WorldWideScience

Sample records for block structures based

  1. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    Science.gov (United States)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction

  2. Comparative evaluation of structural integrity for ITER blanket shield block based on SDC-IC and ASME code

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Ha, Min-Su, E-mail: msha12@nfri.re.kr [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Sa-Woong; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Duck-Hoi [ITER Organization, Route de Vinon sur Verdon - CS 90046, 13067 Sant Paul Lez Durance (France)

    2016-11-01

    Highlights: • The procedure of structural integrity and fatigue assessment was described. • Case studies were performed according to both SDC-IC and ASME Sec. • III codes The conservatism of the ASME code was demonstrated. • The study only covers the specifically comparable case about fatigue usage factor. - Abstract: The ITER blanket Shield Block is a bulk structure to absorb radiation and to provide thermal shielding to vacuum vessel and external vessel components, therefore the most significant load for Shield Block is the thermal load. In the previous study, the thermo-mechanical analysis has been performed under the inductive operation as representative loading condition. And the fatigue evaluations were conducted to assure structural integrity for Shield Block according to Structural Design Criteria for In-vessel Components (SDC-IC) which provided by ITER Organization (IO) based on the code of RCC-MR. Generally, ASME code (especially, B&PV Sec. III) is widely applied for design of nuclear components, and is usually well known as more conservative than other specific codes. For the view point of the fatigue assessment, ASME code is very conservative compared with SDC-IC in terms of the reflected K{sub e} factor, design fatigue curve and other factors. Therefore, an accurate fatigue assessment comparison is needed to measure of conservatism. The purpose of this study is to provide the fatigue usage comparison resulting from the specified operating conditions shall be evaluated for Shield Block based on both SDC-IC and ASME code, and to discuss the conservatism of the results.

  3. Comparative evaluation of structural integrity for ITER blanket shield block based on SDC-IC and ASME code

    International Nuclear Information System (INIS)

    Shim, Hee-Jin; Ha, Min-Su; Kim, Sa-Woong; Jung, Hun-Chea; Kim, Duck-Hoi

    2016-01-01

    Highlights: • The procedure of structural integrity and fatigue assessment was described. • Case studies were performed according to both SDC-IC and ASME Sec. • III codes The conservatism of the ASME code was demonstrated. • The study only covers the specifically comparable case about fatigue usage factor. - Abstract: The ITER blanket Shield Block is a bulk structure to absorb radiation and to provide thermal shielding to vacuum vessel and external vessel components, therefore the most significant load for Shield Block is the thermal load. In the previous study, the thermo-mechanical analysis has been performed under the inductive operation as representative loading condition. And the fatigue evaluations were conducted to assure structural integrity for Shield Block according to Structural Design Criteria for In-vessel Components (SDC-IC) which provided by ITER Organization (IO) based on the code of RCC-MR. Generally, ASME code (especially, B&PV Sec. III) is widely applied for design of nuclear components, and is usually well known as more conservative than other specific codes. For the view point of the fatigue assessment, ASME code is very conservative compared with SDC-IC in terms of the reflected K_e factor, design fatigue curve and other factors. Therefore, an accurate fatigue assessment comparison is needed to measure of conservatism. The purpose of this study is to provide the fatigue usage comparison resulting from the specified operating conditions shall be evaluated for Shield Block based on both SDC-IC and ASME code, and to discuss the conservatism of the results.

  4. Naming Block Structures: A Multimodal Approach

    Science.gov (United States)

    Cohen, Lynn; Uhry, Joanna

    2011-01-01

    This study describes symbolic representation in block play in a culturally diverse suburban preschool classroom. Block play is "multimodal" and can allow children to experiment with materials to represent the world in many forms of literacy. Combined qualitative and quantitative data from seventy-seven block structures were collected and analyzed.…

  5. Determining the Mechanical Properties of Lattice Block Structures

    Science.gov (United States)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  6. Probabilistic Decision Based Block Partitioning for Future Video Coding

    KAUST Repository

    Wang, Zhao

    2017-11-29

    In the latest Joint Video Exploration Team development, the quadtree plus binary tree (QTBT) block partitioning structure has been proposed for future video coding. Compared to the traditional quadtree structure of High Efficiency Video Coding (HEVC) standard, QTBT provides more flexible patterns for splitting the blocks, which results in dramatically increased combinations of block partitions and high computational complexity. In view of this, a confidence interval based early termination (CIET) scheme is proposed for QTBT to identify the unnecessary partition modes in the sense of rate-distortion (RD) optimization. In particular, a RD model is established to predict the RD cost of each partition pattern without the full encoding process. Subsequently, the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure by reducing 54.7% encoding time with only 1.12% increase in terms of bit rate. Moreover, the proposed scheme performs consistently well for the high resolution sequences, of which the video coding efficiency is crucial in real applications.

  7. QuaBingo: A Prediction System for Protein Quaternary Structure Attributes Using Block Composition

    Directory of Open Access Journals (Sweden)

    Chi-Hua Tung

    2016-01-01

    Full Text Available Background. Quaternary structures of proteins are closely relevant to gene regulation, signal transduction, and many other biological functions of proteins. In the current study, a new method based on protein-conserved motif composition in block format for feature extraction is proposed, which is termed block composition. Results. The protein quaternary assembly states prediction system which combines blocks with functional domain composition, called QuaBingo, is constructed by three layers of classifiers that can categorize quaternary structural attributes of monomer, homooligomer, and heterooligomer. The building of the first layer classifier uses support vector machines (SVM based on blocks and functional domains of proteins, and the second layer SVM was utilized to process the outputs of the first layer. Finally, the result is determined by the Random Forest of the third layer. We compared the effectiveness of the combination of block composition, functional domain composition, and pseudoamino acid composition of the model. In the 11 kinds of functional protein families, QuaBingo is 23% of Matthews Correlation Coefficient (MCC higher than the existing prediction system. The results also revealed the biological characterization of the top five block compositions. Conclusions. QuaBingo provides better predictive ability for predicting the quaternary structural attributes of proteins.

  8. Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures

    Science.gov (United States)

    Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.

