WorldWideScience

Sample records for blood cell activation

  1. BLOOD TELOMERASE ACTIVITY AND ITS CORRELATIVITY WITH NON-SMALL CELL LUNG CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    胡坚; 李任远; 孙骊; 倪一鸣

    2004-01-01

    Objective: To study the correlativity between blood telomerase activity and Non-small cell lung carcinoma (NSCLC) through relative quantitative analysis of telomerase activity. Methods: Thirty-eight NSCLC and 25 inpatients with benign lung disease were selected. Telomerase repeat amplification protocol was adopted. PCR products were assayed with ELISA. Results: (a) Blood telomerase activity during operation was higher than that before or after operation (P0.05). (c) Blood telomerase activity of adenocarcinoma during and after operation was higher than that before operation (P0.05). Conclusion: The qualitative assay of blood telomerase activity can be adopted as an assistant index for diagnosis of NSCLC. Postoperative blood telomerase activity of adenocarcinoma is higher than that of squamous carcinoma. It may be an evidence for the likelihood of adenocarcinoma to metastase through blood. Blood telomerase activity increases significantly during operation, suggesting that operation may cause more cancer cells entering into circulation.

  2. Effect of polyclonal activators on cytokine production by blood cells and by malignant breast cancer cells.

    Science.gov (United States)

    Kunts, T A; Karpukhina, K V; Mikhaylova, E S; Marinkin, I O; Varaksin, N A; Autenshlyus, A I; Lyakhovich, V V

    2016-01-01

    The production of cytokines by peripheral blood cells and biopsy specimens of tumors stimulated by polyclonal activators (PAs) was evaluated in 34 patients with invasive ductal breast carcinoma using enzyme-linked immunosorbent assay (ELISA). Positive correlation between the stimulation index of polyclonal activators (SIPA) for IL-18 production by the tumor and the relative content of poorly differentiated cells was revealed. The latter, in turn, was positively correlated with the numbers of normal and pathologic mitoses and the degree of malignancy. Cancer cells can produce IL-18, which is involved in the process of angiogenesis, stimulates invasion and metastasis. Decrease in SIPA for the production of IL-6 and GCSF by peripheral blood cells could serve as an indicator of malignant progression in invasive ductal breast carcinoma.

  3. Macromolecular depletion modulates the binding of red blood cells to activated endothelial cells.

    Science.gov (United States)

    Yang, Yang; Koo, Stephanie; Lin, Cheryl Shuyi; Neu, Björn

    2010-09-01

    Adhesion of red blood cells (RBCs) to endothelial cells (ECs) is usually insignificant but an enhanced adhesion has been observed in various diseases associated with vascular complications. This abnormal adhesion under pathological conditions such as sickle cell disease has been correlated with increased levels of various plasma proteins but the detailed underlying mechanism(s) remains unclear. Usually it is assumed that the proadhesive effects of plasma proteins originate from ligand interactions cross-linking receptors on adjacent cells, but explicit results detailing binding sites or receptors for some proteins (e.g., fibrinogen) on either RBC or EC surfaces that would support this model are missing. In this study, the authors tested whether there is an alternative mechanism. Their results demonstrate that dextran 2 MDa promotes the adhesion of normal RBCs to thrombin-activated ECs and that this effect becomes more pronounced with increasing thrombin concentration or with prolonged thrombin incubation time. It is concluded that depletion interaction originating from nonadsorbing macromolecules (i.e., dextran) can modulate the adhesion of red blood cells to thrombin-activated EC. This study thereby suggests macromolecular depletion as an alternative mechanism for the adhesion-promoting effects of nonadsorbing plasma proteins. These findings should not only aid in getting a better understanding of diseases associated with vascular complications but should also have many potential applications in biomedical or biotechnological areas that require the control of cell-cell or cell surface interactions.

  4. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology

    DEFF Research Database (Denmark)

    Fens, Marcel H A M; van Wijk, Richard; Andringa, Grietje

    2012-01-01

    Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells gener...... cells play a role in red blood cell clearance in vivo. Significant erythrophagocytosis can induce endothelial cell loss, which may contribute to vasopathological effects as seen, for instance, in sickle cell disease.......Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells...... generally occurs by macrophages in the spleen and liver. Previously, however, we have shown that endothelial cells are also capable of erythrophagocytosis. Key players in the erythrophagocytosis by endothelial cells appeared to be lactadherin and αv-integrin. Phagocytosis via the phosphatidylserine...

  5. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    Science.gov (United States)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  6. White Blood Cell Count

    Science.gov (United States)

    ... limited. Home Visit Global Sites Search Help? White Blood Cell Count Share this page: Was this page helpful? ... Count; Leukocyte Count; White Count Formal name: White Blood Cell Count Related tests: Complete Blood Count , Blood Smear , ...

  7. Antitumor activities of human dendritic cells derived from peripheral and cord blood

    Institute of Scientific and Technical Information of China (English)

    Jin-Kun Zhang; Jun Li; Hai-Bin Chen; Jin-Lun Sun; Yao-Juan Qu; Juan-Juan Lu

    2002-01-01

    AIM: To observe the biological specialization of humanperipheral blood dendritic cells (DC) and cord blood derivedDC and its effects on effector cells killing humanhepatocarcinoma cell line BEL-7402 in vitro.METHODS: The DC biological characteristics were detectedwith immunohistochemical and MTT assay. Two antitumorexperimental groups are: peripheral blood DC and cordblood DC groups. Peripheral blood DC groups used LAKcells as the effector cells and BEL-7402 as target cells, whilecord blood DC groups used CTL induced by tumor antigentwice pulsed DC as effector cells and BEL-7402 as targetcells, additional peripheral blood DC and cord blood DC areadded to observe its stimulating activities to effector cells.The effector's cytotoxicity to tumor cells were detected withneutral red colorimetric assay at two effector/target ratios of5:1 and 10: 1.RESULTS: Peripheral blood DC and cord blood DC highlyexpressed HLA-ABC, HLA-DR, HLA-DQ, CD54 and S-100protein. The stimulating activities to lymphocyteproliferation were compared between experimental groups(DC added) and control group (no DC added). In sixexperiment subgroups, the DC/lymphocyte ratio wassequentially 0.25: 100, 0.5: 100, 1: 100, 2: 100, 4: 100 and 8:100, A values(x± s) were 0.75396± 0.009, 0.84916± 0.010,0.90894± 0.012, 0.98371 ± 0.007, 1.01299 ± 0.006 and 1.20384± 0.006 in peripheral blood DC groups and 0.77650 ± 0.005,0.83008± 0.007, 0.92725 ± 0.007, 1.05990 ± 0.010, 1.15583 ±0.011, 1.22983 ± 0.011 in cord blood DC groups. A value was0.59517 ± 0.005 in control group. The stimulating activitieswere higher in experimental groups than in control group ( P< 0.01 ), which were increased when the DC concentrationwas enlarged ( P < 0.01 ). Two differently derived DCs hadthe same phenotypes and similar stimulating activities ( P >0.05). In peripheral blood DC groups, the cytotoxicity (x ±s) of the LD groups (experimental groups) and L groups(control group) was 58.16% ± 2.03% (5: 1), 46.18% ±2

  8. Red blood cell glutathione peroxidase activity in female nulligravid and pregnant rats

    Directory of Open Access Journals (Sweden)

    Martino Guglielmo

    2009-01-01

    Full Text Available Abstract Background The alterations of the glutathione peroxidase enzyme complex system occur in physiological conditions such as aging and oxidative stress consequent to strenuous exercise. Methods Authors optimize the spectrophotometric method to measure glutathione peroxidase activity in rat red blood cell membranes. Results The optimization, when applied to age paired rats, both nulligravid and pregnant, shows that pregnancy induces, at seventeen d of pregnancy, an increase of both reactive oxygen substance concentration in red blood cells and membrane glutathione peroxidase activity. Conclusion The glutathione peroxidase increase in erythrocyte membranes is induced by systemic oxidative stress long lasting rat pregnancy.

  9. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    Science.gov (United States)

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  10. Fluorescently activated cell sorting followed by microarray profiling of helper T cell subtypes from human peripheral blood.

    Directory of Open Access Journals (Sweden)

    Chiaki Ono

    Full Text Available BACKGROUND: Peripheral blood samples have been subjected to comprehensive gene expression profiling to identify biomarkers for a wide range of diseases. However, blood samples include red blood cells, white blood cells, and platelets. White blood cells comprise polymorphonuclear leukocytes, monocytes, and various types of lymphocytes. Blood is not distinguishable, irrespective of whether the expression profiles reflect alterations in (a gene expression patterns in each cell type or (b the proportion of cell types in blood. CD4+ Th cells are classified into two functionally distinct subclasses, namely Th1 and Th2 cells, on the basis of the unique characteristics of their secreted cytokines and their roles in the immune system. Th1 and Th2 cells play an important role not only in the pathogenesis of human inflammatory, allergic, and autoimmune diseases, but also in diseases that are not considered to be immune or inflammatory disorders. However, analyses of minor cellular components such as CD4+ cell subpopulations have not been performed, partly because of the limited number of these cells in collected samples. METHODOLOGY/PRINCIPAL FINDINGS: We describe fluorescently activated cell sorting followed by microarray (FACS-array technology as a useful experimental strategy for characterizing the expression profiles of specific immune cells in the circulation. We performed reproducible gene expression profiling of Th1 and Th2, respectively. Our data suggest that this procedure provides reliable information on the gene expression profiles of certain small immune cell populations. Moreover, our data suggest that GZMK, GZMH, EOMES, IGFBP3, and STOM may be novel markers for distinguishing Th1 cells from Th2 cells, whereas IL17RB and CNTNAP1 can be Th2-specific markers. CONCLUSIONS/SIGNIFICANCE: Our approach may help in identifying aberrations and novel therapeutic or diagnostic targets for diseases that affect Th1 or Th2 responses and elucidating the

  11. A high-throughput assay of NK cell activity in whole blood and its clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Saet-byul [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cha, Junhoe [ATGen Co. Ltd., Sungnam (Korea, Republic of); Kim, Im-kyung [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Yoon, Joo Chun [Department of Microbiology, Ewha Womans University School of Medicine, Seoul (Korea, Republic of); Lee, Hyo Joon [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan [ATGen Co. Ltd., Sungnam (Korea, Republic of); Lee, Jae Myun [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Kang Young, E-mail: kylee117@yuhs.ac [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Jongsun, E-mail: jkim63@yuhs.ac [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  12. Analysis of sphingosine kinase activity in single natural killer cells from peripheral blood.

    Science.gov (United States)

    Dickinson, Alexandra J; Meyer, Megan; Pawlak, Erica A; Gomez, Shawn; Jaspers, Ilona; Allbritton, Nancy L

    2015-04-01

    Sphingosine-1-phosphate (S1P), a lipid second messenger formed upon phosphorylation of sphingosine by sphingosine kinase (SK), plays a crucial role in natural killer (NK) cell proliferation, migration, and cytotoxicity. Dysregulation of the S1P pathway has been linked to a number of immune system disorders and therapeutic manipulation of the pathway has been proposed as a method of disease intervention. However, peripheral blood NK cells, as identified by surface markers (CD56(+)CD45(+)CD3(-)CD16) consist of a highly diverse population with distinct phenotypes and functions and it is unknown whether the S1P pathway is similarly diverse across peripheral blood NK cells. In this work, we measured the phosphorylation of sphingosine-fluorescein (SF) and subsequent metabolism of S1P fluorescein (S1PF) to form hexadecanoic acid fluorescein (HAF) in 111 single NK cells obtained from the peripheral blood of four healthy human subjects. The percentage of SF converted to S1PF or HAF was highly variable amongst the cells ranging from 0% to 100% (S1PF) and 0% to 97% (HAF). Subpopulations of cells with varying levels of S1PF formation and metabolism were readily identified. Across all subjects, the average percentage of SF converted to S1PF or HAF was 37 ± 36% and 12 ± 19%, respectively. NK cell metabolism of SF by the different subjects was also distinct with hierarchical clustering suggesting two possible phenotypes: low (50%) producers of S1PF. The heterogeneity of SK and downstream enzyme activity in NK cells may enable NK cells to respond effectively to a diverse array of pathogens as well as incipient tumor cells. NK cells from two subjects were also loaded with S1PF to assess the activity of S1P phosphatase (S1PP), which converts S1P to sphingosine. No NK cells (n = 41) formed sphingosine, suggesting that S1PP was minimally active in peripheral blood NK cells. In contrast to the SK activity, S1PP activity was homogeneous across the peripheral blood NK cells, suggesting

  13. Red blood cell production

    Science.gov (United States)

    ... to one part of the body or another. Red blood cells are an important element of blood. Their job ... is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow of ...

  14. CIRCULATING MICROPARTICLES, BLOOD CELLS, AND ENDOTHELIUM INDUCE PROCOAGULANT ACTIVITY IN SEPSIS THROUGH PHOSPHATIDYLSERINE EXPOSURE.

    Science.gov (United States)

    Zhang, Yan; Meng, Huan; Ma, Ruishuang; He, Zhangxiu; Wu, Xiaoming; Cao, Muhua; Yao, Zhipeng; Zhao, Lu; Li, Tao; Deng, Ruijuan; Dong, Zengxiang; Tian, Ye; Bi, Yayan; Kou, Junjie; Thatte, Hemant S; Zhou, Jin; Shi, Jialan

    2016-03-01

    Sepsis is invariably accompanied by altered coagulation cascade; however, the precise role of phosphatidylserine (PS) in inflammation-associated coagulopathy in sepsis has not been well elucidated. We explored the possibility of exposed PS on microparticles (MPs), blood cells, as well as on endothelium, and defined its role in procoagulant activity (PCA) in sepsis. PS-positive MPs and cells were detected by flow cytometry, while PCA was assessed with clotting time, purified coagulation complex, and fibrin formation assays. Plasma levels of PS MPs derived from platelets, leukocytes (including neutrophils, monocytes, and lymphocytes), erythrocytes, and endothelial cells were elevated by 1.49-, 1.60-, 2.93-, and 1.53-fold, respectively, in septic patients. Meanwhile, PS exposure on blood cells was markedly higher in septic patients than in controls. Additionally, we found that the endothelial cells (ECs) treated with septic serum in vitro exposed more PS than with healthy serum. Isolated MPs/blood cells from septic patients and cultured ECs treated with septic serum in vitro demonstrated significantly shortened coagulation time, greatly enhanced intrinsic/extrinsic FXa generation, and increased thrombin formation. Importantly, confocal imaging of MPs or septic serum-treated ECs identified binding sites for FVa and FXa to form prothrombinase, and further supported fibrin formation in the area where PS exposure was abundant. Pretreatment with lactadherin blocked PS on MPs/blood cells/ECs, prolonged coagulation time by at least 25%, reduced FXa/thrombin generation, and inhibited fibrin formation by approximately 85%. Our findings suggest a key role for PS exposed on MPs, blood cells, and endothelium in augmenting coagulation in sepsis. Therefore, therapies targeting PS may be of particular importance.

  15. Activation of blood T-cells in HIV/HCV co-infected patients

    Directory of Open Access Journals (Sweden)

    Matsiyeuskaya Natallia V

    2013-03-01

    Full Text Available Expression of HLA-DR which is immune response activation marker on T-cells and their subpopulations (CD4+ and CD8+ lymphocytes and number of CD4 /CD25 cells with immune suppression properties in blood of HIV/HCV coinfected patients depending on HIV viral load, AIDS and receiving of antiretroviral therapy were studied. It was detected that HLA-DR expression on T-cells was significantly higher in patients with detectable HIV viral load, AIDS, and in patients not receiving antiretroviral therapy. Antiretroviral therapy leads to significant reduction of immune system activation markers expression, though it doesn’t allow to reach the level of healthy individuals. Number of CD4+/CD25+ cells had inverse correlation with activated CD3+ and CD3+CD8+ lymphocytes and HIV viral load.

  16. Inhibition of pseudoperoxiadse activity of human red blood cell hemoglobin by methocarbamol.

    Science.gov (United States)

    Minai-Tehrani, Dariush; Toofani, Sara; Yazdi, Fatemeh; Minai-Tehrani, Arash; Mollasalehi, Hamidreza; Bakhtiari Ziabari, Kourosh

    2017-01-01

    After red blood cells lysis, hemoglobin is released to blood circulation. Hemoglobin is carried in blood by binding to haptoglobin. In normal individuals, no free hemoglobin is observed in the blood, because most of the hemoglobin is in the form of haptoglobin complex. In some diseases that are accompanied by hemolysis, the amount of released hemoglobin is higher than its complementary haptoglobin. As a result, free hemoglobin appears in the blood, which is a toxic compound for these patients and may cause renal failure, hypertensive response and risk of atherogenesis. Free hemoglobin has been determined to have peroxidase activity and considered a pseudoenzyme. In this study, the effect of methocarbamol on the peroxidase activity of human hemoglobin was investigated. Our results showed that the drug inhibited the pseudoenzyme by un-competitive inhibition. Both Km and Vmax decreased by increasing the drug concentration. Ki and IC50 values were determined as 6 and 10mM, respectively. Docking results demonstrated that methocarbamol did not attach to heme group directly. A hydrogen bond linked NH2 of carbamate group of methocarbamol to the carboxyl group of Asp126 side chain. Two other hydrogen bonds could be also observed between hydroxyl group of the drug and Ser102 and Ser133 residues of the pseudoenzyme.

  17. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    Science.gov (United States)

    Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.

    2014-01-01

    During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068

  18. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    János Haskó

    2014-05-01

    Full Text Available During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB. The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2; therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A, GPR18 (transcriptional variant 1 and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A, GPR18 (transcriptional variants 1 and 2, GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma.

  19. Equilibrium physics breakdown reveals the active nature of red blood cell flickering

    Science.gov (United States)

    Turlier, H.; Fedosov, D. A.; Audoly, B.; Auth, T.; Gov, N. S.; Sykes, C.; Joanny, J.-F.; Gompper, G.; Betz, T.

    2016-05-01

    Red blood cells, or erythrocytes, are seen to flicker under optical microscopy, a phenomenon initially described as thermal fluctuations of the cell membrane. But recent studies have suggested the involvement of non-equilibrium processes, without definitively ruling out equilibrium interpretations. Using active and passive microrheology to directly compare the membrane response and fluctuations on single erythrocytes, we report here a violation of the fluctuation-dissipation relation, which is a direct demonstration of the non-equilibrium nature of flickering. With an analytical model of the composite erythrocyte membrane and realistic stochastic simulations, we show that several molecular mechanisms may explain the active fluctuations, and we predict their kinetics. We demonstrate that tangential metabolic activity in the network formed by spectrin, a cytoskeletal protein, can generate curvature-mediated active membrane motions. We also show that other active membrane processes represented by direct normal force dipoles may explain the observed membrane activity. Our findings provide solid experimental and theoretical frameworks for future investigations of the origin and function of active motion in cells.

  20. Increased procoagulant activity of red blood cells in the presence of cisplatin

    Institute of Scientific and Technical Information of China (English)

    L(U) Cheng-fang; YU Hong-juan; HOU Jin-xiao; ZHOU Jin

    2008-01-01

    Background Cisplatin based chemotherapy is a well recognized risk factor for coagulation disordrs and thrombosis.The pathophysiological mechanisms by which cisplatin promote thrombosis are not well understood.Methods Red blood cells (RBCs) were separated from peripheral blood of patients with breast cancer (n=10) and healthy adults (n=6) and treated with cisplatin. Coagulation time of RBCs was assessed by one step recalcification time and the productions of thrombin, intrinsic and extrinsic factor Xa were measured in the presence or absence of various concentrations of lactadherin. Exposed phosphatidylserine was stained with lactadherin and observed by confocal microscopy and flow cytometry.Results Neither fresh RBCs nor RBCs treated without cisplatin had potent procoagulant activity. Cisplatin treatment increased procoagulant activity of RBCs in a cell number- and concentration-dependent manner. Exposed phosphatidylserine was stained with lactadherin and after cisplatin treatment, strong fluorescence was revealed by confocal microscopy. Lactadherin bound RBCs from patients with breast cancer increased from (1.9±0.5)% on control RBCs to (68.0±3.5)% on RBCs treated with 10 pmol/L cisplatin for 24 hours.Conclusions Cisplatin treatment increases procoagulant activity of RBCs, which have a strong association with exposure of phosphatidylserine. The increased procoagulant activity may contribute to the pathogenesis of thrombophilia during cisplatin based chemotherapy in breast cancer patients.

  1. Indolic Uremic Solutes Enhance Procoagulant Activity of Red Blood Cells through Phosphatidylserine Exposure and Microparticle Release

    Directory of Open Access Journals (Sweden)

    Chunyan Gao

    2015-10-01

    Full Text Available Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs, the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS and indole-3-acetic acid (IAA on procoagulant activity (PCA of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients. Phosphatidylserine (PS exposure of RBCs and their microparticles (MPs release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca2+ ([Ca2+] with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca2+]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  2. Clinical-scale cultures of cord blood CD34(+) cells to amplify committed progenitors and maintain stem cell activity.

    Science.gov (United States)

    Ivanovic, Zoran; Duchez, Pascale; Chevaleyre, Jean; Vlaski, Marija; Lafarge, Xavier; Dazey, Bernard; Robert-Richard, Elodie; Mazurier, Frédéric; Boiron, Jean-Michel

    2011-01-01

    We developed a clinical-scale cord blood (CB) cell ex vivo procedure to enable an extensive expansion of committed progenitors--colony-forming cells (CFCs) without impairing very primitive hematopoietic stem cells (HSCs). CD34(++) cells, selected from previously cryopreserved and thawed CB units, were cultured in two steps (diluted 1:4 after 6 days) in the presence of stem cell factor (SCF), fms-related tyrosine kinase 3 ligand (Flt-3L), megakaryocyte growth and development factor (MGDF) (100 ng/ml each), granulocyte-colony stimulating factor (G-CSF) (10 ng/ml) in HP01 serum-free medium. HSC activity was evaluated in a serial transplantation assay, by detection of human cells (CD45, CD33, CD19 and CFC of human origin) in bone marrow (BM) of primary and secondary recipient NOD/SCID mice 6-8 weeks after transplantation. A wide amplification of total cells (∼350-fold), CD34(+) cells (∼100-fold), and CFC (∼130-fold) without impairing the HSC activity was obtained. The activity of a particular HSC subpopulation (SRC(CFC)) was even enhanced.Thus, an extensive ex vivo expansion of CFCs is feasible without impairing the activity of HSCs. This result was enabled by associating antioxidant power of medium with an appropriate cytokine cocktail (i.e., mimicking physiologic effects of a weak oxygenation in hematopoietic environment).

  3. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells

    DEFF Research Database (Denmark)

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna;

    2010-01-01

    -activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia....

  4. Effects of active bufadienolide compounds on human cancer cells and CD4+CD25+Foxp3+ regulatory T cells in mitogen-activated human peripheral blood mononuclear cells.

    Science.gov (United States)

    Yuan, Bo; He, Jing; Kisoh, Keishi; Hayashi, Hideki; Tanaka, Sachiko; Si, Nan; Zhao, Hai-Yu; Hirano, Toshihiko; Bian, Baolin; Takagi, Norio

    2016-09-01

    The growth inhibitory effects of bufadienolide compounds were investigated in two intractable cancer cells, a human glioblastoma cell line U-87 and a pancreatic cancer cell line SW1990. Among four bufadienolide compounds, a dose-dependent cytotoxicity was observed in these cancer cells after treatment with gamabufotalin and arenobufagin. The IC50 values of the two compounds were 3-5 times higher in normal peripheral blood mononuclear cells (PBMCs) than these values for both cancer cell lines. However, similar phenomena were not observed for two other bufadienolide compounds, telocinobufagin and bufalin. These results thus suggest that gamabufotalin and arenobufagin possess selective cytotoxic activity against tumor cells rather than normal cells. Moreover, a clear dose-dependent lactate dehydrogenase (LDH) release, a well-known hallmark of necrosis, was observed in both cancer cells treated with gamabufotalin, suggesting that gamabufotalin-mediated cell death is predominantly associated with a necrosis-like phenotype. Of most importance, treatment with as little as 8 ng/ml of gamabufotalin, even an almost non-toxic concentration to PBMCs, efficiently downregulated the percentages of CD4+CD25+Foxp3+ regulator T (Treg) cells in mitogen-activated PBMCs. Given that Treg cells play a critical role in tumor immunotolerance by suppressing antitumor immunity, these results suggest that gamabufotalin may serve as a promising candidate, as an adjuvant therapeutic agent by manipulating Treg cells to enhance the efficacy of conventional anticancer drugs and lessen their side-effects. These findings provide insights into the clinical application of gamabufotalin for cancer patients with glioblastoma/pancreatic cancer based on its cytocidal effect against tumor cells as well as its depletion of Treg cells.

  5. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    Science.gov (United States)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  6. Tumour necrosis factor production and natural killer cell activity in peripheral blood during treatment with recombinant tumour necrosis factor

    OpenAIRE

    Männel, Daniela N.; Kist, A.; Ho, A D; Räth, U.; Reichardt, P; Wiedenmann, B; Schlick, E.; Kirchner, H.

    1989-01-01

    Tumour necrosis factor (TNF) has been found to be an important immunomodulator. Among other functions TNF activates natural killer (NK) cells and stimulates monocytes/macrophages in an autocrine fashion. TNF production and NK activity in peripheral blood mononuclear cells were determined in a clinical phase I study in which recombinant human (rh) TNF was administered as a continuous infusion weekly for a period of 8 weeks. Even though TNF production and NK activity were significantly reduced ...

  7. High Red Blood Cell Count

    Science.gov (United States)

    Symptoms High red blood cell count By Mayo Clinic Staff A high red blood cell count is an increase in oxygen-carrying cells in your bloodstream. Red blood cells transport oxygen from your lungs to tissues throughout ...

  8. {delta}-ALAD activity variations in red blood cells in response to lead accumulation in rock doves (Columba livia)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Tejedor, M.C. [Universidad de Alcala de Henares (Spain)

    1992-10-01

    The enzyme {delta}-aminolevulinic acid dehydratase ({delta}-ALAD, E.C. 4.2.1.24), catalyses the second step of the haeme biosynthetic pathway and is required to maintain the haemoglobin and cytochrome content in red cells. {delta}-ALAD is not only found in bone marrow cells, the major site of haeme synthesis, but also in circulating erythrocytes and other tissues. An inverse correlation was found between {delta}-ALAD activity in red blood cells and lead concentration in the blood. The degree of {delta}-ALAD inhibition in erythrocytes has been widely accepted as a standard bioassay to detect acute and chronic lead exposure in humans and in avians. The value of this parameter as an indicator for environmental lead has been often reported in doves and Scanlon. In lead-treated rats, an increase in {delta}-ALAD activity in bone marrow cells and in blood samples was shown by radioimmunoassay at 5 and 9 days after the treatment. Similarly, the amount of {delta}-ALAD seems to be more sensitive to lead in avian species than in mammals, the usefulness of blood {delta}-ALAD activity as an index of lead exposure has already been questioned by Hutton in the pigeon and by Jaffe et al. in humans. The present investigation studied the toxic effects of lead on rock dove red blood cell {delta}-ALAD activity in two situations: in doves treated with lead acetate in the laboratory and in doves exposed to the environment of Alcala de Henares. The final lead blood concentrations were lower in the environmental than in the laboratory doves. {delta}-ALAD activity in bone marrow cells and the relationships between lead accumulation and enzyme activity in red cells, are examined. 20 refs., 5 figs., 1 tab.

  9. Telomerase Activity in Peripheral Blood Mononuclear Cells from Senile Patients with Pneumonia

    Institute of Scientific and Technical Information of China (English)

    LIU Jian; ZHOU Zhen; LIU Xiaoqing

    2006-01-01

    To investigate the changes of the activity of telomerase in peripheral blood mononuclear cells (PBMCs) from senile patients with pneumonia, the telomerase activity was examined before and after the stimulation of phytohemagglutinin-M (PHA-M) in PBMCs from 10 control subjects (group A), 12 non-senile patients with pneumonia (group B) and 9 senile patients with pneumonia (group C). Also observed was the proliferative response of these PBMCs to PHA-M. The results showed that, both with or without the stimulation of PHA-M, the values of telomerase activity in PBMCs from group C patients (A values: pre-stimulation, 0.43±0.04; post-stimulation, 0.63±0.03) were significantly lower than those in PBMCs from both group A patients (A values: prestimulation, 0.65±0.05;post-stimulation, 1.26±0.13;P<0.001, respectively) and group B patients (A values: pre-stimulation, 0.63±0.03; post-stimulation, 0.93±0.03;P<0.05, respectively). The results of MTT test showed that the proliferative activity of PBMCs in group C patients (A value: 0.35±0.03) was also significantly lower than that in group A patients (A value:0. 55±0.04; P<0.05) and group B patients (A value: 0.46±0.03;P<0.05). These results indicate that the telomerase activity decreases in senile patients with pneumonia, which may be one of the mechanisms for the weakened immune function in those patients.

  10. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells

    DEFF Research Database (Denmark)

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna

    2010-01-01

    by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents......-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia.......BACKGROUND: The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced...

  11. Ouabain exacerbates activation-induced cell death in human peripheral blood lymphocytes

    Directory of Open Access Journals (Sweden)

    Mabel B. Esteves

    2005-06-01

    Full Text Available Lymphocytes activated by mitogenic lectins display changes in transmembrane potential, an elevation in the cytoplasmic Ca2+ concentrations, proliferation and/or activation induced cell death. Low concentrations of ouabain (an inhibitor of Na+,K+-ATPase suppress mitogen-induced proliferation and increases cell death. To understand the mechanisms involved, a number of parameters were analyzed using fluorescent probes and flow cytometry. The addition of 100nM ouabain to cultures of peripheral blood lymphocytes activated with 5µg/ml phytohemagglutinin (PHA did not modify the increased expression of the Fas receptor or its ligand FasL induced by the mitogen. However, treatment with ouabain potentiated apoptosis induced by an anti-Fas agonist antibody. A synergy between ouabain and PHA was also observed with regard to plasma membrane depolarization. PHA per se did not induce dissipation of mitochondrial membrane potential but when cells were also exposed to ouabain a marked depolarization could be observed, and this was a late event. It is possible that the inhibitory effect of ouabain on activated peripheral blood lymphocytes involves the potentiation of some of the steps of the apoptotic process and reflects an exacerbation of the mechanism of activation-induced cell death.Quando linfócitos são ativados por lectinas mitogênicas apresentam mudanças do potencial de membrana, elevação das concentrações citoplasmáticas de cálcio, proliferação e/ou morte celular induzida por ativação (AICD. Concentrações baixas de ouabaína (um inibidor da Na,K-ATPase suprimem a proliferação induzida por mitógenos e aumentam a morte celular. Para entender os mecanismos envolvidos, uma série de parâmetros foram avaliados usando sondas fluorescentes e citometria de fluxo. A adição de 100nM de ouabaína para culturas de linfócitos de sangue periférico ativadas por fitohemaglutinina (PHA não modificou o aumento de expressão do receptor Fas ou de

  12. Active enhancers are delineated de novo during hematopoiesis, with limited lineage fidelity among specified primary blood cells.

    Science.gov (United States)

    Luyten, Annouck; Zang, Chongzhi; Liu, X Shirley; Shivdasani, Ramesh A

    2014-08-15

    Tissues may adopt diverse strategies to establish specific transcriptional programs in daughter lineages. In intestinal crypts, enhancers for genes expressed in both major cell types appear broadly permissive in stem and specified progenitor cells. In blood, another self-renewing tissue, it is unclear when chromatin becomes permissive for transcription of genes expressed in distinct terminal lineages. Using chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) to profile activating histone marks, we studied enhancer dynamics in primary mouse blood stem, progenitor, and specified cells. Stem and multipotent progenitor cells show scant H3K4me2 marking at enhancers bound by specific transcription factors in their committed progeny. Rather, enhancers are modulated dynamically and serially, with substantial loss and gain of H3K4me2, at each cellular transition. Quantitative analysis of these dynamics accurately modeled hematopoiesis according to Waddington's notion of epigenotypes. Delineation of enhancers in terminal blood lineages coincides with cell specification, and enhancers active in single lineages show well-positioned H3K4me2- and H3K27ac-marked nucleosomes and DNaseI hypersensitivity in other cell types, revealing limited lineage fidelity. These findings demonstrate that enhancer chronology in blood cells differs markedly from that in intestinal crypts. Chromatin dynamics in hematopoiesis provide a useful foundation to consider classical observations such as cellular reprogramming and multilineage locus priming.

  13. Storing Blood Cells

    Science.gov (United States)

    1976-01-01

    The National Cancer Institute worked with Goddard Space Flight Center to propose a solution to the blood-cell freezing problem. White blood cells and bone marrow are stored for future use by leukemia patients as a result of Goddard and Jet Propulsion Laboratory expertise in electronics and cryogenics. White blood cell and bone marrow bank established using freezing unit. Freezing unit monitors temperature of cells themselves. Thermocouple placed against polyethylene container relays temperature signals to an electronic system which controls small heaters located outside container. Heaters allow liquid nitrogen to circulate at constant temperature and maintain consistent freezing rate. Ability to freeze, store, and thaw white cells and bone marrow without damage is important in leukemia treatment.

  14. Effect of Red Blood Cells on Platelet Activation and Thrombus Formation in Tortuous Arterioles.

    Science.gov (United States)

    Chesnutt, Jennifer K W; Han, Hai-Chao

    2013-01-01

    Thrombosis is a major contributor to cardiovascular disease, which can lead to myocardial infarction and stroke. Thrombosis may form in tortuous microvessels, which are often seen throughout the human body, but the microscale mechanisms and processes are not well understood. In straight vessels, the presence of red blood cells (RBCs) is known to push platelets toward walls, which may affect platelet aggregation and thrombus formation. However in tortuous vessels, the effects of RBC interactions with platelets in thrombosis are largely unknown. Accordingly, the objective of this work was to determine the physical effects of RBCs, platelet size, and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A discrete element computational model was used to simulate the transport, collision, adhesion, aggregation, and shear-induced platelet activation of hundreds of individual platelets and RBCs in thrombus formation in tortuous arterioles. Results showed that high shear stress near the inner sides of curved arteriole walls activated platelets to initiate thrombosis. RBCs initially promoted platelet activation, but then collisions of RBCs with mural thrombi reduced the amount of mural thrombus and the size of emboli. In the absence of RBCs, mural thrombus mass was smaller in a highly tortuous arteriole compared to a less tortuous arteriole. In the presence of RBCs however, mural thrombus mass was larger in the highly tortuous arteriole compared to the less tortuous arteriole. As well, smaller platelet size yielded less mural thrombus mass and smaller emboli, either with or without RBCs. This study shed light on microscopic interactions of RBCs and platelets in tortuous microvessels, which have implications in various pathologies associated with thrombosis and bleeding.

  15. [The effect of prostatilen on the contractile activity of the smooth-muscle cells of the blood vessels and bladder in cats].

    Science.gov (United States)

    al-Shchukri, S Kh; Barabanov, S V; Barabanova, V V; Bobkov, Iu A; Gorbachev, A G; Parastaeva, M M

    1996-07-01

    Prostatilene enhanced the functional activity of the bladder and blood vessels' smooth muscle cells. A possibility of activation of the smooth muscle cells contractility with prostatilene by a pharmaco-mechanical association, is discussed.

  16. Telomerase activity is increased and telomere length shortened in T cells from blood of patients with atopic dermatitis and psoriasis

    DEFF Research Database (Denmark)

    Wu, Kehuai; Higashi, N; Hansen, E R;

    2000-01-01

    We studied telomerase activity and telomere length in PBMC and purified CD4(+) and CD8(+) T cells from blood obtained from a total of 32 patients with atopic dermatitis, 16 patients with psoriasis, and 30 normal controls. The telomerase activity was significantly increased in PBMC from the patients...... compared with PBMC from normal donors. This increase was most pronounced in the subpopulation of CD4(+) T cells, which were significantly above the activity of the CD8(+) T cells in atopic dermatitis, psoriasis patients, and control persons. The telomere length was significantly reduced in all T cell...... subsets from both atopic dermatitis and psoriasis patients compared with normal individuals. Furthermore, the telomere length was found to be significantly shorter in CD4(+) memory T cells compared with the CD4(+) naive T cells, and both of the cell subsets from diseases were shown to be of significantly...

  17. Low White Blood Cell Count

    Science.gov (United States)

    Symptoms Low white blood cell count By Mayo Clinic Staff A low white blood cell count (leukopenia) is a decrease in disease-fighting cells ( ... a decrease in a certain type of white blood cell (neutrophil). The definition of low white blood cell ...

  18. Global suppression of mitogen-activated ovine peripheral blood mononuclear cells by surface protein activity from Mycoplasma ovipneumoniae.

    Science.gov (United States)

    Shahzad, W; Ajuwape, Adebowale Titilayo Phillip; Rosenbusch, Ricardo Francisco

    2010-07-01

    Mycoplasma ovipneumoniae is associated with chronic non-progressive pneumonia of sheep and goats. As with many other mycoplasmas involved in animal diseases, protective immune responses have not been achieved with vaccines, even though antibody responses can be obtained. This study focuses on characterizing the interaction of M. ovipneumoniae with ovine PBMC using carboxy-fluorescein-succinimidyl-ester (CFSE) loading and flow cytometry to measure lymphoid cell division. M. ovipneumoniae induced a strong in vitro polyclonal suppression of CD4(+), CD8(+), and B blood lymphocyte subsets. The suppressive activity could be destroyed by heating to 60 degrees C, and partially impaired by formalin and binary ethyleneimine treatment that abolished its viability. The activity resided on the surface-exposed membrane protein fraction of the mycoplasma, since mild trypsin treatment not affecting viability was shown to reduce suppressive activity. Trypsin-treated mycoplasma regained suppressive activity once the mycoplasma was allowed to re-synthesize its surface proteins. Implications for the design of vaccines against M. ovipneumoniae are discussed.

  19. Red blood cells, sickle cell (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). ... abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  20. Longitudinal microarray analysis of cell surface antigens on peripheral blood mononuclear cells from HIV+ individuals on highly active antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2008-03-01

    Full Text Available Abstract Background The efficacy of highly active antiretroviral therapy (HAART determined by simultaneous monitoring over 100 cell-surface antigens overtime has not been attempted. We used an antibody microarray to analyze changes in the expression of 135 different cell-surface antigens overtime on PBMC from HIV+ patients on HAART. Two groups were chosen, one (n = 6 achieved sustainable response by maintaining below detectable plasma viremia and the other (n = 6 responded intermittently. Blood samples were collected over an average of 3 years and 5–8 time points were selected for microarray assay and statistical analysis. Results Significant trends over time were observed for the expression of 7 cell surface antigens (CD2, CD3epsilon, CD5, CD95, CD36, CD27 and CD28 for combined patient groups. Between groups, expression levels of 10 cell surface antigens (CD11a, CD29, CD38, CD45RO, CD52, CD56, CD57, CD62E, CD64 and CD33 were found to be differential. Expression levels of CD9, CD11a, CD27, CD28 and CD52, CD44, CD49d, CD49e, CD11c strongly correlated with CD4+ and CD8+ T cell counts, respectively. Conclusion Our findings not only detected markers that may have potential prognostic/diagnostic values in evaluating HAART efficacy, but also showed how density of cell surface antigens could be efficiently exploited in an array-like manner in relation to HAART and HIV-infection. The antigens identified in this study should be further investigated by other methods such as flow cytometry for confirmation as biological analysis of these antigens may help further clarify their role during HAART and HIV infection.

  1. Red blood cell alloimmunization after blood transfusion

    NARCIS (Netherlands)

    Schonewille, Henk

    2008-01-01

    Current pretransfusion policy requires the patients’ serum to be tested for the presence of irregular red blood cell antibodies. In case of an antibody, red blood cells lacking the corresponding antigen are transfused after an antiglobulin crossmatch. The aim of the studies in this thesis is primari

  2. Lactadherin and procoagulant activities of red blood cells in cyclosporine induced thrombosis

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yi-ning; YU Hong-juan; HOU Jin-xiao; LU Cheng-fang; ZHOU Jin

    2009-01-01

    Background The side effects of cyclosporine therapy include thromboembolic complications. However, the mechanisms underlying the hypercoagulable state induced by cyclosporine are not fully understood. Cyclosporine binds to red blood cells (RBCs) with a high affinity in circulation and alters the membranes of RBCs. Therefore, we propose that such alterations inRBCs membranes play a role in cyclosporine-induced coagulopathy and this disorder may be rectified by lactadherin, a phosphatidylserine binding protein. Methods RBCs from healthy adults were treated with various concentrations of cyclosporine. Procoagulant activity of the RBC membrane was measured by the single stage recalcification time and confirmed by detection of tenase and thrombin assembly through enzymatic assays. Inhibition assays of coagulation were carried out in the presence of lactadherin, annexin V or antitissue factor. Phosphatidylserine exposure was detected by flow cytometry and confocal microscopy through binding with fluorescein isothiocyanate (FITC)-Iabeled lactadherin as well as FITC annexin V. Results RBCs treated with cyclosporine demonstrated increased procoagulant activity. Cyclosporine treatment markedly shortened the clotting time of RBCs ((305±10) seconds vs (366±15) seconds) and increased the generation of intrinsic factor Xase ((7.68±0.99) nmol/L vs (2.86±0.11) nmol/L) and thrombin ((15.83±1.37) nmol/L vs (4.88±0.13) nmol/L). Flow cytometry and confocal microscopy indicated that cyclosporine treatment induced an increased expression of phosphatidylserine on the RBC membrane. Lactadherin was more sensitive in detecting phosphatidylserine exposure of the RBC membrane than annexin V. The modulating effect of procoagulant activity was concomitant with and dependent on phosphatidylserine exposure. Blocking of phosphatidylserine with lactadherin effectively inhibited over 90% of Fxa generation and prothrombinase activity and prolonged coagulation time. Conclusions Procoagulant

  3. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.

    Directory of Open Access Journals (Sweden)

    Agnieszka Dyrda

    Full Text Available BACKGROUND: The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. METHODOLOGY/PRINCIPAL FINDINGS: The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K(+ and Cl(- currents were strictly dependent on the presence of Ca(2+. The Ca(2+-dependent currents were transient, with typical decay half-times of about 5-10 min, suggesting the spontaneous inactivation of a stretch-activated Ca(2+ permeability (PCa. These results indicate that local membrane deformations can transiently activate a Ca(2+ permeability pathway leading to increased [Ca(2+](i, secondary activation of Ca(2+-sensitive K(+ channels (Gardos channel, IK1, KCa3.1, and hyperpolarization-induced anion currents. CONCLUSIONS/SIGNIFICANCE: The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+-mediated effects observed during the normal aging process of red blood cells, and

  4. Effect of Activation-induced Cell Death of Peripheral Blood Mononuclear cells in Patients with Condyloma Acuminatum

    Institute of Scientific and Technical Information of China (English)

    江惟苏; 谭升顺

    2004-01-01

    Objective: To investigate the effect of activation-in-duced cell death (AICD) on cellular immune function in the condyloma acuminatum(CA). Methods: Peripheral blood mononuclear cells(PBMC) were isolated from normal healthy individuals (control group) and patients with CA. PBMC were cultured with PHA-P for 48h in vitro. Apoptosis of the PBMC was detected by flow cytometry. Supernatant cytokines (IL-2 and IL-10) were assayed by ELISA. Results: The rate of PBMC apoptosis in both CA group and control group in fresh PBMC was very low and similar in both groups(P>0.05). The rate of PBMC apoptosis within the CA group was noticeably increased compared to that of the control (P<0.001)after PBMC were cultured for 48h. The level of IL-2 was significantly lower in the CA group than in the control group (P<0.001), The level of IL-10 was significantly higher in the CA group compared to thecontrolgroup(P<0.001). Conclusion: Study results indicate that AICD may affect cellular mediated immune function and play an important role in the pathogenesis of CA.

  5. PSP activates monocytes in resting human peripheral blood mononuclear cells: immunomodulatory implications for cancer treatment.

    Science.gov (United States)

    Sekhon, Bhagwant Kaur; Sze, Daniel Man-Yuen; Chan, Wing Keung; Fan, Kei; Li, George Qian; Moore, Douglas Edwin; Roubin, Rebecca Heidi

    2013-06-15

    Polysaccharopeptide (PSP), from Coriolus versicolor, has been used as an adjuvant to chemotherapy, and has demonstrated anti-tumor and immunomodulating effects. However its mechanism remains unknown. To elucidate how PSP affects immune populations, we compared PSP treatments both with and without prior incubation in phytohaemagglutinin (PHA) - a process commonly used in immune population experimentation. We first standardised a capillary electrophoresis fingerprinting technique for PSP identification and characterisation. We then established the proliferative capability of PSP on various immune populations in peripheral blood mononuclear cells, using flow cytometry, without prior PHA treatment. It was found that PSP significantly increased the number of monocytes (CD14(+)/CD16(-)) compared to controls without PHA. This increase in monocytes was confirmed using another antibody panel of CD14 and MHCII. In contrast, proliferations of T-cells, NK, and B-cells were not significantly changed by PSP. Thus, stimulating monocyte/macrophage function with PSP could be an effective therapeutic intervention in targeting tumors.

  6. Transfection of B7-1 cDNA empowers antigen presentation of blood malignant cells for activation of anti-tumor T cells

    Institute of Scientific and Technical Information of China (English)

    克晓燕; 贾丽萍; 王晶; 王德炳

    2003-01-01

    Objective To define roles of B7-1 co-stimulation factor expressed in human malignant cell lines in mediating anti-tumor T cell immune responses. Methods Examining human leucocyte antigen (HLA) and B7 expressions on 8 human blood malignancies cell lines by flow cytometry. Transfecting B7-1 gene to B7-1 negative (B7*!-) Raji and B7*!- Jurkat cell lines by liposome, and comparing the potencies of blood malignant cell lines in the induction of T cell activation by examination of T cell cytokine mRNAs before and after transfection using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Results High level of HLA Ⅰ and Ⅱ molecules were expressed in most human blood malignant cell lines examined, and the co-stimulatory factor B7-2 was also highly expressed. In contrast, another member of B7 family: B7-1 was either not expressed or very limitedly expressed in most of these hematopoietic malignant cell lines. Most importantly, transfection of B7-1 gene to B7*!-. Raji and B7*!-. Jurkat cell lines made these cell lines better antigen presenting cells for stimulation of anti-tumor T cell activation, which was demonstrated by up regulation of expression of T cell cytokines IL-2, IL-4 and INF-γ mRNAs after incubation of these tumor cells with T cells for 24 h. Conclusions B7 co-stimulation plays an important role in anti-tumor immunity. Transfection of B7-1 gene to the human hematopoietic malignant cell lines that are deficient in the B7-1 expression empowers their antigen presentation potency for activation of anti-tumor T cells. Our results suggested that repairing the deficiency of B7-1 co-stimulatory pathway in tumor cells might be a novel immunotherapeutic approach for human hematopoietic malignancies.

  7. Influenza a virus induces an immediate cytotoxic activity in all major subsets of peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Sanda Sturlan

    Full Text Available BACKGROUND: A replication defective influenza A vaccine virus (delNS1 virus was developed. Its attenuation is due to potent stimulation of the innate immune system by the virus. Since the innate immune system can also target cancer cells, we reasoned that delNS1 virus induced immune-stimulation should also lead to the induction of innate cytotoxic effects towards cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood mononuclear cells (PBMCs, isolated CD56+, CD3+, CD14+ and CD19+ subsets and different combinations of the above subsets were stimulated by delNS1, wild type (wt virus or heat inactivated virus and co-cultured with tumor cell lines in the presence or absence of antibodies against the interferon system. Stimulation of PBMCs by the delNS1 virus effectively induced cytotoxicity against different cancer cell lines. Surprisingly, virus induced cytotoxicity was exerted by all major subtypes of PBMCs including CD56+, CD3+, CD14+ and CD19+ cells. Virus induced cytotoxicity in CD3+, CD14+ and CD19+ cells was dependent on virus replication, whereas virus induced cytotoxicity in CD56+ cells was only dependent on the binding of the virus. Virus induced cytotoxicity of isolated cell cultures of CD14+, CD19+ or CD56+ cells could be partially blocked by antibodies against type I and type II (IFN interferon. In contrast, virus induced cytotoxicity in the complete PBMC preparation could not be inhibited by blocking type I or type II IFN, indicating a redundant system of activation in whole blood. CONCLUSIONS/SIGNIFICANCE: Our data suggest that apart from their well known specialized functions all main subsets of peripheral blood cells also initially exert a cytotoxic effect upon virus stimulation. This closely links the innate immune system to the adaptive immune response and renders delNS1 virus a potential therapeutic tool for viro-immunotherapy of cancer.

  8. Effect of Blood Component Coatings of Enosseal Implants on Proliferation and Synthetic Activity of Human Osteoblasts and Cytokine Production of Peripheral Blood Mononuclear Cells

    Science.gov (United States)

    Hulejova, Hana; Bartova, Jirina; Riedel, Tomas; Pesakova, Vlasta

    2016-01-01

    The study monitored in vitro early response of connective tissue cells and immunocompetent cells to enosseal implant materials coated by different blood components (serum, activated plasma, and plasma/platelets) to evaluate human osteoblast proliferation and synthetic activity and inflammatory response presented as a cytokine profile of peripheral blood mononuclear cells (PBMCs) under conditions imitating the situation upon implantation. The cells were cultivated on coated Ti-plasma-sprayed (Ti-PS), Ti-etched (Ti-Etch), Ti-hydroxyapatite (Ti-HA), and ZrO2 surfaces. The plasma/platelets coating supported osteoblast proliferation only on osteoconductive Ti-HA and Ti-Etch whereas activated plasma enhanced proliferation on all surfaces. Differentiation (BAP) and IL-8 production remained unchanged or decreased irrespective of the coating and surface; only the serum and plasma/platelets-coated ZrO2 exhibited higher BAP and IL-8 expression. RANKL production increased on serum and activated plasma coatings. PBMCs produced especially cytokines playing role in inflammatory phase of wound healing, that is, IL-6, GRO-α, GRO, ENA-78, IL-8, GM-CSF, EGF, and MCP-1. Cytokine profiles were comparable for all tested surfaces; only ENA-78, IL-8, GM-CSF, and MCP-1 expression depended on materials and coatings. The activated plasma coating led to uniformed surfaces and represented a favorable treatment especially for bioinert Ti-PS and ZrO2 whereas all coatings had no distinctive effect on bioactive Ti-HA and Ti-Etch. PMID:27651560

  9. Whole blood assay for NK activity in splenectomized and non-splenectomized hairy cell leukemia patients during IFN-alpha-2b treatment

    DEFF Research Database (Denmark)

    Nielsen, B; Hokland, P; Ellegaard, J;

    1989-01-01

    . In splenectomized patients, a second rise in WB-NK was observed after 3-6 months of therapy, coinciding with the normalisation of the peripheral blood counts. In both groups of patients incubation with IFN in vitro induced a rise in NK activity before start of treatment, which was abrogated promptly after......Natural killer cell (NK) activity in peripheral blood (PB) was followed longitudinally for up to 2 yr after initiation of low-dose IFN-alpha-2b therapy in nine hairy cell leukemia (HCL) patients. A whole blood NK (WB-NK) assay was employed in order to measure the NK activity per unit blood...

  10. Red blood cells, multiple sickle cells (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited disorder in which abnormal hemoglobin (the red pigment inside red blood cells) is produced. The abnormal hemoglobin causes red blood cells to assume a sickle shape, like the ones seen in this photomicrograph.

  11. Red Blood Cell Antibody Identification

    Science.gov (United States)

    ... ID, RBC; RBC Ab ID Formal name: Red Blood Cell Antibody Identification Related tests: Direct Antiglobulin Test ; RBC ... I should know? How is it used? Red blood cell (RBC) antibody identification is used as a follow- ...

  12. Quantitative analysis and simultaneous activity measurements of Cu, Zn-superoxide dismutase in red blood cells by HPLC-ICPMS.

    Science.gov (United States)

    Nuevo Ordoñez, Y; Montes-Bayón, M; Blanco-González, E; Sanz-Medel, A

    2010-03-15

    The interest on accurate and precise determination of metalloproteins such as Cu, Zn-superoxide dismutase (Cu, Zn-SOD) involved in the redox balance of living cells is increasing. For this purpose, analytical strategies that provide absolute protein concentration measurements have to be developed. The determination of Cu, Zn-SOD through the measurement of the Cu associated to the protein, which provides its enzymatic activity, by liquid chromatography with online inductively coupled plasma mass spectrometric (ICPMS) detection is described here. Postcolumn isotope dilution analysis (IDA) of Cu has been applied for quantification after evaluation of the column recovery for the total Cu and also Cu-SOD that turned out to be quantitative. When the concentration results obtained via IDA using high-performance liquid chromatography (HPLC)-ICPMS are plotted versus the activity measurements (using the spectrophotometric pyrogallol autoxidation method) a good correlation curve is obtained. Such results permit us, from ICPMS measurements, to obtain simultaneously the Cu, Zn-SOD absolute concentration as well as its enzymatic activity by interpolation in the previously obtained curve. This possibility was explored in real samples (red blood cells of control individuals and patients with metallic total hip arthroplasty) obtaining a good match between direct enzymatic activity measurements and those obtained by interpolation in the correlation curve. The actual protein identification in the red blood cell extract was conducted by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and two matrixes were compared in order to preserve as much as possible the protein-metal interactions during the MALDI process. Interestingly, using a solution containing trihydroxyacetophenone in citrate buffer permitted us to observe some metal-protein interactions in the MS spectrum of the intact Cu, Zn-SOD from red blood cells.

  13. Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Rodriguez-Mateos, Ana; Sansone, Roberto; Kuhnle, Gunter G C; Thasian-Sivarajah, Sivatharsini; Krenz, Thomas; Horn, Patrick; Krisp, Christoph; Wolters, Dirk; Heiß, Christian; Kröncke, Klaus-Dietrich; Hogg, Neil; Feelisch, Martin; Kelm, Malte

    2012-11-15

    A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the nitric oxide (NO)-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Using immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-(3)H-arginine to L-(3)H-citrulline in a Ca(2+)/calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform, the activity of which is compromised in patients with coronary artery disease.

  14. Activation of Blood CD3+CD56+CD8+ T Cells during Pregnancy and Multiple Sclerosis

    Science.gov (United States)

    de Andrés, Clara; Fernández-Paredes, Lidia; Tejera-Alhambra, Marta; Alonso, Bárbara; Ramos-Medina, Rocío; Sánchez-Ramón, Silvia

    2017-01-01

    A striking common feature of most autoimmune diseases is their female predominance, with at least twice as common among women than men in relapsing–remitting multiple sclerosis (MS), the prevailing MS clinical form with onset at childbearing age. This fact, together with the protective effect on disease activity during pregnancy, when there are many biological changes including high levels of estrogens and progesterone, puts sex hormones under the spotlight. The role of natural killer (NK) and NKT cells in MS disease beginning and course is still to be elucidated. The uterine NK (uNK) cells are the most predominant immune population in early pregnancy, and the number and function of uNK cells infiltrating the endometrium are sex-hormones’ dependent. However, there is controversy on the role of estrogen or progesterone on circulating NK (CD56dim and CD56bright) and NKT cells’ subsets. Here, we show a significantly increased activation of CD3+CD56+CD8+ cells in pregnant MS women (MSP) compared with non-pregnant MS women (NPMS) (p pregnancy. Further studies on specific CD8+ NKT cells function and their role in pregnancy beneficial effects on MS are warranted to move forward more effective MS treatments. PMID:28280497

  15. Activation-induced apoptosis in peripheral blood mononuclear cells during hepatosplenic Schistosoma mansoni infections.

    Science.gov (United States)

    Ghoneim, H M; Demian, S R; Heshmat, M G; Ismail, N S; El-Sayed, Laila H

    2008-01-01

    It is well established that programmed cell death (apoptosis) is an important regulator of host responses during infection with a variety of intra- and extra-cellular pathogens. The present work aimed at assessment of in vitro spontaneous and phytohemagglutinin (PHA)-induced apoptosis in mononuclear cells isolated from patients with hepatosplenic form of S. mansoni infections. Cell death data were correlated to the degree of lymphoproliferative responses to PHA as well as to the serum anti-schistosomal antibody titers. A markedly significant increase in PHA-induced apoptosis in lymphocytes isolated from S. mansoni-infected patients was seen when compared to the corresponding healthy controls. However, a slight difference was recorded between the two studied groups regarding the spontaneous apoptosis. This was accompanied with a significant impairment of in vitro PHA-induced lymphoproliferation of T cells from S. mansoni patients. Data of the present study supports the hypothesis that activation-induced cell death (AICD) is a potentially contributing factor in T helper (Th) cell regulation during chronic stages of schistosomiasis, which represents a critically determinant factor in the host-parasite interaction and might influence the destiny of parasitic infections either towards establishment of chronic infection or towards host death.

  16. Bovine colostrum modulates immune activation cascades in human peripheral blood mononuclear cells in vitro

    DEFF Research Database (Denmark)

    Jenny, Marcel; Pedersen, Ninfa R; Hidayat, Budi J

    2010-01-01

    factors and has a long history of use in traditional medicine. In an approach to evaluate the effects of bovine colostrum (BC) on the T-cell/macrophage interplay, we investigated and compared the capacity of BC containing low and high amounts of lactose and lactoferrin to modulate tryptophan degradation...... of lactose present in BC seems to diminish the activity of BC in our test system, since BC with higher amounts of lactose attenuated the stimulatory as well as the suppressive activity of BC....

  17. Transcriptional activity of telomerase complex in CD34- stem cells of cord blood in dependence of preparation time.

    Directory of Open Access Journals (Sweden)

    M Bojdys-Szyndlar

    2009-12-01

    Full Text Available The aim of the study was to determine whether the expression of telomerase subunits encoding genes changes during the process of cord blood preparation. It should establish if the commonly accepted 24 hours time interval in stem cells kriopreservation procedure significantly influences their immortalization and so decreases the "quality" of cord blood stem cells. Investigation includes 69 women. Spontaneous labour was the inclusion condition. The material was collected at birth after clamping of umbilical cord by direct vasopuncture. CD34- cells were extracted from cord blood (MACS, Miltenyi Biotec; Bisley, Surrey, UK. The expression profile of telomerase activators and inhibitors encoding genes was determined using HG_U133A oligonucleotide microarray (Affymetrix. We used a real-time quantitative RT-PCR assay to quantify the telomerase TERT, hTR and TP1 subunits mRNA copy numbers in CD34- cells in 0, 6, 12 and 24 hours after cord blood collection. We observed significant decrease of numbers of copies of TERTA+B mRNA within the successive hours of observation. Significant decrease of numbers of TERTA mRNA copies was confirmed after 24 hours. However, we observed significant increase of numbers of copies of TERTB mRNA after 6 hours of observation. Similar level was maintained during another 6h. The significantly lower number of copies of TERTB mRNA was observed after 24h. We also observed significant increase of number of copies of TERT mRNA after 6 hours. Number of copies of TERT mRNA significantly decreased after another 6h, remaining, however, on a higher then initial one. The significant lower number of copies of TERT mRNA was observed 24h after delivery. The possible explanation of those results is discussed in the paper.

