WorldWideScience

Sample records for blocking approximation dipole

  1. Electric dipole response of neutron-rich Calcium isotopes in relativistic quasiparticle time blocking approximation

    CERN Document Server

    Egorova, Irina A

    2016-01-01

    New results for electric dipole strength in the chain of even-even Calcium isotopes with the mass numbers A = 40 - 54 are presented. Starting from the covariant Lagrangian of Quantum Hadrodynamics, spectra of collective vibrations (phonons) and phonon-nucleon coupling vertices for $J \\leq 6$ and normal parity were computed in a self-consistent relativistic quasiparticle random phase approximation (RQRPA). These vibrations coupled to Bogoliubov two-quasiparticle configurations (2q$\\otimes$phonon) form the model space for the calculations of the dipole response function in the relativistic quasiparticle time blocking approximation (RQTBA). The results for giant dipole resonance in the latter approach are compared to those obtained in RQRPA and to available data. Evolution of the dipole strength with neutron number is investigated for both high-frequency giant dipole resonance (GDR) and low-lying strength. Development of a pygmy resonant structure on the low-energy shoulder of GDR is traced and analyzed in terms...

  2. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  3. Scattering from rough thin films: discrete-dipole-approximation simulations.

    Science.gov (United States)

    Parviainen, Hannu; Lumme, Kari

    2008-01-01

    We investigate the wave-optical light scattering properties of deformed thin circular films of constant thickness using the discrete-dipole approximation. Effects on the intensity distribution of the scattered light due to different statistical roughness models, model dependent roughness parameters, and uncorrelated, random, small-scale porosity of the inhomogeneous medium are studied. The suitability of the discrete-dipole approximation for rough-surface scattering problems is evaluated by considering thin films as computationally feasible rough-surface analogs. The effects due to small-scale inhomogeneity of the scattering medium are compared with the analytic approximation by Maxwell Garnett, and the results are found to agree with the approximation.

  4. On the Purcell effect beyond the dipole approximation

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter;

    2012-01-01

    We investigate spontaneous emission from excitons in quantum dots beyond the dipole approximation and show how the symmetry of the exciton wavefunction plays a crucial role. We show explicitly that for spherically symmetric excitons, the Purcell effect is independent of the exciton size and is go......We investigate spontaneous emission from excitons in quantum dots beyond the dipole approximation and show how the symmetry of the exciton wavefunction plays a crucial role. We show explicitly that for spherically symmetric excitons, the Purcell effect is independent of the exciton size...

  5. Convergence of the discrete dipole approximation. I. Theoretical analysis

    CERN Document Server

    Yurkin, Maxim A; Hoekstra, Alfons G

    2006-01-01

    We performed a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear and quadratic term in the size of a dipole d, when the latter is in the range of DDA applicability. Moreover, the linear term is significantly smaller for cubically than for non-cubically shaped scatterers. Therefore, for small d errors for cubically shaped particles are much smaller than for non-cubically shaped. The relative importance of the linear term decreases with increasing size, hence convergence of DDA for large enough scatterers is quadratic in the common range of d. Extensive numerical simulations were carried out for a wide range of d. Finally we discuss a number of new developments in DDA and their consequences for convergence.

  6. Breakdown of the Dipole Approximation in Strong-Field Ionization

    CERN Document Server

    Ludwig, A; Mayer, B W; Phillips, C R; Gallmann, L; Keller, U

    2014-01-01

    We report the breakdown of the electric dipole approximation in the long-wavelength limit in strong-field ionization with linearly polarized few-cycle mid-infrared laser pulses at intensities on the order of 10$^{13}$ W/cm$^2$. Photoelectron momentum distributions were recorded by velocity map imaging and projected onto the beam propagation axis. We observe an increasing shift of the peak of this projection opposite to the beam propagation direction with increasing laser intensities. From a comparison with semi-classical simulations, we identify the combined action of the magnetic field of the laser pulse and the Coulomb potential as origin of our observations.

  7. Discrete Dipole Approximation Aided Design Method for Nanostructure Arrays

    Institute of Scientific and Technical Information of China (English)

    ZHU Shao-Li; LUO Xian-Gang; DU Chun-Lei

    2007-01-01

    A discrete dipole approximation (DDA) aided design method is proposed to determine the parameters of nanostructure arrays. The relationship between the thickness, period and extinction efficiency of nanostructure arrays for the given shape can be calculated using the DDA. Based on the calculated curves, the main parameters of the nanostructure arrays such as thickness and period can be determined. Using this aided method, a rhombic sliver nanostructure array is designed with the determinant parameters of thickness (40 nm) and period (440 nm).We further fabricate the rhombic sliver nanostructure arrays and testify the character of the extinction spectra.The obtained extinction spectra is within the visible range and the full width at half maximum is 99nm, as is expected.

  8. Applicability of point-dipoles approximation to all-dielectric metamaterials

    DEFF Research Database (Denmark)

    Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei

    2015-01-01

    All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide important...

  9. Gauge Invariance of a Time-Dependent Harmonic Oscillator in Magnetic Dipole Approximation

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; QIAN Shang-Wu; FU Li-Ping; WANG Jing-Shan; GUO Ke-Tao

    2008-01-01

    A manifestly gauge-invariant formulation of non-relativistic quantum mechanics is applied to the case of time-dependent harmonic oscillator in the magnetic dipole approximation. A genera/ equation for obtaining gauge-invariant transition probability amplitudes is derived.

  10. Discrete dipole approximation of gold nanospheres on substrates: Considerations and comparison with other discretization methods

    Directory of Open Access Journals (Sweden)

    M. P. Menguc

    2011-09-01

    Full Text Available We embark on this preliminary study of the suitability of the discrete dipole approximation with surface interaction (DDA-SI method to model electric field scattering from noble metal nano-structures on dielectric substrates. The refractive index of noble metals, particularly due to their high imaginary components, require smaller lattice spacings and are especially sensitive to the shape integrity and the volume of the dipole model. The results of DDA-SI method are validated against those of the well-established finite element method (FEM and the finite difference time domain (FDTD method.

  11. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  12. Effective restoration of dipole sum rules within the renormalized random-phase approximation

    Science.gov (United States)

    Hung, N. Quang; Dang, N. Dinh; Hao, T. V. Nhan; Phuc, L. Tan

    2016-12-01

    The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in 48,52,58Ca and 90,96,110Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, causing the violation of the corresponding energy-weighted sum rules (EWSR). It is shown that this sum rule violation can be eliminated by taking into account the contribution of the particle-particle and hole-hole excitations together with the particle-hole ones in a simple and perturbative way. Consequently, the ratio of the energy-weighted sum of strengths of the pygmy dipole resonance to that of the giant dipole resonance increases.

  13. Whispering gallery mode single nano-particle detection and sizing: the validity of the dipole approximation

    CERN Document Server

    Foreman, Matthew R; Treasurer, Eshan; Lopez, Jehovani; Arnold, Stephen

    2016-01-01

    Interactions between whispering gallery modes (WGMs) and small nanoparticles are commonly modelled by treating the particle as a point dipole scatterer. This approach is assumed to be accurate as long as the nanoparticle radius, $a$, is small compared to the WGM wavelength $\\lambda$. In this article, however, we show that the large field gradients associated with the evanescent decay of a WGM causes the dipole theory to significantly underestimate the interaction strength, and hence induced WGM resonance shift, even for particles as small as $a\\sim \\lambda/10$. To mitigate this issue we employ a renormalized Born approximation to more accurately determine nanoparticle induced resonance shifts and hence enable improved particle sizing. The domain of validity of this approximation is investigated and supporting experimental results are presented.

  14. Silver nanodisks: optical properties study using the discrete dipole approximation method.

    Science.gov (United States)

    Brioude, A; Pileni, M P

    2005-12-15

    The simulated optical properties of silver nanodisks are presented. The extinction, absorption, and scattering efficiencies are calculated using the discrete dipole approximation. The influence of the nanodisk size, truncature (snip), aspect ratio, and environment on the plasmon resonance bands is investigated. In particular, the dipolar and multipolar resonance peak positions have been related to the specific features of the nanodisk geometry. An interpretation of the origins of each multipolar mode is proposed for the first time taking into account this geometry.

  15. Effective restoration of dipole sum rules within the renormalized random-phase approximation

    CERN Document Server

    Hung, N Quang; Hao, T V Nhan; Phuc, L Tan

    2016-01-01

    The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in $^{48, 52, 58}$Ca and $^{90, 96, 110}$Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, cau...

  16. Computing approximate (symmetric block) rational Krylov subspaces without explicit inversion

    OpenAIRE

    Mach, Thomas; Pranić, Miroslav S.; Vandebril, Raf

    2013-01-01

    It has been shown, see TW623, that approximate extended Krylov subspaces can be computed —under certain assumptions— without any explicit inversion or system solves. Instead the necessary products A-1v are obtained in an implicit way retrieved from an enlarged Krylov subspace. In this paper this approach is generalized to rational Krylov subspaces, which contain besides poles at infinite and zero also finite non-zero poles. Also an adaption of the algorithm to the block and the symmetric ...

  17. RCS estimation of linear and planar dipole phased arrays approximate model

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...

  18. Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy

    CERN Document Server

    Yurkin, Maxim A; Hoekstra, Alfons G

    2006-01-01

    We propose an extrapolation technique that allows accuracy improvement of the discrete dipole approximation computations. The performance of this technique was studied empirically based on extensive simulations for 5 test cases using many different discretizations. The quality of the extrapolation improves with refining discretization reaching extraordinary performance especially for cubically shaped particles. A two order of magnitude decrease of error was demonstrated. We also propose estimates of the extrapolation error, which were proven to be reliable. Finally we propose a simple method to directly separate shape and discretization errors and illustrated this for one test case.

  19. Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results

    Science.gov (United States)

    Kurz, F. T.; Buschle, L. R.; Kampf, T.; Zhang, K.; Schlemmer, H. P.; Heiland, S.; Bendszus, M.; Ziener, C. H.

    2016-12-01

    We present an analytical solution of the Bloch-Torrey equation for local spin dephasing in the magnetic dipole field around a capillary and for ensembles of capillaries, and adapt this solution for the study of spin dephasing around large capillaries. In addition, we provide a rigorous mathematical derivation of the slow diffusion approximation for the spin-bearing particles that is used in this regime. We further show that, in analogy to the local magnetization, the transverse magnetization of one MR imaging voxel in the regime of static dephasing (where diffusion effects are not considered) is merely the first term of a series expansion that constitutes the signal in the slow diffusion approximation. Theoretical results are in agreement with experimental data for capillaries in rat muscle at 7 T.

  20. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength

    CERN Document Server

    Yurkin, Maxim A; Hoekstra, Alfons G

    2007-01-01

    In this manuscript we investigate the capabilities of the Discrete Dipole Approximation (DDA) to simulate scattering from particles that are much larger than the wavelength of the incident light, and describe an optimized publicly available DDA computer program that processes the large number of dipoles required for such simulations. Numerical simulations of light scattering by spheres with size parameters x up to 160 and 40 for refractive index m=1.05 and 2 respectively are presented and compared with exact results of the Mie theory. Errors of both integral and angle-resolved scattering quantities generally increase with m and show no systematic dependence on x. Computational times increase steeply with both x and m, reaching values of more than 2 weeks on a cluster of 64 processors. The main distinctive feature of the computer program is the ability to parallelize a single DDA simulation over a cluster of computers, which allows it to simulate light scattering by very large particles, like the ones that are...

  1. Accurate Computation of Electric Field Enhancement Factors for Metallic Nanoparticles Using the Discrete Dipole Approximation

    Directory of Open Access Journals (Sweden)

    DePrince A

    2010-01-01

    Full Text Available Abstract We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small.

  2. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0

    CERN Document Server

    Draine, B T

    2008-01-01

    DDSCAT 7.0 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures (and near-field calculations) in Draine & Flatau (2009). DDSCAT 7.0 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross ...

  3. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3

    CERN Document Server

    Draine, B T

    2013-01-01

    DDSCAT 7.3 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008), and efficient near-field calculations in Flatau & Draine (2012). DDSCAT 7.3 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCA...

  4. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.1

    CERN Document Server

    Draine, B T

    2010-01-01

    DDSCAT 7.1 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures (and near-field calculations) in Draine & Flatau (2008). DDSCAT 7.1 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross ...

  5. Opendda: a Novel High-Performance Computational Framework for the Discrete Dipole Approximation

    CERN Document Server

    Donald, James Mc; Jennings, S Gerard

    2009-01-01

    This work presents a highly optimized computational framework for the Discrete Dipole Approximation, a numerical method for calculating the optical properties associated with a target of arbitrary geometry that is widely used in atmospheric, astrophysical and industrial simulations. Core optimizations include the bit-fielding of integer data and iterative methods that complement a new Discrete Fourier Transform (DFT) kernel, which efficiently calculates the matrix vector products required by these iterative solution schemes. The new kernel performs the requisite 3-D DFTs as ensembles of 1-D transforms, and by doing so, is able to reduce the number of constituent 1-D transforms by 60% and the memory by over 80%. The optimizations also facilitate the use of parallel techniques to further enhance the performance. Complete OpenMP-based shared-memory and MPI-based distributed-memory implementations have been created to take full advantage of the various architectures. Several benchmarks of the new framework indica...

  6. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2

    CERN Document Server

    Draine, Bruce T

    2012-01-01

    DDSCAT 7.2 is a freely available open-source Fortran-90 software package applying the discrete dipole approximation (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", which can be used to study absorption, scattering, and electric fields around arrays of nanostructures. The DDA approximates the target by an array of polarizable points. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008). Efficient near-field calculations are enabled following Flatau & Draine (2012). DDSCAT 7.2 allows accurate calculations of electromagnetic scattering from targets with size parameters 2*pi*aeff/lambda < 25 provided the refractive index m is not large compared to unity (|m-1| ...

  7. Directed energy transfer in films of CdSe quantum dots: beyond the point dipole approximation.

    Science.gov (United States)

    Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed; Zhu, Nan; Chábera, Pavel; Lenngren, Nils; Chi, Qijin; Pullerits, Tõnu

    2014-04-30

    Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size of QDs, so that the simple point-dipole approximation, widely used in the conventional approach, can no longer offer quantitative description of the FRET dynamics in such systems. Here, we report the investigations of the FRET dynamics in densely packed films composed of multisized CdSe QDs using ultrafast transient absorption spectroscopy and theoretical modeling. Pairwise interdot transfer time was determined in the range of 1.5 to 2 ns by spectral analyses which enable separation of the FRET contribution from intrinsic exciton decay. A rational model is suggested by taking into account the distribution of the electronic transition densities in the dots and using the film morphology revealed by AFM images. The FRET dynamics predicted by the model are in good quantitative agreement with experimental observations without adjustable parameters. Finally, we use our theoretical model to calculate dynamics of directed energy transfer in ordered multilayer QD films, which we also observe experimentally. The Monte Carlo simulations reveal that three ideal QD monolayers can provide exciton funneling efficiency above 80% from the most distant layer. Thereby, utilization of directed energy transfer can significantly improve light harvesting efficiency of QD devices.

  8. Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna.

    Science.gov (United States)

    Johnson, Mikala; Bowen, Patrick; Kundtz, Nathan; Bily, Adam

    2014-09-01

    Since the discovery of materials with negative refractive index, widely known as metamaterials, it has been possible to develop new devices that utilize a metamaterial's ability to control the path of electromagnetic energy. Of particular promise, and already under intensive development for commercial applications, are metamaterial antennas for satellite communications. Using reconfigurable metamaterials in conjunction with the principles of holography, these new antennas can electronically steer the high gain antenna beam required for broadband communications while not having any moving parts, being thinner, lighter weight, and less expensive, and requiring less power to operate than conventional alternatives. Yet, the promise of these devices will not be realized without efficient and effective control and optimization. Toward this end, in this paper a discrete-dipole approximation (DDA) model of a waveguide-fed planar metamaterial antenna is derived. The proposed model is demonstrated to accurately predict the radiation of a two-dimensional metamaterial at a much reduced computational cost to full-wave simulation and at much greater fidelity than simpler models typically used in the field. The predictive capabilities of the derived DDA model opens possibilities for model-based control design for optimal beam steering.

  9. Exact Answers to Approximate Questions Noncommutative Dipoles, Open Wilson Lines, and UV-IR Duality

    CERN Document Server

    Rey, S J

    2002-01-01

    In this lecture, I put forward conjectures asserting that, in all noncommutative field theories, (1) open Wilson lines and their descendants constitute a complete set of interpolating operators of `noncommutative dipoles', obeying dipole relation, (2) infrared dynamics of the noncommutative dipoles is dual to ultraviolet dynamics of the elementary noncommutative fields, and (3) open string field theory is a sort of noncommutative field theory, whose open Wilson lines are interpolating operators for closed strings. I substantiate these conjectures by various intuitive arguments and explicit computations of one- and two-loop Feynman diagrammatics.

  10. ABSORPTION EFFICIENCIES OF FORSTERITE. I. DISCRETE DIPOLE APPROXIMATION EXPLORATIONS IN GRAIN SHAPE AND SIZE

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, Sean S. [Department of Earth and Planetary Sciences, University of Tennessee, 1421 Circle Drive, Knoxville, TN 37996-2366 (United States); Wooden, Diane H. [Space Science Division, NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035-0001 (United States); Harker, David E. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424 (United States); Kelley, Michael S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Woodward, Charles E. [Minnesota Institute of Astrophysics, 116 Church Street S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Murphy, Jim R., E-mail: slindsay@utk.edu, E-mail: diane.h.wooden@nasa.gov, E-mail: dharker@uscd.edu, E-mail: msk@astro.umd.edu, E-mail: chelsea@astro.umn.edu, E-mail: murphy@nmsu.edu [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States)

    2013-03-20

    We compute the absorption efficiency (Q{sub abs}) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 {mu}m wavelength range. Using the DDSCAT code, we compute Q{sub abs} for non-spherical polyhedral grain shapes with a{sub eff} = 0.1 {mu}m. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 {mu}m, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 {mu}m) shifts the 10 and 11 {mu}m features systematically toward longer wavelengths and relative to the 11 {mu}m feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 {mu}m spectra provides a potential means to probe the temperatures at which forsterite formed.

  11. Discrete dipole approximation models of chrystalline forsterite: Applications to cometary crystalline silicates

    Science.gov (United States)

    Lindsay, Sean Stephen

    The shape, size, and composition of crystalline silicates observed in comet comae and external proto-planetary disks are indicative of the formation and evolution of the dust grains during the processes of planetary formation. In this dissertation, I present the 3 -- 40 mum absorption efficiencies( Qabs) of irregularly shaped forsterite crystals computed with the discrete dipole approximation (DDA) code DDSCAT developed by Draine and Flatau and run on the NASA Advanced Supercomputing facility Pleiades. An investigation of grain shapes ranging from spheroidal to irregular indicate that the strong spectral features from forsterite are sensitive to grain shape and are potentially degenerate with the effects of crystal solid state composition (Mg-content). The 10, 11, 18, 23, and 33.5 mum features are found to be the most crystal shape sensitive and should be avoided in determining Mg-content. The distinct spectral features for the three shape classes are connected with crystal formation environment using a condensation experiment by (Kobatake et al., 2008). The condensation experiment demonstrates that condensed forsterite crystal shapes are dependent on the condensation environmental temperature. I generate DDSCAT target analog shapes to the condensed crystal shapes. These analog shapes are represented by the three shape classes: 1) equant, 2) a, c-columns, and 3) b-shortened platelets. Each of these shape classes exhibit distinct spectral features that can be used to interpret grain shape characteristics from 8 --- 40 mum spectroscopy of astronomical objects containing crystalline silicates. Synthetic spectral energy distributions (SEDs) of the coma of Hale-Bopp at rh = 2.8 AU are generated by thermally modeling the flux contributions of 5 mineral species present in comets. The synthetic SEDs are constrained using a chi2- minimization technique. The mineral species are amorphous carbon, amorphous pyroxene, amorphous olivine, crystalline enstatite, and crystalline

  12. Exploring the Limits of the Dipole Approximation with Angle-Resolved Electron Time-of-Flight Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Laidman, S.; Pangilinan, J.; Guillemin, R.; Yu, S.U.; Ohrwall, G.; Lindle, D.; Hemmers, O.

    2002-01-01

    Understanding the electronic structure of atoms and molecules is fundamental in determining their basic properties as well as the interactions that occur with different particles such as light. One such interaction is single photoionization; a process in which a photon collides with an atom or molecule and an electron with a certain kinetic energy is emitted, leaving behind a residual ion. Theoretical models of electronic structures use the dipole approximation to simplify x-ray interactions by assuming that the electromagnetic field of the radiation, expressed as a Taylor-series expansion, can be simplified by using only the first term. It has been known for some time that the dipole approximation becomes inaccurate at high photon energies, but the threshold at which this discrepancy begins is ambiguous. In order to enhance our understanding of these limitations, we measured the electron emissions of nitrogen. Beamline 8.0.1 at the Advanced Light Source was used with an electron Time-of-Flight (TOF) end station, which measures the time required for electrons emitted to travel a fixed distance. Data were collected over a broad range of photon energies (413 - 664 eV) using five analyzers rotated to 15 chamber angles. Preliminary analysis indicates that these results confirm the breakdown of the dipole approximation at photon energies well below 1 keV and that this breakdown is greatly enhanced in molecules just above the core-level ionization threshold. As a result, new theoretical models must be made that use higher order terms that were previously truncated.

  13. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells.

    Science.gov (United States)

    Gilev, Konstantin V; Eremina, Elena; Yurkin, Maxim A; Maltsev, Valeri P

    2010-03-15

    The discrete sources method (DSM) and the discrete dipole approximation (DDA) were compared for simulation of light scattering by a red blood cell (RBC) model. We considered RBCs with diameters up to 8 mum (size parameter up to 38), relative refractive indices 1.03 and 1.06, and two different orientations. The agreement in the angle-resolved S(11) element of the Mueller matrix obtained by these methods is generally good, but it deteriorates with increasing scattering angle, diameter and refractive index of a RBC. Based on the DDA simulations with very fine discretization (up to 93 dipoles per wavelength) for a single RBC, we attributed most of the disagreement to the DSM, which results contain high-frequency ripples. For a single orientation of a RBC the DDA is comparable to or faster than the DSM. However, the relation is reversed when a set of particle orientations need to be simulated at once. Moreover, the DSM requires about an order of magnitude less computer memory. At present, application of the DSM for massive calculation of light scattering patterns of RBCs is hampered by its limitations in size parameter of a RBC due to the high number of harmonics used for calculations.

  14. Optical properties of local surface plasmon resonance in Ag/ITO sliced nanosphere by the discrete dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Haiwei, Mu; Jingwei, Lv; Zhaoting, Liu; Lin, Yang; Qiang, Liu; Chao, Liu [Northeast Petroleum University, School of Electronics Science, Daqing (China); Shijie, Zheng [Harbin Institute of Technology, School of Civil Engineering, Harbin (China); Tao, Sun [Agency for Science, Technology and Research (A-STAR), Institute of Microelectronics, Singapore (Singapore)

    2016-04-15

    Optical properties of localized surface plasmon resonances (LSPR) of Ag/ITO sliced nanosphere have been studied using discrete dipole approximation and plasmon hybridization theory. It is found that different morphologies of sliced nanosphere can induce distinctive features in the extinction spectra. In the meanwhile, gap distances and refractive index of the surrounding medium could modulate the plasmon hybridization and the LSPR shifting. At large separation, the shift of LSPR peaks for the nanosphere sliced in halves consisting of ITO and Ag is small and insensitive to the gap distance in the weak coupling, whereas smaller separation exhibits a distinct red shift. Additionally, multiple resonance peaks are excited for the nanosphere sliced in quarters consisting of ITO and Ag. In this situation, electric field is mainly distributed in the gap region of sliced nanosphere and the central point. These results indicate that different morphologies of sliced nanosphere could create abundant tunable LSPR modes, which provides potential for multiplex optical sensing. (orig.)

  15. Calculation of electric dipole hypershieldings at the nuclei in the Hellmann-Feynman approximation.

    Science.gov (United States)

    Soncini, Alessandro; Lazzeretti, Paolo; Bakken, Vebjørn; Helgaker, Trygve

    2004-02-15

    The third-rank electric hypershieldings at the nuclei of four small molecules have been evaluated at the Hartree-Fock level of theory in the Hellmann-Feynman approximation. The nuclear electric hypershieldings are closely related to molecular vibrational absorption intensities and a generalization of the atomic polar tensors (expanded in powers of the electric field strength) is proposed to rationalize these intensities. It is shown that the sum rules for rototranslational invariance and the constraints imposed by the virial theorem provide useful criteria for basis-set completeness and for near Hartree-Fock quality of nuclear shieldings and hypershieldings evaluated in the Hellmann-Feynman approximation. Twelve basis sets of different size and quality have been employed for the water molecule in an extended numerical test on the practicality of the proposed scheme. The best results are obtained with the R12 and R12+ basis sets, designed for the calculation of electronic energies by the explicitly correlated R12 method. The R12 basis set is subsequently used to investigate three other molecules, CO, N2, and NH3, verifying that the R12 basis consistently performs very well.

  16. The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Aslibeiki, B., E-mail: b.aslibeiki@tabrizu.ac.ir [Department of Physics, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Kameli, P.; Salamati, H. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-02-14

    Superparamagnetic manganese ferrite nanoparticles with mean size of 〈D〉 = 6.5(±1.5) nm were synthesized through a solvothermal method using Tri-ethylene glycol as a solvent. The peak temperature of zero field cooled measurements of magnetization and AC magnetic susceptibility curves shifted toward higher temperatures by applying different pressures from 0 to 1 kbar and increasing the powders compaction. The frequency dependence of AC susceptibility measurements indicated the presence of weak dipole-dipole interactions between nanoparticles. By increasing the powders compaction and interactions strength, the coercive field (H{sub c}) increased and squareness (M{sub r}/M{sub s}) decreased. The obtained effective anisotropy constant (K{sub eff}), by susceptibility measurements, was from 1.72 × 10{sup 6} to 2.36 × 10{sup 6 }ergs/cm{sup 3} for pressure of 0 to 1 kbar. These values are larger than those obtained from hysteresis loops at 5 K (0.14 × 10{sup 6} to 0.34 × 10{sup 6 }erg/cm{sup 3}). Also, the K{sub eff} was two orders of magnitude greater than that of bulk MnFe{sub 2}O{sub 4}. Size, surface effects, and total energy barrier between equilibrium states were reported as the main causes of large anisotropy. Below 75 K, a signature of weak surface spin glass was observed. However, memory effect experiment indicated that there is no collective superspin glass state in the samples. This study suggests the role of powders compaction on properties of a magnetic nanoparticles system. Furthermore, the coercivity, the anisotropy constant, and the blocking temperature are affected by changing nanoparticles compaction.

  17. Using the method of discrete dipoles to approximate solutions of the problems of light scattering and absorption by particles

    Science.gov (United States)

    Asenchik, O. D.

    2017-02-01

    A method of approximate calculation of the interaction inverse matrix in the method of discrete dipoles is proposed. The knowledge of this matrix makes it possible to determine the optical response of a system to the action of an electromagnetic wave with an arbitrary shape, which can be represented as a combination of vector spherical wave functions. The number of calculation operations of the matrix in the proposed method is considerably smaller than in the case of its direct calculation. In the case of a change in the refractive index of scattering particles, two methods of approximate calculation of the interaction inverse matrix are also proposed. This makes it possible to calculate the optical response of systems with new characteristics without direct solving equations of a system with a large dimension. The accuracy of the methods is numerically determined for particles with spherical and cubic shapes. It is shown that the methods are computationally efficient and can be used to calculate the values of polarization vectors inside particles and extinction and absorption cross sections of systems.

  18. Using the Discrete Dipole Approximation and Holographic Microscopy to Measure Rotational Dynamics of Non-spherical Colloids

    CERN Document Server

    Wang, Anna; Fung, Jerome; Razavi, Sepideh; Kretzschmar, Ilona; Chaudhary, Kundan; Lewis, Jennifer A; Manoharan, Vinothan N

    2013-01-01

    We present a new, high-speed technique to track the three-dimensional translation and rotation of non-spherical colloidal particles. We capture digital holograms of micrometer-scale silica rods and sub-micrometer-scale Janus particles freely diffusing in water, and then fit numerical scattering models based on the discrete dipole approximation to the measured holograms. This inverse-scattering approach allows us to extract the the position and orientation of the particles as a function of time, along with static parameters including the size, shape, and refractive index. The best-fit sizes and refractive indices of both particles agree well with expected values. The technique is able to track the center of mass of the rod to a precision of 35 nm and its orientation to a precision of 1.5$^\\circ$, comparable to or better than the precision of other 3D diffusion measurements on non-spherical particles. Furthermore, the measured translational and rotational diffusion coefficients for the silica rods agree with hy...

  19. A block-wise approximate parallel implementation for ART algorithm on CUDA-enabled GPU.

    Science.gov (United States)

    Fan, Zhongyin; Xie, Yaoqin

    2015-01-01

    Computed tomography (CT) has been widely used to acquire volumetric anatomical information in the diagnosis and treatment of illnesses in many clinics. However, the ART algorithm for reconstruction from under-sampled and noisy projection is still time-consuming. It is the goal of our work to improve a block-wise approximate parallel implementation for the ART algorithm on CUDA-enabled GPU to make the ART algorithm applicable to the clinical environment. The resulting method has several compelling features: (1) the rays are allotted into blocks, making the rays in the same block parallel; (2) GPU implementation caters to the actual industrial and medical application demand. We test the algorithm on a digital shepp-logan phantom, and the results indicate that our method is more efficient than the existing CPU implementation. The high computation efficiency achieved in our algorithm makes it possible for clinicians to obtain real-time 3D images.

  20. Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle

    Institute of Scientific and Technical Information of China (English)

    TANG Xiao-Yan; HUANG Fei; LOU Sen-Yue

    2006-01-01

    @@ A variable coefficient Korteweg de Vries (VCKdV) system is derived by considering the time-dependent basic flow and boundary conditions from the well-known Euler equation with an earth rotation term. The analytical solution obtained from the VCKdV equation can be successfully used to explain fruitful phenomena in fluid and other physical fields, for instance, the atmospheric blocking phenomena. In particular, a diploe blocking case happened during 9 April 1973 to 18 April 1973 read out from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data is well described by the analytical solution.

  1. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model

    Directory of Open Access Journals (Sweden)

    B. Scarnato

    2012-10-01

    Full Text Available According to recent studies, internal mixing of black carbon (BC with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT. DDSCAT predicts a higher mass absorption coefficient, lower single scattering albedo (SSA, and higher absorption Angstrom exponent (AAE for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.18 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. In the 300 to 550 nm range, AAE values ranged in this study from 0.70 for compact to 0.95 for lacy aggregates. The SSA of BC internally mixed with NaCl (100–300 nm in radius is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle morphology. The bare BC (with a radius of 80 nm presents in the linear polarization a bell shape feature, which is a characteristic of the Rayleigh regime (for particles smaller than the wavelength of incident radiation. When BC is internally mixed with NaCl (100–300 nm in radius, strong depolarization features for near-VIS incident radiation are evident

  2. QED-based Optical Bloch Equations without electric dipole approximation: A model for a two-level atom interacting with a monochromatic X-ray laser beam

    CERN Document Server

    Zhang, Wen-Zhuo

    2012-01-01

    We derive a set of optical Bloch equations (OBEs) directly from the minimal-coupling Hamiltonian density of the bound-state quantum electrodynamics (bound-state QED). Such optical Bloch equations are beyond the former widely-used ones due to that there is no electric dipole approximation (EDA) on the minimal-coupling Hamiltonian density of the bound-state QED. Then our optical Bloch equations can describe a two-level atom interacting with a monochromatic light of arbitrary wavelength, which are suitable to study the spectroscopy and the Rabi oscillations of two-level atoms in X-ray laser beams since that the wavelength of X-ray is close to an atom to make the electric dipole approximation (EDA) invalid.

  3. Dipole Strength Calculation Based on Two-Level System Approximation to Study Q/B-Band Intensity Ratio of ZnTBP in Solvent

    Science.gov (United States)

    Rusydi, Febdian; Shukri, Ganes; Saputro, Adithya G.; Agusta, Mohammad K.; Dipojono, Hermawan K.; Suprijadi, Suprijadi

    2017-04-01

    We study the Q/B-band dipole strength of zinc tetrabenzoporphyrin (ZnTBP) using density functional theory (DFT) in various solvents. The solvents are modeled using the polarized continuum model (PCM). The dipole strength calculations are approached by a two-level system, where the Q-band is described by the HOMO → LUMO electronic transition and the B-band by the HOMO-1 → LUMO electronic transition. We compare the results with the experimental data of the Q/B-band intensity ratio. We also perform time-dependent DFT coupled with PCM to calculate the Q/B-band oscillator strength ratio of ZnTBP. The results of both methods show a general trend with respect to the experimental Q/B-band intensity ratio in solvents, except for the calculation in the water solvent. Even so, the approximation is a good starting point for studying the UV-vis spectrum based on DFT study alone.

  4. Block circulant and block Toeplitz approximants of a class of spatially distributed systems-An LQR perspective

    NARCIS (Netherlands)

    Iftime, Orest V.

    2012-01-01

    In this paper block circulant and block Toeplitz long strings of MIMO systems with finite length are compared with their corresponding infinite-dimensional spatially invariant systems. The focus is on the convergence of the sequence of solutions to the control Riccati equations and the convergence o

  5. Low-lying dipole response in the stable {sup 40,48}Ca nuclei within the second random-phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Gambacurta, D.; Grasso, M.; Catara, F. [GANIL,CEA/DSM-CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex (France); Dipartimento di Fisica e Astronomia dell' Universita di and INFN Catania (Italy)

    2012-10-20

    The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.

  6. Theory of motion for monopole-dipole singularities of classical Yang-Mills-Higgs fields. II. Approximation scheme and equations of motion

    Science.gov (United States)

    Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold

    1984-02-01

    In the preceding paper, the laws of motion were established for classical particles with spin which are monopole-dipole singularities of Yang-Mills-Higgs fields. In this paper, a systematic approximation scheme is developed for solving the coupled nonlinear field equations in any order and for determining the corresponding equations of motion. In zeroth order the potentials are taken as the usual Liénard-Wiechert and Bhabha-Harish-Chandra potentials (generalized to isospace); in this order the solutions are necessarily Abelian, since the isovector describing the charge is constant. The regularization necessary to obtain expressions finite on the world lines of the particles is achieved by the method of Riesz potentials. All fields are taken as retarded and are expressed in integral form. Omitting dipole interactions, the integrals for the various terms are carried out as far as possible for general motions, including radiation-reaction terms. In first order, the charge isovectors are no longer necessarily constant; thus the solutions are not necessarily Abelian, and it is possible for charge to be radiated away. The cases of time-symmetric field theory and of an action-at-a-distance formulation of the theory are discussed in an appendix.

  7. Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation

    Energy Technology Data Exchange (ETDEWEB)

    List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Kauczor, Joanna; Norman, Patrick, E-mail: panor@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, Linköping SE 58183 (Sweden); Saue, Trond [Laboratoire de Chimie et Physique Quantiques, UMR 5626—CNRS/Université Toulouse III (Paul Sabatier), 118 route de Narbonne, F-31062 Toulouse Cedex (France)

    2015-06-28

    We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.

  8. Low-energy dipole excitations in neon isotopes and N=16 isotones within the quasiparticle random phase approximation and the Gogny force

    CERN Document Server

    Martini, M; Dupuis, M

    2011-01-01

    Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones 24O, 26Ne, 28Mg, and 30Si are characterized by a similar behavior. The occupation of the 2s_1/2 neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of 28Ne and 30Ne, characterized by transitions involving the neutron 1d_3/2 state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is id...

  9. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and discrete dipole approximation

    CERN Document Server

    Yurkin, Maxim A; Tarasov, Peter A; Chernyshev, Andrei V; Hoekstra, Alfons G; Maltsev, Valeri P

    2005-01-01

    Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed with the discrete dipole approximation (DDA) and the scanning flow cytometry (SFC), respectively. SFC permits measurement of angular dependence of light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the incident light upon the indicatrix. Numerical calculations of indicatrices for several aspect ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e. face-o...

  10. Light scattering calculations of multi-sphere polycrystalline graphite clusters - A comparison with the 2200 AA peak and between a rigorous solution and discrete-dipole approximations

    CERN Document Server

    Andersen, A C; Pustovit, V N; Niklasson, G A

    2001-01-01

    Certain dust particles in space are expected to appear as clusters of individual grains. The morphology of these clusters could be fractal or compact. In this paper we study the light scattering by compact and fractal polycrystalline graphite clusters consisting of touching identical spheres. We compare three general methods for computing the extinction of the clusters in the wavelength range 0.1 - 100 micron, namely, a rigorous solution (Gerardy & Ausloos 1982) and two different discrete-dipole approximation methods -- MarCODES (Markel 1998) and DDSCAT (Draine & Flatau 1994). We consider clusters of N = 4, 7, 8, 27,32, 49, 108 and 343 particles of radii either 10 nm or 50 nm, arranged in three different geometries: open fractal (dimension D = 1.77), simple cubic and face-centred cubic. The rigorous solution shows that the extinction of the fractal clusters, with N 5 micron, the rigorous solution indicates that the extinction from fractal and compact clusters are of the same order of magnitude. It wa...

  11. Computing approximate (block) rational Krylov subspaces without explicit inversion with extensions to symmetric matrices

    OpenAIRE

    Mach, Thomas; Pranić, Miroslav S.; Vandebril, Raf

    2014-01-01

    It has been shown that approximate extended Krylov subspaces can be computed, under certain assumptions, without any explicit inversion or system solves. Instead, the vectors spanning the extended Krylov space are retrieved in an implicit way, via unitary similarity transformations, from an enlarged Krylov subspace. In this paper this approach is generalized to rational Krylov subspaces, which aside from poles at infinity and zero, also contain finite non-zero poles. Furthermore, the algorith...

  12. Computing approximate blocking probability of inverse multiplexing and sub-band conversion in the flexible-grid optical networks

    Science.gov (United States)

    Gu, Yamei; You, Shanhong

    2016-07-01

    With the rapid growth of data rate, the optical network is evolving from fixed-grid to flexible-grid to provide spectrum-efficient and scalable transport of 100 Gb/s services and beyond. Also, the deployment of wavelength converter in the existing network can increase the flexibility of routing and wavelength allocation (RWA) and improve blocking performance of the optical networks. In this paper, we present a methodology for computing approximate blocking probabilities of the provision of multiclass services in the flexible-grid optical networks with sub-band spectrum conversion and inverse multiplexing respectively. Numerical calculation results based on the model are compared to the simulation results for the different cases. It is shown that the calculation results match well with the simulation results for the flexible-grid optical networks at different scenarios.

  13. Pygmy dipole resonance and dipole polarizability in {sup 90}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, C.; Tamii, A.; Shima, T.; Hashimoto, T.; Suzuki, T.; Fujita, H.; Hatanaka, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Utsunomiya, H.; Akimune, H.; Yamagata, T.; Okamoto, A.; Kondo, T. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Nakada, H. [Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522 (Japan); Kawabata, T. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Fujita, Y. [Department of Physics, Osaka University, Toyonaka, Osaka, 560-0043 (Japan); Matsubara, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Shimbara, Y.; Nagashima, M. [Department of Physics, Niigata University, Niigata 950-21-2 (Japan); Sakuda, M.; Mori, T. [Department of Physics, Okayama University, Okayama 900-0082 (Japan); and others

    2014-05-02

    Electric dipole (E1) reduced transition probability B(E1) of {sup 90}Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability α{sub D} which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.

  14. Pygmy dipole resonance and dipole polarizability in 90Zr

    Science.gov (United States)

    Iwamoto, C.; Tamii, A.; Utsunomiya, H.; Akimune, H.; Nakada, H.; Shima, T.; Hashimoto, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Suzuki, T.; Fujita, H.; Shimbara, Y.; Nagashima, M.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Lui, T.-W.; Bilgier, B.; Kozer, H. C.; Hatanaka, K.

    2014-05-01

    Electric dipole (E1) reduced transition probability B(E1) of 90Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability αD which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.