    2003-01-01

    Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the

  9. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    Science.gov (United States)

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  10. Elementary structural building blocks encountered in silicon surface reconstructions

    International Nuclear Information System (INIS)

    Battaglia, Corsin; Monney, Claude; Didiot, Clement; Schwier, Eike Fabian; Garnier, Michael Gunnar; Aebi, Philipp; Gaal-Nagy, Katalin; Onida, Giovanni

    2009-01-01

    Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their integration into the structural models as well as their impact on the electronic structure of the surface. (topical review)

  11. Probabilistic Decision Based Block Partitioning for Future Video Coding

    KAUST Repository

    Wang, Zhao; Wang, Shiqi; Zhang, Jian; Wang, Shanshe; Ma, Siwei

    2017-01-01

    , the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure

  12. Efficient Eulerian gyrokinetic simulations with block-structured grids

    International Nuclear Information System (INIS)

    Jarema, Denis

    2017-01-01

    Gaining a deep understanding of plasma microturbulence is of paramount importance for the development of future nuclear fusion reactors, because it causes a strong outward transport of heat and particles. Gyrokinetics has proven itself as a valid mathematical model to simulate such plasma microturbulence effects. In spite of the advantages of this model, nonlinear radially extended (or global) gyrokinetic simulations are still extremely computationally expensive, involving a very large number of computational grid points. Hence, methods that reduce the number of grid points without a significant loss of accuracy are a prerequisite to be able to run high-fidelity simulations. At the level of the mathematical model, the gyrokinetic approach achieves a reduction from six to five coordinates in comparison to the fully kinetic models. This reduction leads to an important decrease in the total number of computational grid points. However, the velocity space mixed with the radial direction still requires a very fine resolution in grid based codes, due to the disparities in the thermal speed, which are caused by a strong temperature variation along the radial direction. An attempt to address this problem by modifying the underlying gyrokinetic set of equations leads to additional nonlinear terms, which are the most expensive parts to simulate. Furthermore, because of these modifications, well-established and computationally efficient implementations developed for the original set of equations can no longer be used. To tackle such issues, in this thesis we introduce an alternative approach of blockstructured grids. This approach reduces the number of grid points significantly, but without changing the underlying mathematical model. Furthermore, our technique is minimally invasive and allows the reuse of a large amount of already existing code using rectilinear grids, modifications being necessary only on the block boundaries. Moreover, the block-structured grid can be

  13. Efficient Eulerian gyrokinetic simulations with block-structured grids

    Energy Technology Data Exchange (ETDEWEB)

    Jarema, Denis

    2017-01-20

    Gaining a deep understanding of plasma microturbulence is of paramount importance for the development of future nuclear fusion reactors, because it causes a strong outward transport of heat and particles. Gyrokinetics has proven itself as a valid mathematical model to simulate such plasma microturbulence effects. In spite of the advantages of this model, nonlinear radially extended (or global) gyrokinetic simulations are still extremely computationally expensive, involving a very large number of computational grid points. Hence, methods that reduce the number of grid points without a significant loss of accuracy are a prerequisite to be able to run high-fidelity simulations. At the level of the mathematical model, the gyrokinetic approach achieves a reduction from six to five coordinates in comparison to the fully kinetic models. This reduction leads to an important decrease in the total number of computational grid points. However, the velocity space mixed with the radial direction still requires a very fine resolution in grid based codes, due to the disparities in the thermal speed, which are caused by a strong temperature variation along the radial direction. An attempt to address this problem by modifying the underlying gyrokinetic set of equations leads to additional nonlinear terms, which are the most expensive parts to simulate. Furthermore, because of these modifications, well-established and computationally efficient implementations developed for the original set of equations can no longer be used. To tackle such issues, in this thesis we introduce an alternative approach of blockstructured grids. This approach reduces the number of grid points significantly, but without changing the underlying mathematical model. Furthermore, our technique is minimally invasive and allows the reuse of a large amount of already existing code using rectilinear grids, modifications being necessary only on the block boundaries. Moreover, the block-structured grid can be

  14. ASIC chipset design to generate block-based complex holographic video.

    Science.gov (United States)

    Seo, Young-Ho; Lee, Yoon-Hyuk; Kim, Dong-Wook

    2017-03-20

    In this paper, we propose a new hardware architecture implemented as a very large scaled integrated circuit by using an application-specific integrated circuit technology, where block-based calculations are used to generate holograms. The proposed hardware is structured to produce a part of a hologram in the block units in parallel. A block of a hologram is calculated using an object point, and then the calculation is repeated for all object points to obtain intermediate results that are accumulated to produce the final block of a hologram. This structure can be used to produce holograms of various sizes in real time with optimized memory access. The proposed hardware was implemented using the Hynix 0.18 μm CMOS technology of Magna Chip, Inc., and it has about 448 K gate counts and a silicon size of 3.592  mm×3.592  mm. It can generate complex holograms and operate in a stable manner at a clock frequency of 200 MHz.

  15. Structural analysis of ceramic blocks sealing or structural incorporated with the industrial laundry sludge

    International Nuclear Information System (INIS)

    Almeida, P.H.S.; Grippe, V.Y.Q.; Goulart, J.V.

    2016-01-01

    Industrial and commercial development of recent decades has led to an increase in waste generation. Thus, it is necessary to develop alternative and effective methods of treatment, replacing the simple disposal of these wastes in landfills. The objective of this work is to study the incorporation of textile industrial laundries sludge in ceramic blocks sealing or structural. Samples of ceramic blocks were produced using formulation with 20% sludge, the mass of ceramic clay. Structural analysis of the block was observed the tendency of most empty emergence (pores) during the firing of the blocks, as textile sludge was added in the ceramic paste composition. The mechanical testing of blocks compressive strength was above the minimum 3.0 MPa specified by the standard limit. The physical test water absorption of the blocks was within the range 8 to 22% specified by the standard. (author)

  16. Two-dimensional phase separated structures of block copolymers on solids

    Science.gov (United States)

    Sen, Mani; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Ribbe, Alexander

    The fundamental, yet unsolved question in block copolymer (BCP) thin films is the self-organization process of BCPs at the solid-polymer melt interface. We here focus on the self-organization processes of cylinder-forming polystyrene-block-poly (4-vinylpyridine) diblock copolymer and lamellar-forming poly (styrene-block-butadiene-block-styrene) triblock copolymer on Si substrates as model systems. In order to reveal the buried interfacial structures, the following experimental protocols were utilized: the BCP monolayer films were annealed under vacuum at T>Tg of the blocks (to equilibrate the melts); vitrification of the annealed BCP films via rapid quench to room temperature; subsequent intensive solvent leaching (to remove unadsorbed chains) with chloroform, a non-selective good solvent for the blocks. The strongly bound BCP layers were then characterized by using atomic force microscopy, scanning electron microscopy, grazing incidence small angle X-ray scattering, and X-ray reflectivity. The results showed that both blocks lie flat on the substrate, forming the two-dimensional, randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. Acknowledgement of financial support from NSF Grant (CMMI -1332499).