  18. Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus.

    Science.gov (United States)

    Seki, Tomohisa; Yuasa, Shinsuke; Fukuda, Keiichi

    2012-03-15

    Induced pluripotent stem cells (iPSCs) have become important cell sources for genetic disease models, and they have the potential to be cell sources for future clinical therapies. However, invasive tissue sampling reduces the number of candidates who consent to donate cells for iPSC generation. In addition, integrated transgenes can potentially insert at inappropriate points in the genome, and in turn have a direct oncogenic effect. Technical modifications using a combination of activated T cells and a temperature-sensitive mutant of Sendai virus (SeV) can avoid invasive tissue sampling and residual transgene issues in generating iPSCs. Such advances may increase the number of consenting patients for cell donations. Here we present a detailed protocol for the generation of iPSCs from a small amount of human peripheral blood using a combination of activated T cells and mutant SeV encoding human OCT3/4, SOX2, KLF4 and c-MYC; T cell-derived iPSCs can be generated within 1 month of blood sampling.

  19. White Blood Cell Disorders

    Science.gov (United States)

    ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ...

  20. Role of dietary fish oil on nitric oxide synthase activity and oxidative status in mice red blood cells.

    Science.gov (United States)

    Martins, Marcela A; Moss, Monique B; Mendes, Iara K S; Águila, Márcia B; Mandarim-de-Lacerda, Carlos Alberto; Brunini, Tatiana M C; Mendes-Ribeiro, Antônio Cláudio

    2014-12-01

    The consumption of n-3 polyunsaturated fatty acids (PUFAs) derived from fish oil concomitant with a reduced intake of saturated fats is associated with cardiovascular benefits, which may result from the participation of nitric oxide (NO). In contrast, PUFAs are vulnerable to peroxidation, which could affect the oxidative stability of the cell and reduce NO bioavailability. Therefore, we investigated the effects of high fat diets with increasing amounts of fish oil (0-40% of energy) in place of lard on the l-arginine-NO pathway, the arginase pathway and oxidative status in mice red blood cells (RBC). We found that l-arginine transport, as well as NO synthase (NOS) expression and activity, was enhanced by the highest doses of fish oil (30 and 40%). In contrast, diets rich in lard led to NOS expression and activity impairment. Arginase expression was not significantly affected by any of the dietary regimens. No significant difference in protein and lipid oxidative markers was observed among any of the fish-oil fed mice; only lard feeding induced protein damage in addition to a decreased superoxide dismutase activity. These data suggest that a substantial dose of fish oil, but not low doses, activates the RBC l-arginine-NO pathway without resulting in oxidative damage.

  1. Effect of bovine lactoferrin on functions of activated feline peripheral blood mononuclear cells during chronic feline immunodeficiency virus infection.

    Science.gov (United States)

    Kobayashi, Saori; Sato, Reeko; Aoki, Takako; Omoe, Katsuhiko; Inanami, Osamu; Hankanga, Careen; Yamada, Yuichi; Tomizawa, Nobuyuki; Yasuda, Jun; Sasaki, Juso

    2008-05-01

    Feline immunodeficiency virus (FIV) infection is characterized by chronic overactivation of immune and inflammatory system, resulting in anergic state and dysfunction of immune cells. Lactoferrin (LF), a glycoprotein present in exocrine secretions and neutrophils, plays an important role in host defense system. Our previous study showed that oral administration of bovine LF (bLF) suppressed oral inflammation, improved the clinical symptoms and decreased serum gamma-globulin as a marker of inflammation in FIV-infected cats with intractable stomatitis. The anti-inflammatory effect was partly involved in regulation of neutrophil function by bLF. In this study, to clarify the relationship between anti-inflammatory effects of bLF and peripheral blood mononuclear cells (PBMC), we examined the effect of bLF on proliferation, cell cycle progression and cytokine expression in mitogen-activated PBMC. MTT [3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl tetrazolium bromide] assay showed that bLF inhibited the concanavalin A (ConA)-induced cell proliferation in FIV-infected cats with the asymptomatic carrier and AIDS-related complex (ARC) phase. Bovine LF restored ConA-induced cell cycle progression and resulted in suppression of the induced apoptosis in feline PBMC. Real-time RT-PCR showed that bLF suppressed ConA-induced expression of interferon-gamma and interleukin-2 in cells of the ARC group regardless of the time of its addition to the medium. These results suggest the hypothesis that therapy with bLF may have the potential to improve and protect functions of overactivated lymphocytes by modulating the cell proliferation, cell cycle and cytokines expression in cats in terminal stage of FIV infection.

  2. Decreased ADP-Ribosyl Cyclase Activity in Peripheral Blood Mononuclear Cells from Diabetic Patients with Nephropathy

    Directory of Open Access Journals (Sweden)

    Michio Ohtsuji

    2008-01-01

    Results. ADPRCA negatively correlated with the level of HbA1c (=.040, 2=.073, although ADPRCA showed no significant correlation with gender, age, BMI, blood pressure, level of fasting plasma glucose and lipid levels, as well as type, duration, or medication of diabetes. Interestingly, patients with nephropathy, but not other complications, presented significantly lower ADPRCA than those without nephropathy (=.0198 and diabetes (=.0332. ANCOVA analysis adjusted for HbA1c showed no significant correlation between ADPRCA and nephropathy. However, logistic regression analyses revealed that determinants for nephropathy were systolic blood pressure and ADPRCA, not HbA1c. Conclusion/interpretation. Decreased ADPRCA significantly correlated with diabetic nephropathy. ADPRCA in PBMCs would be an important marker associated with diabetic nephropathy.

  3. Rare red blood cell abnormalities

    NARCIS (Netherlands)

    van Zwieten, R.

    2015-01-01

    The aim of this thesis is to give insight in the process of diagnosing rare red blood cell defects, to clarify the relation of a defect with cell function and to extend, in this respect, our knowledge about normal red cell function and biochemistry. It is possible to categorize different red cell ab

  4. Divergent Response Profile in Activated Cord Blood T cells from First-born Child Implies Birth-order-associated in Utero Immune Programming

    DEFF Research Database (Denmark)

    Kragh, Marie; Larsen, Jeppe Madura; Thysen, Anna Hammerich

    2016-01-01

    the association between birth-order and the functional response of stimulated cord blood T cells. Method: Purified cord blood T cells were polyclonally activated with anti-CD3/CD28-coated beads in a subgroup of 28 children enrolled in the COPSAC2010 birth cohort. Expression levels of seven activation markers...... on helper and cytotoxic T cells as well as the percentage of CD4+CD25+ T cells were assessed by flow cytometry. Production of IFN-γ, TNF-α, IL-17, IL-4, IL-5, IL-13 and IL-10 was measured in supernatants. Results: IL-10 secretion (P = 0.007) and CD25 expression on CD4+ helper T cells (P = 0.......0003) in activated cord blood T cells were selectively reduced in first-born children, while the percentage of CD4+CD25+ cord blood T cells was independent of birth-order. Conclusion: First-born infants display a reduced anti-inflammatory profile in T cells at birth. This possible in utero ‘birth-order’ T cell...

  5. Biphasic influence of PGE2 on the resorption activity of osteoclast-like cells derived from human peripheral blood monocytes and mouse RAW264.7 cells.

    Science.gov (United States)

    Lutter, Anne-Helen; Hempel, Ute; Anderer, Ursula; Dieter, Peter

    2016-08-01

    Osteoclasts are large bone-resorbing cells of hematopoietic origin. Their main function is to dissolve the inorganic component hydroxyapatite and to degrade the organic bone matrix. Prostaglandin E2 (PGE2) indirectly affects osteoclasts by stimulating osteoblasts to release factors that influence osteoclast activity. The direct effect of PGE2 on osteoclasts is still controversial. To study the influence of PGE2 on osteoclast activity, human peripheral blood monocytes (hPBMC) and mouse RAW264.7 cells were cultured on osteoblast-derived extracellular matrix. hPBMC and RAW264.7 cells were differentiated by the addition of macrophage colony-stimulation factor and receptor activator of NFκB ligand and treated with PGE2 before and after differentiation induction. The pit area, an indicator of resorption activity, and the activity of tartrate-resistant acid phosphatase were dose-dependently inhibited when PGE2 was present ab initio, whereas the resorption activity remained unchanged when the cells were exposed to PGE2 from day 4 of culture. These results lead to the conclusion that PGE2 treatment inhibits only the differentiation of precursor osteoclasts whereas differentiated osteoclasts are not affected.

  6. Effect of advanced glycosylation end products on activity of protein kinase C in human peripheral blood mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objectives TO investigate the effect of advanced glycosylation end products (AGEs) on the activity of protein kinese C (PKC) in human peripheral bloodmononuclear Cells (PBMC) and to observe whether aminoguanidine (AG) can influence the effect of AGEs. Methods After PBMC were isoiated from human peripheral blood and incubated with different concentrations of AGEs-BSA for various periods, total PKC activity in PBMC was determined by measuring the incorporation of 32P from [γ-32P] ATP=into a special substrate using Prornega PKC assay kit. Results AGEs-BSA increased the total PKC activity in PBMC from 83.43±6.57 pmol/min/mg protein to 116.8±13.82 pmol/min/mg protein with a peak at 15 min.AGEs-BSA also increased the total PKC activity in a concentration-dependent manner from 83.1±6.4 pmol/min/mg protein(control) to 119.1±13.3 pmol/min/mg protein (control vs AGEs-BSA 400 mg/L, P<0.01). Furthermore, AGEs-BSA induced an elevation of PKC activity in a glycosylating time-related manner,from 80.9±8.2 (control) to 118.3±11.5 pmol/min/mg protein (glycasytation for 12 wk, P<0.01). The total PKC activity stimulated by AGEs-BSA pretreated with AG (100, 200 mg/L) was markedly lower than that of AGEs-BSA group not pretreated with AG ( P<0.05, P<0.01). Conclusions AGEs-BSA increased the total PKC activity in PBMC in a concentration and incubation time dependent manner. The ability of AGEs-B.SA to stimulate PKC activity was markedly decreased by pretreatment of AGEs-BSA with AG.

  7. Effects of aspirin on number,activity and inducible nitric oxide synthase of endothelial progenitor cells from peripheral blood

    Institute of Scientific and Technical Information of China (English)

    Tu-gang CHEN; Jun-zhu CHEN; Xu-dong XIE

    2006-01-01

    Aim:To investigate whether aspirin has an influence on endothelial progenitor cells (EPC).Methods:Total mononuclear cells (MNC) were isolated from peripheral blood by Ficoll density gradient centrifugation,then cells were plated on fibronectin-coated culture dishes.After 7 d of culture,attached cells were stimulated with aspirin (to achieve final concentrations of 1,2,5,and 10 mmol/L) for 3,6,12,and 24 h.EPC were characterized as adherent cells that were double positive for 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine low density lipoprotein (DiLDL) uptake and lectin binding by direct fluorescent staining.EPC proliferation and migration were assayed using a 3- (4,5-dimethyl-2 thiazoyl) -2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and a modified Boyden chamber assay.respectively.An EPC adhesion assay was performed by replating the EPC on fibronectin-coated dishes,and then adherent cells were counted.In vitro vasculogenesis activity was assayed by using an in vitro vasculogenesis kit. Inducible nitric oxide synthase (iNOS) was assayed by Westem blotting.Results:Incubation of isolated human MNC with aspirin decreased the number of EPC.Aspirin also decreased the proliferative,migratory,adhesive,and in vitro Vasculogenesis capacity of EPC,and also their iNOS levels in a concentration-and time-dependent manner.Conclusion:Aspirin decreases (1) the number of EPC; (2) the proliferative,migratory,adhesive and in vitro vasculogenesis capacities of EPC;and (3) iNOS levels in EPC.

  8. ACTIVATION OF PLASMA SYSTEMS AND BLOOD-CELLS BY ENDOTOXIN IN RABBITS

    NARCIS (Netherlands)

    JANSEN, NJG; VANOEVEREN, W; HOITING, BH; WILDEVUUR, CRH

    1991-01-01

    Endotoxin plays an important role in the pathogenesis of septicaemia by activation of cellular and plasmatic systems. This study was performed to investigate the effects of infusion of endotoxin in rabbits by measuring the activation of cellular and plasma systems. Endotoxin was infused at a rate of

  9. Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis

    Science.gov (United States)

    Shin, Tae-Hoon; Kim, Hyung-Sik; Kang, Tae-Wook; Lee, Byung-Chul; Lee, Hwa-Yong; Kim, Yoon-Jin; Shin, Ji-Hee; Seo, Yoojin; Won Choi, Soon; Lee, Seunghee; Shin, Kichul; Seo, Kwang-Won; Kang, Kyung-Sun

    2016-01-01

    Rheumatoid arthritis (RA) is a long-lasting intractable autoimmune disorder, which has become a substantial public health problem. Despite widespread use of biologic drugs, there have been uncertainties in efficacy and long-term safety. Mesenchymal stem cells (MSCs) have been suggested as a promising alternative for the treatment of RA because of their immunomodulatory properties. However, the precise mechanisms of MSCs on RA-related immune cells are not fully elucidated. The aim of this study was to investigate the therapeutic potential of human umbilical cord blood-derived MSCs (hUCB-MSCs) as a new therapeutic strategy for patients with RA and to explore the mechanisms underlying hUCB-MSC-mediated immunomodulation. Mice with collagen-induced arthritis (CIA) were administered with hUCB-MSCs after the onset of disease, and therapeutic efficacy was assessed. Systemic delivery of hUCB-MSCs significantly ameliorated the severity of CIA to a similar extent observed in the etanercept-treated group. hUCB-MSCs exerted this therapeutic effect by regulating macrophage function. To verify the regulatory effects of hUCB-MSCs on macrophages, macrophages were co-cultured with hUCB-MSCs. The tumor necrosis factor (TNF)-α-mediated activation of cyclooxygenase-2 and TNF-stimulated gene/protein 6 in hUCB-MSCs polarized naive macrophages toward an M2 phenotype. In addition, hUCB-MSCs down-regulated the activation of nucleotide-binding domain and leucine-rich repeat pyrin 3 inflammasome via a paracrine loop of interleukin-1β signaling. These immune-balancing effects of hUCB-MSCs were reproducible in co-culture experiments using peripheral blood mononuclear cells from patients with active RA. hUCB-MSCs can simultaneously regulate multiple cytokine pathways in response to pro-inflammatory cytokines elevated in RA microenvironment, suggesting that treatment with hUCB-MSCs could be an attractive candidate for patients with treatment-refractory RA. PMID:28005072

  10. Red blood cells, spherocytosis (image)

    Science.gov (United States)

    Spherocytosis is a hereditary disorder of the red blood cells (RBCs), which may be associated with a mild anemia. Typically, the affected RBCs are small, spherically shaped, and lack the light centers seen ...

  11. Transcriptional Activity of Human Endogenous Retroviruses in Human Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Emanuela Balestrieri

    2015-01-01

    Full Text Available Human endogenous retroviruses (HERVs have been implicated in human physiology and in human pathology. A better knowledge of the retroviral transcriptional activity in the general population and during the life span would greatly help the debate on its pathologic potential. The transcriptional activity of four HERV families (H, K, W, and E was assessed, by qualitative and quantitative PCR, in PBMCs from 261 individuals aged from 1 to 80 years. Our results show that HERV-H, HERV-K, and HERV-W, but not HERV-E, are transcriptionally active in the test population already in the early childhood. In addition, the transcriptional levels of HERV-H, HERV-K, and HERV-W change significantly during the life span, albeit with distinct patterns. Our results, reinforce the hypothesis of a physiological correlation between HERVs activity and the different stages of life in humans. Studies aiming at identifying the factors, which are responsible for these changes during the individual’s life, are still needed. Although the observed phenomena are presumably subjected to great variability, the basal transcriptional activity of each individual, also depending on the different ages of life, must be carefully considered in all the studies involving HERVs as causative agents of disease.

  12. The cell-free fetal DNA fraction in maternal blood decreases after physical activity

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Hatt, Lotte; Bach, Cathrine;

    2014-01-01

    of cycling with a pulse-rate of 150 beats per minute. The concentrations of cffDNA (DYS14) and cfDNA (RASSF1A) were assessed using quantitative real-time polymerase chain reaction. RESULTS: The fetal fraction decreased significantly in all participants after physical activity (p 

  13. High Expression of NKG2A/CD94 and Low Expression of Granzyme B Are Associated with Reduced Cord Blood NK Cell Activity

    Institute of Scientific and Technical Information of China (English)

    Yanyan Wang; Han Xu; Xiaodong Zheng; Haiming Wei; Rui Sun; Zhigang Tian

    2007-01-01

    Human umbilical cord blood (CB) has recently been used as a source of stem cells in transplantation. NK cells derived from CB are the key effector cells involved in graft-versus-host disease (GVHD) and graft-versus-leukemia(GVL). It was reported that the activity of CB NK cells was lower than that of adult peripheral blood (PB) NK cells.In this study, we analyzed the expression of some NK cell receptors and cytotoxicity-related molecules in CB and PB NK cells. The expressions of activating NK receptors, CD16, NKG2D and NKp46, did not show significant difference between CB and PB NK cells. But the expression of inhibitory receptor NKG2A/CD94 was significantly higher on CB NK cells. As to the effector function molecules, granzyme B was expressed significantly lower in CB NK cells, but the expressions of intracellular perforin, IFN-γ, TNF-α and cell surface FasL and TRAIL did not show difference between CB and PB NK cells. The results indicated that the high expression of NKG2A/CD94 and low expression of granzyme B may be related with the reduced activity of CB NK cells.

  14. Eryptosis-inducing activity of bisphenol A and its analogs in human red blood cells (in vitro study).

    Science.gov (United States)

    Maćczak, Aneta; Cyrkler, Monika; Bukowska, Bożena; Michałowicz, Jaromir

    2016-04-15

    Bisphenols are important chemicals that are widely used in the manufacturing of polycarbonates, epoxy resin and thermal paper, and thus the exposure of humans to these substances has been noted. The purpose of this study was to assess eryptotic changes in human erythrocytes exposed (in vitro) to bisphenol A (BPA) and its selected analogs, i.e.,bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF). The erythrocytes were incubated with compounds studied at concentrations ranging from 1 to 250μg/mL for 4, 12 or 24h. The results showed that BPA and its analogs increased cytosolic calcium ions level with the strongest effect noted for BPAF. It has also been revealed that all bisphenols analyzed, and BPAF and BPF in particular increased phosphatidylserine translocation in red blood cells, which confirmed that they exhibited eryptotic potential in this cell type. Furthermore, it was shown that BPA and its analogs caused significant increase in calpain and caspase-3 activities, while the strongest effect was noted for BPAF. BPS, which is the main substituent of bisphenol A in polymers and thermal paper production exhibited similar eryptotic potential to BPA. Eryptotic changes in human erythrocytes were provoked by bisphenols at concentrations, which may influence the human body during occupational exposure or subacute poisoning with these compounds.

  15. Changes in Blood B Cell-Activating Factor (BAFF Levels in Multiple Sclerosis: A Sign of Treatment Outcome.

    Directory of Open Access Journals (Sweden)

    Karin Kannel

    Full Text Available Multiple sclerosis (MS is mediated primarily by autoreactive T cells. However, evidence suggesting the involvement of humoral immunity in brain diseases has increased interest in the role of B cells and their products during MS pathogenesis. The major survival factor for B cells, BAFF has been shown to play a role in several autoimmune conditions. Elevated BAFF levels have been reported in MS animal model and during MS relapse in patients. Moreover, disease-modifying treatments (DMT reportedly influence blood BAFF levels in MS patients, but the significance of these changes remains unclear. The present study addresses how blood BAFF levels are associated with the clinical course of relapsing-remitting MS and the effectiveness of DMT and short-term steroid treatment. During a prospective longitudinal follow-up of 2.3 years, BAFF was measured in the blood of 170 MS patients in the stable phase and within 186 relapses. BAFF levels were significantly higher in MS patients compared to healthy controls. However, stable MS patients without relapses exhibited significantly higher BAFF levels than relapsing patients. Treatment with interferon-β and immunosuppressants raised BAFF blood levels. Interestingly, a similar effect was not seen in patients treated with glatiramer acetate. Short-term treatment with high doses of intravenous methylprednisolone did not significantly alter plasma BAFF levels in 65% of relapsing-remitting MS patients. BAFF were correlated weakly but significantly with monocyte and basophil counts, but not with other blood cell types (neutrophils, lymphocytes, or eosinophils or inflammatory biomarkers. To our knowledge, this is the first report demonstrating that higher blood BAFF levels may reflect a more stable and effective MS treatment outcome. These results challenge hypotheses suggesting that elevated blood BAFF levels are associated with more severe disease presentation and could explain the recent failure of pharmaceutical

  16. Monounsaturated fatty acid ether oligomers formed during heating of virgin olive oil show agglutination activity against human red blood cells.

    Science.gov (United States)

    Patrikios, Ioannis S; Mavromoustakos, Thomas M

    2014-01-29

    The present work focuses on the characterization of molecules formed when virgin olive oil is heated at 130 °C for 24 h open in air, which are found to be strong agglutinins. The hemagglutinating activity of the newly formed molecule isolated from the heated virgin olive oil sample was estimated against human red blood cells (RBCs). Dimers and polymers (high molecular weight molecules) were identified through thin layer chromatography (TLC) of the oil mixture. (1)H and (13)C nuclear magnetic resonance (NMR) and gas chromatography-mass spectroscopy (GC-MS) were the methods used for structural characterization. Among others, oligomerization of at least two monounsaturated fatty acids (FA) by an ether linkage between the hydrocarbon chains is involved. Light microscopy was used to characterize and visualize the agglutination process. Agglutination without fusion or lysis was observed. It was concluded that the heating of virgin olive oil open in air, among other effects, produces oligomerization as well as polymerization of unsaturated FA, possibly of monohydroxy, monounsaturated FA that is associated with strong hemagglutinating activity against human RBCs. The nutritional value and the effects on human health of such oligomers are not discussed in the literature and remain to be investigated.

  17. A method for production and determination of histamine releasing activity from human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Kampen, G T; Poulsen, L K; Reimert, C M

    1997-01-01

    Histamine releasing factors, i.e. cytokines capable of inducing histamine release from basophils or mast cells, have been suggested to be involved in the pathogenesis of, for example, allergic late-phase reactions. Here we describe a controlled method for production and determination of histamine......). The preparations of HRA induced dose- and Ca2+-dependent histamine release from leukocytes. Supernatants of parallel cultures of unstimulated MNC did not induce histamine release. The HRA was neither due to exogenous histamine releasing compounds (e.g. Con A) nor to residual histamine in the preparations of HRA....... The kinetics of HRA induced histamine release (half-maximal release after > 40 min) were slower and more protracted than those of anti-IgE induced histamine release. However, based on a comparison between HRA induced histamine release from leukocytes and purified (97%) basophils, this did not appear to be due...

  18. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity...

  19. Increased presence of FOXP3+ regulatory T cells in inflamed muscle of patients with active juvenile dermatomyositis compared to peripheral blood.

    Directory of Open Access Journals (Sweden)

    Yvonne Vercoulen

    Full Text Available Juvenile dermatomyositis (JDM is an immune-mediated inflammatory disease affecting the microvasculature of skin and muscle. CD4+ CD25+ FOXP3+ regulatory T cells (Tregs are key regulators of immune homeostasis. A role for Tregs in JDM pathogenesis has not yet been established. Here, we explored Treg presence and function in peripheral blood and muscle of JDM patients. We analyzed number, phenotype and function of Tregs in blood from JDM patients by flow cytometry and in vitro suppression assays, in comparison to healthy controls and disease controls (Duchenne's Muscular Dystrophy. Presence of Tregs in muscle was analyzed by immunohistochemistry. Overall, Treg percentages in peripheral blood of JDM patients were similar compared to both control groups. Muscle biopsies of new onset JDM patients showed increased infiltration of numbers of T cells compared to Duchenne's muscular dystrophy. Both in JDM and Duchenne's muscular dystrophy the proportion of FOXP3+ T cells in muscles were increased compared to JDM peripheral blood. Interestingly, JDM is not a self-remitting disease, suggesting that the high proportion of Tregs in inflamed muscle do not suppress inflammation. In line with this, peripheral blood Tregs of active JDM patients were less capable of suppressing effector T cell activation in vitro, compared to Tregs of JDM in clinical remission. These data show a functional impairment of Tregs in a proportion of patients with active disease, and suggest a regulatory role for Tregs in JDM inflammation.

  20. Controlled exposure to diesel exhaust and traffic noise - Effects on oxidative stress and activation in mononuclear blood cells

    DEFF Research Database (Denmark)

    Hemmingsen, Jette Gjerke; Møller, Peter; Jantzen, Kim

    2015-01-01

    unaltered in peripheral blood mononuclear cells (PBMCs). No significant differences in DNA damage levels, measured by the comet assay, were observed after DE exposure, whereas exposure to high noise levels was associated with significantly increased levels of hOGG1-sensitive sites in PBMCs. Urinary levels...

  1. Telomere Length in Peripheral Blood Mononuclear Cells of Patients on Chronic Hemodialysis Is Related With Telomerase Activity and Treatment Duration.

    Science.gov (United States)

    Stefanidis, Ioannis; Voliotis, Georgios; Papanikolaou, Vassilios; Chronopoulou, Ioanna; Eleftheriadis, Theodoros; Kowald, Axel; Zintzaras, Elias; Tsezou, Aspasia

    2015-09-01

    Telomere shortening to a critical limit is associated with replicative senescence. This process is prevented by the enzyme telomerase. Oxidative stress and chronic inflammation are factors accelerating telomere loss. Chronic hemodialysis, typically accompanied by oxidative stress and inflammation, may be also associated with replicative senescence. To test this hypothesis, we determined telomere length and telomerase activity in peripheral blood mononuclear cells (PBMCs) in a cross-sectional study. Hemodialysis patients at the University Hospital Larissa and healthy controls were studied. Telomere length was determined by the TeloTAGGG Telomere Length Assay and telomerase activity by Telomerase PCR-ELISA (Roche Diagnostics GmbH, Mannheim, Germany). We enrolled 43 hemodialysis patients (17 females; age 65.0 ± 12.7 years) and 23 controls (six females; age 62.1 ± 15.7 years). Between the two groups, there was no difference in telomere length (6.95 ± 3.25 vs. 7.31 ± 1.96 kb; P = 0.244) or in telomerase activity (1.82 ± 2.91 vs. 2.71 ± 3.0; P = 0.085). Telomere length correlated inversely with vintage of hemodialysis (r = -0.332, P = 0.030). In hemodialysis patients, positive telomerase activity correlated with telomere length (r = 0.443, P = 0.030). Only age, and neither telomere length nor telomerase activity, was an independent survival predictor (hazard ratio 1.116, 95% confidence interval 1.009-1.234, P = 0.033). In this study, telomere length and telomerase activity in PBMCs are not altered in hemodialysis patients compared with healthy controls. Long duration of hemodialysis treatment is associated with telomere shortening and positive telomerase activity with an increased telomere length in PBMCs of hemodialysis patients. The underlying mechanism and clinical implications of our findings require further investigation.

  2. [Expression of activating and inhibitory receptors on peripheral blood natural killer cell subsets of women with reproductive failures].

    Science.gov (United States)

    Baltadzheiva, D; Penkova, K; Stamenov, G; Dimitrova, D; Michailova, A

    2010-01-01

    It is now apparent that immunologic implantation failure and recurrent abortions are more than likely mediated through activation of natural killer (NK) cells. The NK cell activity is mediated by a balance between activating and inhibitory receptors upon recognition of MHC class I molecules. In this study, we investigated by flow cytometry the expression of activating and inhibitory receptors on NK cells of women with reproductive failures- recurrent spontaneous abortion (RSA) and implantation failures (IF). In women with implantation failures CD56+CD16+ NK cell subset was significantly increased (p = 0.017) and CD158a expressing NK cells was significantly decreased (p = 0.027). CD161-activating receptor expressing CD56+ NK cells were significantly decreased in women with RSA (p = 0.033). These data further support an imbalance in NK cell subsets in women with reproductive failures.

  3. Fermented Papaya Preparation Restores Age-Related Reductions in Peripheral Blood Mononuclear Cell Cytolytic Activity in Tube-Fed Patients

    Science.gov (United States)

    Fujita, Yuhzo; Tsuno, Haruo; Nakayama, Jiro

    2017-01-01

    Tube-fed elderly patients are generally supplied with the same type of nutrition over long periods, resulting in an increased risk for micronutrient deficiencies. Dietary polyphenols promote immunity and have anti-inflammatory, anti-carcinogenic, and anti-oxidative properties. Carica papaya Linn. is rich in several polyphenols; however, these polyphenols are poorly absorbed from the digestive tract in their original polymerized form. Therefore, we determined the molecular components of a fermented Carica papaya Linn. preparation, as well as its effects on immunity and the composition of gut microbiota in tube-fed patients. Different doses of the fermented C. papaya L. preparation were administered to three groups of tube-fed patients for 30 days. Its effects on fecal microbiota composition and immunity were assessed by 16S rRNA gene sequencing and immune-marker analysis, respectively. The chemical composition of the fermented C. papaya L. preparation was analyzed by capillary electrophoresis- and liquid chromatography- time of flight mass spectrometry. The fermented C. papaya L. preparation restored peripheral blood mononuclear cell (PBMC) cytolytic activity; however, no other biomarkers of immunity were observed. Treatment with the preparation (9 g/day) significantly reduced the abundance of Firmicutes in the fecal microbiota. In particular, treatment reduced Clostridium scindens and Eggerthella lenta in most patients receiving 9 g/day. Chemical analysis identified low-molecular-weight phenolic acids as polyphenol metabolites; however, no polymerized, large-molecular-weight molecules were detected. Our study indicates that elderly patients who are tube-fed over the long-term have decreased PBMC cytolytic activity. In addition, low-molecular-weight polyphenol metabolites fermented from polymerized polyphenols restore PBMC cytolytic activity and modulate the composition of gut microbiota in tube-fed patients. PMID:28060858

  4. Pro-inflammatory action of MIF in acute myocardial infarction via activation of peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    David A White

    Full Text Available OBJECTIVES: Macrophage migration inhibitory factor (MIF, a pro-inflammatory cytokine, has been implicated in the pathogenesis of multiple inflammatory disorders. We determined changes in circulating MIF levels, explored the cellular source of MIF, and studied the role of MIF in mediating inflammatory responses following acute myocardial infarction (MI. METHODS AND RESULTS: We recruited 15 patients with MI, 10 patients with stable angina and 10 healthy volunteers and measured temporal changes of MIF in plasma. Expression of MIF, matrix metalloproteinase-9 (MMP-9 and interleukin-6 (IL-6 in cultured peripheral blood mononuclear cells (PBMCs and the media were measured by ELISA or real-time PCR. Compared to controls, plasma levels of MIF and IL-6 were significantly elevated at admission and 72 h post-MI. In contrast, expression of MIF, MMP-9 and IL-6 by PBMCs from MI patients was unchanged at admission, but significantly increased at 72 h. Addition of MIF activated cultured PBMCs by upregulating expression of inflammatory molecules and also synergistically enhanced stimulatory action of IL-1β which were inhibited by anti-MIF interventions. In a mouse MI model we observed similar changes in circulating MIF as seen in patients, with reciprocal significant increases in plasma MIF and reduction of MIF content in the infarct myocardium at 3 h after MI. MIF content in the infarct myocardium was restored at 72 h post-MI and was associated with robust macrophage infiltration. Further, anti-MIF intervention significantly reduced inflammatory cell infiltration and expression of monocyte chemoattractant protein-1 at 24 h and incidence of cardiac rupture in mice post-MI. CONCLUSION: MI leads to a rapid release of MIF from the myocardium into circulation. Subsequently MIF facilitates PBMC production of pro-inflammatory mediators and myocardial inflammatory infiltration. Attenuation of these events, and post-MI cardiac rupture, by anti-MIF interventions suggests

  5. In vitro replication activity of bovine viral diarrhea virus in an epithelial cell line and in bovine peripheral blood mononuclear cells.

    Science.gov (United States)

    Turin, Lauretta; Lucchini, Barbara; Bronzo, Valerio; Luzzago, Camilla

    2012-11-01

    The present study focused on the in vitro infection of Madin-Darby bovine kidney (MDBK) cells and bovine peripheral blood mononuclear cells (PBMCs) from naÏve animals with non-cytopathic (ncp, BVDV-1b NY-1) and cytopathic (cp, BVDV-1a NADL) strains. Infections with 0.1 and 1 multiplicity of infections (MOI) and incubation times of 18 and 36 hr were compared. Twelve BVDV naÏve heifers were enrolled to collect PBMCs. The viral loads in MDBK cells and in PBMCs after in vitro infections were measured by real-time polymerase chain reaction (PCR) assays. The highest viral loads were measured at 1 MOI and 36 hr post infection in both cell systems and the lowest at 0.1 MOI and 18 hr with the exception of the cp strain NADL in PBMCs, for which the highest viral load was observed at 0.1 MOI and 36 hr. Viral load mean values were higher for the cp strain than the ncp strain irrespective of the extent of the infection period and MOI. The models of infection studied uncovered different replication activities respectively according to the biotype of virus, the cell substrate and the duration of infection. Replication tends to be higher in PBMCs, particularly at low MOIs and for the ncp strain.

  6. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Edyta Paczkowska

    Full Text Available BACKGROUND: Stem/progenitor cells (SPCs demonstrate neuro-regenerative potential that is dependent upon their humoral activity by producing various trophic factors regulating cell migration, growth, and differentiation. Herein, we compared the expression of neurotrophins (NTs and their receptors in specific umbilical cord blood (UCB SPC populations, including lineage-negative, CD34(+, and CD133(+ cells, with that in unsorted, nucleated cells (NCs. METHODS AND RESULTS: The expression of NTs and their receptors was detected by QRT-PCR, western blotting, and immunofluorescent staining in UCB-derived SPC populations (i.e., NCs vs. lineage-negative, CD34(+, and CD133(+ cells. To better characterize, global gene expression profiles of SPCs were determined using genome-wide RNA microarray technology. Furthermore, the intracellular production of crucial neuro-regenerative NTs (i.e., BDNF and NT-3 was assessed in NCs and lineage-negative cells after incubation for 24, 48, and 72 h in both serum and serum-free conditions. We discovered significantly higher expression of NTs and NT receptors at both the mRNA and protein level in lineage-negative, CD34(+, and CD133(+ cells than in NCs. Global gene expression analysis revealed considerably higher expression of genes associated with the production and secretion of proteins, migration, proliferation, and differentiation in lineage-negative cells than in CD34(+ or CD133(+ cell populations. Notably, after short-term incubation under serum-free conditions, lineage-negative cells and NCs produced significantly higher amounts of BDNF and NT-3 than under steady-state conditions. Finally, conditioned medium (CM from lineage-negative SPCs exerted a beneficial impact on neural cell survival and proliferation. CONCLUSIONS: Collectively, our findings demonstrate that UCB-derived SPCs highly express NTs and their relevant receptors under steady-state conditions, NT expression is greater under stress-related conditions and

  7. Non-major histocompatibility complex-restricted cytotoxic activity of blood mononuclear cells stimulated with secreted mycobacterial proteins and other mycobacterial antigens

    DEFF Research Database (Denmark)

    Ravn, P; Pedersen, B K

    1994-01-01

    Several observations indicate that non-major histocompatibility complex (MHC)-restricted cytotoxicity, mediated for example by natural killer cells and lymphokine-activated killer cells, may serve as an important antimicrobial defense mechanism. The purpose of the present study was to investigate...... the influences of different mycobacterial antigens on non-MHC-restricted cytotoxicity and further to investigate the ways by which various lymphocyte subpopulations contribute to the development of this cytotoxicity. Non-MHC-restricted cytotoxicity was induced following stimulation of mononuclear cells...... the influence of CD4+ cells on the development of non-MHC-restricted cytotoxicity, blood mononuclear cells were depleted of CD4+ cells before antigen stimulation. When mononuclear cells were incubated with purified protein derivative or short-term culture filtrate in the absence of CD4+ cells, cytotoxic...

  8. Constitutive activation and accelerated maturation of peripheral blood t cells in healthy adults in burkina faso compared to Germany: The case of malaria?

    Directory of Open Access Journals (Sweden)

    Tiba F

    2011-12-01

    Full Text Available Abstract Objective It is not exactly known how frequent exposure to Plasmodium falciparum shapes the peripheral blood T-cell population in healthy West Africans. Methods The frequency of peripheral blood CD4+ lymphocytes responding to Plasmodium falciparum merozoite surface protein 1 (PfMSP-1 by production of interferon-gamma (IFN-γ, interleukin-2 (IL-2 or tumor necrosis factor-alpha (TNF-α was determined using a commercially available flow cytometric activation assay (Fastlmmune in 17 healthy adults in Nouna, Burkina Faso. T-cell activation and maturation in peripheral blood of healthy adults in Burkina Faso (n = 40 and Germany (n = 20 were compared using immunophenotyping and three-colour flow cytometry. Results Significant numbers of PfMSV-1 -specific CD4+ lymphocytes producing IFN-γ, IL-2 and/or TNF-α were detected in 14 healthy adults in Nouna. Cytokine profiles showed predominant production of IFN-γ and TNF-α. Compared to Germans, Burkinabé showed markedly lower proportions of CCR7+ CD45RA+ naïve CD4+ cells and slightly higher frequencies of CD95+ CD4+ T-cells and of CD38+ CD8+ T-cells. The median antibody-binding capacity of CD95dim CD4+ T-cells in Burkinabé was more than twice the value observed in Germans (263 vs. 108 binding sites per cell, p Conclusions We hypothesize that an IFN-γ-induced increase in the expression level of CD95 on CD4+ lymphocytes may lower the activation threshold of resting naïve CD4+ T-cells in healthy adults living in Burkina Faso. Bystander activation of these cells deserves further study as a molecular mechanism linking strong IFN-γ responses against Plasmodium falciparum to decreased susceptibility to parasitemia observed in specific ethnic groups in West Africa.

  9. Smoking, white blood cell counts, and TNF system activity in Japanese male subjects with normal glucose tolerance

    Directory of Open Access Journals (Sweden)

    Watanabe Naoya

    2011-11-01

    Full Text Available Abstract Background Cigarette smokers have increased white blood cell (WBC counts and the activation of tumor necrosis factor (TNF. The effect of smoking on WBC counts and TNF system activity, however, has not been separately investigated yet. Subjects and Methods One hundred and forty-two Japanese male subjects with normal glucose tolerance were recruited. They were stratified into two groups based on the questionnaire for smoking: one with current smokers (n = 48 and the other with current non-smokers (n = 94. Whereas no significant differences were observed in age, BMI, high molecular weight (HMW adiponectin, and TNF-α between the two groups, current smokers had significantly higher soluble TNF receptor 1 (sTNF-R1 (1203 ± 30 vs. 1116 ± 21 pg/ml, p = 0.010 and increased WBC counts (7165 ± 242 vs. 5590 ± 163/μl, p p = 0.031 as compared to current non-smokers. Next, we classified 48 current smokers into two subpopulations: one with heavy smoking (Brinkman index ≥ 600 and the other with light smoking (Brinkman index Results Whereas no significant difference was observed in age, BMI, HMW adiponectin, WBC counts and TNF-α, sTNF-R1 and sTNF-R2 were significantly higher in heavy smoking group (1307 ± 44 vs. 1099 ± 30 pg/ml, p p = 0.005 than in light smoking group, whose sTNF-R1 and sTNF-R2 were similar to non-smokers (sTNF-R1: 1116 ± 15 pg/ml, p = 0.718, sTNF-R2; 1901 ± 32 pg/ml, p = 0.437. In contrast, WBC counts were significantly increased in heavy (7500 ± 324/μl, p p = 0.001 smoking group as compared to non-smokers (5590 ± 178/μl. There was no significant difference in WBC counts between heavy and light smoking group (p = 0.158. Conclusion We can hypothesize that light smoking is associated with an increase in WBC counts, while heavy smoking is responsible for TNF activation in Japanese male subjects with normal glucose tolerance.

  10. White blood cell counting system

    Science.gov (United States)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  11. Low white blood cell count and cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000675.htm Low white blood cell count and cancer To use ... high blood pressure, or seizures Continue Reading How Low is too Low? When your blood is tested, ...

  12. The effect of ex vivo CDDO-Me activation on nuclear factor erythroid 2-related factor 2 pathway in white blood cells from patients with septic shock.

    Science.gov (United States)

    Noel, Sanjeev; Zheng, Laura; Navas-Acien, Ana; Fuchs, Ralph J

    2014-11-01

    Nuclear factor erythroid 2-related factor 2 (NRF2) has been shown to protect against experimental sepsis in mice and lipopolysaccharide (LPS)-induced inflammation in ex vivo white blood cells from healthy subjects by upregulating cellular antioxidant genes. The objective of this study was to test the hypothesis that ex vivo methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate (CDDO-Me) activates NRF2-regulated antioxidant genes in white blood cells from patients with septic shock and protects against LPS-induced inflammation and reactive oxidative species production. Peripheral blood was collected from 18 patients with septic shock who were being treated in medical and surgical intensive care units. Real-time polymerase chain reaction was used to quantify the expression of NRF2 target genes (NQO1, HO-1, GCLM, and FTL) and IL-6 in peripheral blood mononuclear cells (PBMCs), monocytes, and neutrophils after CDDO-Me treatment alone or after subsequent LPS exposure. Superoxide anion (O2) was measured to assess the effect of CDDO-Me pretreatment on subsequent LPS exposure. Treatment with CDDO-Me increased the gene expression of NQO1 (P = 0.04) and decreased the expression of HO-1 (P = 0.03) in PBMCs from patients with septic shock. Purified monocytes exhibited significant increases in the expression of NQO1 (P = 0.01) and GCLM (P = 0.003) after CDDO-Me treatment. Levels of other NRF2 target genes (HO-1 and FTL) remained similar to those of vehicle-treated cells. Peripheral blood mononuclear cells showed a trend toward increased IL-6 gene expression after CDDO-Me treatment, whereas purified monocytes showed a trend toward decreased IL-6. There was no discernible trend in the IL-6 expression subsequent to LPS treatment in either vehicle-treated or CDDO-Me-treated PBMCs and monocytes. Treatment with CDDO-Me significantly increased O2 production in PBMCs (P = 0.04). Although CDDO-Me pretreatment significantly attenuated O2 production to subsequent LPS exposure (P = 0.03), the

  13. White blood cell deformation and firm adhesion

    Science.gov (United States)

    Szatmary, Alex; Eggleton, Charles

    2011-11-01

    For a white blood cell (WBC) to arrive at infection sites, it forms chemical attachments with activated endothelial cells. First, it bonds with P-selectin, which holds it to the wall, but weakly; this allows the WBC to roll under the shear flow of the blood around it. Later, the WBCs bond with the stronger intracellular adhesion molecule-1 (ICAM-1); it is these ICAM bonds that allow the WBCs to fully resist the flow and stop rolling, allowing them to crawl through the endothelial wall. We model this numerically. Our model uses the immersed boundary method to represent the interaction of the shear flow with the deformable cell membrane. Receptors are on the tips of microvilli-little fingers sticking off of the cell membrane. The microvilli also deform. The receptors stochastically form and break bonds with molecules on the wall. Using this method, the history of each microvillus and its bonds can be found, as well as the distribution of the adhesion traction forces and how all of these vary with the deformability of the white blood cell. At higher shear rates, the white blood cell membrane deforms more, increasing its contact area with the surface; this effect is larger for softer membranes. We investigate how the deformability of the WBC affects the ease with which it forms firm adhesion.

  14. Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum

    Science.gov (United States)

    Zhou, Kai; Boström, Martina; Ek, C. Joakim; Li, Tao; Xie, Cuicui; Xu, Yiran; Sun, Yanyan; Blomgren, Klas; Zhu, Changlian

    2017-01-01

    Posterior fossa tumors are the most common childhood intracranial tumors, and radiotherapy is one of the most effective treatments. However, irradiation induces long-term adverse effects that can have significant negative impacts on the patient’s quality of life. The purpose of this study was to characterize irradiation-induced cellular and molecular changes in the cerebellum. We found that irradiation-induced cell death occurred mainly in the external germinal layer (EGL) of the juvenile rat cerebellum. The number of proliferating cells in the EGL decreased, and 82.9% of them died within 24 h after irradiation. Furthermore, irradiation induced oxidative stress, microglia accumulation, and inflammation in the cerebellum. Interestingly, blood-brain barrier damage and blood flow reduction was considerably more pronounced in the cerebellum compared to other brain regions. The cerebellar volume decreased by 39% and the migration of proliferating cells to the internal granule layer decreased by 87.5% at 16 weeks after irradiation. In the light of recent studies demonstrating that the cerebellum is important not only for motor functions, but also for cognition, and since treatment of posterior fossa tumors in children typically results in debilitating cognitive deficits, this differential susceptibility of the cerebellum to irradiation should be taken into consideration for future protective strategies. PMID:28382975

  15. Protective effect of quercetin in gentamicin-induced oxidative stress in vitro and in vivo in blood cells. Effect on gentamicin antimicrobial activity.

    Science.gov (United States)

    Bustos, Pamela Soledad; Deza-Ponzio, Romina; Páez, Paulina Laura; Albesa, Ines; Cabrera, José Luis; Virgolini, Miriam Beatriz; Ortega, María Gabriela

    2016-12-01

    We have evaluated the effect of gentamicin and gentamicin plus quercetin on ROS production, endogenous antioxidant defenses (SOD and CAT) and lipid peroxidation in vitro on human leukocytes and in vivo on whole rat blood. Gentamicin generated ROS production in human leukocytes, produced a dual effect on both enzymes dosage-dependent and generated an increase in lipid peroxidation. Quercetin, in leukocytes stimulated by gentamicin, showed more inhibitory capacity in ROS production than the reference inhibitor (vitaminC) in mononuclear cells and a similar protective behavior at this inhibitor in polymorphonuclear cells. Quercetin, in both cellular systems, tend to level SOD and CAT activities, reaching basal values and could prevent lipidic peroxidation induced by gentamicin. The results in Wistar rats confirmed that therapeutic doses of gentamicin can induce oxidative stress in whole blood and that the gentamicin treatment plus quercetin can suppress ROS generation, collaborate with SOD and CAT and diminish lipid peroxidation. Finally, flavonoid and antibiotic association was evaluated on the antimicrobial activity in S. aureus and E. coli, showing that changes were not generated in the antibacterial activity of gentamicin against E. coli strains, while for strains of S. aureus a beneficial effect observes. Therefore, we have demonstrated that gentamicin could induce oxidative stress in human leukocytes and in whole blood of Wistar rats at therapeutic doses and that quercetin may to produce a protective effect on this oxidative stress generated without substantially modifying the antibacterial activity of gentamicin against E. coli strains, and it contributes to this activity against S. aureus strains.

  16. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever.

    Science.gov (United States)

    Durbin, Anna P; Vargas, Maria José; Wanionek, Kimberli; Hammond, Samantha N; Gordon, Aubree; Rocha, Crisanta; Balmaseda, Angel; Harris, Eva

    2008-07-05

    In vitro studies have attempted to identify dengue virus (DEN) target cells in peripheral blood; however, extensive phenotyping of peripheral blood mononuclear cells (PBMCs) from dengue patients has not been reported. PBMCs collected from hospitalized children suspected of acute dengue were analyzed for DEN prM, CD32, CD86, CD14, CD11c, CD16, CD209, CCR7, CD4, and CD8 by flow cytometry to detect DEN antigen in PBMCs and to phenotype DEN-positive cells. DEN prM was detected primarily in activated monocytes (CD14(+), CD32(+), CD86(+), CD11c(+)). A subset of samples analyzed for DEN nonstructural protein 3 (NS3) confirmed that approximately half of DEN antigen-positive cells contained replicating virus. A higher percentage of PBMCs from DHF patients expressed prM, CD86, CD32, and CD11c than did those from DF patients. Increased activation of monocytes and greater numbers of DEN-infected cells were associated with more severe dengue, implicating a role for monocyte activation in dengue immunopathogenesis.

  17. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  18. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  19. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  20. Becoming a Blood Stem Cell Donor

    Science.gov (United States)

    ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  1. Activation of p38 MAPK by feline infectious peritonitis virus regulates pro-inflammatory cytokine production in primary blood-derived feline mononuclear cells.

    Science.gov (United States)

    Regan, Andrew D; Cohen, Rebecca D; Whittaker, Gary R

    2009-02-05

    Feline infectious peritonitis (FIP) is an invariably fatal disease of cats caused by systemic infection with a feline coronavirus (FCoV) termed feline infectious peritonitis virus (FIPV). The lethal pathology associated with FIP (granulomatous inflammation and T-cell lymphopenia) is thought to be mediated by aberrant modulation of the immune system due to infection of cells such as monocytes and macrophages. Overproduction of pro-inflammatory cytokines occurs in cats with FIP, and has been suggested to play a significant role in the disease process. However, the mechanism underlying this process remains unknown. Here we show that infection of primary blood-derived feline mononuclear cells by FIPV WSU 79-1146 and FIPV-DF2 leads to rapid activation of the p38 MAPK pathway and that this activation regulates production of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). FIPV-induced p38 MAPK activation and pro-inflammatory cytokine production was inhibited by the pyridinyl imidazole inhibitors SB 203580 and SC 409 in a dose-dependent manner. FIPV-induced p38 MAPK activation was observed in primary feline blood-derived mononuclear cells individually purified from multiple SPF cats, as was the inhibition of TNF-alpha production by pyridinyl imidazole inhibitors.

  2. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation.

    Science.gov (United States)

    Zhenyukh, Olha; Civantos, Esther; Ruiz-Ortega, Marta; Sánchez, Maria Soledad; Vázquez, Clotilde; Peiró, Concepción; Egido, Jesús; Mas, Sebastián

    2017-03-01

    Leucine, isoleucine and valine are essential aminoacids termed branched-chain amino acids (BCAA) due to its aliphatic side-chain. In several pathological and physiological conditions increased BCAA plasma concentrations have been described. Elevated BCAA levels predict insulin resistance development. Moreover, BCAA levels higher than 2mmol/L are neurotoxic by inducing microglial activation in maple syrup urine disease. However, there are no studies about the direct effects of BCAA in circulating cells. We have explored whether BCAA could promote oxidative stress and pro-inflammatory status in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. In cultured PBMCs, 10mmol/L BCAA increased the production of reactive oxygen species (ROS) via both NADPH oxidase and the mitochondria, and activated Akt-mTOR signalling. By using several inhibitors and activators of these molecular pathways we have described that mTOR activation by BCAA is linked to ROS production and mitochondrial dysfunction. BCAA stimulated the activation of the redox-sensitive transcription factor NF-κB, which resulted in the release of pro-inflammatory molecules, such as interleukin-6, tumor necrosis factor-α, intracellular adhesion molecule-1 or CD40L, and the migration of PBMCs. In conclusion, elevated BCAA blood levels can promote the activation of circulating PBMCs, by a mechanism that involving ROS production and NF-κB pathway activation. These data suggest that high concentrations of BCAA could exert deleterious effects on circulating blood cells and therefore contribute to the pro-inflammatory and oxidative status observed in several pathophysiological conditions.

  3. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors.

    Science.gov (United States)

    Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard

    2016-06-15

    A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies.

  4. Potentials of the circulating pruritogenic mediator lysophosphatidic acid in development of allergic skin inflammation in mice: role of blood cell-associated lysophospholipase D activity of autotaxin.

    Science.gov (United States)

    Shimizu, Yoshibumi; Morikawa, Yoshiyuki; Okudaira, Shinichi; Kimoto, Shigenobu; Tanaka, Tamotsu; Aoki, Junken; Tokumura, Akira

    2014-05-01

    Itching and infiltration of immune cells are important hallmarks of atopic dermatitis (AD). Although various studies have focused on peripheral mediator-mediated mechanisms, systemic mediator-mediated mechanisms are also important in the pathogenesis and development of AD. Herein, we found that intradermal injection of lysophosphatidic acid (LPA), a bioactive phospholipid, induces scratching responses by Institute of Cancer Research mice through LPA1 receptor- and opioid μ receptor-mediating mechanisms, indicating its potential as a pruritogen. The circulating level of LPA in Naruto Research Institute Otsuka Atrichia mice, a systemic AD model, with severe scratching was found to be higher than that of control BALB/c mice, probably because of the increased lysophospholipase D activity of autotaxin (ATX) in the blood (mainly membrane associated) rather than in plasma (soluble). Heparan sulfate proteoglycan was shown to be involved in the association of ATX with blood cells. The sequestration of ATX protein on the blood cells by heparan sulfate proteoglycan may accelerate the transport of LPA to the local apical surface of vascular endothelium with LPA receptors, promoting the hyperpermeability of venules and the pathological uptake of immune cells, aggravating lesion progression and itching in Naruto Research Institute Otsuka Atrichia mice.

  5. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood.

    Directory of Open Access Journals (Sweden)

    Mathew B Cox

    Full Text Available It is well established that Multiple Sclerosis (MS is an immune mediated disease. Little is known about what drives the differential control of the immune system in MS patients compared to unaffected individuals. MicroRNAs (miRNAs are small non-coding nucleic acids that are involved in the control of gene expression. Their potential role in T cell activation and neurodegenerative disease has recently been recognised and they are therefore excellent candidates for further studies in MS. We investigated the transcriptome of currently known miRNAs using miRNA microarray analysis in peripheral blood samples of 59 treatment naïve MS patients and 37 controls. Of these 59, 18 had a primary progressive, 17 a secondary progressive and 24 a relapsing remitting disease course. In all MS subtypes miR-17 and miR-20a were significantly under-expressed in MS, confirmed by RT-PCR. We demonstrate that these miRNAs modulate T cell activation genes in a knock-in and knock-down T cell model. The same T cell activation genes are also up-regulated in MS whole blood mRNA, suggesting these miRNAs or their analogues may provide useful targets for new therapeutic approaches.

  6. B-esterase activities and blood cell morphology in the frog Leptodactylus chaquensis (Amphibia: Leptodactylidae) on rice agroecosystems from Santa Fe Province (Argentina).

    Science.gov (United States)

    Attademo, Andrés M; Cabagna-Zenklusen, Mariana; Lajmanovich, Rafael C; Peltzer, Paola M; Junges, Celina; Bassó, Agustín

    2011-01-01

    Activity of B-esterases (BChE: butyrylcholinesterase and CbE: carboxylesterase using two model substrates: α-naphthyl acetate and 4-nitrophenyl valerate) in a native frog, Leptodactylus chaquensis from rice fields (RF1: methamidophos and RF2: cypermethrin and endosulfan sprayed by aircraft) and non-contaminated area (pristine forest) was measured. The ability of pyridine-2-aldoxime methochloride (2-PAM) to reactivate BChE levels was also explored. In addition, changes in blood cell morphology and parasite infection were determined. Mean values of plasma BChE activities were lower in samples from the two rice fields than in those from the reference site. CbE (4-nitrophenyl valerate) levels varied in the three sites studied, being highest in RF1. Frog plasma from RF1 showed positive reactivation of BChE activity after incubation with 2-PAM. Blood parameters of frogs from RF2 revealed morphological alterations (anisochromasia and immature erythrocytes frequency). Moreover, a major infection of protozoan Trypanosoma sp. in individuals from the two rice fields was detected. We suggest that integrated use of several biomarkers (BChE and CBEs, chemical reactivation of plasma with 2-PAM, and blood cell parameters) may be a promising procedure for use in biomonitoring programmes to diagnose pesticide exposure of wild populations of this frog and other native anuran species in Argentina.

  7. Ephrin-B2–Activated Peripheral Blood Mononuclear Cells From Diabetic Patients Restore Diabetes-Induced Impairment of Postischemic Neovascularization

    Science.gov (United States)

    Broquères-You, Dong; Leré-Déan, Carole; Merkulova-Rainon, Tatiana; Mantsounga, Chris S.; Allanic, David; Hainaud, Patricia; Contrères, Jean-Olivier; Wang, Yu; Vilar, José; Virally, Marie; Mourad, Jean-Jacques; Guillausseau, Pierre-Jean; Silvestre, Jean-Sébastien; Lévy, Bernard I.

    2012-01-01

    We hypothesized that in vitro treatment of peripheral blood mononuclear cells (PB-MNCs) from diabetic patients with ephrin-B2/Fc (EFNB2) improves their proangiogenic therapeutic potential in diabetic ischemic experimental models. Diabetes was induced in nude athymic mice by streptozotocin injections. At 9 weeks after hyperglycemia, 105 PB-MNCs from diabetic patients, pretreated by EFNB2, were intravenously injected in diabetic mice with hindlimb ischemia. Two weeks later, the postischemic neovascularization was evaluated. The mechanisms involved were investigated by flow cytometry analysis and in vitro cell biological assays. Paw skin blood flow, angiographic score, and capillary density were significantly increased in ischemic leg of diabetic mice receiving EFNB2-activated diabetic PB-MNCs versus those receiving nontreated diabetic PB-MNCs. EFNB2 bound to PB-MNCs and increased the adhesion and transmigration of PB-MNCs. Finally, EFNB2-activated PB-MNCs raised the number of circulating vascular progenitor cells in diabetic nude mice and increased the ability of endogenous bone marrow MNCs to differentiate into cells with endothelial phenotype and enhanced their proangiogenic potential. Therefore, EFNB2 treatment of PB-MNCs abrogates the diabetes-induced stem/progenitor cell dysfunction and opens a new avenue for the clinical development of an innovative and accessible strategy in diabetic patients with critical ischemic diseases. PMID:22596048

  8. Leucocyte filtration of salvaged blood during cardiac surgery : effect on red blood cell function in concentrated blood compared with diluted blood

    NARCIS (Netherlands)

    Gu, Y. John; de Vries, Adrianus J.; Hagenaars, J. Ans M.; van Oeveren, Willem

    2009-01-01

    Objective: Leucocyte filtration of salvaged blood has been suggested to prevent patients from receiving activated leucocytes during autotransfusion in cardiac surgery. This study examines whether leucocyte filtration of salvaged blood affects the red blood cell (RBC) function and whether there is a

  9. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Giuseppe Mameli

    Full Text Available BACKGROUND: Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS are the Epstein Barr virus (EBV, and the potentially neuropathogenic MSRV (MS-associated retrovirus and syncytin-1, of the W family of human endogenous retroviruses. METHODOLOGY/PRINCIPAL FINDINGS: In search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to EBV or to EBV glycoprotein350 (EBVgp350, was studied on peripheral blood mononuclear cells (PBMC from healthy volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350 stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-κB pathway. In EBVgp350-treated PBMC, MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines. CONCLUSIONS/SIGNIFICANCE: In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to the neuropathogenity. In MS pathogenesis, a possible model could include EBV as

  10. Augmentation by interleukin-18 of MHC-nonrestricted killer activity of human peripheral blood mononuclear cells in response to interleukin-12.

