and (b) likely circulation footprints for oil spills at four key locations in the Atlantic Ocean that exist in different circulation regimes - the shelves of Brazil, the Gulf of Guinea, the Gulf of Mexico and the Faroe-Shetland Channel. In order to quantify the variability at each site on seasonal timescales, interannual timescales and at different depths, we utilize the Modified Hausdorff Distance (MHD), which is a shape-distance metric that measures the similarity between two shapes. The scale of the footprints across the four focus locations varies considerably and is determined by the main circulation features in their vicinity. For example, the hypothetical oil plume can be affected by variations in the speed and location of a particular current (e.g. Brazil Current at the Brazilian shelf site) or be influenced by different currents entirely depending on the release depth, month and year (e.g. Angola Current or Southern Equatorial Current at the Gulf of Guinea site). Overall, our results demonstrate the need to use state of the art global, or basin-scale, ocean circulation models when assessing the environmental impacts of proposed oil drilling activities.

  6. A New Model Hierarchy to Understand the Impact of Radiation and Convection on the Extratropical Circulation Response to Climate Change

    Science.gov (United States)

    Tan, Z.; Shaw, T.

    2017-12-01

    State-of-the-art climate models exhibit a large spread in the magnitude of projected poleward jet shift and Hadley cell expansion in response to warming. Interestingly, some idealized gray radiation models with simplified convective schemes produce an equatorward jet shift in response to warming. In order to understand the impact of radiation and convection on the circulation response and resolve the discrepancies across the model hierarchy, we introduce a new model radiation-convection hierarchy. The hierarchy spans idealized (gray) through sophisticated (RRTMG) radiation, and idealized (Betts-Miller) through sophisticated (eddy-diffusivity mass-flux scheme) convection schemes in the same general circulation model. It is used to systematically explore the impact of radiation and convection on the extratropical circulation response to climate change independent of mean surface temperature and meridional temperature gradient responses. With a gray radiation scheme, the jet stream shift depends on the prescribed stratospheric optical depth, which controls the climatological jet regime. A large optical depth leads to a split jet and an equatorward shift. A small optical depth leads to a poleward shift. The different shifts are connected to the vertical extent of tropical long wave cooling that impacts the subtropical jet and Hadley circulation. In spite of these sensitivities, the storm track position, defined by the meridonal eddy heat flux and moist static energy flux maxima, shifts robustly poleward. In contrast to gray radiation, with a comprehensive radiation scheme, the jet and storm track shift robustly poleward irrespective of radiative assumptions (clear sky versus cloudy sky, ozone versus no ozone). This response is reproduced by adding more spectral bands and including the water vapor feedback in the gray scheme. Dynamical sensitivities to convective assumption are also explored. Overall the new hierarchy highlights the importance of radiative and

  7. Application of blocking diagnosis methods to general circulation models. Part II: model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barriopedro, D.; Trigo, R.M. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Lisbon (Portugal); Garcia-Herrera, R.; Gonzalez-Rouco, J.F. [Universidad Complutense de Madrid, Departamento de Fisica de la Tierra II, Facultad de C.C. Fisicas, Madrid (Spain)

    2010-12-15

    A previously defined automatic method is applied to reanalysis and present-day (1950-1989) forced simulations of the ECHO-G model in order to assess its performance in reproducing atmospheric blocking in the Northern Hemisphere. Unlike previous methodologies, critical parameters and thresholds to estimate blocking occurrence in the model are not calibrated with an observed reference, but objectively derived from the simulated climatology. The choice of model dependent parameters allows for an objective definition of blocking and corrects for some intrinsic model bias, the difference between model and observed thresholds providing a measure of systematic errors in the model. The model captures reasonably the main blocking features (location, amplitude, annual cycle and persistence) found in observations, but reveals a relative southward shift of Eurasian blocks and an overall underestimation of blocking activity, especially over the Euro-Atlantic sector. Blocking underestimation mostly arises from the model inability to generate long persistent blocks with the observed frequency. This error is mainly attributed to a bias in the basic state. The bias pattern consists of excessive zonal winds over the Euro-Atlantic sector and a southward shift at the exit zone of the jet stream extending into in the Eurasian continent, that are more prominent in cold and warm seasons and account for much of Euro-Atlantic and Eurasian blocking errors, respectively. It is shown that other widely used blocking indices or empirical observational thresholds may not give a proper account of the lack of realism in the model as compared with the proposed method. This suggests that in addition to blocking changes that could be ascribed to natural variability processes or climate change signals in the simulated climate, attention should be paid to significant departures in the diagnosis of phenomena that can also arise from an inappropriate adaptation of detection methods to the climate of the

  8. Empirical modelling to predict the refractive index of human blood

    Science.gov (United States)

    Yahya, M.; Saghir, M. Z.