  17. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    Science.gov (United States)

    Lin, Shu

    1998-01-01

    A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and

  18. Two innovative solutions based on fibre concrete blocks designed for building substructure

    Science.gov (United States)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  19. Oligomers and Polymers Based on Pentacene Building Blocks

    Science.gov (United States)

    Lehnherr, Dan; Tykwinski, Rik R.

    2010-01-01

    Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  20. An efficient, block-by-block algorithm for inverting a block tridiagonal, nearly block Toeplitz matrix

    International Nuclear Information System (INIS)

    Reuter, Matthew G; Hill, Judith C

    2012-01-01

    We present an algorithm for computing any block of the inverse of a block tridiagonal, nearly block Toeplitz matrix (defined as a block tridiagonal matrix with a small number of deviations from the purely block Toeplitz structure). By exploiting both the block tridiagonal and the nearly block Toeplitz structures, this method scales independently of the total number of blocks in the matrix and linearly with the number of deviations. Numerical studies demonstrate this scaling and the advantages of our method over alternatives.

  1. Oligomers and Polymers Based on Pentacene Building Blocks

    Directory of Open Access Journals (Sweden)

    Dan Lehnherr

    2010-04-01

    Full Text Available Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  2. Thermal-structural analysis for ITER in-wall shielding block

    International Nuclear Information System (INIS)

    Hao Junchuan; Song Yuntao; Wu Weiyue; Du Shuangsong; Wang, X.; Ioki, K.

    2012-01-01

    Highlights: ► IWS blocks shall withstand various types of mechanical loads including EM loads, inertial loads and thermal loads. ► Due to the complicated geometry, the finite element method is the suitable tool to solve the problem. ► Contact element has been selected to simulate the friction between the different components. ► At baking phase, secondary stresses due to preloading and temperature difference predominate in the total stress. ► At plasma operation phase, secondary stresses due to preloading and thermal loads were deducted from the total stresses. - Abstract: In order to verify the design strength of the in-wall shielding (IWS) blocks of the ITER, thermal-structural analyses of one IWS block under vacuum vessel (VV) baking and plasma operation conditions have been respectively performed with finite element (FE) method. Among the complicated operation scenarios of the ITER, two critical types of combined loads required by the load specification of IWS were applied on the shielding block. The stress of the block is judged by American Society of Mechanical Engineers (ASME) criterion. Results show that the structure of this block has enough safety margin, and it also supplies detailed information of the stress distribution in concerned region under certain loads.

  3. Thermal Analysis, Structural Studies and Morphology of Spider Silk-like Block Copolymers

    Science.gov (United States)

    Huang, Wenwen

    Spider silk is a remarkable natural block copolymer, which offers a unique combination of low density, excellent mechanical properties, and thermal stability over a wide range of temperature, along with biocompatibility and biodegrability. The dragline silk of Nephila clavipes, is one of the most well understood and the best characterized spider silk, in which alanine-rich hydrophobic blocks and glycine-rich hydrophilic blocks are linked together generating a functional block copolymer with potential uses in biomedical applications such as guided tissue repair and drug delivery. To provide further insight into the relationships among peptide amino acid sequence, block length, and physical properties, in this thesis, we studied synthetic proteins inspired by the genetic sequences found in spider dragline silks, and used these bioengineered spider silk block copolymers to study thermal, structural and morphological features. To obtain a fuller understanding of the thermal dynamic properties of these novel materials, we use a model to calculate the heat capacity of spider silk block copolymer in the solid or liquid state, below or above the glass transition temperature, respectively. We characterize the thermal phase transitions by temperature modulated differential scanning calorimetry (TMDSC) and thermogravimetric analysis (TGA). We also determined the crystallinity by TMDSC and compared the result with Fourier transform infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). To understand the protein-water interactions with respect to the protein amino acid sequence, we also modeled the specific reversing heat capacity of the protein-water system, Cp(T), based on the vibrational, rotational and translational motions of protein amino acid residues and water molecules. Advanced thermal analysis methods using TMDSC and TGA show two glass transitions were observed in all samples during heating. The low temperature glass transition, Tg(1), is related to

  4. Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.

    Science.gov (United States)

    Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy

    2016-07-11

    Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Minimum description length block finder, a method to identify haplotype blocks and to compare the strength of block boundaries.

    Science.gov (United States)

    Mannila, H; Koivisto, M; Perola, M; Varilo, T; Hennah, W; Ekelund, J; Lukk, M; Peltonen, L; Ukkonen, E

    2003-07-01

    We describe a new probabilistic method for finding haplotype blocks that is based on the use of the minimum description length (MDL) principle. We give a rigorous definition of the quality of a segmentation of a genomic region into blocks and describe a dynamic programming algorithm for finding the optimal segmentation with respect to this measure. We also describe a method for finding the probability of a block boundary for each pair of adjacent markers: this gives a tool for evaluating the significance of each block boundary. We have applied the method to the published data of Daly and colleagues. The results expose some problems that exist in the current methods for the evaluation of the significance of predicted block boundaries. Our method, MDL block finder, can be used to compare block borders in different sample sets, and we demonstrate this by applying the MDL-based method to define the block structure in chromosomes from population isolates.

  6. Fabrication of calcite blocks from gypsum blocks by compositional transformation based on dissolution-precipitation reactions in sodium carbonate solution.

    Science.gov (United States)

    Ishikawa, Kunio; Kawachi, Giichiro; Tsuru, Kanji; Yoshimoto, Ayami

    2017-03-01

    Calcium carbonate (CaCO 3 ) has been used as a bone substitute, and is a precursor for carbonate apatite, which is also a promising bone substitute. However, limited studies have been reported on the fabrication of artificial calcite blocks. In the present study, cylindrical calcite blocks (ϕ6×3mm) were fabricated by compositional transformation based on dissolution-precipitation reactions using different calcium sulfate blocks as a precursor. In the dissolution-precipitation reactions, both CaSO 4 ·2H 2 O and CaSO 4 transformed into calcite, a polymorph of CaCO 3 , while maintaining their macroscopic structure when immersed in 1mol/L Na 2 CO 3 solution at 80°C for 1week. The diametral tensile strengths of the calcite blocks formed using CaSO 4 ·2H 2 O and CaSO 4 were 1.0±0.3 and 2.3±0.7MPa, respectively. The fabrication of calcite blocks using CaSO 4 ·2H 2 O and CaSO 4 proposed in this investigation may be a useful method to produce calcite blocks because of the self-setting ability and high temperature stability of gypsum precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    Science.gov (United States)

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  8. Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results

    Directory of Open Access Journals (Sweden)

    C. S. Barbosa

    Full Text Available This paper deals with correlations among mechanical properties of hollow blocks and those of concrete used to make them. Concrete hollow blocks and test samples were moulded with plastic consistency concrete, to assure the same material in all cases, in three diferente levels of strength (nominally 10 N/mm², 20 N/mm² and 30 N/mm². The mechanical properties and structural behaviour in axial compression and tension tests were determined by standard tests in blocks and cylinders. Stress and strain analyses were made based on concrete’s modulus of elasticity obtained in the sample tests as well as on measured strain in the blocks’ face-shells and webs. A peculiar stress-strain analysis, based on the superposition of effects, provided an estimation of the block load capacity based on its deformations. In addition, a tentative method to preview the block deformability from the concrete mechanical properties is described and tested. This analysis is a part of a broader research that aims to support a detailed structural analysis of blocks, prisms and masonry constructions.