    Science.gov (United States)

    Singh, S M; Yanagawa, H; Hanibuchi, M; Miki, T; Okamura, H; Sone, S

    2000-01-01

    Interleukin (IL)-18 is a novel cytokine with pleiotropic functions. In the present study, we examined the induction of the killer activity of peripheral blood mononuclear cells (MNC) against lung cancer cell lines upon treatment with IL-18 in combination with IL-12. Cytotoxic activity was measured by standard (51)Cr release assay. IL-18 (100 ng/ml) was found to significantly augment IL-12-induced killer activity in a MHC-nonrestricted manner against allogeneic NK-resistant Daudi cells and lung cancer cell lines: SBC-3, RERF-LC-AI and A549. IL-18 could augment IL-12-induced killer activity both at the optimal as well as suboptimal doses of the latter. However, IL-18 was found to have little effect on the killer activity of MNC induced by optimal or suboptimal dose of IL-2 or IL-15. Treatment of MNC with IL-18 in combination with IL-12 for a period of more than 4 days was observed to optimally induce the killer activity. As for induction of IFN-gamma production by MNC, IL-18 augmented that induced by IL-2 and IL-15, as well as that induced by IL-12. These results show the potential of IL-18 in combination with IL-12 for clinical application in treatment of cancer.

  11. Oxygen-glucose deprivation increases the enzymatic activity and the microvesicle-mediated release of ectonucleotidases in the cells composing the blood-brain barrier.

    Science.gov (United States)

    Ceruti, Stefania; Colombo, Laura; Magni, Giulia; Viganò, Francesca; Boccazzi, Marta; Deli, Mária A; Sperlágh, Beáta; Abbracchio, Maria P; Kittel, Agnes

    2011-08-01

    The blood-brain barrier (BBB), the dynamic interface between the nervous tissue and the blood, is composed by endothelial cells, pericytes and astrocytes. Extracellular nucleotides and nucleosides and their receptors (the purinergic system) constitute a widely diffused signaling system involved in many pathophysiological processes. However, the role of this system in controlling BBB functions is still largely unknown. By using cultures of these three cell types grown separately and a BBB in vitro model consisting of triple co-cultures, we studied for the first time the expression and distribution of the ecto-enzymes nucleoside triphosphate diphosphohydrolases (NTPDases, the enzymes which hydrolyze extracellular nucleotides) under control and ischemic (oxygen-glucose deprivation in vitro; OGD) conditions. NTPDase1 was detected in all three cell types, whereas NTPDase2 was expressed by astrocytes and pericytes and, to a lesser extent, by endothelial cells. Endothelial cells were extremely susceptible to cell death when OGD was applied to mimic in vitro the cytotoxicity induced by ischemia, whereas astrocytes and pericytes were more resistant. A semi-quantitative assay highlighted markedly increased e-ATPase activity following exposure to OGD in all three cell types, either when grown separately or when co-cultured together to resemble the composition of the BBB. Moreover, electron microscopy analysis showed that both endothelial cells and astrocytes shed microvesicles containing NTPDases from their membrane, which may suggest a novel mechanism to increase the breakdown of ATP released to toxic levels by damaged BBB cells. We hypothesize that this phenomenon could have a protective and/or modulatory effect for brain parenchymal cells. This in vitro model is therefore useful to study the role of extracellular nucleotides in modulating BBB responses to ischemic events, and to develop new effective purinergic-based approaches for brain ischemia.

  12. [The Analysis for Probable Reasons of Cd4+ T-Cell Activation Non-Linear Dependence on Extra Cellular Calcium Ion Concentration in Human Peripheral Blood in vitro].

    Science.gov (United States)

    Litvinov, I S

    2015-01-01

    The analysis for probable reasons of CD4+ T-cell activation non-linear dependence on [Ca2+]o in HPB in vitro is the general aim of current work. At the beginning we pursued the analysis of receptor-dependent (the mixture of monoclonal antibodies (mAbs) to CD3 and CD28 molecules) and receptor-independent (phorbol-myristate-acetate and ionomycin mixture) means to activate T cells in vitro with different [Ca2+]o in HPB. The key role of intracellular T-cell signaling systems in activated T cells in their non-similar sensitivity to calcium ions in the blood was shown. The analysis of differentiation next stages of CD4+ T-cell activation in vitro relatively [Ca2+]o in PHB demonstrates the key role of the earliest induction stages in non-similar sensitivity to calcium ions in CD4+ T-cell activation in vitro. According to the pursued analysis; the non-similar sensitivity of CD4+ T-cell in vitro to activation is in no-way connected with pace differences on the primary stages of activation process. The comparison of CD4+ memory T cells with their naive T-cell precursors in the cell activation process in hypocalcemia conditions was made in the separate experimental series. The 1st maximum consists in average of 85% CD4+CD45R0high CD69+ memory T cells. Naive CD4+CD45RAlowCD69+ T cells constitute the remainder 15%. The 2nd maximum almost completely consists of CD4+CD45R0+CD69+ memory T cells. The ratio between CD4+CD69+ T cell maximums depends on donor ages and represents linear dependence with R = -0.981. The most probable candidate on the role of CD4+ T cell, being capable of activation in hypocalcemia conditions, are memory T lymphocytes, being resistant to ionomycin action (I R) subset. To check this assumption the mononuclear cells and their IR-fraction were prepared from donor PB. Then the mononuclear cells and their IR-fraction were activated by mAbs mixture at different [EGTA] values. For IR-fraction, enriched with CD4+CD45RA-CD45R0+ memory T cells, slightly seen 1st

  13. Preventive activity of olive oil phenolic compounds on alkene epoxides induced oxidative DNA damage on human peripheral blood mononuclear cells.

    Science.gov (United States)

    Fuccelli, Raffaela; Sepporta, Maria Vittoria; Rosignoli, Patrizia; Morozzi, Guido; Servili, Maurizio; Fabiani, Roberto

    2014-01-01

    The aim of this study was to investigate the ability of epoxides of styrene (styrene-7,8-oxide; SO) and 1,3-butadiene (3,4-epoxy-1-butene; 1,2:3,4:-diepoxybutane) to cause oxidative stress and oxidative DNA damage on human peripheral blood mononuclear cells (PBMCs) and whether a complex mixture of olive oil phenols (OOPE) could prevent these effects. The DNA damage was measured by the single-cell gel electrophoresis (SCGE; comet assay). We found that the DNA damage induced by alkene epoxides could be prevented by N-acetyl-cysteine (10 mM) and catalase (100 U/ml). Alkene epoxides caused a significant (P DNA glycosylase (FPG)- and Endonuclease III (ENDO III)-sensitive sites in PBMCs, demonstrating the presence of oxidized bases. OOPE (1 μg of total phenols/ml) was able to prevent the alkene epoxide induced DNA damage both after 2 and 24 h of incubation. In addition, OOPE completely inhibited the SO-induced intracellular peroxide accumulation in PBMCs and prevented the oxidative DNA damage induced by SO, as evidenced by the disappearance of both FPG- and ENDO III-sensitive sites. This is the first study demonstrating the ability of OOPE to prevent the DNA damage induced by alkene epoxides providing additional information about the chemopreventive properties of olive oil.

  14. Shortened telomere length is demonstrated in T-cell subsets together with a pronounced increased telomerase activity in CD4 positive T cells from blood of patients with mycosis fungoides and parapsoriasis.

    Science.gov (United States)

    Wu, K D; Hansen, E R

    2001-10-01

    We have recently demonstrated that telomerase activity is increased and telomere length shortened in lymphocytes from peripheral blood of patients with cutaneous T-cell lymphoma. In order to determine which cell type has increased telomerase activity and shortened telomere length, CD4+, CD8+, CLA+ CD3+ and CLA- CD3+ T cells were isolated from peripheral blood of 25 patients, including 15 patients with mycosis fungoides and 10 patients with parapsoriasis. Eleven healthy individuals were used as controls; CD19+ B cells were separated from each individual as an internal control. The results showed that the increased telomerase activity was significantly predominating in the CD4+ T-cell subset. Significantly shortened telomere length was found in CD4+ and CD8+ T-cell subsets from the patients compared with the same cell subsets obtained from healthy individuals. However, no difference was observed between the subsets; CD19+ B cells collected from patients and healthy control individuals had similar telomerase activity and telomere length which was significantly different from the values found in T cells. The telomere length was significantly shorter in CLA+ CD3+ subset than in CLA- CD3+ subset. Interestingly, increased telomerase activity and shortened telomere length was also detected in CD4+ T cells from patients with parapsoriasis indicating that alteration of telomerase activity and telomere length in CD4+ T cells is an early event in the pathogenesis of cutaneous T-cell lymphoma. Thus, the results indicate that a significant high level of telomerase activity and shortened telomere length frequently occur in T cells of patients with CTCL and may reflect tumorigenesis.

  15. 21 CFR 640.10 - Red Blood Cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  16. Effect of polyphenols extracted from tamarind ( Tamarindus indica L.) seed coat on pathophysiological changes and red blood cell glutathione peroxidase activity in heat-stressed broilers

    Science.gov (United States)

    Aengwanich, Worapol; Suttajit, Maitree

    2013-01-01

    The purpose of this study was to determine the effect of polyphenols extracted from the tamarind seed coat (PETSC) on glutathione peroxidase (GPx) activity, red blood cell parameters and bilirubin in heat-stressed broilers. One hundred forty-seven broilers, 18-days old were divided into two groups. In group 1, broilers were maintained at an environmental temperature of 26 ± 2 °C throughout the experimental period. In group 2, the broilers were maintained at 38 ± 2 °C (cyclic temperature: 26 ± 2 °C; -38 ± 2 °C; and -26 ± 2 °C, and broilers were maintained at 38 ± 2 °C for 6 h/ day) and received PETSC at a concentration of 0, 100, 200, 300, 400 or 500 mg/kg in their diet ad libitum. Parameters were investigated on days 1, 7, 14 and 21 of the experimental period. Results showed that GPx activity of heat-stressed broilers that received 100 mg/kg of PETSC in their diet was lower ( P < 0.05) than that in broilers fed the other concentrations. The mean total red blood cell count and hemoglobin concentration of heat-stressed broilers that received 100 mg/kg PETSC was higher ( P < 0.05) than those in broilers in group 1 and those fed the other concentrations. The mean bilirubin level in the excreta of heat-stressed broilers that received 100 mg/kg of PETSC was lower ( P < 0.05) than that in broilers that received 0, 300, 400 and 500 mg/kg of PETSC. This showed that PETSC could reduce GPx activity and bilirubin in feces, and increase red blood cell parameters in heat-stressed broilers.

  17. Trapping cells in paper for white blood cell count.

    Science.gov (United States)

    Zhang, Yi; Bai, Jianhao; Wu, Hong; Ying, Jackie Y

    2015-07-15

    White blood cell count is an important indicator of each individual's health condition. An abnormal white blood cell count usually results from an infection, cancer, or other conditions that trigger systemic inflammation responses. White blood cell count also provides predictive information on the incidence of cardiovascular diseases and Type 2 diabetes. Therefore, monitoring white blood cell count on a regular basis can potentially help individuals to take preventive measures and improve healthcare outcomes. Currently, white blood cell count is primarily conducted in centralized laboratories, and it requires specialized equipment and dedicated personnel to perform the test and interpret the results. So far there has been no rapid test that allows white blood cell count in low-resource settings. In this study, we have demonstrated a vertical flow platform that quantifies white blood cells by trapping them in the paper. White blood cells were tagged with gold nanoparticles, and flowed through the paper via a small orifice. The white blood cell count was determined by measuring the colorimetric intensity of gold nanoparticles on the surface of white blood cells that were trapped in the paper mesh. Using this platform, we were able to quantify white blood cells in 15 μL of blood, and visually differentiate the abnormal count of white blood cells from the normal count. The proposed platform enabled rapid white blood cell count in low resource settings with a small sample volume requirement. Its low-cost, instrument-free operations would be attractive for point-of-care applications.

  18. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey.

    Science.gov (United States)

    Niederwieser, D; Baldomero, H; Szer, J; Gratwohl, M; Aljurf, M; Atsuta, Y; Bouzas, L F; Confer, D; Greinix, H; Horowitz, M; Iida, M; Lipton, J; Mohty, M; Novitzky, N; Nunez, J; Passweg, J; Pasquini, M C; Kodera, Y; Apperley, J; Seber, A; Gratwohl, A

    2016-06-01

    Data on 68 146 hematopoietic stem cell transplants (HSCTs) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCTs were registered from unrelated 16 433 donors than related 15 493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared with 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCTs/team). An increase of 167% was noted in mismatched/haploidentical family HSCT. A Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four World Health Organization regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood transplantation.

  19. Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage.

    Science.gov (United States)

    Ahluwalia, Balpreet Singh; McCourt, Peter; Oteiza, Ana; Wilkinson, James S; Huser, Thomas R; Hellesø, Olav Gaute

    2015-01-07

    Red blood cells squeeze through micro-capillaries as part of blood circulation in the body. The deformability of red blood cells is thus critical for blood circulation. In this work, we report a method to optically squeeze red blood cells using the evanescent field present on top of a planar waveguide chip. The optical forces from a narrow waveguide are used to squeeze red blood cells to a size comparable to the waveguide width. Optical forces and pressure distributions on the cells are numerically computed to explain the squeezing process. The proposed technique is used to quantify the loss of blood deformability that occurs during blood storage lesion. Squeezing red blood cells using waveguides is a sensitive technique and works simultaneously on several cells, making the method suitable for monitoring stored blood.

  20. The Vitamin D analogue TX 527 blocks NF-kappaB activation in peripheral blood mononuclear cells of patients with Crohn's disease.

    Science.gov (United States)

    Stio, Maria; Martinesi, Maria; Bruni, Sara; Treves, Cristina; Mathieu, Chantal; Verstuyf, Annemieke; d'Albasio, Giuseppe; Bagnoli, Siro; Bonanomi, Andrea G

    2007-01-01

    Crohn's disease (CD) is an inflammatory disease characterized by the activation of the immune system in the gut. Since tumor necrosis factor (TNF-alpha) plays an important role in the initiation and perpetuation of intestinal inflammation in CD, we investigated whether TX 527 [19-nor-14,20-bisepi-23-yne-1,25(OH)(2)D(3)], a Vitamin D analogue, could affect peripheral blood mononuclear cells (PBMC) proliferation and exert an immunosuppressive effect on TNF-alpha production in CD patients, and whether this immunosuppressive action could be mediated by NF-kappaB down-regulation. TX 527 significantly decreased cell proliferation and TNF-alpha levels. On activation, NF-kappaB, rapidly released from its cytoplasmatic inhibitor (IKB-alpha), transmigrates into the nucleus and binds to DNA response elements in gene promoter regions. The activation of NF-kappaB, stimulated by TNF-alpha, and its nuclear translocation together with the degradation of IKB-alpha were blocked by TX 527. At the same time, NF-kappaB protein levels present in cytoplasmic extracts decreased in the presence of TNF-alpha and increased when PBMC were incubated with TX 527. The results of our studies indicate that TX 527 inhibits TNF-alpha mediated effects on PBMC and the activation of NF-kappaB and that its action is mediated by Vitamin D receptor (VDR), which is activated when the cells are stimulated with TX 527.

  1. Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells.

    Science.gov (United States)

    Denieffe, Stephanie; Kelly, Ronan J; McDonald, Claire; Lyons, Anthony; Lynch, Marina A

    2013-11-01

    The interaction between CD200, expressed on several cell types, and its receptor CD200R, expressed on cells of the myeloid lineage, has been shown to be an important factor in modulating inflammation in macrophage function in several conditions including colitis and arthritis. More recently its modulatory effect on microglial activation has been identified and CD200-deficiency has been associated with increased microglial activation accompanied by increased production of inflammatory cytokines. The response of glia prepared from CD200-deficient mice to stimuli like lipopolysaccharide (LPS) is markedly greater than the response of cells prepared from wildtype mice and, consistent with this, is the recent observation that expression of Toll-like receptor (TLR)4 and signalling through NFκB are increased in microglia prepared from CD200-deficient mice. Here we show that glia from CD200-deficient mice are also more responsive to interferon-γ (IFNγ) which triggers classical activation of microglia. We investigated the effects of CD200-deficiency in vivo and report that there is an increase in expression of several markers of microglial activation including tumor necrosis factor (TNF)-α, which is a hallmark of classically-activated microglia. These changes are accompanied by increased IFNγ, and the evidence suggests that this is produced by infiltrating cells including T cells and macrophages. We propose that these cells enter the brain as a consequence of increased blood brain barrier (BBB) permeability in CD200-deficient mice and that infiltration is assisted by increased expression of the chemokines, monocyte chemotactic protein-1 (MCP-1), IFNγ-induced protein-10 (IP-10) and RANTES. This may have implications in neurodegenerative diseases where BBB permeability is compromised.

  2. Cord blood stem cell banking and transplantation.

    Science.gov (United States)

    Dhot, P S; Nair, V; Swarup, D; Sirohi, D; Ganguli, P

    2003-12-01

    Stem cells have the ability to divide for indefinite periods in culture and to give rise to specialized cells. Cord blood as a source of hematopoietic stem cells (HSC) has several advantages as it is easily available, involves non-invasive collection procedure and is better tolerated across the HLA barrier. Since the first cord blood transplant in 1988, over 2500 cord blood HSC transplants have been done world wide. Since then, the advantages of cord blood as a source of hematopietic stem cells for transplantation have become clear. Firstly, the proliferative capacity of HSC in cord blood is superior to that of cells in bone marrow or blood from adults. A 100 ml unit of cord blood contains 1/10th the number of nucleated cells and progenitor cells (CD34+ cells) present in 1000 ml of bone marrow, but because they proliferate rapidly, the stem cell in a single unit of cord blood can reconstitute the entire haematopoietic system. Secondly, the use of cord blood reduces the risk of graft vs host disease. Cord Blood Stem Cell banks have been established in Europe and United States to supply HSC for related and unrelated donors. Currently, more than 65,000 units are available and more than 2500 patients have received transplants of cord blood. Results in children have clearly shown that the number of nucleated cells in the infused cord blood influences the speed of recovery of neutrophils and platelets after myeloablative chemotherapy. The optimal dose is about 2 x 10(7) nucleated cells/kg of body weight. The present study was carried out for collection, separation, enumeration and cryopreservation of cord blood HSC and establishing a Cord Blood HSC Bank. 172 samples of cord blood HSC were collected after delivery of infant prior to expulsion of placenta. The average cord blood volume collected was 101.20 ml. Mononuclear cell count ranged from 7.36 to 25.6 x 10(7)/ml. Viability count of mononuclear cells was 98.1%. After 1 year of cryopreservation, the viability count on

  3. ACTIVATION OF HUMAN BLOOD MONONUCLEARS BY LIPOPOLYSACCHARIDE OF DIFFERENT COMPOSITION

    Directory of Open Access Journals (Sweden)

    S. V. Zubova

    2010-01-01

    Full Text Available Influence of lipopolysaccharide (LPS composition upon activation of human blood mononuclears was investigated, by measuring levels of pro-inflammatory TNFα and IL-6 cytokines released by the cells. It is shown that LPS from Rhodobacter capsulatus PG, in contrast to E. coli LPS, did not activate the target cells for synthesis of the cytokines.

  4. Electrochemical Red Blood Cell Counting: One at a Time.

    Science.gov (United States)

    Sepunaru, Lior; Sokolov, Stanislav V; Holter, Jennifer; Young, Neil P; Compton, Richard G

    2016-08-08

    We demonstrate that the concentration of a red blood cell solution under physiological conditions can be determined by electrochemical voltammetry. The magnitude of the oxygen reduction currents produced at an edge-plane pyrolytic graphite electrode was diagnosed analytically at concentrations suitable for a point-of-care test device. The currents could be further enhanced when the solution of red blood cells was exposed to hydrogen peroxide. We show that the enhanced signal can be used to detect red blood cells at a single entity level. The method presented relies on the catalytic activity of red blood cells towards hydrogen peroxide and on surface-induced haemolysis. Each single cell activity is expressed as current spikes decaying within a few seconds back to the background current. The frequency of such current spikes is proportional to the concentration of cells in solution.

  5. Sodium-potassium pump activity in white blood cells from children with an increased risk of developing hypertension--The Odense Schoolchild Study

    DEFF Research Database (Denmark)

    Hansen, H S; Nielsen, J R; Pedersen, K E

    1993-01-01

    . A significant increase in 86rubidium uptake was present in boys as compared to girls. After adjustment for differences in sexual maturation the observed significant difference disappeared. Important correlates of pump activity were height, plasma glucose, and physical fitness. In the training study 10 boys from...... the hypertensive subgroup and 10 boys from the normotensive subgroup were also evaluated after eight months of physical training. A significant fall in 86rubidium uptake was observed. No control group was examined and probably the changes reflect some effects of sexual maturation on cation handling of cells......We have measured the capacity of the sodium-potassium pump, as assessed by 86rubidium uptake and the number of [3H]-ouabain binding sites on white blood cells, in children aged 9-11 years, partly cross-sectionally and partly longitudinally after a physical training programme. Children from...

  6. Effect of Chinese Herbs for Activating Blood Circulation,Removing Stasis and Supplementing Qi on the Circulating Endothelial Cells in Patients with Unstable Angina Pectoris

    Institute of Scientific and Technical Information of China (English)

    马丽红; 阮英茆; 焦增绵; 李晓惠

    2004-01-01

    Objective: To observe the effect and clinical significance of circulating endothelial cells (CEC) in the pathogenesis of coronary heart disease with unstable angina pectoris (CHD-UAP), and to explore the protective effect of Chinese herbs for activating blood circulation, removing stasis and supplementing Qi (CH) on CHD-UAP patient's CEC. Methods: Sixty patients with diagnosis of CHD-UAP confirmed and differentiated to be Qi-deficiency and blood stasis by TCM were randomly divided into two groups and treatime, with 1 month as one therapeutic course. The number of CEC in patients' blood circulation was counted before and after treatment. Besides, the number of CEC in 30 healthy persons was also counted for control.Results: The number of CEC in CHD-UAP patients was significantly higher than that in the healthy persons (P<0.01). After the patients were treated with CH, either TXL or HXTM, it significantly decreased (P<0.01)with insignificant difference between the two treated groups. Conclusion: CEC in CHD-UAP patients is severely damaged and endothelial function in disorder, Chinese herbs have protective effect on patients' CEC.

  7. Increased oxidative stress and decreased activities of Ca2+/Mg2+-ATPase and Na+/K+-ATPase in the red blood cells of the hibernating black bear

    Science.gov (United States)

    Chauhan, V.P.S.; Tsiouris, J.A.; Chauhan, A.; Sheikh, A.M.; Brown, W. Ted; Vaughan, M.

    2002-01-01

    During hibernation, animals undergo metabolic changes that result in reduced utilization of glucose and oxygen. Fat is known to be the preferential source of energy for hibernating animals. Malonyldialdehyde (MDA) is an end product of fatty acid oxidation, and is generally used as an index of lipid peroxidation. We report here that peroxidation of lipids is increased in the plasma and in the membranes of red blood cells in black bears during hibernation. The plasma MDA content was about four fold higher during hibernation as compared to that during the active, non-hibernating state (P increased during hibernation (P increased oxidative stress, and have reduced activities of membrane-bound enzymes such as Ca2+/Mg2+-ATPase and Na+/K+-ATPase. These changes can be considered part of the adaptive for survival process of metabolic depression. ?? 2002 Elsevier Science Inc. All rights reserved.

  8. Immune Cells in Blood Recognize Tumors

    Science.gov (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  9. Isolation of rare cancer cells from blood cells using dielectrophoresis.

    Science.gov (United States)

    Salmanzadeh, Alireza; Sano, Michael B; Shafiee, Hadi; Stremler, Mark A; Davalos, Rafael V

    2012-01-01

    In this study, we investigate the application of contactless dielectrophoresis (cDEP) for isolating cancer cells from blood cells. Devices with throughput of 0.2 mL/hr (equivalent to sorting 3×10(6) cells per minute) were used to trap breast cancer cells while allowing blood cells through. We have shown that this technique is able to isolate cancer cells in concentration as low as 1 cancer cell per 10(6) hematologic cells (equivalent to 1000 cancer cells in 1 mL of blood). We achieved 96% trapping of the cancer cells at 600 kHz and 300 V(RMS).

  10. Indoor air pollution from biomass burning activates Akt in airway cells and peripheral blood lymphocytes: a study among premenopausal women in rural India.

    Science.gov (United States)

    Mondal, Nandan K; Roy, Amrita; Mukherjee, Bidisha; Das, Debangshu; Ray, Manas R

    2010-12-01

    Biomass burning is a major source of indoor air pollution in rural India. The authors investigated in this study whether cumulative exposures to biomass smoke cause activation of the serine/threonine kinase Akt in airway cells and peripheral blood lymphocytes (PBL). For this, the authors enrolled 87 premenopausal (median age 34 years), nonsmoking women who used to cook with biomass (wood, dung, crop wastes) and 85 age-matched control women who cooked with cleaner fuel liquefied petroleum gas. Immunocytochemical and immunoblotting assays revealed significantly higher levels of phosphorylated forms of Akt protein (p-Akt(ser473) and p-Akt(thr308)) in PBL, airway epithelial cells, alveolar macrophages, and neutrophils in sputum of biomass-using women than control. Akt activation in biomass users was associated with marked rise in generation of reactive oxygen species and concomitant depletion of superoxide dismutase. Measurement of particulate matter having a diameter of less than 10 and 2.5 µm in indoor air by real-time aerosol monitor showed 2 to 4 times more particulate pollution in biomass-using households, and Akt activation was positively associated with particulate pollution after controlling potential confounders. The findings suggest that chronic exposure to biomass smoke activates Akt, possibly via generation of oxidative stress.

  11. Isolation of mesenchymal stem cells from equine umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Thomsen Preben D

    2007-05-01

    Full Text Available Abstract Background There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5°C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusion We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs.

  12. In vivo approaches reveal a key role for DCs in CD4+ T cell activation and parasite clearance during the acute phase of experimental blood-stage malaria.

    Directory of Open Access Journals (Sweden)

    Henrique Borges da Silva

    2015-02-01

    Full Text Available Dendritic cells (DCs are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip, with Plasmodium chabaudi AS (Pc parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.

  13. In Vivo Approaches Reveal a Key Role for DCs in CD4+ T Cell Activation and Parasite Clearance during the Acute Phase of Experimental Blood-Stage Malaria

    Science.gov (United States)

    Borges da Silva, Henrique; Fonseca, Raíssa; Cassado, Alexandra dos Anjos; Machado de Salles, Érika; de Menezes, Maria Nogueira; Langhorne, Jean; Perez, Katia Regina; Cuccovia, Iolanda Midea; Ryffel, Bernhard; Barreto, Vasco M.; Marinho, Cláudio Romero Farias; Boscardin, Silvia Beatriz; Álvarez, José Maria; D’Império-Lima, Maria Regina; Tadokoro, Carlos Eduardo

    2015-01-01

    Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection. PMID:25658925

  14. Repair of large full-thickness cartilage defect by activating endogenous peripheral blood stem cells and autologous periosteum flap transplantation combined with patellofemoral realignment.

    Science.gov (United States)

    Fu, Wei-Li; Ao, Ying-Fang; Ke, Xiao-Yan; Zheng, Zhuo-Zhao; Gong, Xi; Jiang, Dong; Yu, Jia-Kuo

    2014-03-01

    Minimal-invasive procedure and one-step surgery offer autologous mesenchymal stem cells derived from peripheral blood (PB-MSCs) a promising prospective in the field of cartilage regeneration. We report a case of a 19-year-old male athlete of kickboxing with ICRS grade IV chondral lesions at the 60° region of lateral femoral trochlea, which was repaired by activating endogenous PB-MSCs plus autologous periosteum flap transplantation combined with correcting the patellofemoral malalignment. After a 7.5 year follow-up, the result showed that the patient returned to competitive kickboxing. Second-look under arthroscopy showed a smooth surface at 8 months postoperation. The IKDC 2000 subjective score, Lysholm score and Tegner score were 95, 98 and 9 respectively at the final follow up. CT and MRI evaluations showed a significant improvement compared with those of pre-operation.

  15. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge.

    Science.gov (United States)

    Lee, Sang In; Kim, Hyun Soo; Koo, Jin Mo; Kim, In Ho

    2016-02-28

    A total of forty weaned pigs ((Landrace × Yorkshire) × Duroc) were used to evaluate the effects of Lactobacillus acidophilus on inflammatory activity after lipopolysaccharide (LPS) challenge. Experimental treatments were as follows: (T1) control diet+saline challenge; (T2) control diet with 0·1% L. acidophilus+saline challenge; (T3) control diet+LPS challenge; and (T4) control diet with 0·1% L. acidophilus+LPS challenge. On d-14, piglets were challenged with saline (T1 and T2) or LPS (T3 and T4). Blood samples were obtained at 0, 2, 4, 6 and 12 h after being challenged and analysed for immune cell cytokine production and gene expression pattern. The L. acidophilus treatment increased the average daily weight gain (ADWG) and average daily feed intake (ADFI) compared with the control diet. With the control diet, the LPS challenge (T3) increased the number of immune cells and expression of TNF-α and IL-6 compared with the saline challenge (T1). Whereas with the saline challenge L. acidophilus treatment (T2) increased the number of leucocytes and CD4 compared with the control diet (T1), with the LPS challenge L. acidophilus treatment (T4) decreased the number of leucocytes, lymphocytes, CD4+ and CD8+ and expression of TNF-α and IL-6 compared with the control diet (T3). L. acidophilus treatment decreased the expression of TRL4 and NF-κB in peripheral blood mononuclear cells (PBMC) after LPS challenge, which leads to inhibition of TNF-α, IFN-γ, IL-6, IL-8 and IL1B1 and to induction of IL-4 and IL-10. We suggested that L. acidophilus improved ADWG and ADFI and protected against LPS-induced inflammatory responses by regulating TLR4 and NF-κB expression in porcine PBMC.

  16. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-09

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.

  17. Human spleen and red blood cells

    Science.gov (United States)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  18. Red blood cell decreases of microgravity

    Science.gov (United States)

    Johnson, P. C.

    1985-01-01

    Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.

  19. Ellagic Acid, a Dietary Polyphenol, Inhibits Tautomerase Activity of Human Macrophage Migration Inhibitory Factor and Its Pro-inflammatory Responses in Human Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Sarkar, Souvik; Siddiqui, Asim A; Mazumder, Somnath; De, Rudranil; Saha, Shubhra J; Banerjee, Chinmoy; Iqbal, Mohd S; Adhikari, Susanta; Alam, Athar; Roy, Siddhartha; Bandyopadhyay, Uday

    2015-05-27

    Ellagic acid (EA), a phenolic lactone, inhibited tautomerase activity of human macrophage migration inhibitory factor (MIF) noncompetitively (Ki = 1.97 ± 0.7 μM). The binding of EA to MIF was determined by following the quenching of tryptophan fluorescence. We synthesized several EA derivatives, and their structure-activity relationship studies indicated that the planar conjugated lactone moiety of EA was essential for MIF inhibition. MIF induces nuclear translocation of NF-κB and chemotaxis of peripheral blood mononuclear cells (PBMCs) to promote inflammation. We were interested in evaluating the effect of EA on nuclear translocation of NF-κB and chemotactic activity in human PBMCs in the presence of MIF. The results showed that EA inhibited MIF-induced NF-κB nuclear translocation in PBMCs, as evident from confocal immunofluorescence microscopic data. EA also inhibited MIF-mediated chemotaxis of PBMCs. Thus, we report MIF-inhibitory activity of EA and inhibition of MIF-mediated proinflammatory responses in PBMCs by EA.

  20. Expression of VSTM1-v2 Is Increased in Peripheral Blood Mononuclear Cells from Patients with Rheumatoid Arthritis and Is Correlated with Disease Activity.

    Directory of Open Access Journals (Sweden)

    Dashan Wang

    Full Text Available Rheumatoid arthritis (RA is a chronic, systematic autoimmune disease that mainly affects joints and bones. Although the precise etiology is still unknown, Th17 cell is being recognized as an important mediator in pathogenesis of RA. VSTM1-v2 is a novel cytokine which has recently been reported to promote the differentiation of Th17 cells. This study is performed to study whether VSTM1-v2 can be recognized as a biomarker of RA, and is correlated to IL-17 expression. We obtained peripheral blood mononuclear cells (PBMCs from 40 patients with RA and 40 age- and sex-matched healthy controls by standard Ficoll-Paque Plus density centrifugation. The mRNA expression levels of VSTM1-v2 and IL-17A in PBMCs were detected by real time-PCR. Disease activity parameters of RA were measured by routine methods. Our results showed that VSTM1-v2 mRNA expression in PBMCs from RA patients was significantly increased in comparison of that in healthy individuals. The VSTM1-v2 mRNA expression level was positively correlated with IL-17A mRNA expression level, DAS28, CRP and ESR, but was not correlated to RF, Anti-CCP or ANA. VSTM1-v2 might be a biomarker of RA and a novel factor in the pathogenesis of RA.

  1. IBCIS:Intelligent blood cell identification system

    Institute of Scientific and Technical Information of China (English)

    Adnan Khashman

    2008-01-01

    The analysis of blood cells in microscope images can provide useful information concerning the health of patients.There are three major blood cell types,namely,erythrocytes (red),leukocytes (white),and platelets.Manual classification is time consuming and susceptible to error due to the different morphological features of the cells.This paper presents an intelligent system that simulates a human visual inspection and classification of the three blood cell types.The proposed system comprises two phases:The image preprocessing phase where blood cell features are extracted via global pattern averaging,and the neural network arbitration phase where training is the first and then classification is carried out.Experimental results suggest that the proposed method performs well in identifying blood cell types regardless of their irregular shapes,sizes and orientation,thus providing a fast,simple and efficient rotational and scale invariant blood cell identification system which can be used in automating laboratory reporting.

  2. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Queue __count__/__total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from ... later? Sign in to add this video to a playlist. Sign in Share More Report Need to ...

  3. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    Science.gov (United States)

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  4. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium.

    Science.gov (United States)

    Marques, Joana; Vilanova, Eduardo; Mourão, Paulo A S; Fernàndez-Busquets, Xavier

    2016-04-13

    The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses.

  5. Effects of exercise in polluted air on the aerobic power, serum lactate level and cell blood count of active individuals

    Directory of Open Access Journals (Sweden)

    Mehdi Kargarfard

    2011-01-01

    Conclusions: Exercise in high-polluted air resulted in a significant reduction in the performance at submaximal levels of physical exertion. Therefore, the acute exposure to polluted air may cause a significant reduction in the performance of active individuals. The clinical importance of these findings should be assessed in longitudinal studies.

  6. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium

    Science.gov (United States)

    Marques, Joana; Vilanova, Eduardo; Mourão, Paulo A. S.; Fernàndez-Busquets, Xavier

    2016-01-01

    The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses. PMID:27071342

  7. The antagonist activity of lipid IVa on the stimulation by lipid A of TNF-alpha production from canine blood mononuclear cells.

    Science.gov (United States)

    Takasawa, Kenji; Kano, Rui; Maruyama, Haruhiko; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2011-09-15

    Lipid A, the active component of lipopolysaccharide (LPS), exists in the outer membrane of Gram-negative bacteria and binds to the Toll-like receptor 4 (TLR4) and MD-2 complex. On the other hand, the synthetic precursor of Escherichia coli lipid A, tetraacylated lipid IVa, is an agonist for TLR4 and MD-2 complex in murine, equine and feline cells but is an antagonist for lipid A in human cells. The aim of the study was to examine the function of canine Toll-like receptor 4 (TLR4) and MD-2 complex on canine blood mononuclear cells (BMC), by analyzing lipid A- or lipid IVa-induction of TNF-α production from these cells in order to understand canine innate immune system. After 5-h culture of canine BMC with lipid A (lipid A culture) or lipid IVa (lipid IVa culture), the TNF-α, as determined by ELISA, had increased in the supernatants of the lipid A cultures in a dose-dependent manner, whereas the TNF-α was undetectable in supernatant of lipid IVa-treated cultures. The TNF-α was statistically significantly different between the lipid A and lipid IVa cultures (100 and 1000 ng/ml). TNF-α production from canine BMC was inhibited, in a lipid IVa-dose-dependent manner, when the BMC were pre-cultured with lipid IVa for 60 min and then cultured with lipid A for 5h, while in control BMC cultures production if TNF-α was unchanged. These results indicate that the TNF-α production stimulated by lipid A was competed out by pre-exposing the BMC to lipid IVa. Thus, lipid A is an agonist for TNF-α production in canine BMC, whereas lipid IVa appears to be an antagonist against this lipid A stimulation of canine BMC.

  8. GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model.

    Science.gov (United States)

    Kim, Dong Hyun; Lee, Dahm; Chang, Eun Hyuk; Kim, Ji Hyun; Hwang, Jung Won; Kim, Ju-Yeon; Kyung, Jae Won; Kim, Sung Hyun; Oh, Jeong Su; Shim, Sang Mi; Na, Duk Lyul; Oh, Wonil; Chang, Jong Wook

    2015-10-15

    Our previous studies demonstrated that transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the hippocampus of a transgenic mouse model of Alzheimer's disease (AD) reduced amyloid-β (Aβ) plaques and enhanced cognitive function through paracrine action. Due to the limited life span of hUCB-MSCs after their transplantation, the extension of hUCB-MSC efficacy was essential for AD treatment. In this study, we show that repeated cisterna magna injections of hUCB-MSCs activated endogenous hippocampal neurogenesis and significantly reduced Aβ42 levels. To identify the paracrine factors released from the hUCB-MSCs that stimulated endogenous hippocampal neurogenesis in the dentate gyrus, we cocultured adult mouse neural stem cells (NSCs) with hUCB-MSCs and analyzed the cocultured media with cytokine arrays. Growth differentiation factor-15 (GDF-15) levels were significantly increased in the media. GDF-15 suppression in hUCB-MSCs with GDF-15 small interfering RNA reduced the proliferation of NSCs in cocultures. Conversely, recombinant GDF-15 treatment in both in vitro and in vivo enhanced hippocampal NSC proliferation and neuronal differentiation. Repeated administration of hUBC-MSCs markedly promoted the expression of synaptic vesicle markers, including synaptophysin, which are downregulated in patients with AD. In addition, in vitro synaptic activity through GDF-15 was promoted. Taken together, these results indicated that repeated cisterna magna administration of hUCB-MSCs enhanced endogenous adult hippocampal neurogenesis and synaptic activity through a paracrine factor of GDF-15, suggesting a possible role of hUCB-MSCs in future treatment strategies for AD.

  9. Separation of blood cells using hydrodynamic lift

    Science.gov (United States)

    Geislinger, T. M.; Eggart, B.; Braunmüller, S.; Schmid, L.; Franke, T.

    2012-04-01

    Using size and deformability as intrinsic biomarkers, we separate red blood cells (RBCs) from other blood components based on a repulsive hydrodynamic cell-wall-interaction. We exploit this purely viscous lift effect at low Reynolds numbers to induce a lateral migration of soft objects perpendicular to the streamlines of the fluid, which closely follows theoretical prediction by Olla [J. Phys. II 7, 1533, (1997)]. We study the effects of flow rate and fluid viscosity on the separation efficiency and demonstrate the separation of RBCs, blood platelets, and solid microspheres from each other. The method can be used for continuous and label-free cell classification and sorting in on-chip blood analysis.

  10. Physalin F, a seco-steroid from Physalis angulata L., has immunosuppressive activity in peripheral blood mononuclear cells from patients with HTLV1-associated myelopathy.

    Science.gov (United States)

    Pinto, Lorena A; Meira, Cássio S; Villarreal, Cristiane F; Vannier-Santos, Marcos A; de Souza, Claudia V C; Ribeiro, Ivone M; Tomassini, Therezinha C B; Galvão-Castro, Bernardo; Soares, Milena B P; Grassi, Maria F R

    2016-04-01

    Human T-lymphotropic virus type 1 (HTLV-1) induces a strong activation of the immune system, especially in individuals with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Physalin F is a secosteroid with potent anti-inflammatory and immunomodulatory activities. The present study aimed to investigate the effects of physalin F on peripheral blood mononuclear cells (PBMC) of HAM/TSP subjects. A concentration-dependent inhibition of spontaneous proliferation of PBMC from HAM/TSP subjects was observed in the presence of physalin F, as evaluated by (3)H-thymidine uptake. The IC50 for physalin F was 0.97 ± 0.11 μM. Flow cytometry analysis using Cytometric Bead Array (CBA) showed that physalin F (10 μM) significantly reduced the levels of IL-2, IL-6, IL-10, TNF-α and IFN-γ, but not IL-17A, in supernatants of PBMC cultures. Next, apoptosis induction was addressed by using flow cytometry to evaluate annexin V expression. Treatment with physalin F (10 μM) increased the apoptotic population of PBMC in HAM/TSP subjects. Transmission electron microscopy analysis of PBMC showed that physalin F induced ultrastructural changes, such as pyknotic nuclei, damaged mitochondria, enhanced autophagic vacuole formation, and the presence of myelin-like figures. In conclusion, physalin F induces apoptosis of PBMC, decreasing the spontaneous proliferation and cytokine production caused by HTLV-1 infection.

  11. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  12. Iridoid extracts from Ajuga iva increase the antioxidant enzyme activities in red blood cells of rats fed a cholesterol-rich diet.

    Science.gov (United States)

    Bouderbala, Sherazede; Prost, Josiane; Lacaille-Dubois, Marie Aleth; Bouchenak, Malika

    2010-05-01

    The lyophilized aqueous extract of Ajuga iva (Ai) is able to reduce oxidative stress, which may prevent lipid peroxidation in hypercholesterolemic rats. Iridoids (I) were isolated from Ai. We hypothesized that the antioxidant defense status in red blood cells (RBC) and tissues in rats fed a cholesterol-rich diet and treated with Ai may be correlated to these compounds. Male Wistar rats (n = 32) weighing 120 +/- 5 g were fed a diet containing 1% cholesterol for 15 days. After this phase, hypercholesterolemic (HC) rats were divided into groups, fed the same diet, and received either the same or different doses (5, 10, or 15 mg/kg body weight by intraperitoneal injection) of I for 15 days. Compared with the HC group, total cholesterol value was 1.4- and 1.2-fold lower in the I(5)-HC and I(10)-HC groups. Serum thiobarbituric acid reactive substance content was 2.3-, 2.9-, and 3-fold lower in the I(5)-HC, I(10)-HC, and I(15)-HC groups compared with the HC group. In RBC, glutathione peroxidase, glutathione reductase, and superoxide dismutase activities were significantly higher in the I(5)-HC, I(10)-HC, and I(15)-HC groups than the HC group. Liver, heart, and muscle glutathione peroxidase and superoxide dismutase activities were significantly higher in the groups treated with I than the HC group. Muscle glutathione reductase activity was increased 1.4-fold in the I(5)-HC, 1.5-fold in the I(10)-HC, and 1.5-fold in the I(15)-HC group. In HC rats, different doses of I increase the antioxidant enzyme activities in RBC and act differently in tissues. Treatment with I may play an important role in suppressing oxidative stress caused by dietary cholesterol and, thus, may be useful for the prevention and/or early treatment of hypercholesterolemia.

  13. The origin of blood stem cells

    NARCIS (Netherlands)

    J.C. Boisset

    2012-01-01

    textabstractThe development of cell biology research coincides with the advance of microscopes in the 19th century. It was finally possible to directly observe the various blood cell types and to witness their proliferation and differentiation (Mazzarello, 1999). On the basis of his observations, th

  14. 21 CFR 864.9245 - Automated blood cell separator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle...

  15. 21 CFR 864.8200 - Blood cell diluent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood...

  16. Deterministic Aperiodic Sickle Cell Blood Flows

    Science.gov (United States)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  17. An improved red blood cell additive solution maintains 2,3-diphosphoglycerate and adenosine triphosphate levels by an enhancing effect on phosphofructokinase activity during cold storage

    NARCIS (Netherlands)

    P. Burger; H. Korsten; D. de Korte; E. Rombout; R. van Bruggen; A.J. Verhoeven

    2010-01-01

    BACKGROUND: Current additive solutions (ASs) for red blood cells (RBCs) do not maintain constant 2,3-diphosphoglycerate (DPG) and adenosine triphosphate (ATP) levels during cold storage We have previously shown that with a new AS called phosphate-adenine-glucose-guanosine-gluconate-mannitol (PAGGGM)

  18. Expression of blood group I and i active carbohydrate sequences on cultured human and animal cell lines assessed by radioimmunoassays with monoclonal cold agglutinins

    Energy Technology Data Exchange (ETDEWEB)

    Childs, R.A.; Kapadia, A.; Feizi, T. (Clinical Research Centre, Harrow (UK))

    1980-05-01

    Human monoclonal anti-I und anti-i antibodies, reactive with known carbohydrate sequences, have been used as reagents to quantitate (by radioimmunoassay) and visualize (by immunofluorscence) the expression of the various blood group I and i antigenic determinants in a variety of cultured cell lines commonly used in laboratory investigations. It has been shown that the antigens they recognize are widely distributed on the surface of human and animal cell lines, expressed in varying amounts in different cell lines and on individual cells within a given cell line. In two cell lines, a transformation-associated increase in the expression of I antigen was observed. Because of their precise specificity for defined carbohydrate chain domains, these autoantibodies have become valuable reagents in biological chemistry.

  19. Expression of blood group I and I active carbohydrate sequences on cultured human and animal cell lines assessed by radioimmunoassays with monoclonal cold agglutinins

    Energy Technology Data Exchange (ETDEWEB)

    Childs, R.A.; Kapadia, A.; Feizi, T.

    1980-05-01

    Human monoclonal anti-I and anti-i, reactive with known carbohydrate sequences, have been used as reagents to quantitate (by radioimmunoassay) and visualize (by immunofluorescence) the expression of the various blood group I and i antigenic determinants in a variety of cultured cell lines commonly used in laboratory investigations. It has been shown that the antigens they recognize are widely distributed on the surface of human and animal cell lines, expressed in varying amounts in different cell lines and on individual cells within a given cell line. In two cell lines, a transformation-associated increase in the expression of I antigen was observed. Because of their precise specificity for defined carbohydrate chain domains, these autoantibodies have become valuable reagents in biological chemistry.

  20. Red blood cells and thrombin generation in sickle cell disease.

    Science.gov (United States)

    Whelihan, Matthew F; Lim, Ming Y; Key, Nigel S

    2014-05-01

    The prothrombotic nature of sickle cell disease (SCD) is evidenced by the chronically elevated levels of almost all coagulation activation biomarkers, and an increased incidence of certain thrombotic events, including venous thromboembolism. Numerous studies have attempted to define the extent and elucidate the mechanism of the observed increase in thrombin generation in SCD patients in vivo. In general, these studies were performed using thrombin generation assays in platelet poor or platelet rich plasma and showed little difference in endogenous thrombin potential between the SCD cohort and healthy matched controls. In SCD, erythrocytes and monocytes have been demonstrated to exhibit procoagulant characteristics. Thus, the absence of these cellular components in standard thrombin generation assays may fail to reflect global hypercoagulability in the whole blood of patients with SCD. We were therefore surprised to see no difference in net thrombin generation in tissue factor-initiated initiated clotting of whole blood from patients with SCD. However, we are continuing to reconcile these seemingly disparate observations by slight modifications of the whole blood model that include alternative coagulation triggers and a re-examination of the net thrombin generation when the protein/protein S system is simultaneously interrogated.

  1. Cerebral blood flow response to functional activation

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only...

  2. Erythropoietin reduces storage lesions and decreases apoptosis indices in blood bank red blood cells

    Science.gov (United States)

    Penuela, Oscar Andrés; Palomino, Fernando; Gómez, Lina Andrea

    2015-01-01

    Background Recent evidence shows a selective destruction of the youngest circulating red blood cells (neocytolysis) trigged by a drop in erythropoietin levels. Objective The aim of this study was to evaluate the effect of recombinant human erythropoietin beta on the red blood cell storage lesion and apoptosis indices under blood bank conditions. Methods Each one of ten red blood cell units preserved in additive solution 5 was divided in two volumes of 100 mL and assigned to one of two groups: erythropoietin (addition of 665 IU of recombinant human erythropoietin) and control (isotonic buffer solution was added). The pharmacokinetic parameters of erythropoietin were estimated and the following parameters were measured weekly, for six weeks: Immunoreactive erythropoietin, hemolysis, percentage of non-discocytes, adenosine triphosphate, glucose, lactate, lactate dehydrogenase, and annexin-V/esterase activity. The t-test or Wilcoxon's test was used for statistical analysis with significance being set for a p-value 6 weeks under blood bank conditions, with persistent supernatant concentrations of erythropoietin during the entire storage period. Adenosine triphosphate was higher in the Erythropoietin Group in Week 6 (4.19 ± 0.05 μmol/L vs. 3.53 ± 0.02 μmol/L; p-value = 0.009). The number of viable cells in the Erythropoietin Group was higher than in the Control Group (77% ± 3.8% vs. 71% ± 2.3%; p-value <0.05), while the number of apoptotic cells was lower (9.4% ± 0.3% vs. 22% ± 0.8%; p-value <0.05). Conclusions Under standard blood bank conditions, an important proportion of red blood cells satisfy the criteria of apoptosis. Recombinant human erythropoietin beta seems to improve storage lesion parameters and mitigate apoptosis. PMID:26969770

  3. Red blood cells in retinal vascular disorders.

    Science.gov (United States)

    Agrawal, Rupesh; Sherwood, Joseph; Chhablani, Jay; Ricchariya, Ashutosh; Kim, Sangho; Jones, Philip H; Balabani, Stavroula; Shima, David

    2016-01-01

    Microvascular circulation plays a vital role in regulating physiological functions, such as vascular resistance, and maintaining organ health. Pathologies such as hypertension, diabetes, or hematologic diseases affect the microcirculation posing a significant risk to human health. The retinal vasculature provides a unique window for non-invasive visualisation of the human circulation in vivo and retinal vascular image analysis has been established to predict the development of both clinical and subclinical cardiovascular, metabolic, renal and retinal disease in epidemiologic studies. Blood viscosity which was otherwise thought to play a negligible role in determining blood flow based on Poiseuille's law up to the 1970s has now been shown to play an equally if not a more important role in controlling microcirculation and quantifying blood flow. Understanding the hemodynamics/rheology of the microcirculation and its changes in diseased states remains a challenging task; this is due to the particulate nature of blood, the mechanical properties of the cells (such as deformability and aggregability) and the complex architecture of the microvasculature. In our review, we have tried to postulate a possible role of red blood cell (RBC) biomechanical properties and laid down future framework for research related to hemorrheological aspects of blood in patients with retinal vascular disorders.

  4. Research of activity decay of red blood cells in static magnetic field with optical tweezers%用光镊研究稳恒磁场对血红细胞的活性影响

    Institute of Scientific and Technical Information of China (English)

    李雷

    2013-01-01

    为了研究稳恒磁场对离体血红细胞的活性衰变产生的影响,采用非接触、无损伤的光镊技术进行了实验与分析。光镊中的高斯激光光束作用使红细胞发生形变,待细胞稳定后切断光路,得到形变血红细胞的相对形变量值,该量值大小与红细胞活性相关;对比了正常离体血液与静置于稳恒磁场中的红细胞活性衰变规律。结果表明,0.20 T稳恒磁场可以提高红细胞的变形能力,增强红细胞的活性;同时加速了细胞体内能量的消耗,因离体环境没有能量的补充,能量的消耗加速了红细胞的衰老。这一结果为磁场对细胞的活性影响和动力学分析提供了一些参考。%Optical tweezers was used to study the changing rule of the activity of the red blood cells in static magnetic field.Red blood cells irradiated by Gaussian laser beam were deformed .When the laser was cut off , the relative deformation value of blood cells was obtained , which was associated with the cellsactivity.After comparing the decay process of cells activity between static red blood cells and red blood cells in magnetic field , the results showed the activity of the red blood cells increased by 0.20T magnetic field, meanwhile the cells’ energy consumption increased.The death of cells has accelerated because of energy consumption .The research can provide valuable reference for the study of cells viability and dynamic analysis .

  5. Cord blood banking activity in Iran National Cord Blood Bank: a two years experience.

    Science.gov (United States)

    Jamali, Mostafa; Atarodi, Kamran; Nakhlestani, Mozhdeh; Abolghasemi, Hasan; Sadegh, Hosein; Faranoosh, Mohammad; Golzade, Khadije; Fadai, Razieh; Niknam, Fereshte; Zarif, Mahin Nikougoftar

    2014-02-01

    Today umbilical cord blood (UCB) has known as a commonly used source of hematopoietic stem cells for allogeneic transplantation and many cord blood banks have been established around the world for collection and cryopreservation of cord blood units. Herein, we describe our experience at Iran National Cord Blood Bank (INCBB) during 2 years of activity. From November 2010 to 2012, UCBs were collected from 5 hospitals in Tehran. All the collection, processing, testing, cryopreservation and storage procedures were done according to standard operation procedures. Total nucleated cells (TNC) count, viability test, CD34+ cell count, colony forming unit (CFU) assay, screening tests and HLA typing were done on all banked units. Within 3770 collected units, only 32.9% fulfilled banking criteria. The mean volume of units was 105.2 ml and after volume reduction the mean of TNC, viability, CD34+ cells and CFUs was 10.76×10(8), 95.2%, 2.99×10(6) and 7.1×10(5), respectively. One unit was transplanted at Dec 2012 to a 5-year old patient with five of six HLA compatibilities. In our country banking of UCB is new and high rate of hematopoietic stem cell transplants needs expanding CB banks capacity to find more matching units, optimization of methods and sharing experiences to improve biological characterization of units.

  6. Hypoxia, hormones, and red blood cell function in chick embryos.

    Science.gov (United States)

    Dragon, Stefanie; Baumann, Rosemarie

    2003-04-01

    The red blood cell function of avian embryos is regulated by cAMP. Adenosine A(2A) and beta-adrenergic receptor activation during hypoxic conditions cause changes in the hemoglobin oxygen affinity and CO(2) transport. Furthermore, experimental evidence suggests a general involvement of cAMP in terminal differentiation of avian erythroblasts.

  7. Contact activation of blood-plasma coagulation

    Science.gov (United States)

    Golas, Avantika

    Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 < t°a < 72 dyne/cm (O° ≤ theta < 120°), falling sharply through a broad minimum within the 20 < t°a < 40 dyne/cm (55° < theta < 75°). Furthermore, contact activation of FXII in buffer solution produces an ensemble of protein fragments exhibiting either procoagulant properties in plasma (proteolysis of blood factor XI or prekallikrein), amidolytic properties (cleavage of s-2302 chromogen), or the ability to suppress autoactivation through currently unknown biochemistry. The relative proportions of these fragments depend on activator surface chemistry/energy. We have also discovered that contact activation is moderated by adsorption of plasma proteins unrelated to coagulation through an

  8. Colour measurement and white blood cell recognition

    CERN Document Server

    Gelsema, E S

    1972-01-01

    As a part of a collaboration with NEMCH aimed at the automation of the differential white blood cell count, studies have been made of the different possibilities for using colour to help in the recognition process. Results are presented comparing data obtained with a microspectrophotometer and with a simulated three-colour scanner.

  9. 21 CFR 864.5240 - Automated blood cell diluting apparatus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell diluting apparatus. 864.5240... § 864.5240 Automated blood cell diluting apparatus. (a) Identification. An automated blood cell diluting apparatus is a fully automated or semi-automated device used to make appropriate dilutions of a blood...

  10. Inflight Assay of Red Blood Cell Deformability

    Science.gov (United States)

    Ingram, M.; Paglia, D. E.; Eckstein, E. C.; Frazer, R. E.

    1985-01-01

    Studies on Soviet and American astronauts have demonstrated that red blood cell production is altered in response to low gravity (g) environment. This is associated with changes in individual red cells including increased mean cell volume and altered membrane deformability. During long orbital missions, there is a tendency for the red cell mass deficit to be at least partly corrected although the cell shape anomalies are not. Data currently available suggest that the observed decrease in red cell mass is the result of sudden suppression of erythropoieses and that the recovery trend observed during long missions reflects re-establishment of erythropoietic homeostasis at a "set point" for the red cell mass that is slightly below the normal level at 1 g.

  11. Biomechanopharmacology in Evaluation of Herbs of Activating Blood Circulation to Remove Blood Stasis

    Institute of Scientific and Technical Information of China (English)

    LIAO Fu-long; CAO Jun

    2005-01-01

    Herbs of activating blood circulation to remove blood stasis(ABCRBS) are a category of over 10% in the modern Chinese Pharmacopoeia. A new borderline discipline, biomechanopharmacology, is shaping by the efforts of applying biomechanics in pharmacological studies of ABCRBS herbs. Biomechanics is involved in modeling of blood stasis syndrome (BSS) with mechanical force induced injury and model evaluation by shear stress monitoring for blood coagulation. Investigations showed that tetramethylpyrazine (TMP) contained in Ligusticum chuanxiong Hort and diallyl trisulfide (DT) extracted from garlic demonstrated inhibiting characteristics on vWF mediated platelet activation and thrombus formation occurring under high shear rates. The effect of TMP on shear-induced platelet aggregation might be due to inhibition of calcium channel activity since it showed significant inhibition on intracellular level of calcium demonstrated by laser confocal microscope. The combined effects of TMP and shear stress on rat cerebral microvascular endothelial cell (rCMEC) were investigated by various doses of TMP incorporated with different levels of shear stress generated by a rotational coneplate rheometer. The results indicated that apoptosis of rCMECs could be restrained by a combination of medial level of shear stress with a suitable dose of TMP. To study the influences of shear stress, pressure and TMP on angiogenesis of vascular endothelial cell, cultured rCMEC was pretreated in a flow chamber with independent adjustment for levels of shear stress and pressure, and then 3D cultured on Matrigel. The results indicate that combined effects of shear stress, pressure and TMP may influence angiogenesis significantly. We believe that research on interactions among blood shear stress, secretion of endothelial cell, and pharmacodynamics will be an interesting area of biomechanopharmacology. Herbs of ABCRBS and their extracts for protecting endothelial cells to maintain their normal functions are

  12. Isolation of mesenchymal stem cells from equine umbilical cord blood

    OpenAIRE

    Thomsen Preben D; Heerkens Tammy; Koch Thomas G; Betts Dean H

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is lo...