  15. Nature of low-lying electric dipole resonance excitations in 74Ge

    CERN Document Server

    Negi, D; Lanza, E G; Litvinova, E; Vitturi, A; Bark, R A; Bernstein, L A; Bleuel, D L; Bvumbi, S; Bucher, T D; Daub, B H; Dinoko, T S; Easton, J L; Gorgen, A; Guttormsen, M; Jones, P; Kheswa, B V; Khumalo, N A; Larsen, A C; Lawrie, E A; Lawrie, J J; Majola, S N T; Masiteng, L P; Nchodu, M R; Ndayishimye, J; Newman, R T; Noncolela, S P; Orce, J N; Papka, P; Pellegri, L; Renstrøm, T; Roux, D G; Schwengner, R; Shirinda, O; Siem, S

    2016-01-01

    Isospin properties of dipole excitations in 74 Ge are investigated using the ({\\alpha},{\\alpha}'{\\gamma}) reaction and compared to ({\\gamma},{\\gamma}) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the scenario of the recently found splitting of the region of dipole excitations into two separated parts: one at low energy, being populated by both isoscalar and isovector probes, and the other at high energy, excited only by the electromagnetic probe. Relativistic quasiparticle time blocking approximation (RQTBA) calculations show a reduction in the isoscalar E1 strength with an increase in excitation energy, which is consistent with the measurement.

  16. Approximation of Sums of Experimental Radiative Strength Functions of Dipole Gamma-Transitions in the Region $E_\\gamma \\approx B_n$ for the Atomic Masses $40 \\leq a \\leq 200$

    CERN Document Server

    Sukhovoj, A M; Khitrov, V A

    2008-01-01

    The sums k(E1)+k(M1) of radiative strength functions of dipole primary gamma-transitions were approximated with high precision in the energy region of $0.5 < E_1 < B_n-0.5$ MeV for nuclei: 40K, 60Co, 71,74Ge, 80Br, 114Cd, 118Sn, 124,125Te, 128I, 137,138,139Ba, 140La, 150Sm, 156,158Gd, 160Tb, 163,164,165Dy, 166Ho, 168Er, 170Tm, 174Yb, 176,177Lu, 181Hf, 182Ta, 183,184,185,187W, 188,190,191,193Os, 192Ir, 196Pt, 198Au, 200Hg by sum of two independent functions. It has been shown that this parameter of gamma-decay are determined by the structure of the decaying and excited levels, at least, up to the neutron binding energy.

  17. Semiphenomenological approximation of the sums of experimental radiative strength functions for dipole gamma transitions of energy E γ below the neutron binding energy B n for mass numbers in the range 40 ≤ A ≤ 200

    Science.gov (United States)

    Sukhovoj, A. M.; Furman, W. I.; Khitrov, V. A.

    2008-06-01

    The sums of radiative strength functions for primary dipole gamma transitions, k( E1) + k( M1), are approximated to a high precision by a superposition of two functional dependences in the energy range 0.5 125Te, 128I, 137,138,139Ba, 140La, 150Sm, 156,158Gd, 160Tb, 163,164,165Dy, 166Ho, 168Er, 170Tm, 174Yb, 176,177Lu, 181Hf, 182Ta, 183,184,185,187W, 188,190,191,193Os, 192Ir, 196Pt, 198Au, and 200Hg nuclei. It is shown that, in any nuclei, radiative strength functions are a dynamical quantity and that the values of k( E1) + k( M1) for specific energies of gamma transitions and specific nuclei are determined by the structure of decaying and excited levels, at least up to the neutron binding energy B n .

  18. Zero-quantum frequency-selective recoupling of homonuclear dipole-dipole interactions in solid state nuclear magnetic resonance.

    Science.gov (United States)

    Hu, Kan-Nian; Tycko, Robert

    2009-07-28

    We describe a method for measuring magnetic dipole-dipole interactions, and hence distances, between pairs of like nuclear spins in a many-spin system under magic-angle spinning (MAS). This method employs a homonuclear dipolar recoupling sequence that creates an average dipole-dipole coupling Hamiltonian under MAS with full zero-quantum symmetry, including both secular and flip-flop terms. Flip-flop terms are then attenuated by inserting rotor-synchronized periods of chemical shift evolution between recoupling blocks, leaving an effective Hamiltonian that contains only secular terms to a good approximation. Couplings between specific pairs of nuclear spins can then be selected with frequency-selective pi pulses. We demonstrate this technique, which we call zero-quantum shift evolution assisted homonuclear recoupling, in a series of one-dimensional and two-dimensional (13)C NMR experiments at 17.6 T and 40.00 kHz MAS frequency on uniformly (13)C-labeled L-threonine powder and on the helix-forming peptide MB(i+4)EK, synthesized with a pair of uniformly (13)C-labeled L-alanine residues. Experimental demonstrations include measurements of distances between (13)C sites that are separated by three bonds, placing quantitative constraints on both sidechain and backbone torsion angles in polypeptides.

  19. Roton dipole moment

    OpenAIRE

    Mineev, V. P.

    2009-01-01

    The roton excitation in the superfluid He-4 does not possess a stationary dipole moment. However, a roton has an instantaneous dipole moment, such that at any given moment one can find it in the state either with positive or with negative dipole moment projection on its momentum direction. The instantaneous value of electric dipole moment of roton excitation is evaluated. The result is in reasonable agreement with recent experimental observation of the splitting of microwave resonance absorpt...

  20. On the dipole moment of CO/+/.

    Science.gov (United States)

    Certain, P. R.; Woods, R. C.

    1973-01-01

    Results of self-consistent field calculations on neutral CO, its positive ion, and on neutral CN to verify an earlier estimate of the dipole moment of CO(+) in its ground super 2 Sigma state. Based on the above-mentioned calculations, direct evidence is obtained that the dipole moment (relative to the center of mass) is approximately 2.5 plus or minus 0.5 C, as previously determined by Kopelman and Klemperer (1962).

  1. The isotopic dipole moment of HDO

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)

    2007-03-14

    An adiabatic variational approximation is used to study the monodeuterated water molecule, HDO, accounting for the isotopic effect. The isotopic dipole moment, pointing from D to H, is then calculated for the first time, yielding (1.5 {+-} 0.1) x 10{sup -3} Debye, being helpful in the interpretation of experiments. (fast track communication)

  2. Low-energy dipole strength in 112,120Sn

    CERN Document Server

    Özel-Tashenov, B; Lenske, H; Krumbholz, A M; Litvinova, E; von Neumann-Cosel, P; Poltoratska, I; Richter, A; Rusev, G; Savran, D; Tsoneva, N

    2014-01-01

    The 112,120Sn(gamma,gamma') reactions below the neutron separation energies have been studied at the superconducting Darmstadt electron linear accelerator S-DALINAC for different endpoint energies of the incident bremsstrahlung spectrum. Dipole strength distributions are extracted for 112Sn up to 9.5 MeV and for 120Sn up to 9.1 MeV. A concentration of dipole excitations is observed between 5 and 8 MeV in both nuclei. Missing strength due to unobserved decays to excited states is estimated in a statistical model. A fluctuation analysis is applied to the photon scattering spectra to extract the amount of the unresolved strength hidden in background due to fragmentation. The strength distributions are discussed within different model approaches such as the quasiparticle-phonon model and the relativistic time blocking approximation allowing for an inclusion of complex configurations beyond the initial particle-hole states. While a satisfactory description of the fragmentation can be achieved for sufficently large...

  3. Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods

    CERN Document Server

    Watson, Derek W; Ruostekoski, Janne; Fedotov, Vassili A; Zheludev, Nikolay I

    2015-01-01

    We show how the elusive toroidal dipole moment appears as a radiative excitation eigenmode in a metamolecule resonator that is formed by pairs of plasmonic nanorods. We analyze one such nanorod configuration - a toroidal metamolecule. We find that the radiative interactions in the toroidal metamolecule can be qualitatively represented by a theoretical model based on an electric point dipole arrangement. Both a finite-size rod model and the point dipole approximation demonstrate how the toroidal dipole moment is subradiant and difficult to excite by incident light. By means of breaking the geometric symmetry of the metamolecule, the toroidal mode can be excited by linearly polarized light and we provide simple optimization protocols for maximizing the toroidal dipole mode excitation. This opens up possibilities for simplified control and driving of metamaterial arrays consisting of toroidal dipole unit-cell resonators.

  4. Experiments with Dipole Antennas

    Science.gov (United States)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  5. On the Mean Spherical Approximation for Hard Ions and Dipoles

    Science.gov (United States)

    1991-11-09

    de Ingenieria Universidad Nacional de La Plata, La Plata, Argentina ***Department of Chemistry, University of California Davis, CA 95616 Reproduction...Fernando Vericat Instituto de Ffsica de Lfquidos y Sistemas Biologicos (IFLYSIB) c.c 565 (1900) and Departamento de Ffsicomatematicas, Facultad de... Ingenieria , Universidad Nacional de La Plata, La Plata, Argentina and W.R. Fawcett Department of Chemistry, University of California, Davis CA 95616

  6. Dissecting an LHC dipole

    CERN Multimedia

    2004-01-01

    The cold mass of a 15-metre main dipole magnet has some fifteen different components. All the main components are manufactured under CERN's direct responsibility. Four of them transit through CERN before being shipped to the dipole assembly contractors, namely the cable, which constitutes the magnet's superconducting core (see Bulletin 14/2004), the beam screens, the heat exchanger tubes and the cold bore beam tubes. The two latter components transit via Building 927 where they undergo part of the production process. The 58-mm diameter heat exchanger tubes will remove heat from the magnets using superfluid helium. The 53-mm diameter cold bore tubes will be placed under vacuum to allow the twin beams to circulate around the LHC.

  7. ALICE dipole and decoration

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ALICE cavern receives a painting made specially to mark the 50th anniversary of CERN that is mounted on the L3 solenoid magnet, reused from the LEP experiment that ran from 1989 to 2000. The dipole, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid. These muons are heavy electrons that interact less with matter allowing them to be studied at large distances from the interaction point.

  8. Dipole defects in beryl

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, B A; Cordeiro, R C; Blak, A R, E-mail: bruna.holanda@usp.br, E-mail: renan.cordeiro@usp.br, E-mail: anablak@if.usp.br

    2010-11-15

    Dipole defects in gamma irradiated and thermally treated beryl (Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.

  9. Visualizing dipole radiation

    Science.gov (United States)

    Girwidz, Raimund V.

    2016-11-01

    The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures.

  10. Properties and significance of the surface dipole mode

    CERN Document Server

    Papakonstantinou, P

    2014-01-01

    A strong isoscalar dipole resonance is known to be excited in a variety of nuclei, including isospin symmetric ones, at approximately 6-7 MeV. A series of theoretical studies and accumulating experimental evidence support an interpretation of the above dipole resonance as an elementary surface vibration. Obviously, such a mode is potentially as interesting as any collective excitation for a variety of reasons. In addition, though, it is found to account for the observed isoscalar segment of pygmy dipole strength. As discussed here, this has important implications for pygmy-strength interpretations and searches for genuine neutron-skin oscillations.

  11. QCD dipole model and $k_{T}$ factorization

    CERN Document Server

    Bialas, A; Peschanski, R

    2001-01-01

    It is shown that the colour dipole approach to hard scattering at high energy is fully compatible with k_T factorization at the leading logarithm approximation (in -log x_Bj). The relations between the dipole amplitudes and unintegrated diagonal and non-diagonal gluon distributions are given. It is also shown that including the exact gluon kinematics in the k_T factorization formula destroys the conservation of transverse position vectors and thus is incompatible with the dipole model for both elastic and diffractive amplitudes.

  12. Many-body dipole-induced dipole model for electrorheological fluids

    Institute of Scientific and Technical Information of China (English)

    Huang Ji-Ping; Yu Kin-Wah

    2004-01-01

    Theoretical investigations on electrorheological (ER) fluids usually rely on computer simulations. An initial approach for these studies would be the point-dipole (PD) approximation, which is known to err considerably when the particles approach and finally touch each other due to many-body and multipolar interactions. Thus various works have attempted to go beyond the PD model. Being beyond the PD model, previous attempts have been restricted to either local-field effects only or multipolar effects only, but not both. For instance, we recently proposed a dipoleinduced-dipole (DID) model which is shown to be both more accurate than the PD model and easy to use. This work is necessary because the many-body (local-field) effect is included to put forth the many-body DID model. The results show that the multipolar interactions can indeed be dominant over the dipole interaction, while the local-field effect may yield a correction.

  13. Quantum emitter dipole-dipole interactions in nanoplasmonic systems

    CERN Document Server

    Nečada, Marek; Törmä, Päivi

    2016-01-01

    We introduce a generalized Dicke-like model to describe two-level systems coupled with a single bosonic mode. In addition, the two-level systems mutually interact via direct dipole-dipole interaction. We apply the model to an ensemble of dye molecules coupled to a plasmonic excitation in a metallic nanoparticle and study how the dipole-dipole interaction and configurational randomness introduced to the system affect the energy spectra. Comparing the system eigenenergies obtained by our model with the light spectra from a multiple-scattering simulation, we suggest a way to identify dark modes in our model. Finally, we perform a parameter sweep in order to determine the scaling properties of the system and to classify the regions of the parameter space where the dipole-dipole interactions can have significant effects.

  14. Conformal blocks in the QCD Pomeron formalism

    CERN Document Server

    Navelet, H

    1996-01-01

    The conformal invariance properties of the QCD Pomeron in the transverse plane allow us to give an explicit analytical expression for the conformal eigenvectors in the mixed representation in terms of two conformal blocks, each block being the product of an holomorphic times an antiholomorphic function. This property is used to give an exact expression for various functions of interest, the Pomeron amplitude in both momentum and impact-parameter variables, the QCD dipole multiplicities and dipole-dipole cross-sections in the whole parameter space, and we recover the expression of the four-point gluon Green function given recently by Lipatov

  15. Retardation effects in induced atomic dipole-dipole interactions

    CERN Document Server

    Graham, S D

    2016-01-01

    We present mean-field calculations of azimuthally averaged retarded dipole-dipole interactions in a Bose-Einstein condensate induced by a laser, at both long and short wavelengths. Our calculations demonstrate that dipole-dipole interactions become significantly stronger at shorter wavelengths, by as much as 30-fold, due to retardation effects. This enhancement, along with inclusion of the dynamic polarizability, indicate a method of inducing long-range interatomic interactions in neutral atom condensates at significantly lower intensities than previously realized.

  16. Superconducting dipole electromagnet

    Science.gov (United States)

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  17. Magnetic dipole moment of a moving electric dipole

    OpenAIRE

    Hnizdo, V.

    2012-01-01

    The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.

  18. Splitting of the Dipole and Spin Dipole Resonances in Pb

    Science.gov (United States)

    Austin, Sam M.

    2000-10-01

    The response to different neutrino flavors of a supernova neutrino detector based on Pb depends on the position of the spin-dipole resonance(Fuller, Fowler and McLaughlin, Phys. Rev. D59,085005(1999)). In this talk I will present a phenomenolgical model that allows one to extract the splitting of the dipole and spin-dipole resonances from the variation with bombarding energy of the L=1 resonance in (p,n) reactions. This model has been applied previously to the Zr isotopes (Sam M. Austin, Phys. Rev. C, submitted). The dipole splitting for ^208Pb is determined from available data on the (p,n) reaction for bombarding energies between 45 to 200 MeV. It is found to be 4.7±2.0 MeV, with the spin-dipole resonance lying at lower excitation energy.

  19. Dipoles for High-Energy LHC

    CERN Document Server

    Todesco, E; De Rijk, G; Rossi, L

    2014-01-01

    For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 20 T operational field are needed. In this paper we first review the conceptual design based on block coil proposed in the Malta workshop, addressing the issues related to coil fabrication and assembly. We then propose successive simplifications of this design, associating a cost estimate of the conductor. We then analyse a block layout for a 15 T magnet. Finally, we consider two layouts based on the D20 and HD2 short models built by LBL. A first analysis of the aspects related to protection of these challenging magnets is given.

  20. Schiff moment of the Mercury nucleus and the proton dipole moment

    OpenAIRE

    Dmitriev, V. F.; Sen'kov, R. A.

    2003-01-01

    We calculated the contribution of internal nucleon electric dipole moments to the Schiff moment of $^{199}$Hg. The contribution of the proton electric dipole moment was obtained via core polarization effects that were treated in the framework of random phase approximation with effective residual forces. We derived a new upper bound $|d_p|< 5.4\\times 10^{-24} e\\cdot$cm of the proton electric dipole moment.

  1. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    Science.gov (United States)

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  2. Approximate Representations and Approximate Homomorphisms

    CERN Document Server

    Moore, Cristopher

    2010-01-01

    Approximate algebraic structures play a defining role in arithmetic combinatorics and have found remarkable applications to basic questions in number theory and pseudorandomness. Here we study approximate representations of finite groups: functions f:G -> U_d such that Pr[f(xy) = f(x) f(y)] is large, or more generally Exp_{x,y} ||f(xy) - f(x)f(y)||^2$ is small, where x and y are uniformly random elements of the group G and U_d denotes the unitary group of degree d. We bound these quantities in terms of the ratio d / d_min where d_min is the dimension of the smallest nontrivial representation of G. As an application, we bound the extent to which a function f : G -> H can be an approximate homomorphism where H is another finite group. We show that if H's representations are significantly smaller than G's, no such f can be much more homomorphic than a random function. We interpret these results as showing that if G is quasirandom, that is, if d_min is large, then G cannot be embedded in a small number of dimensi...

  3. Steroidal neuromuscular blocking agents

    NARCIS (Netherlands)

    Wierda, JMKH; Mori, K; Ohmura, A; Toyooka, H; Hatano, Y; Shingu, K; Fukuda, K

    1998-01-01

    Since 1964 approximately 20 steroidal neuromuscular blocking agents have been evaluated clinically. Pancuronium, a bisquaternary compound designed on the drawingboard, was the first steroidal relaxant introduced into clinical practice worldwide in the 1970's. Although a major improvement, pancuroniu

  4. Approximate Likelihood

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...

  5. Fermion Dipole Moment and Holography

    CERN Document Server

    Kulaxizi, Manuela

    2015-01-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  6. Fractional vortex dipole phase filter

    Science.gov (United States)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam

    2014-10-01

    In spatial filtering experiments, the use of vortex phase filters plays an important role in realizing isotropic edge enhancement. In this paper, we report the use of a vortex dipole phase filter in spatial filtering. A dipole made of fractional vortices is used, and its filtering characteristics are studied. It is observed that the filter performance can be tuned by varying the distance of separation between the vortices of the dipole to achieve better contrast and output noise suppression, and when this distance tends to infinity, the filter performs like a 1-D Hilbert mask. Experimental and simulation results are presented.

  7. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  8. Quantum optical dipole radiation fields

    CERN Document Server

    Stokes, Adam

    2016-01-01

    We introduce quantum optical dipole radiation fields defined in terms of photon creation and annihilation operators. These fields are identified through their spatial dependence, as the components of the total fields that survive infinitely far from the dipole source. We use these radiation fields to perturbatively evaluate the electromagnetic radiated energy-flux of the excited dipole. Our results indicate that the standard interpretation of a bare atom surrounded by a localised virtual photon cloud, is difficult to sustain, because the radiated energy-flux surviving infinitely far from the source contains virtual contributions. It follows that there is a clear distinction to be made between a radiative photon defined in terms of the radiation fields, and a real photon, whose identification depends on whether or not a given process conserves the free energy. This free energy is represented by the difference between the total dipole-field Hamiltonian and its interaction component.

  9. Synchronization of interacting quantum dipoles

    Science.gov (United States)

    Zhu, B.; Schachenmayer, J.; Xu, M.; Herrera, F.; Restrepo, J. G.; Holland, M. J.; Rey, A. M.

    2015-08-01

    Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases in the presence of nonlinear coupling. Here we investigate the corresponding phenomenon with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that by incoherently driving dense packed arrays of strongly interacting dipoles, the dipoles can overcome the decoherence induced by quantum fluctuations and inhomogeneous coupling and reach a synchronized steady-state characterized by a macroscopic phase coherence. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quantum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.

  10. Dipoles, unintentional antennas and EMC

    Directory of Open Access Journals (Sweden)

    Berend Danker

    2008-01-01

    Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.

  11. Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium

    NARCIS (Netherlands)

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to Z

  12. Screening of nucleon electric dipole moments in nuclei

    Science.gov (United States)

    Inoue, Satoru; Gudkov, Vladimir; Schindler, Matthias R.; Song, Young-Ho

    2016-05-01

    A partial screening of nucleon electric dipole moments (EDMs) in nuclear systems, which is related to the Schiff mechanism known for neutral atomic systems, is discussed. It is shown that the direct contribution from the neutron EDM to the deuteron EDM is partially screened by about 1% in a zero-range approximation calculation.

  13. Screening of Nucleon Electric Dipole Moments in Nuclei

    CERN Document Server

    Inoue, Satoru; Schindler, Matthias R; Song, Young-Ho

    2015-01-01

    A partial screening of nucleon electric dipole moments (EDMs) in nuclear systems, which is related to the Schiff mechanism known for neutral atomic systems, is discussed. It is shown that the direct contribution from the neutron EDM to the deuteron EDM is partially screened by almost 50% in a zero-range approximation calculation.

  14. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...... the surface current distribution on the reflector plate. Numerical results obtained for Yagi backfire antennas and short-backfire antennas using this theory are compared with experimental results....

  15. Rock blocks

    OpenAIRE

    Turner, W.

    2007-01-01

    Consider representation theory associated to symmetric groups, or to Hecke algebras in type A, or to q-Schur algebras, or to finite general linear groups in non-describing characteristic. Rock blocks are certain combinatorially defined blocks appearing in such a representation theory, first observed by R. Rouquier. Rock blocks are much more symmetric than general blocks, and every block is derived equivalent to a Rock block. Motivated by a theorem of J. Chuang and R. Kessar in the case of sym...

  16. Electric dipole moment of ^{129}Xe atom

    CERN Document Server

    Singh, Yashpal; Das, B P

    2013-01-01

    The parity (P) and time-reversal (T) odd coupling constant associated with the tensor-pseudotensor (T-PT) electron-nucleus interaction and the nuclear Schiff moment (NSM) have been determined by combining the result of the measurement of the electric dipole moment (EDM) of ^{129}Xe atom and calculations based on the relativistic coupled-cluster (RCC) theory. Calculations using various relativistic many-body methods have been performed at different levels of approximation. The accuracies of these calculations are estimated by comparing the results of the calculated dipole polarizability of the ground state of the above atom with the most precise available experimental data. The non-linear terms that arise in the RCC theory at the singles and doubles approximation (CCSD method) were found to be crucial for achieving high accuracy in the calculations. Our results for the ^{129}Xe EDM due to the odd T-PT interaction and the NSM are, respectively, d_A=0.501 x 10^{-20} C_T |e|cm and d_A=0.336 x 10^{-17} S/(|e| fm^...

  17. Conservation of a helix-stabilizing dipole moment in the PP-fold family of regulatory peptides

    DEFF Research Database (Denmark)

    Bjørnholm, B; Jørgensen, Flemming Steen; Schwartz, T W

    1993-01-01

    directed from the beta-turn region toward the receptor-binding region. This overall dipole moment is antiparallel to the dipole moment of the alpha-helix caused by alignment of the peptide dipoles parallel to the helix. Calculations of the stabilization energy for this antiparallel dipole moment...... forces alone when the screening effect is considered. This energy is of the same order of magnitude as the enthalpy change for the unfolding of avian PP (approximately 30 kcal/mol), strongly indicating that the charge-dipole interactions are of significant importance for the stability of the three...

  18. On the collectivity of Pygmy Dipole Resonance within schematic TDA and RPA models

    CERN Document Server

    Baran, V; Colonna, M; Di Toro, M; Croitoru, A; Nicolin, A I

    2014-01-01

    Within schematic models based on the Tamm-Dancoff Approximation and the Random-Phase Approximation with separable interactions, we investigate the physical conditions which determine the emergence of the Pygmy Dipole Resonance in the E1 response of atomic nuclei. We find that if some particle-hole excitation manifests a different, weaker residual interaction, an additional mode will appear, with an energy centroid closer to the distance between two major shells and therefore well below the Giant Dipole Resonance. This state, together with Giant Dipole Resonance, exhausts all the transition strength in the Tamm-Dancoff Approximation and all the Energy Weighted Sum Rule in the Random-Phase Approximation. These features suggest a collective nature for this mode which we identify with the Pygmy Dipole Resonance.

  19. Design, manufacture and measurements of permanent dipole magnets for DIRAC

    CERN Document Server

    Vorozhtsov, A; Kasaei, S; Solodko, E; Thonet, P A; Tommasini, D

    2013-01-01

    The one of the aim of the DIRAC experiment is the observation of the long-lived π+π- atoms, using the proton beam of the CERN Proton Synchrotron [1]. Two dipole magnets are needed for the for the DIRAC experiment as high resolution spectrometers. The dipole magnet will be used to identify the long-lived atoms on the high level background of π+π- pairs produced simultaneously with π+π- atoms. The proposed design is a permanent magnet dipole with a mechanical aperture of 60 mm. The magnet, of a total physical length of 66 mm, is based on Sm2Co17 blocks and provides an integrated field strength of 24·10-3 T×m. The Sm2Co17 was chosen as a material for the permanent magnet blocks due to its radiation hardness and weaker temperature dependence. The magnetic field quality is determined by 2 ferromagnetic poles, aligned together with the permanent magnets blocks. The paper describes the design, manufacture and magnetic measurements of the magnets.

  20. Coherent manipulation of two dipole-dipole interacting ions

    CERN Document Server

    Beige, A; Knight, P L; Plenio, M B; Thompson, R C

    2000-01-01

    We investigate to what extent two trapped ions can be manipulated coherently when their coupling is mediated by a dipole-dipole interaction. We will show how the resulting level shift induced by this interaction can be used to create entanglement, while the decay of the states remains nearly negligible. This will allow us to implement conditional dynamics (a CNOT gate) and single qubit operations. We propose two different experimental realisations where a large level shift can be achieved and discuss both the strengths and weaknesses of this scheme from the point of view of a practical realization.

  1. Synchronization of Interacting Quantum Dipoles

    CERN Document Server

    Zhu, Bihui; Xu, Minghui; Urbina, Felipe H; Restrepo, Juan G; Holland, Murray J; Rey, Ana Maria

    2015-01-01

    Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases. Here we investigate the correspond- ing phenomenon in the quantum regime with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that the dipoles may overcome the decoherence induced by quantum fluctuations and inhomogeneous couplings and evolve to a synchronized steady-state. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quan- tum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.

  2. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  3. 3D Design & Simulation of Printed Dipole Antenna

    Directory of Open Access Journals (Sweden)

    Protap Mollick

    2015-09-01

    Full Text Available This paper represents design of a printed dipole antenna with both lambda by 2 & half dipole. In this research paper the impedance increases with combined design on the FR-4 substrate and ground plane. The main feature of printed dipole antenna is there is a feeder between the radiant elements. Average impedance about 73 ohm, which is very large form other antenna. For vertical earth position impedance decreases about 36 ohm. Applied AC voltage forwarding bias dipole antenna gains are high but when reverse bias condition gains are low. Between ropes to station there is need extra insulator that abate high impedance current flow to dipole antenna. Feed lines are approximately 75 ohm and the main length between two poles are 143 meter. The radius of two pole line is very thin it’s about 2.06 meter. Transmission lines are added in the last portion of feed lines, which situated apposite of two poles. Designs are simulated by hfss and solving equations are done my matlab.

  4. Radiation from an off-centred rotating dipole in vacuum

    Science.gov (United States)

    Pétri, J.

    2016-12-01

    When a neutron star forms, after the collapse of its progenitor, a strong magnetic field survives in its interior. This magnetic topology is usually assumed to be well approximated by a dipole located right at the centre of the star. However, there is no particular reason why this dipole should be attached to this very special point. A slight shift from the stellar centre could have strong implications for the surrounding electromagnetic field configuration leading to clear observational signatures. We study the effect of the most general off-centred dipole anchored in the neutron star interior. Exact analytical solutions are given in vacuum outside the star to any order of accuracy in the small parameter ɛ = d/R, where d is the displacement of the dipole from the stellar centre and R the neutron star radius. As a simple diagnostic of this decentred dipole, the spin-down luminosity and the torque exerted on its crust are computed to the lowest leading order in ɛ. Results are compared to earlier works and a discussion on repercussions on pulsar braking index and multiwavelength light curves is proposed.

  5. Radiation from an off-centred rotating dipole in vacuum

    CERN Document Server

    Pétri, J

    2016-01-01

    When a neutron star forms, after the collapse of its progenitor, a strong magnetic field survives in its interior. This magnetic topology is usually assumed to be well approximated by a dipole located right at the centre of the star. However, there is no particular reason why this dipole should be attached to this very special point. A slight shift from the stellar centre could have strong implications for the surrounding electromagnetic field configuration leading to clear observational signatures. We study the effect of the most general off-centred dipole anchored in the neutron star interior. Exact analytical solutions are given in vacuum outside the star to any order of accuracy in the small parameter $\\epsilon = d/R$, where $d$ is the displacement of the dipole from the stellar centre and $R$ the neutron star radius. As a simple diagnostic of this decentred dipole, the spin-down luminosity and the torque exerted on its crust are computed to the lowest leading order in~$\\epsilon$. Results are compared to ...

  6. On the Color Dipole Picture

    CERN Document Server

    Schildknecht, Dieter

    2016-01-01

    We give a brief representation of the theoretical results from the color dipole picture, covering the total photoabsorption cross section, high-energy $J/\\psi$ photoproduction with respect to recent experimental data from the LHCb Collaboration at CERN, and ultra-high energy neutrino scattering, relevant for the ICE-CUBE experiment.

  7. A Tale of Two Dipoles

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach

    2006-01-01

    A number of antenna topics may be treated by studying just two parallel, closely spaced electrical dipoles. They form an array and they may be coupled to form a single antenna with one port, or coupled through a coupling network to form a multiport antenna. The situations discussed are the creation...

  8. Particle electric dipole-moments

    Energy Technology Data Exchange (ETDEWEB)

    Pendlebury, J.M. [Sussex Univ., Brighton (United Kingdom)

    1997-04-01

    The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.

  9. Searching for electric dipole moments

    NARCIS (Netherlands)

    Jungmann, Klaus

    2013-01-01

    Searches for a permanent Electric Dipole Moment (EDM) of a fundamental particle provide a wide window for the discovery of potential New Physics. Within todays Standard Model in particle physics the well established violation of CP symmetry gives rise to EDMs which are several orders of magnitude be

  10. Population Blocks.

    Science.gov (United States)

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  11. Anomalously large difference in dipole moment of isomers with nearly identical thermodynamic stability.

    Science.gov (United States)

    Nadykto, Alexey B; Yu, Fangqun

    2008-08-07

    Sulfuric acid is a primary atmospheric nucleation precursor, with the ability to form stable aqueous hydrogen-bonded clusters/complexes. The electrical dipole moment of such clusters/complexes is important for ion-induced nucleation, largely controlled by dipole-charge interaction of airborne ions with vapor monomers and pre-existing clusters. Although experiments typically trace a single lowest energy conformer at low temperatures, the present study shows that the immediate vicinity (dipole moments. The difference in the dipole moment of mono-, di-, and trihydrates of the sulfuric acid exceeds 1.3-1.5 Debyes ( approximately 50-60%), 1.4-2.6 Debyes ( approximately 50-90%), and 3.8-4.2 Debyes ( approximately 370-550%), respectively. Being driven by the temperature dependence of the Boltzmann distribution, the difference between the Boltzmann-Gibbs average dipole moment and the dipole moment of the most stable isomer increases with the ambient temperature, leading to large variations in the dipole-ion interaction strength, which may have important implications for the ion-mediated production of ultrafine aerosol particles associated with various climatic and health impacts.

  12. Total Spinal Block after Thoracic Paravertebral Block.

    Science.gov (United States)

    Beyaz, Serbülent Gökhan; Özocak, Hande; Ergönenç, Tolga; Erdem, Ali Fuat; Palabıyık, Onur

    2014-02-01

    Thoracic paravertebral block (TPVB) can be performed with or without general anaesthesia for various surgical procedures. TPVB is a popular anaesthetic technique due to its low side effect profile and high analgesic potency. We used 20 mL of 0.5% levobupivacaine for a single injection of unilateral TPVB at the T7 level with neurostimulator in a 63 year old patient with co-morbid disease who underwent cholecystectomy. Following the application patient lost consciousness, and was intubated. Haemodynamic instability was normalised with rapid volume replacement and vasopressors. Anaesthetic drugs were stopped at the end of the surgery and muscle relaxant was antagonised. Return of mucle strenght was shown with neuromuscular block monitoring. Approximately three hours after TPVB, spontaneous breathing started and consciousness returned. A total spinal block is a rare and life-threatening complication. A total spinal block is a complication of spinal anaesthesia, and it can also occur after peripheral blocks. Clinical presentation is characterised by hypotension, bradicardia, apnea, and cardiac arrest. An early diagnosis and appropriate treatment is life saving. In this case report, we want to present total spinal block after TPVB.

  13. Refutation of stability proofs for dipole vortices

    DEFF Research Database (Denmark)

    Nycander, J.

    1992-01-01

    Five stability proofs for dipole vortices (modons) that have been presented by various authors are examined. It is shown that they are all incorrect, and that westward-propagating dipoles are in fact unstable, in contradiction to some of the proofs.......Five stability proofs for dipole vortices (modons) that have been presented by various authors are examined. It is shown that they are all incorrect, and that westward-propagating dipoles are in fact unstable, in contradiction to some of the proofs....

  14. Quantum Zeno suppression of dipole-dipole forces

    CERN Document Server

    Wüster, Sebastian

    2016-01-01

    We consider inter-atomic forces due to resonant dipole-dipole interactions within a dimer of highly excited Rydberg atoms, embedded in an ultra-cold gas. These forces rely on a coherent superposition of two-atom electronic states, which is destroyed by continuous monitoring of the dimer state through a detection scheme utilizing controllable interactions with the background gas atoms. We show that this intrinsic decoherence of the molecular energy surface can gradually deteriorate a repulsive dimer state, causing a mixing of attractive and repulsive character. For sufficiently strong decoherence, a Zeno-like effect causes a complete arrest of interatomic forces. We finally show how short decohering pulses can controllably redistribute population between the different molecular energy surfaces.

  15. Effects of dipole-dipole interaction on entanglement transfer

    Institute of Scientific and Technical Information of China (English)

    Guo Hong; Xiong Heng-Na

    2008-01-01

    A system consisting of two different atoms interacting with a two-mode vacuum, where each atom is resonant only with one cavity mode, is considered.The effects of dipole-dipole (dd) interaction between two atoms on the atom-atom entanglement and mode-mode entanglement are investigated. For a weak dd interaction, when the atoms are initially separable, the entanglement between them can be induced by the dd interaction, and the entanglement transfer between the atoms and the modes occurs efficiently; when the atoms are initially entangled, the entanglement transfer is almost not influenced by the dd interaction. However, for a strong dd interaction, it is difficult to transfer the entanglement from the atoms to the modes, but the atom-atom entanglement can be maintained when the atoms are initially entangled.

  16. Perturbative Odderon in the Dipole Model

    CERN Document Server

    Kovchegov, Yu V; Wallon, S; Kovchegov, Yuri V.; Szymanowski, Lech; Wallon, Samuel

    2003-01-01

    We show that, in the framework of Mueller's dipole model, the perturbative QCD odderon is described by the dipole model equivalent of the BFKL equation with a $C$-odd initial condition. The eigenfunctions and eigenvalues of the odderon solution are the same as for the dipole BFKL equation and are given by the functions $E^{n,\

  17. Noncommutative Dipole Field Theories And Unitarity

    CERN Document Server

    Chiou, D W; Chiou, Dah-Wei; Ganor, Ori J.

    2004-01-01

    We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.

  18. Sum Rule for a Schiff-Like Dipole Moment

    Science.gov (United States)

    Raduta, A. A.; Budaca, R.

    The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs from the Thomas-Reiche-Kuhn (TRK) sum rule by several corrective terms which depend on the number of system components, N. For illustration the formalism was applied to the case of Na clusters. One concludes that the random phase approximation (RPA) results for Na clusters obey the modified TRK sum rule.

  19. Technology of superconducting accelerator dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Hassenzahl, W.V.; Meuser, R.B.; Taylor, C.

    1983-06-01

    We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value.

  20. Radiating dipoles in photonic crystals

    OpenAIRE

    Busch, Kurt; Vats, Nipun; John, Sajeev; Sanders, Barry C.

    2000-01-01

    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra ar...

  1. Zitongdong Block

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ The Zitongdong Block (Eastern Zitong Block) is located in the northwest of the Sichuan Basin. Tectonically, it is situated in the east part of Zitong Depression, southeast of mid-Longmenshan folded and faulted belt( as shown on Fig. 8 ), covering an area of 1 730 km2. The traffic is very convenient, the No. 108 national highway passes through the north of the block. Topographically, the area belongs to low hilly land at the elevation of 500-700 m.

  2. Coupled dipole plasmonics of nanoantennas in discontinuous, complex dielectric environments

    Science.gov (United States)

    Forcherio, Gregory T.; Blake, Phillip; Seeram, Manoj; DeJarnette, Drew; Roper, D. Keith

    2015-11-01

    Two-dimensional metamaterials support both plasmonic and coupled lattice (Fano) resonant modes that together could enhance optoelectronics. Descriptions for plasmon excitation in Fano resonant lattices in non-vacuum environments typically use idealized, homogeneous matrices due to computational expense and limitations of common approaches. This work described both localized and coupled resonance activity of two-dimensional, square lattices of gold (Au) nanospheres (NS) in discontinuous, complex dielectric media using compact synthesis of discrete and coupled dipole approximations. This multi-scale approach supported attribution of experimentally observed spectral resonance energy and bandwidth to interactions between metal and dielectric substrate(s) supporting the lattices. Effective polarizabilities of single AuNS, either in vacuo or supported by glass and/or indium tin oxide (ITO) substrates, were obtained with discrete dipole approximation (DDA). This showed plasmon energy transport varied with type of substrate: glass increased scattering, while ITO increased absorption and energy confinement. Far-field lattice interactions between AuNS with/without substrates were computed by coupled dipole approximation (CDA) using effective polarizabilities. This showed glass enhanced diffractive features (e.g., coupled lattice resonance), while ITO supported plasmon modes. This compact, multiscale approach to describe metasurfaces in complex environments could accelerate their development and application.

  3. A skull-based multiple dipole phantom for EEG and MEG studies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, M.E.; Leahy, R.M. [University of Southern California, Los Angeles, CA (United States); Mosher, J.C. [Los Alamos National Lab., NM (United States)

    1996-07-01

    A versatile phantom for use in evaluating forward and inverse methods for MEG and EEG has been designed and is currently being constructed. The phantom consists of three major components: (i) a 32-element cur- rent dipole array, (ii) a PC-controlled dipole driver with 32 isolated channels allowing independent control of each dipole, (iii) spherical and human-skull mounts in which the dipole array is placed. Materials were selected throughout the phantom to produce minimal field distortions and artifacts to enable acquisition of high quality EEG and MEG data. The dipoles are made from a rigid narrow (0.84 mm) stainless steel coax cable. The dipole drivers can be configured as either current or voltage sources, are independently programmable and fully isolated, and are capable of producing arbitrary bipolar waveforms up to a 200 Hz bandwidth. The spherical mount is a single shell sphere filled with conductive gelatin. The human skull mount has three shells: ``brain`` (conducting gelatin), ``skull`` (the skull is impregnated with a low conductivity conducting gelatin), and ``scalp`` (a thin layer of rubber latex mixed with NaCl to achieve a conductivity matched to the brain). The conductivities will be adjusted to achieve approximately an 80:1:80 ratio. Data collected to date from the spherical phantom shows excellent agreement between measured surface potentials and that predicted from theory (27 of the 32 dipoles give better than 99.9% rms fit) and negligible leakage between dipoles. We are currently completing construction of the skull mount.

  4. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole.

    Science.gov (United States)

    Wilke, Josefin; Wilke, Martin; Meerts, W Leo; Schmitt, Michael

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54(∘) showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.

  5. Space-time evolution of ultrarelativistic quantum dipoles in quantum electrodynamics

    Science.gov (United States)

    Blok, B.

    2004-09-01

    We discuss space-time evolution of ultrarelativistic quantum dipole in QED. We show that the space-time evolution can be described, in a certain approximation, by means of a regularized wave function, whose parameters are determined by the process of the dipole creation by a local current. Using these wave functions, we derive the dipole expansion law that is found to coincide parametrically in the leading order with the one suggested by G. R. Farrar et al. (G. R. Farrar, H. Liu, L. Frankfurt and M. Strikman, Phys. Rev. Lett, Vol.61, p.686, 1988).

  6. Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas

    CERN Document Server

    Teixeira, R Celistrino; Nguyen, Thanh Long; Cantat-Moltrecht, T; Raimond, Jean-Michel; Haroche, S; Gleyzes, S; Brune, M

    2015-01-01

    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.