  9. A novel fractal image compression scheme with block classification and sorting based on Pearson's correlation coefficient.

    Science.gov (United States)

    Wang, Jianji; Zheng, Nanning

    2013-09-01

    Fractal image compression (FIC) is an image coding technology based on the local similarity of image structure. It is widely used in many fields such as image retrieval, image denoising, image authentication, and encryption. FIC, however, suffers from the high computational complexity in encoding. Although many schemes are published to speed up encoding, they do not easily satisfy the encoding time or the reconstructed image quality requirements. In this paper, a new FIC scheme is proposed based on the fact that the affine similarity between two blocks in FIC is equivalent to the absolute value of Pearson's correlation coefficient (APCC) between them. First, all blocks in the range and domain pools are chosen and classified using an APCC-based block classification method to increase the matching probability. Second, by sorting the domain blocks with respect to APCCs between these domain blocks and a preset block in each class, the matching domain block for a range block can be searched in the selected domain set in which these APCCs are closer to APCC between the range block and the preset block. Experimental results show that the proposed scheme can significantly speed up the encoding process in FIC while preserving the reconstructed image quality well.

  10. Association and Structure of Thermo Sensitive Comblike Block Copolymers in Aqueous Solutions

    International Nuclear Information System (INIS)

    Cheng, Gang

    2008-01-01

    The structures and association properties of thermo sensitive poly(methoxyoligo(ethylene glycol) norbornenyl esters) block copolymers in D2O were investigated by Small Angle Neutron Scattering (SANS). Each block is a comb-like polymer with a polynorbornene (PNB) backbone and oligo ethylene glycol (OEG) side chains (one side chain per NB monomer). The chemical formula of the block copolymer is (OEG3NB)79-(OEG6.6NB)67, where subscripts represent the degree of polymerization (DP) of OEG and NB in each block The polymer concentration was fixed at 2.0 wt % and the structural changes were investigated over a temperature range between 25 C and 68 C. It was found that at room temperature polymers associate to form micelles with a spherical core formed by the block (OEG3NB)79 and corona formed by the block (OEG6.6NB)67 and that the shape of the polymer in the corona could be described by the form factor of rigid cylinders. At elevated temperatures, the aggregation number increases and the micelles become more compact. At temperatures round the cloud point temperature (CPT) T = 60 C a correlation peak started to appear and became pronounced at 68 C due to the formation of a partially ordered structure with a correlation length ∼ 349

  11. Studies on microphase-separated structures of block copolymers by neutron reflectivity measurement

    International Nuclear Information System (INIS)

    Torikai, Naoya; Noda, Ichiro; Matsushita, Yushu; Karim, A.; Satija, S.K.; Han, C.C.; Ebisawa, Toru.

    1996-01-01

    Segmental distributions of block copolymer chains in lamellar microphase-separated structure and those of homopolymers in block copolymer/homopolymer blends also with lamellar structures were studied by neutron reflectivity measurements. It was revealed that polystyrene and poly(2-vinylpyridine) lamellae were alternately stacked within the thin films of pure block copolymers spin-coated on silicon wafers, and they were preferentially oriented along the direction parallel to film surface. Polystyrene lamella appeared at air surfaces of the films, while poly(2-vinylpyridine) lamella did on silicon surfaces. Segment distribution at lamellar interface was well described by an error function, and the width of the lamellar interface, defined by a full-width half-maximum value of interfacial profile, was estimated to be about 4.5 nm. Segments of block chains adjacent to the chemical junction points connecting different block chains were strongly localized near the lamellar interfaces, while those on the free ends of block chains were distributed all over the lamellar microdomains with their distribution maxima at the centers of lamellae. On the other hand, it was clarified that homopolymers dissolved in the corresponding lamellar microdomains of block copolymers were also distributed throughout the microdomains with their concentration maxima at the centers of the lamellae. (author)

  12. Robust and Adaptive Block Tracking Method Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Bin Sun

    2015-10-01

    Full Text Available In the field of video analysis and processing, object tracking is attracting more and more attention especially in traffic management, digital surveillance and so on. However problems such as objects’ abrupt motion, occlusion and complex target structures would bring difficulties to academic study and engineering application. In this paper, a fragmentsbased tracking method using the block relationship coefficient is proposed. In this method, we use particle filter algorithm and object region is divided into blocks initially. The contribution of this method is that object features are not extracted just from a single block, the relationship between current block and its neighbor blocks are extracted to describe the variation of the block. Each block is weighted according to the block relationship coefficient when the block is voted on the most matched region in next frame. This method can make full use of the relationship between blocks. The experimental results demonstrate that our method can provide good performance in condition of occlusion and abrupt posture variation.

  13. Structural implications of hERG K+ channel block by a high-affinity minimally structured blocker

    Science.gov (United States)

    Helliwell, Matthew V.; Zhang, Yihong; El Harchi, Aziza; Du, Chunyun; Hancox, Jules C.; Dempsey, Christopher E.