    2016-02-01

    Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient’s condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy.

  9. Stochastic modeling for magnetic resonance quantification of myocardial blood flow

    Science.gov (United States)

    Seethamraju, Ravi T.; Muehling, Olaf; Panse, Prasad M.; Wilke, Norbert M.; Jerosch-Herold, Michael

    2000-10-01

    Quantification of myocardial blood flow is useful for determining the functional severity of coronary artery lesions. With advances in MR imaging it has become possible to assess myocardial perfusion and blood flow in a non-invasive manner by rapid serial imaging following injection of contrast agent. To date most approaches reported in the literature relied mostly on deriving relative indices of myocardial perfusion directly from the measured signal intensity curves. The central volume principle on the other hand states that it is possible to derive absolute myocardial blood flow from the tissue impulse response. Because of the sensitivity involved in deconvolution due to noise in measured data, conventional methods are sub-optimal, hence, we propose to use stochastic time series modeling techniques like ARMA to obtain a robust impulse response estimate. It is shown that these methods when applied for the optical estimation of the transfer function give accurate estimates of myocardial blood flow. The most significant advantage of this approach, compared with compartmental tracer kinetic models, is the use of a minimum set of prior assumptions on data. The bottleneck in assessing myocardial blood flow, does not lie in the MRI acquisition, but rather in the effort or time for post processing. It is anticipated that the very limited requirements for user input and interaction will be of significant advantage for the clinical application of these methods. The proposed methods are validated by comparison with mean blood flow measurements obtained from radio-isotope labeled microspheres.

  10. Empirical modelling to predict the refractive index of human blood.

    Science.gov (United States)

    Yahya, M; Saghir, M Z

    2016-02-21

    Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient's condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy.

  11. Empirical modelling to predict the refractive index of human blood

    International Nuclear Information System (INIS)

    Yahya, M; Saghir, M Z

    2016-01-01

    Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient’s condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy. (paper)

  12. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    empirical model was also implemented in the computational models of the NSTF using both RELAP5-3D and STARCCM+ codes. Accounting for the effects of ambient conditions, simulations from both codes predicted the natural circulation flow rates very well.

  13. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  14. Atmospheric Angular Momentum Fluctuations During 1979-1988 Simulated by Global Circulation Models

    Science.gov (United States)

    Hide, R.; Dickey, J. O.; Marcus, S. L.; Rosen, R. D.; Salstein, D. A.

    1997-01-01

    Changes in major global dynamical phenomena in the Earth's atmosphere are manifested in the time series of atmospheric angular momentum (AAM), as determined directly from meteorological observations and indirectly from geodetic observations of small fluctuations in the rotation of the solid Earth which are proportional to length of day. AAM fluctuations are intimately linked with energetic processes throughout the whole atmosphere and also with the stresses at the Earth's surface produced largely by turbulent momentum transport in the oceanic and continental boundary layers and by the action of normal pressure forces on orographic features. A stringent test of any numerical global circulation model (GCM) is therefore provided by a quantitative assessment of its ability to represent AAM fluctuations on all relevant timescales, ranging from months to several years. From monthly data provided by the Atmospheric Model Intercomparison Project (AMIP) of the World Climate Research Programme, we have investigated seasonal and interannual fluctuations and the decadal mean in the axial component of AAM in 23 AMIP GCMs over the period 1979-1 988. The decadal means are generally well simulated, with the model median value (1.58 x 10(exp 26) kg sq m/s) being only 3.5% larger than the observed mean and with 10 of the models being within 5% of the observed. The seasonal cycle is well reproduced, with the median amplitude of the models' seasonal standard deviations being only 2.4% larger than observed. Half the seasonal amplitudes lie within 15% of the observed, and the median correlation found between the observed and model seasonal cycles is 0.95. The dominant seasonal error is an under- estimation of AAM during northern hemisphere winter associated with errors in the position of subtropical jets. Less robust are the modeled interannual variations, although the median correlation of 0.61 between model simulations and observed AAM is statistically significant. The two El Nino

  15. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    NARCIS (Netherlands)

    Furuya, M.