  7. Forward and inverse problems of EEG dipole localization.

    Science.gov (United States)

    Musha, T; Okamoto, Y

    1999-01-01

    Mathematical procedures are discussed in detail of numerical solutions for obtaining scalp potentials from the electric sources. The finite-element method for an inhomogeneous volume conductor, the boundary-element method for a compartment model, and their hybrid for more general cases are discussed. Construction of the head model and typical estimation of electric conductivity of the compartment model is described, which can reduce errors in estimated dipole location caused by incorrect head geometry. The concept of reciprocity is explained, which is applied to understanding a relation between the electrode configuration and its sensitivity for various source conditions. Typical techniques for solving the inverse problem are reviewed for discrete source models. Methods of estimating accuracy of the dipole location in the presence of noise are discussed, together with some numerical examples. The dipolarity is a goodness-of-fit of the dipole approximation, and lowering of the dipolarity is related to inhomogeneous neuronal activity in the cortex. Finally, a criterion of determining the optimal number of model parameters is given in terms of AIC (Akaike Information Criterion), which is applied to decide the most probable number of equivalent dipoles.

  8. Collectivity of dipole bands in {sup 196}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Liang, Y.; Janssens, R.V.F. [and others

    1995-08-01

    The region of nuclei with mass {approximately} 190 was studied extensively over the last few years following the discovery of superdeformation in {sup 190}Hg. More recently, considerable interest in the neutron-deficient Pb isotopes developed with the discover of a number of bands at high spin connected by dipole transitions in both even {sup 192-200}Pb and odd {sup 197-201}Pb nuclei. The majority of the dipole bands are regular in character (i.e. transition energies increase smoothly with spin) while the remaining bands are referred to as irregular in character, due to the fact that the transition energies do not increase smoothly with spin. The properties of the dipole bands were interpreted in terms of high-K, moderately-deformed oblate states built on configurations involving high-J, shape-driving quasiproton excitations coupled to rotation-aligned quasineutrons. It was suggested that the difference between the regular and irregular dipole sequences is related to the deformation where the irregular sequences are thought to be less collective than their regular counterparts.

  9. The dipole moment of the spin density as a local indicator for phase transitions.

    Science.gov (United States)

    Schmitz, D; Schmitz-Antoniak, C; Warland, A; Darbandi, M; Haldar, S; Bhandary, S; Eriksson, O; Sanyal, B; Wende, H

    2014-07-21

    The intra-atomic magnetic dipole moment - frequently called ⟨Tz⟩ term - plays an important role in the determination of spin magnetic moments by x-ray absorption spectroscopy for systems with nonspherical spin density distributions. In this work, we present the dipole moment as a sensitive monitor to changes in the electronic structure in the vicinity of a phase transiton. In particular, we studied the dipole moment at the Fe(2+) and Fe(3+) sites of magnetite as an indicator for the Verwey transition by a combination of x-ray magnetic circular dichroism and density functional theory. Our experimental results prove that there exists a local change in the electronic structure at temperatures above the Verwey transition correlated to the known spin reorientation. Furthermore, it is shown that measurement of the dipole moment is a powerful tool to observe this transition in small magnetite nanoparticles for which it is usually screened by blocking effects in classical magnetometry.

  10. The dipole moment of the spin density as a local indicator for phase transitions

    Science.gov (United States)

    Schmitz, D.; Schmitz-Antoniak, C.; Warland, A.; Darbandi, M.; Haldar, S.; Bhandary, S.; Eriksson, O.; Sanyal, B.; Wende, H.

    2014-07-01

    The intra-atomic magnetic dipole moment - frequently called term - plays an important role in the determination of spin magnetic moments by x-ray absorption spectroscopy for systems with nonspherical spin density distributions. In this work, we present the dipole moment as a sensitive monitor to changes in the electronic structure in the vicinity of a phase transiton. In particular, we studied the dipole moment at the Fe2+ and Fe3+ sites of magnetite as an indicator for the Verwey transition by a combination of x-ray magnetic circular dichroism and density functional theory. Our experimental results prove that there exists a local change in the electronic structure at temperatures above the Verwey transition correlated to the known spin reorientation. Furthermore, it is shown that measurement of the dipole moment is a powerful tool to observe this transition in small magnetite nanoparticles for which it is usually screened by blocking effects in classical magnetometry.

  11. A Nonlinear Multi-Scale Interaction Model for Atmospheric Blocking: The Eddy-Blocking Matching Mechanism

    Science.gov (United States)

    Luo, Dehai; Cha, Jing; Zhong, Linhao; Dai, Aiguo

    2014-05-01

    In this paper, a nonlinear multi-scale interaction (NMI) model is used to propose an eddy-blocking matching (EBM) mechanism to account for how synoptic eddies reinforce or suppress a blocking flow. It is shown that the spatial structure of the eddy vorticity forcing (EVF) arising from upstream synoptic eddies determines whether an incipient block can grow into a meandering blocking flow through its interaction with the transient synoptic eddies from the west. Under certain conditions, the EVF exhibits a low-frequency oscillation on timescales of 2-3 weeks. During the EVF phase with a negative-over- positive dipole structure, a blocking event can be resonantly excited through the transport of eddy energy into the incipient block by the EVF. As the EVF changes into an opposite phase, the blocking decays. The NMI model produces life cycles of blocking events that resemble observations. Moreover, it is shown that the eddy north-south straining is a response of the eddies to a dipole- or Ω-type block. In our model, as in observations, two synoptic anticyclones (cyclones) can attract and merge with one another as the blocking intensifies, but only when the feedback of the blocking on the eddies is included. Thus, we attribute the eddy straining and associated vortex interaction to the feedback of the intensified blocking on synoptic eddies. The results illustrate the concomitant nature of the eddy deformation, whose role as a PV source for the blocking flow becomes important only during the mature stage of a block. Our EBM mechanism suggests that an incipient block flow is amplified (or suppressed) under certain conditions by the EVF coming from the upstream of the blocking region.

  12. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  13. A study of microtubule dipole lattices

    Science.gov (United States)

    Nandi, Shubhendu

    Microtubules are cytoskeletal protein polymers orchestrating a host of important cellular functions including, but not limited to, cell support, cell division, cell motility and cell transport. In this thesis, we construct a toy-model of the microtubule lattice composed of vector Ising spins representing tubulin molecules, the building block of microtubules. Nearest-neighbor and next-to-nearest neighbor interactions are considered within an anisotropic dielectric medium. As a consequence of the helical topology, we observe that certain spin orientations render the lattice frustrated with nearest neighbor ferroelectric and next-to-nearest neighbor antiferroelectric bonds. Under these conditions, the lattice displays the remarkable property of stabilizing certain spin patterns that are robust to thermal fluctuations. We model this behavior in the framework of a generalized Ising model known as the J1 - J2 model and theoretically determine the set of stable patterns. Employing Monte-Carlo methods, we demonstrate the stability of such patterns in the microtubule lattice at human physiological temperatures. This suggests a novel biological mechanism for storing information in living organisms, whereby the tubulin spin (dipole moment) states become information bits and information gets stored in microtubules in a way that is robust to thermal fluctuations.

  14. Collective Dipole-Dipole Interactions in an Atomic Array

    CERN Document Server

    Sutherland, R T

    2016-01-01

    The coherent dipole-dipole interactions of atoms in an atomic array are studied. It is found that the excitation probability of an atom in an array parallel to the direction of laser propagation ($\\boldsymbol{\\hat{k}}$) will either grow or decay logarithmically along $\\boldsymbol{\\hat{k}}$, depending on the detuning of the laser. The symmetry of the system for atomic separations of $\\delta r = j\\lambda/2$, where $j$ is an integer, causes the excitation distribution and scattered radiation to abruptly become symmetric about the center of the array. For atomic separations of $\\delta r < \\lambda/2$, the appearance of a collection of extremely subradiant states ($\\Gamma\\sim 0$), disrupts the described trend. In order to interpret the results from a finite array of atoms, a band structure calculation in the $N\\rightarrow \\infty$ limit is conducted where the decay rates and the Collective Lamb Shifts of the eigenmodes along the Brillouin zone are shown. Finally, the band structure of an array strongly affects it...

  15. Zitongxi Block

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ Zitongxi Block (Western Zitong Block), is located in Zitong County, northwest of Sichuan Province (as shown on Fig. 8 ). Geologically. it is situated in the Zitong Depression, southwest of the middle Longmenshan faulted and folded belt, covering an area of 1 830 km2. Transportation is very convenient. A crisscross network of highways run through the block and the Baocheng railway is nearby. The climate is moderate. Most area belongs to hilly land with the elevation of 500-600 m.The Tongjiang River runs across the area.

  16. Dipoles on a Two-leg Ladder

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Zinner, Nikolaj Thomas

    2013-01-01

    We study polar molecules with long-range dipole-dipole interactions confined to move on a two-leg ladder for different orientations of the molecular dipole moments with respect to the ladder. Matrix product states are employed to calculate the many-body ground state of the system as function...... of lattice filling fractions, perpendicular hopping between the legs, and dipole interaction strength. We show that the system exhibits zig-zag ordering when the dipolar interactions are predominantly repulsive. As a function of dipole moment orientation with respect to the ladder, we find...... that there is a critical angle at which ordering disappears. This angle is slightly larger than the angle at which the dipoles are non-interacting along a single leg. This behavior should be observable using current experimental techniques....

  17. LOG PERIODIC DIPOLE ARRAY WITH PARASITIC ELEMENTS

    Science.gov (United States)

    The design and measured characteristics of dipole and monopole versions of a log periodic array with parasitic elements are discussed. In a dipole...array with parasitic elements, these elements are used in place of every alternate dipole, thereby eliminating the need of a twisted feed arrangement...for the elements to obtain log periodic performance of the anntenna. This design with parasitic elements lends itself to a monopole version of the

  18. Chengzikou Block

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ Chengzikou Block is located in the north of Hekou district, Dongying City, Shandong Province, adjacent to Bohai Bay. It can be geographically divided into three units: onshore, transitional zone and offshore ultrashallow zone, totally covering an area of 470 km2. The southern onshore area is low and gentle in topography;the northern shallow sea is at water depths of 2-8 m below sea level, and the transitional zone occupies more than 60% of the whole block. The climate belongs to temperate zone with seasonal wind. Highways are welldeveloped here, and the traffic is very convenient. The Chengzikou Block is about 80 km away from Dongying City and 290 km from Jinan City in the south. The northern offshore area of the block is 160 km away from Longkou port in the east and only 38 km away in the west from Zhuangxi port.

  19. Longmenshan Block

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ Longmenshan Block is located in Jiange County of Jiangyou City in the northwest of Sichuan Basin. covering an area of 2 628 km2. Geologically, it is situated in the Mid-Longmenshan fault and fold belt, neighbouring Zitong Depression in its southeast. There are mountains surrounding its northwest , the rest area being hilly land,with the elevation of 500-700 m. The BaoCheng railway and the No. 108 highway run through the block, the traffic is very convenient.

  20. Axion Induced Oscillating Electric Dipole Moments

    CERN Document Server

    Hill, Christopher T

    2015-01-01

    The axion electromagnetic anomaly induces an oscillating electric dipole for any static magnetic dipole. Static electric dipoles do not produce oscillating magnetic moments. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency $m_a$ and strength $\\sim 10^{-32}$ e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model DC limit. This may suggest sensitive new experimental venues for the axion dark matter search.

  1. The Inverse Problem for the Dipole Field

    CERN Document Server

    Epp, V

    2015-01-01

    The Inverse problem for an electromagnetic field produced by a dipole is solved. It is assumed that the field of an arbitrary changing dipole is known. Obtained formulae allow calculation of the position and dynamics of the dipole which produces the measured field. The derived results can be used in investigations on radiative process in solids caused by changing of the charge distribution. For example, generation of the electromagnetic field caused by oscillations of atoms or electron gas at the trace of a particle channeling in a crystal, or fields arising at solids cracking or dislocation formation -- in any case when one is interested in the details of the dipole field source.

  2. Which dipole are you studying in lab?

    Science.gov (United States)

    Binder, P.-M.; Tate, Reuben B.; Crowder, Callie K.

    2017-01-01

    We explore the similarities and differences between the electric dipole studied in introductory physics and the purportedly equivalent elementary experiment in which the electric potential is measured on a conductive sheet as a current flows. The former is a three-dimensional electrostatic dipole while the latter is a two-dimensional steady-state dipole. In spite of these differences, and as shown in this work, the potentials due to these dipoles look very similar. This may be misleading to either students or unaware instructors.

  3. Bound Chains of Tilted Dipoles in Layered Systems

    DEFF Research Database (Denmark)

    G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.;

    2012-01-01

    is fascinating. Here we concentrate on few-body states in a multilayered setup. We exploit the geometry of the interlayer potential to calculate the two- and three-body chains with one molecule in each layer. The focus is on dipoles that are aligned at some angle with respect to the layer planes by means...... of an external eletric field. The binding energy and the spatial structure of the bound states are studied in several different ways using analytical approaches. The results are compared to stochastic variational calculations and very good agreement is found. We conclude that approximations based on harmonic...... oscillator potentials are accurate even for tilted dipoles when the geometry of the potential landscape is taken into account....

  4. Cable Magnetization Effects in the LHC Main Dipole Magnets

    CERN Document Server

    Bottura, L; Walckiers, L; Wolf, R

    1998-01-01

    Several short (1 m) and long (10 m) dipole models have been tested within the scope of the on-going R&D programme for LHC at CERN. We report here the results of measurements of field quality in these dipoles, focussing on the contribution of cable magnetization. We show that the results obtained over a significant (> 10) number of magnets at 1.8 and 4.2 K are in reasonable agreement with calculati ons of the dependence of allowed harmonics on field. The calculations are based on the Bean model of filament magnetization and assume an approximate Jc(B) dependence, calibrated against low field mea surements of strand magnetization. The field quality measurements at low field also correlate satisfactorily to measurements of cable critical current at high field and geometric filament diameter.

  5. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  6. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  7. Analytic evaluation of the dipole Hessian matrix in coupled-cluster theory

    Science.gov (United States)

    Jagau, Thomas-C.; Gauss, Jürgen; Ruud, Kenneth

    2013-10-01

    The general theory required for the calculation of analytic third energy derivatives at the coupled-cluster level of theory is presented and connected to preceding special formulations for hyperpolarizabilities and polarizability gradients. Based on our theory, we have implemented a scheme for calculating the dipole Hessian matrix in a fully analytical manner within the coupled-cluster singles and doubles approximation. The dipole Hessian matrix is the second geometrical derivative of the dipole moment and thus a third derivative of the energy. It plays a crucial role in IR spectroscopy when taking into account anharmonic effects and is also essential for computing vibrational corrections to dipole moments. The superior accuracy of the analytic evaluation of third energy derivatives as compared to numerical differentiation schemes is demonstrated in some pilot calculations.

  8. Bound states of a light atom and two heavy dipoles in two dimensions

    CERN Document Server

    Rosa, D S; Jensen, A S; Krein, G; Yamashita, M T

    2016-01-01

    We study a three-body system, formed by a light particle and two identical heavy dipoles, in two dimensions in the Born-Oppenheimer approximation. We present the analytic light-particle wave function resulting from an attractive zero-range potential between the light and each of the heavy particles. It expresses the large-distance universal properties which must be reproduced by all realistic short-range interactions. We calculate the three-body spectrum for zero heavy-heavy interaction as function of light to heavy mass ratio. We discuss the relatively small deviations from Coulomb estimates and the degeneracies related to radial nodes and angular momentum quantum numbers. We include a repulsive dipole-dipole interaction and investigate the three-body solutions as functions of strength and dipole direction. Avoided crossings occur between levels localized in the emerging small and large-distance minima, respectively. The characteristic exchange of properties like mean square radii are calculated. Simulation ...

  9. Quantum–classical correspondence and the role of the dipole function in molecular dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Lima, E.F. de, E-mail: eflima@rc.unesp.br [Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Rio Claro, São Paulo 13506-900 (Brazil); Rosado, E.C., E-mail: tcortez@rc.unesp.br [Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905 (Brazil); Castelano, L.K., E-mail: lkcastelano@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905 (Brazil); Egydio de Carvalho, R., E-mail: regydio@rc.unesp.br [Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Rio Claro, São Paulo 13506-900 (Brazil)

    2014-07-18

    We consider the quantum and classical dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses. The field–molecule interaction is given by the product of the time-dependent electric field and the molecule permanent dipole. We investigate the influence of the dipole function in molecular dissociation. We show that the dissociation can be suppressed at certain external field frequencies for a nonlinear and finite-range dipole function. The correspondence between quantum and classical results is established by relating classical Fourier amplitudes to discrete–continuum quantum matrix elements. - Highlights: • A finite-range dipole can prevent laser-induced dissociation for particular external frequencies. • Quantum and classical calculations show good agreement when the system is initially in excited levels. • An approximation of discrete–continuum matrix elements by Fourier components is obtained.

  10. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish.

    Directory of Open Access Journals (Sweden)

    James Jaeyoon Jun

    Full Text Available In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole

  11. Diophantine approximation and badly approximable sets

    DEFF Research Database (Denmark)

    Kristensen, S.; Thorn, R.; Velani, S.

    2006-01-01

    . The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension......Let (X,d) be a metric space and (Omega, d) a compact subspace of X which supports a non-atomic finite measure m.  We consider `natural' classes of badly approximable  subsets of Omega. Loosely speaking, these consist of points in Omega which `stay clear' of some given set of points in X....... Applications of our general framework include those from number theory (classical, complex, p-adic and formal power series) and dynamical systems (iterated function schemes, rational maps and Kleinian groups)....

  12. Radiating dipoles in photonic crystals

    Science.gov (United States)

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  13. Magnetic dipole oscillations and radiation damping

    Science.gov (United States)

    Stump, Daniel R.; Pollack, Gerald L.

    1997-01-01

    We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field. An equation for the radiation reaction torque is derived, and the damping of the oscillations is described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the influence of the reaction torque, with no external torque.

  14. Electric dipoles on the Bloch sphere

    CERN Document Server

    Vutha, Amar C

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  15. Experimental results on the Pygmy Dipole Resonance

    Directory of Open Access Journals (Sweden)

    Savran Deniz

    2014-03-01

    Full Text Available The so-called Pygmy Dipole Resonance, an additional structure of low-lying electric dipole strength, has attracted strong interest in the last years. Different experimental approaches have been used in the last decade in order to investigate this new interesting nuclear excitation mode. In this contribution an overview on the available experimental data is given.

  16. Integral Measurement of Dipole Prototype of CSR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dipole prototype is C type used as bending magnet of the injection beam line in CSR, and acts as a model of the dipoles in the CSR main ring simultaneously. The designed relative uniformity of good field is 0.001 in 100 mm width. The results of the local distribution and transfunction at transverse profile measured

  17. How to Introduce the Magnetic Dipole Moment

    Science.gov (United States)

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  18. Gravitational radiation from a rotating magnetic dipole

    CERN Document Server

    Hacyan, Shahen

    2016-01-01

    The gravitational radiation emitted by a rotating magnetic dipole is calculated. Formulas for the polarization amplitudes and the radiated power are obtained in closed forms, considering both the near and radiation zones of the dipole. For a neutron star, a comparison is made with other sources of gravitational and electromagnetic radiation.

  19. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay [Massachusetts Institute of Technology, Cambridge, MA (United States); Mauel, Michael [Columbia Univ., New York, NY (United States)

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m-3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.

  20. Chadong Block

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ The Chadong Block, located in the east of Qaidam Basin, Qinghai Province, covers an area of 12 452 km2. It is bounded by Kunlum Mountains in the south and the northwest is closely adjacent to Aimunike Mountain.Rivers are widely distributed, which always run in NWSE direction, including the Sulunguole, Qaidam and Haluwusu Rivers. The traffic condition is good, the Qinghai-Tibet highway stretching through the whole area and the Lan-Qing railway, 20-50 km away from the block, passing from north to west. A lot of Mongolia minority people have settled there, of which herdsmen always live nearby the Qaidam River drainage area.

  1. Direct summation of dipole-dipole interactions using the Wolf formalism.

    Science.gov (United States)

    Stenqvist, Björn; Trulsson, Martin; Abrikosov, Alexei I; Lund, Mikael

    2015-07-07

    We present an expanded Wolf formalism for direct summation of long-range dipole-dipole interactions and rule-of-thumbs how to choose optimal spherical cutoff (Rc) and damping parameter (α). This is done by comparing liquid radial distribution functions, dipole-dipole orientation correlations, particle energies, and dielectric constants, with Ewald sums and the Reaction field method. The resulting rule states that ασ 3 for reduced densities around ρ(∗) = 1 where σ is the particle size. Being a pair potential, the presented approach scales linearly with system size and is applicable to simulations involving point dipoles such as the Stockmayer fluid and polarizable water models.

  2. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    the cross coupling between the electric field fluctuations and dipole moment fluctuations can be ignored. The peak frequencies in the spectra of the autocorrelation functions are also derived. They depend on the wave vector squared which is a fingerprint of the underlying dipole diffusion mechanism....... For the longitudinal direction the simulation results show that the cross coupling between the electric field and the dipole moment is non-negligible compromising the theoretical predictions. The underlying mechanism for this coupling is not clear.......Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where...

  3. Efimov effect for three interacting bosonic dipoles.

    Science.gov (United States)

    Wang, Yujun; D'Incao, J P; Greene, Chris H

    2011-06-10

    Three oriented bosonic dipoles are treated by using the hyperspherical adiabatic representation, providing numerical evidence that the Efimov effect persists near a two-dipole resonance and in a system where angular momentum is not conserved. Our results further show that the Efimov features in scattering observables become universal, with a known three-body parameter; i.e., the resonance energies depend only on the two-body physics, which also has implications for the universal spectrum of the four-dipole problem. Moreover, the Efimov states should be long-lived, which is favorable for their creation and manipulation in ultracold dipolar gases. Finally, deeply bound two-dipole states are shown to be relatively stable against collisions with a third dipole, owing to the emergence of a repulsive interaction originating in the angular momentum nonconservation for this system.

  4. High-field dipoles for future accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  5. Layers of Cold Dipolar Molecules in the Harmonic Approximation

    DEFF Research Database (Denmark)

    R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.;

    2012-01-01

    We consider the N-body problem in a layered geometry containing cold polar molecules with dipole moments that are polarized perpendicular to the layers. A harmonic approximation is used to simplify the hamiltonian and bound state properties of the two-body inter-layer dipolar potential are used...

  6. Study of the Optimal Precursors for Blocking Events

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhina; LUO Dehai

    2005-01-01

    The precursors of dipole blocking are obtained by a numerical approach based upon a quasi-geostrophic barotropic planetary- to synoptic-scale interaction model without topography and with a localized synopticscale wave-maker. The optimization problem related to the precursors of blocking is formulated and the nonlinear optimization method is used to examine the optimal synoptic-scale initial field successfully. The results show that the prominent characteristics of the optimal synoptic-scale initial field are that the synoptic-scale wave train structures exist upstream of the incipient blocking. In addition, the large-scale low/high eddy-forcing pattern upstream of the incipient blocking is an essential precondition for the onset of dipole blocking.

  7. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross

  8. Electric dipole polarizabilities of Rydberg states of alkali atoms

    CERN Document Server

    Yerokhin, V A; Fritzsche, S; Surzhykov, A

    2016-01-01

    Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali atoms, Rb and Cs, for the $nS$, $nP_{1/2, 3/2}$, and $nD_{3/2, 5/2}$ states with large principal quantum numbers up to $n = 50$. The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semi-empirical core-polarization potential. The obtained results are compared with those from a simpler semi-empirical approach and with available experimental data.

  9. Comparative study between toroidal coordinates and the magnetic dipole field

    CERN Document Server

    Chávez-Alarcón, Esteban

    2012-01-01

    There is a similar behaviour between the toroidal coordinates and the dipole magnetic field produced by a circular loop. In this work we evaluate up to what extent the former can be used as a representation of the latter. While the tori in the toroidal coordinates have circular cross sections, those of the circular loop magnetic field are nearly elliptical ovoids, but they are very similar for large aspect ratios.The centres of the latter displace from the axis faster than the former. By making a comparison between tori of similar aspect ratios, we find quantitative criteria to evaluate the accuracy of the approximation.

  10. Nonadiabatic Induced Dipole Moment by High Intensity Femtosecond Optical Pulses

    OpenAIRE

    Koprinkov, I. G.

    2006-01-01

    Nonadiabtic dressed states and nonadiabatic induced dipole moment in the leading order of nonadiabaticity is proposed. The nonadiabatic induced dipole moment is studied in the femtosecond time domain.

  11. Spectral distortions of the CMB dipole

    CERN Document Server

    Balashev, S A; Chluba, J; Ivanchik, A V; Varshalovich, D A

    2015-01-01

    We consider the distortions of the CMB dipole anisotropy related to the primordial recombination radiation (PRR) and primordial $y$- and $\\mu$-distortions. The signals arise due to our motion relative to the CMB restframe and appear as a frequency-dependent distortion of the CMB temperature dipole. To leading order, the expected relative distortion of CMB dipole does not depend on the particular observation directions and reaches the level of $10^{-6}$ for the PRR- and $\\mu$-distortions and $10^{-5}$ for the $y$-distortion in the frequency range 1 $-$ 700 GHz. The temperature differences arising from the dipole anisotropy of the relic CMB distortions depend on observation directions. For mutually opposite directions, collinear to the CMB dipole axis, the temperature differences because of the PRR- and $\\mu$-dipole anisotropy attain values $\\Delta T\\simeq 10\\,$nK in the considered range. The temperature difference arising from the $y$-dipole anisotropy may reach values up to $1\\,\\mu$K. The key features of the ...

  12. Optimal Belief Approximation

    CERN Document Server

    Leike, Reimar H

    2016-01-01

    In Bayesian statistics probability distributions express beliefs. However, for many problems the beliefs cannot be computed analytically and approximations of beliefs are needed. We seek a ranking function that quantifies how "embarrassing" it is to communicate a given approximation. We show that there is only one ranking under the requirements that (1) the best ranked approximation is the non-approximated belief and (2) that the ranking judges approximations only by their predictions for actual outcomes. We find that this ranking is equivalent to the Kullback-Leibler divergence that is frequently used in the literature. However, there seems to be confusion about the correct order in which its functional arguments, the approximated and non-approximated beliefs, should be used. We hope that our elementary derivation settles the apparent confusion. We show for example that when approximating beliefs with Gaussian distributions the optimal approximation is given by moment matching. This is in contrast to many su...

  13. Axion induced oscillating electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  14. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  15. Formation number for vortex dipoles

    Science.gov (United States)

    Sadri, Vahid; Krueger, Paul S.

    2016-11-01

    This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.

  16. Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line

    Science.gov (United States)

    Yoshida, Kenichi

    2009-10-01

    We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at ExThomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.

  17. Van der Waals Interactions and Dipole Blockade in a Cold Rydberg Gas Probed by Microwave Spectroscopy

    Science.gov (United States)

    Nguyen, Thanh Long; Celistrino Teixeira, Raul; Hermann Avigliano, Carla; Cantat Moltrecht, Tigrane; Raimond, Jean Michel; Haroche, Serge; Gleyzes, Sebastiens; Brune, Michel

    2016-05-01

    Dipole-dipole interactions between Rydberg atoms are a flourishing tool for quantum information processing and for quantum simulation of complex many-body problems. Microwave spectroscopy of a dense Rydberg gas trapped close to a superconducting atom chip in the strong dipole blockade regime reveals directly the many-body atomic interaction spectrum. We present here a direct measurement of the interaction energy distribution in the strong dipole blockade regime, based on microwave spectroscopy. We first apply this method to the observation of the excitation dynamics of the Rydberg gas, conditioned by dipole-dipole interactions, in either the strong blockade regime or the so-called facilitation regime. We also observe with this method the atomic cloud expansion driven by the repulsive Van der Waals interaction after excitation. This measurement, in good agreement with Monte Carlo simulations of the excitation process and of the cloud dynamics, reveals the limits of the frozen gas approximation. This method can help investigate self-organization and dynamical phase transitions in Rydberg-atom based quantum simulators. This study thus opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atom.

  18. On Element SDD Approximability

    CERN Document Server

    Avron, Haim; Toledo, Sivan

    2009-01-01

    This short communication shows that in some cases scalar elliptic finite element matrices cannot be approximated well by an SDD matrix. We also give a theoretical analysis of a simple heuristic method for approximating an element by an SDD matrix.

  19. Pygmy dipole resonance in stable nuclei

    Indian Academy of Sciences (India)

    P Von Neumann-Cosel

    2010-07-01

    Two examples of recent work on the structure of low-energy electric dipole modes are presented. The first part discusses the systematics of the pygmy dipole resonance (PDR) in stable tin isotopes deduced from high-resolution (, ′) experiments. These help to distinguish between microscopic QRPA calculations based on either a relativistic or a non-relativistic mean-field description, predicting significantly different properties of the PDR. The second part presents a novel approach to measure the complete electric dipole strength distribution from excitation energies starting at about 5 MeV across the giant dipole resonance (GDR) with high-resolution inelastic proton scattering under 0° at energies of a few 100 MeV/nucleon. The case of 208Pb is discussed in detail and first result from a recent experiment on 120Sn is presented.

  20. Plasmonic functionalities based on detuned electrical dipoles

    DEFF Research Database (Denmark)

    Pors, Anders Lambertus; Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2013-01-01

    We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells...

  1. Approximate iterative algorithms

    CERN Document Server

    Almudevar, Anthony Louis

    2014-01-01

    Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such algorithms. Techniques of functional analysis are used to derive analytical relationships between approximation methods and convergence properties for general classes of algorithms. This work provides the necessary background in functional analysis a

  2. Population Dynamics in Cold Gases Resulting from the Long-Range Dipole-Dipole Interaction

    CERN Document Server

    Mandilara, A; Pillet, P

    2009-01-01

    We consider the effect of the long range dipole-dipole interaction on the excitation exchange dynamics of cold two-level atomic gase in the conditions where the size of the atomic cloud is large as compared to the wavelength of the dipole transition. We show that this interaction results in population redistribution across the atomic cloud and in specific spectra of the spontaneous photons emitted at different angles with respect to the direction of atomic polarization.

  3. Expectation values of single-particle operators in the random phase approximation ground state

    CERN Document Server

    Kosov, Daniel S

    2016-01-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments. It is shown that Hartree-Fock based random phase approximation provides a systematic improvement of molecular dipole moment values in comparison to M{\\o}ller-Plesset second order perturbation theory and coupled cluster method for a considered set of molecules.

  4. Bound states of a light atom and two heavy dipoles in two dimensions

    DEFF Research Database (Denmark)

    Rosa, D. S.; Bellotti, F. F.; Jensen, Aksel Stenholm

    2016-01-01

    We study a three-body system, formed by a light particle and two identical heavy dipoles, in two dimensions in the Born-Oppenheimer approximation. We present the analytic light-particle wave function resulting from an attractive zero-range potential between the light and each of the heavy particl...

  5. Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability

    Energy Technology Data Exchange (ETDEWEB)

    DeJarnette, Drew; Forcherio, Gregory T. [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Blake, Phillip [Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Keith Roper, D., E-mail: dkroper@uark.edu [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States)

    2014-01-14

    Coupling and extinction of light among particles representable as point dipoles can be characterized using the coupled dipole approximation (CDA). The analytic form for dipole polarizability of spheroidal particles supports rapid electrodynamic analysis of nanoparticle lattices using CDA. However, computational expense increases for complex shapes with non-analytical polarizabilities which require discrete dipole (DDA) or higher order approximations. This work shows fast CDA analysis of assembled nanorings is possible using a single dipole nanoring polarizability extrapolated from a DDA calculation by summing contributions from individual polarizable volume elements. Plasmon resonance wavelengths of nanorings obtained using extracted polarizabilities blueshift as wall dimensions-to-inner radius aspect ratio increases, consistent with published theory and experiment. Calculated far-field Fano resonance energy maximum and minimum wavelengths were within 1% of full volume element results. Considering polarizability allows a more complete physical picture of predicting plasmon resonance location than metal dielectric alone. This method reduces time required for calculation of diffractive coupling more than 40 000-fold in ordered nanoring systems for 400–1400 nm incident wavelengths. Extension of this technique beyond nanorings is possible for more complex shapes that exhibit dipolar or quadrupole radiation patterns.

  6. Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng;

    2005-01-01

    Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes.......Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....

  7. Intrinsic Decoherence of a Two-Atom System with Dipole-Dipole Interaction

    Institute of Scientific and Technical Information of China (English)

    QI Lin-Na; ZHU Ai-Dong; ZHANG Shou

    2008-01-01

    @@ We investigate the effect of dipole-dipole interaction on the intrinsic decoherence of a system which consists of two two-level atoms and an optical cavity. The entanglement of the system is calculated by making use of concurrence. Our results show that the appropriate choice for the coupling constant Ω of dipole-dipole interaction can restrain the intrinsic decoherence of the system. We also find a special phenomenon. No matter what the value of γ is, the concurrence of system slowly increases and cannot exceed 0.71 when Ω= 1.

  8. Dipole-moment-driven cooperative supramolecular polymerization.

    Science.gov (United States)

    Kulkarni, Chidambar; Bejagam, Karteek K; Senanayak, Satyaprasad P; Narayan, K S; Balasubramanian, S; George, Subi J

    2015-03-25

    While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole-dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole-dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole-dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers.

  9. Approximation of distributed delays

    CERN Document Server

    Lu, Hao; Eberard, Damien; Simon, Jean-Pierre

    2010-01-01

    We address in this paper the approximation problem of distributed delays. Such elements are convolution operators with kernel having bounded support, and appear in the control of time-delay systems. From the rich literature on this topic, we propose a general methodology to achieve such an approximation. For this, we enclose the approximation problem in the graph topology, and work with the norm defined over the convolution Banach algebra. The class of rational approximates is described, and a constructive approximation is proposed. Analysis in time and frequency domains is provided. This methodology is illustrated on the stabilization control problem, for which simulations results show the effectiveness of the proposed methodology.

  10. Sparse approximation with bases

    CERN Document Server

    2015-01-01

    This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications.  The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...

  11. 750 GeV diphoton resonance and electric dipole moments

    Science.gov (United States)

    Choi, Kiwoon; Im, Sang Hui; Kim, Hyungjin; Mo, Doh Young

    2016-09-01

    We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O (10-1). An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O (10-3). For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu-Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α ∼(750 GeV /ΛHC) 2θHC, where θHC is the hypercolor vacuum angle.

  12. 750 GeV diphoton resonance and electric dipole moments

    Directory of Open Access Journals (Sweden)

    Kiwoon Choi

    2016-09-01

    Full Text Available We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O(10−1. An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O(10−3. For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α∼(750 GeV/ΛHC2θHC, where θHC is the hypercolor vacuum angle.

  13. 750 GeV diphoton resonance and electric dipole moments

    CERN Document Server

    Choi, Kiwoon; Kim, Hyungjin; Mo, Doh Young

    2016-01-01

    We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle {\\alpha} in the underlying new physics is of O(10^{-1}). An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle {\\alpha} for an approximately scalar resonance, is of O(10^{-3}). For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu-Goldstone boson formed by a QCD-like hypercolor dynamics confining at \\Lambda_HC, the resulting neutron EDM can be estimated with \\alpha ~ (750 GeV / \\Lambda_HC...

  14. Performance of the First LHC Pre-series Superconducting Dipoles

    CERN Document Server

    Bottura, L; Modena, M; Pojer, M; Pugnat, P; Rossi, L; Sanfilippo, S; Siemko, A; Vlogaert, J; Walckiers, L; Wyss, C

    2003-01-01

    Within the LHC magnet program, a preseries production of final design, full-scale superconducting dipoles has presently started in industry and magnets are being tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, six-block two layer coils wound from 15.1 mm wide graded NbTi cables, and all-polyimide insulation. This paper reviews the main test results of magnets tested to date in both supercritical and superfluid helium. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate, and magnetic field quality are presented and discussed in terms of the design parameters and the aims of the LHC magnet programme.

  15. Nonlinear approximation with dictionaries. II. Inverse Estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    2006-01-01

    In this paper, which is the sequel to [16], we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for blockwise incoherent dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal...

  16. Nonlinear approximation with dictionaries,.. II: Inverse estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    In this paper we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for separated decomposable dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal mutually...

  17. Excitation energy and strength of the pygmy dipole resonance in stable tin isotopes

    CERN Document Server

    Özel, B; Lenske, H; Von Neumann-Cosel, P; Poltoratska, I; Ponomarev, V Yu; Richter, A; Savran, D; Tsoneva, N

    2009-01-01

    The $^{112,120}$Sn$(\\gamma,\\gamma')$ reactions have been studied at the S-DALINAC. Electric dipole (E1) strength distributions have been determined including contributions from unresolved strength extracted by a fluctuation analysis. Together with available data on $^{116,124}$Sn, an experimental systematics of the pygmy dipole resonance (PDR) in stable even-mass tin isotopes is established. The PDR centroid excitation energies and summed strengths are in reasonable agreement with quasiparticle-phonon model calculations based on a nonrelativistic description of the mean field but disagree with relativistic quasiparticle random-phase approximation predictions.

  18. Terahertz emission by diffusion of carriers and metal-mask dipole inhibition of radiation

    CERN Document Server

    Barnes, M E; Daniell, G J; Whitworth, G; Chung, A L; Quarterman, A H; Wilcox, K G; Beere, H E; Ritchie, D A; Apostolopoulos, V

    2011-01-01

    Terahertz (THz) radiation can be generated by ultrafast photo-excitation of carriers in a semiconductor partly masked by a gold surface. A simulation of the effect taking into account the diffusion of carriers and the electric field shows that the total net current is approximately zero and cannot account for the THz radiation. Finite element modelling and analytic calculations indicate that the THz emission arises because the metal inhibits the radiation from part of the dipole population, thus creating an asymmetry and therefore a net current. Experimental investigations confirm the simulations and show that metal-mask dipole inhibition can be used to create THz emitters.

  19. Approximation techniques for engineers

    CERN Document Server

    Komzsik, Louis

    2006-01-01

    Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.

  20. Theory of approximation

    CERN Document Server

    Achieser, N I

    2004-01-01

    A pioneer of many modern developments in approximation theory, N. I. Achieser designed this graduate-level text from the standpoint of functional analysis. The first two chapters address approximation problems in linear normalized spaces and the ideas of P. L. Tchebysheff. Chapter III examines the elements of harmonic analysis, and Chapter IV, integral transcendental functions of the exponential type. The final two chapters explore the best harmonic approximation of functions and Wiener's theorem on approximation. Professor Achieser concludes this exemplary text with an extensive section of pr

  1. Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng;

    2004-01-01

    A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...

  2. Artificial abelian gauge potentials induced by dipole-dipole interactions between Rydberg atoms

    CERN Document Server

    Cesa, A

    2013-01-01

    We analyze the influence of dipole-dipole interactions between Rydberg atoms on the generation of abelian artificial gauge potentials and fields. When two Rydberg atoms are driven by a uniform laser field, we show that the combined atom-atom and atom-field interactions give rise to new, non-uniform, artificial gauge potentials. We identify the mechanism responsible for the emergence of these gauge potentials. Analytical expressions for the latter indicate that the strongest artificial magnetic fields are reached in the regime intermediate between the dipole blockade regime and the regime in which the atoms are sufficiently far apart such that atom-light interaction dominates over atom-atom interactions. We discuss the differences and similarities of artificial gauge fields originating from resonant dipole-dipole and van der Waals interactions. We also give an estimation of experimentally attainable artificial magnetic fields resulting from this mechanism.

  3. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    Science.gov (United States)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  4. Optical force on toroidal nanostructures: toroidal dipole versus renormalized electric dipole

    CERN Document Server

    Zhang, Xu-Lin; Lin, Zhifang; Sun, Hong-Bo; Chan, C T

    2015-01-01

    We study the optical forces acting on toroidal nanostructures. A great enhancement of optical force is unambiguously identified as originating from the toroidal dipole resonance based on the source-representation, where the distribution of the induced charges and currents is characterized by the three families of electric, magnetic, and toroidal multipoles. On the other hand, the resonant optical force can also be completely attributed to an electric dipole resonance in the alternative field-representation, where the electromagnetic fields in the source-free region are expressed by two sets of electric and magnetic multipole fields based on symmetry. The confusion is resolved by conceptually introducing the irreducible electric dipole, toroidal dipole, and renormalized electric dipole. We demonstrate that the optical force is a powerful tool to identify toroidal response even when its scattering intensity is dwarfed by the conventional electric and magnetic multipoles.