  13. Shear stress-induced improvement of red blood cell deformability

    OpenAIRE

    Meram, Ece; Yılmaz, Bahar D.; Bas, Ceren; Atac, Nazlı; Yalçın, Ö.; Başkurt, Oguz K.; Meiselman, Herbert J.

    2013-01-01

    Classically, it is known that red blood cell (RBC) deformability is determined by the geometric and material properties of these cells. Experimental evidence accumulated during the last decade has introduced the concept of active regulation of RBC deformability. This regulation is mainly related to altered associations between membrane skeletal proteins and integral proteins, with the latter serving to anchor the skeleton to the lipid matrix. It has been hypothesized that shear stress induces...

  14. [Production of mature red blood cell by using peripheral blood mononuclear cells].

    Science.gov (United States)

    Jia, Yan-Jun; Liu, Jiang; Zhang, Ke-Ying; Shang, Xiao-Yan; Li, Wei; Wang, Li-Jun; Liu, Na; Wang, Lin; Cui, Shuang; Ni, Lei; Zhao, Bo-Tao; Wang, Dong-Mei; Gao, Song-Ming; Zhang, Zhi-Xin

    2014-10-01

    Most protocols for in vitro producing red blood cells (RBC) use the CD34(+) cells or embryonic stem cells from cord blood, bone marrow or peripheral blood as the start materials. This study was purposed to produce the mature RBC in vitro by using peripheral blood mononuclear cells as start material. The peripheral blood mononuclear cells (PBMNC) were isolated from buffy coat after blood leukapheresis, the mature red blood cells (RBC) were prepared by a 4-step culture protocol. The results showed that after culture by inducing with the different sets of cytokines and supporting by mouse MS-5 cell line, the expansion of PBMNC reached about 1000 folds at the end of the culture. About 90% of cultured RBC were enucleated mature cells which had the comparable morphological characteristics with normal RBC. Colony-forming assays showed that this culture system could stimulate the proliferation of progenitors in PBMNC and differentiate into erythroid cells. The structure and function analysis indicated that the mean cell volume of in vitro cultured RBC was 118 ± 4 fl, which was slight larger than that of normal RBC (80-100 fl); the mean cell hemoglobin was 36 ± 1.2 pg, which was slight higher than that of normal RBC (27-31 pg); the maximal deformation index was 0.46, which approachs level of normal RBC; the glucose-6-phosphate dehydrogenase and pyrurvate kinase levels was consistant with young RBC. It is concluded that PBMNC are feasble, convenient and low-cost source for producing cultured RBC and this culture system is suitable to generate the RBC from PBMNC.

  15. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  16. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  17. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  18. Anti-inflammatory activity of probiotic Bifidobacterium:Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells

    Institute of Scientific and Technical Information of China (English)

    Akemi Imaoka; Tatsuichiro Shima; Kimitoshi Kato; Shigeaki Mizuno; Toshiki Uehara; Satoshi Matsumoto; Hiromi Setoyama; Taeko Hara; Yoshinori Umesaki

    2008-01-01

    AIM: To determine the anti-inflammatory activity of probiotic Bifidobacteria in Bifidobacteria-fermented milk (BFM) which is effective against active ulcerative colitis (UC) and exacerbations of UC, and to explore the immunoregulatory mechanisms.METHODS: Peripheral blood mononuclear cells (PBMNC)from UC patients or HT-29 cells were co-cultured with heat-killed probiotic bacteria or culture supernatant of Bifidobacterium breve strain Yakult (BbrY) or Bifidobacterium bifidum strain Yakult (BbiY) to estimate the amount of IL-10 or IL-8 secreted.RESULTS: Both strains of probiotic Bifidobacteria contained in the BFM induced IL-10 production in PBMNC from UC patients, though BbrY was more effective than BbiY.Conditioned medium (CM) and DNA of both strains inhibited IL-8 secretion in HT-29 cells stimulated with TNF-α, whereas no such effect was observed with heatkilled bacteria.The inhibitory effect of CM derived from BbiY was greater than that of CM derived from BbrY.DNAs of the two strains had a comparable inhibitory activity against the secretion of IL-8.CM of BbiY induced a repression of IL-8 gene expression with a higher expression of IκB-ζ mRNA 4 h after culture of HT-29 cells compared to that in the absence of CM.CONCLUSION: Probiotic Bifidobacterium strains in BFM enhance IL-10 production in PBMNC and inhibit IL-8 secretion in intestinal epithelial cells, suggesting that BFM has anti-inflammatory effects against ulcerative colitis.

  19. [Effects of recombinant interleukin-2 on several characteristics of functional activity of lymphocytes from the lymph nodes regional to tumor and mononuclear cells of peripheral blood in cancer patients].

    Science.gov (United States)

    Semenova-Kobzar', R A; Kushko, L Ia; Iakhimovich, L V; Protsyk, V S; Tolstopiatov, B A; Konovalenko, V F; Berezhnaia, N M

    1990-01-01

    The level of endogenous production of IL-2 by lymphocytes of lymph nodes regional to tumour and by mononuclear cells of peripheral blood, proliferative response of these cell to recombinant IL-2, as well as a modifying influence of autologous serum and actively proliferating bioptats of autologous tumours on enumerated parameters have been studied in cancer patients (tumours of the head and neck and locomotor system). Regional IL-2-dependent immunotherapy of malignant tumors with obligatory preliminary testing for individual sensitivity of the tumor bioptat to the influence of the RIL-2 and RIL-2 activated lymphocytes is shown to be promising.

  20. Effects of blood products on inflammatory response in endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martin Urner

    Full Text Available BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC, platelet concentrates (PC and fresh frozen plasma (FFP was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells.

  1. Automated microscopy system for peripheral blood cells

    Science.gov (United States)

    Boev, Sergei F.; Sazonov, Vladimir V.; Kozinets, Gennady I.; Pogorelov, Valery M.; Gusev, Alexander A.; Korobova, Farida V.; Vinogradov, Alexander G.; Verdenskaya, Natalya V.; Ivanova, Irina A.

    2000-11-01

    The report describes the instrument ASPBS (Automated Screening of Peripheral Blood Cells) designed for an automated analysis of dry blood smears. The instrument is based on computer microscopy and uses dry blood smears prepared according to the standard Romanovskii-Giemza procedure. In comparison with the well-known flow cytometry systems, our instrument provides more detailed information and offers an opporunity of visualizing final results. The basic performances of the instrument are given. Software of this instrument is based on digital image processing and image recognition procedures. It is pointed out that the instrument can be used as a fairly universal tool in scientific research, public demonstrations, in medical treatment, and in medical education. The principle used as the basis of the instrument appeared adequate for creating an instrument version serviceable even during space flights where standard manual procedures and flow cytometry systems fail. The benefit of the use of the instrument in clinical laboratories is described.

  2. Prognostic significance of urokinase plasminogen activator receptor and its cleaved forms in blood from patients with non-small cell lung cancer

    DEFF Research Database (Denmark)

    Almasi, Charlotte Elberling; Høyer-Hansen, Gunilla; Christensen, Ib Jarle

    2009-01-01

    in lung tumour extracts. Here we analyse uPAR forms in blood from patients with non-small cell lung cancer (NSCLC). Preoperatively sampled plasma/serum from 32 patients with NSCLC was analysed. Three time-resolved fluoroimmunoassays (TR-FIAs) measuring intact uPAR(I-III) (TR-FIA 1), uPAR(I-III) + u...... survival. Adjusted for histological subtype high plasma uPAR(I-III) and uPAR(I) levels as well as serum uPAR(I) levels were significantly associated with shorter OS (hazards ratios = 4.3, 2.8 and 3.8 respectively). High blood levels of intact uPAR and its cleaved forms are associated with poor prognosis...

  3. Red blood cell clusters in Poiseuille flow

    Science.gov (United States)

    Ghigliotti, Giovanni; Selmi, Hassib; Misbah, Chaouqi; Elasmi, Lassaad

    2011-11-01

    We present 2D numerical simulations of sets of vesicles (closed bags of a lipid bilayer membrane) in a parabolic flow, a setup that mimics red blood cells (RBCs) in the microvasculature. Vesicles, submitted to sole hydrodynamical interactions, are found to form aggregates (clusters) of finite size. The existence of a maximal cluster size is pointed out and characterized as a function of the flow intensity and the swelling ratio of the vesicles. Moreover bigger clusters move at lower velocity, a fact that may prove of physiological interest. These results quantify previous observations of the inhomogeneous distribution of RBCs in vivo (Gaehtgens et al., Blood Cells 6 - 1980). An interpretation of the phenomenon is put forward based on the presence of boli (vortices) between vesicles. Both the results and the explanation can be transposed to the three-dimensional case.

  4. Generation of red blood cells from human embryonic/induced pluripotent stem cells for blood transfusion.

    Science.gov (United States)

    Ebihara, Yasuhiro; Ma, Feng; Tsuji, Kohichiro

    2012-06-01

    Red blood cell (RBC) transfusion is necessary for many patients with emergency or hematological disorders. However, to date the supply of RBCs remains labile and dependent on voluntary donations. In addition, the transmission of infectious disease via blood transfusion from unspecified donors remains a risk. Establishing a large quantity of safe RBCs would help to address this issue. Human embryonic stem (hES) cells and the recently established human induced pluripotent stem (hiPS) cells represent potentially unlimited sources of donor-free RBCs for blood transfusion, as they can proliferate indefinitely in vitro. Extensive research has been done to efficiently generate transfusable RBCs from hES/iPS cells. Nevertheless, a number of challenges must be overcome before the clinical usage of hES/iPS cell-derived RBCs can become a reality.

  5. Aggregation of Red Blood Cells: From Rouleaux to Clot Formation

    CERN Document Server

    Wagner, C; Svetina, S

    2013-01-01

    Red blood cells are known to form aggregates in the form of rouleaux. This aggregation process is believed to be reversible, but there is still no full understanding on the binding mechanism. There are at least two competing models, based either on bridging or on depletion. We review recent experimental results on the single cell level and theoretical analyses of the depletion model and of the influence of the cell shape on the binding strength. Another important aggregation mechanism is caused by activation of platelets. This leads to clot formation which is life saving in the case of wound healing but also a major cause of death in the case of a thrombus induced stroke. We review historical and recent results on the participation of red blood cells in clot formation.

  6. Use of cryopreserved peripheral mononuclear blood cells in biomonitoring

    DEFF Research Database (Denmark)

    Risom, Lotte; Knudsen, Lisbeth E.

    1999-01-01

    cells (PMBC) obtained from donor blood. Measurements of DNA-repair, mutant frequency, and subcell content were included. Samples for large biomonitoring studies are usually taken from study groups within a short time period of days/weeks and storing of study material for later analysis can be necessary......This study was performed to investigate the effect of storing blood samples by freezing on selected biomarkers and possible implications for biomonitoring. Comparative measurements were performed in order to investigate the use of cryopreserved vs. freshly separated peripheral mononuclear blood....... We measured the DNA repair activity as dimethylsulfate induced unscheduled DNA synthesis (UDS) in PMBC incubated with either autologous plasma or fetal bovine serum (FBS). Comparison of the hprt mutant frequency by the T cell cloning assay was made in parallel. Finally the content of B...

  7. P2X and P2Y receptor signaling in red blood cells.

    Science.gov (United States)

    Sluyter, Ronald

    2015-01-01

    Purinergic signaling involves the activation of cell surface P1 and P2 receptors by extracellular nucleosides and nucleotides such as adenosine and adenosine triphosphate (ATP), respectively. P2 receptors comprise P2X and P2Y receptors, and have well-established roles in leukocyte and platelet biology. Emerging evidence indicates important roles for these receptors in red blood cells. P2 receptor activation stimulates a number of signaling pathways in progenitor red blood cells resulting in microparticle release, reactive oxygen species formation, and apoptosis. Likewise, activation of P2 receptors in mature red blood cells stimulates signaling pathways mediating volume regulation, eicosanoid release, phosphatidylserine exposure, hemolysis, impaired ATP release, and susceptibility or resistance to infection. This review summarizes the distribution of P2 receptors in red blood cells, and outlines the functions of P2 receptor signaling in these cells and its implications in red blood cell biology.

  8. Non-major histocompatibility complex-restricted cytotoxic activity of blood mononuclear cells stimulated with secreted mycobacterial proteins and other mycobacterial antigens

    DEFF Research Database (Denmark)

    Ravn, P; Pedersen, B K

    1994-01-01

    Several observations indicate that non-major histocompatibility complex (MHC)-restricted cytotoxicity, mediated for example by natural killer cells and lymphokine-activated killer cells, may serve as an important antimicrobial defense mechanism. The purpose of the present study was to investigate...... the influences of different mycobacterial antigens on non-MHC-restricted cytotoxicity and further to investigate the ways by which various lymphocyte subpopulations contribute to the development of this cytotoxicity. Non-MHC-restricted cytotoxicity was induced following stimulation of mononuclear cells......+ cells proliferated and expressed interleukin-2 receptors following stimulation with mycobacterial antigens. Depletion studies after antigen stimulation showed that the cytotoxic effector cells were CD16+ CD56+ and CD4-; the CD4+ cells alone did not mediate non-MHC-restricted cytotoxicity. To evaluate...

  9. Risk of Abnormal Red Blood Cell to Get Malarial Infection

    OpenAIRE

    Viroj Wiwanitkit

    2008-01-01

    Malarial infection in red blood cell disorder is an interesting topic in tropical medicine. In this work, the author proposes a new idea on the physical property of red blood cell and risk for getting malarial infection. The study on scenario of red blood cell disorders is performed. Conclusively, the author found that physical property of red blood cell is an important determinant for getting malarial infection

  10. Total antiradical activity in male castrated piglets blood: reference values

    Directory of Open Access Journals (Sweden)

    Carlo Corino

    2010-01-01

    Full Text Available Blood samples from 146 male castrated piglets in the range of 10-47kg body weight were collected from the same farm and analysed for total antiradical activity in order to determine reference intervals. Data were tested for normality and then submitted to reference limit evaluation. The reference values found in piglets, expressed as half-hemolysis time (59.34 – 93.60 and 43.94 – 66.90 minutes for blood and red blood cell, respectively, are lower than those found in humans; further studies are needed to extend reference values study to female and to animals of different weight classes and different genetic type.

  11. Simultaneous determination of 2',3'-dideoxyinosine and the active metabolite, 2',3'-dideoxyadenosine-5'-triphosphate in human peripheral-blood mononuclear cell by HPLC-MS/MS and the application to cell pharmacokinetics.

    Science.gov (United States)

    Lan, Xu; Mingdao, Lei; Huilin, Guo; Wei, Gan; Lvjiang, Hu; Yan, Zhou; Gang, Li

    2015-10-01

    A specific and reliable HPLC-MS/MS method was developed and validated for the simultaneous determination of 2',3'-dideoxyinosine (ddI) and the active metabolites, 2',3'-dideoxyadenosine-5'-triphosphate (ddA-TP) in human peripheral-blood mononuclear cell for the first time. The analytes were separated on a HILIC column (100mm×2.1mm, 1.7μm) and a triple-quadrupole mass spectrometry equipped with an electrospray ionization (ESI) source was used for detection. The cell homogenates sample was prepared by the solid phase extraction. The calibration curves were linear over a concentration range of 0.5-200.0ng/mL for ddI and 0.25-100.0ng/mL for ddA-TP. The intra-day and inter-day precision was less than 15% and the relative error (RE) were all within ±15%. The validated method was successfully applied to assess the disposition characteristics of ddI and support cell pharmacokinetics after the patients with AIDS were orally administrated with ddI and tenofovir disoproxyl fumarate (TDF).

  12. 21 CFR 660.30 - Reagent Red Blood Cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  13. 21 CFR 864.6160 - Manual blood cell counting device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual blood cell counting device. 864.6160... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6160 Manual blood cell counting device. (a) Identification. A manual blood cell counting device is a device used...

  14. An epigenetic signature in peripheral blood predicts active ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Andrew E Teschendorff

    Full Text Available BACKGROUND: Recent studies have shown that DNA methylation (DNAm markers in peripheral blood may hold promise as diagnostic or early detection/risk markers for epithelial cancers. However, to date no study has evaluated the diagnostic and predictive potential of such markers in a large case control cohort and on a genome-wide basis. PRINCIPAL FINDINGS: By performing genome-wide DNAm profiling of a large ovarian cancer case control cohort, we here demonstrate that active ovarian cancer has a significant impact on the DNAm pattern in peripheral blood. Specifically, by measuring the methylation levels of over 27,000 CpGs in blood cells from 148 healthy individuals and 113 age-matched pre-treatment ovarian cancer cases, we derive a DNAm signature that can predict the presence of active ovarian cancer in blind test sets with an AUC of 0.8 (95% CI (0.74-0.87. We further validate our findings in another independent set of 122 post-treatment cases (AUC = 0.76 (0.72-0.81. In addition, we provide evidence for a significant number of candidate risk or early detection markers for ovarian cancer. Furthermore, by comparing the pattern of methylation with gene expression data from major blood cell types, we here demonstrate that age and cancer elicit common changes in the composition of peripheral blood, with a myeloid skewing that increases with age and which is further aggravated in the presence of ovarian cancer. Finally, we show that most cancer and age associated methylation variability is found at CpGs located outside of CpG islands. SIGNIFICANCE: Our results underscore the potential of DNAm profiling in peripheral blood as a tool for detection or risk-prediction of epithelial cancers, and warrants further in-depth and higher CpG coverage studies to further elucidate this role.

  15. Stem Cell Heterogeneity of Mononucleated Cells from Murine Peripheral Blood: Molecular Analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Dain Yazid

    2011-01-01

    Full Text Available The main purpose of this paper was to determine the heterogeneity of primary isolated mononucleated cells that originated from the peripheral blood system by observing molecular markers. The isolated cells were cultured in complete medium for 4 to 7 days prior to the separation of different cell types, that is, adherent and suspension. Following a total culture time of 14 days, adherent cells activated the Cd105 gene while suspension cells activated the Sca-1 gene. Both progenitor markers, Cbfa-1 and Ostf-1, were inactivated in both suspension and adherent cells after 14-day culture compared to cells cultured 3 days in designated differentiation medium. In conclusion, molecular analyses showed that primary mononucleated cells are heterogeneous, consisting of hematopoietic stem cells (suspension and mesenchymal stem cells (adherent while both cells contained no progenitor cells.

  16. Mechanosensing Dynamics of Red blood Cells

    Science.gov (United States)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  17. Automated red blood cell analysis compared with routine red blood cell morphology by smear review

    Directory of Open Access Journals (Sweden)

    Dr.Poonam Radadiya

    2015-01-01

    Full Text Available The RBC histogram is an integral part of automated haematology analysis and is now routinely available on all automated cell counters. This histogram and other associated complete blood count (CBC parameters have been found abnormal in various haematological conditions and may provide major clues in the diagnosis and management of significant red cell disorders. Performing manual blood smears is important to ensure the quality of blood count results and to make presumptive diagnosis. In this article we have taken 100 samples for comparative study between RBC histograms obtained by automated haematology analyzer with peripheral blood smear. This article discusses some morphological features of dimorphism and the ensuing characteristic changes in their RBC histograms.

  18. Multiscale modeling of blood flow: from single cells to blood rheology.

    Science.gov (United States)

    Fedosov, Dmitry A; Noguchi, Hiroshi; Gompper, Gerhard

    2014-04-01

    Mesoscale simulations of blood flow, where the red blood cells are described as deformable closed shells with a membrane characterized by bending rigidity and stretching elasticity, have made much progress in recent years to predict the flow behavior of blood cells and other components in various flows. To numerically investigate blood flow and blood-related processes in complex geometries, a highly efficient simulation technique for the plasma and solutes is essential. In this review, we focus on the behavior of single and several cells in shear and microcapillary flows, the shear-thinning behavior of blood and its relation to the blood cell structure and interactions, margination of white blood cells and platelets, and modeling hematologic diseases and disorders. Comparisons of the simulation predictions with existing experimental results are made whenever possible, and generally very satisfactory agreement is obtained.

  19. Washing of stored red blood cells by an autotransfusion device before transfusion

    NARCIS (Netherlands)

    de Vroege, R.; Wildevuur, W. R.; Muradin, J. A. G.; Graves, D.; van Oeveren, W.

    2007-01-01

    Background and Objectives The use of an autotransfusion device to wash blood of the incision site is increasing. After washing, this blood is retransfused without side effects caused by activated plasma factors and cell release products. This procedure could be extended to washing of donor blood, wh

  20. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    Science.gov (United States)

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells.

  1. Pyruvate effects on red blood cells during in vitro cardiopulmonary bypass with dogs' blood.

    Science.gov (United States)

    Gou, DaMing; Tan, HongJing; Cai, HuiJun; Zhou, FangQiang

    2012-11-01

    To investigate the effects of pyruvate (Pyr) on adenosine triphosphate (ATP), endothelial nitric oxide synthase (eNOS), and nitric oxide (NO) in red blood cells (RBCs) during the cardiopulmonary bypass procedure (CPB), blood, 500 mL, was collected from each of 10 healthy dogs (weight 12-18 kg). The blood was divided into two parts (250 mL each) and randomly assigned into the control group (Group C, n = 10) or the Pyr group (Group P, n = 10). The blood was commingled with an equal volume of 0.9% NaCl and pyruvated isotonic solution (Pyr 50 mM) in the extracorporeal circuit in the two groups, respectively. The CPB procedure was fixed at 120 min, and the transferring flow was 4 L/min. Contents of ATP in RBCs, eNOS activities, and NO productions in plasma were measured before CPB and during CPB at 30, 60, 90, and 120 min in both groups. The ATP level, eNOS activity, and NO production were not different prior to CPB between the two groups. A decline of ATP levels was shown in both groups but remained significantly higher in Group P than in Group C at the same time points during in vitro CPB (P dogs' RBCs in the ATP level, eNOS activity, and NO production, in vitro, but Pyr effectively protected RBCs in these functions during CPB. Pyr would be clinically protective for RBCs during CPB.

  2. Biological effects of the electrostatic field: red blood cell-related alterations of oxidative processes in blood

    Science.gov (United States)

    Harutyunyan, Hayk A.; Sahakyan, Gohar V.

    2016-01-01

    The aim of this study was to determine activities of pro-/antioxidant enzymes, reactive oxygen species (ROS) content, and oxidative modification of proteins and lipids in red blood cells (RBCs) and blood plasma of rats exposed to electrostatic field (200 kV/m) during the short (1 h) and the long periods (6 day, 6 h daily). Short-term exposure was characterized by the increase of oxidatively damaged proteins in blood of rats. This was strongly expressed in RBC membranes. After long-term action, RBC content in peripheral blood was higher than in control ( P < 0.01) and the attenuation of prooxidant processes was shown.

  3. Effects of chronic kidney disease on blood cells membrane properties.

    Science.gov (United States)

    Kaderjakova, Z; Lajdova, I; Horvathova, M; Morvova, M; Sikurova, L

    2012-10-01

    Chronic kidney disease (CKD) is progressive loss of renal function associated among others with increased intracellular calcium concentration. The purpose of this study was to identify the effects of CKD on cell membrane properties such as human red blood cell Ca(2+) ATPase activity, lymphocyte plasma membrane P2X(7) receptor expression and function. This could help us in elucidating the origin of increased calcium concentration in blood cells. We found out Ca(2+) ATPase activity is decreased in early stage CKD patients resulting in altered calcium removal from cytoplasm. By means of flow cytometry we assessed that P2X(7) receptor expression on lymphocyte membrane is 1.5 fold increased for CKD patients. Moreover, we detected an increased uptake of ethidium bromide through this receptor in CKD at basal conditions. It means CKD lymphocyte membranes contain more receptors which are more permeable thus allowing increased calcium influx from extracellular milieu. Finally, we can state alterations in blood cell membranes are closely linked to CKD and may be responsible for intracellular calcium accumulation.

  4. Microfluidic Device for Continuous Magnetophoretic Separation of Red Blood Cells

    CERN Document Server

    Iliescu, Ciprian; Avram, Marioara; Xu, G; Avram, Andrei

    2008-01-01

    This paper presents a microfluidic device for magnetophoretic separation red blood cells from blood under contionous flow. The separation method consist of continous flow of a blood sample (diluted in PBS) through a microfluidic channel which presents on the bottom "dots" of feromagnetic layer. By appling a magnetic field perpendicular on the flowing direction, the feromagnetic "dots" generates a gradient of magnetic field which amplifies the magnetic force. As a result, the red blood cells are captured on the bottom of the microfluidic channel while the rest of the blood is collected at the outlet. Experimental results show that an average of 95 % of red blood cells are trapped in the device

  5. Plant extracts of winter savory, purple coneflower, buckwheat and black elder activate PPAR-γ in COS-1 cells but do not lower blood glucose in Db/db mice in vivo.

    Science.gov (United States)

    Schrader, Eva; Wein, Silvia; Kristiansen, Karsten; Christensen, Lars P; Rimbach, Gerald; Wolffram, Siegfried

    2012-12-01

    The aim of this study was to investigate possible blood glucose-lowering effects of plant extracts in vivo for which prior to this a peroxisome proliferator-activated receptor-γ activity in vitro was observed. The ability of extracts of winter savory, purple coneflower, buckwheat and black elder to dose-dependently activate peroxisome proliferator-activated receptor-γ was determined in a reporter gene assay in COS-1 cells. For evaluation of glucose-lowering effects in vivo, db/db mice were fed a diet containing either rosiglitazone (0.02 g/kg diet, positive control) or one of the plant extracts (0.1 and 1 g/kg diet) for four weeks. Apart from glucose, insulin, triacylglycerols, non-esterified fatty acids, cholesterol and adiponectin were determined in plasma. All plant extracts showed a dose-dependent peroxisome proliferator-activated receptor-γ-activating effect in vitro. In db/db mice none of the plant extracts exerted glucose-lowering effects at the used dosages compared to rosiglitazone. Non-esterified fatty acids, triacylglycerols, cholesterol, insulin and adiponectin in plasma were not altered by the plant extracts as well. Although dose-dependent peroxisome proliferator-activated receptor-γ activity could be shown in COS-1 cells, the experiments in db/db mice lacked to confirm any anti-diabetic effect of the plant extracts in vivo and emphasizes the importance of verifying cell culture data using an appropriate in vivo model.

  6. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non......-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low......, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal...

  7. Alterations in cell surface area and deformability of individual human red blood cells in stored blood

    CERN Document Server

    Park, HyunJoo; Lee, SangYun; Kim, Kyoohyun; Sohn, Yong-Hak; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusion. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called CPDA-1. With 3-D quantitative phase imaging techniques, the optical measurements of the 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and their progressive alterations in stored RBCs. Our results show that the stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within 2 weeks which was accompanied with significant ...

  8. Activation and crosstalk between TNF family receptors in umbilical cord blood cells is not responsible for loss of engraftment capacity following culture.

    Science.gov (United States)

    Mizrahi, Keren; Askenasy, Nadir

    2013-01-01

    Umbilical cord blood (UCB) is a rich source of hematopoietic progenitors for transplantation. Murine and human progenitors are insensitive to apoptotic signaling mediated by the TNF family receptors, however extension of culture over 48 hours is accompanied by severe deterioration in engraftment and hematopoietic reconstituting capacity. In this study we assessed crosstalk between the Fas, TNF and TRAIL receptors, and questioned whether it contributes to increased mortality and decreased activity of UCB progenitors following extended ex vivo culture for 72 hours. The well-characterized TNF-induced expression of Fas is mediated by both TNF receptors, yet the TNF receptors determine survival rather than Fas: superior viability of TNF-R1 progenitors. Additional cross talk includes upregulation of TRAIL-R1 by Fas-ligand, mediated both by fast cycling and inductive crosstalk. These inductive interactions are not accompanied by concomitant sensitization of progenitors to receptor-mediated apoptosis during extended culture, but rather decreased fractional apoptosis in expanded progenitor subsets expressing the receptors. TRAIL upregulates both TRAIL-R1 and TRAIL-R2, accompanied by commensurate susceptibility to spontaneous apoptosis. The current data reveal inductive crosstalk between TNF family receptors, which are largely dissociated from the sensitivity of hematopoietic progenitors to apoptosis. Activation of Fas, TNF and TRAIL receptors and excessive apoptosis are not responsible for loss of engraftment and impaired reconstituting activity of UCB progenitors following extended culture.

  9. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell

    DEFF Research Database (Denmark)

    Pasini, Erica M; Kirkegaard, Morten; Salerno, Doris;

    2008-01-01

    Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much...

  10. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells.

    Science.gov (United States)

    Hiwarkar, Prashant; Qasim, Waseem; Ricciardelli, Ida; Gilmour, Kimberly; Quezada, Sergio; Saudemont, Aurore; Amrolia, Persis; Veys, Paul

    2015-12-24

    Unrelated cord blood transplantation (CBT) without in vivo T-cell depletion is increasingly used to treat high-risk hematologic malignancies. Following T-replete CBT, naïve CB T cells undergo rapid peripheral expansion with memory-effector differentiation. Emerging data suggest that unrelated CBT, particularly in the context of HLA mismatch and a T-replete graft, may reduce leukemic relapse. To study the role of CB T cells in mediating graft-versus-tumor responses and dissect the underlying immune mechanisms for this, we compared the ability of HLA-mismatched CB and adult peripheral blood (PB) T cells to eliminate Epstein-Barr virus (EBV)-driven human B-cell lymphoma in a xenogeneic NOD/SCID/IL2rg(null) mouse model. CB T cells mediated enhanced tumor rejection compared with equal numbers of PB T cells, leading to improved survival in the CB group (P cells that were autologous vs allogeneic to the lymphoma demonstrated that this antitumor effect was mediated by alloreactive rather than EBV-specific T cells. Analysis of tumor-infiltrating lymphocytes demonstrated that CB T cells mediated this enhanced antitumor effect by rapid infiltration of the tumor with CCR7(+)CD8(+) T cells and prompt induction of cytotoxic CD8(+) and CD4(+) T-helper (Th1) T cells in the tumor microenvironment. In contrast, in the PB group, this antilymphoma effect is impaired because of delayed tumoral infiltration of PB T cells and a relative bias toward suppressive Th2 and T-regulatory cells. Our data suggest that, despite being naturally programmed toward tolerance, reconstituting T cells after unrelated T-replete CBT may provide superior Tc1-Th1 antitumor effects against high-risk hematologic malignancies.

  11. Activation of a P2Y4-like purinoceptor triggers an increase in cytosolic [Ca2+] in the red blood cells of the lizard Ameiva ameiva (Squamata, Teiidae

    Directory of Open Access Journals (Sweden)

    Sartorello R.

    2005-01-01

    Full Text Available An increasing number of pathophysiological roles for purinoceptors are emerging, some of which have therapeutic potential. Erythrocytes are an important source of purines, which can be released under physiological and physiopathological conditions, acting on purinergic receptors associated with the same cell or with neighboring cells. Few studies have been conducted on lizards, and have been limited to ATP agonist itself. We have previously shown that the red blood cells (RBCs of the lizard Ameiva ameiva store Ca2+ in the endoplasmic reticulum (ER and that the purinergic agonist ATP triggers a rapid and transient increase of [Ca2+]c by mobilization of the cation from internal stores. We also reported the ability of the second messenger IP3 to discharge the ER calcium pool of the ER. Here we characterize the purinoceptor present in the cytoplasmic membrane of the RBCs of the lizard Ameiva ameiva by the selective use of ATP analogues and pyrimidine nucleotides. The nucleotides UTP, UDP, GTP, and ATPgammaS triggered a dose-dependent response, while interestingly 2MeSATP, 2ClATP, alpha, ß-ATP, and ADP failed to do so in a 1- to 200-µm con- centration. The EC50 obtained for the compounds tested was 41.77 µM for UTP, 48.11 µM for GTP, 53.11 µM for UDP, and 30.78 µM for ATPgammaS. The present data indicate that the receptor within the RBCs of Ameiva ameiva is a P2Y4-like receptor due to its pharmacological similarity to the mammalian P2Y4 receptor.

  12. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood.

    Science.gov (United States)

    Olivier, Emmanuel; Qiu, Caihong; Bouhassira, Eric E

    2012-08-01

    The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34(+) cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34(+) cells derived from human embryonic stem cells, 6-8-week yolk sacs, 16-18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34(+) cells.

  13. The number of fetal cells in maternal blood is associated to exercise and fetal gender

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Kirkegaard, Ida; Christensen, Connie Britta;

    were then stained with a cocktail of fetal cell-specific antibodies, identified and counted. Results: Participants carrying male fetuses had higher median number of fcmbs per 30 mL blood than those carrying female fetuses (5 vs. 3, p=0.004). Exercise within 3 hours (1.5 vs. 4, p=0.02) and 24 hours (2......Introduction: We have established a robust method to specifically identify and isolate a placental fetal cell in maternal blood (fcmbs) at a gestational age of 12 weeks. The concentration of these cells, however, varies considerably among pregnant women (median 3 fcmbs/30 mL blood, range 0...... activity was obtained by a questionnaire and a structured interview. The number of fcmbs was assessed in 30 mL blood processed by a proprietary method developed in-house. Fetal cells in the blood, binding to fetal cell specific antibodies, were initially isolated by magnetic cell sorting. The fetal cells...

  14. Synthesis of multivalent glycoconjugates containing the immunoactive LELTE peptide: effect of glycosylation on cellular activation and natural killing by human peripheral blood mononuclear cells.

    Science.gov (United States)

    Renaudet, Olivier; Krenek, Karel; Bossu, Isabelle; Dumy, Pascal; Kádek, Alan; Adámek, David; Vanek, Ondrej; Kavan, Daniel; Gazák, Radek; Sulc, Miroslav; Bezouska, Karel; Kren, Vladimír

    2010-05-19

    Pentapeptide diacidic sequence LELTE, derived from the mycobacterial heat shock protein hsp65, has been recently identified as a "danger" signal of the immune system effective via specific binding to the universal leukocyte triggering receptor CD69. This sequence is not active per se, only after its presentation within the multivalent environment of its parent protein, or after artificial dimerization using a standard bifunctional reagents. Here we describe an entirely new way of presenting of this peptide based on its attachment to a cyclopeptide RAFT scaffold (K-K-K-P-G)(2) through the epsilon-amino group of lysine residues, alone or in combination with the carbohydrate epitope alphaGalNAc. The ability of such RAFT scaffolds to precipitate the target CD69 receptor or to activate CD69-positive cells is enhanced in compounds 2 and 4 possessing combined peptide/carbohydrate expression. Compounds 2 and 4 are highly efficient activators of natural killer lymphocytes, but they are completely inactive from the point of view of activation-induced apoptosis of lymphocytes by the target cells. These unique properties make the combined peptide/carbohydrate RAFTs highly suitable for future evaluation in animal tumor therapies in vivo and predict them to be readily available and efficient immunoactivators.

  15. Blood Types

    Science.gov (United States)

    ... maternity. Learn About Blood Blood Facts and Statistics Blood Components Whole Blood and Red Blood Cells Platelets Plasma ... About Blood Blood Facts and Statistics Blood Types Blood Components What Happens to Donated Blood Blood and Diversity ...

  16. Increased percentage of L-selectin+ and ICAM-1+ peripheral blood CD4+/CD8+ T cells in active Graves' ophthalmopathy.

    Directory of Open Access Journals (Sweden)

    Alina Bakunowicz-Lazarczyk

    2009-05-01

    Full Text Available The purpose of the study was to evaluate the percentage of CD4+/CD8+ peripheral T cells expressing CD62L+ and CD54+ in patients with Graves' disease and to assess if these estimations could be helpful as markers of active ophthalmopathy. The study was carried out in 25 patients with Graves' disease (GD divided into 3 groups: 1/ 8 patients with active Graves' ophthalmopathy (GO (CAS 3-6, GO complaints pound 1 year, 2/ 9 patients with hyperthyroid GD without symptoms of ophthalmopathy (GDtox and 3/ 8 patients with euthyroid GD with no GO symptoms (GDeu. The control group consisted of 15 healthy volunteers age and sex matched to groups 1-3. The expression of lymphocyte adhesion molecules was evaluated by using three-color flow cytometry. In GO group the percentage of CD8+CD54+, CD8+CD62L+, CD4+CD54+ and CD4+CD62L+ T cells was significantly higher as compared to controls (p<0.001, p<0.05, p<0.01, p<0.001 respectively. The percentage of CD8+CD54+ T lymphocytes was also elevated in GO group in comparison to hyperthyroid GD patients (p< 0.05. CD4+CD62L+ and CD8+CD54+ percentages were also increased in GDtox and GDeu as compared to controls. We found a positive correlation between the TSHRab concentration and the percentage of CD8+CD62L+ T cells in all studied groups (r= 0.39, p<0.05 and between the TSHRab level and CAS (r= 0.77, p<0.05. The increased percentage of CD8+CD54+ and CD8+CD62L+ T cells in patients with Graves' ophthalmopathy may be used as a marker of immune inflammation activity.

  17. Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells.

    Science.gov (United States)

    Hou, Wanqiu; Gibbs, James S; Lu, Xiuju; Brooke, Christopher B; Roy, Devika; Modlin, Robert L; Bennink, Jack R; Yewdell, Jonathan W

    2012-03-29

    Surprisingly little is known about the interaction of human blood mononuclear cells with viruses. Here, we show that monocytes are the predominant cell type infected when peripheral blood mononuclear cells are exposed to viruses ex vivo. Remarkably, infection with vesicular stomatitis virus, vaccinia virus, and a variety of influenza A viruses (including circulating swine-origin virus) induces monocytes to differentiate within 18 hours into CD16(-)CD83(+) mature dendritic cells with enhanced capacity to activate T cells. Differentiation into dendritic cells does not require cell division and occurs despite the synthesis of viral proteins, which demonstrates that monocytes counteract the capacity of these highly lytic viruses to hijack host cell biosynthetic capacity. Indeed, differentiation requires infectious virus and viral protein synthesis. These findings demonstrate that monocytes are uniquely susceptible to viral infection among blood mononuclear cells, with the likely purpose of generating cells with enhanced capacity to activate innate and acquired antiviral immunity.

  18. In vitro complement activation, adherence to red blood cells and induction of mononuclear cell cytokine production by four strains of Aggregatibacter actinomycetemcomitans with different fimbriation and expression of leukotoxin

    DEFF Research Database (Denmark)

    Damgaard, C; Reinholdt, J; Palarasah, Y

    2017-01-01

    . The JP2 clone variant HK 2092, selectively lacking LtxA production, induced higher production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-10 by MNCs than did the other three strains, while the four strains induced similar production of IL-12p70. RBCs facilitated the HK 2092-induced...... production of TNF-α and IL-1β, and IL-6 was enhanced by RBCs, and this facilitation could be counteracted by blockade of complement receptor 3 (CD11b/CD18). CONCLUSION: Our data suggest that the JP2 clone of A. actinomycetemcomitans, most closely resembled by the variant HK 1651, activates complement well...... with human whole blood cells in the presence of autologous serum, and assessed for RBC adherence by flow cytometry and for capacity to induce cytokine production by cytometric bead array analysis. The levels of IgG to A. actinomycetemcomitans serotype b were quantified by ELISA, as was consumption...

  19. Red cell properties after different modes of blood transportation

    Directory of Open Access Journals (Sweden)

    Asya Makhro

    2016-07-01

    Full Text Available Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extend has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 hours of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin and citrate-based CPDA for two temperatures (4oC and room temperature were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination, red blood cell (RBC volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations and formation of micro vesicles, Ca2+ handling, RBC metabolism, activity of numerous enzymes and O2 transport capacity. Our findings indicate that individual sets of parameter may require different shipment settings (anticoagulants, temperature. Most of the parameters except for ion (Na+, K+, Ca2+ handling and, possibly, reticulocytes counts, tend to favor transportation at 4oC. Whereas plasma and intraerythrocytic Ca2+ cannot be accurately measured in the presence of chelators such as citrate and EDTA, majority of Ca2+-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using optimized shipment protocol the majority of parameters were stable within 24 hours, the condition that may not hold for the samples of patients with rare anemias. This implies for the as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the

  20. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.

  1. Backward elastic light scattering of malaria infected red blood cells

    Science.gov (United States)

    Lee, Seungjun; Lu, Wei

    2011-08-01

    We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.

  2. Theory to predict shear stress on cells in turbulent blood flow.

    Science.gov (United States)

    Morshed, Khandakar Niaz; Bark, David; Forleo, Marcio; Dasi, Lakshmi Prasad

    2014-01-01

    Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.

  3. Mechanical damage of red blood cells by rotary blood pumps: selective destruction of aged red blood cells and subhemolytic trauma.

    Science.gov (United States)

    Sakota, Daisuke; Sakamoto, Ryuki; Sobajima, Hideo; Yokoyama, Naoyuki; Waguri, Satoshi; Ohuchi, Katsuhiro; Takatani, Setsuo

    2008-10-01

    In this study, mean cell volume (MCV), mean cell hemoglobin concentration (MCHC), and mean cell hemoglobin (MCH) were measured to quantify RBC damage by rotary blood pumps. Six-hour hemolysis tests were conducted with a Bio-pump BPX-80, a Sarns 15200 roller pump, and a prototype mag-lev centrifugal pump (MedTech Heart) using fresh porcine blood circulated at 5 L/min against a 100 mm Hg head pressure. The temperature of the test and noncirculated control blood was maintained at 37 degrees C. The normalized index of hemolysis (NIH) of each pump was determined by measuring the plasma-free hemoglobin level. The MCV was measured with a Coulter counter, and MCHC was derived from total hemoglobin and hematocrit. MCH was derived from MCV and MCHC. A multivariance statistical analysis (ANOVA) revealed statistically significant differences (n = 15, P < 0.05) in MCV, MCHC, and MCH between the blood sheared by the rotary blood pumps and the nonsheared control blood. Normalized to the control blood, the Bio-pump BPX-80 showed an MCV of 1.04 +/- 0.03, an MCHC of 0.95 +/- 0.04, and an MCH of 0.98 +/- 0.02; the mag-lev MedTech Heart had an MCV of 1.02 +/- 0.02, an MCHC of 0.97 +/- 0.02, and an MCH of 0.99 +/- 0.01; and the roller pump exhibited an MCV of 1.03 +/- 0.03, an MCHC of 0.96 +/- 0.03, and an MCH of 0.99 +/- 0.01. Per 0.01 increase in NIH, the BPX-80 showed a normalized MCV change of +10.1% and a normalized MCHC change of -14.0%; the MedTech Heart demonstrated a +6.9% MCV and -9.5% MCHC change; and the roller pump had a +0.5% MCV and -0.6% MCHC change. Due to shear in the pump circuits, the RBC increased while the MCHC decreased. The likely mechanism is that older RBCs with smaller size and higher hemoglobin concentration were destroyed fast by the shear, leaving younger RBCs with larger size and lower hemoglobin concentration. Subhemolytic trauma caused the intracellular hemoglobin to decrease due to gradual hemoglobin leakage through the micropores formed in the thinned

  4. Infusion of hemolyzed red blood cells within peripheral blood stem cell grafts in patients with and without sickle cell disease.

    Science.gov (United States)

    Fitzhugh, Courtney D; Unno, Hayato; Hathaway, Vincent; Coles, Wynona A; Link, Mary E; Weitzel, R Patrick; Zhao, Xiongce; Wright, Elizabeth C; Stroncek, David F; Kato, Gregory J; Hsieh, Matthew M; Tisdale, John F

    2012-06-14

    Peripheral blood stem cell (PBSC) infusions are associated with complications such as elevated blood pressure and decreased creatinine clearance. Patients with sickle cell disease experience similar manifestations, and some have postulated release of plasma-free hemoglobin with subsequent nitric oxide consumption as causative. We sought to evaluate whether the infusion of PBSC grafts containing lysed red blood cells (RBCs) leads to the toxicity observed in transplant subjects. We report a prospective cohort study of 60 subjects divided into 4 groups based on whether their infusions contained dimethyl sulfoxide (DMSO) and lysed RBCs, no DMSO and fresh RBCs, DMSO and no RBCs, or saline. Our primary end point, change in maximum blood pressure compared with baseline, was not significantly different among groups. Tricuspid regurgitant velocity and creatinine levels also did not differ significantly among groups. Our data do not support free hemoglobin as a significant contributor to toxicity associated with PBSC infusions. This study was registered at clinicaltrials.gov (NCT00631787).

  5. Phenotype and functions of memory Tfh cells in human blood.

    Science.gov (United States)

    Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki

    2014-09-01

    Our understanding of the origin and functions of human blood CXCR5(+) CD4(+) T cells found in human blood has changed dramatically in the past years. These cells are currently considered to represent a circulating memory compartment of T follicular helper (Tfh) lineage cells. Recent studies have shown that blood memory Tfh cells are composed of phenotypically and functionally distinct subsets. Here, we review the current understanding of human blood memory Tfh cells and the subsets within this compartment. We present a strategy to define these subsets based on cell surface profiles. Finally, we discuss how increased understanding of the biology of blood memory Tfh cells may contribute insight into the pathogenesis of autoimmune diseases and the mode of action of vaccines.

  6. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells.

    Science.gov (United States)

    Sanberg, Paul R; Eve, David J; Willing, Alison E; Garbuzova-Davis, Svitlana; Tan, Jun; Sanberg, Cyndy D; Allickson, Julie G; Cruz, L Eduardo; Borlongan, Cesar V

    2011-01-01

    Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.

  7. Cost effectiveness of cord blood versus bone marrow and peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Thomas Bart

    2010-10-01

    Full Text Available Thomas BartSwiss Blood Stem Cells, Bern, SwitzerlandAbstract: Umbilical cord blood (CB has become, since its first successful use more than two decades ago, an increasingly important source of blood stem cells. In this light, an overview of current usage of CB in the field of unrelated hematopoietic blood stem cell transplantation (HSCT is given. The three main sources of hematopoietic stem cells: bone marrow (BM, peripheral blood stem cells (PBSC, and cord blood (CB are compared as regards their current quantitative usage in HSCT. A cost analysis of the named three hematopoietic blood stem cell (HSC sources, taking into account various factors, is undertaken. The health economical comparison shows significant differences between CB on the one side, and BM and PBSC on the other. The consequences for the public health side and propositions for a possible health care policy, especially regarding future resource allocation towards the different choices for HSCT products, are discussed. An outlook on the possible future usage of BM, PBSC, and CB and its implications on health systems, donor registries, and CB banks is given.Keywords: health economy, cord blood, hematopoietic stem cell transplantation

  8. Quality of Red Blood Cells Isolated from Umbilical Cord Blood Stored at Room Temperature

    Directory of Open Access Journals (Sweden)

    Mariia Zhurova

    2012-01-01

    Full Text Available Red blood cells (RBCs from cord blood contain fetal hemoglobin that is predominant in newborns and, therefore, may be more appropriate for neonatal transfusions than currently transfused adult RBCs. Post-collection, cord blood can be stored at room temperature for several days before it is processed for stem cells isolation, with little known about how these conditions affect currently discarded RBCs. The present study examined the effect of the duration cord blood spent at room temperature and other cord blood characteristics on cord RBC quality. RBCs were tested immediately after their isolation from cord blood using a broad panel of quality assays. No significant decrease in cord RBC quality was observed during the first 65 hours of storage at room temperature. The ratio of cord blood to anticoagulant was associated with RBC quality and needs to be optimized in future. This knowledge will assist in future development of cord RBC transfusion product.

  9. Segmentation and Analysis of Cancer Cells in Blood Samples

    Directory of Open Access Journals (Sweden)

    Arjun Nelikanti

    2015-10-01

    Full Text Available Blood cancer is an umbrella term for cancers that affect the blood, bone marrow and lymphatic system. Acute Lymphoblastic Leukemia (ALL is one of the kinds of blood cancer which can be affected at any age in the humans. The analysis of peripheral blood samples is an important test in the procedures for the diagnosis of leukemia. In this paper the blood sample images are used and implementing a clustering algorithm for detection of the cancer cells. This paper also implements morphological operations and feature extraction techniques using MATLAB for the analysis of cancer cells in the images.

  10. Sucralose sweetener in vivo effects on blood constituents radiolabeling, red blood cell morphology and radiopharmaceutical biodistribution in rats

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, G.S.; Pereira, M.O. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010180 Natal, Rio Grande do Norte (Brazil); Benarroz, M.O.; Frydman, J.N.G.; Rocha, V.C. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Pereira, M.J. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Fisiologia, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Fonseca, A.S., E-mail: adnfonseca@ig.com.b [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Universidade Federal do Estado do Rio de Janeiro, Instituto Biomedico, Departamento de Ciencias Fisiologicas, Rua Frei Caneca, 94, Rio de Janeiro 20211040 (Brazil); Medeiros, A.C. [Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010180 Natal, Rio Grande do Norte (Brazil); Bernardo-Filho, M. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Instituto Nacional do Cancer, Coordenadoria de Pesquisa Basica, Praca Cruz Vermelha, 23, 20230130 Rio de Janeiro (Brazil)

    2011-01-15

    Effects of sucralose sweetener on blood constituents labelled with technetium-99m ({sup 99m}Tc) on red blood cell (RBC) morphology, sodium pertechnetate (Na{sup 99m}TcO{sub 4}) and diethylenetriaminepentaacetic acid labeled with {sup 99m}Tc ({sup 99m}Tc-DTPA) biodistribution in rats were evaluated. Radiolabeling on blood constituents from Wistar rats was undertaken for determining the activity percentage (%ATI) on blood constituents. RBC morphology was also evaluated. Na{sup 99m}TcO{sub 4} and {sup 99m}Tc-DTPA biodistribution was used to determine %ATI/g in organs. There was no alteration on RBC blood constituents and morphology %ATI. Sucralose sweetener was capable of altering %ATI/g of the radiopharmaceuticals in different organs. These findings are associated to the sucralose sweetener in specific organs.

  11. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders

    OpenAIRE

    2009-01-01

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS ...

  12. Some technetium complexes for labelling red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Emery, M.F.

    1988-01-01

    A new approach to produce technetium labelled red blood cells, used routinely in diagnostic nuclear medicine, is reported. The enzyme Carbonic Anhydrase (CA), present in erythrocytes, is strongly inhibited by primary aromatic sulphonamides, which bind at the enzyme active site. Three types of ligand able to coordinate to technetium and suitable for modification to include a primary aromatic sulphonamide group were studied; bis(thiosemicarbazones), Schiff bases and some propylene amine oximes. The experimental conditions needed to label the ligands were determined. Both the thiosemicarbazone and propyleneamine oxime derivatives were labelled, but under no conditions attempted were the Schiff bases complexed by Technetium. The two major isozymes of Human Carbonic Anhydrase, HCA I and HCA II, were isolated from blood. The strength of binding of the free ligands SET, PN130 and PN135 with each of the isozymes was measured and expressed as the Dissociation Constant K{sub d}. The rate of uptake of the technetium complexes into washed RBCs and whole blood was measured and found to be much slower in whole blood. The biodistribution of both TcPN130 and TcPN135 in rats was determined and scintigraphic images for the TcPN130 complex were recorded. Attempts to synthesise the Tc-99 analogues on the milligram scale to allow chemical characterisation of these complexes were unsuccessful. (author).

  13. Effects of Antimalarial Tafenoquine on Blood Platelet Activity and Survival

    Directory of Open Access Journals (Sweden)

    Hang Cao

    2017-01-01

    Full Text Available Background/Aims: The 8-aminoquinoline tafenoquine has been shown to be effective against Plasmodia, Leishmania and Trypanosoma. The substance is at least in part effective by triggering apoptosis of the parasites. Moreover, tafenoquine has been shown to trigger eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. The effect of tafenoquine on eryptosis is in part due to stimulation of Ca2+ entry and oxidative stress. Ca2+ entry is a critical event in the activation of blood platelets by thrombin and collagen related peptide (CRP. The present study explored, whether tafenoquine influences Ca2+ entry, activation and apoptosis of blood platelets. Methods: Platelets isolated from wild-type mice were exposed for 30 minutes to tafenoquine (2.5 µg/ml without or with an additional treatment with thrombin (0.01 U/ml or CRP (2 µg/ml or 5 µg/ml. Flow cytometry was employed to estimate cytosolic Ca2+-activity ([Ca2+]i from Fluo-3 fluorescence, platelet degranulation from P-selectin abundance, integrin activation from αIIbβ3 integrin abundance, phosphatidylserine abundance from annexin-V-binding, relative platelet volume from forward scatter, reactive oxygen species (ROS from DCF fluorescence, caspase 3 activity with an active caspase-3 Staining kit, and aggregation utilizing staining with CD9-APC and CD9-PE. Results: Both, thrombin (0.01 U/ml and CRP (2 µg/ml or 5 µg/ml, significantly increased [Ca2+]i, P-selectin abundance, active αIIbβ3 integrin, and annexin-V-binding, and both significantly decreased platelet volume, activated caspase 3 and stimulated aggregation. Administration of tafenoquine (2.5 µg/ml, 30 min significantly decreased [Ca2+]i both, in the absence and presence of thrombin and CRP. Tafenoquine significantly blunted the effect of thrombin and CRP on [Ca2+]i, P-selectin abundance, and active αIIbβ3 integrin, but

  14. Neurological Complications following Blood Transfusions in Sickle Cell Anemia

    Science.gov (United States)

    Khawar, Nayaab; Kulpa, Jolanta; Bellin, Anne; Proteasa, Simona; Sundaram, Revathy

    2017-01-01

    In Sickle Cell Anemia (SCA) patient blood transfusions are an important part of treatment for stroke and its prevention. However, blood transfusions can also lead to complications such as Reversible Posterior Leukoencephalopathy Syndrome (RPLS). This brief report highlights two cases of SCA who developed such neurological complications after a blood transfusion. RLPS should be considered as the cause of neurologic finding in patients with SCA and hypertension following a blood transfusion.

  15. THE PURE RED BLOOD CELL APLASIA IN RENAL TRANSPLANT RECIPIENT

    Directory of Open Access Journals (Sweden)

    B. T. Dzumabaeva

    2011-01-01

    Full Text Available The pure red blood cell aplasia of renal transplant recipients caused by parvovirus B19 (PB19 is characterized by persistent anemia which resistant to erythropoietin therapy, lack of reticulocytes, bone marrow hypoplasia, and clinically accompanied by severe recurrent bacterial, fungal and viral infection. In case of reactivation PB19 it is necessarv, first of all, eliminate the causes activation of this virus and to cancel or reduce the dose of drugs which depressed the normal hematopoiesis germs, thus to reduce the pancytopenia associating complications in this population. 

  16. Development of a microfluidic device for cell concentration and blood cell-plasma separation.

    Science.gov (United States)

    Maria, M Sneha; Kumar, B S; Chandra, T S; Sen, A K

    2015-12-01

    This work presents design, fabrication and test of a microfluidic device which employs Fahraeus-Lindqvist and Zweifach-Fung effects for cell concentration and blood cell-plasma separation. The device design comprises a straight main channel with a series of branched channels placed symmetrically on both sides of the main channel. The design implements constrictions before each junction (branching point) in order to direct cells that would have migrated closer to the wall (naturally or after liquid extraction at a junction) towards the centre of the main channel. Theoretical and numerical analysis are performed for design of the microchannel network to ensure that a minimum flow rate ratio (of 2.5:1, main channel-to-side channels) is maintained at each junction and predict flow rate at the plasma outlet. The dimensions and location of the constrictions were determined using numerical simulations. The effect of presence of constrictions before the junctions was demonstrated by comparing the performances of the device with and without constrictions. To demonstrate the performance of the device, initial experiments were performed with polystyrene microbeads (10 and 15 μm size) and droplets. Finally, the device was used for concentration of HL60 cells and separation of plasma and cells in diluted blood samples. The cell concentration and blood-plasma purification efficiency was quantified using Haemocytometer and Fluorescence-Activated Cell Sorter (FACS). A seven-fold cell concentration was obtained with HL60 cells and a purification efficiency of 70 % and plasma recovery of 80 % was observed for diluted (1:20) blood sample. FACS was used to identify cell lysis and the cell viability was checked using Trypan Blue test which showed that more than 99 % cells are alive indicating the suitability of the device for practical use. The proposed device has potential to be used as a sample preparation module in lab on chip based diagnostic platforms.

  17. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    Science.gov (United States)

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  18. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...... transcriptase polymerase chain reaction. The effect of glucocorticoid and phorbol ester stimulation on monocyte and dendritic cell CD163 and CD91 expression was investigated in cell culture of mononuclear cells using multicolor flow cytometry. We identified two CD163+ subsets in human blood with dendritic cell...

  19. Regulation of red blood cell deformability is independent of red blood cell-nitric oxide synthase under hypoxia.

    Science.gov (United States)

    Grau, Marijke; Lauten, Alexander; Hoeppener, Steffen; Goebel, Bjoern; Brenig, Julian; Jung, Christian; Bloch, Wilhelm; Suhr, Frank

    2016-09-12

    The aim was to study impacts of mild to severe hypoxia on human red blood cell (RBC)-nitric oxide synthase (NOS)-dependent NO production, protein S-nitrosylation and deformability.Ambient air oxygen concentration of 12 healthy subjects was step-wisely reduced from 20.95% to 16.21%, 12.35%, 10% and back to 20.95%. Additional in vitro experiments involved purging of blood (±sodium nitrite) with gas mixtures corresponding to in vivo intervention.Vital and hypoxia-associated parameters showed physiological adaptation to changing demands. Activation of RBC-NOS decreased with increasing hypoxia. RBC deformability, which is influenced by RBC-NOS activation, decreased under mild hypoxia, but surprisingly increased at severe hypoxia in vivo and in vitro. This was causatively induced by nitrite reduction to NO which increased S-nitrosylation of RBC α- and β-spectrins -a critical step to improve RBC deformability. The addition of sodium nitrite prevented decreases of RBC deformability under hypoxia by sustaining S-nitrosylation of spectrins suggesting compensatory mechanisms of non-RBC-NOS-produced NO.The results first time indicate a direct link between maintenance of RBC deformability under severe hypoxia by non-enzymatic NO production because RBC-NOS activation is reduced. These data improve our understanding of physiological mechanisms supporting adequate blood and, thus, oxygen supply to different tissues under severe hypoxia.