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps,

  16. Using peripheral blood circulating DNAs to detect CpG global methylation status and genetic mutations in patients with myelodysplastic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Iriyama, Chisako [Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Tomita, Akihiro, E-mail: atomita@med.nagoya-u.ac.jp [Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Hoshino, Hideaki; Adachi-Shirahata, Mizuho [Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Furukawa-Hibi, Yoko; Yamada, Kiyofumi [Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Nagoya (Japan); Kiyoi, Hitoshi; Naoe, Tomoki [Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya (Japan)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Circulating DNAs (CDs) can be used to detect genetic/epigenetic abnormalities in MDS. Black-Right-Pointing-Pointer Epigenetic changes can be detected more sensitively when using plasma DNA than PBMNC. Black-Right-Pointing-Pointer Mutation ratio in CDs may reflect the ratio in stem cell population in bone marrow. Black-Right-Pointing-Pointer Using CDs can be a safer alternate strategy compared to bone marrow aspiration. -- Abstract: Myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder. Several genetic/epigenetic abnormalities are deeply associated with the pathogenesis of MDS. Although bone marrow (BM) aspiration is a common strategy to obtain MDS cells for evaluating their genetic/epigenetic abnormalities, BM aspiration is difficult to perform repeatedly to obtain serial samples because of pain and safety concerns. Here, we report that circulating cell-free DNAs from plasma and serum of patients with MDS can be used to detect genetic/epigenetic abnormalities. The plasma DNA concentration was found to be relatively high in patients with higher blast cell counts in BM, and accumulation of DNA fragments from mono-/di-nucleosomes was confirmed. Using serial peripheral blood (PB) samples from patients treated with hypomethylating agents, global methylation analysis using bisulfite pyrosequencing was performed at the specific CpG sites of the LINE-1 promoter. The results confirmed a decrease of the methylation percentage after treatment with azacitidine (days 3-9) using DNAs from plasma, serum, and PB mono-nuclear cells (PBMNC). Plasma DNA tends to show more rapid change at days 3 and 6 compared with serum DNA and PBMNC. Furthermore, the TET2 gene mutation in DNAs from plasma, serum, and BM cells was quantitated by pyrosequencing analysis. The existence ratio of mutated genes in plasma and serum DNA showed almost equivalent level with that in the CD34+/38- stem cell population in BM. These data suggest that genetic

  17. Using peripheral blood circulating DNAs to detect CpG global methylation status and genetic mutations in patients with myelodysplastic syndrome

    International Nuclear Information System (INIS)

    Iriyama, Chisako; Tomita, Akihiro; Hoshino, Hideaki; Adachi-Shirahata, Mizuho; Furukawa-Hibi, Yoko; Yamada, Kiyofumi; Kiyoi, Hitoshi; Naoe, Tomoki

    2012-01-01

    Highlights: ► Circulating DNAs (CDs) can be used to detect genetic/epigenetic abnormalities in MDS. ► Epigenetic changes can be detected more sensitively when using plasma DNA than PBMNC. ► Mutation ratio in CDs may reflect the ratio in stem cell population in bone marrow. ► Using CDs can be a safer alternate strategy compared to bone marrow aspiration. -- Abstract: Myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder. Several genetic/epigenetic abnormalities are deeply associated with the pathogenesis of MDS. Although bone marrow (BM) aspiration is a common strategy to obtain MDS cells for evaluating their genetic/epigenetic abnormalities, BM aspiration is difficult to perform repeatedly to obtain serial samples because of pain and safety concerns. Here, we report that circulating cell-free DNAs from plasma and serum of patients with MDS can be used to detect genetic/epigenetic abnormalities. The plasma DNA concentration was found to be relatively high in patients with higher blast cell counts in BM, and accumulation of DNA fragments from mono-/di-nucleosomes was confirmed. Using serial peripheral blood (PB) samples from patients treated with hypomethylating agents, global methylation analysis using bisulfite pyrosequencing was performed at the specific CpG sites of the LINE-1 promoter. The results confirmed a decrease of the methylation percentage after treatment with azacitidine (days 3–9) using DNAs from plasma, serum, and PB mono-nuclear cells (PBMNC). Plasma DNA tends to show more rapid change at days 3 and 6 compared with serum DNA and PBMNC. Furthermore, the TET2 gene mutation in DNAs from plasma, serum, and BM cells was quantitated by pyrosequencing analysis. The existence ratio of mutated genes in plasma and serum DNA showed almost equivalent level with that in the CD34+/38- stem cell population in BM. These data suggest that genetic/epigenetic analyses using PB circulating DNA can be a safer and painless alternative to using BM