  5. Dipole strength distribution of {sup 50}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Gayer, Udo; Beck, Tobias; Beller, Jacob; Mertes, Laura; Pai, Haridas; Pietralla, Norbert; Ries, Philipp; Romig, Christopher; Werner, Volker; Zweidinger, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany)

    2015-07-01

    A first nuclear resonance fluorescence (NRF) experiment with a 68% isotopically enriched {sup 50}Ti target has been performed at the superconducting Darmstadt electron linear accelerator S-DALINAC to investigate particle-bound dipole excitations in this nucleus. The target was irradiated with an unpolarized bremsstrahlung photon beam at endpoint energies of 7.5 MeV and 9.7 MeV. The observed excited states are analyzed with respect to their excitation energies, spin quantum numbers and transition strengths. A complementary NRF experiment with polarized photons will be conducted at the High Intensity gamma-ray Source in Durham, NC, USA to determine the polarity of the dipole transitions. Data will be analyzed with regard to the Pygmy Dipole Resonance, a weakly-collective electric dipole excitation which starts to form in nuclei of this mass region. The measured transition strengths will be compared to microscopic calculations in the quasiparticle-phonon model. The investigation of the magnetic dipole strength distribution will focus on strong spin-flip transitions between the p,f spin-orbit partners expected in the nuclear shell model. First results of the measurements and the evaluation will be presented and discussed.

  6. LHC dipoles: the countdown has begun

    CERN Multimedia

    Patrice Loiez

    2002-01-01

    At the entrance to the fourth floor corridor of the LHC-MMS (Main Magnets and Superconductors) Group in building 30, the Director-General has unveiled an electronic information panel indicating the number of LHC dipoles still to be delivered and the days remaining to the deadline (30 June 2006). The panel was the idea of Lucio Rossi, leader of the MMS Group, which is responsible for the construction of the dipole magnets. The unveiling ceremony took place on the morning of Friday 11 October 2002, at the end of a drink held to celebrate with MMS group and the LHC top management the exceptional performance of the latest dipoles, built by the French consortium Alstom-Jeumont. They are the first dipoles to achieve a magnetic field of 9 tesla in one go without quenching, thus exceeding the nominal operating field of 8.3 tesla. The challenge is now to increase the production rate from 2 to 35 dipoles per month by 2004 in order to meet the deadline, while maintaining this quality. Photo 01: The Director-General Luci...

  7. Expectation Consistent Approximate Inference

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2005-01-01

    We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...

  8. Approximate Modified Policy Iteration

    CERN Document Server

    Scherrer, Bruno; Ghavamzadeh, Mohammad; Geist, Matthieu

    2012-01-01

    Modified policy iteration (MPI) is a dynamic programming (DP) algorithm that contains the two celebrated policy and value iteration methods. Despite its generality, MPI has not been thoroughly studied, especially its approximation form which is used when the state and/or action spaces are large or infinite. In this paper, we propose three approximate MPI (AMPI) algorithms that are extensions of the well-known approximate DP algorithms: fitted-value iteration, fitted-Q iteration, and classification-based policy iteration. We provide an error propagation analysis for AMPI that unifies those for approximate policy and value iteration. We also provide a finite-sample analysis for the classification-based implementation of AMPI (CBMPI), which is more general (and somehow contains) than the analysis of the other presented AMPI algorithms. An interesting observation is that the MPI's parameter allows us to control the balance of errors (in value function approximation and in estimating the greedy policy) in the fina...

  9. Ordered cones and approximation

    CERN Document Server

    Keimel, Klaus

    1992-01-01

    This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.

  10. Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument

    Science.gov (United States)

    Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.

    1994-01-01

    The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.

  11. Investigating the role of average color dipole size in BFKL Pomeron phenomenology

    CERN Document Server

    Lengyel, A I

    2005-01-01

    Based on the QCD dipole picture of the BFKL Pomeron, we investigate the role played by the saturation scale, $Q_{\\mathrm{sat}}$, in obtaining physical values for the affective strong coupling in phenomenological fits to small-$x$ HERA data. The dependence on this scale appears since the collection of color dipoles characterizing the proton target have average size $1/Q_{\\mathrm{sat}}$, which is energy dependent. Physically, this means most of the color dipoles are above but sufficiently close to the border between a saturated and the dilute system. The analysis is first performed in the leading-logs BFKL approach in the saddle-point approximation and it could shed light in further investigations using resummed NLO BFKL kernels.

  12. Effect of rotational-state-dependent molecular alignment on the optical dipole force

    CERN Document Server

    Kim, Lee Yeong; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk

    2016-01-01

    The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. However, in previous experimental studies, the effects of state-dependent alignment have never been included in estimates of the optical dipole force acting on the molecules while previous theoretical investigations took the state-dependent molecular alignment into account only implicitly. Herein, we consider the effects of molecular alignment explicitly and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear mo...

  13. Improvement of magnetosphere structure calculations using eccentric dipole to account for the internal magnetic field

    Science.gov (United States)

    Parunakian, David

    2014-05-01

    In this paper we build upon the results previously produced by numerous attempts, including our own, to approximate the geomagnetic field with a an eccentric dipole instead of spherical harmonics expansions. Among other motivations to do so is that dipole-related effects are much more pronounced relative to higher-order harmonics at large distances from the Earth, and that the shift of the order of magnitude about 0.1 Earth radii is significant enough for many magnetospheric structures such as the current sheet. We present the results of multivariate simulated annealing, which includes translational and rotational repositioning of the dipole. We also include similar results produced for Mercury and Saturn, and we extend Earth-related data with Oersted and Cluster measurements in order to further improve our accuracy.

  14. Quark contribution to the small-x evolution of color dipole

    Energy Technology Data Exchange (ETDEWEB)

    Ian Balitsky

    2006-09-11

    The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the NLO the nonlinear equation gets contributions from quark and gluon loops. In this paper I calculate the quark-loop contribution to small-x evolution of Wilson lines in the NLO. It turns out that there are no new operators at the one-loop level--just as at the tree level, the high-energy scattering can be described in terms of Wilson lines. In addition, from the analysis of quark loops I find that the argument of coupling constant in the BK equation is determined by the size of the parent dipole rather than by the size of produced dipoles. These results are to be supported by future calculation of gluon loops.

  15. Theory of Dipole Induced Electromagnetic Transparency

    CERN Document Server

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric

    2015-01-01

    A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...

  16. What is the dual of a dipole?

    CERN Document Server

    Alday, L F; Messamah, I; Alday, Luis F.; Boer, Jan de; Messamah, Ilies

    2006-01-01

    We study gravitational solutions that admit a dual CFT description and carry non zero dipole charge. We focus on the black ring solution in AdS_3 x S^3 and extract from it the one-point functions of all CFT operators dual to scalar excitations of the six-dimensional metric. In the case of small black rings, characterized by the level N, angular momentum J and dipole charge q_3, we show how the large N and J dependence of the one-point functions can be reproduced, under certain assumptions, directly from a suitable ensemble in the dual CFT. Finally we present a simple toy model that describes the thermodynamics of the small black ring for arbitrary values of the dipole charge.

  17. What is the dual of a dipole?

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)]. E-mail: l.f.alday@phys.uu.nl; Boer, Jan de [Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)]. E-mail: jdeboer@science.uva.nl; Messamah, Ilies [Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)]. E-mail: imessama@science.uva.nl

    2006-07-03

    We study gravitational solutions that admit a dual CFT description and carry non-zero dipole charge. We focus on the black ring solution in AdS{sub 3}xS{sup 3} and extract from it the one-point functions of all CFT operators dual to scalar excitations of the six-dimensional metric. In the case of small black rings, characterized by the level N, angular momentum J and dipole charge q{sub 3}, we show how the large N and J dependence of the one-point functions can be reproduced, under certain assumptions, directly from a suitable ensemble in the dual CFT. Finally we present a simple toy model that describes the thermodynamics of the small black ring for arbitrary values of the dipole charge.

  18. Pursuit and Synchronization in Hydrodynamic Dipoles

    CERN Document Server

    Kanso, Eva

    2015-01-01

    We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic \\textit{Hele-Shaw} type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly-periodic domains, and focus on the dynamics of swimmer pairs. We obtain two families of `relative equilibria'-type solutions that correspond to pursuit and synchronization of the two swimmers, respectively. Interestingly, the pursuit mode is stable for large tail swimmers whereas the synchronization mode is stable for large head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.

  19. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  20. Approximating Stationary Statistical Properties

    Institute of Scientific and Technical Information of China (English)

    Xiaoming WANG

    2009-01-01

    It is well-known that physical laws for large chaotic dynamical systems are revealed statistically. Many times these statistical properties of the system must be approximated numerically. The main contribution of this manuscript is to provide simple and natural criterions on numerical methods (temporal and spatial discretization) that are able to capture the stationary statistical properties of the underlying dissipative chaotic dynamical systems asymptotically. The result on temporal approximation is a recent finding of the author, and the result on spatial approximation is a new one. Applications to the infinite Prandtl number model for convection and the barotropic quasi-geostrophic model are also discussed.

  1. A HTS dipole insert coil constructed

    CERN Document Server

    Ballarino, A; Rey, J M; Stenvall, A; Sorbi, M; Tixador, P

    2013-01-01

    This report is the deliverable report 7.4.1 “A HTS dipole insert coil constructed“. The report has three parts: “Design report for the HTS dipole insert”, “One insert pancake prototype coil constructed with the setup for a high field test”, and “All insert components ordered”. The three report parts show that, although the insert construction will be only completed by end 2013, all elements are present for a successful completion and that, given the important investments done by the participants, there is a full commitment of all of them to finish the project

  2. Cooperative Ordering in Lattices of Interacting Dipoles

    CERN Document Server

    Bettles, Robert J; Adams, Charles S

    2014-01-01

    Using classical electrodynamics simulations we investigate the cooperative behavior of regular monolayers of induced two-level dipoles, including their cooperative decays and shifts. For the particular case of the kagome lattice we observe behavior akin to EIT for lattice spacings less than the probe wavelength. Within this region the dipoles exhibit ferroelectric and anti-ferroelectric ordering. We also model how the cooperative response is manifested in the optical transmission through the kagome lattice, with sharp changes in transmission from 10% to 80% for small changes in lattice spacing.

  3. Complete electric dipole response in 208Pb

    CERN Document Server

    Tamii, A; von Neumann-Cosel, P; Fujita, Y; Adachi, T; Bertulani, C A; Carter, J; Dozono, M; Fujita, H; Fujita, K; Hatanaka, K; Heilmann, A M; Ishikawa, D; Itoh, M; Ong, H J; Kawabata, T; Kalmykov, Y; Litvinova, E; Matsubara, H; Nakanishi, K; Neveling, R; Okamura, H; Özel-Tashenov, B; Ponomarev, V Yu; Richter, A; Rubio, B; Sakaguchi, H; Sakemi, Y; Sasamoto, Y; Shimbara, Y; Shimizu, Y; Smit, F D; Suzuki, T; Tameshige, Y; Wambach, J; Yamada, R; Yosoi, M; Zenihiro, J

    2011-01-01

    A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0{\\deg} is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range testing up-to-date nuclear model calculations. The E1 polarizability extracted from the data provides a constraint on the neutron skin thickness in 208Pb and the poorly known density dependence of the symmetry energy, relevant to the description of neutron stars.

  4. Directed Energy Transfer in Films of CdSe Quantum Dots: Beyond the Point Dipole Approximation

    DEFF Research Database (Denmark)

    Zheng, Kaibo; Zídek, Karel; Abdellah, Mohamed

    2014-01-01

    Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size...... dynamics of directed energy transfer in ordered multilayer QD films, which we also observe experimentally. The Monte Carlo simulations reveal that three ideal QD monolayers can provide exciton funneling efficiency above 80% from the most distant layer. Thereby, utilization of directed energy transfer can...... ultrafast transient absorption spectroscopy and theoretical modeling. Pairwise interdot transfer time was determined in the range of 1.5 to 2 ns by spectral analyses which enable separation of the FRET contribution from intrinsic exciton decay. A rational model is suggested by taking into account...

  5. Asymmetry of Neoclassical Transport by Dipole Electric Field

    Institute of Scientific and Technical Information of China (English)

    王中天; 王龙

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity.

  6. Approximation of irrationals

    Directory of Open Access Journals (Sweden)

    Malvina Baica

    1985-01-01

    Full Text Available The author uses a new modification of Jacobi-Perron Algorithm which holds for complex fields of any degree (abbr. ACF, and defines it as Generalized Euclidean Algorithm (abbr. GEA to approximate irrationals.

  7. Approximations in Inspection Planning

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard; Faber, M. H.

    2000-01-01

    Planning of inspections of civil engineering structures may be performed within the framework of Bayesian decision analysis. The effort involved in a full Bayesian decision analysis is relatively large. Therefore, the actual inspection planning is usually performed using a number of approximations....... One of the more important of these approximations is the assumption that all inspections will reveal no defects. Using this approximation the optimal inspection plan may be determined on the basis of conditional probabilities, i.e. the probability of failure given no defects have been found...... by the inspection. In this paper the quality of this approximation is investigated. The inspection planning is formulated both as a full Bayesian decision problem and on the basis of the assumption that the inspection will reveal no defects....

  8. The Karlqvist approximation revisited

    CERN Document Server

    Tannous, C

    2015-01-01

    The Karlqvist approximation signaling the historical beginning of magnetic recording head theory is reviewed and compared to various approaches progressing from Green, Fourier, Conformal mapping that obeys the Sommerfeld edge condition at angular points and leads to exact results.

  9. Adiabatic approximation for the Rabi model with broken inversion symmetry

    Science.gov (United States)

    Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi

    2017-01-01

    We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.

  10. Approximation and Computation

    CERN Document Server

    Gautschi, Walter; Rassias, Themistocles M

    2011-01-01

    Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg

  11. Three-dimensional ab initio dipole moment surfaces and stretching vibrational band intensities of the XH3 molecules

    Institute of Scientific and Technical Information of China (English)

    Liu An-Wen; Hu Shui-Ming; Ding Yun; Zhu Qing-Shi

    2005-01-01

    Stretching vibrational band intensities of XH3 (X=N, Sb) molecules are investigated employing three-dimensional dipole moment surfaces combined with the local mode Hamiltonian model. The dipole moment surfaces of NH3 and SbH3 are calculated with the density functional theory and at the correlated MP2 level, respectively. The calculated band intensities are in good agreement with the available experimental data. The contribution to the band intensities from the different terms in the polynomial expansion of the dipole moments of four group V hydrides (NH3, PH3, AsH3 and SbH3) are discussed. It is concluded that the breakdown of the bond dipole approximation must be considered.The intensity "borrowing" effect due to the wave function mixing among the stretching vibrational states is found to be less significant for the molecules that reach the local mode limit.

  12. Approximation and supposition

    Directory of Open Access Journals (Sweden)

    Maksim Duškin

    2015-11-01

    Full Text Available Approximation and supposition This article compares exponents of approximation (expressions like Russian около, примерно, приблизительно, более, свыше and the words expressing supposition (for example Russian скорее всего, наверное, возможно. These words are often confused in research, in particular researchers often mention exponents of supposition in case of exponents of approximation. Such approach arouses some objections. The author intends to demonstrate in this article a notional difference between approximation and supposition, therefore the difference between exponents of these two notions. This difference could be described by specifying different attitude of approximation and supposition to the notion of knowledge. Supposition implies speaker’s ignorance of the exact number, while approximation does not mean such ignorance. The article offers examples proving this point of view.

  13. Approximate kernel competitive learning.

    Science.gov (United States)

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.

  14. Dipole vortices in the Great Australian Bight

    DEFF Research Database (Denmark)

    Cresswell, George R.; Lund-Hansen, Lars C.; Nielsen, Morten Holtegaard

    2015-01-01

    Shipboard measurements from late 2006 made by the Danish Galathea 3 Expedition and satellite sea surface temperature images revealed a chain of cool and warm mushroom' dipole vortices that mixed warm, salty, oxygen-poor waters on and near the continental shelf of the Great Australian Bight (GAB...

  15. Anharmonic effects and double giant dipole resonances

    CERN Document Server

    Voronov, V V

    2001-01-01

    A brief review of recent results of the microscopic calculations to describe characteristics of the double giant dipole resonances (DGDR) is presented. A special attention is paid to a microscopic study of the anharmonic properties of the DGDR. It is found that the deviation of the energy centroid of the DGDR from the harmonic limit follows A sup - sup 1 dependence

  16. Conceptual design of Dipole Research Experiment (DREX)

    Science.gov (United States)

    Qingmei, XIAO; Zhibin, WANG; Xiaogang, WANG; Chijie, XIAO; Xiaoyi, YANG; Jinxing, ZHENG

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  17. LHC Dipoles: The countdown has begun

    CERN Document Server

    2002-01-01

    One of the LHC dipole magnets has just achieved a record magnetic field of 9 Tesla in one go without quenching. The challenge now is to increase the production rate to 35 magnets a month by 2004. As a new information panel in Building 30 shows, the countdown has begun.

  18. Zeroes in continuum - continuum dipole matrix elements

    Science.gov (United States)

    Obolensky, Oleg I.; Pratt, R. H.; Korol, Andrei

    2003-05-01

    It is well known that Cooper minima in photoeffect cross sections are due to zeroes in corresponding bound-free dipole matrix elements. As was discussed before(C. D. Shaffer, R. H. Pratt, and S. D. Oh, Phys. Rev. A. 57), 227 (1998)., free-free dipole matrix elements in screened (atomic or ionic) potentials can also have zeroes. Such zeroes (existing at energies of the order of 1-100 eV) result in structures in the energy dependence of bremsstrahlung cross sections and angular distributions(A. Florescu, O. I. Obolensky, C. D. Shaffer, and R. H. Pratt, AIP Conference Proceedings, 576), 60 (2001).. In the soft photon limit, zeroes of radiative free-free matrix elements are related to Ramsauer-Townsend minima in elastic scattering of electrons by atoms. Here we study properties of the trajectories of dipole matrix element zeroes in the plane of initial and final electron energies. We show how the trajectories in this plane evolve with ionicity for several low ℓ dipole transitions ℓ → ℓ ± 1.

  19. Scattering properties of point dipole interactions

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Iermakova, S.V.

    2006-01-01

    dipole interactions with a renormalized coupling constant are analysed. Depending on the parameter values, all these interactions being self-adjoint extensions of the one-dimensional Schrodinger operator are shown to be divided into four types: (i) interactions will full transparency, (ii) non...

  20. A Microstrip Reflect Array Using Crossed Dipoles

    Science.gov (United States)

    Pozar, David M.; Targonski, Stephen D.

    1998-01-01

    Microstrip reflect arrays offer a flat profile and light weight, combined with many of the electrical characteristics of reflector antennas. Previous work [1]-[7] has demonstrated a variety of microstrip reflect arrays, using different elements at a range of frequencies. In this paper we describe the use of crossed dipoles as reflecting elements in a microstrip reflectarray. Theory of the solution will be described, with experimental results for a 6" square reflectarray operating at 28 GHz. The performance of crossed dipoles will be directly compared with microstrip patches, in terms of bandwidth and loss. We also comment on the principle of operation of reflectarray elements, including crossed dipoles, patches of variable length, and patch elements with tuning stubs. This research was prompted by the proposed concept of overlaying a flat printed reflectarray on the surface of a spacecraft solar panel. Combining solar panel and antenna apertures in this way would lead to a reduction in weight and simpler deployment, with some loss of flexibility in independently pointing the solar panel and the antenna. Using crossed dipoles as reflectarray elements will minimize the aperture blockage of the solar cells, in contrast to the use of elements such as microstrip patches.

  1. Reorientation of Defect Dipoles in Ferroelectric Ceramics

    Institute of Scientific and Technical Information of China (English)

    LI Bao-Shan; LI Guo-Rong; ZHAO Su-Chuan; ZHU Zhi-Gang; DING Ai-Li

    2005-01-01

    @@ We investigate the frequency, temperature, tetragonality and quenched temperature dependences of the hysteresis loops in Pb[(Zr0.52 Ti0.48)0.95 (Mn1/3Nb2/3)0.05]O3 (PMnN-PZT) ceramics. It has been demonstrated that the polarization-field hysteresis curves show "pinched" shapes when tested at room temperature, higher frequency or using the large-tetragonality specimen. While normal square-like loops are observed at 200 ℃ and 0.01 Hz or using the small-tetragonality one. Meanwhile, close relations between the P-E loops and the applied frequency,temperature or tetragonality reveal that there exists a typical relaxation time corresponding to the reorientation of the defect dipoles. It can be seen further from the quenched temperature dependences of the loops that the reorientation of the defect dipoles may influence the pinching. Compared to the intrinsic depinning procedure induced by changes of the distribution of defect dipoles, we provide new evidence for extrinsic depinning mechanism of the defect dipoles in the ferroelectric ceramics.

  2. Gravitational Radiation from Oscillating Gravitational Dipole

    OpenAIRE

    De Aquino, Fran

    2002-01-01

    The concept of Gravitational Dipole is introduced starting from the recent discovery of negative gravitational mass (gr-qc/0005107 and physics/0205089). A simple experiment, a gravitational wave transmitter, to test this new concept of gravitational radiation source is presented.

  3. The SPS tunnel with a dipole magnet

    CERN Multimedia

    1976-01-01

    The SPS uses about 800 6-m long dipole magnets to bend the beam around its path. Particle beams come into the SPS from the smaller PS accelerator at 26 GeV. The SPS then accelerates the beam further up to 450 GeV when the beam is extracted and transferred to the LHC or CERN Neutrinos to Gran Sasso (CNGS).

  4. Low-cost, pseudo-Halbach dipole magnets for NMR

    Science.gov (United States)

    Tayler, Michael C. D.; Sakellariou, Dimitrios

    2017-04-01

    We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5 mm bore size and field up to nearly 2 T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1 mL of pure [13C ]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10-10 T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency 1JCH = 140.7 (1) Hz.

  5. Intrinsic electric dipole moments of paramagnetic atoms: rubidium and cesium.

    Science.gov (United States)

    Nataraj, H S; Sahoo, B K; Das, B P; Mukherjee, D

    2008-07-18

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximately Z;{3}. Thus, the heavy paramagnetic atoms will exhibit large EDM enhancement factors. However, the sizes of the couplings are so small that they are of interest of high precision atomic experiments. In this work we have computed the EDM enhancement factors of the ground states of Rb and Cs due to both the electron EDM and the S-PS EDM using the relativistic coupled-cluster theory. The importance of determining precise ab initio enhancement factors and experimental results of atomic EDMs in deducing a reliable limit on the electron EDM is emphasized.

  6. On the electric dipole moments of small sodium clusters from different theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andres, E-mail: aguado@metodos.fam.cie.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Largo, Antonio, E-mail: alargo@qf.uva.es [Departamento de Quimica Fisica y Quimica Inorganica, Universidad de Valladolid (Spain); Vega, Andres, E-mail: vega@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Balbas, Luis Carlos, E-mail: balbas@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain)

    2012-05-03

    Graphical abstract: The dipole moments and polarizabilities of a few isomers of sodium clusters of selected sizes (n = 13, 14, 16) are calculated using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Highlights: Black-Right-Pointing-Pointer Dipole moment and polarizability of sodium clusters from DFT and ab initio methods. Black-Right-Pointing-Pointer New van der Waals selfconsistent implementation of non-local dispersion interactions. Black-Right-Pointing-Pointer New starting isomeric geometries from extensive search of global minimum structures. Black-Right-Pointing-Pointer Good agreement with recent experiments at cryogenic temperatures. - Abstract: The dipole moments of Na{sub n} clusters in the size range 10 < n < 20, recently measured at very low temperature (20 K), are much smaller than predicted by standard density functional methods. On the other hand, the calculated static dipole polarizabilities in that range of sizes deviate non-systematically from the measured ones, depending on the employed first principles approach. In this work we calculate the dipole moments and polarizabilities of a few isomers of Na{sub n} clusters of selected sizes (n = 13, 14, 16), obtained recently through an extensive unbiased search of the global minimum structures, and using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Both non-local pseudopotentials and all-electron implementations are employed and compared in order to assess the possible

  7. Dipole-Dipole Interaction and the Directional Motion of Brownian Motors

    Institute of Scientific and Technical Information of China (English)

    YU Hui; ZHAO TongJun; JI Qing; SONG YanLi; WANG YongHong; ZHAN Yong

    2002-01-01

    The electric field of the microtubule is calculated according to its dipole distribution. The conformationalchange of a molecular motor is described by the rotation ofa dipole which interacts with the microtubulc. The mricalsimulation for the particle current shows that this interaction helps to produce a directional motion along the microtubule.And tte average displacement executes step changes that resemble the experimental result for kinesin motors.

  8. Monotone Boolean approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hulme, B.L.

    1982-12-01

    This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application for the analysis of noncoherent fault trees and event tree sequences.

  9. On the integrability of halo dipoles in gravity

    OpenAIRE

    Vieira, Werner M.; Letelier, Patricio S.

    1997-01-01

    We stress that halo dipole components are nontrivial in core-halo systems in both Newton's gravity and General Relativity. To this end, we extend a recent exact relativistic model to include also a halo dipole component. Next, we consider orbits evolving in the inner vacuum between a monopolar core and a pure halo dipole and find that, while the Newtonian dynamics is integrable, its relativistic counterpart is chaotic. This shows that chaoticity due only to halo dipoles is an intrinsic relati...

  10. Color dipole chain and its hadronization in pp collision

    Institute of Scientific and Technical Information of China (English)

    赵晋全; 王群; 谢去病

    1995-01-01

    High energy pp collision is dealt with by double-string model. Each string corresponds to one initial color dipole which will radiate gluons to form color dipole chain. Such gluon radiation process is described by color dipole model. According to the quark combination rule, the total multiplicity formulae for calculating primary meson and baryon of one dipole chain are presented- The calculated yields of various final hadrons in energy range =53- 1 800GeV agree well with available data.

  11. Competition between finite-size effects and dipole-dipole interactions in few-atom systems

    Science.gov (United States)

    Damanet, François; Martin, John

    2016-11-01

    In this paper, we study the competition between finite-size effects (i.e. discernibility of particles) and dipole-dipole interactions in few-atom systems coupled to the electromagnetic field in vacuum. We consider two hallmarks of cooperative effects, superradiance and subradiance, and compute for each the rate of energy radiated by the atoms and the coherence of the atomic state during the time evolution. We adopt a statistical approach in order to extract the typical behaviour of the atomic dynamics and average over random atomic distributions in spherical containers with prescribed {k}0R with k 0 the radiation wavenumber and R the average interatomic distance. Our approach allows us to highlight the tradeoff between finite-size effects and dipole-dipole interactions in superradiance/subradiance. In particular, we show the existence of an optimal value of {k}0R for which the superradiant intensity and coherence pulses are the less affected by dephasing effects induced by dipole-dipole interactions and finite-size effects.

  12. Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide

    Science.gov (United States)

    Mu, Yan; Gao, Yi Qin

    2007-09-01

    We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.

  13. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  14. Prestack wavefield approximations

    KAUST Repository

    Alkhalifah, Tariq

    2013-09-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  15. Local spline approximants

    OpenAIRE

    Norton, Andrew H.

    1991-01-01

    Local spline approximants offer a means for constructing finite difference formulae for numerical solution of PDEs. These formulae seem particularly well suited to situations in which the use of conventional formulae leads to non-linear computational instability of the time integration. This is explained in terms of frequency responses of the FDF.

  16. Formation and temporal evolution of the Lamb-dipole

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Juul Rasmussen, J.

    1997-01-01

    of the evolving dipoles depend on the initial condition. However, the gross properties of their evolution are only weakly dependent on the detailed structure and can be well-described by the so-called Lamb-dipole solution. The viscous decay of the Lamb-dipole, leading to an expansion and a decreasing velocity...

  17. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  18. Propagating and annihilating vortex dipoles in the Gross-Pitaevskii equation

    CERN Document Server

    Rorai, Cecilia; Fisher, Michael E

    2013-01-01

    Quantum vortex dynamics in Bose-Einstein condensates or superfluid helium can be informatively described by the Gross-Pitaevskii (GP) equation. Various approximate analytical formulae for a single stationary vortex are recalled and their shortcomings demonstrated. Significantly more accurate two-point [2/2] and [3/3] Pade' approximants for stationary vortex profiles are presented. Two straight, singly quantized, antiparallel vortices, located at a distance d apart, form a vortex dipole, which, in the GP model, can either annihilate or propagate indefinitely as a `solitary wave'. We show, through calculations performed in a periodic domain, that the details and types of behavior displayed by vortex dipoles depend strongly on the initial conditions rather than only on the separation distance (as has been previously claimed). It is found, indeed, that the choice of the initial two-vortex profile (i.e., the modulus of the `effective wave function'), strongly affects the vortex trajectories and the time scale of t...

  19. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.

  20. Is the Double Giant Dipole Resonance Process Responsible for Alpha Emission in Ternary Fission?

    Institute of Scientific and Technical Information of China (English)

    HAN Hong-Yin(韩洪银); WAND Yi-Hua(王屹华); G.Mouze

    2001-01-01

    The Monte Carlo program built on the double giant dipole resonance model proposed by Mouze et al. [Nuovo Cimento A 110(1997)1097] was employed to calculate the energy spectrum of alpha particles emitted in the spontaneous ternary fission of 252Cf. It has been found that in the case of the zero orbital angular momentum of alpha particles in the alpha decay of the fragments, the measured alpha spectrum can be reproduced approximately by the model without any adjustable parameter.

  1. Simulation Analysis of a Strip Dipole Excited Electromagnetic Band-Gap (EBG) Structure

    Science.gov (United States)

    2015-07-01

    that the phase of the scattered near fields at the EBG surface is more applicable to characterizing the EBG for antenna applications. A new set of...number of unit cells is also demonstrated. 15. SUBJECT TERMS electromagnetic band gap, strip dipole, reflection phase, vias, near fields, bandwidth...Image Theory Approximation 10 2.4 The Periodic Boundary Condition (PBC) Approach 11 2.5 The Phase of the Near Electric Field (NEF) 12 3. Analysis of an

  2. Fermion RG blocking transformations and IR structure

    CERN Document Server

    Cheng, X

    2011-01-01

    We explore fermion RG block-spinning transformations on the lattice with the aim of studying the IR structure of gauge theories and, in particular, the existence of IR fixed points for varying fermion content. In the case of light fermions the main concern and difficulty is ensuring locality of any adopted blocking scheme. We discuss the problem of constructing a local blocked fermion action in the background of arbitrary gauge fields. We then discuss the carrying out of accompanying gauge field blocking. In the presence of the blocked fermions implementation of MCRG is not straightforward. By adopting judicious approximations we arrive at an easily implementable approximate RG recursion scheme that allows quick, inexpensive estimates of the location of conformal windows for various groups and fermion representations. We apply this scheme to locate the conformal windows in the case of SU(2) and SU(3) gauge groups. Some of the reasons for the apparent efficacy of this and similar decimation schemes are discuss...

  3. Magnetic Dipole Band in 113^In

    Institute of Scientific and Technical Information of China (English)

    马克岩; 杨东; 陆景彬; 王烈林; 王辉东; 刘运祚; 刘弓冶; 李黎; 马英君; 杨森; 李广生; 贺创业; 李雪琴

    2012-01-01

    High spin states in the odd-A nucleus 113^In have been investigated using the re- action 110^Pd(7^Li, 4n) at a beam energy of 50 MeV. A new positive parity dipole band with the configuration of π(g9/2)^-lv(h11/2)^2 v (g7/2)^2 is established. The effective interaction V(θ) values of this band have been successfully described by a semiclassical geometric model based on shear mechanism, which show that the dipole band has the characteristics of magnetic rotation. In addition the collective rotational angular momentum for this band is extracted. The results show that the core contribution increases gradually with the increase of the rotation frequency.

  4. Directional Dipole Model for Subsurface Scattering

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Hachisuka, Toshiya; Kjeldsen, Thomas Kim

    2014-01-01

    Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some...... point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction...... similar to that of the standard dipole model, but we now have positive and negative ray sources with a mirrored pair of directions. Our model is as computationally efficient as existing models while it includes single scattering without relying on a separate Monte Carlo simulation, and the rendered images...

  5. Projected Dipole Model for Quantum Plasmonics

    DEFF Research Database (Denmark)

    Yan, Wei; Wubs, Martijn; Mortensen, N. Asger

    2015-01-01

    of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface...... as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects...... of nonlocal response and a finite work function with TDDFT-level accuracy. Applying the theory to dimers, we find quantum corrections to the hybridization even in mesoscopic dimers, as long as the gap itself is subnanometric....

  6. "Good-Walker" + QCD dipoles = Hard Diffraction

    CERN Document Server

    Peschanski, R

    1998-01-01

    The Good-Walker mechanism for diffraction is shown to provide a link between total and diffractive structure functions and to be relevant for QCD calculations at small x_{Bj}. For Deep-Inelastic scattering on a small-size target (cf. an onium) the r\\^ ole of Good-Walker ``diffractive eigenstates'' is played by the QCD dipoles appearing in the $1/N_C$ limit of QCD. Hard diffraction is thus related to the QCD tripe-dipole vertex which has been recently identified (and calculated) as being a conformal invariant correlator and/or a closed-string amplitude. An extension to hard diffraction at HERA via $k_T-$factorisation of the proton vertices leads to interesting phenomenology.

  7. Pygmy dipole resonance in 208Pb

    CERN Document Server

    Poltoratska, I; Tamii, A; Adachi, T; Bertulani, C A; Carter, J; Dozono, M; Fujita, H; Fujita, K; Fujita, Y; Hatanaka, K; Itoh, M; Kawabata, T; Kalmykov, Y; Krumbholz, A M; Litvinova, E; Matsubara, H; Nakanishi, K; Neveling, R; Okamura, H; Ong, H J; Özel-Tashenov, B; Ponomarev, V Yu; Richter, A; Rubio, B; Sakaguchi, H; Sakemi, Y; Sasamoto, Y; Shimbara, Y; Shimizu, Y; Smit, F D; Suzuki, T; Tameshige, Y; Wambach, J; Yosoi, M; Zenihiro, J

    2012-01-01

    Scattering of protons of several hundred MeV is a promising new spectroscopic tool for the study of electric dipole strength in nuclei. A case study of 208Pb shows that at very forward angles J^pi = 1- states are strongly populated via Coulomb excitation. A separation from nuclear excitation of other modes is achieved by a multipole decomposition analysis of the experimental cross sections based on theoretical angular distributions calculated within the quasiparticle-phonon model. The B(E1) transition strength distribution is extracted for excitation energies up to 9 MeV, i.e., in the region of the so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows sensitivity to the underlying structure of the E1 transitions, which allows for the first time an experimental extraction of the strength and energy centroid of the PDR.

  8. Chaos in a gravitational field with dipoles

    Institute of Scientific and Technical Information of China (English)

    陈菊华; 王永久

    2003-01-01

    In this paper we investigate the dyna nics of a test particle in the gravitational field with dipoles. At first we study the gravitational potential by numerical simulations, we find that, for appropriate parameters, there are two different cases in the potential curve: one is the one-well case with a stable critical point, and the other is the three-well case with three stable critical points and two unstable critical points. By performing Poincare sections for different values of the parameters and initial conditions, we find a regular motion and a chaotic motion. From these Poincare sections,we further confirm that the chaotic motion of the test particle originates mainly from the dipoles.

  9. Expectation values of single-particle operators in the random phase approximation ground state

    Science.gov (United States)

    Kosov, D. S.

    2017-02-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  10. Expectation values of single-particle operators in the random phase approximation ground state.

    Science.gov (United States)

    Kosov, D S

    2017-02-07

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  11. Topics in Metric Approximation

    Science.gov (United States)

    Leeb, William Edward

    This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.

  12. Performance of the LHC Final Design, Full-Scale Superconducting Dipole Prototypes

    CERN Document Server

    Bottura, L; Siemko, A; Vlogaert, J; Wyss, C

    2001-01-01

    Within the LHC magnet program, a series of six, final design, full-scale superconducting dipole prototypes are presently being built in industry and tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, six-block two layer coils wound from 15.1 mm wide graded NbTi cables, and all-polyimide insulation. This paper reviews the main test results of magnets tested to day at 4.2 K and 1.8 K. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate and field quality are presented and discussed in terms of the design parameters and the aims of the full scale dipole prototype program.

  13. Application of the marine circular electric dipole method in high latitude Arctic regions using drifting ice floes

    Science.gov (United States)

    Mogilatov, Vladimir; Goldman, Mark; Persova, Marina; Soloveichik, Yury; Koshkina, Yulia; Trubacheva, Olga; Zlobinskiy, Arkadiy

    2016-12-01

    Theoretically, a circular electric dipole is a horizontal analogue of a vertical electric dipole and, similarly to the latter, it generates the unimodal transverse magnetic field. As a result, it demonstrates exceptionally high signal detectability and both vertical and lateral resolutions, particularly regarding thin resistive targets. The ideal circular electric dipole is represented by two concentric continuums of electrodes connected to different poles of the transmitter. In practice, the ideal dipole is adequately approximated by eight outer electrodes and one central electrode. The greatest disadvantage of circular electric dipoles stems from the necessity to provide perfectly symmetrical radial grounded lines with equal current in each line. In addition, relocating such a cumbersome system is very difficult on land and offshore. All these disadvantages might be significantly reduced in the proposed ice-borne system. The system utilizes drifting ice floes in high latitude Arctic regions as stable platforms for locating marine circular electric dipole transmitters, while the underlain ocean water is a perfect environment for grounding transmitter and receiver electrodes. Taking into account the limited size of drifting floes, mainly short offset methods can be applied from the surface. Among those, the proposed method is superior in providing sufficiently high signal detectability and resolution to delineate deep targets below very conductive ocean water and sub-seafloor sediments. Other existing methods, which are able to provide similar characteristics, utilize near bottom arrays and would be hard to employ in the presence of a thick ice cover.

  14. On the Neutron Electric Dipole Moment

    Institute of Scientific and Technical Information of China (English)

    Z. Bentalha; O. Lazrec

    2004-01-01

    @@ Within the Kobayashi-Maskawa mechanism of electroweak interaction and using the recent measured mass of the top quark, we estimate the neutron electric dipole moment (NEDM) via the diquark electroweak interaction.The resulting moment is about 10-30 e cm. The actual upper bound on the NEDM is 6.3 × 10-26 ecm and it can reach the value 5 × 10-28 ecm predicted by experiments in recent years.

  15. Phenomenology on the QCD dipole picture revisited

    CERN Document Server

    Lengyel, A I

    2003-01-01

    We perform an adjust to the most recent structure function data, considering the QCD dipole picture applied to ep scattering. The structure function F2 at small x and intermediate Q2 can be described by the model containing an economical number of free-parameters, which encodes the hard Pomeron physics. The longitudinal structure function and the gluon distribution are predicted without further adjustments. The data description is effective, whereas a resummed next-to-leading level analysis is deserved.

  16. Analog of landau Levels to Electric Dipole

    CERN Document Server

    Ribeiro, L R; Nascimento, J R; Furtado, Claudio

    2006-01-01

    In this article we discuss the analogy between the dynamics of a neutral particle with an electric dipole, in the presence of configuration of magnetic field, with Landau level quantization for charged particle. We analyze this quantization based on the He-Mckelar-Wilkens interaction developed of similar way that Ericsson and Sj\\"oqvist[Phys Rev. A {\\bf 65} 013607 (2001)] was analyzed the Landau-Aharonov-Casher effect. The energy level and eingenfuctions and eigenvalues are obtained.

  17. Electric dipole moment of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Benjamin [Los Alamos National Laboratory; Afnan, I R [Los Alamos National Laboratory

    2010-01-01

    We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

  18. Trapped field internal dipole superconducting motor generator

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  19. Magnetic dipole bands in {sup 198}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Zwartz, G.; Drake, T.E.; Cromaz, M. [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada); Ward, D.; Janzen, V.; Galindo-Uribarria, A. [Chalk River Laboratories, Chalk River, Ontario K0J 1J0 (Canada); Prevost, D.; Waddington, J.; Mullins, S.M. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4K1 (Canada)

    2000-06-01

    High spin states in {sup 198}{l_brace}Bi{r_brace} were populated using a {sup 184}W({sup 19}F, 5n) reaction at 107 MeV. Three {sup 198}Bi {gamma}-ray cascades resulting from aseries of magnetic dipole transitions were observed. Measurements of the B(M1)/B(E2) ratio, angular correlation ratios and second moment of inertia are presented. (author)

  20. Dark forces and atomic electric dipole moments

    Science.gov (United States)

    Gharibnejad, Heman; Derevianko, Andrei

    2015-02-01

    Postulating the existence of a finite-mass mediator of T,P-odd coupling between atomic electrons and nucleons, we consider its effect on the permanent electric dipole moment (EDM) of diamagnetic atoms. We present both numerical and analytical analysis for such mediator-induced EDMs and compare it with EDM results for the conventional contact interaction. Based on this analysis, we derive limits on coupling strengths and carrier masses from experimental limits on EDM of the 199Hg atom.