  20. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Samad Ibitokou

    Full Text Available Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM is scarce. We conducted a longitudinal, prospective study, both in Benin and Tanzania, including ∼1000 pregnant women in each site with systematic follow-up at scheduled antenatal visits until delivery. We used ex vivo flow cytometry to identify peripheral blood mononuclear cell (PBMC profiles that are associated with PAM and anaemia, determining the phenotypic composition and activation status of PBMC in selected sub-groups with and without PAM both at inclusion and at delivery in a total of 302 women. Both at inclusion and at delivery PAM was associated with significantly increased frequencies both of B cells overall and of activated B cells. Infection-related profiles were otherwise quite distinct at the two different time-points. At inclusion, PAM was associated with anaemia, with an increased frequency of immature monocytes and with a decreased frequency of regulatory T cells (Treg. At delivery, infected women presented with significantly fewer plasmacytoid dendritic cells (DC, more myeloid DC expressing low levels of HLA-DR, and more effector T cells (Teff compared to uninfected women. Independent associations with an increased risk of anaemia were found for altered antigen-presenting cell frequencies at inclusion, but for an increased frequency of Teff at delivery. Our findings emphasize the prominent role played by B cells during PAM whenever it arises during pregnancy, whilst also revealing signature changes in other circulating cell types that, we conclude, primarily reflect the relative duration of the infections. Thus, the acute, recently-acquired infections present at delivery were marked by changes in DC and Teff frequencies, contrasting with infections at inclusion, considered chronic in

  1. Multiple loci are associated with white blood cell phenotypes

    NARCIS (Netherlands)

    M.A. Nalls (Michael); D. Couper (David); T. Tanaka (Toshiko); F.J.A. van Rooij (Frank); M-H. Chen (Ming-Huei); A.V. Smith (Albert Vernon); D. Toniolo (Daniela); N.A. Zakai (Neil); Q. Yang (Qiong Fang); A. Greinacher (Andreas); A.R. Wood (Andrew); M. Garcia (Melissa); P. Gasparini (Paolo); Y. Liu (Yongmei); T. Lumley (Thomas); A.R. Folsom (Aaron); A.P. Reiner (Alex); C. Gieger (Christian); V. Lagou (Vasiliki); J.F. Felix (Janine); H. Völzke (Henry); N.A. Gouskova (Natalia); A. Biffi (Alessandro); A. Döring (Angela); U. Völker (Uwe); S. Chong (Sean); K.L. Wiggins (Kerri); A. Rendon (Augusto); A. Dehghan (Abbas); M. Moore (Matt); K.D. Taylor (Kent); J.G. Wilson (James); G. Lettre (Guillaume); A. Hofman (Albert); J.C. Bis (Joshua); N. Pirastu (Nicola); C.S. Fox (Caroline); C. Meisinger (Christa); J.G. Sambrook (Jennifer); S. Arepalli (Sampath); M. Nauck (Matthias); H. Prokisch (Holger); J. Stephens (Jonathan); N.L. Glazer (Nicole); L.A. Cupples (Adrienne); Y. Okada (Yukinori); A. Takahashi (Atsushi); Y. Kamatani (Yoichiro); K. Matsuda (Koichi); T. Tsunoda (Tatsuhiko); M. Kubo (Michiaki); Y. Nakamura (Yusuke); K. Yamamoto (Kazuhiko); M. Stumvoll (Michael); A. Tönjes (Anke); I. Prokopenko (Inga); T. Illig (Thomas); K.V. Patel (Kushang); S.F. Garner (Stephen); B. Kuhnel (Brigitte); M. Mangino (Massimo); B.A. Oostra (Ben); S.L. Thein; J. Coresh (Josef); H.E. Wichmann (Heinz Erich); S. Menzel (Stephan); J. Lin; G. Pistis (Giorgio); A.G. Uitterlinden (André); T.D. Spector (Timothy); A. Teumer (Alexander); G. Eiriksdottir (Gudny); V. Gudnason (Vilmundur); S. Bandinelli (Stefania); T.M. Frayling (Timothy); A. Chakravarti (Aravinda); P. Tikka-Kleemola (Päivi); D. Melzer (David); W.H. Ouwehand (Willem); D. Levy (Daniel); E.A. Boerwinkle (Eric); A. Singleton (Andrew); D.G. Hernandez (Dena); D.L. Longo (Dan); N. Soranzo (Nicole); J.C.M. Witteman (Jacqueline); B.M. Psaty (Bruce); L. Ferrucci (Luigi); T.B. Harris (Tamara); C.J. O'Donnell (Christopher); S.K. Ganesh (Santhi)

    2011-01-01

    textabstractWhite blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types.

  2. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders.

    Science.gov (United States)

    Li, Xuejin; Li, He; Chang, Hung-Yu; Lykotrafitis, George; Em Karniadakis, George

    2017-02-01

    We review recent advances in multiscale modeling of the biomechanical characteristics of red blood cells (RBCs) in hematological diseases, and their relevance to the structure and dynamics of defective RBCs. We highlight examples of successful simulations of blood disorders including malaria and other hereditary disorders, such as sickle-cell anemia, spherocytosis, and elliptocytosis.

  3. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression.

    Science.gov (United States)

    Dowey, Sarah N; Huang, Xiaosong; Chou, Bin-Kuan; Ye, Zhaohui; Cheng, Linzhao

    2012-11-01

    Several human postnatal somatic cell types have been successfully reprogrammed to induced pluripotent stem cells (iPSCs). Blood mononuclear cells (MNCs) offer several advantages compared with other cell types. They are easily isolated from umbilical cord blood (CB) or adult peripheral blood (PB), and can be used fresh or after freezing. A short culture allows for more efficient reprogramming, with iPSC colonies forming from blood MNCs in 14 d, compared with 28 d for age-matched fibroblastic cells. The advantages of briefly cultured blood MNCs may be due to favorable epigenetic profiles and gene expression patterns. Blood cells from adults, especially nonlymphoid cells that are replenished frequently from intermittently activated blood stem cells, are short-lived in vivo and may contain less somatic mutations than skin fibroblasts, which are more exposed to environmental mutagens over time. We describe here a detailed, validated protocol for effective generation of integration-free human iPSCs from blood MNCs by plasmid vectors.

  4. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders.

    Science.gov (United States)

    Ye, Zhaohui; Zhan, Huichun; Mali, Prashant; Dowey, Sarah; Williams, Donna M; Jang, Yoon-Young; Dang, Chi V; Spivak, Jerry L; Moliterno, Alison R; Cheng, Linzhao

    2009-12-24

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS cell lines were generated from previously frozen cord blood or adult CD34(+) cells of healthy donors, and could be redirected to hematopoietic differentiation. Multiple iPS cell lines were also generated from peripheral blood CD34(+) cells of 2 patients with myeloproliferative disorders (MPDs) who acquired the JAK2-V617F somatic mutation in their blood cells. The MPD-derived iPS cells containing the mutation appeared normal in phenotypes, karyotype, and pluripotency. After directed hematopoietic differentiation, the MPD-iPS cell-derived hematopoietic progenitor (CD34(+)CD45(+)) cells showed the increased erythropoiesis and gene expression of specific genes, recapitulating features of the primary CD34(+) cells of the corresponding patient from whom the iPS cells were derived. These iPS cells provide a renewable cell source and a prospective hematopoiesis model for investigating MPD pathogenesis.

  5. Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Jeurink, P.V.; Lull Noguera, C.; Savelkoul, H.F.J.; Wichers, H.J.

    2008-01-01

    Immunomodulation by fungal compounds can be determined by the capacity of the compounds to influence the cytokine production by human peripheral blood mononuclear cells (hPBMC). These activities include mitogenicity, stimulation and activation of immune effector cells. Eight mushroom strains (Agaric

  6. A Simulation of Blood Cells in Branching Capillaries

    CERN Document Server

    Isfahani, Amir H G; Freund, Jonathan B

    2008-01-01

    The multi-cellular hydrodynamic interactions play a critical role in the phenomenology of blood flow in the microcirculation. A fast algorithm has been developed to simulate large numbers of cells modeled as elastic thin membranes. For red blood cells, which are the dominant component in blood, the membrane has strong resistance to surface dilatation but is flexible in bending. Our numerical method solves the boundary integral equations built upon Green's functions for Stokes flow in periodic domains. This fluid dynamics video is an example of the capabilities of this model in handling complex geometries with a multitude of different cells. The capillary branch geometries have been modeled based upon observed capillary networks. The diameter of the branches varies between 10-20 mum. A constant mean pressure gradient drives the flow. For the purpose of this fluid dynamics video, the red blood cells are initiated as biconcave discs and white blood cells and platelets are initiated as spheres and ellipsoids resp...

  7. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells.

    Science.gov (United States)

    Lippmann, Ethan S; Azarin, Samira M; Kay, Jennifer E; Nessler, Randy A; Wilson, Hannah K; Al-Ahmad, Abraham; Palecek, Sean P; Shusta, Eric V

    2012-08-01

    The blood-brain barrier (BBB) is crucial to the health of the brain and is often compromised in neurological disease. Moreover, because of its barrier properties, this endothelial interface restricts uptake of neurotherapeutics. Thus, a renewable source of human BBB endothelium could spur brain research and pharmaceutical development. Here we show that endothelial cells derived from human pluripotent stem cells (hPSCs) acquire BBB properties when co-differentiated with neural cells that provide relevant cues, including those involved in Wnt/β-catenin signaling. The resulting endothelial cells have many BBB attributes, including well-organized tight junctions, appropriate expression of nutrient transporters and polarized efflux transporter activity. Notably, they respond to astrocytes, acquiring substantial barrier properties as measured by transendothelial electrical resistance (1,450 ± 140 Ω cm2), and they possess molecular permeability that correlates well with in vivo rodent blood-brain transfer coefficients.

  8. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    Science.gov (United States)

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow

  9. Efficient induction of pluripotent stem cells from menstrual blood.

    Science.gov (United States)

    Li, Yang; Li, Xiaoni; Zhao, Hongxi; Feng, Ruopeng; Zhang, Xiaoyan; Tai, Dapeng; An, Guangyu; Wen, Jinhua; Tan, Jichun

    2013-04-01

    The technology to reprogram human somatic cells back to pluripotency allows the production of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine. Choosing the most suitable cell type for induction and reducing the risk of viral transgene activation, especially oncogene activation, are important for iPSC research. To date, human dermal fibroblasts (HDFs) are the most frequent cell source used for iPSC generation, but they have several limitations. An invasive skin biopsy must be performed to obtain HDFs, and HDFs must be cultured for a prolonged period before they can be used for experiments. Thus, in an effort to develop a suitable source for iPSC studies to avoid the limitations mentioned above, we have here identified stromal cells derived from menstrual blood (MenSCs) as suitable candidates. In the present study, we found that MenSCs can be reprogrammed to pluripotent status by doxycycline-inducible lentiviral transduction of OCT4, SOX2, and KLF4. Additionally, we found that MenSCs have a significantly higher reprogramming efficiency than HDFs. The combination of OCT4 and SOX2 is sufficient to reprogram MenSCs into iPSCs without the use of c-MYC or KLF4. The resulting MenSC-iPSCs showed the same characteristics as human embryonic stem cells with regard to morphology, pluripotent markers, gene expression, and the epigenetic status of pluripotent-cell-specific genes. These cells were able to differentiate into various cell types of all 3 germ layers both in vitro and in vivo. Therefore, MenSCs may be a preferred candidate for generation of iPSCs.

  10. Early, Prehospital Activation of the Walking Blood Bank Based on Mechanism of Injury Improves Time to Fresh Whole Blood Transfusion.

    Science.gov (United States)

    Bassett, Aaron K; Auten, Jonathan D; Zieber, Tara J; Lunceford, Nicole L

    2016-01-01

    Balanced component therapy (BCT) remains the mainstay in trauma resuscitation of the critically battle injured. In austere medical environments, access to packed red blood cells, apheresis platelets, and fresh frozen plasma is often limited. Transfusion of warm, fresh whole blood (FWB) has been used to augment limited access to full BCT in these settings. The main limitation of FWB is that it is not readily available for transfusion on casualty arrival. This small case series evaluates the impact early, mechanism-of-injury (MOI)-based, preactivation of the walking blood bank has on time to transfusion. We report an average time of 18 minutes to FWB transfusion from patient arrival. Early activation of the walking blood bank based on prehospital MOI may further reduce the time to FWB transfusion.

  11. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells.

    Science.gov (United States)

    Lai, Dongmei; Guo, Ying; Zhang, Qiuwan; Chen, Yifei; Xiang, Charlie

    2016-11-01

    Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a unique stem cell source. Evidence suggests that EnSCs exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. However, the potential of EnSCs to differentiate into germline cells in vitro remains unclear. In this study, EnSCs were induced to differentiate into germ cells in a differentiation medium supplemented with 20% human follicular fluid. Our results demonstrated that EnSCs derived from human menstrual blood form oocyte-like cells and express germ cell markers. The induced cell aggregates contained not only oocyte-like structures but also cells expressing follicle stimulating hormone receptor and luteotropic hormone receptor, and produced estrogen and progesterone regulated by gonodatropin, suggesting that granulosa-like and theca-like cells were also induced. We further found that granulosa cells promote the development of oocyte-like cells and activate the induction of blastocyst-like structures derived from EnSCs. In conclusion, EnSCs may potentially represent an in vitro system for the investigation of human folliculogenesis.

  12. Analysis of blood stem cell activity and cystatin gene expression in a mouse model presenting a chromosomal deletion encompassing Csta and Stfa2l1.

    Science.gov (United States)

    Bilodeau, Mélanie; MacRae, Tara; Gaboury, Louis; Laverdure, Jean-Philippe; Hardy, Marie-Pierre; Mayotte, Nadine; Paradis, Véronique; Harton, Sébastien; Perreault, Claude; Sauvageau, Guy

    2009-10-19

    The cystatin protein superfamily is characterized by the presence of conserved sequences that display cysteine protease inhibitory activity (e.g., towards cathepsins). Type 1 and 2 cystatins are encoded by 25 genes of which 23 are grouped in 2 clusters localized on mouse chromosomes 16 and 2. The expression and essential roles of most of these genes in mouse development and hematopoiesis remain poorly characterized. In this study, we describe a set of quantitative real-time PCR assays and a global expression profile of cystatin genes in normal mouse tissues. Benefiting from our collection of DelES embryonic stem cell clones harboring large chromosomal deletions (to be reported elsewhere), we selected a clone in which a 95-kb region of chromosome 16 is missing (Del(16qB3Delta/+)). In this particular clone, 2 cystatin genes, namely Csta and Stfa2l1 are absent along with 2 other genes (Fam162a, Ccdc58) and associated intergenic regions. From this line, we established a new homozygous mutant mouse model (Del(16qB3Delta/16qB3Delta)) to assess the in vivo biological functions of the 2 deleted cystatins. Stfa2l1 gene expression is high in wild-type fetal liver, bone marrow, and spleen, while Csta is ubiquitously expressed. Homozygous Del(16qB3Delta/16qB3Delta) animals are phenotypically normal, fertile, and not overtly susceptible to spontaneous or irradiation-induced tumor formation. The hematopoietic stem and progenitor cell activity in these mutant mice are also normal. Interestingly, quantitative real-time PCR expression profiling reveals a marked increase in the expression levels of Stfa2l1/Csta phylogenetically-related genes (Stfa1, Stfa2, and Stfa3) in Del(16qB3Delta/16qB3Delta) hematopoietic tissues, suggesting that these candidate genes might be contributing to compensatory mechanisms. Overall, this study presents an optimized approach to globally monitor cystatin gene expression as well as a new mouse model deficient in Stfa2l1/Csta genes, expanding the

  13. Viable Bacteria Associated with Red Blood Cells and Plasma in Freshly Drawn Blood Donations

    DEFF Research Database (Denmark)

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian;

    2015-01-01

    the oral cavity, and to determine the distribution of bacteria revealed in plasma and in the red blood cell (RBC)-fraction. DESIGN: Cross-sectional study. Blood were separated into plasma and RBC-suspensions, which were incubated anaerobically or aerobically for 7 days on trypticase soy blood agar (TSA......OBJECTIVES: Infection remains a leading cause of post-transfusion mortality and morbidity. Bacterial contamination is, however, detected in less than 0.1% of blood units tested. The aim of the study was to identify viable bacteria in standard blood-pack units, with particular focus on bacteria from......) or blue lactose plates. For identification colony PCR was performed using primers targeting 16S rDNA. SETTING: Blood donors attending Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Hvidovre, Denmark, October 29th to December 10th 2013. PARTICIPANTS: 60 donors (≥50 years old...

  14. Concomitant detection of IFNα signature and activated monocyte/dendritic cell precursors in the peripheral blood of IFNα-treated subjects at early times after repeated local cytokine treatments

    Directory of Open Access Journals (Sweden)

    Rizza Paola

    2011-05-01

    Full Text Available Abstract Background Interferons alpha (IFNα are the cytokines most widely used in clinical medicine for the treatment of cancer and viral infections. Among the immunomodulatory activities possibly involved in their therapeutic efficacy, the importance of IFNα effects on dendritic cells (DC differentiation and activation has been considered. Despite several studies exploiting microarray technology to characterize IFNα mechanisms of action, there is currently no consensus on the core signature of these cytokines in the peripheral blood of IFNα-treated individuals, as well as on the existence of blood genomic and proteomic markers of low-dose IFNα administered as a vaccine adjuvant. Methods Gene profiling analysis with microarray was performed on PBMC isolated from melanoma patients and healthy individuals 24 hours after each repeated injection of low-dose IFNα, administered as vaccine adjuvant in two separate clinical trials. At the same time points, cytofluorimetric analysis was performed on CD14+ monocytes, to detect the phenotypic modifications exerted by IFNα on antigen presenting cells precursors. Results An IFNα signature was consistently observed in both clinical settings 24 hours after each repeated administration of the cytokine. The observed modulation was transient, and did not reach a steady state level refractory to further stimulations. The molecular signature observed ex vivo largely matched the one detected in CD14+ monocytes exposed in vitro to IFNα, including the induction of CXCL10 at the transcriptional and protein level. Interestingly, IFNα ex vivo signature was paralleled by an increase in the percentage and expression of costimulatory molecules by circulating CD14+/CD16+ monocytes, indicated as natural precursors of DC in response to danger signals. Conclusions Our results provide new insights into the identification of a well defined molecular signature as biomarker of IFNα administered as immune adjuvants, and

  15. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells

    Directory of Open Access Journals (Sweden)

    Heimo eMairbäurl

    2013-11-01

    Full Text Available During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood’s buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called sports anemia. This is not anemia in a clinical sense because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume. The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g. in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise.

  16. Red blood cell vesiculation in hereditary hemolytic anemia

    Directory of Open Access Journals (Sweden)

    Amr eAlaarg

    2013-12-01

    Full Text Available Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterised by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely asessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary

  17. Red blood cell vesiculation in hereditary hemolytic anemia.

    Science.gov (United States)

    Alaarg, Amr; Schiffelers, Raymond M; van Solinge, Wouter W; van Wijk, Richard

    2013-12-13

    Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias.

  18. Sodium renders endothelial cells sticky for red blood cells

    Directory of Open Access Journals (Sweden)

    Hans eOberleithner

    2015-06-01

    Full Text Available Negative charges in the glycocalyx of red blood cells (RBC and vascular endothelial cells (EC facilitate frictionless blood flow through blood vessels. Na+ selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na+ concentration controls RBC-EC interaction. Using atomic force microscopy (AFM adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i after enzymatic removal of negative charges in the glycocalyx, (ii under different ambient Na+ and (iii after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na+ from 133 to 140 mM does not affect them. However, beyond 140 mM Na+ adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na+. Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na+ concentration determines the availability of free negative charges. Na+ concentrations in the low physiological range (below 140 mM allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na+ in the high physiological range (beyond 140 mM saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na+ induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  19. Sodium renders endothelial cells sticky for red blood cells.

    Science.gov (United States)

    Oberleithner, Hans; Wälte, Mike; Kusche-Vihrog, Kristina

    2015-01-01

    Negative charges in the glycocalyx of red blood cells (RBC) and vascular endothelial cells (EC) facilitate frictionless blood flow through blood vessels. Na(+) selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na(+) concentration controls RBC-EC interaction. Using atomic force microscopy (AFM) adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i) after enzymatic removal of negative charges in the glycocalyx, (ii) under different ambient Na(+) and (iii) after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na(+) from 133 to 140 mM does not affect them. However, beyond 140 mM Na(+) adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na(+)). Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na(+) concentration determines the availability of free negative charges. Na(+) concentrations in the low physiological range (below 140 mM) allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na(+) in the high physiological range (beyond 140 mM) saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na(+) induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  20. Effect of blood activity on dosimetric calculations for radiopharmaceuticals

    Science.gov (United States)

    Zvereva, Alexandra; Petoussi-Henss, Nina; Li, Wei Bo; Schlattl, Helmut; Oeh, Uwe; Zankl, Maria; Graner, Frank Philipp; Hoeschen, Christoph; Nekolla, Stephan G.; Parodi, Katia; Schwaiger, Markus

    2016-11-01

    The objective of this work was to investigate the influence of the definition of blood as a distinct source on organ doses, associated with the administration of a novel radiopharmaceutical for positron emission tomography-computed tomography (PET/CT) imaging—(S)-4-(3-18F-fluoropropyl)-L-glutamic acid (18F-FSPG). Personalised pharmacokinetic models were constructed based on clinical PET/CT images from five healthy volunteers and blood samples from four of them. Following an identifiability analysis of the developed compartmental models, person-specific model parameters were estimated using the commercial program SAAM II. Organ doses were calculated in accordance to the formalism promulgated by the Committee on Medical Internal Radiation Dose (MIRD) and the International Commission on Radiological Protection (ICRP) using specific absorbed fractions for photons and electrons previously derived for the ICRP reference adult computational voxel phantoms. Organ doses for two concepts were compared: source organ activities in organs parenchyma with blood as a separate source (concept-1); aggregate activities in perfused source organs without blood as a distinct source (concept-2). Aggregate activities comprise the activities of organs parenchyma and the activity in the regional blood volumes (RBV). Concept-1 resulted in notably higher absorbed doses for most organs, especially non-source organs with substantial blood contents, e.g. lungs (92% maximum difference). Consequently, effective doses increased in concept-1 compared to concept-2 by 3-10%. Not considering the blood as a distinct source region leads to an underestimation of the organ absorbed doses and effective doses. The pronounced influence of the blood even for a radiopharmaceutical with a rapid clearance from the blood, such as 18F-FSPG, suggests that blood should be introduced as a separate compartment in most compartmental pharmacokinetic models and blood should be considered as a distinct source in

  1. Nutrition, physical activity, and blood pressure in the elderly.

    Science.gov (United States)

    Ideno, K T; Kubena, K S

    1989-01-01

    Forty noninstitutionalized elderly subjects, ages 65-86 years, were recruited for a study to determine relationships between nutritional status, physical activity, and blood pressure. A 24-hour recall of dietary intake and activities, health history, skinfolds, circumferences, height, weight, and blood pressure were obtained. Obesity was associated with hypertension in this group of elderly subjects. Truncal skinfolds (abdomen and subscapula) were positively correlated (P less than .05) with systolic blood pressure while body mass index, dietary magnesium and dietary calcium to magnesium ratio were directly related (P less than .05) to diastolic blood pressure. Physical activity and energy expenditure were not correlated (P greater than .05) with blood pressure in this study; however, the level of activity did not include strenuous exercise.

  2. Nomenclature of monocytes and dendritic cells in blood

    NARCIS (Netherlands)

    L. Ziegler-Heitbrock (Loems); P. Ancuta (Petronela); S. Crowe (Suzanne); M. Dalod (Marc); V. Grau (Veronika); D.N. Hart (Derek); P.J. Leenen (Pieter); Y.J. Liu; G. MacPherson (Gordon); G.J. Randolph (Gwendalyn); J. Scherberich (Juergen); J. Schmitz (Juergen); K. Shortman (Ken); S. Sozzani (Silvano); H. Strobl (Herbert); M. Zembala (Marek); J.M. Austyn (Jonathan); M.B. Lutz (Manfred)

    2010-01-01

    textabstractMonocytes and cells of the dendritic cell lineage circulate in blood and eventually migrate into tissue where they further mature and serve various functions, most notably in immune defense. Over recent years these cells have been characterized in detail with the use of cell surface mark

  3. Ethyl Pyruvate Combats Human Leukemia Cells but Spares Normal Blood Cells

    Science.gov (United States)

    Kurz, Susanne; Bigl, Marina; Buchold, Martin; Thieme, Rene; Wichmann, Gunnar; Dehghani, Faramarz

    2016-01-01

    Ethyl pyruvate, a known ROS scavenger and anti-inflammatory drug was found to combat leukemia cells. Tumor cell killing was achieved by concerted action of necrosis/apoptosis induction, ATP depletion, and inhibition of glycolytic and para-glycolytic enzymes. Ethyl lactate was less harmful to leukemia cells but was found to arrest cell cycle in the G0/G1 phase. Both, ethyl pyruvate and ethyl lactate were identified as new inhibitors of GSK-3β. Despite the strong effect of ethyl pyruvate on leukemia cells, human cognate blood cells were only marginally affected. The data were compiled by immune blotting, flow cytometry, enzyme activity assay and gene array analysis. Our results inform new mechanisms of ethyl pyruvate-induced cell death, offering thereby a new treatment regime with a high therapeutic window for leukemic tumors. PMID:27579985

  4. Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Jun-ho JANG; Hugh C KIM; Sun-kyung KIM; Jeong-eun CHOI; Young-jin KIM; Hyun-woo LEE; Seok-yun KANG; Joon-seong PARK; Jin-hyuk CHOI; Ho-yeong LIM

    2007-01-01

    Aim: To investigate the endothelial differentiation potentiality of umbilical cord blood (UCB), we induced the differentiation of endothelial progenitor cells (EPC)from cryopreserved UCB-derived mononuclear cells (MNC). Methods: MNC from cryopreserved UCB and peripheral blood (PB) were cultured in M199 medium with endothelial cell growth supplements for 14 d. EPC were characterized by RT-PCR,flow cytometry, and immunocytochemistry analysis. The proliferation of differen-tiated EPC was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTI') assay, and vascular endothelial growth factor (VEGF) concentra-tion was measured using an ELISA kit. Characteristics of UCB-derived EPC were compared with those of PB-derived EPC. Results: A number of round-shaped cells were loosely attached to the bottom after 24 h culture, and numerous spindle-shaped cells began to appear from the round-shaped ones on d 7. Those cells expressed endothelial markers such as, Fit-1/VEGFR-1, ecNOS, VE-cadherin, yon Willebrand factor, and secreted VEGF. The patterns of endothelial markers of EPC from PB and UCB did not show striking differences. The results of the prolifera-tion and secretion of VEGF were also similar. Conclusion: We successfully cul-tured UCB cells stored at -196 ℃ into cells with the quality of endothelial cells.Those EPC could be used for angiogenic therapeutics by activating adjacent endothelial cells and enhancing angiogenesis.

  5. [Promising technologies of packed red blood cells production and storage].

    Science.gov (United States)

    Maksimov, A G; Golota, A S; Krassiĭ, A B

    2013-10-01

    The current article is dedicated to promising technologies of packed red blood cells production and storage. The following new technical approaches are presented: (1) erythrocytes storage in strict anaerobic argon-hydrogen environment, (2) lyophilization of erythrocyte suspension by its atomization in nitrogen gas, (3) lyophilization of erythrocytes by directional freezing under the influence of radio frequency radiation, (4) automated pharming of antigen free packed red blood cells from progenitor cell directly at the battlefield.

  6. Generation of induced pluripotent stem cells from human blood.

    Science.gov (United States)

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.

  7. Activation and crosstalk between TNF family receptors in umbilical cord blood cells is not responsible for loss of engraftment capacity following culture

    OpenAIRE

    Mizrahi, Keren; Askenasy, Nadir

    2013-01-01

    Umbilical cord blood (UCB) is a rich source of hematopoietic progenitors for transplantation. Murine and human progenitors are insensitive to apoptotic signaling mediated by the TNF family receptors, however extension of culture over 48 hours is accompanied by severe deterioration in engraftment and hematopoietic reconstituting capacity. In this study we assessed crosstalk between the Fas, TNF and TRAIL receptors, and questioned whether it contributes to increased mortality and decreased acti...

  8. A model for red blood cells in simulations of large-scale blood flows

    CERN Document Server

    Melchionna, Simone

    2011-01-01

    Red blood cells (RBCs) are an essential component of blood. A method to include the particulate nature of blood is introduced here with the goal of studying circulation in large-scale realistic vessels. The method uses a combination of the Lattice Boltzmann method (LBM) to account for the plasma motion, and a modified Molecular Dynamics scheme for the cellular motion. Numerical results illustrate the quality of the model in reproducing known rheological properties of blood as much as revealing the effect of RBC structuring on the wall shear stress, with consequences on the development of cardiovascular diseases.

  9. Identification of highly active flocculant proteins in bovine blood.

    Science.gov (United States)

    Piazza, George J; Nuñez, Alberto; Garcia, Rafael A

    2012-03-01

    Synthetic polymeric flocculants are used extensively for wastewater remediation, soil stabilization, and reduction in water leakage from unlined canals. Sources of highly active, inexpensive, renewable flocculants are needed to replace synthetic flocculants. High kaolin flocculant activity was documented for bovine blood (BB) and blood plasma with several anticoagulant treatments. BB serum also had high flocculant activity. To address the hypothesis that some blood proteins have strong flocculating activity, the BB proteins were separated by SEC. Then, the major proteins of the flocculant-active fractions were separated by SDS-PAGE. Identity of the major protein components was determined by tryptic digestion and peptide analysis by MALDI TOF MS. The sequence of selected peptides was confirmed using TOF/TOF-MS/MS fragmentation. Hemoglobin dimer (subunits α and β) was identified as the major protein component of the active fraction in BB; its high flocculation activity was confirmed by testing a commercial sample of hemoglobin. In the same manner, three proteins from blood plasma (fibrinogen, γ-globulin, α-2-macroglobulin) were found to be highly active flocculants, but bovine serum albumin, α-globulin, and β-globulin were not flocculants. On a mass basis, hemoglobin, γ-globulin, α-2-macroglobulin were as effective as anionic polyacrylamide (PAM), a widely used synthetic flocculant. The blood proteins acted faster than PAM, and unlike PAM, the blood proteins flocculants did not require calcium salts for their activity.

  10. Effects of lycopene on blood cells and fibrinolytic activity in hyperlipidemic rats%番茄红素对高脂血症大鼠血细胞和纤溶活性的影响

    Institute of Scientific and Technical Information of China (English)

    许晓丽; 朱密; 胡敏予

    2011-01-01

    目的 探讨番茄红素对高脂血症大鼠血细胞及纤溶活性的影响.方法 成年雄性SD大鼠40只,根据总胆固醇(TC)水平随机分为5组,每组8只:正常对照组、高脂模型组、氟伐他汀钠10mg/kg bw组、番茄红素11 mg/kg bw和44mg/kg bw组.正常对照组饲基础饲料,其余组饲高脂饲料,实验第2、3周氟伐他汀钠和番茄红素灌胃处理.检测TC、甘油三酯(TG)、低密度脂蛋白-胆固醇(LDL-C)、高密度脂蛋白-胆固醇(HDL-C)、超氧化物歧化酶活力(SOD)和丙二醛水平(MDA)、血细胞参数、血小板α颗粒膜蛋白(GMP-140)、组织型纤溶酶原激活物(tPA)、组织型纤溶酶原激活物抑制剂-1(PAI-1),计算tPA/PAI-1比值和动脉粥样硬化指数(AI);HE染色观察主动脉弓的病理变化.结果 高脂饲料喂养1周后大鼠形成高脂血症.与模型组比较,番茄红素组的TC、TG、LDL-C和MDA下降,SOD升高;白细胞计数、红细胞体积、血小板体积、GMP-140和PAI-1下降,红细胞计数和tPA上升;AI显著下降,主动脉弓内膜变薄,泡沫细胞减少.番茄红素44mg/kg bw剂量组作用明显.结论 番茄红素可能通过降低血脂和抗氧化而保护高脂血症大鼠的血细胞和促进纤溶活性,减轻主动脉病变程度.%Objective To explore the effects of lycopene on blood cells and fibrinolytic activity in hyperlipidemic rats. Methods Forty adult male SD rate were divided randomly into five groups; normal control group, high fat model group, fluvastatin sodium group, lycopene low-dose group and lycopene high-dose group based on the level of serum TC. Normal control group was fed with normal animal diet, other groups were fed with high fat diet. Fluvastatin sodium and lycopene were given by intragastric administration in the last two weeks of experiment. The level of serum lipid, SOD, MDA, blood cell parameters, platelet (granule membrane protein (CMP-140), tissue plasminogen activator ( t-PA) and plasminogen activator

  11. Membranotropic photobiomodulation on red blood cell deformability

    Science.gov (United States)

    Luo, Gang-Yue; Zhao, Yan-Ping; Liu, Timon C.; Liu, Song-Hao

    2007-05-01

    To assess modulation of laser on erythrocyte permeability and deformability via cell morphology changes, healthy human echinocytes with shrinking size and high plasmic viscosity due to cellular dehydration were treated with 1 mW, 2 mW, 3 mW, and 5 mW laser power exposure respectively. Image analyzing system on single intact erythrocyte was applied for measuring comprehensive cell morphological parameters (surface area, external membrane perimeter, circle index and elongation index) that were determined by the modulation of erythrocyte water permeability and deformability to detect relationship between erythrocyte water permeability alteration and deformability. Our preliminary experiment showed that exposure under light dose of 5 mW for 5 min could induce more active erythrocyte swelling and deformation. water channel aquaporin-1(AQP-1) was inhibited by the incubation of HgCl II in the presence and absence of 5 mW laser irradiation. The result suggested that osmotic water permeability is a primary factor in the procedure of erythrocyte deformability. In addition, no modulation of laser(5mW) on erythrocyte deformability had been found when the echinocytes were cultured with GDP-β-S (G protein inhibitor).

  12. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles.

    Science.gov (United States)

    Greulich, C; Diendorf, J; Gessmann, J; Simon, T; Habijan, T; Eggeler, G; Schildhauer, T A; Epple, M; Köller, M

    2011-09-01

    Silver nanoparticles (Ag-NP) are increasingly used in biomedical applications because of their remarkable antimicrobial activity. In biomedicine, Ag-NP are coated onto or embedded in wound dressings, surgical instruments and bone substitute biomaterials, such as silver-containing calcium phosphate cements. Free Ag-NP and silver ions are released from these coatings or after the degradation of a biomaterial, and may come into close contact with blood cells. Despite the widespread use of Ag-NP as an antimicrobial agent, there is a serious lack of information on the biological effects of Ag-NP on human blood cells. In this study, the uptake of Ag-NP by peripheral monocytes and lymphocytes (T-cells) was analyzed, and the influence of nanosilver on cell biological functions (proliferation, the expression of adhesion molecules, cytokine release and the generation of reactive oxygen species) was studied. After cell culture in the presence of monodispersed Ag-NP (5-30μgml(-1) silver concentration), agglomerates of nanoparticles were detected within monocytes (CD14+) but not in T-cells (CD3+) by light microscopy, flow cytometry and combined focused ion beam/scanning electron microscopy. The uptake rate of nanoparticles was concentration dependent, and the silver agglomerates were typically found in the cytoplasm. Furthermore, a concentration-dependent activation (e.g. an increased expression of adhesion molecule CD54) of monocytes at Ag-NP concentrations of 10-15μgml(-1) was observed, and cytotoxicity of Ag-NP-treated monocytes was observed at Ag-NP levels of 25μgml(-1) and higher. However, no modulation of T-cell proliferation was observed in the presence of Ag-NP. Taken together, our results provide the first evidence for a cell-type-specific uptake of Ag-NP by peripheral blood mononuclear cells (PBMC) and the resultant cellular responses after exposure.

  13. Reduced LAK cytotoxicity of peripheral blood mononuclear cells in patients with bladder cancer

    DEFF Research Database (Denmark)

    Hermann, G G; Petersen, K R; Steven, K

    1990-01-01

    The cytotoxicity of unstimulated peripheral blood mononuclear cells (US-PBMC), phytohemagglutinin (PHA)-stimulated PBMC (PS-PBMC) and interleukin-2 (IL-2)-activated PBMC (LAK cells) was assessed in patients with noninvasive and invasive transitional-cell bladder cancer and compared with those...... determined in healthy controls. The differences in the cytotoxicities were correlated with specific changes in the subsets of peripheral blood mononuclear cells (PBMC). PBMC from 37 patients and 13 healthy controls were tested against the bladder cancer cell line T24 in 51Cr-release assays. The PBMC subsets...... that the reduced ability of bladder cancer patient PBMC to develop LAK-cell cytotoxicity is a result of a low incidence of CD56+ and CD57+ cells in the blood. These findings indicate that IL-2 therapy alone might not be a sufficient therapy of bladder cancer patients....

  14. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng

    2010-01-01

    strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found...

  15. Human platelets produced in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice upon transplantation of human cord blood CD34(+) cells are functionally active in an ex vivo flow model of thrombosis.

    Science.gov (United States)

    Salles, Isabelle I; Thijs, Tim; Brunaud, Christine; De Meyer, Simon F; Thys, Johan; Vanhoorelbeke, Karen; Deckmyn, Hans

    2009-12-01

    Xenotransplantation systems have been used with increasing success to better understand human hematopoiesis and thrombopoiesis. In this study, we demonstrate that production of human platelets in nonobese diabetic/severe combined immunodeficient mice after transplantation of unexpanded cord-blood CD34(+) cells was detected within 10 days after transplantation, with the number of circulating human platelets peaking at 2 weeks (up to 87 x 10(3)/microL). This rapid human platelet production was followed by a second wave of platelet formation 5 weeks after transplantation, with a population of 5% still detected after 8 weeks, attesting for long-term engraftment. Platelets issued from human hematopoietic stem cell progenitors are functional, as assessed by increased CD62P expression and PAC1 binding in response to collagen-related peptide and thrombin receptor-activating peptide activation and their ability to incorporate into thrombi formed on a collagen-coated surface in an ex vivo flow model of thrombosis. This interaction was abrogated by addition of inhibitory monoclonal antibodies against human glycoprotein Ibalpha (GPIbalpha) and GPIIb/IIIa. Thus, our mouse model with production of human platelets may be further explored to study the function of genetically modified platelets, but also to investigate the effect of stimulators or inhibitors of human thrombopoiesis in vivo.

  16. Color contrast of red blood cells on solid substrate

    Science.gov (United States)

    Paiziev, Adkham A.

    2013-02-01

    In present study we developed the new method of colour visualization of red blood cells without using any chemical staining. The method based on physical phenomena a white light interference on thin transparent films. It is shown that in the case of thin human blood smears colour interference contrast occurs on solid polished substrates. The best contrast shows substrates with maximal refractive index (Mo, W, Si). These materials have been selected as substrate instead of ordinary microscopic slide in reflected light microscopy. It is shown that reflection of incident white light from blood cell surface and boundary cell-substrate generate two coherent lights. The second one (object signal) after passing through red blood cell gathers additional phase and after interference interaction with reference signal (light reflected from outer cell surface) enables cell image in colour. Number of blood smears of healthy persons (control) and patients who were diagnosed with cancer are presented. It is concluded that the offered method may be used as an effective diagnostic tool to detect early stage blood cells lesion by its interference painting in white light. Offered method may be used in research laboratories, hospitals, diagnostic centres, emergency medicine and other as complementary diagnostic tool to present convenient optical and electron microscopy technique.

  17. Pemberian Fikosianin Spirulina Meningkatkan Jumlah Sel Darah, Aktivitas Fagositosis, dan Pertumbuhan Ikan Kerapu Bebek Juvenil (ADMINISTRATION OF SPIRULINA PHYCOCYANIN ENHANCES BLOOD CELLS, PHAGOCYTIC ACTIVITY AND GROWTH IN HUMPBACK GROUPER JUVENILE

    Directory of Open Access Journals (Sweden)

    Woro Hastuti Satyantini

    2014-05-01

    Full Text Available The aim of this study was to investigate effects of Spirulina phycocyanin on the total  blood cell count,phagocytic activity, and growth of humpback grouper fish, Cromileptes altivelis juvenil.  Fishes were fedwith a diet containing   0, 150, 250, 350 dan 450 mg  phycocyanin per kg diet for four weeks and eachtreatment was triplicates.  Initial body weight  of  grouper was  8.46 ± 0.22 g with a density of 10 fish per56 litre volume. The total count of  erythrocytes and leucocytes increased until the fourth week of rearingperiod. The highest of total erythrocyte and leucocytes were observed in fish treated with 150 mg phycocyaninper kg diet ( 13.17 x  105 cells/mm3 and 8.93 x 105 cells/mm3 respectively which were not significantlydifferent (P>0.05 to those treated with 250 mg phycocyanin per kg diet. The total leucocytes and phagocyticactivity of fish fed diet containing  250 mg phycocyanin  per kg diet (8.49 x 105 cells/mm3 and 59.67%respectively were significantly higher  (P <0.05 to those of control group. The highest of final weight(Wt=14.32 g and weight growth (G=5.89g and lowest of feed conversion ratio (FCR=1.13 were obtainedin fish treated with  250 mg phycocyanin per kg diet which were  significantly  higher  (P <0.05 than thosefed control diet. The data showed that  the addition of  phycocyanin 250 mg/kg diet enhances the totalleukocyte count, phagocytic activity and the growth of humpback grouper juvenil.

  18. Mechanisms Linking Red Blood Cell Disorders and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Ioana Mozos

    2015-01-01

    Full Text Available The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular diseases, and targets for hemoglobin level should be established. Risk scores in several cardiovascular diseases should include red blood cell count and RDW. Complete blood count and hemorheological parameters represent useful, inexpensive, widely available tools for the management and prognosis of patients with coronary heart disease, heart failure, hypertension, arrhythmias, and stroke. Hypoxia and iron accumulation cause the most important cardiovascular effects of sickle cell disease and thalassemia. Patients with congenital chronic hemolytic anemia undergoing splenectomy should be monitored, considering thromboembolic and cardiovascular risk.

  19. Mechanisms linking red blood cell disorders and cardiovascular diseases.

    Science.gov (United States)

    Mozos, Ioana

    2015-01-01

    The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular diseases, and targets for hemoglobin level should be established. Risk scores in several cardiovascular diseases should include red blood cell count and RDW. Complete blood count and hemorheological parameters represent useful, inexpensive, widely available tools for the management and prognosis of patients with coronary heart disease, heart failure, hypertension, arrhythmias, and stroke. Hypoxia and iron accumulation cause the most important cardiovascular effects of sickle cell disease and thalassemia. Patients with congenital chronic hemolytic anemia undergoing splenectomy should be monitored, considering thromboembolic and cardiovascular risk.

  20. Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients.

    Science.gov (United States)

    Sakamoto, Tatiana Mary; Lanaro, Carolina; Ozelo, Margareth Castro; Garrido, Vanessa Tonin; Olalla-Saad, Sara Teresinha; Conran, Nicola; Costa, Fernando Ferreira

    2013-11-01

    The endothelium plays an important role in sickle cell anemia (SCA) pathophysiology, interacting with red cells, leukocytes and platelets during the vaso-occlusive process and undergoing activation and dysfunction as a result of intravascular hemolysis and chronic inflammation. Blood outgrowth endothelial cells (BOECs) can be isolated from adult peripheral blood and have been used in diverse studies, since they have a high proliferative capacity and a stable phenotype during in vitro culture. This study aimed to establish BOEC cultures for use as an in vitro study model for endothelial function in sickle cell anemia. Once established, BOECs from steady-state SCA individuals (SCA BOECs) were characterized for their adhesive and inflammatory properties, in comparison to BOECs from healthy control individuals (CON BOECs). Cell adhesion assays demonstrated that control individual red cells adhered significantly more to SCA BOEC than to CON BOEC. Despite these increased adhesive properties, SCA BOECs did not demonstrate significant differences in their expression of major endothelial adhesion molecules, compared to CON BOECs. SCA BOECs were also found to be pro-inflammatory, producing a significantly higher quantity of the cytokine, IL-8, than CON BOECs. From the results obtained, we suggest that BOEC may be a good model for the in vitro study of SCA. Data indicate that endothelial cells of sickle cell anemia patients may have abnormal inflammatory and adhesive properties even outside of the chronic inflammatory and vaso-occlusive environment of patients.

  1. Drawings of Blood Cells Reveal People's Perception of Their Blood Disorder: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Steven Ramondt

    Full Text Available Sickle cell disease (SCD and thalassemia are rare but chronic blood disorders. Recent literature showed impaired quality of life (QOL in people with these blood disorders. Assessing one of the determinants of QOL (i.e. illness perceptions therefore, is an important next research area.We aimed to explore illness perceptions of people with a blood disorder with drawings in addition to the Brief Illness Perception Questionnaire (Brief IPQ. Drawings are a novel method to assess illness perceptions and the free-range answers drawings offer can add additional insight into how people perceive their illness.We conducted a cross-sectional study including 17 participants with a blood disorder. Participants' illness perceptions were assessed by the Brief IPQ and drawings. Brief IPQ scores were compared with reference groups from the literature (i.e. people with asthma or lupus erythematosus.Participants with SCD or thalassemia perceived their blood disorder as being more chronic and reported more severe symptoms than people with either asthma or lupus erythematosus. In the drawings of these participants with a blood disorder, a greater number of blood cells drawn was negatively correlated with perceived personal control (P<0.05, indicating that a greater quantity in the drawing is associated with more negative or distressing beliefs.Participants with a blood disorder perceive their disease as fairly threatening compared with people with other chronic illnesses. Drawings can add additional insight into how people perceive their illness by offering free-range answers.

  2. Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags.

    Science.gov (United States)

    Buckley, K; Atkins, C G; Chen, D; Schulze, H G; Devine, D V; Blades, M W; Turner, R F B

    2016-03-07

    After being separated from (donated) whole blood, red blood cells are suspended in specially formulated additive solutions and stored (at 4 °C) in polyvinyl chloride (PVC) blood-bags until they are needed for transfusion. With time, the prepared red cell concentrate (RCC) is known to undergo biochemical changes that lower effectiveness of the transfusion, and thus regulations are in place that limit the storage period to 42 days. At present, RCC is not subjected to analytical testing prior to transfusion. In this study, we use Spatially Offset Raman Spectroscopy (SORS) to probe, non-invasively, the biochemistry of RCC inside sealed blood-bags. The retrieved spectra compare well with conventional Raman spectra (of sampled aliquots) and are dominated by features associated with hemoglobin. In addition to the analytical demonstration that SORS can be used to retrieve RCC spectra from standard clinical blood-bags without breaking the sterility of the system, the data reveal interesting detail about the oxygenation-state of the stored cells themselves, namely that some blood-bags unexpectedly contain measurable amounts of deoxygenated hemoglobin after weeks of storage. The demonstration that chemical information can be obtained non-invasively using spectroscopy will enable new studies of RCC degeneration, and points the way to a Raman-based instrument for quality-control in a blood-bank or hospital setting.

  3. Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR

    DEFF Research Database (Denmark)

    Plesner, T; Behrendt, N; Ploug, M

    1997-01-01

    Several important functions have been assigned to the receptor for urokinase-type plasminogen activator, uPAR. As implied by the name, uPAR was first identified as a high affinity cellular receptor for urokinase plasminogen activator (uPA). It mediates the binding of the zymogen, pro-uPA, to the ...

  4. Mechanisms Linking Red Blood Cell Disorders and Cardiovascular Diseases

    OpenAIRE

    Ioana Mozos

    2015-01-01

    The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular dise...

  5. Low red blood cell levels of deglycating enzymes incolorectal cancer patients

    Institute of Scientific and Technical Information of China (English)

    Maria Notarnicola; Maria Gabriella Caruso; Valeria Tutino; Vito Guerra; Giovanni Misciagna

    2011-01-01

    AIM: To investigate Glyoxalase Ⅰ and fructosamine-3- kinase (FN3K) activity in red blood cells from patients with colorectal adenomas and cancer.METHODS: Thirty three consecutive subjects with one or more histologically confirmed colorectal adenomatous polyps, 16 colorectal cancer patients and a group of 11 control subjects with normal colonoscopy were included in the study. Glyoxalase Ⅰ and FN3K activities were measured in red blood cells using a spectrophotometric and radiometric assay, respectively.RESULTS: A significant reduction in both Glyoxalase Ⅰ and FN3K activity was detected in patients with tumors compared to patients with adenomas and the controls. Erythrocyte Glyoxalase Ⅰ activity in colorectal cancer was approximately 6 times lower than that detected in patients with adenoma (0.022 ± 0.01 mmol/min per milliliter vs 0.128 ± 0.19 mmol/min per milliliter of red blood cells, P = 0.003, Tukey's test). FN3K activity in red blood cells from patients with colon cancer was approximately 2 times lower than that detected in adenomapatients (19.55 ± 6.4 pmol/min per milliliter vs 38.6 ± 31.7 pmol/min per milliliter of red blood cells, P = 0.04, Tukey's test).CONCLUSION: These findings suggest that deglycating enzymes may be involved in the malignant transformation of colon mucosa.

  6. Recharging Red Blood Cell Surface by Hemodialysis

    Directory of Open Access Journals (Sweden)

    Katrin Kliche

    2015-02-01

    Full Text Available Background: Similar as in vascular endothelium the negatively charged glycocalyx of erythrocytes selectively buffers sodium. Loss of glycocalyx (i.e. loss of negative charges leads to increased erythrocyte sodium sensitivity (ESS quantified by a recently developed salt-blood-test (SBT. The hypothesis was tested whether a regular 4-hour hemodialysis (4h-HD alters ESS. Methods: In 38 patients with end stage renal disease (ESRD ESS was measured before and after 4h-HD, together with standard laboratory and clinical parameters (electrolytes, acid-base status, urea, creatinine, hemoglobin, c-reactive protein and blood pressure. Results: Before 4h-HD, 20 patients (out of 38 were classified as “salt sensitive” by SBT. After 4h-HD, this number decreased to 11. Erythrocyte sodium buffering power remained virtually constant in patients with already low ESS before dialysis, whereas in patients with high ESS, 4h-HD improved the initially poor sodium buffering power by about 20%. No significant correlations could be detected between standard blood parameters and the respective ESS values except for plasma sodium concentration which was found increased by 3.1 mM in patients with high salt sensitivity. Conclusions: 4h-HD apparently recharges “run-down” erythrocytes and thus restores erythrocyte sodium buffering capacity. Besides the advantage of efficient sodium buffering in blood, erythrocytes with sufficient amounts of free negative charges at the erythrocyte surface will cause less (mechanical injury to the negatively charged endothelial surface due to efficient repulsive forces between blood and vessel wall. Hemodialysis improves erythrocyte surface properties and thus may prevent early vascular damage in patients suffering from ESRD.

  7. Differentiation of smooth muscle progenitor cells in peripheral blood and its application in tissue engineered blood vessels

    Institute of Scientific and Technical Information of China (English)

    Shang-zhe XIE; Ning-tao FANG; Shui LIU; Ping ZHOU; Yi ZHANG; Song-mei WANG; Hong-yang GAO; Luan-feng PAN

    2008-01-01

    Background: A major shortcoming in tissue engineered blood vessels (TEBVs) is the lack of healthy and easily attainable smooth muscle cells (SMCs). Smooth muscle progenitor cells (SPCs), especially from peripheral blood, may offer an alternative cell source for tissue engineering involving a less invasive harvesting technique. Methods: SPCs were isolated from 5-ml fresh rat peripheral blood by density-gradient centrifugation and cultured for 3 weeks in endothelial growth medium-2-MV (EGM-2-MV) medium containing platelet-derived growth factor-BB (PDGF BB). Before seeded on the synthesized scaffold, SPC-derived smooth muscle outgrowth cell (SOC) phenotypes were assessed by immuno-fluorescent staining, Western blot analysis, and reverse transcription polymerase chain reaction (RT-PCR). The cells were seeded onto the silk fibroin-modified poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (SF-PHBHHx) scaffolds by 6×104 cells/cm'2 and cultured under the static con-dition for 3 weeks. The growth and proliferation of the seeded cells on the scaffold were analyzed by 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT) assay, scanning electron microscope (SEM), and 4,6-diamidino-2-phenylindole (DAPI) staining. Results: SOCs displayed specific "hill and valley" morphology, expressed the specific markers of the SMC lineage: protein, and extracellular matrix components elastin and matrix Gla protein (MGP), as well as vascular endothelial growth factor (VEGF). After seeded on the SF-PHBHHx scaffold, the cells showed excellent metabolic activity and proliferation. Conclusion: SPCs isolated from peripheral blood can be differentiated into the SMCs in vitro and have an impressive growth potential in the biodegradable synthesized scaffold. Thus, SPCs may be a promising cell source for constructing TEBVs.

  8. Is red blood cell rheology preserved during routine blood bank storage?

    NARCIS (Netherlands)

    Henkelman, Sandra; Dijkstra-Tiekstra, Margriet J.; de Wildt-Eggen, Janny; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: Red blood cell (RBC) units stored for more than 2 weeks at 4 degrees C are currently considered of impaired quality. This opinion has primarily been based on altered RBC rheologic properties (i.e., enhanced aggregability, reduced deformability, and elevated endothelial cell interaction),

  9. Blood flow simulation on a role for red blood cells in platelet adhesion

    Science.gov (United States)

    Shimizu, Kazuya; Sugiyama, Kazuyasu; Takagi, Shu

    2016-11-01

    Large-scale blood flow simulations were conducted and a role for red blood cells in platelet adhesion was discussed. The flow conditions and hematocrit values were set to the same as corresponding experiments, and the numerical results were compared with the measurements. Numerical results show the number of platelets adhered on the wall is increased with the increase in hematocrit values. The number of adhered platelets estimated from the simulation was approximately 28 (per 0.01 square millimeter per minute) for the hematocrit value of 20%. These results agree well with the experimental results qualitatively and quantitatively, which proves the validity of the present numerical model including the interaction between fluid and many elastic bodies and the modeling of platelet adhesion. Numerical simulation also reproduces the behavior of red blood cells in the blood flow and their role in platelet adhesion. Red blood cells deform to a flat shape and move towards channel center region. In contrast, platelets are pushed out and have many chances to contact with the wall. As a result, the large number of adhered platelets is observed as hematocrit values becomes high. This result indicates the presence of red blood cells plays a crucial role in platelet adhesion.

  10. NHE-1 sequence and expression in toad, snake and fish red blood cells

    DEFF Research Database (Denmark)

    Thomsen, Steffen Nyegaard; Wang, Tobias; Kristensen, Torsten

    Red blood cells (RBC) from reptiles appear not to express regulatory volume increase (RVI) upon shrinkage (Kristensen et al., 2008). In other vertebrates, the RVI response is primarily mediated by activation of the Na+/H+ exchanger (NHE-1) and we, therefore decided to investigate whether red cell...

  11. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... are most commonly used in the treatment of cancers like leukemia and lymphoma to restore stem cells that have been destroyed by high doses of ... EuroStemCell 312,828 views 15:53 Understanding Your Cancer Prognosis ... views 6:48 Stem cell donation from brother saves child from cancer - Duration: ...

  12. Comparative Study of Regulatory T Cell Function of Human CD25+CD4+ T Cells from Thymocytes, Cord Blood, and Adult Peripheral Blood

    Directory of Open Access Journals (Sweden)

    Wakae Fujimaki

    2008-01-01

    Full Text Available CD25+CD4+ regulatory T cells suppress T cell activation and regulate multiple immune reactions in in vitro and in vivo studies. To define the regulatory function of human CD25+CD4+ T cells at various stages of maturity, we investigated in detail the functional differences of CD25+CD4+ T cells from thymocytes, cord blood (CB, and adult peripheral blood (APB. CB CD25+CD4+ T cells displayed low-FOXP3 protein expression level and had no suppressive activity. In contrast, CD25+CD4+ T cells from thymocytes or APB expressed high expression level of FOXP3 protein associated with significant suppressive activity. Although CB CD25+CD4+ T cells exhibited no suppressive activity, striking suppressive activity was observed following expansion in culture associated with increased FOXP3 expression and a shift from the CD45RA+ to the CD45RA− phenotype. These functional differences in CD25+CD4+ T cells from Thy, CB, and APB hence suggest a pathway of maturation for Treg in the peripheral immune system.

  13. Physical exercise decreases the number of fetal cells in maternal blood

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Kirkegaard, Ida; Christensen, Connie Britta;

    liability company). Fetal cells in the blood, bound to fetal cell specific markers, were initially isolated by magnetic cell sorting, then stained with a cocktail of intracellular antibodies, identified and counted. Information about 6 variables reflecting the physical activity of the participants......Physical exercise decreases the number of fetal cells in maternal blood J. M. Schlütter1, I. Kirkegaard1, B. Christensen2, S. Kølvraa3, N. Uldbjerg1 1. Department of Gynecology and Obstetrics, Aarhus University Hospital, Skejby, Aarhus N, Denmark. 2. FCMB ApS, Vejle, Denmark. 3. Department...... of Clinical Genetics, Vejle Hospital, Vejle, Denmark Objectives We have established a robust method to specifically identify and isolate a subgroup of fetal cells in maternal blood (fcmb) at a gestational age of 12 weeks. The concentration of these cells, however, varies considerably among pregnant women...