  18. Conditioning model output statistics of regional climate model precipitation on circulation patterns

    Directory of Open Access Journals (Sweden)

    F. Wetterhall

    2012-11-01

    Full Text Available Dynamical downscaling of Global Climate Models (GCMs through regional climate models (RCMs potentially improves the usability of the output for hydrological impact studies. However, a further downscaling or interpolation of precipitation from RCMs is often needed to match the precipitation characteristics at the local scale. This study analysed three Model Output Statistics (MOS techniques to adjust RCM precipitation; (1 a simple direct method (DM, (2 quantile-quantile mapping (QM and (3 a distribution-based scaling (DBS approach. The modelled precipitation was daily means from 16 RCMs driven by ERA40 reanalysis data over the 1961–2000 provided by the ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts project over a small catchment located in the Midlands, UK. All methods were conditioned on the entire time series, separate months and using an objective classification of Lamb's weather types. The performance of the MOS techniques were assessed regarding temporal and spatial characteristics of the precipitation fields, as well as modelled runoff using the HBV rainfall-runoff model. The results indicate that the DBS conditioned on classification patterns performed better than the other methods, however an ensemble approach in terms of both climate models and downscaling methods is recommended to account for uncertainties in the MOS methods.

  19. Reproduction of World Ocean Circulation by the CORE-II Scenario with the Models INMOM and INMIO

    Science.gov (United States)

    Volodin, E. M.; Gusev, A. V.; Diansky, N. A.; Ibrayev, R. A.; Ushakov, K. V.

    2018-01-01

    The results of simulations performed by the CORE-II scenario using the two Russian OGCMs, INMOM and INMIO, are presented. The models use different coordinate systems in the basic set of primitive equations and different numerical techniques. Both models are used as oceanic components of the INM RAS coupled models. Simulations have shown that reproducing ocean circulation using both models agrees with observations and simulations by other models. In general, the INMOM slightly underestimates the meridional heat transport in the ocean when compared to the INMIO model and climatic estimations. However, the INMIO yields a higher bias in temperature than the INMOM.

  20. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  1. Modelling extreme dry spells in the Mediterranean region in connection with atmospheric circulation

    Science.gov (United States)

    Tramblay, Yves; Hertig, Elke

    2018-04-01

    Long droughts periods can affect the Mediterranean region during the winter season, when most of annual precipitation occurs, and consequently have strong impacts on agriculture, groundwater levels and water resources. The goal of this study is to model annual maximum dry spells lengths (AMDSL) that occur during the extended winter season (October to April). The spatial patterns of extreme dry spells and their relationships with large-scale atmospheric circulation were first investigated. Then, AMDSL were modelled using Generalized Extreme Value (GEV) distributions incorporating climatic covariates, to evaluate the dependences of extreme dry spells to synoptic patterns using an analogue approach. The data from a network of 160 rain gauges having daily precipitation measurements between 1960 and 2009 are considered together with the ERA-20C reanalysis of the 20th century to provide atmospheric variables (geopotential heights, humidity, winds). A regional classification of both the occurrence and the duration of AMDSL helped to distinguish three spatially contiguous regions in which the regional distributions were found homogeneous. From composite analysis, significant positive anomalies in geopotential height (Z500) and negative anomalies in zonal wind (U850) and relative and specific humidity (S850, R850) were found to be associated with AMDSL in the three regions and provided the reference to build analogue days. Finally, non-stationary GEV models have been compared, in which the location and scale parameters are related to different atmospheric indices. Results indicates, at the whole Mediterranean scale, that positives anomalies of the North Atlantic Oscillation index and to a lesser extent the Mediterranean Oscillation index are linked to longer extreme dry spells in the majority of stations. For the three regions identified, the frequency of U850 negative anomalies over North Africa is significantly associated with the magnitude of AMDSL. AMDL are also

  2. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development

    Directory of Open Access Journals (Sweden)

    Sugimoto Masahiko

    2010-07-01

    Full Text Available Abstract Background Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB and blood-retinal (BRB barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP in blood plasma, as an endogenous tracer. Results The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB. Conclusion Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.

  3. Natural