    2018-01-01

    Cardiac potassium channels encoded by human ether-à-go-go–related gene (hERG) are major targets for structurally diverse drugs associated with acquired long QT syndrome. This study characterized hERG channel inhibition by a minimally structured high-affinity hERG inhibitor, Cavalli-2, composed of three phenyl groups linked by polymethylene spacers around a central amino group, chosen to probe the spatial arrangement of side chain groups in the high-affinity drug-binding site of the hERG pore. hERG current (IhERG) recorded at physiological temperature from HEK293 cells was inhibited with an IC50 of 35.6 nm with time and voltage dependence characteristic of blockade contingent upon channel gating. Potency of Cavalli-2 action was markedly reduced for attenuated inactivation mutants located near (S620T; 54-fold) and remote from (N588K; 15-fold) the channel pore. The S6 Y652A and F656A mutations decreased inhibitory potency 17- and 75-fold, respectively, whereas T623A and S624A at the base of the selectivity filter also decreased potency (16- and 7-fold, respectively). The S5 helix F557L mutation decreased potency 10-fold, and both F557L and Y652A mutations eliminated voltage dependence of inhibition. Computational docking using the recent cryo-EM structure of an open channel hERG construct could only partially recapitulate experimental data, and the high dependence of Cavalli-2 block on Phe-656 is not readily explainable in that structure. A small clockwise rotation of the inner (S6) helix of the hERG pore from its configuration in the cryo-EM structure may be required to optimize Phe-656 side chain orientations compatible with high-affinity block. PMID:29545312

  14. New block matrix spectral problem and Hamiltonian structure of the discrete integrable coupling system

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)], E-mail: yufajun888@163.com

    2008-06-09

    In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity.

  15. New block matrix spectral problem and Hamiltonian structure of the discrete integrable coupling system

    International Nuclear Information System (INIS)

    Yu Fajun

    2008-01-01

    In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity

  16. Fabrication of Hyperbranched Block-Statistical Copolymer-Based Prodrug with Dual Sensitivities for Controlled Release.

    Science.gov (United States)

    Zheng, Luping; Wang, Yunfei; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Ji, Xiangling; Wei, Hua

    2018-01-17

    Dendrimer with hyperbranched structure and multivalent surface is regarded as one of the most promising candidates close to the ideal drug delivery systems, but the clinical translation and scale-up production of dendrimer has been hampered significantly by the synthetic difficulties. Therefore, there is considerable scope for the development of novel hyperbranched polymer that can not only address the drawbacks of dendrimer but maintain its advantages. The reversible addition-fragmentation chain transfer self-condensing vinyl polymerization (RAFT-SCVP) technique has enabled facile preparation of segmented hyperbranched polymer (SHP) by using chain transfer monomer (CTM)-based double-head agent during the past decade. Meanwhile, the design and development of block-statistical copolymers has been proven in our recent studies to be a simple yet effective way to address the extracellular stability vs intracellular high delivery efficacy dilemma. To integrate the advantages of both hyperbranched and block-statistical structures, we herein reported the fabrication of hyperbranched block-statistical copolymer-based prodrug with pH and reduction dual sensitivities using RAFT-SCVP and post-polymerization click coupling. The external homo oligo(ethylene glycol methyl ether methacrylate) (OEGMA) block provides sufficient extracellularly colloidal stability for the nanocarriers by steric hindrance, and the interior OEGMA units incorporated by the statistical copolymerization promote intracellular drug release by facilitating the permeation of GSH and H + for the cleavage of the reduction-responsive disulfide bond and pH-liable carbonate link as well as weakening the hydrophobic encapsulation of drug molecules. The delivery efficacy of the target hyperbranched block-statistical copolymer-based prodrug was evaluated in terms of in vitro drug release and cytotoxicity studies, which confirms both acidic pH and reduction-triggered drug release for inhibiting proliferation of He

  17. Usage of digital image correlation in assessment of behavior of block element pavement structure

    Science.gov (United States)

    Grygierek, M.; Grzesik, B.; Rokitowski, P.; Rusin, T.

    2018-05-01

    In diagnostics of existing road pavement structures deflection measurements have fundamental meaning, because of ability to assess present stiffness (bearing capacity) of whole layered construction. During test loading the reaction of pavement structure to applied load is measured in central point or in a few points located along a straight on a 1.5 ÷ 1.8 m distance (i.e. Falling Weight Deflectometer) in similar spacing equal to 20 ÷ 30 cm. Typical measuring techniques are productive and precise enough for most common pavement structures such as flexible, semi-rigid and rigid. It should be noted that in experimental research as well as in pavements in complex stress state, measurement techniques allowing observation of pavement deformation in 3D would have been very helpful. A great example of that type of pavements is a block element pavement structure consisting of i.e. paving blocks or stone slabs. Due to high stiffness and confined ability of cooperation of surrounding block elements, in that type of pavements fatigue life is strongly connected with displacement distribution. Unfortunately, typical deflection measurement methods forefend displacement observations and rotation of single block elements like paving blocks or slabs. Another difficult problem is to carry out unmistakable analysis of cooperation between neighboring elements. For more precise observations of displacements state of block element pavements under a wheel load a Digital Image Correlation (DIC) was used. Application of this method for assessment of behavior of stone slabs pavement under a traffic load enabled the monitoring of deformations distribution and encouraged to formulate conclusions about the initiation mechanism and development of damages in this type of pavement structures. Results shown in this article were obtained in field tests executed on an exploited pavement structure with a surface course made of granite slabs with dimensions 0.5x1.0x0.14 m.

  18. Electrically and chemically tunable soft-solid block copolymer structural color (Conference Presentation)

    Science.gov (United States)

    Park, Cheolmin

    2016-09-01

    1D photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied due to their potential use in low-power reflective mode displays, e-books and sensors, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid swollen block copolymer films. Placement of a polymer/ionic liquid (IL) film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2vinyl pyridine) (PS-b-QP2VP) copolymer SC film allowed the development of R, G and B full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3V to +6V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device.

  19. Block Tridiagonal Matrices in Electronic Structure Calculations

    DEFF Research Database (Denmark)

    Petersen, Dan Erik

    in the Landauer–Büttiker ballistic transport regime. These calculations concentrate on determining the so– called Green’s function matrix, or portions thereof, which is the inverse of a block tridiagonal general complex matrix. To this end, a sequential algorithm based on Gaussian elimination named Sweeps...

  20. Molecular architectures based on π-conjugated block copolymers for global quantum computation

    International Nuclear Information System (INIS)

    Mujica Martinez, C A; Arce, J C; Reina, J H; Thorwart, M

    2009-01-01

    We propose a molecular setup for the physical implementation of a barrier global quantum computation scheme based on the electron-doped π-conjugated copolymer architecture of nine blocks PPP-PDA-PPP-PA-(CCH-acene)-PA-PPP-PDA-PPP (where each block is an oligomer). The physical carriers of information are electrons coupled through the Coulomb interaction, and the building block of the computing architecture is composed by three adjacent qubit systems in a quasi-linear arrangement, each of them allowing qubit storage, but with the central qubit exhibiting a third accessible state of electronic energy far away from that of the qubits' transition energy. The third state is reached from one of the computational states by means of an on-resonance coherent laser field, and acts as a barrier mechanism for the direct control of qubit entanglement. Initial estimations of the spontaneous emission decay rates associated to the energy level structure allow us to compute a damping rate of order 10 -7 s, which suggest a not so strong coupling to the environment. Our results offer an all-optical, scalable, proposal for global quantum computing based on semiconducting π-conjugated polymers.