  14. Induction and identification of rabbit peripheral blood derived dendritic cells

    Science.gov (United States)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  15. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  16. The relationship between the activates of antioxidant enzymes in red blood cells and body mass index in Iranian type 2 diabetes and healthy subjects

    Directory of Open Access Journals (Sweden)

    Taheri Ehsaneh

    2012-08-01

    Full Text Available Abstract Background Diabetes mellitus is a metabolic disorder characterized by increased production of free radicals and oxidative stress. The aim of this study was to evaluate the activity of antioxidant enzymes, superoxide dismutase (SOD, glutathione reductase (GR, and glutathione peroxide (GSH-PX in type 2 diabetic patients compared with healthy subjects. Methods This cross-sectional study was conducted on 100 type 2 diabetic patients and 100 healthy controls. Total antioxidant capacity and fasting serum levels of SOD, GR, and GSH-Px were measured. All data were analyzed using SPSS software compatible with Microsoft Windows. Results The activity levels of SOD were lower in diabetic patients (111.93 ± 354.99 U/g Hb than in healthy controls (1158.53 ± 381.21 U/g Hb, but this was not significant. Activity levels of GSH-PX and GR in diabetics (62.33 ± 36.29 and 7.17 ± 5.51 U/g Hb, respectively were higher than in controls (24.62 ± 11.2 and 3.16 ± 2.95 U/g Hb, respectively. The statistical difference in enzyme activity of both GSH-Px and GR was significant (P Conclusion The increasing production of free radicals and changes in activity levels of antioxidant enzymes in order to scavenge free radicals and/or the effect of diabetes on the activity levels of antioxidant enzymes has an important effect on diabetic complications and insulin resistance. Evaluation of the levels of antioxidant enzymes and antioxidant factors in patients at different stages of the disease, and pharmaceutical and nutritional interventions, can be helpful in reducing oxidative stress in type 2 diabetic patients. There were positive relationship between BMI and the activity of antioxidant enzymes including SOD, GR and GPX in both groups.

  17. On-chip Extraction of Intracellular Molecules in White Blood Cells from Whole Blood.

    Science.gov (United States)

    Choi, Jongchan; Hyun, Ji-chul; Yang, Sung

    2015-10-14

    The extraction of virological markers in white blood cells (WBCs) from whole blood--without reagents, electricity, or instruments--is the most important first step for diagnostic testing of infectious diseases in resource-limited settings. Here we develop an integrated microfluidic chip that continuously separates WBCs from whole blood and mechanically ruptures them to extract intracellular proteins and nucleic acids for diagnostic purposes. The integrated chip is assembled with a device that separates WBCs by using differences in blood cell size and a mechanical cell lysis chip with ultra-sharp nanoblade arrays. We demonstrate the performance of the integrated device by quantitatively analyzing the levels of extracted intracellular proteins and genomic DNAs. Our results show that compared with a conventional method, the device yields 120% higher level of total protein amount and similar levels of gDNA (90.3%). To demonstrate its clinical application to human immunodeficiency virus (HIV) diagnostics, the developed chip was used to process blood samples containing HIV-infected cells. Based on PCR results, we demonstrate that the chip can extract HIV proviral DNAs from infected cells with a population as low as 10(2)/μl. These findings suggest that the developed device has potential application in point-of-care testing for infectious diseases in developing countries.

  18. Quantification of depletion-induced adhesion of Red Blood Cells

    CERN Document Server

    Steffen, Patrick; Wagner, Christian

    2012-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the dextran induced aggregation of red blood cells by use of atomic force microscopy based single cell force spectroscopy (SCFS). The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs was determined. The results are in good agreement with a model based on the depletion effect and former experimental studies.

  19. Hematologic assessment in pet rats, mice, hamsters, and gerbils: blood sample collection and blood cell identification.

    Science.gov (United States)

    Lindstrom, Nicole M; Moore, David M; Zimmerman, Kurt; Smith, Stephen A

    2015-01-01

    Hamsters, gerbils, rats, and mice are presented to veterinary clinics and hospitals for prophylactic care and treatment of clinical signs of disease. Physical examination, history, and husbandry practice information can be supplemented greatly by assessment of hematologic parameters. As a resource for veterinarians and their technicians, this article describes the methods for collection of blood, identification of blood cells, and interpretation of the hemogram in mice, rats, gerbils, and hamsters.

  20. Blood cell manufacture: current methods and future challenges.

    Science.gov (United States)

    Timmins, Nicholas E; Nielsen, Lars K

    2009-07-01

    Blood transfusion depends on availability of donor material, and concerns over supply and safety have spurred development of methods to manufacture blood from stem cells. Current methods could theoretically yield therapeutic doses of red blood cells (RBCs) and platelets. However, due to the very large number of cells required to have any impact on supply (currently 10(19) RBC/year in the US), realization of routine manufacture faces significant challenges. Current yields are orders of magnitude too low for production of meaningful quantities, and the physical scale of the problem is a challenge in itself. We discuss these challenges in relation to current methods and how it might be possible to realize limited 'blood pharming' of neutrophils in the near future.

  1. Laser-photophoretic migration and fractionation of human blood cells.

    Science.gov (United States)

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi

    2013-05-13

    Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis.

  2. Computational modeling of red blood cells: A symplectic integration algorithm

    Science.gov (United States)

    Schiller, Ulf D.; Ladd, Anthony J. C.

    2010-03-01

    Red blood cells can undergo shape transformations that impact the rheological properties of blood. Computational models have to account for the deformability and red blood cells are often modeled as elastically deformable objects. We present a symplectic integration algorithm for deformable objects. The surface is represented by a set of marker points obtained by surface triangulation, along with a set of fiber vectors that describe the orientation of the material plane. The various elastic energies are formulated in terms of these variables and the equations of motion are obtained by exact differentiation of a discretized Hamiltonian. The integration algorithm preserves the Hamiltonian structure and leads to highly accurate energy conservation, hence he method is expected to be more stable than conventional finite element methods. We apply the algorithm to simulate the shape dynamics of red blood cells.

  3. Shear induced diffusion in a red blood cell suspension

    Science.gov (United States)

    Podgorski, Thomas; Grandchamp, Xavier; Srivastav, Aparna; Coupier, Gwennou

    2012-11-01

    In the microcirculation, blood exhibits an inhomogeneous structure which results in the well know Fahraeus-Lindqvist effect : the apparent viscosity decreases when the diameter of the capillary decreases due to the formation of a marginal cell depletion layer (known as plasma skimming). This structure is a consequence of several phenomena, which include i) the migration of cells aways from walls due to lift forces and gradients of shear and ii) shear induced diffusion due to collisions and interactions among cells. We investigated these phenomena through experiments in simple shear and microchannel flows, with dilute suspensions of vesicles and blood cells. Pairwise interactions between suspended objects result in non-linear and flow-dependent diffusion, whose properties have been measured in different experiments for vesicles and blood cells. The injection of a sheet of concentrated blood cell suspension in a microchannel with a rectangular cross-section allows, through the measurement of its widening along the channel, to measure the diffusivity of blood cells, both in the local plane of shear and in the vorticity direction.

  4. Comparison of Hemagglutination and Hemolytic Activity of Various Bacterial Clinical Isolates Against Different Human Blood Groups

    Science.gov (United States)

    HRV, Rajkumar; Devaki, Ramakrishna

    2016-01-01

    Among the various pathogenic determinants shown by microorganisms hemagglutination and hemolysin production assume greater significance in terms of laboratory identification. This study evaluated the hemagglutination and hemolytic activity of various bacterial isolates against different blood groups. One hundred and fifty bacterial strains, isolated from clinical specimens like urine, pus, blood, and other body fluids were tested for their hemagglutinating and hemolytic activity against human A, B, AB, and O group red blood cells. Among the 150 isolates 81 were Escherichia coli, 18 were Klebsiella pneumoniae, 19 were Pseudomonas aeruginosa, 10 were Pseudomonas spp, six were Proteus mirabilis, and the rest 16 were Staphylococcus aureus. Nearly 85% of the isolates agglutinated A group cells followed by B and AB group (59.3% and 60.6% respectively). Least number of isolates agglutinated O group cells (38.0%). When the hemolytic activity was tested, out of these 150 isolates 79 (52.6%) hemolyzed A group cells, 61 (40.6%) hemolyzed AB group cells, 46 (30.6%) hemolyzed B group cells, and 57 (38.6%) isolates hemolyzed O group cells. Forty-six percent of the isolates exhibited both hemagglutinating and hemolytic property against A group cells, followed by B and AB group cells (28.6% and 21.3% respectively). Least number of isolates i.e., 32 (21.3%) showed both the properties against O group cells. The isolates showed wide variation in their hemagglutination and hemolytic properties against different combinations of human blood group cells. The study highlights the importance of selection of the type of cells especially when human RBCs are used for studying the hemagglutination and hemolytic activity of bacterial isolates because these two properties are considered as characteristic of pathogenic strains. PMID:27014523

  5. Red blood cells serve as intravascular carriers of myeloperoxidase.

    Science.gov (United States)

    Adam, Matti; Gajdova, Silvie; Kolarova, Hana; Kubala, Lukas; Lau, Denise; Geisler, Anne; Ravekes, Thorben; Rudolph, Volker; Tsao, Philip S; Blankenberg, Stefan; Baldus, Stephan; Klinke, Anna

    2014-09-01

    Myeloperoxidase (MPO) is a heme enzyme abundantly expressed in polymorphonuclear neutrophils. MPO is enzymatically capable of catalyzing the generation of reactive oxygen species (ROS) and the consumption of nitric oxide (NO). Thus MPO has both potent microbicidal and, upon binding to the vessel wall, pro-inflammatory properties. Interestingly, MPO - a highly cationic protein - has been shown to bind to both endothelial cells and leukocyte membranes. Given the anionic surface charge of red blood cells, we investigated binding of MPO to erythrocytes. Red blood cells (RBCs) derived from patients with elevated MPO plasma levels showed significantly higher amounts of MPO by flow cytometry and ELISA than healthy controls. Heparin-induced MPO-release from patient-derived RBCs was significantly increased compared to controls. Ex vivo experiments revealed dose and time dependency for MPO-RBC binding, and immunofluorescence staining as well as confocal microscopy localized MPO-RBC interaction to the erythrocyte plasma membrane. NO-consumption by RBC-membrane fragments (erythrocyte "ghosts") increased with incrementally greater concentrations of MPO during incubation, indicating preserved catalytic MPO activity. In vivo infusion of MPO-loaded RBCs into C57BL/6J mice increased local MPO tissue concentrations in liver, spleen, lung, and heart tissue as well as within the cardiac vasculature. Further, NO-dependent relaxation of aortic rings was altered by RBC bound-MPO and systemic vascular resistance significantly increased after infusion of MPO-loaded RBCs into mice. In summary, we find that MPO binds to RBC membranes in vitro and in vivo, is transported by RBCs to remote sites in mice, and affects endothelial function as well as systemic vascular resistance. RBCs may avidly bind circulating MPO, and act as carriers of this leukocyte-derived enzyme.

  6. Characterization of the attachment mechanisms of tissue-derived cell lines to blood-compatible polymers.

    Science.gov (United States)

    Hoshiba, Takashi; Nikaido, Mayo; Tanaka, Masaru

    2014-05-01

    Recent advances in biomedical engineering require the development of new types of blood-compatible polymers that also allow non-blood cell attachment for the isolation of stem cells and circulating tumor cells (CTCs) from blood and for the development of artificial organs for use under blood-contact conditions. Poly(2-methoxyethyl acrylate) (PMEA) and poly(tetrafurfuryl acrylate) (PTHFA) were previously identified as blood-compatible polymers. Here, it is demonstrated that cancer cells can attach to the PMEA and PTHFA substrates, and the differences in the attachment mechanisms to the PMEA and PTHFA substrates between cancer cells and platelets are investigated. It is also found that the adsorption-induced deformation of fibrinogen, which is required for the attachment and activation of platelets, does not occur on the PMEA and PTHFA substrates. In contrast, fibronectin is deformed on the PMEA and PTHFA substrates. Therefore, it is concluded that cancer cells and not platelets can attach to the PMEA and PTHFA substrates based on this protein-deformation difference between these substrates. Moreover, it is observed that cancer cells attach to the PMEA substrate via both integrin-dependent and -independent mechanisms and attach to the PTHFA substrate only through an integrin-dependent mechanism. It is expected that PMEA and PTHFA will prove useful for blood-contact biomedical applications.

  7. Advanced feeder-free generation of induced pluripotent stem cells directly from blood cells.

    Science.gov (United States)

    Trokovic, Ras; Weltner, Jere; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Salomaa, Veikko; Jalanko, Anu; Otonkoski, Timo; Kyttälä, Aija

    2014-12-01

    Generation of validated human induced pluripotent stem cells (iPSCs) for biobanking is essential for exploring the full potential of iPSCs in disease modeling and drug discovery. Peripheral blood mononuclear cells (PBMCs) are attractive targets for reprogramming, because blood is collected by a routine clinical procedure and is a commonly stored material in biobanks. Generation of iPSCs from blood cells has previously been reported using integrative retroviruses, episomal Sendai viruses, and DNA plasmids. However, most of the published protocols require expansion and/or activation of a specific cell population from PBMCs. We have recently collected a PBMC cohort from the Finnish population containing more than 2,000 subjects. Here we report efficient generation of iPSCs directly from PBMCs in feeder-free conditions in approximately 2 weeks. The produced iPSC clones are pluripotent and transgene-free. Together, these properties make this novel method a powerful tool for large-scale reprogramming of PBMCs and for iPSC biobanking.

  8. Cord blood transplants for SCID: better B-cell engraftment?

    Science.gov (United States)

    Chan, Wan-Yin; Roberts, Robert Lloyd; Moore, Theodore B; Stiehm, E Richard

    2013-01-01

    Hematopoietic stem-cell transplantation is the treatment of choice for severe combined immunodeficiency (SCID). Despite successful T-cell engraftment in transplanted patients, B-cell function is not always achieved; up to 58% of patients require immunoglobulin therapy after receiving haploidentical transplants. We report 2 half-sibling males with X-linked γ-chain SCID treated with different sources of stem cells. Sibling 1 was transplanted with T-cell-depleted haploidentical maternal bone marrow and sibling 2 was transplanted with 7/8 human leukocyte antigen-matched unrelated umbilical cord blood. Both patients received pretransplant conditioning and posttransplant graft-versus-host-disease prophylaxis. B-cell engraftment and function was achieved in sibling 1 but not in sibling 2. This disparate result is consistent with a review of 19 other SCID children who received cord blood transplants. B-cell function, as indicated by no need for immunoglobulin therapy, was restored in 42% of patients given haploidentical transplants and in 68% of patients given matched unrelated donor transplants compared with 80% of patients given cord blood transplants. Cord blood is an alternative source of stem cells for transplantation in children with SCID and has a higher likelihood of B-cell reconstitution.

  9. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz

    2009-04-01

    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  10. Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in peripheral blood mononuclear cells of Alzheimer's disease patients

    DEFF Research Database (Denmark)

    Maynard, Scott; Hejl, Anne-Mette; Dinh, Tran Thuan Son;

    2015-01-01

    AIMS: Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent reports suggest that dysfunctional mitochondria and DNA damage are associated with AD development. In this report, we measured various cellular parameters, related to mitochondrial bioenergetics...... as possible. We measured glycolysis and mitochondrial respiration fluxes using the Seahorse Bioscience flux analyzer, mitochondrial ROS production using flow cytometry, dNTP levels by way of a DNA polymerization assay, DNA strand breaks using the Fluorometric detection of Alkaline DNA Unwinding (FADU) assay...... on adjustments for gender and/or age. CONCLUSIONS: This study reveals impaired mitochondrial respiration, altered dNTP pools and reduced DNA repair activity in PBMCs of AD patients, thus suggesting that these biochemical activities may be useful as biomarkers for AD....

  11. Malaria and human red blood cells.

    Science.gov (United States)

    Mohandas, Narla; An, Xiuli

    2012-11-01

    Invasion by the malaria parasite, Plasmodium falciparum, brings about extensive changes in the host red cells. These include loss of the normal discoid shape, increased rigidity of the membrane, elevated permeability to a wide variety of ionic and other species and increased adhesiveness, most notably to endothelial surfaces. These effects facilitate survival of the parasite within the host cell and tend to increase the virulence of disease that includes cerebral malaria and anemia. Numerous proteins secreted by the internalized parasite and interacting with red cell membrane proteins are responsible for the changes occurring to the host cell. Anemia, a serious clinical manifestation of malaria, is due to increased destruction of both infected and uninfected red cells due to membrane alterations, as well as ineffective erythropoiesis. There is very good evidence that various red cell disorders including hemoglobinopathies and hereditary ovalocytosis decrease the virulence of disease following parasite infection. A number of mechanism(s) are likely responsible for the protective effect of various red cell abnormalities including decreased invasion, impaired intraerythrocytic development of the parasites and altered interaction between exported parasite proteins and the red cell membrane skeleton.

  12. Characterization of Microvesicles Released from Human Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Duc Bach Nguyen

    2016-03-01

    Full Text Available Background/Aims: Extracellular vesicles (EVs are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs under different conditions has been reported. MVs are released by outward budding and fission of the plasma membrane. However, the outward budding process itself, the release of MVs and the physical properties of these MVs have not been well investigated. The aim of this study is to investigate the formation process, isolation and characterization of MVs released from RBCs under conditions of stimulating Ca2+ uptake and activation of protein kinase C. Methods: Experiments were performed based on single cell fluorescence imaging, fluorescence activated cell sorter/flow cytometer (FACS, scanning electron microscopy (SEM, atomic force microscopy (AFM and dynamic light scattering (DLS. The released MVs were collected by differential centrifugation and characterized in both their size and zeta potential. Results: Treatment of RBCs with 4-bromo-A23187 (positive control, lysophosphatidic acid (LPA, or phorbol-12 myristate-13 acetate (PMA in the presence of 2 mM extracellular Ca2+ led to an alteration of cell volume and cell morphology. In stimulated RBCs, exposure of phosphatidylserine (PS and formation of MVs were observed by using annexin V-FITC. The shedding of MVs was also observed in the case of PMA treatment in the absence of Ca2+, especially under the transmitted bright field illumination. By using SEM, AFM and DLS the morphology and size of stimulated RBCs, MVs were characterized. The sizes of the two populations of MVs were 205.8 ± 51.4 nm and 125.6 ± 31.4 nm, respectively. Adhesion of stimulated RBCs and MVs was observed. The zeta potential of MVs was determined in the range from - 40 mV to - 10 m

  13. Leptospira interrogans activation of peripheral blood monocyte glycolipoprotein demonstrated in whole blood by the release of IL-6

    Directory of Open Access Journals (Sweden)

    F. Dorigatti

    2005-06-01

    Full Text Available Glycolipoprotein (GLP from pathogenic serovars of Leptospira has been implicated in the pathogenesis of leptospirosis by its presence in tissues of experimental animals with leptospirosis, the inhibition of the Na,K-ATPase pump activity, and induced production of cytokines. The aims of the present study were to investigate the induction of IL-6 by GLP in peripheral blood mononuclear cells (PBMC and to demonstrate monocyte stimulation at the cellular level in whole blood from healthy volunteers. PBMC were stimulated with increasing concentrations (5 to 2500 ng/ml of GLP extracted from the pathogenic L. interrogans serovar Copenhageni, lipopolysaccharide (positive control or medium (negative control, and supernatants were collected after 6, 20/24, and 48 h, and kept at -80ºC until use. Whole blood was diluted 1:1 in RPMI medium and cultivated for 6 h, with medium, GLP and lipopolysaccharide as described above. Monensin was added after the first hour of culture. Supernatant cytokine levels from PBMC were measured by ELISA and intracellular IL-6 was detected in monocytes in whole blood cultures by flow-cytometry. Monocytes were identified in whole blood on the basis of forward versus side scatter parameters and positive reactions with CD45 and CD14 antibodies. GLP ( > or = 50 ng/ml-induced IL-6 levels in supernatants were detected after 6-h incubation, reaching a peak after 20/24 h. The percentage of monocytes staining for IL-6 increased with increasing GLP concentration. Thus, our findings show a GLP-induced cellular activation by demonstrating the ability of GLP to induce IL-6 and the occurrence of monocyte activation in whole blood at the cellular level.

  14. Immunomodulatory activity of a novel, synthetic beta-glucan (β-glu6 in murine macrophages and human peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Xiaofei Li

    Full Text Available Natural β-glucans extracted from plants and fungi have been used in clinical therapies since the late 20th century. However, the heterogeneity of natural β-glucans limits their clinical applicability. We have synthesized β-glu6, which is an analog of the lentinan basic unit, β-(1→6-branched β-(1→3 glucohexaose, that contains an α-(1→3-linked bond. We have demonstrated the stimulatory effect of this molecule on the immune response, but the mechanisms by which β-glu6 activates innate immunity have not been elucidated. In this study, murine macrophages and human PBMCs were used to evaluate the immunomodulatory effects of β-glu6. We showed that β-glu6 activated ERK and c-Raf phosphorylation but suppressed the AKT signaling pathway in murine macrophages. Additionally, β-glu6 enhanced the secretion of large levels of cytokines and chemokines, including CD54, IL-1α, IL-1β, IL-16, IL-17, IL-23, IFN-γ, CCL1, CCL3, CCL4, CCL12, CXCL10, tissue inhibitor of metalloproteinase-1 (TIMP-1 and G-CSF in murine macrophages as well as IL-6, CCL2, CCL3, CCL5, CXCL1 and macrophage migration inhibitory factor (MIF in human PBMCs. In summary, it demonstrates the immunomodulatory activity of β-glu6 in innate immunity.

  15. Incorporation of n-3 PUFA and γ-linolenic acid in blood lipids and red blood cell lipids together with their influence on disease activity in patients with chronic inflammatory arthritis - a randomized controlled human intervention trial

    Directory of Open Access Journals (Sweden)

    Springer Monika

    2011-08-01

    Full Text Available Abstract Background and aim Marine n-3 fatty acids and γ-linolenic acid both have anti-inflammatory effects and may be useful to help treat inflammatory diseases. The effects of these alone or combined were examined in patients with arthritis in a randomized controlled trial. Design Patients with rheumatoid arthritis or psoriatic arthritis were randomized into four groups in a double-blind, placebo-controlled parallel designed study. Patients received the respective capsules (1: 3.0 g n-3 LC-PUFA/d; 2: 3.2 g γ-linolenic acid/d; 3: 1.6 g n-3 LC-PUFA + 1.8 g γ-linolenic acid/d; 4: 3.0 g olive oil for a twelve week period. Clinical status was evaluated and blood samples were taken at the beginning and at the end of the period. Differences before and after intervention were tested with paired t-test or with Wilcoxon test for non-normal data distribution. Results 60 patients (54 rheumatoid arthritis, 6 psoriatic arthritis were randomised, 47 finished per protocol. In group 1, the ratio of arachidonic acid (AA/eicosapentaenoic acid (EPA decreased from 6.5 ± 3.7 to 2.7 ± 2.1 in plasma lipids and from 25.1 ± 10.1 to 7.2 ± 4.7 in erythrocyte membranes (p ≤ 0.001. There was no significant influence on AA/EPA ratio due to interventions in group 2-4. In group 2, the intake of γ-linolenic acid resulted in a strong rise of γ-linolenic acid and dihomo-γ-linolenic acid concentrations in plasma lipids, cholesteryl esters, and erythrocyte membranes. The combination of n-3 LC-PUFA and γ-linolenic acid (group 3 led to an increase of γ-linolenic acid and dihomo-γ-linolenic acid concentrations in plasma lipids, cholesteryl esters, and erythrocyte mem-branes. This increase was only half of that in group 2. Conclusions Incorporation of eicosanoid precursor FAs was influenced by an intake of n-3 LC-PUFA and γ-linolenic acid suggesting a possible benefit for therapy of chronic inflammatory diseases. Trial Registration ClinicalTrials NCT01179971

  16. Cold ischemia time and blood compatibility associated with activity of transplanted islet cells%冷缺血时间及血液相容性与移植胰岛细胞活性的关系

    Institute of Scientific and Technical Information of China (English)

    高宏君; 梁泰生; 杨欢; 罗向东; 吴佩钟; 谭臻; 梁芳芳

    2007-01-01

    都发生明显的消耗;加入肝素后血细胞计数与对照组比较差异明显(P<0.05),反应明显减轻.HLA匹配组和HLA错配组胰岛细胞体外培养24 h活性胰岛细胞数量较,差异明显(P<0.05).结论:在冷缺血时间<5 h的情况下获取的胰腺可以用于临床胰岛细胞的移植;血液相容性好能够明显提高胰岛细胞移植的成功率.%BACKGROUND: The quantity and bioactivity of isolated islet are vital to islet transplantation; while, the cold ischemia time and human leucocyte antigen (HLA) typing are key factors to islet quantity and bioactivity which inflect islet transplantation.OBJECTIVE: To observe the effects of cold ischemia time and blood compatibility on quantity and bioactivity of islet cells.DESIGN: Observational study.SETTING: Ruikang Affiliated Hospital of Guangxi College of Traditional Chinese Medicine.MATERIALS: Organs from voluntary donors died of irreversible coma were adopted whose blood-type and HLA typing had been known, pancreases acquisition was carried on after other organs ablation or in the meantime. The blood of identical ABO and HLA matching conformity, or HLA cross-matching hypersensitization (missmatching over 3 Iocuses),or panel reaction antibody (PRA) > 50%, or lymphocyte cytotoxin crossmatching test positive. The isolated and purified islet suspension was filtered by 70 μm filter, which result in preparing 1.2×105/L islet suspention.METHODS: Hypertonic citrate adenine solution was perfused into aorta, and kidney-pancreases and kidney-pancreases-liver were cut together or kidney-pancreases-liver was cut separately. Islet activity was judged by diphenylthiocarbazone (DTZ) dyeing and acridine orange (AO) dyeing; meanwhile, twelve pancreases far from contamination were aquired, mean ablation time was 15 minutes; cold ischemia time ranged from 2.5 to 8 hours. Cold ischemia time of nine pancreases was controlled in 5 hours, warm ischemia time was 0-3 minutes, and peptic time was (15±2

  17. Cellular Activation and Intracellular HCV Load in Peripheral Blood Monocytes Isolated from HCV Monoinfected and HIV-HCV Coinfected Patients

    OpenAIRE

    Isabelle Dichamp; Wasim Abbas; Amit Kumar; Vincent Di Martino; Georges Herbein

    2014-01-01

    BACKGROUND: During HCV infection, the activation status of peripheral blood monocytes and its impact on HCV replication are poorly understood. We hypothesized that a modified activation of peripheral blood monocytes in HIV-HCV coinfected compared to HCV monoinfected patients may contribute to different monocytes reservoirs of HCV replication. METHODS: We performed a case-control analysis involving HCV-infected patients with and without HIV coinfection. In peripheral blood mononuclear cells (P...

  18. Diagnosis and epidemiology of red blood cell enzyme disorders

    Directory of Open Access Journals (Sweden)

    Richard Van Wijk

    2013-03-01

    Full Text Available The red blood cell possess an active metabolic machinery that provides the cell with energy to pump ions against electrochemical gradients, to maintain its shape, to keep hemoglobin iron in the reduced (ferrous form, and to maintain enzyme and hemoglobin sulfhydryl groups. The main source of metabolic energy comes from glucose. Glucose is metabolized through the glycolytic pathway and through the hexose monophosphate shunt. Glycolysis catabolizes glucose to pyruvate and lactate, which represent the end products of glucose metabolism in the erythrocyte. Adenosine diphosphate (ADP is phosphorylated to adenosine triphosphate (ATP, and nicotinamide adenine dinucleotide (NAD+ is reduced to NADH in glycolysis. 2,3- Bisphosphoglycerate, an important regulator of the oxygen affinity of hemoglobin, is generated during glycolysis by the Rapoport-Luebering shunt. The hexose monophosphate shunt oxidizes glucose-6-phosphate, reducing NADP+ to reduced nicotinamide adenine dinucleotide phosphate (NADPH. The red cell lacks the capacity for de novo purine synthesis but has a salvage pathway that permits synthesis of purine nucleotides from purine bases...

  19. Activation of expression in peripheral blood mononuclear cells in Sonic hedgehog pathway%外周血单个核细胞在Sonic hedgehog信号通路中的活化表达

    Institute of Scientific and Technical Information of China (English)

    赵乾焜; 梁森; 闫慧明

    2015-01-01

    Objective To discuss the expression of Sonic hedgehog blocking antibody (Shh Ab) in peripheral blood mononuclear cells(PBMCs) of anti-gastric cancer cells. Methods Healthy human PBM-Cs were centrifugated by Ficoll density gradient (GES-1 cells were treated by nitrite amides) and gastric cancer cells were co-cultured with MC. To observe the expression and semi-quantitative analysis of Shh and Gli-1 by RT-PCR, Shh blocking antibodies were added in the co-culture system, and the expression of CD3, CD5, CD69 was assayed by flow cytometry. Results RT-PCR showed that Gli-1mRNA in MC+Shh Ab cell group was 0.284 5±0.002 5, lower than the MC cell group 0.516 7 ± 0.010 9 (P<0.05). Flow cytometry showed Shh blocking antibodies promoted the expression of CD3 and CD69. Shh Ab enhanced cell killing PBMCs for MC. Conclusion Shh Ab can promote activation of PBMCs, and enhances anti-carcinogenic effect of nitrite amides.%目的探讨Sonic hedgehog阻断抗体(Shh Ab)对外周血单个核细胞(PBMCs)抗胃癌MC细胞作用的表达。方法 Ficoll密度梯度离心法分离正常人PBMCs,并与胃癌MC细胞(GES-1细胞经亚硝酰胺类化合物处理)建立共培养体系;RT-PCR观察Shh、Gli-1基因的表达并进行半定量数据分析;于共培养体系中加入Shh阻断抗体,流式细胞术检测CD3、CD5、CD69分子表达。结果RT-PCR结果显示Gli-1mRNA在MC+Shh Ab细胞组值为0.2845±0.0025,低于MC 细胞组的0.5167±0.0109(P<0.05);流式细胞检测Shh Ab可促进CD3、CD69分子表达,对CD5分子没有显著影响;Shh Ab增强PBMCs对MC细胞的杀伤。结论 Shh Ab可促进PBMCs化,增强PBMCs抗亚硝酰胺类化合物致癌机制的作用。

  20. International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Cancun report (2012).

    Science.gov (United States)

    Storry, J R; Castilho, L; Daniels, G; Flegel, W A; Garratty, G; de Haas, M; Hyland, C; Lomas-Francis, C; Moulds, J M; Nogues, N; Olsson, M L; Poole, J; Reid, M E; Rouger, P; van der Schoot, E; Scott, M; Tani, Y; Yu, L-C; Wendel, S; Westhoff, C; Yahalom, V; Zelinski, T

    2014-07-01

    The International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology convened during the International congress in Cancun, July 2012. This report details the newly identified antigens in existing blood group systems and presents three new blood group systems.

  1. Challenges for red blood cell biomarker discovery through proteomics

    NARCIS (Netherlands)

    Barasa, B.A.; Slijper, M.

    2014-01-01

    Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. T

  2. Control of red blood cell mass during spaceflight

    Science.gov (United States)

    Lane, H. W.; Alfrey, C. P.; Driscoll, T. B.; Smith, S. M.; Nyquist, L. E.

    1996-01-01

    Data are reviewed from twenty-two astronauts from seven space missions in a study of red blood cell mass. The data show that decreased red cell mass in all astronauts exposed to space for more than nine days, although the actual dynamics of mass changes varies with flight duration. Possible mechanisms for these changes, including alterations in erythropoietin levels, are discussed.

  3. Spatial distributions of red blood cells significantly alter local haemodynamics.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Although bulk changes in red blood cell concentration between vessels have been well characterised, local distributions are generally overlooked. Red blood cells aggregate, deform and migrate within vessels, forming heterogeneous distributions which have considerable effect on local haemodynamics. The present study reports data on the local distribution of human red blood cells in a sequentially bifurcating microchannel, representing the branching geometry of the microvasculature. Imaging methodologies with simple extrapolations are used to infer three dimensional, time-averaged velocity and haematocrit distributions under a range of flow conditions. Strong correlation between the bluntness of the velocity and haematocrit profiles in the parent branch of the geometry is observed and red blood cell aggregation has a notable effect on the observed trends. The two branches of the first bifurcation show similar characteristics in terms of the shapes of the profiles and the extent of plasma skimming, despite the difference in geometric configuration. In the second bifurcation, considerable asymmetry between the branches in the plasma skimming relationship is observed, and elucidated by considering individual haematocrit profiles. The results of the study highlight the importance of considering local haematocrit distributions in the analysis of blood flow and could lead to more accurate computational models of blood flow in microvascular networks. The experimental approaches developed in this work provide a foundation for further examining the characteristics of microhaemodynamics.

  4. Rapid white blood cell detection for peritonitis diagnosis

    Science.gov (United States)

    Wu, Tsung-Feng; Mei, Zhe; Chiu, Yu-Jui; Cho, Sung Hwan; Lo, Yu-Hwa

    2013-03-01

    A point-of-care and home-care lab-on-a-chip (LoC) system that integrates a microfluidic spiral device as a concentrator with an optical-coding device as a cell enumerator is demonstrated. The LoC system enumerates white blood cells from dialysis effluent of patients receiving peritoneal dialysis. The preliminary results show that the white blood cell counts from our system agree well with the results from commercial flow cytometers. The LoC system can potentially bring significant benefits to end stage renal disease (ESRD) patients that are on peritoneal dialysis (PD).

  5. Rh D blood group conversion using transcription activator-like effector nucleases

    Science.gov (United States)

    Kim, Young-Hoon; Kim, Hyun O.; Baek, Eun J.; Kurita, Ryo; Cha, Hyuk-Jin; Nakamura, Yukio; Kim, Hyongbum

    2015-01-01

    Group O D-negative blood cells are universal donors in transfusion medicine and methods for converting other blood groups into this universal donor group have been researched. However, conversion of D-positive cells into D-negative is yet to be achieved, although conversion of group A or B cells into O cells has been reported. The Rh D blood group is determined by the RHD gene, which encodes a 12-transmembrane domain protein. Here we convert Rh D-positive erythroid progenitor cells into D-negative cells using RHD-targeting transcription activator-like effector nucleases (TALENs). After transfection of TALEN-encoding plasmids, RHD-knockout clones are obtained. Erythroid-lineage cells differentiated from these knockout erythroid progenitor cells do not agglutinate in the presence of anti-D reagents and do not express D antigen, as assessed using flow cytometry. Our programmable nuclease-induced blood group conversion opens new avenues for compatible donor cell generation in transfusion medicine. PMID:26078220

  6. Rh D blood group conversion using transcription activator-like effector nucleases.

    Science.gov (United States)

    Kim, Young-Hoon; Kim, Hyun O; Baek, Eun J; Kurita, Ryo; Cha, Hyuk-Jin; Nakamura, Yukio; Kim, Hyongbum

    2015-06-16

    Group O D-negative blood cells are universal donors in transfusion medicine and methods for converting other blood groups into this universal donor group have been researched. However, conversion of D-positive cells into D-negative is yet to be achieved, although conversion of group A or B cells into O cells has been reported. The Rh D blood group is determined by the RHD gene, which encodes a 12-transmembrane domain protein. Here we convert Rh D-positive erythroid progenitor cells into D-negative cells using RHD-targeting transcription activator-like effector nucleases (TALENs). After transfection of TALEN-encoding plasmids, RHD-knockout clones are obtained. Erythroid-lineage cells differentiated from these knockout erythroid progenitor cells do not agglutinate in the presence of anti-D reagents and do not express D antigen, as assessed using flow cytometry. Our programmable nuclease-induced blood group conversion opens new avenues for compatible donor cell generation in transfusion medicine.

  7. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking.

    Science.gov (United States)

    Focosi, Daniele; Pistello, Mauro

    2016-03-01

    Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises.

  8. An investigation of antioxidant and anti-inflammatory activities from blood components of Crocodile (Crocodylus siamensis).

    Science.gov (United States)

    Phosri, Santi; Mahakunakorn, Pramote; Lueangsakulthai, Jiraporn; Jangpromma, Nisachon; Swatsitang, Prasan; Daduang, Sakda; Dhiravisit, Apisak; Thammasirirak, Sompong

    2014-10-01

    Antioxidant and anti-inflammatory activities were found from Crocodylus siamensis (C. siamensis) blood. The 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, nitric oxide scavenging, hydroxyl radical scavenging and linoleic peroxidation assays were used to investigate the antioxidant activities of the crocodile blood. Results show that crocodile blood components had antioxidant activity, especially hemoglobin (40.58 % nitric oxide radical inhibition), crude leukocyte extract (78 % linoleic peroxidation inhibition) and plasma (57.27 % hydroxyl radical inhibition). Additionally, the anti-inflammatory activity of the crocodile blood was studied using murine macrophage (RAW 264.7) as a model. The results show that hemoglobin, crude leukocyte extract and plasma were not toxic to RAW 264.7 cells. Also they showed anti-inflammatory activity by reduced nitric oxide (NO) and interleukin 6 (IL-6) productions from lipopolysaccharide (LPS)-stimulated cells. The NO inhibition percentages of hemoglobin, crude leukocyte extract and plasma were 31.9, 48.24 and 44.27 %, respectively. However, only crude leukocyte extract could inhibit IL-6 production. So, the results of this research directly indicate that hemoglobin, crude leukocyte extract and plasma of C. siamensis blood provide both antioxidant and anti-inflammatory activities, which could be used as a supplementary agent in pharmaceutical products.

  9. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... are most commonly used in the treatment of cancers like leukemia and lymphoma to restore stem cells ... use of BMT and PBSCT, see http://www.cancer.gov/cancertopics/fa... If you are interested in ...

  10. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... be donors at http://www.marrow.org . Category Science & Technology License Standard YouTube License ... - Duration: 49:19. Children's Health 33,509 views 49:19 Stem Cell Fraud: ...

  11. Protective role of caffeic acid phenethyl ester and erdosteine on activities of purine-catabolizing enzymes and level of nitric oxide in red blood cells of isoniazid-administered rats.

    Science.gov (United States)

    Yilmaz, H R; Uz, E; Gökalp, O; Ozçelik, N; Ciçek, E; Ozer, M K

    2008-09-01

    The aim of this experimental study was to investigate the possible role of nitric oxide (NO) and the activities of adenosine deaminase (ADA) and xanthine oxidase (XO) in the pathogenesis of isoniazid (INH)-induced oxidative damage in red blood cells (RBCs), and also to show the effect of caffeic acid phenethyl ester (CAPE) and erdosteine, antioxidants, in decreasing this toxicity. A total of 25 adult male rats were divided into four experimental groups as follows: control group (n = 7), INH-treated group (n = 6), INH + CAPE-treated group (n = 6), and INH + erdosteine-treated group (n = 6). INH, INH-CAPE, and INH-erdosteine-treated groups were treated orally with INH 50 mg/kg daily and with the tap water for 15 days. Control group was given only tap water. CAPE was intraperitoneally injected for 15 days at a dose of 10 micromol/kg. Erdosteine was treated orally for 15 days at a dose of 10 mg/kg/day. The injection of INH led to a significant increase in the activities of ADA, XO, and NO levels in RBCs of rats. Co-treatment with CAPE caused a significant decrease in the activities of ADA and XO and the levels of NO in RBCs. In addition, co-treatment with erdosteine caused a significant decrease in the activities of ADA and XO and the levels of NO in RBCs. The results of this study showed that ADA, XO, and NO may play an important role in the pathogenesis of INH-induced oxidative stress in RBCs. CAPE and erdosteine may have protective potential in this process and they may become a promising drug in the prevention of this undesired side effect of INH.

  12. Absence of peripheral blood mononuclear cells priming in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Santos B.C.

    2003-01-01

    Full Text Available As a consequence of the proinflammatory environment occurring in dialytic patients, cytokine overproduction has been implicated in hemodialysis co-morbidity. However, there are discrepancies among the various studies that have analyzed TNF-alpha synthesis and the presence of peripheral blood mononuclear cell (PBMC priming in this clinical setting. We measured bioactive cytokine by the L929 cell bioassay, and evaluated PBMC TNF-alpha production by 32 hemodialysis patients (HP and 51 controls. No difference in TNF-alpha secretion was observed between controls and HP (859 ± 141 vs 697 ± 130 U/10(6 cells. Lipopolysaccharide (5 µg/ml did not induce any further TNF-alpha release, showing no PBMC priming. Paraformaldehyde-fixed HP PBMC were not cytotoxic to L929 cells, suggesting the absence of membrane-anchored TNF-alpha. Cycloheximide inhibited PBMC cytotoxicity in HP and controls, indicating lack of a PBMC TNF-alpha pool, and dependence on de novo cytokine synthesis. Actinomycin D reduced TNF-alpha production in HP, but had no effect on controls. Therefore, our data imply that TNF-alpha production is an intrinsic activity of normal PBMC and is not altered in HP. Moreover, TNF-alpha is a product of de novo synthesis by PBMC and is not constitutively expressed on HP cell membranes. The effect of actinomycin D suggests a putative tighter control of TNF-alpha mRNA turnover in HP. This increased dependence on TNF-alpha RNA transcription in HP may reflect an adaptive response to hemodialysis stimuli.

  13. Phenotypic and functional characterization of cytokine-induced killer cells derived from preterm and term infant cord blood.

    Science.gov (United States)

    Zhang, Qian; Wang, Lili; Luo, Chenghan; Shi, Zanyang; Cheng, Xinru; Zhang, Zhen; Yang, Yi; Zhang, Yi

    2014-11-01

    Cord blood has gradually become an important source for hematopoietic stem cell transplantation (HSCT) in the human, particularly in pediatric patients. Adoptive cellular immunotherapy of patients with hematologic malignancies after umbilical cord blood transplant is crucial. Cytokine‑induced killer (CIK) cells derived from cord blood are a new type of antitumor immune effector cells in tumor prevention and treatment and have increasingly attracted the attention of researchers. On the other hand, it has been suggested that preterm infant cord blood retains an early differentiation phenotype suitable for immunotherapy. Therefore, we determined the phenotypic and functional characterization of CIK cells derived from preterm infant cord blood (PCB-CIK) compared with CIK cells from term infant cord blood (TCB-CIK). Twenty cord blood samples were collected and classified into two groups based on gestational age. Cord blood mononuclear cells (CBMCs) were isolated, cultured and induced to CIK cells in vitro. We used flow cytometry to detect cell surface markers, FlowJo software to analyze the proliferation profile and intracellular staining to test the secretion of cytokines. Finally, we evaluated the antitumor activity of CIK cells against K562 in vitro. Compared with TCB-CIK, PCB-CIK cells demonstrated faster proliferation and higher expression of activated cell surface markers. The secretion of IL-10 was lower in PCB-CIK cells while the expression of perforin and CD107a had no significant difference between the two cell groups. PCB-CIK cells exhibited a high proliferation rate while the cytotoxic activity had no difference between the PCB-CIK and TCB-CIK cells. Hence preterm infant cord blood may be a potential source for immunotherapy.

  14. Morphological and biochemical characterization of mitochondria in Torpedo red blood cells.

    Science.gov (United States)

    Pica, A; Scacco, S; Papa, F; De Nitto, E; Papa, S

    2001-02-01

    A study is presented on the morphology and respiratory functions of mitochondria from Torpedo marmorata red blood cells. In vivo staining of red blood cells and transmission electron microscopy showed the existence of a considerable number of vital and orthodox mitochondria which decreased from young erythroblasts to mature erythrocytes from 60-50 to 30-20 per cell. In erythrocytes mitochondria exhibited a canonical, functional respiratory chain. The content and activity of cytochromes in erythrocytes were, however, significantly lower as compared to mammalian tissues.

  15. SUBTYPE CHARACTERICS OF DENDRITIC CELLS FROM PERIPHERAL BLOOD OF PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    S. A. Falaleeva

    2013-01-01

    Full Text Available Abstract. Characteristics of myeloid and plasmacytoid dendritic cells from peripheral blood were studied in healthy donors and patients with rheumatoid arthritis (RA. We evaluated relative amounts of dendritic cell by their subtypes, degree of their maturity, and ability to respond to the maturation factors (toll-like receptor 4, 7 and 8 agonists. The results of in vitro experiments have shown that the patients with rheumatoid arthritis exhibited a significant reduction in numbers of plasmacytoid dendritic cells from peripheral blood. A sufficient decrease in CD83, CD80 expression on dendritic cell subtypes in RA patients was significantly less, than in healthy donors. In patients with RA, a significant increase in the number of CCR7-expressing plasmacytoid dendritic cells was shown in peripheral blood. In stimulated cultures, maturation of dendritic cells expressing maturation markers (CD83, CD80, CCR7 proved to be increased up to normal values. It should be noted that the counts of plasmacytoid dendritic cells in peripheral blood of RA patients expressing CCR7 was significantly higher than among healthy donors. Meanwhile, expression of CD83 and CD80 increased tovalues of healthy donors.Hence, we have found a significant reduction in relative counts of blood-derived myeloid and plasmacytoid dendritic cells expressing markers of mature dendritic cells (CD83, CD80 in patients with rheumatoid arthritis. Upon stimulated in vitro maturation, the counts of myeloid and plasmacytoid dendritic cells expressing CD83 and CD80 increased to the values corresponding to those of control group. RA patients showed significantly higher numbers of plasmacytoid dendritic cells expressing CCR7. This could indicate some changes in functional activity of dendritic cells in peripheral blood of patients with RA.

  16. Length of Storage of Red Blood Cells and Patient Survival After Blood Transfusion

    DEFF Research Database (Denmark)

    Halmin, Märit; Rostgaard, Klaus; Lee, Brian K

    2017-01-01

    Background: Possible negative effects, including increased mortality, among persons who receive stored red blood cells (RBCs) have recently garnered considerable attention. Despite many studies, including 4 randomized trials, no consensus exists. Objective: To study the association between...... received transfusions from 2003 to 2012. Measurements: Patients were followed from first blood transfusion. Relative and absolute risks for death in 30 days or 1 year in relation to length of RBC storage were assessed by using 3 independent analytic approaches. All analyses were conducted by using Cox...... proportional hazards regression. Results: Regardless of the analytic approach, no association was found between the length of RBC storage and mortality. The difference in 30-day cumulative mortality between patients receiving blood stored for 30 to 42 days and those receiving blood stored for 10 to 19 days...

  17. Separation of cancer cells from white blood cells by pinched flow fractionation

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Ashley, Neil; Koprowska, Kamila

    2015-01-01

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients...... is challenged by the size overlap between cancer cells and the 106 times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells....... and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation...

  18. In-vitro red blood cell partitioning of doxycycline

    OpenAIRE

    P.V. Deshmukh; Badgujar, P.C.; Gatne, M.M.

    2009-01-01

    Objective: In-vitro red blood cell (RBC) partitioning of doxycycline was studied to determine whether doxycycline penetrates RBC and its concentration was assayed keeping in view its high lipophilicity. Materials and Methods: Standardization of doxycycline was performed in whole blood and plasma of cattle by microbiological assay using Bacillus subtillis ATCC 6633 as indicator organizm. Actual concentration of the drug was obtained by comparing zone inhibition with standard graph and the exte...

  19. Bacterial glycosidases for the production of universal red blood cells

    DEFF Research Database (Denmark)

    Liu, Qiyong P; Sulzenbacher, Gerlind; Yuan, Huaiping;

    2007-01-01

    Enzymatic removal of blood group ABO antigens to develop universal red blood cells (RBCs) was a pioneering vision originally proposed more than 25 years ago. Although the feasibility of this approach was demonstrated in clinical trials for group B RBCs, a major obstacle in translating...... of the alpha-N-acetylgalactosaminidase family reveals an unusual catalytic mechanism involving NAD+. The enzymatic conversion processes we describe hold promise for achieving the goal of producing universal RBCs, which would improve the blood supply while enhancing the safety of clinical transfusions....

  20. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell.

    Science.gov (United States)

    Pasini, Erica M; Kirkegaard, Morten; Salerno, Doris; Mortensen, Peter; Mann, Matthias; Thomas, Alan W

    2008-07-01

    Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much research has therefore focused on RBC and cardiovascular disorders of mouse and humans. RBCs also host malaria parasites. Recently we presented an in-depth proteome for the human RBC. Here we present directly comparable data for the mouse RBC as membrane-only, soluble-only, and combined membrane-bound/soluble proteomes (comprising, respectively, 247, 232, and 165 proteins). All proteins were identified, validated, and categorized in terms of subcellular localization, protein family, and function, and in comparison with the human RBC, were classified as orthologs, family-related, or unique. Splice isoforms were identified, and polypeptides migrating with anomalous apparent molecular weights were grouped into putatively ubiquitinated or partially degraded complexes. Overall there was close concordance between mouse and human proteomes, confirming the unexpected RBC complexity. Several novel findings in the human proteome have been confirmed here. This comparison sheds light on several open issues in RBC biology and provides a departure point for more comprehensive understanding of RBC function.

  1. Changes in blood plasma of professional football players during the continuous training-emulative activity

    Directory of Open Access Journals (Sweden)

    O. V. Chernev

    2015-10-01

    Full Text Available Any physical activity is accompanied by speed changing of metabolic processes in the organism, peculiar changing of their directivities and accordingly, the emergence of biochemical changes in the muscles that perform work, in the internal organs, as well as in blood system. Aim. To determine the changes that occur in blood plasma of professional footballers during continuous physical activity, 84 professional players were examined. Methods and results. We have determined the direction and peculiarity of the cumulative effect of the impact of physical activity on changes in the blood of sportsmen during continuous period of an educational-training session (ETS. It was established that under the conditions of intensive or continuous physical load a steady prevalence of catabolic processes in the organism wes observed. The given changes, specified by the fact that during ETS sportsmen’s tension of adaptation processes is gradually increasing. Moderate hyper-thrombotonin background in blood of the most sportsmen were observed in the beginning of ETS. Increase of permittivity membrane erythrocytes that reflected sorption capacity growth of the red blood cells was detected in individual sportsmen. Cell membrane structures damage of during intensive or continuous training is of generalized character and takes place almost in all organs and tissues. Also serum AST (Aspartate aminotransferase, ALT (Alanine transaminase and LDH (Lactate dehydrogenase activity was studied in footballers during the ETS. Conclusions. The specified level of activity of certain enzymes indicates hypoxic / ischemic state due to the training load during ETS.

  2. Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors.

    Science.gov (United States)

    Su, Ruijun Jeanna; Neises, Amanda; Zhang, Xiao-Bing

    2016-01-01

    Peripheral blood is the easy-to-access, minimally invasive, and the most abundant cell source to use for cell reprogramming. The episomal vector is among the best approaches for generating integration-free induced pluripotent stem (iPS) cells due to its simplicity and affordability. Here we describe the detailed protocol for the efficient generation of integration-free iPS cells from peripheral blood mononuclear cells. With this optimized protocol, one can readily generate hundreds of iPS cell colonies from 1 ml of peripheral blood.

  3. Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells.

    Science.gov (United States)

    Ramani, K; Sekaran, G

    2012-08-01

    The study demonstrates the production of lipase (LIP) from Pseudomonas gessardii using blood tissue lipid as the substrate for the hydrolysis of blood cholesterol and triglycerides. The lipase was purified with the specific activity of 828 U/mg protein and the molecular weight of 56 kDa. The maximum lipase activity was observed at the pH 7.0 and the temperature 37 °C. The amino acid composition of purified lipase was determined by HPLC. The mesoporous activated carbon (MAC) was used for the immobilization of lipase for the repeated use of the enzyme catalyst. The K (m) value of immobilized lipase (MAC-LIP) and the free lipase (LIP) was 0.182 and 1.96 mM, respectively. The V (max) value of MAC-LIP and LIP was 1.33 and 1.26 mM/min, respectively. The MAC and MAC-LIP were characterized by scanning electron microscopy (SEM). The hydrolysis study showed 78 and 100% hydrolysis of triglycerides and cholesterol, respectively, for LIP and 84 and 100% hydrolysis of triglycerides and cholesterol, respectively, for MAC-LIP at the reaction time of 1 h. The effect of lipase on cell wall lysis was carried out on the RBCs of blood plasma. Interestingly, 99.9% lysis of RBCs was observed within 2 h. SEM images and phase contrast microscopy confirmed the lysis of RBCs. This work provides a potential biocatalyst for the hydrolysis of blood cholesterol and triglycerides.

  4. Effect of PolyI:C on Quantity and Activity of Endothelial Progenitor Cells From Human Umbilical Cord Blood%PolyI:C对人脐血内皮祖细胞数量及功能的影响

    Institute of Scientific and Technical Information of China (English)

    杨梅; 肖智林; 吕青山; 陈美芳; 陈晓彬; 谢秀梅; 胡锦跃

    2011-01-01

    目的 观察Toll样受体3的配体聚肌胞(PolyI:C)对人脐血内皮祖细胞增殖、凋亡及炎性细胞因子表达的影响.方法 采用密度梯度离心法获取人脐静脉血单个核细胞,EBM-2细胞培养基进行培养,诱导单个核细胞向内皮祖细胞分化.以不同浓度的PolyI:C(0、0.01、0.1、1 g/L和10 g/L)干预人脐血内皮祖细胞,通过CCK-8细胞增殖试验检测PolyI:C对内皮祖细胞增殖的影响,流式细胞术检测PolyI:C对细胞凋亡的影响.通过逆转录聚合酶链反应对内皮祖细胞表达的Toll样受体进行检测,并检测不同浓度的PolyI:C对内皮祖细胞表达Toll样受体3、炎性细胞因子的影响.结果 静息状态下,内皮祖细胞表达较高水平的Toll样受体1、Toll样受体3、Toll样受体4、Toll样受体6,表达较低水平的Toll样受体2、Toll样受体5、Toll样受体7、Toll样受体8、Toll样受体10,不表达Toll样受体9.而PolyI:C能上调Toll样受体3 mRNA表达,并呈量效关系.与对照组相比,较高浓度PolyI:C(1 g/L和10 g/L)持续作用于脐血内皮祖细胞3天后显著抑制内皮祖细胞增殖(P<0.01),终浓度10 g/L的PolyI:C呈时间依赖性抑制内皮祖细胞增殖,且PolyI:C呈剂量依赖性诱导内皮祖细胞凋亡.同时,PolyI:C呈剂量依赖性上调炎性细胞因子白细胞介素1β、白细胞介素6、白细胞介素8、肿瘤坏死因子α、干扰素β的基因表达.结论 PolyI:C可能通过活化Toll样受体3诱导内皮祖细胞凋亡,从而抑制内皮祖细胞增殖,并促进内皮祖细胞表达相关炎性细胞因子.%Aim To investigate the effect of a synthetic dsRNA analog polyriboinosinic polyribocytidylic acid ( PolyI: C) on quantity and activity of endothelial progenitor cells from human umbilical cord blood in vitro. Methods Mononuclear cells were isolated from human cord blood by Ficoll density gradient centrifugation and then the cells were cultured in EBM-2 medium to differentiate into endothelial

  5. Natural killer cell activity during premedication, anaesthesia and surgery

    DEFF Research Database (Denmark)

    Tønnesen, E; Mickley, H; Grunnet, N

    1983-01-01

    Natural killer (NK) cell activity of peripheral blood mononuclear cells was measured against K-562 target cells in a 51Cr release assay in eight patients undergoing total hip replacement surgery. Eight consecutive blood samples were taken from each patient. A significant increase of NK cell...... activity was observed after premedication with diazepam per os. The activity increased further during a combined anaesthesia (thiopentone + N2O + O2 + buprenorphene + pancuronium) and remained increased during surgery. Postoperatively, NK cell activity fell and remained depressed for a period of at least 5...... days. The findings of this study indicate that premedication, anaesthesia and surgery cause a rapid and transient increase in NK cell activity, followed by a decline in activity postoperatively. The transient increase in activity may be explained by mobilization of natural killer cells from extravasal...

  6. A phase 2 study of high-activity {sup 186}Re-HEDP with autologous peripheral blood stem cell transplant in progressive hormone-refractory prostate cancer metastatic to bone

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, J.M. [Queen' s University Belfast/Belfast City Hospital, Department of Oncology, Belfast (United Kingdom); Norman, A.R. [Royal Marsden Foundation NHS Trust, Department of Computing, Sutton, Surrey (United Kingdom); McCready, V.R.; Flux, G.; Buffa, F.M. [Royal Marsden Foundation NHS Trust, Department of Physics, Sutton, Surrey (United Kingdom); Johnson, B. [Royal Marsden Foundation NHS Trust, Bob Champion Unit, Sutton, Surrey (United Kingdom); Coffey, J.; Horwich, A.; Huddart, R.A.; Parker, C.C.; Dearnaley, D.P. [Royal Marsden Foundation NHS Trust, Academic Unit of Urology, Sutton, Surrey (United Kingdom); Cook, G. [Royal Marsden Foundation NHS Trust, Department of Nuclear Medicine, Sutton, Surrey (United Kingdom); Treleaven, J. [Royal Marsden Foundation NHS Trust, Department of Haematology, Sutton, Surrey (United Kingdom)

    2006-09-15

    We investigated the potential for improvement in disease control by use of autologous peripheral blood stem cell transplant (PBSCT) to permit administration of high activities of {sup 186}Re-hydroxyethylidene diphosphonate (HEDP) in patients with progressive hormone-refractory prostate cancer (HRPC). Eligible patients had progressive HRPC metastatic to bone, good performance status and minimal soft tissue disease. Patients received 5,000 MBq of {sup 186}Re-HEDP i.v., followed 14 days later by PBSCT. Response was assessed using PSA, survival, pain scores and quality of life. Thirty-eight patients with a median age of 67 years (range 50-77) and a median PSA of 57 ng/ml (range 4-3,628) received a median activity of 4,978 MBq {sup 186}Re-HEDP (range 4,770-5,100 MBq). The most serious toxicity was short-lived grade 3 thrombocytopenia in 8 (21%) patients. The median survival of the group is 21 months (95%CI 18-24 months) with Kaplan-Meier estimated 1- and 2-year survival rates of 83% and 40% respectively. Thirty-one patients (81%, 95% CI 66-90%) had stable or reduced PSA levels 3 months post therapy while 11 (29%, 95% CI 15-49%) had PSA reductions of >50% lasting >4 weeks. Quality of life measures were stable or improved in 27 (66%) at 3 months. We have shown that it is feasible and safe to deliver high-activity radioisotope therapy with PBSCT to men with metastatic HRPC. Response rates and survival data are encouraging; however, further research is needed to define optimal role of this treatment approach. (orig.)

  7. Apheresis techniques for collection of peripheral blood progenitor cells.

    Science.gov (United States)

    Moog, Rainer

    2004-12-01

    The combination of effective mobilisation protocols and efficient use of apheresis machines has caused peripheral blood progenitor cells (PBPC) transplantation to grow rapidly. The development of apheresis technology has improved over the years. Today PBSC procedures have changed towards systems to minimise operator interaction and to reduce the collection of undesired cells such as polymorphonuclear cells and platelets using functionally closed, sterile environments for PBSC collection in keeping with Good Manufacturing Practice guidelines. Blood cell separators with continuous flow technique allow the processing of more blood than intermittent flow devices resulting in higher PBSC yields. Large volume leukapheresis with the processing of 3-4-fold donor's/patient's blood volume can increase the number of collected progenitor cells. Therefore, intermittent flow cell separators are indicated if only single vein access is available. Anticoagulant induced hypocalcaemia is an often observed side effect in long lasting PBPC harvesting and monitoring of electrolytes should be performed especially at the end of the apheresis procedure to supplement low levels of potassium, calcium or magnesium. Refinement and improvement of collection techniques continue to add to the armamentarium of current approaches for cancer and non-malignant conditions and will enable future strategies.