  1. CP-violation and electric dipole moments

    Science.gov (United States)

    Le Dall, Matthias; Ritz, Adam

    2013-03-01

    Searches for intrinsic electric dipole moments of nucleons, atoms and molecules are precision flavour-diagonal probes of new -odd physics. We review and summarise the effective field theory analysis of the observable EDMs in terms of a general set of CP-odd operators at 1 GeV, and the ensuing model-independent constraints on new physics. We also discuss the implications for supersymmetric models, in light of the mass limits emerging from the LHC.

  2. SPS Dipole Multipactor Test and TEWave Diagnostics

    CERN Document Server

    Caspers, F; Edwards, P; Federmann, S; Holz, M; Taborelli, M

    2013-01-01

    Electron cloud accumulation in particle accelerators can be mitigated by coating the vacuum beam pipe with thin films of low secondary electron yield (SEY) material. The SEY of small coated samples are usually measured in the laboratory. To further test the properties of different coating materials, RF-induced multipacting in a coaxial waveguide configuration can be performed. The technique is applied to two main bending dipoles of the SPS, where the RF power is fed through a tungsten wire stretched along the vacuum chamber (6.4 m). A dipole with a bare stainless steel chamber shows a clear power threshold initiating an abrupt rise in reflected power and pressure. The effect is enhanced at RF frequencies corresponding to electron cyclotron resonances for given magnetic fields. Preliminary results show that the dipole with a carbon coated vacuum chamber does not exhibit any pressure rise or reflected RF power up to the maximum available input power. In the case of a large scale coating production this techniqu...

  3. Bent Solenoids with Superimposed Dipole Fields

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer, B.; Goodzeit, Carl, L.

    2000-03-21

    A conceptual design and manufacturing technique were developed for a superconducting bent solenoid magnet with a superimposed dipole field that would be used as a dispersion device in the cooling channel of a future Muon Collider. The considered bent solenoid is equivalent to a 180° section of a toroid with a major radius of ~610 mm and a coil aperture of ~416 mm. The required field components of this magnet are 4 tesla for the solenoid field and 1 tesla for the superimposed dipole field. A magnet of this size and shape, operating at these field levels, has to sustain large Lorentz forces resulting in a maximum magnetic pressure of about 2,000 psi. A flexible round mini-cable with 37 strands of Cu-NbTi was selected as the superconductor. Detailed magnetic analysis showed that it is possible to obtain the required superimposed dipole field by tilting the winding planes of the solenoid by ~25°. A complete structural analysis of the coil support system and the helium containment vessel under thermal, pressure, and Lorentz force loads was carried out using 3D finite element models of the structures. The main technical issues were studied and solutions were worked out so that a highly reliable magnet of this type can be produced at an affordable cost.

  4. Block Cipher Analysis

    DEFF Research Database (Denmark)

    Miolane, Charlotte Vikkelsø

    Block ciphersarecryptographicprimitivesthatoperateon fixed sizetexts(blocks). Mostdesigns aim towards secure andfastencryption oflarge amounts ofdata. Block ciphers also serve as the building block of a number of hash functions and message authentication codes(MAC).Thetask of cryptanalysisisto en...... on small scale variants of AES. In the final part of the thesis we present a new block cipher proposal Present and examine its security against algebraic and differential cryptanalysis in particular.......Block ciphersarecryptographicprimitivesthatoperateon fixed sizetexts(blocks). Mostdesigns aim towards secure andfastencryption oflarge amounts ofdata. Block ciphers also serve as the building block of a number of hash functions and message authentication codes(MAC).Thetask of cryptanalysisisto...... ensurethat no attack violatesthe securitybounds specifiedbygeneric attack namely exhaustivekey search and table lookup attacks. This thesis contains a general introduction to cryptography with focus on block ciphers and important block cipher designs, in particular the Advanced Encryption Standard...

  5. Double dipole lithography for 65-nm node and beyond: defect sensitivity characterization and reticle inspection

    Science.gov (United States)

    Hsu, Stephen; Chu, Tsann-bin; Van Den Broeke, Douglas; Chen, J. Fung; Hsu, Michael; Corcoran, Noel P.; Volk, William; Ruch, Wayne E.; Sier, Jean-Paul E.; Hess, Carl E.; Lin, Benjamin S.; Yu, Chun-Chi; Huang, George

    2004-12-01

    Double Dipole Lithography (DDLä) has been demonstrated to be capable of patterning complex 2D devices patterns. [1,2,3] Due to inherently high aerial image contrast from dipole illumination, we have found that it can meet lithography manufacturing requirements, such as line edge roughness (LER), and critical dimension uniformity (CDU), for the upcoming 65nm node using ArF binary chrome masks. For patterning at k1 below 0.35, DDL is one of the promising resolution enhancement techniques (RET), which can offer process latitudes that are comparable to more costly alternatives such as two-exposure alternating PSM. To use DDL for printing actual IC devices, the original design data must be converted into a "vertical (V)" mask and a "horizontal (H)" mask for the respective X-dipole and Y-dipole exposures. We demonstrated that our model-based DDL mask data processing methodology is capable of converting complex 2D logic and memory designs into dipole-compatible mask layouts. [2,3] Due to the double exposure, stray light must be well controlled to ensure uniform printing across the entire chip. One intuitive solution to minimize stray light is to apply large patches of chrome in the open field areas in order to reduce the background (non-pattern area) exposure level. Unfortunately, this is not viable for a clear-field poly gate mask as it incorporates a positive photoresist process. We developed an innovative and practical background-shielding scheme called sub-resolution grating block (SGB), which is part of the DDL layout conversion method for full-chip application. This technique can effectively minimize the impact of long-range stray light on critical features during the two exposures. Reticles inspection is another important issue for the implementation of DDL technology. In this work, we reported a methodology on how to characterize defects and optimize inspection sensitivity for DDL RET reticles.

  6. ELASTIC INTERACTION BETWEEN WEDGE DISCLINATION DIPOLE AND INTERNAL CRACK

    Institute of Scientific and Technical Information of China (English)

    FANG Qi-hong; LIU You-wen

    2006-01-01

    The system of a wedge disclination dipole interacting with an internal crack was investigated. By using the complex variable method, the closed form solutions of complex potentials to this problem were presented. The analytic formulae of the physics variables, such as stress intensity factors at the tips of the crack produced by the wedge disclination dipole and the image force acting on disclination dipole center were obtained.The influence of the orientation, the dipole arm and the location of the disclination dipole on the stress intensity factors was discussed in detail. Furthermore, the equilibrium position of the wedge disclination dipole was also examined. It is shown that the shielding or antishielding effect of the wedge disclination to the stress intensity factors is significant when the disclination dipole moves to the crack tips.

  7. Isostatic compression of buffer blocks. Middle scale

    Energy Technology Data Exchange (ETDEWEB)

    Ritola, J.; Pyy, E. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-01-15

    Manufacturing of buffer components using isostatic compression method has been studied in small scale in 2008 (Laaksonen 2010). These tests included manufacturing of buffer blocks using different bentonite materials and different compression pressures. Isostatic mould technology was also tested, along with different methods to fill the mould, such as vibration and partial vacuum, as well as a stepwise compression of the blocks. The development of manufacturing techniques has continued with small-scale (30 %) blocks (diameter 600 mm) in 2009. This was done in a separate project: Isostatic compression, manufacturing and testing of small scale (D = 600 mm) buffer blocks. The research on the isostatic compression method continued in 2010 in a project aimed to test and examine the isostatic manufacturing process of buffer blocks at 70 % scale (block diameter 1200 to 1300 mm), and the aim was to continue in 2011 with full-scale blocks (diameter 1700 mm). A total of nine bentonite blocks were manufactured at 70 % scale, of which four were ring-shaped and the rest were cylindrical. It is currently not possible to manufacture full-scale blocks, because there is no sufficiently large isostatic press available. However, such a compression unit is expected to be possible to use in the near future. The test results of bentonite blocks, produced with an isostatic pressing method at different presses and at different sizes, suggest that the technical characteristics, for example bulk density and strength values, are somewhat independent of the size of the block, and that the blocks have fairly homogenous characteristics. Water content and compression pressure are the two most important properties determining the characteristics of the compressed blocks. By adjusting these two properties it is fairly easy to produce blocks at a desired density. The commonly used compression pressure in the manufacturing of bentonite blocks is 100 MPa, which compresses bentonite to approximately

  8. Approximate option pricing

    Energy Technology Data Exchange (ETDEWEB)

    Chalasani, P.; Saias, I. [Los Alamos National Lab., NM (United States); Jha, S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  9. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  10. Effect of rotational-state-dependent molecular alignment on the optical dipole force

    Science.gov (United States)

    Kim, Lee Yeong; Lee, Ju Hyeon; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk

    2016-07-01

    The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. Herein, we consider the effects of state-dependent alignment in estimating the optical dipole force acting on the molecules and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear molecules subject to either propagating or standing-wave optical fields for a range of temperatures and laser intensities. The results demonstrate that the alignment-dependent effective polarizability can serve to provide correct estimates of the optical dipole force, on which a state-selection method applicable to nonpolar molecules could be based. We note that an analogous analysis of the forces acting on polar molecules subject to an inhomogeneous static electric field reveals a similarly strong dependence on molecular orientation.

  11. Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei

    Science.gov (United States)

    Guliyev, Ekber; Kuliev, Ali; Guner, Mehmet

    2010-12-01

    In this study quasiparticle random-phase approximation with the translational invariant Hamiltonian using deformed mean field potential has been conducted to describe electric dipole excitations in 136Xe, 138Ba, 140Ce, 142Nd, 144Sm and 146Gd isotones. The distribution of the calculated E1 strength shows a resonance like structure at energies between 6-8 MeV exhausting up to 1% of the isovector electric dipole Energy Weighted Sum Rule and in some aspects nicely confirms the experimental data. It has been shown that the main part of E1 strength, observed below the threshold in these nuclei may be interpreted as main fragments of the Pygmy Dipole resonance. The agreement between calculated mean excitation energies as well as summed B(E1) value of the 1- excitations and the available experimental data is quite good. The calculations indicate the presence of a few prominent positive parity 1+ States in heavy N = 82 isotones in the energy interval 6-8 MeV which shows not all dipole excitations were of electric character in this energy range.

  12. Laminar and transitional liquid metal duct flow near a magnetic point dipole

    CERN Document Server

    Tympel, Saskia; Schumacher, Jörg

    2013-01-01

    The flow transformation and the generation of vortex structures by a strong magnetic dipole field in a liquid metal duct flow is studied by means of three-dimensional direct numerical simulations. The dipole is considered as the paradigm for a magnetic obstacle which will deviate the streamlines due to Lorentz forces acting on the fluid elements. The duct is of square cross-section. The dipole is located above the top wall and is centered in spanwise direction. Our model uses the quasi-static approximation which is applicable in the limit of small magnetic Reynolds numbers. The analysis covers the stationary flow regime at small hydrodynamic Reynolds numbers $Re$ as well as the transitional time-dependent regime at higher values which may generate a turbulent flow in the wake of the magnetic obstacle. We present a systematic study of these two basic flow regimes and their dependence on $Re$ and on the Hartmann number $Ha$, a measure of the strength of the magnetic dipole field. Furthermore, three orientations...

  13. Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Christopher G; Norton, Stephen J; Vo-Dinh, Tuan, E-mail: tuan.vodinh@duke.edu [Fitzpatrick Institute for Photonics and Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708 (United States)

    2010-08-06

    This report compares COMSOL's finite element method (FEM) algorithm with the Mie theory for solving the electromagnetic fields in the vicinity of a silica-silver core-shell nanoparticle when excited by a radiating dipole. The novelty of this investigation lies in the excitation source of the nanoshell system: an oscillating electric dipole is frequently used as a model for both molecular scattering and molecular fluorescence; moreover, a common classical model of atomic or molecular spontaneous emission is a decaying electric dipole. The radiated power spectra were evaluated both analytically and numerically by integrating the Poynting vector around 20, 60 and 100 nm nanoshells, thereby solving the total and scattered fields generated by a dipole positioned inside the core and in the surrounding air medium, respectively. The agreement was excellent in amplitude, plasmon resonance peak position and full width at half-maximum. The FEM algorithm also generates accurate solutions of the near-field electromagnetics in the spatial domain, where the E-field behavior as a function of polar angle {theta} for a fixed observation radius was evaluated. The quasistatic approximation, which is valid for small nanoparticles, is also employed to assess its limitations relative to the Mie and FEM algorithms.

  14. Approximate Bayesian computation.

    Directory of Open Access Journals (Sweden)

    Mikael Sunnåker

    Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.

  15. New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.

    Science.gov (United States)

    Ioanoviciu, Damaschin

    2015-01-01

    A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found.

  16. S-Approximation: A New Approach to Algebraic Approximation

    Directory of Open Access Journals (Sweden)

    M. R. Hooshmandasl

    2014-01-01

    Full Text Available We intend to study a new class of algebraic approximations, called S-approximations, and their properties. We have shown that S-approximations can be used for applied problems which cannot be modeled by inclusion based approximations. Also, in this work, we studied a subclass of S-approximations, called Sℳ-approximations, and showed that this subclass preserves most of the properties of inclusion based approximations but is not necessarily inclusionbased. The paper concludes by studying some basic operations on S-approximations and counting the number of S-min functions.

  17. Design of the EuCARD High-Field Model Dipole Magnet FRESCA2

    CERN Document Server

    Milanese, A; Durante, M; Manil, P; Perez, J C; Rifflet, J M; de Rijk, G; Rondeaux, F

    2012-01-01

    This paper reports on the design of FRESCA2, a dipole magnet model wound with Nb3Sn Rutherford cable. This magnet is one of the deliverables of the High Field Magnets work package of the European FP7-EuCARD project. The nominal magnetic flux density of 13 Tesla in a 100 mm bore will make it suitable for upgrading the FRESCA cable test facility at CERN. The magnetic layout is based on a block coil, with four layers per pole. The mechanical structure is designed to provide adequate pre-stress, through the use of bladders, keys and an aluminum alloy shrinking cylinder.

  18. Electric-dipole transitions in 165Er

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-Tao; ZHOU Xiao-Hong; ZHANG Yu-Hu; ZHENG Yong; LIU Min-Liang; MA Fei; HU Jun; CHEN Liang; ZHANG Xin; ZHANG Ning-Tao; ZHU Li-Hua; WU Xiao-Guang; LI Guang-Sheng

    2009-01-01

    High-spin states of 165Er were studied using the 160Gd(9Be, 4n)reaction at beam energies of 42 and 45 MeV. The previously known bands based on the γ5/2-[523] and γ5/2+ [642] configurations have been extended to high-spin states. Electric-dipole transitions linking these two opposite parity bands were observed. Relatively large B(E1) values have been extracted experimentally and were attributed to octupole softness.

  19. Double giant dipole resonance in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cinausero, M.; Rizzi, V.; Viesti, G.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Barbui, M.; Fioretto, E.; Prete, G.; Bracco, A.; Camera, F.; Million, B.; Leoni, S.; Wieland, O.; Benzoni, G.; Brambilla, S.; Airoldi, A.; Maj, A.; Kmiecik, M

    2004-02-09

    Signals from Double Dipole Giant Resonances (DGDR) in hot nuclei have been searched in a {gamma}-{gamma} coincidence experiment using the HECTOR array at the Laboratori Nazionali di Legnaro. The experimental single {gamma}-ray spectrum and the projection of the {gamma}-{gamma} matrix have been compared with a standard Monte Carlo Statistical Model code including only the single GDR excitation. These calculations have been used as background to determine the extra-yield associated with the DGDR de-excitation. Results have been compared with a previous experiment confirming the presence of the DGDR excitation in fusion-evaporation reactions.

  20. Prototype steel-concrete LEP dipole magnet

    CERN Multimedia

    1981-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. The excitation coils were also very simple: aluminium bars insulated by polyester boxes in this prototype, by glass-epoxy in the final magnets. For details see LEP-Note 118,1978 and LEP-Note 233 1980. See also 8111529,7908528X.

  1. Prompt dipole radiation in fusion reactions

    CERN Document Server

    Martin, Brunella; Agodi, Concetta; Alba, Rosa; Baran, Virgil; Boiano, Alfonso; Cardella, Giuseppe; Colonna, Maria; Coniglione, Rosa; De Filippo, Enrico; Del Zoppo, Antonio; Di Toro, Massimo; Inglima, Gianni; Glodariu, Tudor; La Commara, Marco; Maiolino, Concetta; Mazzocco, Marco; Pagano, Angelo; Piattelli, Paolo; Pirrone, Sara; Rizzo, Carmelo; Romoli, Mauro; Sandoli, Mario; Santonocito, Domenico; Sapienza, Piera; Signorini, Cosimo

    2008-01-01

    The prompt gamma ray emission was investigated in the 16A MeV energy region by means of the 36,40Ar+96,92Zr fusion reactions leading to a compound nucleus in the vicinity of 132Ce. We show that the prompt radiation, which appears to be still effective at such a high beam energy, has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  2. Storage ring electric dipole moment experiments

    Science.gov (United States)

    Morse, William M.; Storage Ring EDM Collaboration

    2013-10-01

    Dedicated electric dipole moment (edm) searches have been done only for neutral systems. We discuss in this talk dedicated storage ring proposals for measuring edms of charged particles. The statistical error dominates over the systematic error for the neutron and mercury atom edm searches. Large numbers of particles are available today from modern polarized sources at several accelerators. A proposed proton edm experiment at BNL would improve the present proton edm limit by a factor of 104. A "precursor" deuteron edm experiment has been proposed at COSY, Juelich, Germany. This would be the first measurement of the deuteron edm.

  3. Electric Dipole Moments and New Physics

    Science.gov (United States)

    Cirigliano, Vincenzo

    2014-09-01

    In this talk I will focus mostly on the role of electric dipole moments (EDMs) as probes of physics beyond the Standard Model (BSM). In the first part of the talk I will present an overview of the physics reach of various searches and I will discuss the complementarity of different EDM probes. In the second part of the talk I will discuss recent work on the computation of the BSM-induced nucleon EDM and the T-odd pion-nucleon couplings using lattice Quantum ChromoDynamics.

  4. Position-dependent property of resonant dipole dipole interaction mediated by localized surface plasmon of an Ag nanosphere

    Institute of Scientific and Technical Information of China (English)

    许丹; 王小云; 黄勇刚; 欧阳仕粮; 何海龙; 何浩

    2015-01-01

    We use the photon Green-function method to study the quantum resonant dipole–dipole interaction (RDDI) induced by an Ag nanosphere (ANP). As the distance between the two dipoles increases, the RDDI becomes weaker, accompanied by the influence of the higher-order mode of the ANP on RDDI declining more quickly than that of the dipole mode. Across a broad frequency range (above 0.05 eV), the transfer rate of the RDDI is nearly constant as the two dipoles are fixed at the proper position, in addition, this phenomenon still exists for slightly different radius of the ANPs. We find that the frequency corresponding to the maximum transfer rate of RDDI exhibits a monotonic decrease by moving away one dipole, with the other dipole and the ANP fixed. In addition, the radius of ANP has little effect on that. As the two dipoles are far from the ANP, the maximum transfer rate of the RDDI takes place at the frequency of the dipole mode. In contrast, when the two dipoles are close to the ANP, the higher-order modes come into effect and play a leading role in the RDDI if they match the transition frequency of the dipole. Our results may be used in biological detector and have a certain guiding significance for further application.

  5. Probing the Universe's Tilt with the Cosmic Infrared Background Dipole

    CERN Document Server

    Fixsen, D J

    2011-01-01

    Conventional interpretation of the observed cosmic microwave background (CMB) dipole is that all of it is produced by local peculiar motions. Alternative explanations requiring part of the dipole to be primordial have received support from measurements of large-scale bulk flows. A test of the two hypothesis is whether other cosmic dipoles produced by collapsed structures later than last scattering coincide with the CMB dipole. One background is the cosmic infrared background (CIB) whose absolute spectrum was measured to ~30% by the COBE satellite. Over the 100 to 500 um wavelength range its spectral energy distribution can provide a probe of its alignment with CMB. This is tested with the COBE FIRAS dataset which is available for such a measurement because of its low noise and frequency resolution important for Galaxy subtraction. Although the FIRAS instrument noise is in principle low enough to determine the CIB dipole, the Galactic foreground is sufficiently close spectrally to keep the CIB dipole hidden. A...

  6. Transfer matrices of dipoles with bending radius variation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the increasing demand of high brightness in light source, the uniform dipole can not meet the needs of low emittance, and thus the dipole with bending radius variation is introduced in this paper. The transfer matrix of a non-uniform dipole whose bending radius is linearly changed is chosen as an example and a very simple calculation formula of non-uniform dipole transfer matrices is given. The transfer matrices of some common profile non-uniform dipoles are also listed. The comparison of these transfer matrices and the matrices calculated with slices method verifies the numerical accuracy of this formula. This method can make the non-uniform beam dynamic problem simpler, very helpful for emittance research and lattice design with non-uniform dipoles.

  7. A plasmonic dipole optical antenna coupled quantum dot infrared photodetector

    Science.gov (United States)

    Mojaverian, Neda; Gu, Guiru; Lu, Xuejun

    2015-12-01

    In this paper, we report a full-wavelength plasmonic dipole optical antenna coupled quantum dot infrared photodetector (QDIP). The plasmonic dipole optical antenna can effectively modify the EM wave distribution and convert free-space propagation infrared light to localized surface plasmonic resonance (SPR) within the nanometer (nm) gap region of the full-wavelength dipole antenna. The plasmonic dipole optical antenna coupled QDIP shows incident-angle-dependent photocurrent enhancement. The angular dependence follows the far-field pattern of a full-wavelength dipole antenna. The directivity of the plasmonic dipole optical antenna is measured to be 1.8 dB, which agrees well with the antenna simulation. To our best knowledge, this is the first report of the antenna far-field and directivity measurement. The agreement of the detection pattern and the directivity with antenna theory confirms functions of an optical antenna are similar to that of a RF antenna.

  8. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-05-01

    Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.

  9. Low-lying dipole resonance in neutron-rich Ne isotopes

    Science.gov (United States)

    Yoshida, Kenichi; van Giai, Nguyen

    2008-07-01

    Microscopic structure of the low-lying isovector dipole excitation mode in neutron-rich Ne26,28,30 is investigated by performing deformed quasiparticle-random-phase-approximation (QRPA) calculations. The particle-hole residual interaction is derived from a Skyrme force through a Landau-Migdal approximation. We obtain the low-lying resonance in Ne26 at around 8.6 MeV. It is found that the isovector dipole strength at ExThomas-Reiche-Kuhn dipole sum rule. This excitation mode is composed of several QRPA eigenmodes, one is generated by a ν(2s1/2-12p3/2) transition dominantly and the other mostly by a ν(2s1/2-12p1/2) transition. The neutron excitations take place outside of the nuclear surface reflecting the spatially extended structure of the 2s1/2 wave function. In Ne30, the deformation splitting of the giant resonance is large, and the low-lying resonance overlaps with the giant resonance.

  10. Ozone: Unresolved discrepancies for dipole oscillator strength distributions, dipole sums, and van der Waals coefficients

    Science.gov (United States)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-08-01

    Dipole oscillator strength distributions (DOSDs) for ozone are constructed from experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density, and molar refractivity data. A lack of photoabsorption data in the intermediate energy region from 24 to 524 eV necessitates the use of a mixture rule in that region. For this purpose, a DOSD for O2 is constructed first. The dipole properties for O2 are essentially the same as those obtained in earlier work even though most of the input data is from more recent experiments. A discrepancy is found between the refractivity data and photoabsorption data in the 10-20.6 eV range for ozone. A reliable ozone DOSD of the sort obtained for many other species remains out of reach. However, it is suggested that the true dipole properties of ozone lie between those predicted by two distributions that we present.

  11. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    Science.gov (United States)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  12. Probing the Universe's Tilt with the Cosmic Infrared Background Dipole

    Science.gov (United States)

    Fixsen, D. J.; Kashlinsky, A.

    2011-06-01

    Conventional interpretation of the observed cosmic microwave background (CMB) dipole is that all of it is produced by local peculiar motions. Alternative explanations requiring part of the dipole to be primordial have received support from measurements of large-scale bulk flows. A test of the two hypotheses is whether other cosmic dipoles produced by collapsed structures later than the last scattering coincide with the CMB dipole. One background is the cosmic infrared background (CIB) whose absolute spectrum was measured to ~30% by the COBE satellite. Over the 100-500 μm wavelength range its spectral energy distribution can provide a probe of its alignment with the CMB. This is tested with the COBE FIRAS data set which is available for such a measurement because of its low noise and frequency resolution which are important for Galaxy subtraction. Although the FIRAS instrument noise is in principle low enough to determine the CIB dipole, the Galactic foreground is sufficiently close spectrally to keep the CIB dipole hidden. A similar analysis is performed with DIRBE, which—because of the limited frequency coverage—provides a poorer data set. We discuss strategies for measuring the CIB dipole with future instruments to probe the tilt and apply it to the Planck, Herschel, and the proposed Pixie missions. We demonstrate that a future FIRAS-like instrument with instrument noise a factor of ~10 lower than FIRAS would make a statistically significant measurement of the CIB dipole. We find that the Planck and Herschel data sets will not allow a robust CIB dipole measurement. The Pixie instrument promises a determination of the CIB dipole and its alignment with either the CMB dipole or the dipole galaxy acceleration vector.

  13. Electric Dipole Antenna: A Source of Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2013-07-01

    Full Text Available In this article, the gravitational scalar potential due to an oscillating electric dipole antenna placed in empty space is derived. The gravitational potential obtained propagates as a wave. The gravitational waves have phase velocity equal to the speed of light in vacuum (c at the equatorial plane of the electric dipole antenna, unlike electromagnetic waves from the dipole antenna that cancel out at the equatorial plane due to charge symmetry.

  14. Strong CP violation and the neutron electric dipole form factor

    CERN Document Server

    Kuckei, J; Faessler, A; Gutsche, T; Kovalenko, S; Lyubovitskij, V E; Pumsa-ard, K; Dib, Claudio; Faessler, Amand; Gutsche, Th.; Kovalenko, Sergey

    2005-01-01

    We calculate the neutron electric dipole form factor induced by the CP violating theta-term of QCD, within a perturbative chiral quark model which includes pion and kaon clouds. On this basis we derive the neutron electric dipole moment and the electron-neutron Schiff moment. From the existing experimental upper limits on the neutron electric dipole moment we extract constraints on the theta-parameter and compare our results with other approaches.

  15. Hybird of Quantum Phases for Induced Dipole Moments

    CERN Document Server

    Ma, Kai

    2016-01-01

    The quantum phase effects for induced electric and magnetic dipole moments are investigated. It is shown that the phase shift received by induced electric dipole has the same form with the one induced by magnetic dipole moment, therefore the total phase is a hybrid of these two types of phase. This feature indicates that in order to have a decisive measurement on either one of these two phases, it is necessary to measure the velocity dependence of the observed phase.

  16. Lunar magnetic field - Permanent and induced dipole moments

    Science.gov (United States)

    Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.

    1974-01-01

    Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.

  17. Dual Shapiro-Virasoro amplitudes in the QCD dipole picture

    CERN Document Server

    Peschanski, R

    1997-01-01

    Using the QCD dipole picture of BFKL dynamics and the conformal invariance properties of the BFKL kernel in transverse coordinate space, we show that the 1--to--p dipole densities can be expressed in terms of dual Shapiro- Virasoro amplitudes B{2p+2} and their generalization including non-zero conformal spins. We discuss the possibility of an effective closed string theory of interacting QCD dipoles.

  18. Vanishing of dipole matrix elements at level crossings.

    Science.gov (United States)

    Kocher, C. A.

    1972-01-01

    Demonstration that the vanishing of certain coupling matrix elements at level crossings follow from angular momentum commutation relations. A magnetic dipole transition having delta M = plus or minus 1, induced near a crossing of the levels in a nonzero magnetic field, is found to have a dipole matrix element comparable to or smaller than the quotient of the level separation and the field. This result also applies in the analogous electric field electric dipole case.

  19. Giant dipole resonance in hot rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.R. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Dinh Dang, N. [RIKEN, Nishina Centre for Accelerator-based Science, Saitama (Japan); VINATOM, Institute of Nuclear Science and Technique, Hanoi (Viet Nam); Datar, V.M. [Tata Institute of Fundamental Research, INO Cell, Mumbai (India)

    2016-05-15

    Over the last several decades, extensive experimental and theoretical work has been done on the giant dipole resonance (GDR) in excited nuclei covering a wide range of temperature (T), angular momentum (J) and nuclear mass. A reasonable stability of the GDR centroid energy and an increase of the GDR width with T (in the range∝1-3 MeV) and J are the two well-established results. Some experiments have indicated the saturation of the GDR width at high T. The gradual disappearance of the GDR vibration at much higher T has been observed. Experiments on the Jacobi transition and the GDR built on superdeformed shapes at high rotational frequencies have been reported in a few cases. Theoretical calculations on the damping of the collective dipole vibration, characterised by the GDR width, have been carried out within various models such as the thermal shape fluctuation model and the phonon damping model. These models offer different interpretations of the variation of the GDR width with T and J and have met with varying degrees of success in explaining the experimental data. In this review, the present experimental and theoretical status in this field is discussed along with the future outlook. The interesting phenomenon of the pre-equilibrium GDR excitation in nuclear reactions is briefly addressed. (orig.)

  20. Dipole Alignment in Rotating MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  1. Pygmy dipole strength in 90Zr

    CERN Document Server

    Schwengner, R; Tsoneva, N; Benouaret, N; Beyer, R; Erhard, M; Grosse, E; Junghans, A R; Klug, J; Kosev, K; Lenske, H; Nair, C; Schilling, K D; Wagner, A

    2008-01-01

    The dipole response of the N=50 nucleus 90Zr was studied in photon-scattering experiments at the electron linear accelerator ELBE with bremsstrahlung produced at kinetic electron energies of 7.9, 9.0, and 13.2 MeV. We identified 189 levels up to an excitation energy of 12.9 MeV. Statistical methods were applied to estimate intensities of inelastic transitions and to correct the intensities of the ground-state transitions for their branching ratios. In this way we derived the photoabsorption cross section up to the neutron-separation energy. This cross section matches well the photoabsorption cross section obtained from (gamma,n) data and thus provides information about the extension of the dipole-strength distribution toward energies below the neutron-separation energy. An enhancement of E1 strength has been found in the range of 6 MeV to 11 MeV. Calculations within the framework of the quasiparticle-phonon model ascribe this strength to a vibration of the excessive neutrons against the N = Z neutron-proton c...

  2. An approximate global solution to the gravitational field of a perfect fluid in slow rotation

    CERN Document Server

    Cabezas, J A

    2006-01-01

    Using the Post-Minkowskian formalism and considering rotation as a perturbation, we compute an approximate interior solution for a stationary perfect fluid with constant density and axial symmetry. A suitable change of coordinates allows this metric to be matched to the exterior metric to a particle with a pole-dipole-quadrupole structure, relating the parameters of both.

  3. Electric dipole moments of lithium atoms in Rydberg states

    Science.gov (United States)

    Dong, Hui-Jie; Huang, Ke-Shu; Li, Chang-Yong; Zhao, Jian-Ming; Zhang, Lin-Jie; Jia, Suo-Tang

    2014-09-01

    Recently, the diverse properties of Rydberg atoms, which probably arise from its large electric dipole moment (EDM), have been explored. In this paper, we report electric dipole moments along with Stark energies and charge densities of lithium Rydberg states in the presence of electric fields, calculated by matrix diagonalization. Huge electric dipole moments are discovered. In order to check the validity of the EDMs, we also use these electric dipole moments to calculate the Stark energies by numerical integration. The results agree with those calculated by matrix diagonalization.

  4. Effects of dipole-dipole interaction between cigar-shaped BECs of cold alkali atoms: towards inverse-squared interactions.

    Science.gov (United States)

    Yu, Yue; Luo, Zhuxi; Wang, Ziqiang

    2014-07-30

    We show that the dipole-dipole coupling between Wannier modes in cigar-shaped Bose-Einstein condensates (BECs) is significantly enhanced while the short-range coupling is strongly suppressed. As a result, the dipole-dipole interaction can become the dominant interaction between ultracold alkali Bose atoms. In the long length limit of a cigar-shaped BEC, the resulting effective one-dimensional models possess an effective inverse squared interacting potential, the Calogero-Sutherland potential, which plays a fundamental role in many fields of contemporary physics; but its direct experimental realization has been a challenge for a long time. We propose to realize the Calogero-Sutherland model in ultracold alkali Bose atoms and study the effects of the dipole-dipole interaction.

  5. Ultrafast fluorescent decay induced by metal-mediated dipole-dipole interaction in two-dimensional molecular aggregates

    CERN Document Server

    Hu, Qing; Nam, Sang Hoon; Xiao, Jun; Liu, Yongmin; Zhang, Xiang; Fang, Nicholas X

    2016-01-01

    Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the single or colloidal dye molecules or quantum dots in most previous research. In this paper, we verify for the first time that when a 2DMA is placed at a nanometric distance from a metallic substrate, the strong and coherent interaction between the dipoles inside the 2DMA dominates its fluorescent decay at picosecond timescale. Our streak-camera lifetime measurement and interacting lattice-dipole calculation reveal that the metal-mediated dipole-dipole interaction shortens the fluorescent lifetime to about one half and increases the energy dissipation rate by ten times than expected from the noninteracting single-dipole picture. Our finding can enrich our understanding of nanoscale energy transfer in molecular excitonic systems and may designate a new direction for developing fast a...

  6. Probing the Dynamical Behaviour of Surface Dipoles Through Energy Absorption Interferometry

    CERN Document Server

    Withington, Stafford

    2012-01-01

    Spatial interferometry, based on the measurement of total absorbed power, can be used to determine the state of coherence of the electromagnetic field to which any energy-absorbing structure is sensitive. The measured coherence tensor can be diagonalized to give the amplitude, phase, polarization patterns, and responsivities of the individual electromagnetic modes through which the structure can absorb energy. Because the electromagnetic modes are intimately related to dynamical modes of the system, information about collective excitations can be found. We present simulations, based on the Discrete Dipole Approximation (DDA), showing how the dynamical modes of systems of surface dipoles can be recovered. Interactions are taken into consideration, leading to long-range coherent phenomena, which are revealed by the method. The use of DDA enables the interferometric response of a wide variety of objects to be modeled, from patterned photonic films to biological macromolecules.

  7. Coupling of Surface and Volume Dipole Oscillations in C-60 Molecules

    CERN Document Server

    Brack, M; Murthy, M V N

    2007-01-01

    We first give a short review of the ``local-current approximation'' (LCA), derived from a general variation principle, which serves as a semiclassical description of strongly collective excitations in finite fermion systems starting from their quantum-mechanical mean-field ground state. We illustrate it for the example of coupled translational and compressional dipole excitations in metal clusters. We then discuss collective electronic dipole excitations in C$_{60}$ molecules (Buckminster fullerenes). We show that the coupling of the pure translational mode (``surface plasmon'') with compressional volume modes in the semiclasscial LCA yields semi-quantitative agreement with microscopic time-dependent density functional (TDLDA) calculations, while both theories yield qualitative agreement with the recent experimental observation of a ``volume plasmon''.

  8. LFV and Dipole Moments in Models with A4 Flavour Symmetry

    CERN Document Server

    Merlo, Luca

    2009-01-01

    It is presented an analysis on lepton flavour violating transitions, leptonic magnetic dipole moments and electric dipole moments in a class of models characterized by the flavour symmetry A4 x Z3 x U(1)_FN, whose choice is motivated by the approximate Tri-Bimaximal mixing observed in neutrino oscillations. A low-energy effective Lagrangian is constructed, where these effects are dominated by dimension six operators, suppressed by the scale M of new physics. All the flavour breaking effects are universally described by the vacuum expectation values of a set of spurions. Two separate cases, a supersymmetric and a general one, are described. An upper limit on the reactor angle of a few percent is concluded.

  9. Theoretical Study the Error Caused by Dipole Hypothesis of Large-loop TEM Response

    Science.gov (United States)

    Yan, S.; Xue, G.; Zhou, N.

    2010-12-01

    Transient electromagnetic method (Transient Electromagnetic Field is TEM for short) is an time domain artificial sources of electromagnetic detection method based on the principle of electromagnetic induction. This method has higher sensitivity for the anomalous body of low resistivity , a stimulating can cover the required frequency bands and greatly improve the work efficiency by using a rich spectrum component pulse waveform . Also because send magnetic moment is relatively large, so the loop source system TEM has been very widely used in geological exploration, engineering, geothermal and environmental exploration which belong to medium depth ( less than 2000m) exploration [1], especially the central-loop system TEM has become the preferred method in Coalfield Hydrogeology Exploration and metal ore exploration . In order to obtain greater depth of exploration, the launch frame side of loop system commonly use large-scale form , Now the imported equipments with a large number of applications are large-loop system which shall be accounted for about 80% of the share of middle-depth exploration on the ground , sush as V-5, V8, GDP-32, PROTEM, SIROTEM, PEM, etc. If only one point be observed in the frame center to move the whole system when the side of loop system reach to hundreds of meters, the work efficiency of TEM will be greatly reduced. In order to increase the production efficiency, we will observe the points from center of loop to 0ne third of loop in the actual production, which is to think that the field in this region is approximately homogeneous. So, we can derive large-loop center-model TEM system which is different from the center-loop TEM system in the conventional sense as well as large-loop source TEM system. Fixed loop source TEM sysetm has been built based on the theory of dipole infinitesimal, which can not show more correct character in near-field area, even though this kind of theory has played more important guide in TEM study. There exist

  10. Finite amplitude method applied to giant dipole resonance in heavy rare-earth nuclei

    CERN Document Server

    Oishi, Tomohiro; Hinohara, Nobuo

    2016-01-01

    Background: The quasiparticle random phase approximation (QRPA), within the framework of the nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of the atomic nuclei. Recently, finite amplitude method (FAM) has been developed, in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mo...

  11. Tests of the discretized-continuum method in three-body dipole strengths

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla, E.C., E-mail: epinilla@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Quantique, C.P. 165/82, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Horiuchi, W., E-mail: whoriuchi@riken.jp [RIKEN Nishina Center, Wako 351-0918 (Japan); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0918 (Japan)

    2011-08-15

    We investigate the {sup 6}He dipole distribution in a three-body {alpha}+n+n model. Two approaches are used to describe the three-body 1{sup -} continuum: the discretized-continuum method, where the scattering wave functions are approximated by square-integrable functions, and the R-matrix formalism, where their asymptotic behaviour is taken into account. We show that some ambiguity exists in the pseudostate method, owing to the smoothing technique, necessary to derive continuous distributions. We show evidence for the important role of the halo structure in the E1 dipole strength. We also address the treatment of Pauli forbidden states in the three-body wave functions.

  12. Contribution of electric quadrupole and dipole-quadrupole interference terms in Coulomb breakup of 15C

    Science.gov (United States)

    Singh, P.; Kharb, S.; Singh, M.

    2014-02-01

    The effects of electric quadrupole ( E2) and dipole-quadrupole interference ( E1- E2) terms in the Coulomb breakup of 15C have been investigated within the framework of eikonal approximation. The sensitivity of Coulomb breakup cross section, differential in relative energy and Longitudinal Momentum Distribution (LMD) of core fragments, towards these terms have been examined. A very small (1% of E1) contribution of E2 transition has been predicted in integrated Coulomb breakup cross section. Further it is also found that the inclusion of E2 and E1- E2 terms introduces a small asymmetry in the peak of relative energy spectrum and also increases the peak height of the spectrum. The contribution of dipole-quadrupole interference terms is clearly shown in LMD, as it introduces an asymmetry in the shape of LMD and enhances the matching between the data and predictions.

  13. Experimental study on dipole motion of an ion plasma confined in a linear Paul trap

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K., E-mail: kzito@hiroshima-u.ac.jp; Okano, T.; Moriya, K.; Fukushima, K.; Higaki, H.; Okamoto, H. [Hiroshima University, Graduate School of Advanced Sciences of Matter (Japan)

    2015-11-15

    The compact non-neutral plasma trap systems named “S-POD” have been developed at Hiroshima University as an experimental simulator of beam dynamics. S-POD is based either on a linear Paul trap or on a Penning trap and can approximately reproduce the collective motion of a relativistic charged-particle beam observed in the center-of-mass frame. We here employ the Paul trap system to investigate the behavior of an ion plasma near a dipole resonance. A simple method is proposed to calibrate the data of secular frequency measurements by using the dipole instability condition. We also show that the transverse density profile of an ion plasma in the trap can be estimated from the time evolution of ion losses caused by the resonance.