  1. Molecular architectures based on pi-conjugated block copolymers for global quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Mujica Martinez, C A; Arce, J C [Universidad del Valle, Departamento de QuImica, A. A. 25360, Cali (Colombia); Reina, J H [Universidad del Valle, Departamento de Fisica, A. A. 25360, Cali (Colombia); Thorwart, M, E-mail: camujica@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u, E-mail: jularce@univalle.edu.c [Institut fuer Theoretische Physik IV, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf (Germany)

    2009-05-01

    We propose a molecular setup for the physical implementation of a barrier global quantum computation scheme based on the electron-doped pi-conjugated copolymer architecture of nine blocks PPP-PDA-PPP-PA-(CCH-acene)-PA-PPP-PDA-PPP (where each block is an oligomer). The physical carriers of information are electrons coupled through the Coulomb interaction, and the building block of the computing architecture is composed by three adjacent qubit systems in a quasi-linear arrangement, each of them allowing qubit storage, but with the central qubit exhibiting a third accessible state of electronic energy far away from that of the qubits' transition energy. The third state is reached from one of the computational states by means of an on-resonance coherent laser field, and acts as a barrier mechanism for the direct control of qubit entanglement. Initial estimations of the spontaneous emission decay rates associated to the energy level structure allow us to compute a damping rate of order 10{sup -7} s, which suggest a not so strong coupling to the environment. Our results offer an all-optical, scalable, proposal for global quantum computing based on semiconducting pi-conjugated polymers.

  2. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.

    Science.gov (United States)

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A

    2008-10-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.

  3. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler☆

    Science.gov (United States)

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.

    2013-01-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281

  4. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers.

    Science.gov (United States)

    Boyle, Bret M; French, Tracy A; Pearson, Ryan M; McCarthy, Blaine G; Miyake, Garret M

    2017-03-28

    The incorporation of structural color into 3D printed parts is reported, presenting an alternative to the need for pigments or dyes for colored parts produced through additive manufacturing. Thermoplastic build materials composed of dendritic block copolymers were designed, synthesized, and used to additively manufacture plastic parts exhibiting structural color. The reflection properties of the photonic crystals arise from the periodic nanostructure formed through block copolymer self-assembly during polymer processing. The wavelength of reflected light could be tuned across the visible spectrum by synthetically controlling the block copolymer molecular weight and manufacture parts that reflected violet, green, or orange light with the capacity to serve as selective optical filters and light guides.

  5. Blocking of Goal-Location Learning Based on Shape

    Science.gov (United States)

    Alexander, Tim; Wilson, Stuart P.; Wilson, Paul N.

    2009-01-01

    Using desktop, computer-simulated virtual environments (VEs), the authors conducted 5 experiments to investigate blocking of learning about a goal location based on Shape B as a consequence of preliminary training to locate that goal using Shape A. The shapes were large 2-dimensional horizontal figures on the ground. Blocking of spatial learning…

  6. Hybrid titanium dioxide/PS-b-PEO block copolymer nanocomposites based on sol-gel synthesis

    International Nuclear Information System (INIS)

    Gutierrez, J; Tercjak, A; Garcia, I; Peponi, L; Mondragon, I

    2008-01-01

    The poly(styrene)-b-poly(ethylene oxide) (SEO) amphiphilic block copolymer, with two different molecular weights, has been used as a structure directing agent for generating nanocomposites of TiO 2 /SEO via the sol-gel process. SEO amphiphilic block copolymers are designed with a hydrophilic PEO-block which can interact with inorganic molecules, as well as a hydrophobic PS-block which builds the matrix. The addition of different amounts of sol-gel provokes strong variations in the self-assembled morphology of TiO 2 /SEO nanocomposites with respect to the neat block copolymer. As confirmed by atomic force microscopy (AFM), TiO 2 /PEO-block micelles get closer, forming well-ordered spherical domains, in which TiO 2 nanoparticles constitute the core surrounded by a corona of PEO-blocks. Moreover, for 20 vol% sol-gel the generated morphology changes to a hexagonally ordered structure for both block copolymers. The cylindrical structure of these nanocomposites has been confirmed by the two-dimensional Fourier transform power spectrum of the corresponding AFM height images. Affinity between titanium dioxide precursor and PEO-block of SEO allows us to generate hybrid inorganic/organic nanocomposites, which retain the optical properties of TiO 2 , as evaluated by UV-vis spectroscopy

  7. Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene copolymers and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A comparative study on the self-assembled nanostructured morphology and the rheological and mechanical properties of four different triblock copolymers, based on poly(styrene-block-diene-block-styrene and poly(styrene-block-diene-block-styrene matrices, and of their respective nanocomposites with 1 wt% silver nanoparticles, is reported in this work. In order to obtain well-dispersed nanoparticles in the block copolymer matrix, dodecanethiol was used as surfactant, showing good affinity with both nanoparticles and the polystyrene phase of the matrices as predicted by the solubility parameters calculated based on Hoftyzer and Van Krevelen theory. The block copolymer with the highest PS content shows the highest tensile modulus and tensile strength, but also the smallest elongation at break. When silver nanoparticles treated with surfactant were added to the block copolymer matrices, each system studied shows higher mechanical properties due to the good dispersion and the good interface of Ag nanoparticles in the matrices. Furthermore, it has been shown that semiempirical models such as Guth and Gold equation and Halpin-Tsai model can be used to predict the tensile modulus of the analyzed nanocomposites.