  8. State of the science of blood cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Straub, R.F.

    1989-01-01

    Blood cell labeling can be considered a science in as far as it is based on precise knowledge and can be readily reproduced. This benchmark criterion is applied to all current cell labeling modalities and their relative merits and deficiencies are discussed. Mechanisms are given where they are known as well as labeling yields, label stability, and cell functionality. The focus is on the methodology and its suitability to the clinical setting rather than on clinical applications per se. Clinical results are cited only as proof of efficacy of the various methods. The emphasis is on technetium as the cell label, although comparisons are made between technetium and indium, and all blood cells are covered. 52 refs., 6 figs., 7 tabs.

  9. Comparison of gene expression profiles of T cells in porcine colostrum and peripheral blood.

    Science.gov (United States)

    Ogawa, Shohei; Okutani, Mie; Tsukahara, Takamitsu; Nakanishi, Nobuo; Kato, Yoshihiro; Fukuta, Kikuto; Romero-Pérez, Gustavo A; Ushida, Kazunari; Inoue, Ryo

    2016-09-01

    OBJECTIVE To compare gene expression patterns of T cells in porcine colostrum and peripheral blood. ANIMALS 10 multiparous sows. PROCEDURES Cytotoxic and CD4-CD8 double-positive T cells were separated from porcine colostrum and peripheral blood. Total RNA was extracted. The cDNA prepared from RNA was amplified, labeled, fragmented, and competitively hybridized to DNA microarray slides. The DNA microarray data were validated by use of a real-time reverse-transcription PCR assay, and expression of the genes FOS, NFKBI, IFNG, CXCR6, CCR5, ITGB2, CCR7, and SELL was assessed. Finally, DNA microarray data were validated at the protein level by use of flow cytometry via expression of c-Fos and integrin β-2. RESULTS Evaluation of gene expression profiles indicated that in contrast to results for peripheral blood, numerous cell-signaling pathways might be activated in colostrum. Profile analysis also revealed that FOS and NFKBI (genes of transcription factors) were involved in most cell-signaling pathways and that expression of these genes was significantly higher in colostral T cells than in peripheral blood T cells. Furthermore, CCR7 and SELL (genes of T-cell differentiation markers) in colostral T cells had expression patterns extremely similar to those found in effector or effector memory T cells. CONCLUSIONS AND CLINICAL RELEVANCE All or most of the T cells in colostrum had an effector-like phenotype and thus were more activated than those in peripheral blood. This gene expression profile would enable T cells to migrate to mammary glands, be secreted in colostrum, and likely contribute to passive immunity provided by sows to newborn pigs.

  10. Histomorphometric study on blood cells in male adult ostrich

    Directory of Open Access Journals (Sweden)

    Mina Tadjalli

    2013-09-01

    Full Text Available In order to perform a histomorphometric study of blood cells in male adult ostrich, blood samples were obtained from jugular vein of 10 clinically healthy male adult ostriches (2 - 3 years old. The slides were stained with the Giemsa methods and the smears were evaluated for cellular morphology, with cellular size being determined by micrometry. The findings of this study revealed that the shape of the cell, cytoplasm and nucleus of erythrocytes in male adult ostriches were similar to those in other birds such as quails, chickens, Iranian green-head ducks.

  11. Nanostructured Substrates for Capturing Circulating Tumor Cells in Whole Blood

    Science.gov (United States)

    Tseng, Hsian-Rong

    2009-03-01

    Over the past decade, circulating tumor cells (CTCs) has become an emerging ``biomarker'' for detecting early-stage cancer metastasis, predicting patient prognosis, as well as monitoring disease progression and therapeutic outcomes. However, isolation of CTCs has been technically challenging due to the extremely low abundance (a few to hundreds per ml) of CTCs among a high number of hematologic cells (109 per mL) in the blood. Our joint research team at UCLA has developed a new cell capture technology for quantification of CTCs in whole blood samples. Similar to most of the existing approaches, epithelial cell adhesion molecule antibody (anti-EpCAM) was grafted onto the surfaces to distinguish CTCs from the surrounding hematologic cells. The uniqueness of our technology is the use of nanostructured surfaces, which facilitates local topographical interactions between CTCs and substrates at the very first cell/substrate contacting time point. We demonstrated the ability of these nanostructured substrates to capture CTCs in whole blood samples with significantly improved efficiency and selectivity. The successful demonstration of this cell capture technology using brain, breast and prostate cancer cell lines encouraged us to test this approach in clinical setting. We have been able to bond our first validation study with a commercialized technology based on the use of immunomagnetic nanoparticles. A group of clinically well-characterized prostate cancer patients at UCLA hospital have been recruited and tested in parallel by these two technologies.

  12. [Blood acid-base balance of sportsmen during physical activity].

    Science.gov (United States)

    Petrushova, O P; Mikulyak, N I

    2014-01-01

    The aim of this study was to investigate the acid-base balance parameters in blood of sportsmen by physical activity. Before exercise lactate concentration in blood was normal. Carbon dioxide pressure (рСО2), bicarbonate concentration (НСО3 -), base excess (BE), were increased immediately after physical activity lactate concentration increased, while pH, BE, НСО3 -, рСО2 decreased in capillary blood of sportsmen. These changes show the development of lactate-acidosis which is partly compensated with bicarbonate buffering system and respiratory alkalosis. During postexercise recovery lactate concentration decreased, while рСО2, НСО3 -, BE increased. The results of this study can be used for diagnostics of acid-base disorders and their medical treatment for preservation of sportsmen physical capacity.

  13. DNA-AP sites generation by Etoposide in whole blood cells

    Directory of Open Access Journals (Sweden)

    Valverde Mahara

    2009-11-01

    Full Text Available Abstract Background Etoposide is currently one of the most commonly used antitumor drugs. The mechanisms of action proposed for its antitumor activity are based mainly on its interaction with topoisomerase II. Etoposide effects in transformed cells have been described previously. The aim of the present study was to evaluate the genotoxic effects of this drug in non-transformed whole blood cells, such as occurs as collateral damage induced by some chemotherapies. Methods To determine etoposide genotoxicity, we employed Comet assay in two alkaline versions. To evaluate single strand breaks and delay repair sites we use pH 12.3 conditions and pH >13 to evidence alkali labile sites. With the purpose to quantified apurinic or apyrimidine (AP sites we employed a specific restriction enzyme. Etoposide effects were determined on whole blood cells cultured in absence or presence of phytohemagglutinin (PHA treated during 2 and 24 hours of cultured. Results Alkaline (pH > 13 single cell gel electrophoresis (SCGE assay experiments revealed etoposide-induced increases in DNA damage in phytohemaglutinine (PHA-stimulated blood and non-stimulated blood cells. When the assay was performed at a less alkaline pH, 12.3, we observed DNA damage in PHA-stimulated blood cells consistent with the existence of alkali labile sites (ALSs. In an effort to elucidate the molecular events underlying this result, we applied exonuclease III (Exo III in conjunction with a SCGE assay, enabling detection of DNA-AP sites along the genome. More DNA AP-sites were revealed by Exo III and ALSs were recognized by the SCGE assay only in the non-stimulated blood cells treated with etoposide. Conclusion Our results indicate that etoposide induces DNA damage specifically at DNA-AP sites in quiescent blood cells. This effect could be involved in the development of secondary malignancies associated with etoposide chemotherapy.

  14. Rapid and reliable determination of the halogenating peroxidase activity in blood samples.

    Science.gov (United States)

    Flemmig, Jörg; Schwarz, Pauline; Bäcker, Ingo; Leichsenring, Anna; Lange, Franziska; Arnhold, Jürgen

    2014-12-15

    By combining easy and fast leukocyte enrichment with aminophenyl-fluorescein (APF) staining we developed a method to quickly and specifically address the halogenating activity of the immunological relevant blood heme peroxidases myeloperoxidase and eosinophil peroxidase, respectively. For leukocyte enrichment a two-fold hypotonic lysis procedure of the blood with Millipore water was chosen which represents a cheap, fast and reliable method to diminish the amount of erythrocytes in the samples. This procedure is shown to be suitable both to human and murine blood micro-samples, making it also applicable to small animal experiments with recurring blood sampling. As all types of leukocytes are kept in the sample during the preparation, they can be analysed separately after discrimination during the flow cytometry analysis. This also holds for all heme peroxidase-containing cells, namely neutrophils, eosinophils and monocytes. Moreover additional parameters (e.g. antibody staining) can be combined with the heme peroxidase activity determination to gain additional information about the different immune cell types. Based on previous results we applied APF for specifically addressing the halogenating activity of leukocyte peroxidases in blood samples. This dye is selectively oxidized by the MPO and EPO halogenation products hypochlorous and hypobromous acid. This approach may provide a suitable tool to gain more insights into the immune-physiological role of the halogenating activity of heme peroxidases.

  15. [Verification of complete blood cell count (CBC) data from heparinized blood gas samples].

    Science.gov (United States)

    Sakoguchi, Takafumi; Fujii, Seiji; Inuzumi, Koji; Kaminoh, Yoshiroh; Hirose, Munetaka; Masaki, Mitsuru; Koshiba, Masahiro

    2014-02-01

    Complete blood cell count (CBC) data from heparinized blood gas (H-Gas) samples were verified with primary focus on the platelet count (PLT). When a part of H-Gas sample was taken to a separation tube from the blood collection syringe and CBC of the sample in the separation tube was repeatedly measured (Procedure 1), the PLT from 5 samples relative to that obtained immediately after the separation was gradually reduced to 72.6-94.2% during serial measurements (every 5 minutes, up to 30 minutes). The change in the scattergram pattern suggested that this PLT decrease was due to the formation of platelet clumps. The white blood cell count (WBC), red blood cell count (RBC), hemoglobin (Hb) and hematocrit (Ht) values did not significantly change during the repeated measurements. On the other hand, PLT was significantly improved to 96.8-99.8% when the H-Gas sample was kept in the blood collection syringe so as to minimizing the exposure to the air, and the sample for the measurement from H-Gas was taken every time to separation tube from the syringe, followed by CBC measurement without delay (Procedure 2). In addition, while there were significant variations (CV: 11.8-18.2%) in PLT reproducibility among H-Gas samples by Procedure 1, measurements utilizing the Procedure 2 resulted in much smaller variations (CV: 2.2-3.7%). Thus the CBC data obtained from H-Gas samples were equivalent to those from EDTA samples when the Procedure 2 was applied. These data suggest that H-Gas samples can be used for the accurate CBC measurement, including PLT, by applying the Procedure 2.

  16. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    Science.gov (United States)

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34(+ )cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  17. Cytochemical characteristics of blood cells from Brazilian tortoises (Testudines: Testudinidae).

    Science.gov (United States)

    Martins, G S; Alevi, K C C; Azeredo-Oliveira, M T V; Bonini-Domingos, C R

    2016-03-18

    The hematology of wild and captive animals is essential for obtaining details about species and represents a simple method of diagnosing disease and determining prognosis. Few studies have described the morphology of chelonian blood cells, which are more common in sea and freshwater turtle species. Thus, in order to further our understanding and recognition of different chelonian cells types, the present study aimed to describe blood cells from the two species of Brazilian tortoises, Chelonoidis carbonarius and C. denticulatus. Cytochemical analysis of tortoise blood tissue with Panótico®, made it possible to describe all the of the chelonian cell types (with the exception of thrombocytes): erythrocytes, agranular leukocytes (monocytes and lymphocytes), and granular leukocytes (eosinophils, heterophils, basophils, and azurophils). These data are of high importance for establishing hematological profiles of Brazilian tortoises and reptiles. Therefore, based on our results and on comparative analyses with data from the literature for other reptile species, we can conclude that the blood cells described for Brazilian tortoises are found in all species of reptiles that have been analyzed thus far, and may be characterized and used as a comparative parameter between different groups to evaluate the health status of these animals.

  18. Cord Blood Derived CD4+CD25high T Cells Become Functional Regulatory T Cells upon Antigen Encounter

    Science.gov (United States)

    Mayer, Elisabeth; Bannert, Christina; Gruber, Saskia; Klunker, Sven; Spittler, Andreas; Akdis, Cezmi A.

    2012-01-01

    Background: Upon antigen exposure, cord blood derived T cells respond to ubiquitous environmental antigens by high proliferation. To date it remains unclear whether these “excessive” responses relate to different regulatory properties of the putative T regulatory cell (Treg) compartment or even expansion of the Treg compartment itself. Methods: Cord blood (>37 week of gestation) and peripheral blood (healthy controls) were obtained and different Treg cell subsets were isolated. The suppressive potential of Treg populations after antigen exposure was evaluated via functional inhibition assays ([3H]thymidine incorporation assay and CFSE staining) with or without allergen stimulation. The frequency and markers of CD4+CD25highFoxP3+ T cells were characterized by mRNA analysis and flow cytometry. Results: Cord blood derived CD4+CD25high cells did not show substantial suppressor capacity upon TCR activation, in contrast to CD4+CD25high cells freshly purified from adult blood. This could not be explained by a lower frequency of FoxP3+CD4+CD25highcells or FOXP3 mRNA expression. However, after antigen-specific stimulation in vitro, these cells showed strong proliferation and expansion and gained potent suppressive properties. The efficiency of their suppressive capacity can be enhanced in the presence of endotoxins. If T-cells were sorted according to their CD127 expression, a tiny subset of Treg cells (CD4+CD25+CD127low) is highly suppressive even without prior antigen exposure. Conclusion: Cord blood harbors a very small subset of CD4+CD25high Treg cells that requires antigen-stimulation to show expansion and become functional suppressive Tregs. PMID:22272233

  19. Related Hematopoietic Stem Cell Transplantation (HSCT) for Genetic Diseases of Blood Cells

    Science.gov (United States)

    2016-05-11

    Stem Cell Transplantation; Bone Marrow Transplantation; Peripheral Blood Stem Cell Transplantation; Allogeneic Transplantation,; Genetic Diseases; Thalassemia; Pediatrics; Diamond-Blackfan Anemia; Combined Immune Deficiency; Wiskott-Aldrich Syndrome; Chronic Granulomatous Disease; X-linked Lymphoproliferative Disease; Metabolic Diseases

  20. Characterization at the individual cell level and in whole blood samples of shear stress preventing red blood cells aggregation.

    Science.gov (United States)

    Lee, K; Kinnunen, M; Danilina, A V; Ustinov, V D; Shin, S; Meglinski, I; Priezzhev, A V

    2016-05-03

    The aggregation of red blood cells (RBC) is an intrinsic feature of blood that has a strong impact on its microcirculation. For a number of years it has been attracting a great attention in basic research and clinical studies. Here, we study a relationship between the RBC aggregation parameters measured at the individual cell level and in a whole blood sample. The home made optical tweezers were used to measure the aggregating and disaggregating forces for a pair of interacting RBCs, at the individual cell level, in order to evaluate the corresponding shear stresses. The RheoScan aggregometer was used for the measurements of critical shear stress (CSS) in whole blood samples. The correlation between CSS and the shear stress required to stop an RBC pair from aggregating was found. The shear stress required to disaggregate a pair of RBCs using the double channel optical tweezers appeared to be about 10 times higher than CSS. The correlation between shear stresses required to prevent RBCs from aggregation at the individual cell level and in whole blood samples was estimated and assessed quantitatively. The experimental approach developed has a high potential for advancing hemorheological studies.

  1. Lidocaine action and conformational changes in cytoskeletal protein network in human red blood cells.

    Science.gov (United States)

    Nishiguchi, E; Hamada, N; Shindo, J

    1995-11-03

    The mechanism of action of lidocaine, which is commonly used clinically as a local anesthetic, was studied in human red blood cells. The influx of [14C]lidocaine through the cell membrane induced reversible transformation of human red blood cells from discocytes to stomatocytes. This change in shape depended on the lidocaine concentration and required both ATP and carbonic anhydrase. The lidocaine-induced shape change occurred as a result of spectrin aggregation, which altered the intracellular environment of the human red blood cells, mediated by carbonic anhydrase and activation of vacuolar type H(+)-ATPase (V-ATPase). Lidocaine controlled the influx of 22Na into the human red blood cells in a concentration-dependent manner. When incubated in media containing 6-chloro-9-[(4-diethylamino)-1-methyl-butyl]amino-2-methoxyacridine (mepacrine), an inhibitor of Na+ channels, human red blood cells changed shape from discocytes to stomatocytes and the intracellular pH decreased. This phenomenon was very similar to the shape change induced by lidocaine. These results suggest that the mode of action of lidocaine is related to a conformational change in the cytoskeletal protein network.

  2. Magnetic nanoparticle effects on the red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Creanga, D E; Nadejde, C; Curecheriu, L [' Al. I. Cuza' University, Faculty of Physics, 11A Blvd. Carol I, Iasi (Romania)], E-mail: dorinacreanga@yahoo.com; Culea, M [' Babes Bolyai' University, Cluj-Napoca (Romania); Oancea, S [University of Veterinary Medicine ' I. Ionescu de la Brad' , Iasi (Romania); Racuciu, M [' Lucian Blaga' University, Sibiu (Romania)

    2009-05-01

    In vitro tests on magnetite colloidal nanoparticles effects upon animal red blood cells were carried out. Magnetite cores were stabilized with citric acid in the form of biocompatible magnetic fluid administrated in different dilutions in the whole blood samples. The hemolysis extent was found increased up to 2.75 in horse blood and respectively up to 2.81 in the dog blood. The electronic transitions assigned to the heme group were found shifted with about 500 cm{sup -1} or, respectively, affected by supplementary vibronic structures. The Raman vibrations assigned to oxyhemoglobin were much diminished in intensity probably due to the bonding of OH group from citrate shell to the heme iron ion.

  3. ACTIVE TARGETING WITH PARTICULATE CARRIER SYSTEMS IN THE BLOOD COMPARTMENT

    NARCIS (Netherlands)

    CROMMELIN, DJA; SCHERPHOF, G; STORM, G

    1995-01-01

    This review deals with active targeting of particulate drug carriers through (1) physico-chemical (e.g., complex formation between a homing device and a surface exposed molecule at the target site) and (2) physical means, Target sites discussed are restricted to those in the blood circulation. Targe

  4. Lattice Boltzmann Simulation of Healthy and Defective Red Blood Cell Settling in Blood Plasma.

    Science.gov (United States)

    Hashemi, Z; Rahnama, M; Jafari, S

    2016-05-01

    In this paper, an attempt has been made to study sedimentation of a red blood cell (RBC) in a plasma-filled tube numerically. Such behaviors are studied for a healthy and a defective cell which might be created due to human diseases, such as diabetes, sickle-cell anemia, and hereditary spherocytosis. Flow-induced deformation of RBC is obtained using finite-element method (FEM), while flow and fluid-membrane interaction are handled using lattice Boltzmann (LB) and immersed boundary methods (IBMs), respectively. The effects of RBC properties as well as its geometry and orientation on its sedimentation rate are investigated and discussed. The results show that decreasing frontal area of an RBC and/or increasing tube diameter results in a faster settling. Comparison of healthy and diabetic cells reveals that less cell deformability leads to slower settling. The simulation results show that the sicklelike and spherelike RBCs have lower settling velocity as compared with a biconcave discoid cell.

  5. Cord Blood as a Source of Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Rohtesh S Mehta

    2016-01-01

    Full Text Available Cord blood (CB offers several unique advantages as a graft source for hematopoietic stem cell transplantation (HSCT. The risk of relapse and graft-versus-host disease (GVHD after cord blood transplantation (CBT are lower than what is typically observed after other graft sources with a similar degree of human leukocyte antigen (HLA mismatch. Natural killer (NK cells have a well-defined role in both innate and adaptive immunity and as the first lymphocytes to reconstitute after HSCT and CBT, they play a significant role in protection against early relapse. In this article, we highlight the uses of CB NK cells in transplantation and adoptive immunotherapy. First, we will describe differences in the phenotype and functional characteristics of NK cells in CB as compared with peripheral blood. Then, we will review some of the obstacles we face in using resting CB NK cells for adoptive immunotherapy, and discuss methods to overcome them. We will review the current literature on killer-cell immunoglobulin-like receptors (KIR-ligand mismatch and outcomes after CBT. Finally, we will touch on current strategiesfor the use of CB NK cells in cellular immunotherapy.

  6. Distribution of Th17 cells and Th1 cells in peripheral blood and cerebrospinal fluid in chronic inflammatory demyelinating polyradiculoneuropathy.

    Science.gov (United States)

    Chi, Li Jun; Xu, Wan Hai; Zhang, Zong Wen; Huang, Hui Tao; Zhang, Li Ming; Zhou, Jin

    2010-12-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated demyelinating disease of the peripheral nervous system. Th17 and Th1 cells contribute to the pathogenesis of most autoimmune diseases, but little is known about their distribution and reciprocal relationship in CIDP. In this study, we analyzed the distribution of Th17, Th1, and Th17/Th1 cells in the peripheral blood and cerebrospinal fluid (CSF). The results showed that the frequency of Th17 cells was significantly higher in the peripheral blood mononuclear cell (PBMCs) and CSF of active CIDP in comparison with remitting CIDP or to other non-inflammatory neurological diseases (ONDs), accompanied by similar findings for Th17/Th1 cells. Both active and remitting CIDP have higher percentage of Th1 cells in the CSF than OND. CSF protein levels positively correlated with the frequencies of Th17 cells either in the PBMCs or CSF of active CIDP, while there was no significant correlation with Th1 cells. In line with these observations, the levels of interleukin-17 (IL-17) in plasma and transcript factors retinoic acid receptor-related orphan receptor (ROR)γt expressed by PBMCs were significantly higher in the active CIDP than remitting CIDP or OND. In summary, our preliminary findings suggest that elevated numbers of inflammatory T cells, especially for Th17 cells, might be an important determinant in the evolution of CIDP.

  7. Concise review: programming human pluripotent stem cells into blood.

    Science.gov (United States)

    Easterbrook, Jennifer; Fidanza, Antonella; Forrester, Lesley M

    2016-06-01

    Blood disorders are treated with cell therapies including haematopoietic stem cell (HSC) transplantation as well as platelet and red blood cell transfusions. However the source of cells is entirely dependent on donors, procedures are susceptible to transfusion-transmitted infections and serious complications can arise in recipients due to immunological incompatibility. These problems could be alleviated if it was possible to produce haematopoietic cells in vitro from an autologous and renewable cell source. The production of haematopoietic cells in the laboratory from human induced pluripotent stem cells (iPSCs) may provide a route to realize this goal but it has proven challenging to generate long-term reconstituting HSCs. To date, the optimization of differentiation protocols has mostly relied on the manipulation of extrinsic signals to mimic the in vivo environment. We review studies that have taken an alternative approach to modulate intrinsic signals by enforced expression of transcription factors. Single and combinations of multiple transcription factors have been used in a variety of contexts to enhance the production of haematopoietic cells from human pluripotent stem cells. This programming approach, together with the recent advances in the production and use of synthetic transcription factors, holds great promise for the production of fully functional HSCs in the future.

  8. Mechanopathology of red blood cell diseases—Why mechanics matters

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    During the onset of a disease a cell may experience alterations in both the composition and organization of its cellular and molecular structures.These alterations may eventually lead to changes in its geometrical and mechanical properties such as cell size and shape,deformability and adhesion.As such,knowing how diseased cells respond to mechanical forces can reveal ways by which they differ from healthy ones.Here,we will present biomechanistic insights into red blood cell related diseases that manifest...

  9. Macromolecular Dynamics in Red Blood Cells Investigated Using Neutron Spectroscopy

    CERN Document Server

    Stadler, Andreas Maximilian; Demmel, Franz; Artmann, Gerhard; 10.1098/rsif.2010.0306

    2011-01-01

    We present neutron scattering measurements on the dynamics of hemoglobin (Hb) in human red blood cells in vivo. Global and internal Hb dynamics were measured in the ps to ns time- and {\\AA} length-scale using quasielastic neutron backscattering spectroscopy. We observed the cross-over from global Hb short-time to long-time self-diffusion. Both short- and long-time diffusion coefficients agree quantitatively with predicted values from hydrodynamic theory of non-charged hard-sphere suspensions when a bound water fraction of around 0.23g H2O/ g Hb is taken into account. The higher amount of water in the cells facilitates internal protein fluctuations in the ps time-scale when compared to fully hydrated Hb powder. Slower internal dynamics of Hb in red blood cells in the ns time-range were found to be rather similar to results obtained with fully hydrated protein powders, solutions and E. coli cells.

  10. RBCs and Parasites Segmentation from Thin Smear Blood Cell Images

    Directory of Open Access Journals (Sweden)

    Vishal V. Panchbhai

    2012-09-01

    Full Text Available Manually examine the blood smear for the detection of malaria parasite consumes lot of time for trend pathologists. As the computational power increases, the role of automatic visual inspection becomes more important. An automated system is therefore needed to complete as much work as possible for the identification of malaria parasites. The given scheme based on used of RGB color space, G layer processing, and segmentation of Red Blood Cells (RBC as well as cell parasites by auto-thresholding with offset value and use of morphological processing. The work compare with the manual results obtained from the pathology lab, based on total RBC count and cells parasite count. The designed system successfully detects malaria parasites and RBC cells in thin smear image.

  11. A spectral and morphologic method for white blood cell classification

    Science.gov (United States)

    Wang, Qian; Chang, Li; Zhou, Mei; Li, Qingli; Liu, Hongying; Guo, Fangmin

    2016-10-01

    The identification of white blood cells is important as it provides an assay for diagnosis of various diseases. To overcome the complexity and inaccuracy of traditional methods based on light microscopy, we proposed a spectral and morphologic method based on hyperspectral blood images. We applied mathematical morphology-based methods to extract spatial information and supervised method is employed for spectral analysis. Experimental results show that white blood cells could be segmented and classified into five types with an overall accuracy of more than 90%. Moreover, the experiments including spectral features reached higher accuracy than the spatial-only cases, with a maximum improvement of nearly 20%. By combing both spatial and spectral features, the proposed method provides higher classification accuracy than traditional methods.

  12. 自外周血记忆B细胞体外活化和分化抗原特异性浆细胞的方法研究%Establishment of activation and differentiation of memory B cells into antigen-specific secreting cells from peripheral blood mononuclear cells in vitro

    Institute of Scientific and Technical Information of China (English)

    毕冬梅; 韩晓建; 石佳宁; 刘晔; 金艾顺

    2015-01-01

    Objective To isolate antigen specific antibody-secreting cells (plasma cells) for development of antibody drug,we established efficient methods for the activation and differentiation of memory B cells into plasma cells in human peripheral blood lymphocytes (PBMCs) in vitro.Methods PBMCs were isolated from peripheral blood of two healthy donors received hepatitis B vaccine (named Z and L,vaccination time for 3 years and 25 years,respectively.).We actived and induced PBMCs by adding cytokines (IL-2 and IL-4) and TLR activators (CpG or R848) for 6 days.Secreted antibodies in the culture supernatans were measured by enzyme-linked immunosorbent assay (ELISA).Antibody secreting cells (ASCs) were detected by enzyme-linked immuno spot assay (ELISPOT).Results IgG concentrations in group C treated with CpG DNA 2006 combined with anti-CD40 antibody and IL-2 and in group R treated with R848 combined with IL-2 were 80.87 ng/mL and 85.97 ng/mL,respectively.These IgG levels were significantly higher copmpared with that in control group (t =23.318,t =60.639,both P < 0.05).The results showed that group C and R were efficiently actived,and the group R was significantly more than the group C.Both activation methods could induce B cell differentiation into plasma cells in vitro.Further,to analyze whether antigen specific plasma cells could be induced using the established motheds,we activated memory B cells in PBMCs vaccinated with hepatitis B vaccine.We detected HBsAg specific IgG secreting cells at different cell densities (104 to 105 cells/culture),the results showed that the group R was significantly more than the control group(t =5.031,t =11.561,both P < 0.05).Conclusion We established the optimal method for B cell activation in vitro.This method could efficiently induce activation and differentiation of memory B cells from PBMCs into antigen-specific plasma cells.%目的 建立自人外周血淋巴细胞(PBMCs)中的记忆B细胞活化和分化特异性抗体分泌细胞(

  13. Genetic and epigenetic alterations of the blood group ABO gene in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Gao, Shan; Worm, Jesper; Guldberg, Per;

    2004-01-01

    Loss of histo-blood group A and B antigen expression is a frequent event in oral carcinomas and is associated with decreased activity of glycosyltransferases encoded by the ABO gene. We examined 30 oral squamous cell carcinomas for expression of A and B antigens and glycosyltransferases. We also ...

  14. Net haemoglobin increase from reinfusion of refrigerated vs. frozen red blood cells after autologous blood transfusions

    DEFF Research Database (Denmark)

    Ashenden, M; Mørkeberg, Jakob Sehested

    2011-01-01

    objective was to examine which storage procedure yielded the largest increase in circulating haemoglobin after reinfusion compared to baseline. MATERIALS AND METHODS  Equal volumes of blood from 15 men were withdrawn and stored either frozen or refrigerated as packed red blood cells. Serial measures...... freezing. Nevertheless, frozen storage allowed haemoglobin to fully recover before reinfusion, while the haemoglobin was 10% lower in the refrigerated group compared with baseline. After reinfusion, the haemoglobin levels were 11·5% higher than the baseline values in the group reinfused with frozen blood......, while for the refrigerated group, haemoglobin levels were only 5·2% higher than baseline. CONCLUSION  The relatively larger recovery from anaemia in the frozen group during storage more than compensated for the larger loss of haemoglobin during freezing and resulted in a larger net gain in haemoglobin...

  15. Dual effects of Ginkgo biloba leaf extract on human red blood cells.

    Science.gov (United States)

    He, Jing; Lin, Juan; Li, Jing; Zhang, Jian-Hong; Sun, Xue-Min; Zeng, Cheng-Ming

    2009-02-01

    Extracts from the leaves of Ginkgo biloba have been used in Chinese medicine for thousands of years. Today, various standardized preparations from G. biloba leaf extract have been developed. G. biloba leaf extract, which contains flavonoids and terpenoids as the major biologically active components, has become one of the most popular and commonly used herbal remedies due to its wide spectrum of beneficial effects on health. In this study, we investigated the effects of G. biloba leaf extract on the properties of human red blood cells in the presence and absence of amyloid peptide (Abeta25-35), peroxide and hypotonic stress. The results suggest that G. biloba leaf extract has a dual action, both protective and disruptive, on red blood cells, depending on whether an exogenous stress is present. G. biloba leaf extract has a protective role on red blood cells against Abeta- and hypotonic pressure-induced haemolysis, peroxide-induced lipoperoxidation, as well as glutathione consumption and methaemoglobin formation. On the other hand, G. biloba leaf extract also exhibited damage to red blood cells by increasing cell fragility, changing cellular morphology and inducing glutathione consumption and methaemoglobin formation, especially when applied at high doses. These anti- and pro-oxidative activities of polyphenolic substances are thought to be involved in the dual function of G. biloba leaf extract. The results of this study suggest that high doses of herbal remedies and dietary supplements can be toxic to cells.

  16. Expansion of human cord blood hematopoietic stem cells for transplantation.

    Science.gov (United States)

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-08

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  17. Red blood cell transfusion during septic shock in the ICU

    DEFF Research Database (Denmark)

    Perner, A; Smith, S H; Carlsen, S

    2012-01-01

    Transfusion of red blood cells (RBCs) remains controversial in patients with septic shock, but current practice is unknown. Our aim was to evaluate RBC transfusion practice in septic shock in the intensive care unit (ICU), and patient characteristics and outcome associated with RBC transfusion....

  18. Automated counting of white blood cells in synovial fluid.

    NARCIS (Netherlands)

    R. de Jonge (Robert); R.W. Brouwer (Reinoud); M. Smit (Marij); M. de Frankrijker-Merkestijn; R.J. Dolhain; J.M.W. Hazes (Mieke); A.W. van Toorenenbergen (Albert); J. Lindemans (Jan)

    2004-01-01

    textabstractOBJECTIVES: To evaluate the performance of automated leucocyte (white blood cell; WBC) counting by comparison with manual counting. METHODS: The number of WBC was determined in heparinized synovial fluid samples by the use of (i) a standard urine cytometer (Kova) and a

  19. Red blood cells intended for transfusion : quality criteria revisited

    NARCIS (Netherlands)

    Hogman, CF; Meryman, HT

    2006-01-01

    Great variation exists with respect to viability and function of fresh and stored red blood cells (RBCs) as well as of the contents of RBC hemoglobin (Hb) in individual units. Improved technology is available for the preparation as well as the storage of RBCs. The authors raise the question whether

  20. The effects of cryopreservation on red blood cell rheologic properties

    NARCIS (Netherlands)

    Henkelman, Sandra; Lagerberg, Johan W. M.; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: In transfusion medicine, frozen red blood cells (RBCs) are an alternative for liquid-stored RBCs. Little is known about the rheologic properties (i.e., aggregability and deformability) of thawed RBCs. In this study the rheologic properties of high-glycerol frozen RBCs and postthaw stored

  1. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis.

    NARCIS (Netherlands)

    Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.H.; Bosman, G.J.C.G.M.; Delaunay, J.; Junot, C.; Romeo, P.H.

    2011-01-01

    Overhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this

  2. Red blood cell antibodies in pregnancy and their clinical consequences

    DEFF Research Database (Denmark)

    Nordvall, Maria; Dziegiel, Morten Hanefeld; Hegaard, Hanne Kristine;

    2009-01-01

    The objective was to determine clinical consequences of various specificities for the infant/fetus. The population was patients referred between 1998 and 2005 to the tertiary center because of detected red blood cell (RBC) alloimmunization. Altogether 455 infants were delivered by 390 alloimmunized...

  3. A Clinical Study on Treatment of Senile Psoriasis by Replenishing Qi to Activate Blood--A Report of 40 Cases

    Institute of Scientific and Technical Information of China (English)

    刘洪普; 谭奇纹; 刘华昌

    2004-01-01

    40 cases of senile psoriasis were treated by the therapeutic principle of replenishing qi to activate blood,and the changes of T lymphocyte subgroups and indexes of haemorheology were observed. The results showed that CD4 was significantly increased, CDs significantly decreased, and the CD4/CD8 ratio significantly raised; and that the specific viscosity of whole blood at high shearing rate, and at low shearing rate, the specific viscosity of plasma, packed cell volume, and fibrinogen all significantly decreased after treatment. It is therefore concluded that the therapeutic method of replenishing qi to activate blood can exert an effect of improving immunologic function and blood circulation.

  4. Effects of dendritic cells from cord blood CD34+ cells on human hepatocarcinoma cell line BEL-7402 in vitro and in SCID mice

    Institute of Scientific and Technical Information of China (English)

    Zhong-Jing Su; Hai-Bin Chen; Jin-Kun Zhang; Lan Xu

    2005-01-01

    AIM: To develop a cancer vaccine of dendritic cells derived from human cord blood CD34+ cells and to investigate its cytotoxicity on human hepatocarcinoma cells in vitro and in sever combined immunodeficiency (SCTD) mice.METHODS: Lymphocytes from cord blood or peripheral blood were primed by DCs, which were derived from cord blood and pulsed with whole tumor cell lysates. Nonradiative neutral red uptake assay was adopted to detect the cytotoxicity of primed lymphocytes on human hepatocarcinoma cell line BEL-7402 in vitro. The anti-tumor effect of primed lymphocytes in vivo was detected in SCID mice, including therapeutic effect and vaccination effect.RESULTS: The cytotoxicity of DC vaccine primed lymphocytes from cord blood or peripheral blood on human hepatocarcinoma cell line BEL-7402 was significantly higher than that of unprimed lymphocytes in vitro (44.09% vs 14.69%,47.92% vs 19.44%, P<0.01). There was no significant difference between the cytotoxicity of primed lymphocytes from cord blood and peripheral blood (P>0.05). The tumor growth rate and tumor size were smaller in SCID mice treated or vaccinated with primed lymphocytes than those with unprimed lymphocytes. SCID mice vaccinated with primed lymphocytes had a lower tumor incidence (80%vs 100%, P<0.05) and delayed tumor latent period compared with mice vaccinated with unprimed lymphocytes (11 d vs 7 d, P<0.01).CONCLUSION: Vaccine of cord blood derived-DCs has an inhibitory activity on growth of human hepatocarcinoma cells in vitro and in SCID mice. The results also implicate the potential role of cord blood derived-DC vaccine in clinical tumor immunotherapy.

  5. 78 FR 47714 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2013-08-06

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... Health Service Act, as amended), the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises... Advancing Hematopoietic Stem Cell Transplantation for Hemoglobinopathies. The Council also will...

  6. 78 FR 23571 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2013-04-19

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... amended), the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises the Secretary of the... Hematopoietic Stem Cell Transplantation for Hemoglobinopathies. The Council will also hear presentations...

  7. Endothelial cells of the blood-brain barrier: a target for glucocorticoids and estrogens?

    Science.gov (United States)

    Dietrich, Jean-Bernard

    2004-01-01

    Adhesion molecules are involved in the leukocyte recruitment of leukocytes at the blood-brain barrier. For this reason, it is important to understand how the regulation of their gene expression controls lymphocyte adhesion to endothelial cells in microvessels. Indeed, due to their specificity and diversity, adhesion molecules involved in extravasation play an essential role in the recruitment of activated leukocytes and activation of inflammation. Multiple sclerosis results from a chronic inflammation of the CNS which is mediated by infiltration of inflammatory cells from the immune system. Administration of glucocorticoids is a routine method to control multiple sclerosis since naturally derived or synthetic glucocorticoids are potent immunosuppressive and anti-inflammatory agents. Glucocorticoids also have beneficial effects in stabilizing the blood-brain barrier, as steroid hormones regulate the expression of adhesion molecule genes in endothelial cells. Other hormones such as estrogens modulate many endothelial cell biological activities, among them adhesion to leukocytes. They regulate expression of adhesion molecules genes on endothelial cells and are useful for the treatment of experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. The effects of glucocorticoids and estrogens on the expression of adhesion molecules on endothelial cells, including microvascular endothelial cells of the blood-brain barrier, are reviewed in this paper, as well as the involvement of these hormones in the therapy of experimental autoimmune encephalomyelitis and multiple sclerosis.

  8. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia

    2011-01-01

    to determine the density and compressibility of individual cells enables the prediction and alteration of the separation outcome for a given cell mixture. We apply the method on white blood cells (WBCs) and DU145 prostate cancer cells (DUCs) aiming to improve isolation of circulating tumor cells from blood......We present a novel method for the determination of density and compressibility of individual particles and cells undergoing microchannel acoustophoresis in an arbitrary 2D acoustic field. Our method is a critical advancement within acoustophoretic separation of biological cells, as the ability......, an emerging tool in the monitoring and characterizing of metastatic cancer....

  9. Cord Blood

    Directory of Open Access Journals (Sweden)

    Saeed Abroun

    2014-05-01

    Full Text Available   Stem cells are naïve or master cells. This means they can transform into special 200 cell types as needed by body, and each of these cells has just one function. Stem cells are found in many parts of the human body, although some sources have richer concentrations than others. Some excellent sources of stem cells, such as bone marrow, peripheral blood, cord blood, other tissue stem cells and human embryos, which last one are controversial and their use can be illegal in some countries. Cord blood is a sample of blood taken from a newborn baby's umbilical cord. It is a rich source of stem cells, umbilical cord blood and tissue are collected from material that normally has no use following a child’s birth. Umbilical cord blood and tissue cells are rich sources of stem cells, which have been used in the treatment of over 80 diseases including leukemia, lymphoma and anemia as bone marrow stem cell potency.  The most common disease category has been leukemia. The next largest group is inherited diseases. Patients with lymphoma, myelodysplasia and severe aplastic anemia have also been successfully transplanted with cord blood. Cord blood is obtained by syringing out the placenta through the umbilical cord at the time of childbirth, after the cord has been detached from the newborn. Collecting stem cells from umbilical blood and tissue is ethical, pain-free, safe and simple. When they are needed to treat your child later in life, there will be no rejection or incompatibility issues, as the procedure will be using their own cells. In contrast, stem cells from donors do have these potential problems. By consider about cord blood potency, cord blood banks (familial or public were established. In IRAN, four cord blood banks has activity, Shariati BMT center cord blood bank, Royan familial cord blood banks, Royan public cord blood banks and Iranian Blood Transfusion Organ cord blood banks. Despite 50,000 sample which storage in these banks, but the

  10. Acetylsalicylic acid and morphology of red blood cells

    Directory of Open Access Journals (Sweden)

    Jacques Natan Grinapel Frydman

    2010-06-01

    Full Text Available This work evaluated the effect of in vitro and in vivo treatment with ASA on the morphology of the red blood cells. Blood samples or Wistar rats were treated with ASA for one hour. Blood samples or animals treated with saline were used as control group. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphology of red blood cells were evaluated under optical microscopy. Data showed that the in vitro treatment for one hour with ASA at higher dose used significantly (pEste trabalho avaliou o efeito do tratamento in vitro e in vivo com AAS na morfologia dos eritrócitos. Amostras de sangue ou ratos Wistar foram tratadas com AAS por uma hora. Amostras sangüíneas ou animais tratados com salina foram utilizados como grupos controle. Distensões de sangue foram preparadas, fixadas, coradas e a análise morfológica qualitativa e quantitativa dos eritrócitos foi realizada em microscópio óptico. Os dados mostraram que o tratamento in vitro por uma hora com AAS na maior dose utilizada modificou significativamente (p<0.05 a relação perímetro/área dos eritrócitos. Não foram obtidas alterações morfológicas com o tratamento in vivo. O uso do AAS em doses altas poderia interferir na forma dos eritrócitos.

  11. Mechanism of human natural killer cell activation by Haemophilus ducreyi.

    Science.gov (United States)

    Li, Wei; Janowicz, Diane M; Fortney, Kate R; Katz, Barry P; Spinola, Stanley M

    2009-08-15

    The role of natural killer (NK) cells in the host response to Haemophilus ducreyi infection is unclear. In pustules obtained from infected human volunteers, there was an enrichment of CD56bright NK cells bearing the activation markers CD69 and HLA-DR, compared with peripheral blood. To study the mechanism by which H. ducreyi activated NK cells, we used peripheral blood mononuclear cells from uninfected volunteers. H. ducreyi activated NK cells only in the presence of antigen-presenting cells. H. ducreyi-infected monocytes and monocyte-derived macrophages activated NK cells in a contact- and interleukin-18 (IL-18)-dependent manner, whereas monocyte-derived dendritic cells induced NK activation through soluble IL-12. More lesional NK cells than peripheral blood NK cells produced IFN-gamma in response to IL-12 and IL-18. We conclude that NK cells are recruited to experimental lesions and likely are activated by infected macrophages and dendritic cells. IFN-gamma produced by lesional NK cells may facilitate phagocytosis of H. ducreyi.

  12. Differentiation of Human Cord Blood and Stromal Derived Stem Cells into Neuron Cells

    Directory of Open Access Journals (Sweden)

    Özlem Pamukçu Baran

    2007-01-01

    Full Text Available The most basic properties of stem cells are the capacities to self-renew indefinitely and to differentiate into multiple cell or tissue types. Umbilical cord blood has been utilized for human hematopoietic stem cell transplantation as an alternative source to bone marrow.The experiments show that Wharton’s jelly cells are easily attainable and can be expanded in vitro, maintained in culture, and induced to differentiate into neural cells. Almost recent studies it has been discovered that the cord blood-derived cells can differantiate not only to blood cells but also to various somatic cells like neuron or muscle cell with the signals taken from the envoirenment.Interestingly, neural cells obtained from umbilical cord blood show a relatively high spontaneous differentiation into oligodendrocytes, Embryonic stem cells proliferate indefinitely and can differentiate spontaneously into all tissue types.It has been shown that embryonic stem cells can be induced to differentiate into neurons and glia by treatment with retinoic acid or basic fibroblast growth factor. It has been studied that the diseases as Motor Neuron Disease, Parkinson, Alzheimer and degeneration of medulla spinalis and also paralysises could be treated with transplantation of cord blood-dericed stem cells.

  13. MicroRNA Expression in Alzheimer Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Hyman M. Schipper

    2007-01-01

    Full Text Available Various coding genes representing multiple functional categories are downregulated in blood mononuclear cells (BMC of patients with sporadic Alzheimer disease (AD. Noncoding microRNAs (miRNA regulate gene expression by degrading messages or inhibiting translation. Using BMC as a paradigm for the study of systemic alterations in AD, we investigated whether peripheral miRNA expression is altered in this condition. MicroRNA levels were assessed using the microRNA microarray (MMChip containing 462 human miRNA, and the results validated by real time PCR. Sixteen AD patients and sixteen normal elderly controls (NEC were matched for ethnicity, age, gender and education. The expression of several BMC miRNAs was found to increase in AD relative to NEC levels, and may differ between AD subjects bearing one or two APOE4 alleles. As compared to NEC, miRNAs signifi cantly upregulated in AD subjects and confi rmed by qPCR were miR-34a and 181b. Predicted target genes downregulated in Alzheimer BMC that correlated with the upregulated miRNAs were largely represented in the functional categories of Transcription/Translation and Synaptic Activity. Several miRNAs targeting the same genes were within the functional category of Injury response/Redox homeostasis. Taken together, induction of microRNA expression in BMC may contribute to the aberrant systemic decline in mRNA levels in sporadic AD.

  14. Transmission of pseudorabies virus from immune-masked blood monocytes to endothelial cells

    OpenAIRE

    Van de Walle, Gerlinde; Favoreel, Herman; Nauwynck, Hans; Mettenleiter, Thomas C.; Pensaert, Maurice

    2003-01-01

    Pseudorabies virus (PRV) may cause abortion, even in the presence of vaccination-induced immunity. Blood monocytes are essential to transport the virus in these immune animals, including transport to the pregnant uterus. Infected monocytes express viral proteins on their cell surface. Specific antibodies recognize these proteins and should activate antibody-dependent cell lysis. Previous work showed that addition of PRV-specific polyclonal antibodies to PRV-infected monocytes induced internal...

  15. Blood cell counting and classification by nonflowing laser light scattering method

    Science.gov (United States)

    Yang, Ye; Zhang, Zhenxi; Yang, Xinhui; Jiang, Dazong; Yeo, Joon Hock

    1999-11-01

    A new non-flowing laser light scattering method for counting and classifying blood cells is presented. A linear charge- coupled device with 1024 elements is used to detect the scattered light intensity distribution of the blood cells. A pinhole plate is combined with the CCD to compete the focusing of the measurement system. An isotropic sphere is used to simulate the blood cell. Mie theory is used to describe the scattering of blood cells. In order to inverse the size distribution of blood cells from their scattered light intensity distribution, Powell method combined with precision punishment method is used as a dependent model method for measurement red blood cells and blood plates. Non-negative constraint least square method combined with Powell method and precision punishment method is used as an independent model for measuring white blood cells. The size distributions of white blood cells and red blood cells, and the mean diameter of red blood cells are measured by this method. White blood cells can be divided into three classes: lymphocytes, middle-sized cells and neutrocytes according to their sizes. And the number of blood cells in unit volume can also be measured by the linear dependence of blood cells concentration on scattered light intensity.

  16. Hemoglobin Aggregation in Single Red Blood Cells of Sickle Cell Anemia

    Science.gov (United States)

    Nishio, Izumi; Tanaka, Toyoichi; Sun, Shao-Tang; Imanishi, Yuri; Tsuyoshi Ohnishi, S.

    1983-06-01

    A laser light scattering technique was used to observe the extent of hemoglobin aggregation in solitary red blood cells of sickle cell anemia. Hemoglobin aggregation was confirmed in deoxygenated cells. The light scattering technique can also be applied to cytoplasmic studies of any biological cell.

  17. Flow of Red Blood Cells in Stenosed Microvessels

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  18. Umbilical Cord Blood Stem Cells. Who has the right word?

    Directory of Open Access Journals (Sweden)

    Gisela Laporta

    2014-12-01

    Full Text Available In this article we analyze bioethical and legal aspects related to the cryopreservation of cord blood stem cells in Argentina. To unify definitions, the concept and variety of stem cells, together with the understanding of the means to obtain and store umbilical cord blood stem cells, are provided.  Options that arise in our country, mainly analyzing the conceptual differences underlying legal body and parts by public and private biobanks, are described. Additionally, the current Argentinean legislation and circumstances arising from a resolution which INCUCAI sought to regulate private biobanks, is analyzed. This analysis leads to thoughts on the way conflicts are solved when the health and life of people are judicialized. In this particular case, the appearance of a complex new topic which gives rise to new social and healthcare scenarios, must be further understood.

  19. Structural analysis of red blood cell aggregates under shear flow.

    Science.gov (United States)

    Chesnutt, J K W; Marshall, J S

    2010-03-01

    A set of measures of red blood cell (RBC) aggregates are developed and applied to examine the aggregate structure under plane shear and channel flows. Some of these measures are based on averages over the set of red blood cells which are in contact with each other at a given time. Other measures are developed by first fitting an ellipse to the planar projection of the aggregate, and then examining the area and aspect ratio of the fit ellipse as well as the orientations of constituent RBCs with respect to the fit ellipse axes. The aggregate structural measures are illustrated using a new mesoscale computational model for blood cell transport, collision and adhesion. The sensitivity of this model to change in adhesive surface energy density and shear rate on the aggregate structure is examined. It is found that the mesoscale model predictions exhibit reasonable agreement with experimental and theoretical data for blood flow in plane shear and channel flows. The new structural measures are used to examine the differences between predictions of two- and three-dimensional computations of the aggregate formation, showing that two-dimensional computations retain some of the important aspects of three-dimensional computations.

  20. Uranium determination in the red blood cells of workers engaged in the chemical treatment of uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Nosek, J.; Simkova, M.; Kukula, F.; Musil, K.

    1973-10-01

    Using the neutron activation analysis method, the uranium levels were determined in red blood cells of venous blood samples from persons occupationally exposed to this metal in chemical processing plants using wet methods (6.5+-2.1ppb U) or dry methods (37.2+-20.2ppb U), and of controls (4.1+-2.6ppb U).

  1. Modeling the ischemic blood-brain barrier; the effects of oxygen-glucose deprivation (OGD) on endothelial cells in culture

    DEFF Research Database (Denmark)

    Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp;

    Introduction - The blood-brain barrier (BBB) is a physical, transport and metabolic barrier which plays a key role in preventing uncontrolled exchanges between blood and brain, ensuring an optimal environment for neurons activity. This extent interface is created by the endothelial cells forming ...

  2. Biomechanics and biorheology of red blood cells in sickle cell anemia

    Science.gov (United States)

    Li, Xuejin; Dao, Ming; Lykotrafitis, George; Karniadakis, George Em

    2017-01-01

    Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis. PMID:27876368

  3. Biomechanics and biorheology of red blood cells in sickle cell anemia.

    Science.gov (United States)

    Li, Xuejin; Dao, Ming; Lykotrafitis, George; Karniadakis, George Em

    2017-01-04

    Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis.

  4. Activity of nuclear factor-kappa B in peripheral blood mononuclear cells of diabetes patients at different levels of blood glucose control with maintenance hemodialysis%不同血糖控制水平糖尿病血液透析患者外周血单个核细胞核因子κB的活性

    Institute of Scientific and Technical Information of China (English)

    王景福; 邢恩鸿; 段书众; 张昆; 郭风玲; 赵亚娟; 胡桂才

    2011-01-01

    BACKGROUND: Abnormal activation of nuclear factor-kappa 8 (NF-7B) and protein kinase C signal transduction pathway ethecentral link of occurrence and development of diabetes mellitus and related complications.OBJECTIVE: To investigate the NF-7B actwrh/ in peripheral blood mononuclear cells(PBMC) in diabetes patient of differentlevel; of blood glucose control with maintenance hemodiah/sis and investigate the relationship of NF-?B activity with gh/cosylatedhemoglobin (HbAlc) and high sensitwe C reactive protein (hs-CRP) levels and malnutrition.METHOOS: The indices of 71 chronic renal failure uremia patients with maintenance he modi a lysis we re anah/zed throughcross-sectional study. Twenty-tuvo diabetic nephropattiy patient with maintenance hemodiah/siswere drwided into good control ofblood glucose group (J7=12) and poor control of blood glucose group f/r= 10). The o1her43 norvdiabeticnephropathy patient withmaintenance nemo dialysis were taken as control group.RESULTS AND CONCLUSION: The serum albumin and serum prealbumin level; of patients in the poor control of blood glucosegroup were significantly lower than those in the good control of blood glucose group and non-diabetic nephropathy group.Theserum hs-CRP level and NF-?B activity of patients in poor control of blood glucose group were signrficantr/ higher than those inthe good control of blood glucose group and n on-diabetic nephropathy group. HbAlc was posrtn/er/ correlated with serum hs-CRPlevel and NF-?B actwity and was negatively correlated with serum albumin and serum pre album in. NF-'PB actwtywa; posrfve^correlated with hs-C RP levels and was negativer/ correlated with serum albumin and serum prealbumin. The results suggest thatpoorer control of blood glucose in diabetic nephropathy patientswrth maintenance hemodialysisleadstostrcngerNF-TBacS/t/.more obvious inflammatory reaction and more severe malnutrition. Abnormal activation of NF-7B induced by poor control of bloodglucose is one of the main reasons

  5. Erythropoietic Potential of CD34+ Hematopoietic Stem Cells from Human Cord Blood and G-CSF-Mobilized Peripheral Blood

    Directory of Open Access Journals (Sweden)

    Honglian Jin

    2014-01-01

    Full Text Available Red blood cell (RBC supply for transfusion has been severely constrained by the limited availability of donor blood and the emergence of infection and contamination issues. Alternatively, hematopoietic stem cells (HSCs from human organs have been increasingly considered as safe and effective blood source. Several methods have been studied to obtain mature RBCs from CD34+ hematopoietic stem cells via in vitro culture. Among them, human cord blood (CB and granulocyte colony-stimulating factor-mobilized adult peripheral blood (mPB are common adult stem cells used for allogeneic transplantation. Our present study focuses on comparing CB- and mPB-derived stem cells in differentiation from CD34+ cells into mature RBCs. By using CD34+ cells from cord blood and G-CSF mobilized peripheral blood, we showed in vitro RBC generation of artificial red blood cells. Our results demonstrate that CB- and mPB-derived CD34+ hematopoietic stem cells have similar characteristics when cultured under the same conditions, but differ considerably with respect to expression levels of various genes and hemoglobin development. This study is the first to compare the characteristics of CB- and mPB-derived erythrocytes. The results support the idea that CB and mPB, despite some similarities, possess different erythropoietic potentials in in vitro culture systems.

  6. Studies on Activity of NK Cells in Preeclampsia Patients

    Institute of Scientific and Technical Information of China (English)

    张展; 龚非力; 贾莉婷; 常彩红; 侯磊; 杨如镜; 郑芳

    2004-01-01

    The activity of the NK cells in patients with preeclampsia was studied to investigate the pathogenesis of preeclampsia. By using MTT and 51Cr releasing technique, the proliferation and killing ability of the NK cells in maternal and umbilical blood from preeclampsia patients (n= 18)and normal third trimester pregnant women (n= 18) were detected. The NK-92 cell line was as the positive control. The results showed that the NK cell counts of umbilical blood in preeclampsia patients and normal third trimester pregnant women were significantly greater than those of maternal blood (both P<0.05). Compared with that in normal third trimester pregnant women, the proliferative ability of the NK cells in preeclampsia patients was apparently increased (P<0.05). Compared with that in maternal blood, the proliferative ability of the NK cells in umbilical blood from both preeclampsia patients and normal third trimester pregnant women was dramatically increased.The killing ability of the NK cells in preeclampsia patients was significantly higher than that in normal third trimester pregnant women (P <0.05). It was suggested that both number and function of the NK cells in preeclampsia women were increased, and that in umbilical blood was greater than that in maternal blood, speculating that the function of the NK cells may affect the maintenance of the maternal and fetal immune tolerance during pregnancy.

  7. Multiscale Modeling of Red Blood Cells Squeezing through Submicron Slits

    Science.gov (United States)

    Peng, Zhangli; Lu, Huijie

    2016-11-01

    A multiscale model is applied to study the dynamics of healthy red blood cells (RBCs), RBCs in hereditary spherocytosis, and sickle cell disease squeezing through submicron slits. This study is motivated by the mechanical filtration of RBCs by inter-endothelial slits in the spleen. First, the model is validated by comparing the simulation results with experiments. Secondly, the deformation of the cytoskeleton in healthy RBCs is investigated. Thirdly, the mechanisms of damage in hereditary spherocytosis are investigated. Finally, the effects of cytoplasm and membrane viscosities, especially in sickle cell disease, are examined. The simulations results provided guidance for future experiments to explore the dynamics of RBCs under extreme deformation.

  8. Glucosaminylmuramyldipeptide-induced changes in phenotype of melanoma cells result in their increased lysis by peripheral blood cells.

    Science.gov (United States)

    Valyakina, T; Malakhov, A; Malakhova, N; Petrova, E; Bykovskaya, S; Revazova, E; Nesmeyanov, V

    1996-11-01

    Flow cytometry was used to show that biologically active N-acetylglucosamine-containing muramylpeptides (GMPs) induced in vitro dose-dependent increase in the expression of tumor-associated antigens (TAAs) characteristic for colon and mammary gland carcinomas, melanoma and lung adenocarcinoma. Forty to two hundred percent enhancement in TAA-expressing cells was observed after 18-48 h incubation with GMPs. In contrast, MHC class I antigen expression was not altered. Using MTT and chromium-release assays, melanoma cells treated in vitro with GMDP were shown to be more susceptible to killing by peripheral blood cells of healthy donors than non-treated cells. Fractionation of blood cells revealed that platelets were responsible for this effect.