  14. Average Dissipative and Dipole Forces on a Three-Level Atom in a Laguerre-Gaussian Beam

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-Ling; YIN Jian-Ping

    2005-01-01

    @@ By means of the optical Bloch equations based on the atomic density matrix elements, the general expressions of the average dissipative force, dipole force and the mechanical torque acting on a A-configuration three-level atom in a linearly-polarized Laguerre-Gaussian beam (LGB) with an angular momentum of lh are derived, and the general properties of the average dissipative and dipole force on the three-level atom in the linearly-polarized LGB are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Our study also shows that all of general expressions on the three-level atom will be simplified to those on the two-level atom in the approximation of large detuning.

  15. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingdi; Averitt, Richard D., E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Xin, E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu [Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215 (United States); Zhang, Gu-Feng [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Geng, Kun [Department of Physics, Boston University, Boston, Massachusetts 02215 (United States)

    2015-12-07

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.

  16. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    CERN Document Server

    Zhang, Jingdi; Fan, Kebin; Wang, Xiaoning; Zhang, Gu-Feng; Geng, Kun; Zhang, Xin; Averitt, Richard D

    2015-01-01

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ~170. Above an in-gap E-field threshold amplitude of ~10 MVcm-1, THz-induced field electron emission is observed (TIFEE) as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.

  17. Operators of Approximations and Approximate Power Set Spaces

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-yong; MO Zhi-wen; SHU Lan

    2004-01-01

    Boundary inner and outer operators are introduced; and union, intersection, complement operators of approximations are redefined. The approximation operators have a good property of maintaining union, intersection, complement operators, so the rough set theory has been enriched from the operator-oriented and set-oriented views. Approximate power set spaces are defined, and it is proved that the approximation operators are epimorphisms from power set space to approximate power set spaces. Some basic properties of approximate power set space are got by epimorphisms in contrast to power set space.

  18. Dipole-dipole-induced giant Goos-Hänchen shift in a photonic crystal doped with quantum dot nanostructures

    Science.gov (United States)

    Panahi, M.; Solookinejad, G.; Ahmadi Sangachin, E.; Hossein Asadpour, Seyyed

    2016-07-01

    The impact of the dipole-dipole interaction on the Goo-Hänchen (GH) shifts in reflected and transmitted lights is investigated. A weak probe beam is incident on a cavity containing the donor and acceptor quantum dots embedded in a nonlinear photonic crystal. We deduced that the GH shifts can be easily adjusted via controlling the corresponding parameters of the system in the presence or absence of dipole-dipole interaction. Our proposed model may be useful to developing the all-optical devices based on photonic materials doped with nanoparticles.

  19. The entanglement of two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process

    Institute of Scientific and Technical Information of China (English)

    Liao Xiang-Ping; Fang Mao-Fa; Cai Jian-Wu; Zheng Xiao-Juan

    2008-01-01

    This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal field and the dipole-dipole interaction. The results also show that the atom-atom entanglement through the two-photon process is larger than that through the one-photon process and a remarkable amount of entanglement between the atoms still remains at certain times even for a very highly noisy thermal field.

  20. Electromagnetically induced transparency of a single-photon in dipole-coupled one-dimensional atomic clouds

    CERN Document Server

    Viscor, Daniel; Lesanovsky, Igor

    2014-01-01

    We investigate the propagation of a single photon under conditions of electromagnetically induced transparency in two parallel one-dimensional atomic clouds which are coupled via Rydberg dipole-dipole interaction. Initially the system is prepared with a single delocalized Rydberg excitation shared between the two ensembles and the photon enters both of them in an arbitrary path-superposition state. By properly aligning the transition dipoles of the atoms of each cloud we show that the photon can be partially transferred from one cloud to the other via the dipole-dipole interaction. This coupling leads to the formation of dark and bright superpositions of the light which experience different absorption and dispersion. We show that this feature can be exploited to filter the incident photon in such a way that only a desired path-superposition state is transmitted transparently. Finally, we generalize the analysis to the case of N coupled one-dimensional clouds. We show that within some approximations the dynami...

  1. Compendium of the ULF/ELF electromagnetic fields generated above a sea of finite depth by submerged harmonic dipoles

    Science.gov (United States)

    Fraser-Smith, A. C.; Bubenik, D. M.

    1980-01-01

    This report extends earlier computations of the amplitudes of the quasi-static electromagnetic fields produced on and above the surface of a sea of finite depth by a submerged vertically directed harmonic magnetic dipole (VMD) to other dipoles. Specifically, it now presents data for the fields produced by a submerged vertically directed harmonic electric dipole (VED) and by submerged horizontally directed magnetic and electric dipoles (HMD and HED, respectively). The primary purpose of these computations is to determine the conditions under which an electrically conducting sea floor can produce significant changes in the fields, as compared with the fields produced on and above an infinitely deep sea, for frequencies in the ULF/ELF bands (frequencies less than 3 kHz). As in the earlier work, this report finds that even a comparatively highly conducting sea floor (conductivity of approximately 0.4S/m) can produce substantial changes in the field amplitudes for some source-receiver configurations, and, in the case of the horizontal dipoles (as previously found for the VMD), alterations of two orders of magnitude or more can occur in the amplitudes on the sea surface for smaller values of sigma.

  2. Lidocaine block of cardiac sodium channels

    OpenAIRE

    Bean, BP; Cohen, CJ; Tsien, RW

    1983-01-01

    Lidocaine block of cardiac sodium channels was studied in voltage-clamped rabbit purkinje fibers at drug concentrations ranging from 1 mM down to effective antiarrhythmic doses (5-20 μM). Dose-response curves indicated that lidocaine blocks the channel by binding one-to-one, with a voltage-dependent K(d). The half-blocking concentration varied from more than 300 μM, at a negative holding potential where inactivation was completely removed, to approximately 10 μM, at a depolarized holding pote...

  3. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  4. Solar cell efficiency, self-assembly, and dipole-dipole interactions of isomorphic narrow-band-gap molecules.

    Science.gov (United States)

    Takacs, Christopher J; Sun, Yanming; Welch, Gregory C; Perez, Louis A; Liu, Xiaofeng; Wen, Wen; Bazan, Guillermo C; Heeger, Alan J

    2012-10-10

    We examine the correlations of the dipole moment and conformational stability to the self-assembly and solar cell performance within a series of isomorphic, solution-processable molecules. These charge-transfer chromophores are described by a D(1)-A-D-A-D(1) structure comprising electron-rich 2-hexylbithiophene and 3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene moieties as the donor units D(1) and D, respectively. The building blocks 2,1,3-benzothiadiazole (BT) and [1,2,5]thiadiazolo[3,4-c]pyridine (PT) were used as the electron-deficient acceptor units A. Using a combination of UV-visible spectroscopy, field-effect transistors, solar cell devices, grazing incident wide-angle X-ray scattering, and transmission electron microscopy, three PT-containing compounds (1-3) with varying regiochemistry and symmetry, together with the BT-based compound 5,5'-bis{(4-(7-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolobenzene}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (4), are compared and contrasted in solution, in thin films, and as blends with the electron acceptor [6,6]-phenyl-C(70)-butyric acid methyl ester. The molecules with symmetric orientations of the PT acceptor, 1 and 2, yield highly ordered blended thin films. The best films, processed with the solvent additive 1,8-diiodooctane, show donor "crystallite" length scales on the order of 15-35 nm and photovoltaic power conversion efficiencies (PCEs) of 7.0 and 5.6%, respectively. Compound 3, with an unsymmetrical orientation of PT heterocycles, shows subtle differences in the crystallization behavior and a best PCE of 3.2%. In contrast, blends of the BT-containing donor 4 are highly disordered and give PCEs below 0.2%. We speculate that the differences in self-assembly arise from the strong influence of the BT acceptor and its orientation on the net dipole moment and geometric description of the chromophore.

  5. Electric dipole moment enhancement factor of thallium

    Science.gov (United States)

    Porsev, Sergey; Safronova, Marianna; Kozlov, Mikhail

    2012-06-01

    A number of extensions of the standard model of particle physics predict electric dipole moments (EDM) of particles that may be observable with the present state-of-the art experiments. The EDMs arise from the violations of both parity and time-reversal invariance. The electron EDM is enhanced in certain atomic and molecular systems. One of the most stringent limits on the electron EDM de was obtained from the experiments with ^205Tl: decontroversy in the value of the EDM enhancement factor K in Tl. We have carried out several calculations by different high-precision methods, studied previously omitted corrections, as well as tested our methodology on other parity conserving quantities. We find the EDM enhancement factor of Tl to be equal to -573(20). This value is 20% larger than the recently published result of Nataraj et al. [PRL 106, 200403 (2011)] but agrees very well with several earlier results.

  6. Electric dipole moments: A global analysis

    Science.gov (United States)

    Chupp, Timothy; Ramsey-Musolf, Michael

    2015-03-01

    We perform a global analysis of searches for the permanent electric dipole moments (EDMs) of the neutron, neutral atoms, and molecules in terms of six leptonic, semileptonic, and nonleptonic interactions involving photons, electrons, pions, and nucleons. By translating the results into fundamental charge-conjugation-parity symmetry (CP) violating effective interactions through dimension six involving standard model particles, we obtain rough lower bounds on the scale of beyond the standard model CP-violating interactions ranging from 1.5 TeV for the electron EDM to 1300 TeV for the nuclear spin-independent electron-quark interaction. We show that planned future measurements involving systems or combinations of systems with complementary sensitivities to the low-energy parameters may extend the mass reach by an order of magnitude or more.

  7. Near-Field Magnetic Dipole Moment Analysis

    Science.gov (United States)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  8. Hard diffraction in the QCD dipole picture

    CERN Document Server

    Bialas, A

    1995-01-01

    Using the QCD dipole picture of the BFKL pomeron, the gluon contribution to the cross-section for single diffractive dissociation in deep-inelastic high-energy scattering is calculated. The resulting contribution to the proton diffractive structure function integrated over t is given in terms of relevant variables, x_{\\cal P}, Q^2, and \\beta = x_{Bj}/x_{\\cal P}. It factorizes into an explicit x_{\\cal P}-dependent Hard Pomeron flux factor and structure function. The flux factor is found to have substantial logarithmic corrections which may account for the recent measurements of the Pomeron intercept in this process. The triple Pomeron coupling is shown to be strongly enhanced by the resummation of leading logs. The obtained pattern of scaling violation at small \\beta is similar to that for F_2 at small x_{Bj}.

  9. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...... plane. The antenna operates as an electric dipole, i.e. it radiates the TM10 spherical mode. The antenna is self-resonant and can be matched to a wide range of input feed lines without an external matching network. In this paper, a spherical meander antenna of the size ka = 0.27 and the input impedance...... of 72 ohms is numerically investigated and its performance is compared to that of the multiarm spherical helix antenna of the same size. Both antennas yield equal quality factors, which are about 1.5 times the Chu lower bound, but quite different cross-polarization characteristics....

  10. BEAM MANIPULATION WITH AN RF DIPOLE.

    Energy Technology Data Exchange (ETDEWEB)

    BAI,M.

    1999-03-29

    Coherent betatron motion adiabatically excited by an RF dipole has been successfully employed to overcome strong intrinsic spin depolarization resonances in the AGS, while a solenoid partial snake has been used to correct imperfection spin resonances. The experimental results showed that a full spin flip was obtained in passing through an intrinsic spin resonance when all the beam particles were forced to oscillate coherently at a large amplitude without diluting the beam emittance. With this method, we have successfully accelerated polarized beam up to 23.5 GeV/c. A new type of second order spin resonances was also discovered. As a non-destructive manipulation, this method can also be used for nonlinear beam dynamics studies and beam diagnosis such as measuring phase advance and betatron amplitude function.

  11. Pulsar Magnetospheres: Beyond the Flat Spacetime Dipole

    CERN Document Server

    Gralla, Samuel E; Philippov, Alexander

    2016-01-01

    Most studies of the pulsar magnetosphere have assumed a pure magnetic dipole in flat spacetime. However, recent work suggests that the effects of general relativity are in fact of vital importance and that realistic pulsar magnetic fields may have a significant nondipolar component. We introduce a general analytical method for studying the axisymmetric force-free magnetosphere of a slowly-rotating star of arbitrary magnetic field, mass, radius and moment of inertia, including all the effects of general relativity. We confirm that spacelike current is generically present in the polar caps (suggesting a pair production region), irrespective of the stellar magnetic field. We show that general relativity introduces a ~60% correction to the formula for the dipolar component of the surface magnetic field inferred from spindown. Finally, we show that the location and size of the polar caps can be modified dramatically by even modestly strong higher moments. This can affect emission processes occurring near the star ...

  12. Electric dipole moments of superheavy elements

    CERN Document Server

    Radžiūtė, Laima; Jönsson, Per; Bieroń, Jacek

    2015-01-01

    The multiconfiguration Dirac-Hartree-Fock (MCDHF) method was employed to calculate atomic electric dipole moments (EDM) of the superheavy element copernicium (Cn, $Z=112$). The EDM enhancement factors of Cn, here calculated for the first time, are about one order of magnitude larger than those of Hg. The exponential dependence of enhancement factors on atomic number $Z$ along group 12 of the periodic table was derived from the EDMs of the entire homolog series, $^{69}_{30}$Zn, $^{111}_{\\phantom{1}48}$Cd, $^{199}_{\\phantom{1}80}$Hg, $^{285}_{112}$Cn, and $^{482}_{162}$Uhb. These results show that superheavy elements with sufficiently large half-lives are good candidates for EDM searches.

  13. Generalized Block Failure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2015-01-01

    Block tearing is considered in several codes as a pure block tension or a pure block shear failure mechanism. However in many situations the load acts eccentrically and involves the transfer of a substantial moment in combination with the shear force and perhaps a normal force. A literature study...... yield lines around the block leads to simple interaction formulas similar to other interaction formulas in the codes.......Block tearing is considered in several codes as a pure block tension or a pure block shear failure mechanism. However in many situations the load acts eccentrically and involves the transfer of a substantial moment in combination with the shear force and perhaps a normal force. A literature study...

  14. ANALYTICAL CALCULATION OF STOKES PROFILES OF ROTATING STELLAR MAGNETIC DIPOLE

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Gonzalez, M. J. [Instituto de Astrofisica de Canarias, Via Lactea s/n, 38200 La Laguna, Tenerife (Spain); Asensio Ramos, A. [Departamento de Astrofisica, Universidad de La Laguna, E-38205 La Laguna, Tenerife (Spain)

    2012-08-20

    The observation of the polarization emerging from a rotating star at different phases opens up the possibility to map the magnetic field in the stellar surface thanks to the well-known Zeeman-Doppler imaging. When the magnetic field is sufficiently weak, the circular and linear polarization profiles locally in each point of the star are proportional to the first and second derivatives of the unperturbed intensity profile, respectively. We show that the weak-field approximation (for weak lines in the case of linear polarization) can be generalized to the case of a rotating star including the Doppler effect and taking into account the integration on the stellar surface. The Stokes profiles are written as a linear combination of wavelength-dependent terms expressed as series expansions in terms of Hermite polynomials. These terms contain the surface-integrated magnetic field and velocity components. The direct numerical evaluation of these quantities is limited to rotation velocities not larger than eight times the Doppler width of the local absorption profiles. Additionally, we demonstrate that in a rotating star, the circular polarization flux depends on the derivative of the intensity flux with respect to the wavelength and also on the profile itself. Likewise, the linear polarization depends on the profile and on its first and second derivatives with respect to the wavelength. We particularize the general expressions to a rotating dipole.

  15. Diagnostics of the Fermilab Tevatron using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Ryoichi [Univ. of Texas, Austin, TX (United States)

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  16. Quantum Calculation of Dipole Excitation in Fusion Reaction

    OpenAIRE

    2000-01-01

    The excitation of the giant dipole resonance by fusion is studied with N/Z asymmetry in the entrance channel. the TDHF solution exhibits a strong dipole vibration which can be associated with a giant vibration along the main axis of a fluctuating prolate shape. The consequences on the gamma-ray emission from hot compound nuclei are discussed.

  17. Considerations for an Ac Dipole for the LHC

    CERN Document Server

    Bai, M; Fischer, W; Oddo, P; Schmickler, Hermann; Serrano, J; Jansson, A; Syphers, M; Kopp, S; Miyamoto, R

    2007-01-01

    Following successful experience at the BNL AGS, FNAL Tevatron, and CERN SPS, an AC Dipole will be adopted at the LHC for rapid measurements of ring optics. This paper describes some of the parameters of the AC dipole for the LHC, scaling from performance of the FNAL and BNL devices.

  18. Electric dipole moment of the electron and of the neutron

    Science.gov (United States)

    Barr, S. M.; Zee, A.

    1990-01-01

    It is shown that if Higgs-boson exchange mediates CP violation a significant electric dipole moment for the electron can result. Analogous effects can contribute to the neutron's electric dipole moment at a level competitive with Weinberg's three-gluon operator.

  19. The neutron electric dipole moment and the Weinberg mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Chang, D. (Northwestern Univ., Evanston, IL (USA). Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-01-01

    We gave an overview of various mechanism for CP violation paying special attention to their prediction of the neutron electric dipole moment. The implication of the recent developments associated with the color electric dipole moment of gluon in various models of CP-violation are then critically assessed. 25 refs.

  20. ‘The crab’ transporting LHC dipole cold mass

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    For the careful transport of the LHC dipole magnets a robot, called ‘the crab’ has been specially built. It transports the cold masses between the storage area and assembly hall. These cold masses contain the cooling system and container for the dipole magnet.

  1. Structure of the pygmy dipole resonance in Sn-124

    NARCIS (Netherlands)

    Endres, J.; Savran, D.; Butler, P. A.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R. -D.; Kruecken, R.; Lagoyannis, A.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Popescu, L.; Ring, P.; Scheck, M.; Schlueter, F.; Sonnabend, K.; Stoica, V. I.; Zilges, A.; Wortche, Heinrich

    2012-01-01

    Background: In atomic nuclei, a concentration of electric dipole strength around the particle threshold, commonly denoted as pygmy dipole resonance, may have a significant impact on nuclear structure properties and astrophysical scenarios. A clear identification of these states and the structure of

  2. Applicability of the dipole-dipole method for structural studies: examples from the Northern Apennines

    Directory of Open Access Journals (Sweden)

    L. Alfano

    1998-06-01

    Full Text Available We present some results of a geoelectrical investigation program conducted in the Northern Apennines, namely in the Val d'Aveto and Bobbio window and surrounding areas. Field activity included the execution of more than 50 vertical electrical soundings with continuous polar dipole-dipole spread. We image the geometries of some deep geological structures; in particular we found a resistive background, whose resistivity is different along the geoelectrical profiles. In our interpretation the resistive background consists of subligurid and tuscan units underlying the alloctone Ligurid units in the area surrounding the Val d'Aveto and Bobbio window. The resistive background was not found, at least at the same depths, toward north-east. Therefore, the geoelectrical survey revealed the position of the front of the subligurid and Tuscan nappes toward the plain for a depth of about one kilometer.

  3. Three-body bound states in dipole-dipole interacting Rydberg atoms

    CERN Document Server

    Kiffner, Martin; Jaksch, Dieter

    2013-01-01

    We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds $R\\approx 2\\,\\mu\\text{m}$, and each configuration is two-fold degenerate due to Kramers' degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells and describe methods for their production and detection.

  4. Dipole blockade in a cold Rydberg atomic sample

    CERN Document Server

    Comparat, Daniel; 10.1364/JOSAB.27.00A208

    2010-01-01

    We review here the studies performed about interactions in an assembly of cold Rydberg atoms. We focus more specially the review on the dipole-dipole interactions and on the effect of the dipole blockade in the laser Rydberg excitation, which offers attractive possibilities for quantum engineering. We present first the various interactions between Rydberg atoms. The laser Rydberg excitation of such an assembly is then described with the introduction of the dipole blockade phenomenon. We report recent experiments performed in this subject by starting with the case of a pair of atoms allowing the entanglement of the wave-functions of the atoms and opening a fascinating way for the realization of quantum bits and quantum gates. We consider then several works on the blockade effect in a large assembly of atoms for three different configurations: blockade through electric-field induced dipole, through F\\"orster resonance and in van der Waals interaction. The properties of coherence and cooperativity are analyzed. ...

  5. Electric dipole moments of charged leptons with sterile fermions

    CERN Document Server

    Abada, Asmaa

    2016-01-01

    We address the impact of sterile fermions on charged lepton electric dipole moments. We show that in order to have a non-vanishing contribution to electric dipole moments, the minimal extension necessitates the addition of at least two sterile fermion states. Sterile neutrinos can give significant contributions to the charged lepton electric dipole moments if the masses of the non-degenerate sterile states are both above the electroweak scale. In addition, the Majorana nature of neutrinos is also important. Furthermore, we apply the computations of the electric dipole moments for the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. We show that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity. We further discuss the possibility of beyond the minimal Inverse Seesaw models and...

  6. Acceleration of magnetic dipoles by the sequence of current turns

    CERN Document Server

    Dolya, S N

    2014-01-01

    Acceleration of magnetic dipoles is carried out by the running gradient of the magnetic field formed while sequent switching on the current turns. Magnetic dipoles, with a diameter of sixty millimeters and full length one meter, are pre-accelerated by using the gas-dynamic method to speed one kilometer per second, corresponding to the injection rate into the main accelerator. To prevent the turning of the dipoles by one hundred eighty degrees in the field of the accelerating pulse and focus them, the magnetic dipoles are accelerated inside the titanium tube. The magnetic dipoles have mass two kilograms and acquire the finite speed five kilometers per second on the acceleration length three hundreds meters.

  7. Arctic dipole anomaly and summer rainfall in Northeast China

    Institute of Scientific and Technical Information of China (English)

    WU BingYi; ZHANG RenHe; D'Arrigo ROSANNE

    2008-01-01

    A dipole structure anomaly in summer Arctic atmospheric variability is identified in this study, which is characterized by the second mode of empirical orthogonal function (EOF) analysis of summer monthly mean sea level pressure (SLP) north of 70°N, accounting for 12.94% of the variance. The dipole anom-aly shows a quasi-barotropic structure with opposite anomalous centers over the Canadian Arctic and the Beaufort Sea and between the Kara Sea and the Laptev Sea. The dipole anomaly reflects alternating variations in location of the polar vortex between the western and eastern Arctic regions. The positive phase of the dipole anomaly corresponds to the center of the polar vortex over the western Arctic, leading to an increase in summer mean rainfall in Northeast China. The dipole anomaly has a pre-dominant 6-year periodicity, and shows interdecadal variations in recent decades.

  8. Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate

    Science.gov (United States)

    Jarzembski, Amun; Park, Keunhan

    2017-04-01

    Recent experimental studies have measured the infrared (IR) spectrum of tip-scattered near-field thermal radiation for a SiC substrate and observed up to a 50cm-1 redshift of the surface phonon polariton (SPhP) resonance peak [1,2]. However, the observed spectral redshift cannot be explained by the conventional near-field thermal radiation model based on the point dipole approximation. In the present work, a heated tip is modeled as randomly fluctuating point charges (or fluctuating finite dipoles) aligned along the primary axis of a prolate spheroid, and quasistatic tip-substrate charge interactions are considered to formulate the effective polarizability and self-interaction Green's function. The finite dipole model (FDM), combined with fluctuational electrodynamics, allows the computation of tip-plane thermal radiation in the extreme near-field (i.e., H / R ≲ 1 , where H is the tip-substrate gap distance and R is the tip radius), which cannot be calculated with the point dipole approximation. The FDM provides the underlying physics on the spectral redshift of tip-scattered near-field thermal radiation as observed in experiments. In addition, the SPhP peak in the near-field thermal radiation spectrum may split into two peaks as the gap distance decreases into the extreme near-field regime. This observation suggests that scattering-type spectroscopic measurements may not convey the full spectral features of tip-plane extreme near-field thermal radiation.

  9. Nonlinear Approximation Using Gaussian Kernels

    CERN Document Server

    Hangelbroek, Thomas

    2009-01-01

    It is well-known that non-linear approximation has an advantage over linear schemes in the sense that it provides comparable approximation rates to those of the linear schemes, but to a larger class of approximands. This was established for spline approximations and for wavelet approximations, and more recently for homogeneous radial basis function (surface spline) approximations. However, no such results are known for the Gaussian function. The crux of the difficulty lies in the necessity to vary the tension parameter in the Gaussian function spatially according to local information about the approximand: error analysis of Gaussian approximation schemes with varying tension are, by and large, an elusive target for approximators. We introduce and analyze in this paper a new algorithm for approximating functions using translates of Gaussian functions with varying tension parameters. Our scheme is sophisticated to a degree that it employs even locally Gaussians with varying tensions, and that it resolves local ...

  10. Near-ultraviolet tyrosyl circular dichroism of pig insulin monomers, dimers, and hexamers. Dipole-dipole coupling calculations in the monopole approximation.

    Science.gov (United States)

    Strickland, E H; Mercola, D

    1976-08-24

    The tyrosyl circular dichroism (CD) has been calculated using the conformation of pig insulin observed in rhombohedral crystals containing 2 zinc atoms per hexamer. These calculations predict that the tyrosyl CD at 275 nm will be enhanced disproportionally as monomers interact to form dimers and as dimers interact to form hexamers. This enhanced tyrosyl CD (delta epsilon per 5800 molecular weight) results from new coupling interactions generated in the regions of contact between monomers and between dimers. These calculations illustrate that a large CD enhancement may accompany aggregation even in the absence of a conformation change in eith monomer. The tyrosyl CD intensities calculated for monomers, dimers, and hexamers of 2-zinc pig insulin are compatible with the experimentally observed CD spectra which are enhanced about fourfold in the hexamer compared with the monomer. Zinc ions and other metals do not contribute directly to the tyrosyl CD but only influence the optical properties by promoting the hexameric state. The relation of the integrity of the molecule to dimer formation and the biological activity of the molecules are discussed. The largest calculated contributions to tryosyl CD arise from interactions with far-ultraviolet transitions of neighboring aromatic groups. In the hexamer, about half of the tyrosyl CD intensity is calculated to arise from Tyr-A14.

  11. Forms of Approximate Radiation Transport

    CERN Document Server

    Brunner, G

    2002-01-01

    Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.

  12. Light extraction block with curved surface

    Science.gov (United States)

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.

  13. BLOCK H-MATRICES AND SPECTRUM OF BLOCK MATRICES

    Institute of Scientific and Technical Information of China (English)

    黄廷祝; 黎稳

    2002-01-01

    The block H-matrices are studied by the concept of G-functions, several concepts of block matrices are introduced. Equivalent characters of block H-matrices are obtained. Spectrum localizations claracterized by Gfunctions for block matrices are got.

  14. The solution of a wedge disclination dipole interacting with an annular inclusion and the force acting on the disclination dipole

    Institute of Scientific and Technical Information of China (English)

    Song Hao-Peng; Fang Qi-Hong; Liu You-Wen

    2008-01-01

    The interaction between a wedge disclination dipole and an elastic annular inclusion is investigated. Utilizing the Muskhelishvili complex variable method, the explicit series form solutions of the complex potentials in the matrix and the inclusion region are derived. The image force acting on the disclination dipole centre is also calculated. The influence of the location of the disclination dipole and the thickness of the annular inclusion as well as the elastic dissimilarity of materials upon the equilibrium position of the disclination dipole is discussed in detail. The results show that a stable equilibrium point of the disclination dipole near the inclusion is found for certain combinations of material constant.Moreover, the force on the disclination dipole is strongly affected by the position of the disclination dipole and the thickness of annular inclusion. The repulsion force increases (or the attraction force reduces) with the increase of the thickness of the annular inclusion. An appropriate critical value of the thickness of the annular inclusion may be found to change the direction of the force on the disclination dipole. The present solutions include previous results as special cases.

  15. Block TERM factorization of block matrices

    Institute of Scientific and Technical Information of China (English)

    SHE Yiyuan; HAO Pengwei

    2004-01-01

    Reversible integer mapping (or integer transform) is a useful way to realize Iossless coding, and this technique has been used for multi-component image compression in the new international image compression standard JPEG 2000. For any nonsingular linear transform of finite dimension, its integer transform can be implemented by factorizing the transform matrix into 3 triangular elementary reversible matrices (TERMs) or a series of single-row elementary reversible matrices (SERMs). To speed up and parallelize integer transforms, we study block TERM and SERM factorizations in this paper. First, to guarantee flexible scaling manners, the classical determinant (det) is generalized to a matrix function, DET, which is shown to have many important properties analogous to those of det. Then based on DET, a generic block TERM factorization,BLUS, is presented for any nonsingular block matrix. Our conclusions can cover the early optimal point factorizations and provide an efficient way to implement integer transforms for large matrices.

  16. Entangling Dipole-Dipole Interactions for Quantum Logic in Optical Lattices

    Science.gov (United States)

    Deutsch, Ivan

    2000-06-01

    The ability to engineer the quantum state of a many-body system represents the ``holy grail" of coherent control and opens the door to a host of new applications and fundamental studies ranging from improvements in precision measurement to quantum computation. At the heart of these quantum-information processing tasks are entangled states. These can be created through a ``quantum-circuit" consisting of a series of simple quantum logic gates acting only on single or pairs of qubits. Any physical implementation of a quantum circuit must contend with an inherent conflict. Qubits must strongly couple to one another and to an external classical field which drives the algorithm, while simultaneously coupling very weakly to the noisy environment which decoheres the quantum superpositions. We have identified a new system for quantum-information processing: ultra-cold trapped neutral atoms (G. K. Brennen et al. ), Phys. Rev. Lett. 82 , 1060 (1999); see also eprint quant- ph/9910031. Neutrals interact very weakly with the environment and coupling between them can be induced on demand through resonant excitation or elastic collisions via direct overlap between wavepackets(D. Jaksch et al.), Phys. Rev. Lett. 82 1975 (1999).. The ability to turn interactions on and off reduces decoherence and the spread of errors amongst qubits. In the implementation presented here I will discuss entangling atoms with electric dipole-dipole interactions in optical lattices (P.S. Jessen and I. H. Deutsch, Adv. At. Mol. Phys. 36), 91 (1996).. These traps provide an extremely flexible environment for coherent control of both internal and external degrees of freedom of atom wave packets as in ion traps(D. Wineland et al.), Fortschr. Phys. 46, 363 (1998).. Dipole-dipole interactions can be coherent when atoms are tightly localized at a distance small compared to the optical wavelength. By inducing dipoles conditional on the logical state of the atoms we can engineer quantum gates. Detailed analysis

  17. The low-energy dipole structure of 232Th , 236U and 238U actinide nuclei

    Science.gov (United States)

    Kuliev, A. A.; Guliyev, E.; Ertugral, F.; Özkan, S.

    2010-03-01

    In this study, ensuremath I^{π} = 1+ and ensuremath I^{π} = 1- dipole mode excitations are systematically investigated within the rotational and translational + Galilean invariant quasiparticle random-phase approximation for 232Th , 236U , and 238U actinide nuclei. It is shown that the investigated nuclei reach a B( M1) strength structure, which corresponds to the scissors mode. The calculated mean excitation energies as well as the summed B( M1) value of the scissors mode excitations are consistent with the available experimental data. The results of calculations indicate large differences to the rare-earth nuclei as is the case for the experiment: a doubling of the observed dipole strengths and a shift of the energy centroid to the lower energies by about 800keV. The calculations indicate the presence of a few prominent negative-parity ensuremath K^{π} = 1- states in the 2.0-4.0MeV energy interval. The occurrence of the negative-parity dipole states with the rather high B( E1) value less than 4MeV shows the necessity of explicit parity measurements for the correct determination of the scissors mode strength in 232Th , 236U , and 238U isotopes.

  18. Dipole-forbidden atomic transitions induced by superintense x-ray laser fields

    Science.gov (United States)

    Simonsen, Aleksander Skjerlie; Førre, Morten

    2016-06-01

    A hydrogen atom, initially prepared in the 2 s and/or 2 p (m =±1 ) states, is assumed irradiated by 0.8 keV (1.5 nm) photons in pulses of 1 -250 fs duration and intensities in the range 1020 to 1023W /cm2 . Solving the corresponding time-dependent Schrödinger equation from first principles, we show that the ionization and excitation dynamics of the laser-atom system is strongly influenced by interactions beyond the electric dipole approximation. A beyond-dipole two-photon Raman-like transition between the 2 s and 2 p (m =±1 ) states is found to completely dominate the underlying laser-matter interaction. It turns out that the large difference in the ionization rates of the 2 s and 2 p (m =±1 ) states is important in this context, effectively leading to a symmetry breaking in the corresponding (beyond-dipole) bound-bound dynamics with the result that a net population transfer between the states occurs throughout the laser-matter interaction period. Varying the x-ray exposure time as well as the laser intensity, we probe the phenomenon as the bound wave packet oscillates between having 2 s and 2 p (m =±1 ) character, eventually giving rise to a Rabi-like oscillation pattern in the populations.

  19. Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object.

    Science.gov (United States)

    Buschle, Lukas R; Kurz, Felix T; Kampf, Thomas; Triphan, Simon M F; Schlemmer, Heinz-Peter; Ziener, Christian Herbert

    2015-11-01

    In this work, the time evolution of the free induction decay caused by the local dipole field of a spherical magnetic perturber is analyzed. The complicated treatment of the diffusion process is replaced by the strong-collision-approximation that allows a determination of the free induction decay in dependence of the underlying microscopic tissue parameters such as diffusion coefficient, sphere radius and susceptibility difference. The interplay between susceptibility- and diffusion-mediated effects yields several dephasing regimes of which, so far, only the classical regimes of motional narrowing and static dephasing for dominant and negligible diffusion, respectively, were extensively examined. Due to the asymmetric form of the dipole field for spherical objects, the free induction decay exhibits a complex component in contradiction to the cylindrical case, where the symmetric local dipole field only causes a purely real induction decay. Knowledge of the shape of the corresponding frequency distribution is necessary for the evaluation of more sophisticated pulse sequences and a detailed understanding of the off-resonance distribution allows improved quantification of transverse relaxation.

  20. Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.

    Science.gov (United States)

    Simmen, Benjamin; Mátyus, Edit; Reiher, Markus

    2014-10-21

    This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.

  1. Precise dipole moment of methanol by microwave Stark spectroscopy III: Parent 12CH316OH species

    Science.gov (United States)

    Mukhopadhyay, Indra; Sastry, K. V. L. N.

    2015-06-01

    In this work, precise Stark effect measurements have been carried out on several transitions in the first four torsional states of methanol. The Stark shifted transition frequencies for a wide range of steady electric field have been measured with an accuracy of approximately ±10 kHz. Detailed analysis of the data allowed for the determination of the dipole moment components in the first four torsional states of the ground vibrational state. The extrapolated zero field frequencies of the transitions studied have been determined and found to be in perfect agreement with known values. For the torsional ground state the values of μa = 0.8961(2) and μb = 1.4201(9) have been obtained, whereas for the first excited torsional state the corresponding values obtained are 0.9035(1) and 1.4317(5) (These values are in Debye, denoted by D). These values confirm the fact that the dipole moment values increase at a considerable rate as one move toward higher torsional states as seen in previous studies. To our knowledge, this is the first time the most accurate and elaborate dipole moment values of methanol are being reported.

  2. Cavity-Backed Angled-Dipole Antennas for Millimeter-Wave Wireless Applications

    Directory of Open Access Journals (Sweden)

    Son Xuat Ta

    2016-01-01

    Full Text Available A cavity-backed angled-dipole antenna is proposed for millimeter-wave wireless applications. The angled-dipole radiator is built on both sides of an RT/Duroid 5880 substrate (εr=2.2 and fed by a parallel-plate transmission line. The cavity-backed reflector is utilized to improve the radiation characteristics of the angled dipole, such as gain, back-radiation, symmetric pattern, and similar 3 dB beamwidth in the E- and H-planes. The design, with a cavity aperture of 0.5λ28-GHz×0.5λ28-GHz, results in a S11<-10 dB bandwidth of 26.7–30.6 GHz, a gain of 6.6–8.0 dB, and a similar 3 dB beamwidth of approximately 70° for both the E- and H-planes. Eight-element linear arrays with the proposed antenna having a center-to-center spacing of 5.6 mm (0.52λ28-GHz are characterized, fabricated, and measured. By applying nonuniform power distribution across excitations, the array achieves a scan angle up to 40° and a sidelobe level below −15 dB.

  3. Experimental modelling of the dipole magnet for the electron storage ring DELSY

    CERN Document Server

    Meshkov, I N; Syresin, E M

    2003-01-01

    In the Joint Institute for Nuclear Research (Dubna) the project of Dubna Electron Synchrotron (DELSY) with an electron energy of 1.2 GeV is developed. The electron storage ring in the DELSY project is planned to be created on the basis of magnetic elements, which were used earlier in the storage ring AmPS (NIKHEF, Amsterdam). The optics of the ring is necessary to be changed, its perimeter to be reduced approximately in one and a half time, the energy of electrons to be increased. The paper is devoted to the development of a modified dipole magnet of the storage ring. The preliminary estimation of geometry of the magnet pole is carried out by means of computer modelling using two- and three- dimensional codes of the magnetic field calculation SUPERFISH and RADIA. The experimental stand for the measurements of the dipole magnetic field is described. As the result of calculational and experimental modelling for the dipole magnet, the geometry of its poles was estimated, providing in the horizontal aperture +- 3...

  4. Noise Reduction for Detecting Event-Related Potential by Processing in Dipole Space

    Science.gov (United States)

    Fukami, Tadanori; Shimada, Takamasa; Ishikawa, Fumito; Ishikawa, Bunnoshin; Saito, Yoichi

    2007-06-01

    Averaged responses are generally used to detect event-related potentials (ERPs) by supressing the background electroencephalography (EEG) wave, the ERP component of a single-trial response, or the average of a small number of responses is used to assess time variation in a subjects’ state in detail. We therefore proposed a new method of reducing the noise component including the background wave in a single-trial response. In this study, our target is a component such as N100 approximated by one dipole. The method was performed by modifying the dipole position in the brain and detecting the projected components with reference to the dipole estimated from an averaged response. Results of simulation indicate that the proposed method could improve signal-to-noise ratio by 7.6 dB and decrease the error in N100 peak latency 6.7 ms by suppressing the influence of the background wave. In the EEG experiment, eight healthy subjects paticipated and their results show that the sway of waveforms by the background wave is suppressed and that the peak of the N100 component becomes prominent compared with that of the original single-trial response.

  5. International Conference Approximation Theory XIV

    CERN Document Server

    Schumaker, Larry

    2014-01-01

    This volume developed from papers presented at the international conference Approximation Theory XIV,  held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.

  6. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  7. Lesson Thirteen Trifascicular Block

    Institute of Scientific and Technical Information of China (English)

    鲁端; 王劲

    2005-01-01

    @@ A complete trifascicular block would result in complete AV block. The idio ventricular rhythm has a slower rate and a wide QRS complex because the pacemaker is located at the peripheral part of the conduction system distal to the sites of the block1. Such a rhythm may be difficult to differentiate from bifascicular or bundle branch block combined with complete block at a higher level such as the AV node or His bundle2. Besides a slower ventricular rate, a change in the morphology of the QRS complex from a previous known bifascicular pattern would be strongly suggestive of a trifascicular origin of the complete AV block3. A His bundle recording is required for a definitive diagnosis, however.

  8. Electric dipole polarizabilities of Rydberg states of alkali-metal atoms

    Science.gov (United States)

    Yerokhin, V. A.; Buhmann, S. Y.; Fritzsche, S.; Surzhykov, A.

    2016-09-01

    Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali-metal atoms, Rb and Cs, for the n S , n P½,3 /2 , and n D3 /2 ,5 /2 states with large principal quantum numbers up to n =50 . The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semiempirical core-polarization potential. The obtained results are compared with those from a simpler semiempirical approach and with available experimental data.

  9. Neutron-skin thickness from the study of the anti-analog giant dipole resonance

    OpenAIRE

    2012-01-01

    The gamma-decay of the anti-analog of the giant dipole resonance (AGDR) has been measured to the isobaric analog state excited in the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent random-phase approximation (RPA) and turned out to be very sensitive to the neutron-skin thickness (\\DeltaR_(pn)). By comparing the theoretical results with the measured one, the \\DeltaR_(pn) value for 124Sn was deduced...

  10. Numerical evaluation of electromagnetic fields due to dipole antennas in the presence of stratified media

    Science.gov (United States)

    Tsang, L.; Brown, R.; Kong, J. A.; Simmons, G.