  8. Printable and Rewritable Full Block Copolymer Structural Color.

    Science.gov (United States)

    Kang, Han Sol; Lee, Jinseong; Cho, Suk Man; Park, Tae Hyun; Kim, Min Ju; Park, Chanho; Lee, Seung Won; Kim, Kang Lib; Ryu, Du Yeol; Huh, June; Thomas, Edwin L; Park, Cheolmin

    2017-08-01

    Structural colors (SCs) of photonic crystals (PCs) arise from selective constructive interference of incident light. Here, an ink-jet printable and rewritable block copolymer (BCP) SC display is demonstrated, which can be quickly written and erased over 50 times with resolution nearly equivalent to that obtained with a commercial office ink-jet printer. Moreover, the writing process employs an easily modified printer for position- and concentration-controlled deposition of a single, colorless, water-based ink containing a reversible crosslinking agent, ammonium persulfate. Deposition of the ink onto a self-assembled BCP PC film comprising a 1D stack of alternating layers enables differential swelling of the written BCP film and produces a full-colored SC display of characters and images. Furthermore, the information can be readily erased and the system can be reset by application of hydrogen bromide. Subsequently, new information can be rewritten, resulting in a chemically rewritable BCP SC display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Representation of Block-Based Image Features in a Multi-Scale Framework for Built-Up Area Detection

    Directory of Open Access Journals (Sweden)

    Zhongwen Hu

    2016-02-01

    Full Text Available The accurate extraction and mapping of built-up areas play an important role in many social, economic, and environmental studies. In this paper, we propose a novel approach for built-up area detection from high spatial resolution remote sensing images, using a block-based multi-scale feature representation framework. First, an image is divided into small blocks, in which the spectral, textural, and structural features are extracted and represented using a multi-scale framework; a set of refined Harris corner points is then used to select blocks as training samples; finally, a built-up index image is obtained by minimizing the normalized spectral, textural, and structural distances to the training samples, and a built-up area map is obtained by thresholding the index image. Experiments confirm that the proposed approach is effective for high-resolution optical and synthetic aperture radar images, with different scenes and different spatial resolutions.

  10. Combining a popularity-productivity stochastic block model with a discriminative-content model for general structure detection.

    Science.gov (United States)

    Chai, Bian-fang; Yu, Jian; Jia, Cai-Yan; Yang, Tian-bao; Jiang, Ya-wen

    2013-07-01

    Latent community discovery that combines links and contents of a text-associated network has drawn more attention with the advance of social media. Most of the previous studies aim at detecting densely connected communities and are not able to identify general structures, e.g., bipartite structure. Several variants based on the stochastic block model are more flexible for exploring general structures by introducing link probabilities between communities. However, these variants cannot identify the degree distributions of real networks due to a lack of modeling of the differences among nodes, and they are not suitable for discovering communities in text-associated networks because they ignore the contents of nodes. In this paper, we propose a popularity-productivity stochastic block (PPSB) model by introducing two random variables, popularity and productivity, to model the differences among nodes in receiving links and producing links, respectively. This model has the flexibility of existing stochastic block models in discovering general community structures and inherits the richness of previous models that also exploit popularity and productivity in modeling the real scale-free networks with power law degree distributions. To incorporate the contents in text-associated networks, we propose a combined model which combines the PPSB model with a discriminative model that models the community memberships of nodes by their contents. We then develop expectation-maximization (EM) algorithms to infer the parameters in the two models. Experiments on synthetic and real networks have demonstrated that the proposed models can yield better performances than previous models, especially on networks with general structures.

  11. Enhanced Bioactivity of α-Tocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity.

    Science.gov (United States)

    Palao-Suay, Raquel; Aguilar, María Rosa; Parra-Ruiz, Francisco J; Maji, Samarendra; Hoogenboom, Richard; Rohner, Nathan A; Thomas, Susan N; Román, Julio San

    2016-12-01

    Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action. The aim of this work is to demonstrate that the bioactivity of synthetic NPs based on defined reversible addition-fragmentation chain transfer polymerization copolymers can be enhanced by the introduction of hydrophilic comonomers in the hydrophobic segment. The amphiphilic terpolymers are based on poly(ethylene glycol) (PEG) as hydrophilic block, and a hydrophobic block based on a methacrylic derivative of α-tocopheryl succinate (MTOS) and small amounts of 2-hydroxyethyl methacrylate (HEMA) (PEG-b-poly(MTOS-co-HEMA)). The introduction of HEMA reduces hydrophobicity and introduces "disorder" both in the homogeneous blocks and the compact core of the corresponding NPs. These NPs are able to encapsulate additional α-tocopheryl succinate (α-TOS) with high efficiency and their biological activity is much higher than that described for the unmodified copolymers, proposedly due to more efficient degradation and release of α-TOS, demonstrating the importance of the hydrophilic-hydrophobic balance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Performance Evaluation of Frequency Transform Based Block Classification of Compound Image Segmentation Techniques

    Science.gov (United States)

    Selwyn, Ebenezer Juliet; Florinabel, D. Jemi

    2018-04-01

    Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.

  13. Hardware realization of chaos based block cipher for image encryption

    KAUST Repository

    Barakat, Mohamed L.; Radwan, Ahmed G.; Salama, Khaled N.

    2011-01-01

    Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. The proposed system is tested for known cryptanalysis attacks and for different block sizes. When implemented on Virtex-IV, system performance showed high throughput and utilized small area. Passing successfully in all tests, our system proved to be secure with all block sizes. © 2011 IEEE.

  14. Hardware realization of chaos based block cipher for image encryption

    KAUST Repository

    Barakat, Mohamed L.

    2011-12-01

    Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. The proposed system is tested for known cryptanalysis attacks and for different block sizes. When implemented on Virtex-IV, system performance showed high throughput and utilized small area. Passing successfully in all tests, our system proved to be secure with all block sizes. © 2011 IEEE.

  15. Contributions to Estimation and Testing Block Covariance Structures in Multivariate Normal Models

    OpenAIRE

    Liang, Yuli

    2015-01-01

    This thesis concerns inference problems in balanced random effects models with a so-called block circular Toeplitz covariance structure. This class of covariance structures describes the dependency of some specific multivariate two-level data when both compound symmetry and circular symmetry appear simultaneously. We derive two covariance structures under two different invariance restrictions. The obtained covariance structures reflect both circularity and exchangeability present in the data....

  16. Crustal block structure by GPS data using neural network in the Northern Tien Shan

    Science.gov (United States)

    Kostuk, A.; Carmenate, D.