  9. Role of Calcium in Phosphatidylserine Externalisation in Red Blood Cells from Sickle Cell Patients

    Directory of Open Access Journals (Sweden)

    Erwin Weiss

    2011-01-01

    Full Text Available Phosphatidylserine exposure occurs in red blood cells (RBCs from sickle cell disease (SCD patients and is increased by deoxygenation. The mechanisms responsible remain unclear. RBCs from SCD patients also have elevated cation permeability, and, in particular, a deoxygenation-induced cation conductance which mediates Ca2+ entry, providing an obvious link with phosphatidylserine exposure. The role of Ca2+ was investigated using FITC-labelled annexin. Results confirmed high phosphatidylserine exposure in RBCs from SCD patients increasing upon deoxygenation. When deoxygenated, phosphatidylserine exposure was further elevated as extracellular [Ca2+] was increased. This effect was inhibited by dipyridamole, intracellular Ca2+ chelation, and Gardos channel inhibition. Phosphatidylserine exposure was reduced in high K+ saline. Ca2+ levels required to elicit phosphatidylserine exposure were in the low micromolar range. Findings are consistent with Ca2+ entry through the deoxygenation-induced pathway (Psickle, activating the Gardos channel. [Ca2+] required for phosphatidylserine scrambling are in the range achievable in vivo.

  10. Blood smear

    Science.gov (United States)

    ... some red blood cells shaped like spheres ( hereditary spherocytosis ) Increased breakdown of RBCs Presence of RBCs with ... normal Red blood cells, elliptocytosis Red blood cells, spherocytosis Acute lymphocytic leukemia - photomicrograph Red blood cells, multiple ...

  11. Distribution of kappa and lambda light chain isotypes among human blood immunoglobulin-secreting cells after vaccination with pneumococcal polysaccharides

    DEFF Research Database (Denmark)

    Heilmann, C; Barington, T

    1989-01-01

    The light chain isotype of immunoglobulin-secreting blood cells was investigated by means of monolayer plaque-forming cell assays allowing direct immunofluorescence staining for cytoplasmic kappa and lambda light chains in centre cells. The study revealed that cultured, polyclonally activated pok...

  12. Dynamics of erythrocyte count, hemoglobin, and catalase activity in rat blood in hypokinesia, muscular activity and restoration

    Science.gov (United States)

    Taneyeva, G. V.; Potapovich, G. M.; Voloshko, N. A.; Uteshev, A. B.

    1980-01-01

    Tests were conducted to prove that muscular exertion (in this instance swimming) of different duration and intensity, as well as hypodynamia, result in an increase of hemoglobin and number of red blood cells in peripheral blood rats. Catalase activity increased with an increase in the duration of swimming, but only up to 6 hr; with 7-9 hr of swimming as well as in hypodynamia, catalase activity decreased. It was also observed that under hypodynamia as well as in 3, 5 and 6 hr exertion (swimming) the color index of blood decreased. Pressure chamber treatment (for 8 min each day for one week), alternating a 2 min negative pressure up to 35 mm Hg with 1 min positive pressure, increased the erythrocyte count and hemoglobin content.

  13. [Morphometry and electrophoretic mobility of red blood cells from patients with asthma in the intravenous blood laser irradiation].

    Science.gov (United States)

    Sarycheva, T G; Tsybzhitova, E B; Popova, O V; Aleksandrov, O V

    2009-03-01

    The morphometry and electrophoretic mobility of red blood cells from patients with infection-dependent asthma were comparatively studied prior to and following treatment. The patients who had underwent intravenous laser irradiation of blood (ILIB) in addition to conventional therapy had better morphofunctional parameters of red blood cells, by restoring their normal forms, decreasing their transitional ones, and increasing their electrophoretic mobility to normal values. Those who received traditional drug therapy showed no considerable morphofunctional changes of erythrocytes. Thus, in asthmatic patients, the changes in the morphology and function of red blood cells may suggest their membranous structural changes for whose correction ILIB should used.

  14. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  15. Characterization of red blood cells (RBCs) using dual Brillouin/Raman micro-spectroscopy

    Science.gov (United States)

    Meng, Zhaokai; Bustamante-Lopez, Sandra C.; Yakovlev, Vladislav V.; Meissner, Kenith E.

    2016-04-01

    Erythrocytes, or red blood cells, transport oxygen to and carbon dioxide from the body's tissues and organs. Red blood cell mechanical properties are altered in a number of diseases such as sickle cell anaemia and malaria. Additionally, mechanically modified red blood cell ghosts are being considered as a long-term, biocompatible carrier for drug delivery and for blood analyte sensing. Brillouin spectroscopy enables viscoelastic characterization of samples at the microscale. In this report, Brillouin spectroscopy is applied to characterize the mechanical properties of red blood cells and red blood cell ghosts.

  16. Generation of human induced pluripotent stem cells from peripheral blood using the STEMCCA lentiviral vector.

    Science.gov (United States)

    Sommer, Andreia Gianotti; Rozelle, Sarah S; Sullivan, Spencer; Mills, Jason A; Park, Seon-Mi; Smith, Brenden W; Iyer, Amulya M; French, Deborah L; Kotton, Darrell N; Gadue, Paul; Murphy, George J; Mostoslavsky, Gustavo

    2012-10-31

    Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)(1-4). Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (ESCs) and would bypass possible immune rejection. Thus, iPSCs have attracted considerable attention for disease modeling studies, the screening of pharmacological compounds, and regenerative therapies(5). We have shown the generation of transgene-free human iPSCs from patients with different lung diseases using a single excisable polycistronic lentiviral Stem Cell Cassette (STEMCCA) encoding the Yamanaka factors(6). These iPSC lines were generated from skin fibroblasts, the most common cell type used for reprogramming. Normally, obtaining fibroblasts requires a skin punch biopsy followed by expansion of the cells in culture for a few passages. Importantly, a number of groups have reported the reprogramming of human peripheral blood cells into iPSCs(7-9). In one study, a Tet inducible version of the STEMCCA vector was employed(9), which required the blood cells to be simultaneously infected with a constitutively active lentivirus encoding the reverse tetracycline transactivator. In contrast to fibroblasts, peripheral blood cells can be collected via minimally invasive procedures, greatly reducing the discomfort and distress of the patient. A simple and effective protocol for reprogramming blood cells using a constitutive single excisable vector may accelerate the application of iPSC technology by making it accessible to a broader research community. Furthermore, reprogramming of peripheral blood cells allows for the generation of iPSCs from individuals in which skin biopsies should be avoided (i.e. aberrant scarring) or due to pre-existing disease conditions preventing access to punch biopsies. Here we demonstrate a protocol for the generation of human iPSCs from

  17. Saving the leftovers: models for banking cord blood stem cells.

    Science.gov (United States)

    Cogdell, Kimberly J

    2009-01-01

    Each year there are over four million live births in the United States. Each birth produces umbilical cord blood stem cells, which are usually discarded. The author argues that rather than discarding the umbilical cord, this valuable resource of cord blood should be banked and used for research and therapeutic purposes. Umbilical cord blood could provide a solution to the critical need to find matching donors for hematopoietic transplants in patients who have no matching bone marrow donors. Creating a system of universal donation to a public bank will greatlyincrease the number of donors and therefore, the number of matches for patients. Such a system will facilitate the development and use of new technologies and transplant procedures, while providing an opportunity for treatment to individuals who would otherwise not be able to find suitable donors.

  18. Mobility Enhancement of Red Blood Cells with Biopolymers

    Science.gov (United States)

    Tahara, Daiki; Oikawa, Noriko; Kurita, Rei

    2016-03-01

    Adhesion of red blood cells (RBC) to substrates are one of crucial problems for a blood clot. Here we investigate the mobility of RBC between two glass substrates in saline with polymer systems. We find that RBCs are adhered to the glass substrate with PEG, however the mobility steeply increases with fibrinogen and dextran, which are biopolymers. We also find that the mobility affects an aggregation dynamics of RBCs, which is related with diseases such as influenza, blood clot and so on. The Brownian motion helps to increase probability of contact with each other and to find a more stable condition of the aggregation. Thus the biopolymers play important roles not only for preventing the adhesion but also for the aggregation.

  19. 2-D Model for Normal and Sickle Cell Blood Microcirculation

    Science.gov (United States)

    Tekleab, Yonatan; Harris, Wesley

    2011-11-01

    Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].

  20. Axial dispersion in flowing red blood cell suspensions

    Science.gov (United States)

    Podgorski, Thomas; Losserand, Sylvain; Coupier, Gwennou

    2016-11-01

    A key parameter in blood microcirculation is the transit time of red blood cells (RBCs) through an organ, which can influence the efficiency of gas exchange and oxygen availability. A large dispersion of this transit time is observed in vivo and is partly due to the axial dispersion in the flowing suspension. In the classic Taylor-Aris example of a solute flowing in a tube, the combination of molecular diffusion and parabolic velocity profile leads to enhanced axial dispersion. In suspensions of non-Brownian deformable bodies such as RBCs, axial dispersion is governed by a combination of shear induced migration and shear-induced diffusion arising from hydrodynamic interactions. We revisit this problem in the case of RBC pulses flowing in a microchannel and show that the axial dispersion of the pulse eventually saturates with a final extension that depends directly on RBC mechanical properties. The result is especially interesting in the dilute limit since the final pulse length depends only on the channel width, exponent of the migration law and dimensionless migration velocity. In continuous flow, the dispersion of transit times is the result of complex cell-cell and cell-wall interactions and is strongy influenced by the polydispersity of the blood sample. The authors acknowledge support from LabEx TEC21 and CNES.

  1. Blood Volume Response to Physical Activity and Inactivity

    Science.gov (United States)

    2007-07-01

    total vascular capacitance,4 so central venous pres- sure (CVP) becomes elevated. Although elevated CVP usually stimulates diuresis and prevents volume...stimulating a feedback diuresis . Thus, the mechanisms underlying the increased blood volume that accompanies physical activity in- clude increased thirst...vasopressin are acutely decreased.23 These endocrine responses are accom- panied by an acute increase in total urine and so- dium excretion ( diuresis and

  2. Quantification of Cell-Free DNA in Red Blood Cell Units in Different Whole Blood Processing Methods

    Directory of Open Access Journals (Sweden)

    Andrew W. Shih

    2016-01-01

    Full Text Available Background. Whole blood donations in Canada are processed by either the red cell filtration (RCF or whole blood filtration (WBF methods, where leukoreduction is potentially delayed in WBF. Fresh WBF red blood cells (RBCs have been associated with increased in-hospital mortality after transfusion. Cell-free DNA (cfDNA is released by neutrophils prior to leukoreduction, degraded during RBC storage, and is associated with adverse patient outcomes. We explored cfDNA levels in RBCs prepared by RCF and WBF and different storage durations. Methods. Equal numbers of fresh (stored ≤14 days and older RBCs were sampled. cfDNA was quantified by spectrophotometry and PicoGreen. Separate regression models determined the association with processing method and storage duration and their interaction on cfDNA. Results. cfDNA in 120 RBC units (73 RCF, 47 WBF were measured. Using PicoGreen, WBF units overall had higher cfDNA than RCF units (p=0.0010; fresh WBF units had higher cfDNA than fresh RCF units (p=0.0093. Using spectrophotometry, fresh RBC units overall had higher cfDNA than older units (p=0.0031; fresh WBF RBCs had higher cfDNA than older RCF RBCs (p=0.024. Conclusion. Higher cfDNA in fresh WBF was observed compared to older RCF blood. Further study is required for association with patient outcomes.

  3. Pleomorphic Structures in Human Blood Are Red Blood Cell-Derived Microparticles, Not Bacteria

    Science.gov (United States)

    Mitchell, Adam J.; Gray, Warren D.; Schroeder, Max; Yi, Hong; Taylor, Jeannette V.; Dillard, Rebecca S.; Ke, Zunlong; Wright, Elizabeth R.; Stephens, David; Roback, John D.; Searles, Charles D.

    2016-01-01

    Background Red blood cell (RBC) transfusions are a common, life-saving therapy for many patients, but they have also been associated with poor clinical outcomes. We identified unusual, pleomorphic structures in human RBC transfusion units by negative-stain electron microscopy that appeared identical to those previously reported to be bacteria in healthy human blood samples. The presence of viable, replicating bacteria in stored blood could explain poor outcomes in transfusion recipients and have major implications for transfusion medicine. Here, we investigated the possibility that these structures were bacteria. Results Flow cytometry, miRNA analysis, protein analysis, and additional electron microscopy studies strongly indicated that the pleomorphic structures in the supernatant of stored RBCs were RBC-derived microparticles (RMPs). Bacterial 16S rDNA PCR amplified from these samples were sequenced and was found to be highly similar to species that are known to commonly contaminate laboratory reagents. Conclusions These studies suggest that pleomorphic structures identified in human blood are RMPs and not bacteria, and they provide an example in which laboratory contaminants may can mislead investigators. PMID:27760197

  4. Blood cell telomere length is a dynamic feature.

    Directory of Open Access Journals (Sweden)

    Ulrika Svenson

    Full Text Available There is a considerable heterogeneity in blood cell telomere length (TL for individuals of similar age and recent studies have revealed that TL changes by time are dependent on TL at baseline. TL is partly inherited, but results from several studies indicate that e.g. life style and/or environmental factors can affect TL during life. Collectively, these studies imply that blood cell TL might fluctuate during a life time and that the actual TL at a defined time point is the result of potential regulatory mechanism(s and environmental factors. We analyzed relative TL (RTL in subsequent blood samples taken six months apart from 50 individuals and found significant associations between RTL changes and RTL at baseline. Individual RTL changes per month were more pronounced than the changes recorded in a previously studied population analyzed after 10 years' follow up. The data argues for an oscillating TL pattern which levels out at longer follow up times. In a separate group of five blood donors, a marked telomere loss was demonstrated within a six month period for one donor where after TL was stabilized. PCR determined RTL changes were verified by Southern blotting and STELA (single telomere elongation length analysis. The STELA demonstrated that for the donor with a marked telomere loss, the heterogeneity of the telomere distribution decreased considerably, with a noteworthy loss of the largest telomeres. In summary, the collected data support the concept that individual blood cell telomere length is a dynamic feature and this will be important to recognize in future studies of human telomere biology.

  5. Computer-Aided Diagnosis Of Leukemic Blood Cells

    Science.gov (United States)

    Gunter, U.; Harms, H.; Haucke, M.; Aus, H. M.; ter Meulen, V.

    1982-11-01

    In a first clinical test, computer programs are being used to diagnose leukemias. The data collected include blood samples from patients suffering from acute myelomonocytic-, acute monocytic- and acute promyelocytic, myeloblastic, prolymphocytic, chronic lymphocytic leukemias and leukemic transformed immunocytoma. The proper differentiation of the leukemic cells is essential because the therapy depends on the type of leukemia. The algorithms analyse the fine chromatin texture and distribution in the nuclei as well as size and shape parameters from the cells and nuclei. Cells with similar nuclei from different leukemias can be distinguished from each other by analyzing the cell cytoplasm images. Recognition of these subtle differences in the cells require an image sampling rate of 15-30 pixel/micron. The results for the entire data set correlate directly to established hematological parameters and support the previously published initial training set .

  6. Generation of induced pluripotent stem cells from human cord blood.

    Science.gov (United States)

    Haase, Alexandra; Olmer, Ruth; Schwanke, Kristin; Wunderlich, Stephanie; Merkert, Sylvia; Hess, Christian; Zweigerdt, Robert; Gruh, Ina; Meyer, Johann; Wagner, Stefan; Maier, Lars S; Han, Dong Wook; Glage, Silke; Miller, Konstantin; Fischer, Philipp; Schöler, Hans R; Martin, Ulrich

    2009-10-02

    Induced pluripotent stem cells (iPSCs) may represent an ideal cell source for future regenerative therapies. A critical issue concerning the clinical use of patient-specific iPSCs is the accumulation of mutations in somatic (stem) cells over an organism's lifetime. Acquired somatic mutations are passed onto iPSCs during reprogramming and may be associated with loss of cellular functions and cancer formation. Here we report the generation of human iPSCs from cord blood (CB) as a juvenescent cell source. CBiPSCs show characteristics typical of embryonic stem cells and can be differentiated into derivatives of all three germ layers, including functional cardiomyocytes. For future therapeutic production of autologous and allogeneic iPSC derivatives, CB could be routinely harvested for public and commercial CB banks without any donor risk. CB could readily become available for pediatric patients and, in particular, for newborns with genetic diseases or congenital malformations.

  7. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Martha Luevano

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC has become an alluring option for NK cell therapy, with umbilical cord blood (UCB and mobilized peripheral blood (PBCD34(+ being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+ and frozen PBCD34(+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+ cultures. NK cells generated from CBCD34(+ and PBCD34(+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+ for the production of NK cells in vitro results in higher cell numbers than PBCD34(+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  8. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Science.gov (United States)

    Luevano, Martha; Domogala, Anna; Blundell, Michael; Jackson, Nicola; Pedroza-Pacheco, Isabela; Derniame, Sophie; Escobedo-Cousin, Michelle; Querol, Sergio; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2014-01-01

    Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC) has become an alluring option for NK cell therapy, with umbilical cord blood (UCB) and mobilized peripheral blood (PBCD34(+)) being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+)) and frozen PBCD34(+) to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+) cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+) cultures. NK cells generated from CBCD34(+) and PBCD34(+) expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+)-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+)-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+) for the production of NK cells in vitro results in higher cell numbers than PBCD34(+), without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  9. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.

    Science.gov (United States)

    Li, Xiang; Chen, Weiqiang; Liu, Guangyu; Lu, Wei; Fu, Jianping

    2014-07-21

    White blood cells (WBCs) constitute about 0.1% of the blood cells, yet they play a critical role in innate and adaptive immune responses against pathogenic infections, allergic conditions, and malignancies and thus contain rich information about the immune status of the body. Rapid isolation of WBCs directly from whole blood is a prerequisite for any integrated immunoassay platform designed for examining WBC phenotypes and functions; however, such functionality is still challenging for blood-on-a-chip systems, as existing microfluidic cell sorting techniques are inadequate for efficiently processing unprocessed whole blood on chip with concurrent high throughput and cell purity. Herein we report a microfluidic chip for continuous-flow isolation and sorting of WBCs from whole blood with high throughput and separation efficiency. The microfluidic cell sorting chip leveraged the crossflow filtration scheme in conjunction with a surface-micromachined poly(dimethylsiloxane) (PDMS) microfiltration membrane (PMM) with high porosity. With a sample throughput of 1 mL h(-1), the microfluidic cell sorting chip could recover 27.4 ± 4.9% WBCs with a purity of 93.5 ± 0.5%. By virtue of its separation efficiency, ease of sample recovery, and high throughput enabled by its continuous-flow operation, the microfluidic cell sorting chip holds promise as an upstream component for blood sample preparation and analysis in integrated blood-on-a-chip systems.

  10. Melanoma affects the composition of blood cell-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Nina Koliha

    2016-07-01

    Full Text Available Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer cells, monocytes, monocyte-derived dendritic cells and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on extracellular vesicles. Hierarchal clustering of protein intensity patterns grouped extracellular vesicles according to their originating cell type. The analysis of extracellular vesicles from stimulated B cells and monocyte-derived dendritic cells revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of extracellular vesicles from platelets, antigen presenting cells and natural cells as shown by platelet markers, costimulatory proteins, and a natural killer cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers indicating a changed vesicle secretion or protein loading of extracellular vesicles by platelets and a lower CD8 signal that might be associated with a diminished activity of natural killer cells or T cells. As we hardly detected melanoma-derived vesicles in patient’s plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of extracellular vesicles in melanoma plasma, but rather argue

  11. Harvesting, processing and inventory management of peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Mijovic Aleksandar

    2007-01-01

    Full Text Available By 2003, 97% autologous transplants and 65% of allogeneic transplants in Europe used mobilised peripheral blood stem cells (PBSC. Soon after their introduction in the early 1990′s, PBSC were associated with faster haemopoietic recovery, fewer transfusions and antibiotic usage, and a shorter hospital stay. Furthermore, ease and convenience of PBSC collection made them more appealing than BM harvests. Improved survival has hitherto been demonstrated in patients with high risk AML and CML. However, the advantages of PBSC come at a price of a higher incidence of extensive chronic GVHD. In order to be present in the blood, stem cells undergo the process of "mobilisation" from their bone marrow habitat. Mobilisation, and its reciprocal process - homing - are regulated by a complex network of molecules on the surface of stem cells and stromal cells, and enzymes and cytokines released from granulocytes and osteoclasts. Knowledge of these mechanisms is beginning to be exploited for clinical purposes. In current practice, stem cell are mobilised by use of chemotherapy in conjunction with haemopoietic growth factors (HGF, or with HGF alone. Granulocyte colony stimulating factor has emerged as the single most important mobilising agent, due to its efficacy and a relative paucity of serious side effects. Over a decade of use in healthy donors has resulted in vast experience of optimal dosing and administration, and safety matters. PBSC harvesting can be performed on a variety of cell separators. Apheresis procedures are nowadays routine, but it is important to be well versed in the possible complications in order to avoid harm to the patient or donor. To ensure efficient collection, harvesting must begin when sufficient stem cells have been mobilised. A rapid, reliable, standardized blood test is essential to decide when to begin harvesting; currently, blood CD34+ cell counting by flow cytometry fulfils these criteria. Blood CD34+ cell counts strongly

  12. Cinnamomum zeylanicum extract on the radiolabelling of blood constituents and the morphometry of red blood cells: In vitro assay

    Energy Technology Data Exchange (ETDEWEB)

    Benarroz, M.O. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil); Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010-180 Natal, RN (Brazil); Fonseca, A.S. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil)], E-mail: adenilso@uerj.br; Rocha, G.S. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil); Frydman, J.N.G. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil); Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010-180 Natal, RN (Brazil); Rocha, V.C.; Pereira, M.O. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil)] (and others)

    2008-02-15

    Effects of Cinnamomum zeylanicum (cinnamon) on the labelling of blood constituents with technetium-99 m({sup 99m}Tc) and on the morphology of red blood cells were studied. Blood samples from Wistar rats were incubated with cinnamon extract for 1hour or with 0.9% NaCl, as control. Labelling of blood constituents with {sup 99m}Tc was performed. Plasma (P) and blood cells (BC), soluble (SF-P and SF-BC) and insoluble (IF-P and IF-BC) fractions were separated. The radioactivity in each fraction was counted and the percentage of radioactivity incorporated (%ATI) was calculated. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphological analysis of the red blood cells was evaluated. The data showed that the cinnamon extract decreased significantly (p<0.05) the %ATI on BC, IF-P and IF-BC. No modifications were verified on shape of red blood cells. Cinnamon extracts could alter the labelling of blood constituents with {sup 99m}Tc, and although our results were obtained with animals, precaution is suggested in interpretations of nuclear medicine examinations involving the labelling of blood constituents in patients who are using cinnamon.

  13. Peripheral red blood cell split chimerism as a consequence of intramedullary selective apoptosis of recipient red blood cells in a case of sickle cell disease.

    Science.gov (United States)

    Marziali, Marco; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid; Fraboni, Daniela; Paciaroni, Katia; Gallucci, Cristiano; Alfieri, Cecilia; Roveda, Andrea; De Angelis, Gioia; Cardarelli, Luisa; Ribersani, Michela; Andreani, Marco; Lucarelli, Guido

    2014-01-01

    Allogeneic cellular gene therapy through hematopoietic stem cell transplantation is the only radical cure for congenital hemoglobinopathies like thalassemia and sickle cell anemia. Persistent mixed hematopoietic chimerism (PMC) has been described in thalassemia and sickle cell anemia. Here, we describe the clinical course of a 6-year-old girl who had received bone marrow transplant for sickle cell anemia. After the transplant, the patient showed 36% donor hematopoietic stem cells in the bone marrow, whereas in the peripheral blood there was evidence of 80% circulating donor red blood cells (RBC). The analysis of apoptosis at the Bone Marrow level suggests that Fas might contribute to the cell death of host erythroid precursors. The increase in NK cells and the regulatory T cell population observed in this patient suggests that these cells might contribute to the condition of mixed chimerism.

  14. Cesarean section imprints cord blood immune cell distributions

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich; Larsen, Jeppe Madura; Rasmussen, Mette Annelie;

    2014-01-01

    Immune programming in early life may affect the risk of developing immune-related diseases later in life. Children born by cesarean section seem to be at higher risk of asthma, allergic rhinitis, and type-1 diabetes. We hypothesized that delivery by cesarean section may affect immune maturation...... in newborns. The objective of the study was to profile innate and adaptive immune cell subsets in cord blood of children born by cesarean section or natural birth....

  15. Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood

    Science.gov (United States)

    Kuroda, Chiaki; Ohki, Yoshimichi; Ashiba, Hiroki; Fujimaki, Makoto; Awazu, Koichi; Makishima, Makoto

    2017-03-01

    With the aim of developing a sensor for rapidly detecting viruses in a drop of blood, in this study, we analyze the shape of a hole in a microfluidic channel in relation to the efficiency of sedimentation of blood cells. The efficiency of sedimentation is examined on the basis of our calculation and experimental results for two types of sedimentation hole, cylindrical and truncated conical holes, focusing on the Boycott effect, which can promote the sedimentation of blood cells from a downward-facing wall. As a result, we demonstrated that blood cells can be eliminated with an efficiency of 99% or higher by retaining a diluted blood sample of about 30 µL in the conical hole for only 2 min. Moreover, we succeeded in detecting the anti-hepatitis B surface antigen antibody in blood using a waveguide-mode sensor equipped with a microfluidic channel having the conical sedimentation hole.

  16. Cocaine induces a reversible stomatocytosis of red blood cells and increases blood viscosity.

    Science.gov (United States)

    Cagienard, F; Schulzki, T; Furlong, P; Reinhart, W H

    2013-01-01

    Severe side effects of cocaine consumption are vasoocclusive events such as myocardial infarction and stroke. We have hypothesized that cocaine could affect red blood cells (RBCs) and alter the rheological behaviour of blood. Heparinized blood from healthy volunteers was incubated with a final hematocrit of 45% with increasing cocaine concentrations: 0, 10, 100, 1000, and 10'000 μmol/L plasma. Time dependence of the shape change was tested in phosphate buffered saline containing cocaine. RBCs were fixed in 1% glutaraldehyde for morphological analysis. Blood viscosity was measured with a Couette Viscometer (Contraves LS 30) at 37°C and a shear rate of 69.5 s⁻¹. RBC aggregation was assessed with a Myrenne aggregometer. Cocaine induced a dose-dependent stomatocytic shape transformation of RBCs, which was more pronounced in buffer than in plasma (plasma protein binding of the drug). Stomatocytosis occurs when a drug intercalates preferentially in the inner half of the membrane lipid bilayer. It was a time-dependent process with two components, an almost instant shape change occurring within 1 s, followed by a gradual further shape change during 10 min. Stomatocytosis was reversible by resuspension of the RBCs in cocaine-free buffer. This stomatocytic shape change increased whole blood viscosity at high shear rate from 5.69±0.31 mPa.s to 6.39±0.34 mPa.s for control and 10'000 μmol/L cocaine, respectively (p<0.01). RBC aggregation was not affected by the shape change. These effects occurred at a cocaine concentration, which is several-fold above those measured in vivo. Therefore, it is unlikely that hemorheological factors are involved in vascular events after cocaine consumption.

  17. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging

    Science.gov (United States)

    Park, Hyunjoo; Lee, Sangyun; Ji, Misuk; Kim, Kyoohyun; Son, Yonghak; Jang, Seongsoo; Park, Yongkeun

    2016-10-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusions. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called citrate phosphate dextrose adenine-1 (CPDA-1). With 3-D quantitative phase imaging techniques, the optical measurements for 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and progressive alterations of stored RBCs. Our results show that stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within two weeks which was accompanied by significant decreases in cell deformability and cell surface area, and increases in sphericity. However, the stored RBCs with CPDA-1 maintained their morphology and deformability for up to 6 weeks.

  18. RED BLOOD CELL ABNORMALITIES IN DECOMPENSATED CHRONIC LIVER DISEASE (DCLD

    Directory of Open Access Journals (Sweden)

    Anbazhagan

    2015-02-01

    Full Text Available BACKGROUND: Liver plays an important role in normal erythropoiesis, especially in formation and destruction of RBC’s. Chronic liver diseases are frequently associated with hematological abnormalities. Anemia of diverge etiology occurs in about 75% patients with DCLD ( 36. This can ultimately culminate in grave complications. AIM OF THE STUDY: To detect various abnormalities in Red Blood Cells and to assess the type of anemia in DCLD. METHODS: The study was conducted in 50 patients of DCLD, in Meenakshi Medical College. A detailed History, clinical examination and also Ultrasound Abdomen, GI endoscopy to establish DCLD and complete Red Blood Cell assessment was done. RESULTS AND OBSERVATION : Among the 50 patients, 40 patients (80% had anemia and only 10 pts had normal h emoglobin above 13 gms%. About 15 patients (30% had severe Anemia of less than 6 gm%. Among the 40 patients, 25 patients had normocytic normochronic anemia, 10 patients had microcytic anemia, and 4 patients had macrocytosis and only one had dimorphic anem ia. CONCLUSION : Most common Red Blood Cell abnormality in DCLD is anemia (80% and most common anemia is normochronic normocytic anemia (62.5%, while microcytic anemia and macrocytosis were common among females and Alcoholics, respectively

  19. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHEN XU; MIN XIONG SHEN; DONG ZHU MA; LI YING WANG; XI LIANG ZHA

    2003-01-01

    Endothelial cells (TEC3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 × l06 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6~8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.

  20. Investigating the fluid mechanics behind red blood cell-induced lateral platelet motion

    Science.gov (United States)

    Crowl Erickson, Lindsay; Fogelson, Aaron

    2009-11-01

    Platelets play an essential role in blood clotting; they adhere to damaged tissue and release chemicals that activate other platelets. Yet in order to adhere, platelets must first come into contact with the injured vessel wall. Under arterial flow conditions, platelets have an enhanced concentration near blood vessel walls. This non-uniform cell distribution depends on the fluid dynamics of blood as a heterogeneous medium. We use a parallelized lattice Boltzmann-immersed boundary method to solve the flow dynamics of red cells and platelets in a periodic 2D vessel with no-slip boundary conditions. Red cells are treated as biconcave immersed boundary objects with isotropic Skalak membrane tension and an internal viscosity five times that of the surrounding plasma. Using this method we analyze the influence of shear rate, hematocrit, and red cell membrane properties on lateral platelet motion. We find that the effective diffusion of platelets is significantly lower near the vessel wall compared to the center of the vessel. Insight gained from this work could lead to significant improvements to current models for platelet adhesion where the presence of red blood cells is neglected due to computational intensity.

  1. 77 FR 22791 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2012-04-17

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... Health Service Act, as amended), the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises... Thawing and Washing, (4) Access to Transplantation, and (5) Advancing Hematopoietic Stem...

  2. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    Science.gov (United States)

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  3. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  4. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise;

    2015-01-01

    damaged DNA in peripheral blood mononuclear cells (PBMCs). We isolated PBMCs from subjects aged 18-83 years, as part of a health survey of the Danish population that focussed on lifestyle factors. The level of DNA repair activity was measured as incisions on potassium bromate-damaged DNA by the comet...... assay. There was an inverse association between age and DNA repair activity with a 0.65% decline in activity per year from age 18 to 83 (95% confidence interval: 0.16-1.14% per year). Univariate regression analysis also indicated inverse associations between DNA repair activity and waist-hip ratio (P...

  5. Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation

    Directory of Open Access Journals (Sweden)

    V Milleret

    2011-05-01

    Full Text Available Titanium implants are most commonly used for bone augmentation and replacement due to their favorable osseointegration properties. Here, hyperhydrophilic sand-blasted and acid-etched (SBA titanium surfaces were produced by alkali treatment and their responses to partially heparinized whole human blood were analyzed. Blood clot formation, platelet activation and activation of the complement system was analyzed revealing that exposure time between blood and the material surface is crucial as increasing exposure time results in higher amount of activated platelets, more blood clots formed and stronger complement activation. In contrast, the number of macrophages/monocytes found on alkali-treated surfaces was significantly reduced as compared to untreated SBA Ti surfaces. Interestingly, when comparing untreated to modified SBA Ti surfaces very different blood clots formed on their surfaces. On untreated Ti surfaces blood clots remain thin (below 15 mm, patchy and non-structured lacking large fibrin fiber networks whereas blood clots on differentiated surfaces assemble in an organized and layered architecture of more than 30 mm thickness. Close to the material surface most nucleated cells adhere, above large amounts of non-nucleated platelets remain entrapped within a dense fibrin fiber network providing a continuous cover of the entire surface. These findings might indicate that, combined with findings of previous in vivo studies demonstrating that alkali-treated SBA Ti surfaces perform better in terms of osseointegration, a continuous and structured layer of blood components on the blood-facing surface supports later tissue integration of an endosseous implant.

  6. Interleukin-15 Promotes the Commitment of Cord Blood CD34+ Stem Cells into NK Cells

    Institute of Scientific and Technical Information of China (English)

    张建; 夏青; 孙汭; 田志刚

    2004-01-01

    To explore the effect of rhlL-15 on CB-CD34+ stem cells committing to NK cells, CD34+ stem cells were obtained from cord blood (CB) by magnetic-assisted cell sorting (MACS) method. CD3, CD16 and CD56 molecules expressed on cell surface were detected by flow cytometer. MTF method was used to test the cytotoxicity of NK cells. The results were that stem cell factor (SCF) alone has no effect on CD34+ stem cells. IL-15 stimulated CD34+ stem cells commit to NK cells, and SCF showed strong synergistic effect with IL-15. It was concluded that IL-15 and SCF played different roles during NK cell development, llr15 promoted CD34+ stem cells differentiate to NK cell precursor and SCF improved the effectsof IL-15 on NK cell differentiation.

  7. Proliferative activity, lectin-dependent and natural cytotoxicity in blood, lymph node and spleen from patients with Hodgkin's disease.

    Science.gov (United States)

    Bykovskaya, S N; Blochina, N G; Charabadze, M V; Agaphonov, V A; Kupriyanova, T A

    1990-01-01

    Mononuclear cells and T-lymphocytes of the blood, spleen and lymph nodes from 48 patients with Hodgkin disease (HD) and blood donors were tested in assays for lectin-dependent (LD) and natural killer (NK) cytotoxic activity. On average, peripheral blood T cell lectin-dependent cytotoxicity differs from that of the donors. However, cytotoxic activity appears to be dependent on the stage of disease; in the IY stage LD cytotoxicity was decreased 2-fold. The lectin-dependent cytotoxicity was also dependent on the histological type of disease and the lowest level (50% of the control level) was associated with the lymphoid depletion type. The cytotoxic activity of T-lymphocytes from the affected areas of the patients' spleen was more marked than that of the unaffected areas. Spleen cell cytotoxicity showed no other correlations. Cytotoxicity of lymphocytes from the affected lymph nodes was drastically lower than activity of blood and spleen lymphocytes. NK activity of the patients' blood and spleen lymphocytes was twice as low as the control level (healthy donors) and did not correlate with stage and/or histological type of disease. The proliferative activity of lymphocytes from 33 HD patients was tested in vitro using allogeneic mononuclear cells from healthy donors or HD patients and/or PHA as stimulators. The response of patients' lymphocytes to alloantigens appeared to be much less affected than response to polyclonal mitogen. Thus, the results obtained by us demonstrate signs of stimulation of the lymphoid system against a background of general immunosuppression in HD.

  8. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  9. In-vitro stem cell derived red blood cells for transfusion: are we there yet?

    Science.gov (United States)

    Kim, Hyun Ok

    2014-03-01

    To date, the use of red blood cells (RBCs) produced from stem cells in vitro has not proved practical for routine transfusion. However, the perpetual and widespread shortage of blood products, problems related to transfusion-transmitted infections, and new emerging pathogens elicit an increasing demand for artificial blood. Worldwide efforts to achieve the goal of RBC production through stem cell research have received vast attention; however, problems with large-scale production and cost effectiveness have yet to prove practical usefulness. Some progress has been made, though, as cord blood stem cells and embryonic stem cells have shown an ability to differentiate and proliferate, and induced pluripotent stem cells have been shown to be an unlimited source for RBC production. However, transfusion of stem cell-derived RBCs still presents a number of challenges to overcome. This paper will summarize an up to date account of research and advances in stem cell-derived RBCs, delineate our laboratory protocol in producing RBCs from cord blood, and introduce the technological developments and limitations to current RBC production practices.

  10. Decreased PD-1 positive blood follicular helper T cells in patients with psoriasis.

    Science.gov (United States)

    Shin, Dongyun; Kim, Dae Suk; Kim, Sung Hee; Je, Jung Hwan; Kim, Hee Ju; Young Kim, Do; Kim, Soo Min; Lee, Min-Geol

    2016-10-01

    Follicular helper T (Tfh) cells are recently characterized subset of helper T cells, which are initially found in the germinal centers of B cell follicles. The major role of Tfh cells is helping B cell activation and antibody production during humoral immunity. Recently, blood Tfh cells were shown to be associated with autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, bullous pemphigoid and psoriasis. There is only one study which investigated Tfh cells in psoriasis patients. Therefore, in this study, we evaluated and analyzed blood Tfh cells in Korean patients with psoriasis. A total of 28 psoriasis patients and 16 healthy controls were enrolled. The frequency and absolute number of CXCR5(+)PD-1(+) Tfh cells were decreased in patients with psoriasis compared to healthy controls. CD4(+)CXCR5(+) T cells and CXCR5(+)ICOS(+) Tfh cells did not show differences. The frequency and absolute number of CXCR5(+)PD-1(+) Tfh cells in psoriasis patients negatively correlated with erythrocyte sedimentation rate and positively correlated with disease duration. The absolute number of CXCR5(+)ICOS(+) Tfh cells also showed positive correlation with disease duration. However, the subpopulations of Tfh cells did not correlate with Psoriasis Area and Severity Index. Serum interleukin-21 level was significantly increased in psoriasis patients compared to healthy controls, however, its level did not correlate with clinical and experimental parameters of psoriasis patients. These findings suggest the decreased function of Tfh cells in psoriasis, which could result in attenuated B cell immune responses in the pathogenesis of psoriasis. However, further investigations are necessary to confirm the function of Tfh cells in psoriasis vulgaris.

  11. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  12. CD1c+ blood dendritic cells have Langerhans cell potential.

    Science.gov (United States)

    Milne, Paul; Bigley, Venetia; Gunawan, Merry; Haniffa, Muzlifah; Collin, Matthew

    2015-01-15

    Langerhans cells (LCs) are self-renewing in the steady state but repopulated by myeloid precursors after injury. Human monocytes give rise to langerin-positive cells in vitro, suggesting a potential precursor role. However, differentiation experiments with human lineage-negative cells and CD34(+) progenitors suggest that there is an alternative monocyte-independent pathway of LC differentiation. Recent data in mice also show long-term repopulation of the LC compartment with alternative myeloid precursors. Here we show that, although monocytes are able to express langerin, when cultured with soluble ligands granulocyte macrophage colony-stimulating factor (GM-CSF), transforming growth factor β (TGFβ), and bone morphogenetic protein 7 (BMP7), CD1c(+) dendritic cells (DCs) become much more LC-like with high langerin, Birbeck granules, EpCAM, and E-cadherin expression under the same conditions. These data highlight a new potential precursor function of CD1c(+) DCs and demonstrate an alternative pathway of LC differentiation that may have relevance in vivo.

  13. Transplantation? Peripheral Stem Cell/Bone Marrow/Cord Blood

    Directory of Open Access Journals (Sweden)

    Itır Sirinoglu Demiriz

    2012-01-01

    Full Text Available The introduction of peripheral stem cell (PSC and cord blood (CB as an alternative to bone marrow (BM recently has caused important changes on hematopoietic stem cell transplantation (HSCT practice. According to the CIBMTR data, there has been a significant decrease in the use of bone marrow and increase in the use of PSC and CB as the stem cell source for HSCT performed during 1997–2006 period for patients under the age of 20. On the other hand, the stem cell source in 70% of the HSCT procedures performed for patients over the age of 20 was PSC and the second most preferred stem cell source was bone marrow. CB usage is very limited for the adult population. Primary disease, stage, age, time and urgency of transplantation, HLA match between the patient and the donor, stem cell quantity, and the experience of the transplantation center are some of the associated factors for the selection of the appropriate stem cell source. Unfortunately, there is no prospective randomized study aimed to facilitate the selection of the correct source between CB, PSC, and BM. In this paper, we would like to emphasize the data on stem cell selection in light of the current knowledge for patient populations according to their age and primary disease.

  14. Phenotypic, ultra-structural, and functional characterization of bovine peripheral blood dendritic cell subsets.

    Directory of Open Access Journals (Sweden)

    Janet J Sei

    Full Text Available Dendritic cells (DC are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c-. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC, and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.

  15. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    Science.gov (United States)

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces.

  16. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.

    Science.gov (United States)

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2013-01-01

    We developed a mechanical model of a red blood cell (RBC) that is capable of expressing its characteristic behaviors in shear flows. The RBC was modeled as a closed shell membrane consisting of spring networks in the framework of the energy minimum concept. The fluid forces acting on RBCs were modeled from Newton's viscosity law and the conservation of momentum. In a steady shear flow, the RBC model exhibited various behaviors, depending on the shear rate; it tumbled, tank-treaded, or both. The transition from tumbling to tank-treading occurred at a shear rate of 20 s( - 1). The simulation of an RBC in steady and unsteady parallel shear flows (Couette flows) showed that the deformation parameters of the RBC were consistent with experimental results. The RBC in Poiseuille flow migrated radially towards the central axis of the flow channel. Axial migration became faster with an increase in the viscosity of the media, qualitatively consistent with experimental results. These results demonstrate that the proposed model satisfies the essential conditions for simulating RBC behavior in blood flow. Finally, a large-scale RBC flow simulation was implemented to show the capability of the proposed model for analyzing the mesoscopic nature of blood flow.

  17. Value of the peripheral blood B-cells subsets in patients with ankylosing spondylitis

    Institute of Scientific and Technical Information of China (English)

    LIN Qu; GU Jie-ruo; LI Tian-wang; ZHANG Fu-cheng; LIN Zhi-ming; LIAO Ze-tao; WEI Qiu-jing; CAO Shuang-yan; LI Li

    2009-01-01

    Background The role of B-cell remains an enigma in the pathogenesis of ankylosing spondylitis(AS).This study aimed to investigate the distributions of B-cells and subsets in peripheral blood of AS patients and observe their changes in etanercept-treated AS patents.Methods We detected the proportions of CD19+ B-cell,naive B-cell(CD19+CD27),memory B-cell(CD19+CD27dim)and plasmablast(CD19+CD27high)in peripheral blood of 66 patients with AS(39 at active stage,27 at stable stage;35patients with peripheral joint involvement,31 patients with axial involvement alone),30 patients with rheumatoid arthritis (RA)and 30 healthy volunteers using flow cytometry.And then we observedthe changes of the above indexes of 39 active AS patients treated with etanercept in a randomized,double-blind,placebo-controlled trial.Results (1)Percentages of CD19+ B-cells in active or peripheral joint involvement AS patients increased more obviously than those in stable or axial involvement alone AS patients(both P=0.001),and percentage of CD19+CD27high B-cells in AS patients with peripheral joint involvement was significantly higher than that in cases with axial involvement alone or healthy volunteers(P=0.005 and 0.006,respectively);(2)The percentage of CD19+ B-cells in AS patients was positively correlated with Bath Ankylosing Spondylitis Disease Activity Index(BASDAI)scores,Patient's Global Assessment(PGA)scores,total back pain scores and nocturnal back pain scores(r=0.270,0.255,0.251 and 0.266,P=0.029,0.039,0.042 and 0.031,respectively);(3)At week 6 and week 12,there were no statistical differences of the percentages of B-cells and subsets between etanercept group and placebo group of AS patients(P>0.05);the percentage of CD19+ B-cells in etanercept group was higher than that in healthy volunteers at week 12(t=3.320,P=0.003).Conclusions Misbalance is present in B-cells and some subsets in peripheral blood of active AS patients with peripheral joint involved.B-cells might play an important

  18. Red-blood-cell alloimmunisation in relation to antigens' exposure and their immunogenicity: a cohort study.

    NARCIS (Netherlands)

    Evers, D.; Middelburg, R.A.; Haas, M. de; Zalpuri, S.; Vooght, K.M. De; Kerkhof, D. van de; Visser, O; Pequeriaux, N.C.V.; Hudig, F.; Schonewille, H.; Zwaginga, J.J.; Bom, J.G. Van Der

    2016-01-01

    BACKGROUND: Matching donor red blood cells based on recipient antigens prevents alloimmunisation. Knowledge about the immunogenicity of red-blood-cell antigens can help optimise risk-adapted matching strategies. We set out to assess the immunogenicity of red-blood-cell antigens. METHODS: In an incid

  19. Utilization and quality of cryopreserved red blood cells in transfusion medicine

    NARCIS (Netherlands)

    Henkelman, S.; Noorman, F.; Badloe, J. F.; Lagerberg, J. W. M.

    2015-01-01

    Cryopreserved (frozen) red blood cells have been used in transfusion medicine since the Vietnam war. The main method to freeze the red blood cells is by usage of glycerol. Although the usage of cryopreserved red blood cells was promising due to the prolonged storage time and the limited cellular det

  20. Development and testing of a new disposable sterile device for labelling white blood cells

    NARCIS (Netherlands)

    Signore, A.; Glaudemans, A. W. J. M.; Malviya, G.; Lazzeri, E.; Prandini, N.; Viglietti, A. L.; De Vries, E. F. J.; Dierckx, R. A. J. O.

    2012-01-01

    Aim. White blood cell (WBC) labelling requires isolation of cells from patient's blood under sterile conditions using sterile materials, buffers and disposables under good manufacturing practice (GMP) conditions. Till now, this limited the use of white blood cell scintigraphy (WBC-S) only to well eq

  1. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells.

    Science.gov (United States)

    Spéder, Pauline; Brand, Andrea H

    2014-08-11

    Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion.

  2. Stimulation of human red blood cells leads to Ca2+-mediated intercellular adhesion

    CERN Document Server

    Steffen, Patrick; Nguyen, Duc Bach; Müller, Torsten; Bernhardt, Ingolf; Kaestner, Lars; Wagner, Christian

    2011-01-01

    Red blood cells (RBCs) are a major component of blood clots, which form physiologically as a response to injury or pathologically in thrombosis. The active participation of RBCs in thrombus solidification has been previously proposed but not yet experimentally proven. Holographic optical tweezers and single-cell force spectroscopy were used to study potential cell-cell adhesion between RBCs. Irreversible intercellular adhesion of RBCs could be induced by stimulation with lysophosphatidic acid (LPA), a compound known to be released by activated platelets. We identified Ca2+ as an essential player in the signaling cascade by directly inducing Ca2+ influx using A23187. Elevation of the internal Ca2+ concentration leads to an intercellular adhesion of RBCs similar to that induced by LPA stimulation. Using single-cell force spectroscopy, the adhesion of the RBCs was identified to be approximately 100 pN, a value large enough to be of significance inside a blood clot or in pathological situations like the vasco-occ...

  3. MEASUREMENT OF REGIONAL BONE BLOOD FLOW IN THE CANINE MANDIBULAR RAMUS USING RADIOLABELLED TOAD RED BLOOD CELLS

    Institute of Scientific and Technical Information of China (English)

    毛驰; 王翰章

    1994-01-01

    Toad red blood cells were used to measure regional bone blood flow in the canine mandibular ramus.The blood cells were labelled with sodium pertechnetate and fixed in 10% formalin;they were 22×15 μm in size and had a specific gravity close to that of dog red blood cells.These cells had no discernible effect on systemic hemody-namics after injection,did not agglutinate,were well mixed and evenly distributed throughout the body,and were completely extracted in one circulation through the mandible.The mandibular ramus was divided into six regions,and the blood flow rates in each were found to be similar to those reported in previous studies with radiolabelled carbonized,microspheres.Furthermore,the blood flow distribution pattern of the mandibular ramus determined in this study was identical to that of our previous study using the bone-seeking radionuclide method.We suggest that radiolabelled toad red blood cells are an ideal marker for measuring regional blood flow in the canine mandible.

  4. Utilization and quality of cryopreserved red blood cells in transfusion medicine.

    Science.gov (United States)

    Henkelman, S; Noorman, F; Badloe, J F; Lagerberg, J W M

    2015-02-01

    Cryopreserved (frozen) red blood cells have been used in transfusion medicine since the Vietnam war. The main method to freeze the red blood cells is by usage of glycerol. Although the usage of cryopreserved red blood cells was promising due to the prolonged storage time and the limited cellular deterioration at subzero temperatures, its usage have been hampered due to the more complex and labour intensive procedure and the limited shelf life of thawed products. Since the FDA approval of a closed (de) glycerolization procedure in 2002, allowing a prolonged postthaw storage of red blood cells up to 21 days at 2-6°C, cryopreserved red blood cells have become a more utilized blood product. Currently, cryopreserved red blood cells are mainly used in military operations and to stock red blood cells with rare phenotypes. Yet, cryopreserved red blood cells could also be useful to replenish temporary blood shortages, to prolong storage time before autologous transfusion and for IgA-deficient patients. This review describes the main methods to cryopreserve red blood cells, explores the quality of this blood product and highlights clinical settings in which cryopreserved red blood cells are or could be utilized.

  5. Of macrophages and red blood cells; a complex love story.

    Directory of Open Access Journals (Sweden)

    Djuna Zoe de Back

    2014-01-01

    Full Text Available Macrophages tightly control the production and clearance of red blood cells (RBC. During steady state haematopoiesis, approximately 1010 red blood cells are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  6. SUBPOPULATIONAL FEATURES OF PERIPHERAL BLOOD CELLS IN THE PATIENTS WITH AUTOIMMUNE MYOCARDITIS: CLINICAL AND PATHOGENETIC ASPECTS

    Directory of Open Access Journals (Sweden)

    N. N. Kekenadze

    2005-01-01

    Full Text Available Abstract. The goal of our research was comparative study of the most important parameters of subset cytoarchitectonics in the patients with the different courses of myocarditis and evaluation of their pathogenetic and clinical value in the practice of the physician. We have investigated 99 patients with myocarditis and 40 healthy donors. In patients with malignant course of disease we revealed increased activation index of T/B-cells; increased expression of the activation markers on the both lines of differentiation; disproportion in the immunoregulatory subsets with increased role of dendric cells; decreased intensity of the autoreactive T-cells apoptosis. in the patient with the In patients with nonmalignant course of disease expressed signs of immunopathology were not found. Thus, study of activation markers on the cells of the peripheral blood is more informative and noninvasive method of diagnostics of myocarditis.

  7. SUBPOPULATIONAL FEATURES OF PERIPHERAL BLOOD CELLS IN THE PATIENTS WITH AUTOIMMUNE MYOCARDITIS: CLINICAL AND PATHOGENETIC ASPECTS

    Directory of Open Access Journals (Sweden)

    N. N. Kekenadze

    2014-07-01

    Full Text Available Abstract. The goal of our research was comparative study of the most important parameters of subset cytoarchitectonics in the patients with the different courses of myocarditis and evaluation of their pathogenetic and clinical value in the practice of the physician. We have investigated 99 patients with myocarditis and 40 healthy donors. In patients with malignant course of disease we revealed increased activation index of T/B-cells; increased expression of the activation markers on the both lines of differentiation; disproportion in the immunoregulatory subsets with increased role of dendric cells; decreased intensity of the autoreactive T-cells apoptosis. in the patient with the In patients with nonmalignant course of disease expressed signs of immunopathology were not found. Thus, study of activation markers on the cells of the peripheral blood is more informative and noninvasive method of diagnostics of myocarditis.

  8. Isolation of rare tumor cells from blood cells with buoyant immuno-microbubbles.

    Directory of Open Access Journals (Sweden)

    Guixin Shi

    Full Text Available Circulating tumor cells (CTCs are exfoliated at various stages of cancer, and could provide invaluable information for the diagnosis and prognosis of cancers. There is an urgent need for the development of cost-efficient and scalable technologies for rare CTC enrichment from blood. Here we report a novel method for isolation of rare tumor cells from excess of blood cells using gas-filled buoyant immuno-microbubbles (MBs. MBs were prepared by emulsification of perfluorocarbon gas in phospholipids and decorated with anti-epithelial cell adhesion molecule (EpCAM antibody. EpCAM-targeted MBs efficiently (85% and rapidly (within 15 minutes bound to various epithelial tumor cells suspended in cell medium. EpCAM-targeted MBs efficiently (88% isolated frequent tumor cells that were spiked at 100,000 cells/ml into plasma-depleted blood. Anti-EpCAM MBs efficiently (>77% isolated rare mouse breast 4T1, human prostate PC-3 and pancreatic cancer BxPC-3 cells spiked into 1, 3 and 7 ml (respectively of plasma-depleted blood. Using EpCAM targeted MBs CTCs from metastatic cancer patients were isolated, suggesting that this technique could be developed into a valuable clinical tool for isolation, enumeration and analysis of rare cells.

  9. Lowering of blood pressure by increasing hematocrit with non nitric oxide scavenging red blood cells.

    Science.gov (United States)

    Salazar Vázquez, Beatriz Y; Cabrales, Pedro; Tsai, Amy G; Johnson, Paul C; Intaglietta, Marcos

    2008-02-01

    Isovolemic exchange transfusion of 40% of the blood volume in awake hamsters was used to replace native red blood cells (RBCs) with RBCs whose hemoglobin (Hb) was oxidized to methemoglobin (MetHb), MetRBCs. The exchange maintained constant blood volume and produced different final hematocrits (Hcts), varying from 48 to 62% Hct. Mean arterial pressure (MAP) did not change after exchange transfusion, in which 40% of the native RBCs were replaced with MetRBCs, without increasing Hct. Increasing Hct with MetRBCs lowered MAP by 12 mm Hg when Hct was increased 12% above baseline. Further increases of Hct with MetRBCs progressively returned MAP to baseline, which occurred at 62% Hct, a 30% increase in Hct from baseline. These observations show a parabolic "U" shaped distribution of MAP against the change in Hct. Cardiac index, cardiac output divided by body weight, increased between 2 and 17% above baseline for the range of Hcts tested. Peripheral vascular resistance (VR) was decreased 18% from baseline when Hct was increased 12% from baseline. VR and MAP were above baseline for increases in Hct higher than 30%. However, vascular hindrance, VR normalized by blood viscosity (which reflects the contribution of vascular geometry), was lower than baseline for all the increases in Hct tested with MetRBC, indicating prevalence of vasodilation. These suggest that acute increases in Hct with MetRBCs increase endothelium shear stress and stimulate the production of vasoactive factors (e.g., nitric oxide [NO]). When MetRBCs were compared with functional RBCs, vasodilation was augmented for MetRBCs probably due to the lower NO scavenging of MetHb. Consequently, MetRBCs increased the viscosity related hypotension range compared with functional RBCs as NO shear stress vasodilation mediated responses are greater.

  10. Blood

    Science.gov (United States)

    ... Also, blood is either Rh-positive or Rh-negative. So if you have type A blood, it's either A positive or A negative. Which type you are is important if you need a blood transfusion. And your Rh factor could be important ...

  11. Skin blood flow with elastic compressive extravehicular activity space suit.

    Science.gov (United States)

    Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R

    2003-10-01

    During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.

  12. The effects of the synthetic nocistatin on blood vessel activities

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nocistatin was synthesized by the solid-phase peptide synthesismethod. Its effects on rat systemic arterial pressure; rat hindquarter vascular bed resistance; tension of rabbit pectoral, abdominal, femoral aorta muscle strips without endothelium; and nociceptin induced decreases of rat systemic arterial pressure were determined. The results showed that nocistatin can increase the systemic arterial pressure, increase the hindquarter vascular bed resistance and induce the contraction significantly of abdominal, femoral aorta muscle strips without endothelium; it has no significant effect on tension of pectoral aorta muscle strips, it cannot antagonize significantly the decrease of rat systemic arterial pressure induced by nociceptin. These results suggest that nocistatin has some important effects on blood vessel activities.

  13. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  14. Simulation of red blood cell aggregation in shear flow.

    Science.gov (United States)

    Lim, B; Bascom, P A; Cobbold, R S

    1997-01-01

    A simulation model has been developed for red blood cell (RBC) aggregation in shear flow. It is based on a description of the collision rates of RBC, the probability of particles sticking together, and the breakage of aggregates by shear forces. The influence of shear rate, hematocrit, aggregate fractal dimension, and binding strength on aggregation kinetics were investigated and compared to other theoretical and experimental results. The model was used to simulate blood flow in a long large diameter tube under steady flow conditions at low Reynolds numbers. The time and spatial distribution of the state of aggregation are shown to be in qualitative agreement with previous B-mode ultrasound studies in which a central region of low echogenicity was noted. It is suggested that the model can provide a basis for interpreting prior measurements of ultrasound echogenicity and may help relate them to the local state of aggregation.

  15. Analysis of White Blood Cell Dynamics in Nailfold Capillaries

    Science.gov (United States)

    Bourquard, Aurélien; Butterworth, Ian; Sánchez-Ferro, Alvaro; Giancardo, Luca; Soenksen, Luis; Cerrato, Carolina; Flores, Rafael; Castro-González, Carlos

    2016-01-01

    Based on video data acquired with low-cost, portable microscopy equipment, we introduce a semi-automatic method to count visual gaps in the blood flow as a proxy for white blood cells (WBC) passing through nailfold capillaries. Following minimal user interaction and a pre-processing stage, our method consists in the spatio-temporal segmentation and analysis of capillary profiles. Besides the mere count information, it also estimates the speed associated with every WBC event. The accuracy of our algorithm is validated through the analysis of two capillaries acquired from one healthy subject. Results are compared with manual counts from four human raters and confronted with related physiological data reported in literature. PMID:26738019

  16. Negative regulation of natural killer cell in tumor tissue and peripheral blood of oral squamous cell carcinoma.

    Science.gov (United States)

    Dutta, Anupam; Banerjee, Arunabha; Saikia, Nabajyoti; Phookan, Jyotirmoy; Baruah, Munindra Narayan; Baruah, Shashi

    2015-12-01

    Natural killer (NK) cells are the key lymphocytes in solid tumors. Its activity is regulated by both germline encoded receptors and cytokine microenvironment. We conducted a case-control study to investigate the activation status of NK cell in oral squamous cell carcinoma (OSCC). NK cell activation was assessed in context of NK cell cytotoxicity and transcript expression of NK cell receptors (NKp46 and KIRs) and NK cell associated cytokines (IL-1β, IL-2, IL-10, IL-12β, IL-15, IL-18, IL-21, IFN-γ, TNF-α and TGF-β). The results revealed possible mechanisms involved in reduced NK cell activation in peripheral circulation: quantitative deficiency of NK cell number and lowered cytotoxicity together with qualitative NK impairments caused