    1974-01-01

    Two numerical methods are used to evaluate the integrals that express the em fields due to dipole antennas radiating in the presence of a stratified medium. The first method is a direct integration by means of Simpson's rule. The second method is indirect and approximates the kernel of the integral by means of the fast Fourier transform. In contrast to previous analytical methods that applied only to two-layer cases the numerical methods can be used for any arbitrary number of layers with general properties.

  11. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects

    Science.gov (United States)

    Cheng, J. L.; Vermeulen, N.; Sipe, J. E.

    2017-01-01

    We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response. PMID:28262762

  12. Adiabatic Hamiltonian of charged particle motion in a dipole field. [geomagnetic trapping

    Science.gov (United States)

    Chen, A. J.; Stern, D. P.

    1975-01-01

    The Hamiltonian for a dipole field is developed, and the result is expressed by an analytic approximation accurate to within about 1%. This allows extension of results derived for equatorial particles to particles with arbitrary pitch angles; in particular, it makes available even in the presence of electric fields orthogonal to the magnetic field a function K that is preserved by the bounce-averaged motion. This function provides at once the equations of drift paths in (alpha, beta) or of their projections onto the equatorial plane; the derivation of a pacing function that times the progress of particles along such drift paths is also described.

  13. Automated Design of a Correction Dipole Magnet for LHC

    CERN Document Server

    Karppinen, M; Ijspeert, Albert

    1996-01-01

    A correction dipole magnet, with a horizontal dipole nested inside a vertical dipole has been designed and optimized linking together different electromagnetic software and CAD/CAM systems. The necessary interfaces have recently been established in the program ROXIE which has been developed at CERN for the automatic generation and optimization of superconducting coil geometries. The program provides, in addition to a mathematical optimization chest, interfaces to commercial electromagnetic and structural software packages, CAD/CAM and databases. The results from electromagnetic calculations with different programs have been compared. Some modelling considerations to reduce the computation time are also given.

  14. Search for electric dipole moments in storage rings

    Directory of Open Access Journals (Sweden)

    Lenisa Paolo

    2016-01-01

    Full Text Available The JEDI collaboration aims at making use of storage ring to provide the most precise measurement of the electric dipole moments of hadrons. The method makes exploits a longitudinal polarized beam. The existence an electric dipole moment would generate a torque slowly twisting the particle spin out of plan of the storage ring into the vertical direction. The observation of non zero electric dipole moment would represent a clear sign of new physics beyond the Standard Model. Feasiblity tests are presently undergoing at the COSY storage ring Forschungszentrum Jülich (Germany, to develop the novel techniques to be implemented in a future dedicated storage ring.

  15. Image theory for electric dipoles above a conducting anisotropic earth

    Science.gov (United States)

    Mahmoud, S. F.

    1984-07-01

    New image representations for vertical electric dipoles (VED) above an imperfectly conducting and axially anisotropic earth are developed. These include multidiscrete images at different depths below the air-earth interface and multipole image sources. It is shown that, in contrast with the available image representations in the literature, the developed ones predict the correct behavior of the fields in the far zone along the earth's surface. Extension to a layered earth's model is made. The theory is also extended to the horizontal electric dipole with similar conclusions to the case of the vertical dipole.

  16. Classical crystal formation of dipoles in two dimensions

    DEFF Research Database (Denmark)

    Hansen, Kenneth Christian Klochmann; Fedorov, D. V.; Jensen, A. S.;

    2015-01-01

    We consider a two-dimensional layer of dipolar particles in the regime of strong dipole moments. Here we can describe the system using classical methods and determine the crystal structure that minimizes the total energy. The dipoles are assumed to be aligned by an external field and we consider...... different orientations of the dipolar moments with respect to the two-dimensional plane of motion. We observe that when the orientation angle changes away from perpendicular and towards the plane, the crystal structure will change from a hexagonal form to one that has the dipoles sitting in equidistant rows...

  17. Molecular Dipole Moment Computed with Ab Initio MKS Charges

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Molecular dipole moments computed at the levels of HF/STO-3G, HF/6-31G(d, p), HF/6-311+G(2d, 2p), MP2/6-31G(d, p) and MP2/6-311+G(2d, 2p) have been investigated. HF/6-311+G(2d, 2p) was found to be the relatively good choice to compute MKS charges for reproducing the experimental values of molecular dipole moments. Root mean square deviation of computed dipole moments for 21 small polar molecules is about 0.1969 D.

  18. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; GENG Tao; YAN Shubin; LI Gang; ZHANG Jing; WANG Junmin; PENG Kunchi; ZHANG Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  19. Dipole Moments of Methyl - Substituted Cyclohexanone

    Energy Technology Data Exchange (ETDEWEB)

    Ka, Soo Hyun; Kim, Ji Hyun; Oh, Jung Jin [Sookmyung Women' s University, Seoul (Korea, Republic of)

    2011-01-15

    The microwave spectrum of 3-methylcyclopentanone has been studied and the dipole components Ιμ{sub a}Ι = 2.97(2), Ιμ{sub b}Ι = 1.00(3), Ιμ{sub c}Ι = 0.18(5), and ΙμtotΙ = 3.14(3) D were reported. These were consistent with a twisted-ring conformation with a methyl group in the equatorial position. The conformation of 3-, 4-methyl cyclohexanone in its ground state has been reported to be a chair form with the methyl group in the equatorial position. The resonance enhanced multiphoton ionization (REMPI) method has been applied to methyl- and ethyl- derivatives of cyclohexanone to investigate the various conformers as well as cyclic ketone and cyclic ether including oxygen. The structural information was compared with ab initio density functional theory to calculate not only the structure of cyclohexanone, but the vibrational spectra of isotopomers of cyclohexanone as well. The information was compared with electron diffraction structure and liquid-phase IR spectra.

  20. Confronting Higgcision with Electric Dipole Moments

    CERN Document Server

    Cheung, Kingman; Senaha, Eibun; Tseng, Po-Yan

    2014-01-01

    Current data on the signal strengths and angular spectrum of the 125.5 GeV Higgs boson still allow a CP-mixed state, namely, the pseudoscalar coupling to the top quark can be as sizable as the scalar coupling: $C_u^S \\approx C_u^P =1/2$. CP violation can then arise and manifest in sizable electric dipole moments (EDMs). In the framework of two-Higgs-doublet models, we not only update the Higgs precision (Higgcision) study on the couplings with the most updated Higgs signal strength data, but also compute all the Higgs-mediated contributions from the 125.5 GeV Higgs boson to the EDMs, and confront the allowed parameter space against the existing constraints from the EDM measurements of Thallium, neutron, Mercury, and Thorium monoxide. We found that the combined EDM constraints restrict the pseudoscalar coupling to be less than about $10^{-2}$, unless there are contributions from other Higgs bosons, supersymmetric particles, or other exotic particles that delicately cancel the current Higgs-mediated contributio...

  1. Electric dipole moments of light nuclei

    Science.gov (United States)

    Mereghetti, Emanuele

    2017-01-01

    Electric dipole moments (EDMs) are extremely sensitive probes of physics beyond the Standard Model (SM). A vibrant experimental program is in place, with the goal to improve the existing neutron EDM bound by one/two orders of magnitude, and to test new ideas for the measurement of EDMs of light ions, such as deuteron and helium, at a comparable level. The success of this program, and its implications for physics beyond the SM, relies on the precise calculation of the EDMs in terms of the couplings of CP-violating operators. In light of the non-perturbative nature both of QCD at low energy and of the nuclear interactions, these calculations have proven difficult, and are affected by large theoretical uncertainties. In this talk I will review the progress that in recent years has been achieved on different aspects of the calculation of hadronic and nuclear EDMs. In particular, I will discuss how the interplay between lattice QCD and Chiral Effective Field Theory (EFT) has allowed to reduce a set of hadronic uncertainties. Finally, I will discuss how the measurements of th EDMs of one, two and three nucleon systems can be used to discriminate between various possible mechanisms of time-reversal violation at high energy.

  2. Two flavors of the Indian Ocean Dipole

    Science.gov (United States)

    Endo, Satoru; Tozuka, Tomoki

    2016-06-01

    The Indian Ocean Dipole (IOD) is known as a climate mode in the tropical Indian Ocean accompanied by negative (positive) sea surface temperature (SST) anomalies over the eastern (western) pole during its positive phase. However, the western pole of the IOD is not always covered totally by positive SST anomalies. For this reason, the IOD is further classified into two types in this study based on SST anomalies in the western pole. The first type (hereafter "canonical IOD") is associated with negative (positive) SST anomalies in the eastern (central to western) tropical Indian Ocean. The second type (hereafter "IOD Modoki"), on the other hand, is associated with negative SST anomalies in the eastern and western tropical Indian Ocean and positive SST anomalies in the central tropical Indian Ocean. Based on composite analyses, it is found that easterly wind anomalies cover the whole equatorial Indian Ocean in the canonical IOD, and as a result, positive rainfall anomalies are observed over East Africa. Also, due to the basin-wide easterly wind anomalies, the canonical IOD is accompanied by strong sea surface height (SSH) anomalies. In contrast, zonal wind anomalies converge in the central tropical Indian Ocean in the IOD Modoki, and no significant precipitation anomalies are found over East Africa. Also, only weak SSH anomalies are seen, because equatorial downwelling anomalies induced by westerly wind anomalies in the west are counteracted by equatorial upwelling anomalies caused by easterly wind anomalies in the east.

  3. Pulsar Magnetospheres: Beyond the Flat Spacetime Dipole

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2016-12-01

    Most studies of the pulsar magnetosphere have assumed a pure magnetic dipole in flat spacetime. However, recent work suggests that the effects of general relativity are in fact of vital importance and that realistic pulsar magnetic fields will have a significant nondipolar component. We introduce a general analytical method for studying the axisymmetric force-free magnetosphere of a slowly rotating star of arbitrary magnetic field, mass, radius, and moment of inertia, including all the effects of general relativity. We confirm that spacelike current is generically present in the polar caps (suggesting a pair production region), irrespective of the stellar magnetic field. We show that general relativity introduces a ∼ 60 % correction to the formula for the dipolar component of the surface magnetic field inferred from spindown. Finally, we show that the location and shape of the polar caps can be modified dramatically by even modestly strong higher moments. This can affect emission processes occurring near the star and may help explain the modified beam characteristics of millisecond pulsars.

  4. Strongly magnetized rotating dipole in general relativity

    Science.gov (United States)

    Pétri, J.

    2016-10-01

    Context. Electromagnetic waves arise in many areas of physics. Solutions are difficult to find in the general case. Aims: We numerically integrate Maxwell equations in a 3D spherical polar coordinate system. Methods: Straightforward finite difference methods would lead to a coordinate singularity along the polar axis. Spectral methods are better suited for such artificial singularities that are related to the choice of a coordinate system. When the radiating object rotates like a star, for example, special classes of solutions to Maxwell equations are worthwhile to study, such as quasi-stationary regimes. Moreover, in high-energy astrophysics, strong gravitational and magnetic fields are present especially around rotating neutron stars. Results: To study such systems, we designed an algorithm to solve the time-dependent Maxwell equations in spherical polar coordinates including general relativity and quantum electrodynamical corrections to leading order. As a diagnostic, we computed the spin-down luminosity expected for these stars and compared it to the classical or non-relativistic and non-quantum mechanical results. Conclusions: Quantum electrodynamics leads to an irrelevant change in the spin-down luminosity even for a magnetic field of about the critical value of 4.4 × 109 T. Therefore the braking index remains close to its value for a point dipole in vacuum, namely n = 3. The same conclusion holds for a general-relativistic quantum electrodynamically corrected force-free magnetosphere.

  5. The electric dipole moment of $^{13}$C

    CERN Document Server

    Yamanaka, Nodoka; Hiyama, Emiko; Funaki, Yasuro

    2016-01-01

    We calculate for the first time the electric dipole moment (EDM) of $^{13}$C generated by the isovector CP-odd pion exchange nuclear force in the $\\alpha$-cluster model, which describes well the structures of low lying states of the $^{13}$C nucleus. The linear dependence of the EDM of $^{13}$C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be $d_{^{13}{\\rm C}} = -0.33 d_n - 0.0012 \\bar G_\\pi^{(1)}$. The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the $1/2^-_1$ state and the opposite parity ($1/2^+$) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of $^{13}$C in determining the new physics beyond the standard model.

  6. Nucleon tensor charges and electric dipole moments

    Science.gov (United States)

    Pitschmann, Mario; Seng, Chien-Yeah; Roberts, Craig D.; Schmidt, Sebastian M.

    2015-04-01

    A symmetry-preserving Dyson-Schwinger equation treatment of a vector-vector contact interaction is used to compute dressed-quark-core contributions to the nucleon σ -term and tensor charges. The latter enable one to directly determine the effect of dressed-quark electric dipole moments (EDMs) on neutron and proton EDMs. The presence of strong scalar and axial-vector diquark correlations within ground-state baryons is a prediction of this approach. These correlations are active participants in all scattering events and thereby modify the contribution of the singly represented valence quark relative to that of the doubly represented quark. Regarding the proton σ -term and that part of the proton mass which owes to explicit chiral symmetry breaking, with a realistic d -u mass splitting, the singly represented d quark contributes 37% more than the doubly represented u quark; and in connection with the proton's tensor charges, δTu , δTd , the ratio δTd /δTu is 18% larger than anticipated from simple quark models. Of particular note, the size of δTu is a sensitive measure of the strength of dynamical chiral symmetry breaking; and δTd measures the amount of axial-vector diquark correlation within the proton, vanishing if such correlations are absent.

  7. Confronting Higgcision with electric dipole moments

    Science.gov (United States)

    Cheung, Kingman; Lee, Jae Sik; Senaha, Eibun; Tseng, Po-Yan

    2014-06-01

    Current data on the signal strengths and angular spectrum of the 125.5 GeV Higgs boson still allow a CP-mixed state, namely, the pseudoscalar coupling to the top quark can be as sizable as the scalar coupling: C {/u S } ≈ C {/u P } = 1/2. CP violation can then arise and manifest in sizable electric dipole moments (EDMs). In the framework of two-Higgs-doublet models, we not only update the Higgs precision (Higgcision) study on the couplings with the most updated Higgs signal strength data, but also compute all the Higgs-mediated contributions from the 125.5 GeV Higgs boson to the EDMs, and confront the allowed parameter space against the existing constraints from the EDM measurements of Thallium, neutron, Mercury, and Thorium monoxide. We found that the combined EDM constraints restrict the pseudoscalar coupling to be less than about 10-2, unless there are contributions from other Higgs bosons, supersymmetric particles, or other exotic particles that delicately cancel the current Higgs-mediated contributions.

  8. Blocked Urethral Valves

    Science.gov (United States)

    ... Blocked Urethral Valves Health Issues Listen Español Text Size Email Print Share Blocked Urethral Valves Page Content Article Body Urine leaves the bladder through a tube called the urethra, which in boys passes through the penis. Rarely, small membranes form across the urethra in ...

  9. Types of Heart Block

    Science.gov (United States)

    ... P wave as it normally would. If an electrical signal is blocked before it reaches the ventricles, they won't contract and pump blood to the lungs and the rest of the body. Second-degree heart block is divided into two ...

  10. Related Drupal Nodes Block

    NARCIS (Netherlands)

    Van der Vegt, Wim

    2010-01-01

    Related Drupal Nodes Block This module exposes a block that uses Latent Semantic Analysis (Lsa) internally to suggest three nodes that are relevant to the node a user is viewing. This module performs three tasks. 1) It periodically indexes a Drupal site and generates a Lsa Term Document Matrix. Inde

  11. Tree wavelet approximations with applications

    Institute of Scientific and Technical Information of China (English)

    XU Yuesheng; ZOU Qingsong

    2005-01-01

    We construct a tree wavelet approximation by using a constructive greedy scheme(CGS). We define a function class which contains the functions whose piecewise polynomial approximations generated by the CGS have a prescribed global convergence rate and establish embedding properties of this class. We provide sufficient conditions on a tree index set and on bi-orthogonal wavelet bases which ensure optimal order of convergence for the wavelet approximations encoded on the tree index set using the bi-orthogonal wavelet bases. We then show that if we use the tree index set associated with the partition generated by the CGS to encode a wavelet approximation, it gives optimal order of convergence.

  12. The Block Neighborhood

    CERN Document Server

    Arrighi, Pablo

    2010-01-01

    We define the block neighborhood of a reversible CA, which is related both to its decomposition into a product of block permutations and to quantum computing. We give a purely combinatorial characterization of the block neighborhood, which helps in two ways. First, it makes the computation of the block neighborhood of a given CA relatively easy. Second, it allows us to derive upper bounds on the block neighborhood: for a single CA as function of the classical and inverse neighborhoods, and for the composition of several CAs. One consequence of that is a characterization of a class of "elementary" CAs that cannot be written as the composition of two simpler parts whose neighborhoods and inverse neighborhoods would be reduced by one half.

  13. Research on the Rules of Electric Dipole in MagneticField%外磁场下电偶极子运动规律研究

    Institute of Scientific and Technical Information of China (English)

    任恒峰; 王清亮; 连润明; 孟峰

    2012-01-01

    This article negative ions. Using erg lts Yo dy di th scusses the interaction energy of the electric dipole that consisted of positive and e method of Taylor expansion, give the electric dipole's approximation potential en Based on the motion rules of free electric dipole, analyze the electric dipole's motion rules and solve namics equation by Newton's laws of motion in the external magnetic field . Finally, conclude the e lectric dipole's motion rules in the external magnetic field, that is to say, the electric dipole respectively does circular motion in radial of the eternal magnetic field, and does the simple harmonic oscillattion in tangential, whose overall trajectory is irregular spiral movement%利用泰勒展开取近似的方法,给出电偶极子的近似势能,并在自由电偶极子运动规律的基础上,讨论并得出了外磁场下电偶极子的运动规律:外磁场下电偶极子在径向做圆周运动,在切向做简谐振动,整体轨迹为不规则的螺旋式运动.

  14. Higher order mode spectra and the dependence of localized dipole modes on the transverse beam position in third harmonic superconducting cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [The Cockcroft Institute, Daresbury (United Kingdom)

    2012-06-15

    An electron beam entering an accelerating cavity excites a wakefield. This wakefield can be decomposed into a series of multi-poles or modes. The dominant component of the transverse wakefield is dipole. This report summarizes the higher order mode (HOM) signals of the third harmonic cavities of FLASH measured at various stages: transmission measurements in the single cavity test stand at Fermilab, at CMTB (Cryo- Module Test Bench) and at FLASH, and beam-excited measurements at FLASH. Modes in the first two dipole bands and the fifth dipole band have been identified using a global Lorentzian fit technique. The beam-pipe modes at approximately 4 GHz and some modes in the fifth dipole band have been observed as localized modes, while the first two dipole bands, containing some strong coupling cavity modes, propagate. This report also presents the dependence of the localized dipole modes on the transverse beam position. Linear dependence for various modes has been observed. This makes them suitable for beam position diagnostics. These modes, together with some propagating, strong coupling modes, have been considered in the design of a dedicated electronics for beam diagnostics with HOMs for the third harmonic cavities.

  15. Dipole of the Epoch of Reionization 21-cm signal

    CERN Document Server

    Slosar, Anže

    2016-01-01

    The motion of the solar system with respect to the cosmic rest frame modulates the monopole of the Epoch of Reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative of the monopole signal. We argue that although the signal is weaker by a factor of $\\sim200$, there are significant benefits in measuring the dipole. Most importantly, the direction of the cosmic velocity vector is known exquisitely well from the cosmic microwave background and is not aligned with the galaxy velocity vector that modulates the foreground monopole. Moreover, an experiment designed to measure a dipole can rely on differencing patches of the sky rather than making an absolute signal measurement, which helps with some systematic effects.

  16. Dipole model test with one superconducting coil; results analysed

    CERN Document Server

    Durante, M; Ferracin, P; Fessia, P; Gauthier, R; Giloux, C; Guinchard, M; Kircher, F; Manil, P; Milanese, A; Millot, J-F; Muñoz Garcia, J-E; Oberli, L; Perez, J-C; Pietrowicz, S; Rifflet, J-M; de Rijk, G; Rondeaux, F; Todesco, E; Viret, P; Ziemianski, D

    2013-01-01

    This report is the deliverable report 7.3.1 “Dipole model test with one superconducting coil; results analysed “. The report has four parts: “Design report for the dipole magnet”, “Dipole magnet structure tested in LN2”, “Nb3Sn strand procured for one dipole magnet” and “One test double pancake copper coil made”. The 4 report parts show that, although the magnet construction will be only completed by end 2014, all elements are present for a successful completion. Due to the importance of the project for the future of the participants and given the significant investments done by the participants, there is a full commitment to finish the project.

  17. Dipole model test with one superconducting coil: results analysed

    CERN Document Server

    Bajas, H; Benda, V; Berriaud, C; Bajko, M; Bottura, L; Caspi, S; Charrondiere, M; Clément, S; Datskov, V; Devaux, M; Durante, M; Fazilleau, P; Ferracin, P; Fessia, P; Gauthier, R; Giloux, C; Guinchard, M; Kircher, F; Manil, P; Milanese, A; Millot, J-F; Muñoz Garcia, J-E; Oberli, L; Perez, J-C; Pietrowicz, S; Rifflet, J-M; de Rijk, G; Rondeaux, F; Todesco, E; Viret, P; Ziemianski, D

    2013-01-01

    This report is the deliverable report 7.3.1 “Dipole model test with one superconducting coil; results analysed “. The report has four parts: “Design report for the dipole magnet”, “Dipole magnet structure tested in LN2”, “Nb3Sn strand procured for one dipole magnet” and “One test double pancake copper coil made”. The 4 report parts show that, although the magnet construction will be only completed by end 2014, all elements are present for a successful completion. Due to the importance of the project for the future of the participants and given the significant investments done by the participants, there is a full commitment to finish the project.

  18. Comment on "Permanent Electric Dipole Moment of an Rb Atom"

    Institute of Scientific and Technical Information of China (English)

    朱振和

    2003-01-01

    It is stated that the conjecture that the hydrogen-like atoms may have large permanent electric dipole moments is doubtable. Two kinds of experiments are suggested to check the reliability of the conjecture further.

  19. Optimized tapered dipole nanoantenna as efficient energy harvester.

    Science.gov (United States)

    El-Toukhy, Youssef M; Hussein, Mohamed; Hameed, Mohamed Farhat O; Heikal, A M; Abd-Elrazzak, M M; Obayya, S S A

    2016-07-11

    In this paper, a novel design of tapered dipole nanoantenna is introduced and numerically analyzed for energy harvesting applications. The proposed design consists of three steps tapered dipole nanoantenna with rectangular shape. Full systematic analysis is carried out where the antenna impedance, return loss, harvesting efficiency and field confinement are calculated using 3D finite element frequency domain method (3D-FEFD). The structure geometrical parameters are optimized using particle swarm algorithm (PSO) to improve the harvesting efficiency and reduce the return loss at wavelength of 500 nm. A harvesting efficiency of 55.3% is achieved which is higher than that of conventional dipole counterpart by 29%. This enhancement is attributed to the high field confinement in the dipole gap as a result of multiple tips created in the nanoantenna design. Furthermore, the antenna input impedance is tuned to match a wide range of fabricated diode based upon the multi-resonance characteristic of the proposed structure.

  20. An apparent paradox concerning the field of an ideal dipole

    CERN Document Server

    Parker, Edward

    2016-01-01

    The electric or magnetic field of an ideal dipole is known to have a Dirac delta function at the origin. The usual textbook derivation of this delta function is rather ad hoc and cannot be used to calculate the delta-function structure for higher multipole moments. Moreover, a naive application of Gauss's law to the ideal dipole field appears to give an incorrect expression for the dipole's effective charge density. We derive a general procedure for calculating the delta-function structure at the origin of an arbitrary ideal multipole field; this procedure leads to the nontrivial result that the divergence of a singular vector field can contain a \\emph{derivative} of a Dirac delta function even if the field itself does not contain a delta function. We also argue that a physical interpretation of the delta function in the dipole field previously given in the literature is incorrect.

  1. Ocular dominance affects magnitude of dipole moment: an MEG study.

    Science.gov (United States)

    Shima, Hiroshi; Hasegawa, Mitsuhiro; Tachibana, Osamu; Nomura, Motohiro; Yamashita, Junkoh; Ozaki, Yuzo; Kawai, Jun; Higuchi, Masanori; Kado, Hisashi

    2010-08-23

    To investigate whether the ocular dominance affects laterality in the activity of the primary visual cortex, we examined the relationship between the ocular dominance and latency or dipole moment measured by checkerboard-pattern and magnetoencephalography in 11 right-handed healthy male participants. Participants with left-eye dominance showed a dipole moment of 21.5+/-6.1 nAm with left-eye stimulation and 16.1+/-3.6 nAm with right, whereas those with right-eye dominance showed a dipole moment of 18.0+/-5.2 and 21.5+/-2.7 nAm with left-eye and right-eye stimulation of the infero-medial quadrant visual field, respectively. Thus, the dipole moment was higher when the dominant eye was stimulated, which implies that ocular dominance is regulated by the ipsilateral occipital lobe.

  2. DETERMINATION OF DIPOLE MOMENTS IN PLASTICIZER ADDITIONS FOR CEMENT CONCRETES

    Directory of Open Access Journals (Sweden)

    P. I. Ioukhnevsky

    2010-01-01

    Full Text Available The paper contains a method for determination of dipole moments in chemical plasticizer addition molecules for cement concretes as in powder-state so in the form of aqueous solutions as well.The methodology is based on measuring dielectric substance  permittivity depending on temperature, construction of a diagram (ε – 1/(ε + 2 = f(1/T with subsequent calculation of the molecule dipole moment. The Ossipov’s formula has been used for aqueous solutions of super-plasticizer additions with the purpose to calculate a dipole moment of polar substance in the polar solvent.The obtained values of dipole moments in C-3 super-plasticizer addition molecule are in good agreement with the values obtained as a result of quantum-chemical calculations. 

  3. Neutron electric dipole moment from gauge/string duality

    CERN Document Server

    Bartolini, Lorenzo; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea

    2016-01-01

    We compute the electric dipole moment of nucleons in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f=2$ degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological $\\theta$ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result - a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be $d_n = 1.8 \\cdot 10^{-16}\\, \\theta\\;e\\cdot \\mathrm{cm}$. The electric dipole moment of the proton is exactly the opposite.

  4. Polarized emission from of an off-centred dipole

    CERN Document Server

    Pétri, J

    2016-01-01

    Radio polarization measurements of pulsed emission from pulsars offer a valuable insight into the basic geometry of the neutron star: inclination angle between the magnetic and rotation axis and inclination of the line of sight. So far, all studies about radio polarization focused on the standard rotating vector model with the underlying assumption of a centred dipole. In this letter, we extend this model to the most general off-centred dipole configuration and give an exact closed analytic expression for the phase-resolved polarization angle. It is shown that contrary to the rotating vector model, for an off-centred dipole, the polarization angle also depends on the emission altitude. Although the fitting parameter space increases from two to six (position of the dipole, altitude and shift of the zero phase), statistical analysis should remain tractable. Observations revealing an evolution of the polarization angle with frequency would undeniably furnish a strong hint for the presence of a decentred magnetic...

  5. Interaction between heat dipole and circular interracial crack

    Institute of Scientific and Technical Information of China (English)

    Wan-shen XIAO; Chao XIE; You-wen LIU

    2009-01-01

    The heat dipole consists of a heat source and a heat sink. The problem of an interfacial crack of a composite containing a circular inclusion under a heat dipole is investigated by using the analytical extension technique, the generalized Liouville theo-rem, and the Muskhelishvili boundary value theory. Temperature and stress fields are formulated. The effects of the temperature field and the inhomogeneity on the interracial fracture are analyzed. As a numerical illustration, the thermal stress intensity factors of the interfacial crack are presented for various material combinations and different po-sitions of the heat dipole. The characteristics of the interfacial crack depend on the elasticity, the thermal property of the composite, and the condition of the dipole.

  6. Fourier-positivity constraints on QCD dipole models

    Directory of Open Access Journals (Sweden)

    Bertrand G. Giraud

    2016-09-01

    Full Text Available Fourier-positivity (F-positivity, i.e. the mathematical property that a function has a positive Fourier transform, can be used as a constraint on the parametrization of QCD dipole-target cross-sections or Wilson line correlators in transverse position space r. They are Bessel transforms of positive transverse momentum dependent gluon distributions. Using mathematical F-positivity constraints on the limit r→0 behavior of the dipole amplitudes, we identify the common origin of the violation of F-positivity for various, however phenomenologically convenient, dipole models. It is due to the behavior r2+ϵ, ϵ>0 softer, even slightly, than color transparency. F-positivity seems thus to conflict with the present dipole formalism when it includes a QCD running coupling constant α(r.

  7. Uniform approximation by (quantum) polynomials

    NARCIS (Netherlands)

    Drucker, A.; de Wolf, R.

    2011-01-01

    We show that quantum algorithms can be used to re-prove a classical theorem in approximation theory, Jackson's Theorem, which gives a nearly-optimal quantitative version of Weierstrass's Theorem on uniform approximation of continuous functions by polynomials. We provide two proofs, based respectivel

  8. Diophantine approximation and automorphic spectrum

    CERN Document Server

    Ghosh, Anish; Nevo, Amos

    2010-01-01

    The present paper establishes qunatitative estimates on the rate of diophantine approximation in homogeneous varieties of semisimple algebraic groups. The estimates established generalize and improve previous ones, and are sharp in a number of cases. We show that the rate of diophantine approximation is controlled by the spectrum of the automorphic representation, and is thus subject to the generalised Ramanujan conjectures.

  9. Beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...

  10. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient-driven...

  11. Nonlinear approximation with redundant dictionaries

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, M.; Gribonval, R.

    2005-01-01

    In this paper we study nonlinear approximation and data representation with redundant function dictionaries. In particular, approximation with redundant wavelet bi-frame systems is studied in detail. Several results for orthonormal wavelets are generalized to the redundant case. In general...

  12. On the realization of atomic dipole squeezing by remote manipulation

    Institute of Scientific and Technical Information of China (English)

    XIANG Shao-hua; SONG Ke-hui

    2004-01-01

    A scheme for adjusting the dipole squeezing properties of one atom at one place by manipulating and detecting another atom at the remote place is proposed, in which these atoms initially in the spatially separated entangled state act as a quantum channel carrying quantum information. The result shows that the dipole squeezing properties of one atom can be adjusted by rotating and detecting the other, and the maximal atomic squeezing can be obtained under local operation and classical communication.

  13. Magnetic dipole moments of the heavy tensor mesons in QCD

    CERN Document Server

    Aliev, T M; Savcı, M

    2015-01-01

    The magnetic dipole moments of the ${\\cal D}_2$, and ${\\cal D}_{S_2}$, ${\\cal B}_2$, and ${\\cal B}_{S_2}$ heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the $SU(3)$ flavor symmetry violation is about 10\\% in both $b$ and $c$ sectors.

  14. The soliton properties of dipole domains in superlattices

    Institute of Scientific and Technical Information of China (English)

    张启义; 田强

    2002-01-01

    The formation and propagation of dipole domains in superlattices are studied both by the modified discrete driftmodel and by the nonlinear Schrodinger equation. The spatiotemporal distribution of the electric field and electrondensity are presented. The numerical results are compared with the soliton solutions of the nonlinear Schrodingerequation and analysed. It is shown that the numerical solutions agree with the soliton solutions of the nonlinearSchrodinger equation. The dipole electric-field domains in semiconductor superlattices have the properties of solitons.

  15. Plane-wave scattering from half-wave dipole arrays

    DEFF Research Database (Denmark)

    Jensen, Niels E.

    1970-01-01

    A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....

  16. Dipole—Dipole Interaction and the Directional Motion of Brownian

    Institute of Scientific and Technical Information of China (English)

    YUHui; ZHAOTong-Jun; 等

    2002-01-01

    The electric field of the microtubule is calculated according to its dipole distribution.The conformational change of a molecular motor is described by the rotation of a dipole which interacts with the microtubule.The numerical simulation for the particle currend shows that this interaction helps to produce a directional motion along the microtubule.And the average displacement executes step changes that resemble the experimental result for kinesin motors.

  17. Measurement of the Weak Dipole Moments of the $\\tau$ Lepton

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palit, S; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Vlachos, S; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1998-01-01

    Using the data collected by the L3 experiment at LEP from 1991 to 1995 at energies around the $\\Zo$ mass, a measurement of the weak anomalous magnetic dipole moment, $a^w_{\\tau}$,~ and of the weak electric dipole moment, $d^w_{\\tau}$, of the $\\tau$ lepton is performed. These quantities are obtained from angular distributions in $e^{+}e^{-}\\rightarrow\\tau^{+}\\tau^{-} \\rightarrow h^{+} \\bar{\

  18. Magnetic dipole moment and keV neutrino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang, E-mail: geng@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan (China); Takahashi, Ryo, E-mail: ryo.takahasi88@gmail.com [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2012-04-04

    We study magnetic dipole moments of right-handed neutrinos in a keV neutrino dark matter model. This model is a simple extension of the standard model with only right-handed neutrinos and a pair of charged particles added. One of the right-handed neutrinos is the candidate of dark matter with a keV mass. Some bounds on the dark matter magnetic dipole moment and model parameters are obtained from cosmological observations.

  19. Magnetic dipole moment and keV neutrino dark matter

    CERN Document Server

    Geng, Chao-Qiang

    2012-01-01

    We study magnetic dipole moments of right-handed neutrinos in a keV neutrino dark matter model. This model is a simple extension of the standard model with only right-handed neutrinos and a pair of charged particles added. One of the right-handed neutrinos is the candidate of dark matter with a keV mass. Some bounds on the dark matter magnetic dipole moment and model parameters are obtained from cosmological observations.

  20. New insights into the neutron electric dipole moment

    CERN Document Server

    Ottnad, K; Meißner, U -G; Guo, F -K

    2009-01-01

    We analyze the CP-violating electric dipole form factor of the nucleon in the framework of covariant baryon chiral perturbation theory. We give a new upper bound on the vacuum angle, |\\theta_0| \\lesssim 2.5 \\cdot 10^{-10}. The quark mass dependence of the electric dipole moment is discussed and compared to lattice QCD data. We also perform the matching between its representations in the three- and two-flavor theories.

  1. Dimensioning of multiservice links taking account of soft blocking

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk; Stepanov, S.N.; Kostrov, A.V.

    2006-01-01

    of a multiservice link taking into account the possibility of soft blocking. An approximate algorithm for estimation of main performance measures is constructed. The error of estimation is numerically studied for different types of soft blocking. The optimal procedure of dimensioning is suggested....

  2. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  3. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  4. Global approximation of convex functions

    CERN Document Server

    Azagra, D

    2011-01-01

    We show that for every (not necessarily bounded) open convex subset $U$ of $\\R^n$, every (not necessarily Lipschitz or strongly) convex function $f:U\\to\\R$ can be approximated by real analytic convex functions, uniformly on all of $U$. In doing so we provide a technique which transfers results on uniform approximation on bounded sets to results on uniform approximation on unbounded sets, in such a way that not only convexity and $C^k$ smoothness, but also local Lipschitz constants, minimizers, order, and strict or strong convexity, are preserved. This transfer method is quite general and it can also be used to obtain new results on approximation of convex functions defined on Riemannian manifolds or Banach spaces. We also provide a characterization of the class of convex functions which can be uniformly approximated on $\\R^n$ by strongly convex functions.

  5. Study on dipole-dipole interaction in spin labelled hemoglobin molecule by means of ESR spectroscopy; Badanie oddzialywan dipol-dipolowych w znakowanej spinowo czasteczce hemoglobiny metoda impulsowej spektroskopii EPR

    Energy Technology Data Exchange (ETDEWEB)

    Kostrzewa, A.; Froncisz, W. [Inst. Biologii Molekularnej, Uniwersytet Jagiellonski, Cracow (Poland)

    1994-12-31

    Dipole-dipole interactions in spin labelled hemoglobin molecule have been investigated by means of ESR. The spectral differences at 77 K between oxy-hemoglobin and ferry hemoglobin have been discussed. 4 refs, 3 figs, 1 tab.

  6. Interstrand dipole-dipole interactions can stabilize the collagen triple helix.

    Science.gov (United States)

    Shoulders, Matthew D; Raines, Ronald T

    2011-07-01

    The amino acid sequence of collagen is composed of GlyXaaYaa repeats. A prevailing paradigm maintains that stable collagen triple helices form when (2S)-proline (Pro) or Pro derivatives that prefer the C(γ)-endo ring pucker are in the Xaa position and Pro derivatives that prefer the C(γ)-exo ring pucker are in the Yaa position. Anomalously, an amino acid sequence in an invertebrate collagen has (2S,4R)-4-hydroxyproline (Hyp), a C(γ)-exo-puckered Pro derivative, in the Xaa position. In certain contexts, triple helices with Hyp in the Xaa position are now known to be hyperstable. Most intriguingly, the sequence (GlyHypHyp)(n) forms a more stable triple helix than does the sequence (GlyProHyp)(n). Competing theories exist for the physicochemical basis of the hyperstability of (GlyHypHyp)(n) triple helices. By synthesizing and analyzing triple helices with different C(γ)-exo-puckered proline derivatives in the Xaa and Yaa positions, we conclude that interstrand dipole-dipole interactions are the primary determinant of their additional stability. These findings provide a new framework for understanding collagen stability.

  7. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F. Jackson

    2015-08-01

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr+ ions. For light bosons (mass≤0.1 eV ) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |gAegAe/4 π ℏc | ≤1.2 ×10-17 . Assuming C P T invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  8. High-energy hadron-hadron (dipole-dipole) scattering from lattice QCD

    CERN Document Server

    Giordano, M

    2008-01-01

    In this paper the problem of the high-energy hadron-hadron (dipole-dipole) scattering is approached (for the first time) from the point of view of lattice QCD, by means of Monte Carlo numerical simulations. In the first part, we give a brief review of how high-energy scattering amplitudes can be reconstructed, using a functional integral approach, in terms of certain correlation functions of two Wilson loops and we also briefly recall some relevant analyticity and crossing-symmetry properties of these loop-loop correlation functions, when going from Euclidean to Minkowskian theory. In the second part, we shall see how these (Euclidean) loop-loop correlation functions can be evaluated in lattice QCD and we shall compare our numerical results with some nonperturbative analytical estimates appeared in the literature, discussing in particular the question of the analytic continuation from Euclidean to Minkowskian theory and its relation to the still unsolved problem of the asymptotic s-dependence of the hadron-ha...

  9. Contribution of dipole-dipole interactions to the stability of the collagen triple helix.

    Science.gov (United States)

    Improta, Roberto; Berisio, Rita; Vitagliano, Luigi

    2008-05-01

    Unveiling sequence-stability and structure-stability relationships is a major goal of protein chemistry and structural biology. Despite the enormous efforts devoted, answers to these issues remain elusive. In principle, collagen represents an ideal system for such investigations due to its simplified sequence and regular structure. However, the definition of the molecular basis of collagen triple helix stability has hitherto proved to be a difficult task. Particularly puzzling is the decoding of the mechanism of triple helix stabilization/destabilization induced by imino acids. Although the propensity-based model, which correlates the propensities of the individual imino acids with the structural requirements of the triple helix, is able to explicate most of the experimental data, it is unable to predict the rather high stability of peptides embedding Gly-Hyp-Hyp triplets. Starting from the available X-ray structures of this polypeptide, we carried out an extensive quantum chemistry analysis of the mutual interactions established by hydroxyproline residues located at the X and Y positions of the Gly-X-Y motif. Our data clearly indicate that the opposing rings of these residues establish significant van der Waals and dipole-dipole interactions that play an important role in triple helix stabilization. These findings suggest that triple helix stabilization can be achieved by distinct structural mechanisms. The interplay of these subtle but recurrent effects dictates the overall stability of this widespread structural motif.

  10. Electron Dipole-Dipole ESEEM in Field-Step ELDOR of Nitroxide Biradicals

    Science.gov (United States)

    Kulik, L. V.; Grishin, Yu. A.; Dzuba, S. A.; Grigoryev, I. A.; Klyatskaya, S. V.; Vasilevsky, S. F.; Tsvetkov, Yu. D.

    2002-07-01

    The use of a rapid stepping of the magnetic field for investigation of electron dipole-dipole ESEEM in pulsed X-band ELDOR is described. The magnetic field jump, synchronized with a microwave pumping pulse, is positioned between the second and the third pulses of the stimulated echo pulse sequence. This echo is measured as a function of the delay between the first and the second pulses. The data are analyzed for a Fourier transform resulting in a Pake resonance pattern. To remove the electron-nuclear contributions to ESEEM, time traces with pumping were divided by those without. This resulted in complete elimination of electron-nuclear contributions, which is seen from the absence of peaks at nuclear frequencies and the similarity of results for protonated and deuterated solvents. For increasing the electron-electron modulation depth, a scanning of the magnetic field during the microwave pumping is proposed. The interspin distances and their distribution are determined for two long-chained (ca. 2 nm) nitroxide biradicals in glassy toluene and in frozen nematic liquid crystal 4-cyano-4'-pentyl-biphenyl. For the latter solvent, the alignment of the axis connecting two nitroxides in biradicals is quantitatively analyzed.

  11. Preferential Rotation of Chiral Dipoles in Isotropic Turbulence

    Science.gov (United States)

    Kramel, Stefan; Voth, Greg A.; Tympel, Saskia; Toschi, Federico

    2016-10-01

    We introduce a new particle shape which shows preferential rotation in three dimensional homogeneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these particles with a length in the inertial range and their rotations are tracked in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles preferentially align with their long axis along the extensional eigenvectors of the strain rate tensor, and the helical ends respond to the extensional strain rate with a mean spinning rate that is nonzero. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using velocity gradients along Lagrangian trajectories from high resolution direct numerical simulations. The statistics of chiral dipole spinning determined with this model show surprisingly good agreement with the measured spinning of much larger chiral dipoles in the experiments.

  12. Lidocaine block of cardiac sodium channels.

    Science.gov (United States)

    Bean, B P; Cohen, C J; Tsien, R W

    1983-05-01

    Lidocaine block of cardiac sodium channels was studied in voltage-clamped rabbit purkinje fibers at drug concentrations ranging from 1 mM down to effective antiarrhythmic doses (5-20 muM). Dose-response curves indicated that lidocaine blocks the channel by binding one-to-one, with a voltage-dependent K(d). The half-blocking concentration varied from more than 300 muM, at a negative holding potential where inactivation was completely removed, to approximately 10 muM, at a depolarized holding potential where inactivation was nearly complete. Lidocaine block showed prominent use dependence with trains of depolarizing pulses from a negative holding potential. During the interval between pulses, repriming of I (Na) displayed two exponential components, a normally recovering component (tauless than 0.2 s), and a lidocaine-induced, slowly recovering fraction (tau approximately 1-2 s at pH 7.0). Raising the lidocaine concentration magnified the slowly recovering fraction without changing its time course; after a long depolarization, this fraction was one-half at approximately 10 muM lidocaine, just as expected if it corresponded to drug-bound, inactivated channels. At less than or equal to 20 muM lidocaine, the slowly recovering fraction grew exponentially to a steady level as the preceding depolarization was prolonged; the time course was the same for strong or weak depolarizations, that is, with or without significant activation of I(Na). This argues that use dependence at therapeutic levels reflects block of inactivated channels, rather than block of open channels. Overall, these results provide direct evidence for the "modulated-receptor hypothesis" of Hille (1977) and Hondeghem and Katzung (1977). Unlike tetrodotoxin, lidocaine shows similar interactions with Na channels of heart, nerve, and skeletal muscle.

  13. A new estimate of average dipole field strength for the last five million years

    Science.gov (United States)

    Cromwell, G.; Tauxe, L.; Halldorsson, S. A.

    2013-12-01

    The Earth's ancient magnetic field can be approximated by a geocentric axial dipole (GAD) where the average field intensity is twice as strong at the poles than at the equator. The present day geomagnetic field, and some global paleointensity datasets, support the GAD hypothesis with a virtual axial dipole moment (VADM) of about 80 ZAm2. Significant departures from GAD for 0-5 Ma are found in Antarctica and Iceland where paleointensity experiments on massive flows (Antarctica) (1) and volcanic glasses (Iceland) produce average VADM estimates of 41.4 ZAm2 and 59.5 ZAm2, respectively. These combined intensities are much closer to a lower estimate for long-term dipole field strength, 50 ZAm2 (2), and some other estimates of average VADM based on paleointensities strictly from volcanic glasses. Proposed explanations for the observed non-GAD behavior, from otherwise high-quality paleointensity results, include incomplete temporal sampling, effects from the tangent cylinder, and hemispheric asymmetry. Differences in estimates of average magnetic field strength likely arise from inconsistent selection protocols and experiment methodologies. We address these possible biases and estimate the average dipole field strength for the last five million years by compiling measurement level data of IZZI-modified paleointensity experiments from lava flows around the globe (including new results from Iceland and the HSDP-2 Hawaii drill core). We use the Thellier Gui paleointensity interpreter (3) in order to apply objective criteria to all specimens, ensuring consistency between sites. Specimen level selection criteria are determined from a recent paleointensity investigation of modern Hawaiian lava flows where the expected magnetic field strength was accurately recovered when following certain selection parameters. Our new estimate of average dipole field strength for the last five million years incorporates multiple paleointensity studies on lava flows with diverse global and

  14. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  15. Hawaii Census 2000 Blocks

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer represents Census 2000 demographic data derived from the PL94-171 redistricting files and SF3. Census geographic entities include blocks, blockgroups...

  16. Superalloy Lattice Block Structures

    Science.gov (United States)

    Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.

    2004-01-01

    Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.

  17. Superconvergence of tricubic block finite elements

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green’s function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.

  18. Generalized flyby trajectories around elongated minor celestial bodies as a rotating mass dipole

    Institute of Scientific and Technical Information of China (English)

    Xiangyuan Zeng; Baodong Fang; Junfeng Li; Yang Yu

    2016-01-01

    The aim of this paper is to understand the com-mon characteristics of the generalized flyby trajectory around natural elongated bodies. Such flyby trajectories provide a short-term mechanism to clear away vicinal objects or temporally capture ejecta into circling orbits. The gravita-tional potential of elongated bodies is described by a unified approximate model, i.e., the rotating mass dipole which is two point masses connected with a constant massless rod. The energy power is used to illustrate the flyby effect in terms of the instantaneous orbital energy. The essential of the single flyby trajectory is studied analytically, and the relationship between the flyby trajectory and its Jacobi integral is also illustrated. Sample trajectories are given to show the varia-tional trend of the energy increment with respect to different orbital periapsides. The distribution of natural ejecting orbits is presented by varying the parameters of the approximate model.

  19. Octupole Contributions to the Generalized Oscillator Strengths of Discrete Dipole Transitions in Noble Gases

    CERN Document Server

    Amusia, M Ya; Felfli, Z; Msezane, A Z

    2007-01-01

    The generalized oscillator strengths (GOS) of discrete excitations np-nd, both dipole (L=1) and octupole (L=3) are studied, the latter for the first time. We demonstrate that although the relevant transitions in the same atom are closely located in energy, the dependence of their GOS on the momentum transfer q squared, is remarkably different, so that the GOS corresponding to L=3 have at least one extra maximum as a function of q squared and dominate over those of the L=1, starting from about q=1.25$ atomic unit (a.u.). The calculations were performed in the one particle Hartree-Fock approximation and with account of many-electron correlations via the Random Phase Approximation with Exchange. The GOS are studied for values of q squared up to 30 a.u.

  20. Effects of gastrointestinal tissue structure on computed dipole vectors

    Directory of Open Access Journals (Sweden)

    Pullan Andrew J

    2007-10-01

    Full Text Available Abstract Background Digestive diseases are difficult to assess without using invasive measurements. Non-invasive measurements of body surface electrical and magnetic activity resulting from underlying gastro-intestinal activity are not widely used, in large due to their difficulty in interpretation. Mathematical modelling of the underlying processes may help provide additional information. When modelling myoelectrical activity, it is common for the electrical field to be represented by equivalent dipole sources. The gastrointestinal system is comprised of alternating layers of smooth muscle (SM cells and Interstitial Cells of Cajal (ICC. In addition the small intestine has regions of high curvature as the intestine bends back upon itself. To eventually use modelling diagnostically, we must improve our understanding of the effect that intestinal structure has on dipole vector behaviour. Methods Normal intestine electrical behaviour was simulated on simple geometries using a monodomain formulation. The myoelectrical fields were then represented by their dipole vectors and an examination on the effect of structure was undertaken. The 3D intestine model was compared to a more computationally efficient 1D representation to determine the differences on the resultant dipole vectors. In addition, the conductivity values and the thickness of the different muscle layers were varied in the 3D model and the effects on the dipole vectors were investigated. Results The dipole vector orientations were largely affected by the curvature and by a transmural gradient in the electrical wavefront caused by the different properties of the SM and ICC layers. This gradient caused the dipoles to be oriented at an angle to the principal direction of electrical propagation. This angle increased when the ratio of the longitudinal and circular muscle was increased or when the the conductivity along and across the layers was increased. The 1D model was able to represent the

  1. Effects of gastrointestinal tissue structure on computed dipole vectors

    Science.gov (United States)

    Austin, Travis M; Li, Liren; Pullan, Andrew J; Cheng, Leo K

    2007-01-01

    Background Digestive diseases are difficult to assess without using invasive measurements. Non-invasive measurements of body surface electrical and magnetic activity resulting from underlying gastro-intestinal activity are not widely used, in large due to their difficulty in interpretation. Mathematical modelling of the underlying processes may help provide additional information. When modelling myoelectrical activity, it is common for the electrical field to be represented by equivalent dipole sources. The gastrointestinal system is comprised of alternating layers of smooth muscle (SM) cells and Interstitial Cells of Cajal (ICC). In addition the small intestine has regions of high curvature as the intestine bends back upon itself. To eventually use modelling diagnostically, we must improve our understanding of the effect that intestinal structure has on dipole vector behaviour. Methods Normal intestine electrical behaviour was simulated on simple geometries using a monodomain formulation. The myoelectrical fields were then represented by their dipole vectors and an examination on the effect of structure was undertaken. The 3D intestine model was compared to a more computationally efficient 1D representation to determine the differences on the resultant dipole vectors. In addition, the conductivity values and the thickness of the different muscle layers were varied in the 3D model and the effects on the dipole vectors were investigated. Results The dipole vector orientations were largely affected by the curvature and by a transmural gradient in the electrical wavefront caused by the different properties of the SM and ICC layers. This gradient caused the dipoles to be oriented at an angle to the principal direction of electrical propagation. This angle increased when the ratio of the longitudinal and circular muscle was increased or when the the conductivity along and across the layers was increased. The 1D model was able to represent the geometry of the small

  2. Large vortex-like structure of dipole field in computer models of liquid water and dipole-bridge between biomolecules.

    Science.gov (United States)

    Higo, J; Sasai, M; Shirai, H; Nakamura, H; Kugimiya, T

    2001-05-22

    We propose a framework to describe the cooperative orientational motions of water molecules in liquid water and around solute molecules in water solutions. From molecular dynamics (MD) simulation a new quantity "site-dipole field" is defined as the averaged orientation of water molecules that pass through each spatial position. In the site-dipole field of bulk water we found large vortex-like structures of more than 10 A in size. Such coherent patterns persist more than 300 ps although the orientational memory of individual molecules is quickly lost. A 1-ns MD simulation of systems consisting of two amino acids shows that the fluctuations of site-dipole field of solvent are pinned around the amino acids, resulting in a stable dipole-bridge between side-chains of amino acids. The dipole-bridge is significantly formed even for the side-chain separation of 14 A, which corresponds to five layers of water. The way that dipole-bridge forms sensitively depends on the side-chain orientations and thereby explains the specificity in the solvent-mediated interactions between biomolecules.

  3. Plasma Dipole Oscillation Excited by Trapped Electrons Leading to Bursts of Coherent Radiation

    CERN Document Server

    Kwon, Kyu Been; Song, Hyung Seon; Kim, Young-Kuk; Ersfeld, Bernhard; Jaroszynski, Dino A; Hur, Min Sup

    2016-01-01

    Plasma dipole oscillation (PDO) depicted as harmonic motion of a spatially localized block of electrons has, until now, been hypothetical. In practice, the plasma oscillation occurs always as a part of a plasma wave. Studies on radiation burst from plasmas have focused only on coupling of the plasma wave and electromagnetic wave. Here we show that a very-high-field PDO can be generated by the electrons trapped in a moving train of potential wells. The electrons riding on the potential train coherently construct a local dipole moment by charge separation. The subsequent PDO is found to persist stably until its energy is emitted entirely via coherent radiation. In our novel method, the moving potentials are provided by two slightly-detuned laser pulses colliding in a non-magnetized plasma. The radiated energy reaches several millijoules in the terahertz spectral region. The proposed method provides a way of realizing the PDO as a new radiation source in the laboratory. PDO as a mechanism of astrophysical radio-...

  4. Binary nucleation beyond capillarity approximation

    NARCIS (Netherlands)

    Kalikmanov, V.I.

    2010-01-01

    Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption

  5. Weighted approximation with varying weight

    CERN Document Server

    Totik, Vilmos

    1994-01-01

    A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.

  6. Approximate Implicitization Using Linear Algebra

    Directory of Open Access Journals (Sweden)

    Oliver J. D. Barrowclough

    2012-01-01

    Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.

  7. Approximate common divisors via lattices

    CERN Document Server

    Cohn, Henry

    2011-01-01

    We analyze the multivariate generalization of Howgrave-Graham's algorithm for the approximate common divisor problem. In the m-variable case with modulus N and approximate common divisor of size N^beta, this improves the size of the error tolerated from N^(beta^2) to N^(beta^((m+1)/m)), under a commonly used heuristic assumption. This gives a more detailed analysis of the hardness assumption underlying the recent fully homomorphic cryptosystem of van Dijk, Gentry, Halevi, and Vaikuntanathan. While these results do not challenge the suggested parameters, a 2^sqrt(n) approximation algorithm for lattice basis reduction in n dimensions could be used to break these parameters. We have implemented our algorithm, and it performs better in practice than the theoretical analysis suggests. Our results fit into a broader context of analogies between cryptanalysis and coding theory. The multivariate approximate common divisor problem is the number-theoretic analogue of noisy multivariate polynomial interpolation, and we ...

  8. Reliable Function Approximation and Estimation

    Science.gov (United States)

    2016-08-16

    AFRL-AFOSR-VA-TR-2016-0293 Reliable Function Approximation and Estimation Rachel Ward UNIVERSITY OF TEXAS AT AUSTIN 101 EAST 27TH STREET STE 4308...orthogonal polynomial bases from a minimal number of pointwise function evaluations. Based on a model of weighted sparsity which we in- troduced, we...Institution name University of Texas at Austin Grant/Contract Title The full title of the funded effort. (YIP): Reliable function approximation and estimation

  9. Mathematical algorithms for approximate reasoning

    Science.gov (United States)

    Murphy, John H.; Chay, Seung C.; Downs, Mary M.

    1988-01-01

    Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away

  10. Cryptanalysis of Selected Block Ciphers

    DEFF Research Database (Denmark)

    Alkhzaimi, Hoda A.

    thoroughly, no security assessment is given. We present a series of observations on the presented construction that, in some cases, yield attacks, while in other cases may provide basis of further analysis by the cryptographic community. Specifically, The attacks obtained are using classical- as well...... ciphers initiatives, and the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR). In this thesis, we first present cryptanalytic results on different ciphers. We propose attack named the Invariant Subspace Attack. It is utilized to break the full block cipher...... PRINTcipher for a significant fraction of its keys. This new attack also gives us new insights into other, more well-established attacks. In addition, we also show that for weak keys, strongly biased linear approximations exists for any number of rounds. Furthermore, we provide variety of attacks...

  11. Twisted inhomogeneous Diophantine approximation and badly approximable sets

    CERN Document Server

    Harrap, Stephen

    2010-01-01

    For any real pair i, j geq 0 with i+j=1 let Bad(i, j) denote the set of (i, j)-badly approximable pairs. That is, Bad(i, j) consists of irrational vectors x:=(x_1, x_2) in R^2 for which there exists a positive constant c(x) such that max {||qx_1||^(-i), ||qx_2||^(-j)} > c(x)/q for all q in N. Building on a result of Kurzweil, a new characterization of the set Bad(i, j) in terms of `well-approximable' vectors in the area of `twisted' inhomogeneous Diophantine approximation is established. In addition, it is shown that Bad^x(i, j), the `twisted' inhomogeneous analogue of Bad(i, j), has full Hausdorff dimension 2 when x is chosen from the set Bad(i, j).

  12. Efficient and Robust Signal Approximations

    Science.gov (United States)

    2009-05-01

    frustration, impatience, procrastination , despair) await for the weak to slip into their traps. I am deeply grateful to my advisor Mike Lewicki for inspiring...image representation, which overcomes the artifi- cial block confinement and computational obstacles. Our method consists of a preliminary MR (e.g...subband. However, by applying a variant of our method called modified MrICA we can overcome this obstacle. Namely, we impose that for all subbands up to

  13. Perturbation of Operators and Approximation of Spectrum

    Indian Academy of Sciences (India)

    K Kumar; M N N Namboodiri; S Serra-Capizzano

    2014-05-01

    Let $A(x)$ be a norm continuous family of bounded self-adjoint operators on a separable Hilbert space $\\mathbb{H}$ and let $A(x)_n$ be the orthogonal compressions of $A(x)$ to the span of first elements of an orthonormal basis of $\\mathbb{H}$. The problem considered here is to approximate the spectrum of $A(x)$ using the sequence of eigenvalues of $A(x)_n$. We show that the bounds of the essential spectrum and the discrete spectral values outside the bounds of essential spectrum of $A(x)$ can be approximated uniformly on all compact subsets by the sequence of eigenvalue functions of $A(x)_n$. The known results, for a bounded self-adjoint operator, are translated into the case of a norm continuous family of operators. Also an attempt is made to predict the existence of spectral gaps that may occur between the bounds of essential spectrum of $A(0)=A$ and study the effect of norm continuous perturbation of operators in the prediction of spectral gaps. As an example, gap issues of some block Toeplitz–Laurent operators are discussed. The pure linear algebraic approach is the main advantage of the results here.

  14. Comparison of double-quantum NMR normalization schemes to measure homonuclear dipole-dipole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Saalwächter, Kay, E-mail: kay.saalwaechter@physik.uni-halle.de [Institut für Physik – NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle (Germany)

    2014-08-14

    A recent implementation of a double-quantum (DQ) recoupling solid-state NMR experiment, dubbed DQ-DRENAR, provides a quantitative measure of homonuclear dipole-dipole coupling constants in multispin-1/2 systems. It was claimed to be more robust than another, previously known experiment relying on the recording of point-by-point normalized DQ build-up curves. Focusing on the POST-C7 and BaBa-xy16 DQ pulse sequences, I here present an in-depth comparison of both approaches based upon spin-dynamics simulations, stressing that they are based upon very similar principles and that they are largely equivalent when no imperfections are present. With imperfections, it is found that DQ-DRENAR/POST-C7 does not fully compensate for additional signal dephasing related to chemical shifts (CS) and their anisotropy (CSA), which over-compensates the intrinsic CS(A)-related efficiency loss of the DQ Hamiltonian and leads to an apparent cancellation effect. The simulations further show that the CS(A)-related dephasing in DQ-DRENAR can be removed by another phase cycle step or an improved super-cycled wideband version. Only the latter, or the normalized DQ build-up, are unaffected by CS(A)-related signal loss and yield clean pure dipolar-coupling information subject to unavoidable, pulse sequence specific performance reduction related to higher-order corrections of the dipolar DQ Hamiltonian. The intrinsically super-cycled BaBa-xy16 is shown to exhibit virtually no CS(A) related imperfection terms, but its dipolar performance is somewhat more challenged by CS(A) effects than POST-C7, which can however be compensated when applied at very fast MAS (>50 kHz). Practically, DQ-DRENAR uses a clever phase cycle separation to achieve a significantly shorter experimental time, which can also be beneficially employed in normalized DQ build-up experiments.

  15. LHC dipoles flood into CERN : the dipole nr 154 crowns the efforts of the LHC teams for increasing the fabrication rate of the magnets.

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    On 3 December the "tableau" on the 4th floor in building 30 indicated 1078 dipoles to completion - or in other words, 154 dipoles had by this day been delivered to CERN, enough to complete the first octant of the machine. CERN has also now received enough superconducting cable - the "heart" of the magnets - for 600 dipoles, nearly half the total number of 1232.

  16. Stress management as an enabling technology for high-field superconducting dipole magnets

    Science.gov (United States)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  17. Chaotic block iterating method for pseudo-random sequence generator

    Institute of Scientific and Technical Information of China (English)

    CHEN Shuai; ZHONG Xian-xin

    2007-01-01

    A pseudo-random sequence generator is a basic tool for cryptography. To realize a pseudo-random sequence generator, a new block iterating method using shifter, multiplier,and adder operations has been introduced. By increasing the iteration of the counter and by performing calculations based on the initial value, an approximate pseudo-random sequence was obtained after exchanging bits. The algorithm and the complexity of the generator were introduced. The result obtained from the calculation shows that the self-correlation of the "m" block sequence is two-valued; the block field value is [0,2m - 1 ], and the block period is 2m+8 - 1.

  18. Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment

    NARCIS (Netherlands)

    C. Ungureanu; R.G. Rayavarapu; S. Manohar; T.G. van Leeuwen

    2009-01-01

    Gold nanorods have interesting optical properties due to surface plasmon resonance effects. A variety of biomedical applications of these particles have been envisaged and feasibilities demonstrated in imaging, sensing, and therapy based on the interactions of light with these particles. In order to

  19. Properties of the superconductor in accelerator dipole magnets

    Science.gov (United States)

    Teravest, Derk

    Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.

  20. Preferential rotation of chiral dipoles in isotropic turbulence

    CERN Document Server

    Kramel, Stefan; Toschi, Federico; Voth, Greg A

    2016-01-01

    Particles in the shape of chiral dipoles show a preferential rotation in three dimensional homogeneous isotropic turbulence. A chiral dipole consists of a rod with two helices of opposite handedness, one at each end. We can use 3d printing to fabricate these particles with length in the inertial range and track their rotations in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles will align with the extensional eigenvectors of the strain rate tensor and the helical ends will respond to the strain field by spinning around its long axis. The mean of the measured spinning rate is non-zero and reflects the average stretching the particles experience. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using Lagrangian velocity gradients from high resolution direct numerical simulations. The stat...

  1. Optics effects of splitting dipole magnets into several thin lenses

    CERN Document Server

    Leunissen, L H A

    1998-01-01

    The evaluation of the dynamic aperture and the calculation of non linear optics parameters have been made so far with the simplest model of dipole, i.e. a single thin lens positioned at the centre of each thick dipole. It was shown recently that the non-linear chromaticity decreases significantly when the thick lens is represented by two thin lenses or more instead of one. In this note the study is extended to amplitude detuning and dynamic aperture. Unlike the observation reported on non-linear chromatic detuning we find no significant changes for the dynamic aperture and amplitude d etuning when the dipole magnets are split in more than one thin lens. Furthermore, non-uniform azimuthal distribution of the multipoles inside the dipole is shown not to change the above-mentio ned results. In both cases, the influence of the beta-funtions is expected to give large effect for a given dipole. However, integrated over one cell this effect is shown to compensate to a large extent. erture reported on non-linear chro...

  2. The dipoles reach the half-way mark

    CERN Multimedia

    2006-01-01

    With the positioning of the 616th magnet, installation of the LHC dipoles has reached the half-way mark. Only half the dipoles remain to be installed! The 616th dipole out of a total of 1232 was installed at 3 a.m on Wednesday 12 July. Night and day, the tunnel is the setting for a never-ending series of carefully choreographed installation operations. At a rate of around twenty per week, there has been a steady underground flow of dipole magnets, each measuring 15 metres in length and weighing 34 tonnes. 'In order to recover the accumulated delays, installation is proceeding three times faster than planned', confides Claude Hauviller, who is supervising LHC installation. Four dipoles can be transported underground at the same time. It is a real challenge, which the 65-man team responsible for this difficult task faces on a daily basis. This is because there is very little space in the tunnel and there are no passing places for the magnet transport vehicles. The room for manoeuvre can sometimes be measured ...

  3. Valence Topological Charge-Transfer Indices for Dipole Moments

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2003-01-01

    Full Text Available New valence topological charge-transfer indices are applied to the calculation of dipole moments. The algebraic and vector semisum charge-transfer indices are defined. The combination of the charge-transfer indices allows the estimation of the dipole moments. The model is generalized for molecules with heteroatoms. The ability of the indices for the description of the molecular charge distribution is established by comparing them with the dipole moments of a homologous series of phenyl alcohols. Linear and non-linear correlation models are obtained. The new charge-transfer indices improve the multivariable non-linear regression equations for the dipole moment. When comparing with previous results, the variance decreases 92%. No superposition of the corresponding Gk–Jk and GkV – JkV pairs is observed. This diminishes the risk of co-linearity. Inclusion of the oxygen atom in the p-electron system is beneficial for the description of the dipole moment, owing to either the role of the additional p orbitals provided by the heteroatom or the role of steric factors in the p-electron conjugation. Linear and non-linear correlations between the fractal dimension and various descriptors point not only to a homogeneous molecular structure but also to the ability to predict and tailor drug properties.

  4. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    CERN Document Server

    Córsico, Alejandro H; Bertolami, Marcelo M Miller; Kepler, S O; García-Berro, Enrique

    2014-01-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. By comparing the theoretical rate of change of period expected for this star with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment. Our upper limit for the neutrino magnetic dipole moment is somewhat less restrictive than, but still compat...

  5. The optimised sc dipole of SIS100 for series production

    Science.gov (United States)

    Roux, Christian; Mierau, Anna; Bleile, Alexander; Fischer, Egbert; Kaether, Florian; Körber, Boris; Schnizer, Pierre; Sugita, Kei; Szwangruber, Piotr

    2017-02-01

    At the international facility for antiproton and ion research (FAIR) in Darmstadt, Germany, an accelerator complex is developed for fundamental research in various fields of modern physics. In the SIS100 heavy-ion synchrotron, the main accelerator of FAIR, superconducting dipoles are used to bend the particle beam. The fast ramped dipoles are 3 m long super-ferric curved magnets operated at 4.5 K. The demands on field homogeneity required for sufficient beam stability are given by ΔB/B ≤ ±6 · 10‑4. An intense measurement program of the First of Series (FoS) dipole showed excellent quench behavior and lower than expected AC losses yielding the main load on the SIS100 cryoplant. The FoS is capable to provide a field strength of 1.9 T. However, with sophisticated measurement systems slight distortions of the dipole field were detected. Those effects were tracked down to mechanical inaccuracies of the yoke proven by appropriate geometrical measurements and simulations. After a survey on alternative fabrication techniques a magnet with a new yoke was built with substantial changes to improve the mechanical accuracy. Its characteristics concerning cryogenic losses, cold geometry and the resulting magnetic-field quality are presented and an outlook on the series production of superconducting dipoles for SIS100 is given.

  6. Incorporating GIS building data and census housing statistics for sub-block-level population estimation

    Science.gov (United States)

    Wu, S.-S.; Wang, L.; Qiu, X.

    2008-01-01

    This article presents a deterministic model for sub-block-level population estimation based on the total building volumes derived from geographic information system (GIS) building data and three census block-level housing statistics. To assess the model, we generated artificial blocks by aggregating census block areas and calculating the respective housing statistics. We then applied the model to estimate populations for sub-artificial-block areas and assessed the estimates with census populations of the areas. Our analyses indicate that the average percent error of population estimation for sub-artificial-block areas is comparable to those for sub-census-block areas of the same size relative to associated blocks. The smaller the sub-block-level areas, the higher the population estimation errors. For example, the average percent error for residential areas is approximately 0.11 percent for 100 percent block areas and 35 percent for 5 percent block areas.

  7. Approximating Graphic TSP by Matchings

    CERN Document Server

    Mömke, Tobias

    2011-01-01

    We present a framework for approximating the metric TSP based on a novel use of matchings. Traditionally, matchings have been used to add edges in order to make a given graph Eulerian, whereas our approach also allows for the removal of certain edges leading to a decreased cost. For the TSP on graphic metrics (graph-TSP), the approach yields a 1.461-approximation algorithm with respect to the Held-Karp lower bound. For graph-TSP restricted to a class of graphs that contains degree three bounded and claw-free graphs, we show that the integrality gap of the Held-Karp relaxation matches the conjectured ratio 4/3. The framework allows for generalizations in a natural way and also leads to a 1.586-approximation algorithm for the traveling salesman path problem on graphic metrics where the start and end vertices are prespecified.

  8. Approximation methods in probability theory

    CERN Document Server

    Čekanavičius, Vydas

    2016-01-01

    This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.

  9. Reinforcement Learning via AIXI Approximation

    CERN Document Server

    Veness, Joel; Hutter, Marcus; Silver, David

    2010-01-01

    This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. This approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To develop our approximation, we introduce a Monte Carlo Tree Search algorithm along with an agent-specific extension of the Context Tree Weighting algorithm. Empirically, we present a set of encouraging results on a number of stochastic, unknown, and partially observable domains.

  10. Concept Approximation between Fuzzy Ontologies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fuzzy ontologies are efficient tools to handle fuzzy and uncertain knowledge on the semantic web; but there are heterogeneity problems when gaining interoperability among different fuzzy ontologies. This paper uses concept approximation between fuzzy ontologies based on instances to solve the heterogeneity problems. It firstly proposes an instance selection technology based on instance clustering and weighting to unify the fuzzy interpretation of different ontologies and reduce the number of instances to increase the efficiency. Then the paper resolves the problem of computing the approximations of concepts into the problem of computing the least upper approximations of atom concepts. It optimizes the search strategies by extending atom concept sets and defining the least upper bounds of concepts to reduce the searching space of the problem. An efficient algorithm for searching the least upper bounds of concept is given.

  11. Approximate Sparse Regularized Hyperspectral Unmixing

    Directory of Open Access Journals (Sweden)

    Chengzhi Deng

    2014-01-01

    Full Text Available Sparse regression based unmixing has been recently proposed to estimate the abundance of materials present in hyperspectral image pixel. In this paper, a novel sparse unmixing optimization model based on approximate sparsity, namely, approximate sparse unmixing (ASU, is firstly proposed to perform the unmixing task for hyperspectral remote sensing imagery. And then, a variable splitting and augmented Lagrangian algorithm is introduced to tackle the optimization problem. In ASU, approximate sparsity is used as a regularizer for sparse unmixing, which is sparser than l1 regularizer and much easier to be solved than l0 regularizer. Three simulated and one real hyperspectral images were used to evaluate the performance of the proposed algorithm in comparison to l1 regularizer. Experimental results demonstrate that the proposed algorithm is more effective and accurate for hyperspectral unmixing than state-of-the-art l1 regularizer.

  12. Prediction of Wintertime Northern Hemisphere Blocking by the NCEP Climate Forecast System

    Institute of Scientific and Technical Information of China (English)

    JIA Xiaolong; YANG Song; SONG Wenling; HE Bin

    2014-01-01

    Daily output from the hindcasts by the NCEP Climate Forecast System version 2 (CFSv2) is analyzed to understand CFSv2’s skill in forecasting wintertime atmospheric blocking in the Northern Hemisphere. Prediction skills of sector blocking, sector-blocking episodes, and blocking onset/decay are assessed with a focus on the Euro-Atlantic sector (20◦W-45◦E) and the Pacifi c sector (160◦E-135◦W). Features of associated circulation and climate patterns are also examined. The CFSv2 well captures the observed features of longitudinal distribution of blocking activity, but underestimates blocking frequency and intensity and shows a decreasing trend in blocking frequency with increasing forecast lead time. Within 14-day lead time, the Euro-Atlantic sector blocking receives a higher skill than the Pacifi c sector blocking. Skillful forecast (taking the hit rate of 50% as a criterion) can be obtained up to 9 days in the Euro-Atlantic sector, which is slightly longer than that in the Pacifi c sector (7 days). The forecast skill of sector-blocking episodes is slightly lower than that of sector blocking in both sectors, and it is slightly higher in the Euro-Atlantic sector than in the Pacifi c sector. Compared to block onset, the skill for block decay is lower in the Euro-Atlantic sector, slightly higher in the Pacifi c sector during the early three days but lower after three days in lead time. In both the Euro-Atlantic and the Pacifi c sectors, a local dipole pattern in 500-hPa geopotential height associated with blocking is well presented in the CFSv2 prediction, but the wave-train like pattern that is far away from the blocking sector can only maintain in the forecast of relative short lead time. The CFSv2 well reproduces the observed characteristics of local temperature and precipitation anomalies associated with blocking.

  13. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse;

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly.......60-1.62). The presence of IRBBB was not associated with any adverse outcome.ConclusionIn this cohort study, RBBB and IRBBB were two to three times more common among men than women. Right bundle branch block was associated with increased cardiovascular risk and all-cause mortality, whereas IRBBB was not. Contrary...

  14. Transfinite Approximation of Hindman's Theorem

    CERN Document Server

    Beiglböck, Mathias

    2010-01-01

    Hindman's Theorem states that in any finite coloring of the integers, there is an infinite set all of whose finite sums belong to the same color. This is much stronger than the corresponding finite form, stating that in any finite coloring of the integers there are arbitrarily long finite sets with the same property. We extend the finite form of Hindman's Theorem to a "transfinite" version for each countable ordinal, and show that Hindman's Theorem is equivalent to the appropriate transfinite approximation holding for every countable ordinal. We then give a proof of Hindman's Theorem by directly proving these transfinite approximations.

  15. Isospin Character of Low-Lying Pygmy Dipole States in Pb208 via Inelastic Scattering of O17 Ions

    Science.gov (United States)

    Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Mengoni, D.; Pellegri, L.; Lanza, E. G.; Leoni, S.; Maj, A.; Kmiecik, M.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; Charles, L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Karkour, N.; Korten, W.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.

    2014-07-01

    The properties of pygmy dipole states in Pb208 were investigated using the Pb208(O17, O17'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  16. Isospin character of low-lying pygmy dipole states in 208Pb via inelastic scattering of 17O ions.

    Science.gov (United States)

    Crespi, F C L; Bracco, A; Nicolini, R; Mengoni, D; Pellegri, L; Lanza, E G; Leoni, S; Maj, A; Kmiecik, M; Avigo, R; Benzoni, G; Blasi, N; Boiano, C; Bottoni, S; Brambilla, S; Camera, F; Ceruti, S; Giaz, A; Million, B; Morales, A I; Vandone, V; Wieland, O; Bednarczyk, P; Ciemała, M; Grebosz, J; Krzysiek, M; Mazurek, K; Zieblinski, M; Bazzacco, D; Bellato, M; Birkenbach, B; Bortolato, D; Calore, E; Cederwall, B; Charles, L; de Angelis, G; Désesquelles, P; Eberth, J; Farnea, E; Gadea, A; Görgen, A; Gottardo, A; Isocrate, R; Jolie, J; Jungclaus, A; Karkour, N; Korten, W; Menegazzo, R; Michelagnoli, C; Molini, P; Napoli, D R; Pullia, A; Recchia, F; Reiter, P; Rosso, D; Sahin, E; Salsac, M D; Siebeck, B; Siem, S; Simpson, J; Söderström, P-A; Stezowski, O; Theisen, Ch; Ur, C; Valiente-Dobón, J J

    2014-07-04

    The properties of pygmy dipole states in 208Pb were investigated using the 208Pb(17O, 17O'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  17. Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides

    Science.gov (United States)

    Park, Ji Sun; Lee, Bo Ram; Lee, Ju Min; Kim, Ji-Seon; Kim, Sang Ouk; Song, Myoung Hoon

    2010-06-01

    We investigate the effect of self-assembled dipole molecules (SADMs) on ZnO surface in hybrid organic-inorganic polymeric light-emitting diodes (HyPLEDs). Despite the SADM being extremely thin, the magnitude and orientation of SADM dipole moment effectively influenced the work function of the ZnO. As a consequence, the charge injection barrier between the conduction band of the ZnO and the lowest unoccupied molecular orbital of poly(9,9'-dioctylfluorene)-co-benzothiadiazole could be efficiently controlled resulting that electron injection efficiency is remarkably enhanced. The HyPLEDs modified with a negative dipolar SADM exhibited enhanced device performances, which correspond to approximately a fourfold compared to those of unmodified HyPLEDs.

  18. Magnetisation and field quality of a cosine-theta dipole magnet wound with coated conductors for rotating gantry for hadron cancer therapy

    Science.gov (United States)

    Amemiya, Naoyuki; Sogabe, Yusuke; Sakashita, Masaki; Iwata, Yoshiyuki; Noda, Koji; Ogitsu, Toru; Ishii, Yusuke; Kurusu, Tsutomu

    2016-02-01

    Electromagnetic field analyses were carried out to study the influence of coated-conductor magnetisation, i.e. the screening (shielding) current, on the field quality of a dipole magnet in a rotating gantry for hadron cancer therapy. The analyses were made on the cross section of a cosine-theta dipole magnet in a rotating gantry for carbon ions, which generated 2.90 T of magnetic field. The temporal profile (temporal variation) of the magnet current was determined based on the actual excitation schemes of the magnets in the rotating gantry. The experimentally determined superconducting property of a coated conductor was considered, and we calculated the temporal evolutions of the current-density distributions in all the turns of coated conductors in the magnet. From the obtained current-density distributions, we calculated the multipole components of the magnetic field and evaluated the field quality of the magnet. The deviation in the dipole component from its designed value was up to approximately 25 mT, which was approximately 1% of the designed maximum dipole component. Its variation between repeated excitations was approximately 0.03%, and it drifted approximately 0.06% in 10 s. Some compensation schemes might be required to counteract such influence of magnetisation on the dipole component. Meanwhile, the higher multipole components were small, stable, and sufficiently reproducible for a magnet in rotating gantries, i.e. |b 3| ˜ 1.1 × 10-3 and |Δb 3| ˜ 0.2 × 10-3 in 10 s.

  19. Tree wavelet approximations with applications

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [1]Baraniuk, R. G., DeVore, R. A., Kyriazis, G., Yu, X. M., Near best tree approximation, Adv. Comput. Math.,2002, 16: 357-373.[2]Cohen, A., Dahmen, W., Daubechies, I., DeVore, R., Tree approximation and optimal encoding, Appl. Comput.Harmonic Anal., 2001, 11: 192-226.[3]Dahmen, W., Schneider, R., Xu, Y., Nonlinear functionals of wavelet expansions-adaptive reconstruction and fast evaluation, Numer. Math., 2000, 86: 49-101.[4]DeVore, R. A., Nonlinear approximation, Acta Numer., 1998, 7: 51-150.[5]Davis, G., Mallat, S., Avellaneda, M., Adaptive greedy approximations, Const. Approx., 1997, 13: 57-98.[6]DeVore, R. A., Temlyakov, V. N., Some remarks on greedy algorithms, Adv. Comput. Math., 1996, 5: 173-187.[7]Kashin, B. S., Temlyakov, V. N., Best m-term approximations and the entropy of sets in the space L1, Mat.Zametki (in Russian), 1994, 56: 57-86.[8]Temlyakov, V. N., The best m-term approximation and greedy algorithms, Adv. Comput. Math., 1998, 8:249-265.[9]Temlyakov, V. N., Greedy algorithm and m-term trigonometric approximation, Constr. Approx., 1998, 14:569-587.[10]Hutchinson, J. E., Fractals and self similarity, Indiana. Univ. Math. J., 1981, 30: 713-747.[11]Binev, P., Dahmen, W., DeVore, R. A., Petruchev, P., Approximation classes for adaptive methods, Serdica Math.J., 2002, 28: 1001-1026.[12]Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Berlin: Springer-Verlag,1983.[13]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, New York: North Holland, 1978.[14]Birman, M. S., Solomiak, M. Z., Piecewise polynomial approximation of functions of the class Wαp, Math. Sb.,1967, 73: 295-317.[15]DeVore, R. A., Lorentz, G. G., Constructive Approximation, New York: Springer-Verlag, 1993.[16]DeVore, R. A., Popov, V., Interpolation of Besov spaces, Trans. Amer. Math. Soc., 1988, 305: 397-414.[17]Devore, R., Jawerth, B., Popov, V., Compression of wavelet decompositions, Amer. J. Math., 1992, 114: 737-785.[18]Storozhenko, E

  20. Recurrent congenital heart block in neonatal lupus.

    Science.gov (United States)

    Escobar, Maria C; Gómez-Puerta, José A; Albert, Dimpna; Ferrer, Queralt; Girona, Josep

    2007-07-01

    Congenital heart block (CHB) is the main complication of neonatal lupus (NL) and is strongly associated with the presence of anti-SSA/Ro and anti-SSB/La antibodies. The recurrence of CHB in subsequent pregnancies in mothers with these antibodies is uncommon, occurring in approximately 15% of cases. We describe here a case of recurrent CHB in a previously asymptomatic mother with Sjögren syndrome and discuss the current strategies for the prevention and treatment of CHB in NL.