    2010-05-01

    For over ten years regular GPS measurements have been carried out by Research Station RAS in the Central Asia. The results of these measurements have not only proved the conclusion that the Earth's crust meridional compression equals in total about 17 mm/year from the Tarim massif to the Kazakh shield, but have also allowed estimating deformation behavior in the region. As is known, deformation behavior of continental crust is an actively discussed issue. On the one hand, the Earth's crust is presented as a set of microplates (blocks) and deformation here is a result of shifting along the blocks boundaries, on the other hand, lithospheric deformation is distributed by volume and meets the rheological model of nonlinear viscous fluid. This work represents an attempt to detect the block structure of the surface of the Northern Tien Shan using GPS velocity fields. As a significant difference from analogous works, appears the vector field clustering with the help of neural network used as a classifier by many criteria that allows dividing input space into areas and using of all three components of GPS velocity. In this case, we use such a feature of neural networks as self-organization. Among the mechanisms of self-organization there are two main classes: self-organization based on the Hebb associative rule and the mechanism of neuronal competition based on the generalized Kohonen rule. In this case, we use an approach of self-organizing networks in which we take neuronal competition as an algorithm for their training. As a rule, these are single-layer networks where each neuron is connected to all components of m-dimensional input vector. GPS vectors of the Central Asian velocity field located within the territory of the Northern Tien Shan were used as input patterns. Measurements at GPS sites were fulfilled in 36 hour-long sessions by double-frequency receivers Trimble and Topcon. In so doing, measurement discreteness equaled 30 seconds; the data were processed by

  17. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Bingjian [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China); College of chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014 (China); Zhu, Qingzeng, E-mail: qzzhu@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China); Yao, Linli [Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, 250012 Jinan (China); Hao, Jingcheng [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Honeycomb-structured PEG-PLA porous films were fabricated. • The organization of pores depends on molecular weight ratio of PEG-to-PLA block. • The pores in the film were internally decorated with a layer of PEG. • The honeycomb-structured PEG-PLA film was suitable as a substrate for cell growth. - Abstract: A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 10{sup 3}:3.0 × 10{sup 4}. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  18. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    International Nuclear Information System (INIS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-01-01

    Graphical abstract: - Highlights: • Honeycomb-structured PEG-PLA porous films were fabricated. • The organization of pores depends on molecular weight ratio of PEG-to-PLA block. • The pores in the film were internally decorated with a layer of PEG. • The honeycomb-structured PEG-PLA film was suitable as a substrate for cell growth. - Abstract: A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 10 3 :3.0 × 10 4 . The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth

  19. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM.

    Science.gov (United States)

    Maity, Sudhangshu; Jana, Tushar

    2014-05-14

    A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBI), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-PBI (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (Tg), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct Tg peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and para-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (Mn) of blocks were increased from 1000 to 5500 then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.

  20. [Construction of haplotype and haplotype block based on tag single nucleotide polymorphisms and their applications in association studies].

    Science.gov (United States)

    Gu, Ming-liang; Chu, Jia-you

    2007-12-01

    Human genome has structures of haplotype and haplotype block which provide valuable information on human evolutionary history and may lead to the development of more efficient strategies to identify genetic variants that increase susceptibility to complex diseases. Haplotype block can be divided into discrete blocks of limited haplotype diversity. In each block, a small fraction of ptag SNPsq can be used to distinguish a large fraction of the haplotypes. These tag SNPs can be potentially useful for construction of haplotype and haplotype block, and association studies in complex diseases. There are two general classes of methods to construct haplotype and haplotype blocks based on genotypes on large pedigrees and statistical algorithms respectively. The author evaluate several construction methods to assess the power of different association tests with a variety of disease models and block-partitioning criteria. The advantages, limitations and applications of each method and the application in the association studies are discussed equitably. With the completion of the HapMap and development of statistical algorithms for addressing haplotype reconstruction, ideas of construction of haplotype based on combination of mathematics, physics, and computer science etc will have profound impacts on population genetics, location and cloning for susceptible genes in complex diseases, and related domain with life science etc.

  1. Heuristic algorithms for feature selection under Bayesian models with block-diagonal covariance structure.

    Science.gov (United States)

    Foroughi Pour, Ali; Dalton, Lori A

    2018-03-21

    Many bioinformatics studies aim to identify markers, or features, that can be used to discriminate between distinct groups. In problems where strong individual markers are not available, or where interactions between gene products are of primary interest, it may be necessary to consider combinations of features as a marker family. To this end, recent work proposes a hierarchical Bayesian framework for feature selection that places a prior on the set of features we wish to select and on the label-conditioned feature distribution. While an analytical posterior under Gaussian models with block covariance structures is available, the optimal feature selection algorithm for this model remains intractable since it requires evaluating the posterior over the space of all possible covariance block structures and feature-block assignments. To address this computational barrier, in prior work we proposed a simple suboptimal algorithm, 2MNC-Robust, with robust performance across the space of block structures. Here, we present three new heuristic feature selection algorithms. The proposed algorithms outperform 2MNC-Robust and many other popular feature selection algorithms on synthetic data. In addition, enrichment analysis on real breast cancer, colon cancer, and Leukemia data indicates they also output many of the genes and pathways linked to the cancers under study. Bayesian feature selection is a promising framework for small-sample high-dimensional data, in particular biomarker discovery applications. When applied to cancer data these algorithms outputted many genes already shown to be involved in cancer as well as potentially new biomarkers. Furthermore, one of the proposed algorithms, SPM, outputs blocks of heavily correlated genes, particularly useful for studying gene interactions and gene networks.

  2. Nanoporous polymeric nanofibers based on selectively etched PS-b-PDMS block copolymers.

    Science.gov (United States)

    Demirel, Gokcen B; Buyukserin, Fatih; Morris, Michael A; Demirel, Gokhan

    2012-01-01

    One-dimensional nanoporous polymeric nanofibers have been fabricated within an anodic aluminum oxide (AAO) membrane by a facile approach based on selective etching of poly(dimethylsiloxane) (PDMS) domains in polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) block copolymers that had been formed within the AAO template. It was observed that prior to etching, the well-ordered PS-b-PDMS nanofibers are solid and do not have any porosity. The postetched PS nanofibers, on the other hand, had a highly porous structure having about 20-50 nm pore size. The nanoporous polymeric fibers were also employed as a drug carrier for the native, continuous, and pulsatile drug release using Rhodamine B (RB) as a model drug. These studies showed that enhanced drug release and tunable drug dosage can be achieved by using ultrasound irradiation. © 2011 American Chemical Society

  3. Relationship between Structural and Stress Relaxation in a Block-Copolymer Melt

    International Nuclear Information System (INIS)

    Patel, Amish J.; Narayanan, Suresh; Sandy, Alec; Mochrie, Simon G. J.; Garetz, Bruce A.; Watanabe, Hiroshi; Balsara, Nitash P.

    2006-01-01

    The relationship between structural relaxation on molecular length scales and macroscopic stress relaxation was explored in a disordered block-copolymer melt. Experiments show that the structural relaxation time, measured by x-ray photon correlation spectroscopy is larger than the terminal stress relaxation time, measured by rheology, by factors as large as 100. We demonstrate that the structural relaxation data are dominated by the diffusion of intact micelles while the stress relaxation data are dominated by contributions due to disordered concentration fluctuations

  4. Self-assembled structures of amphiphilic ionic block copolymers: Theory, self-consistent field modeling and experiment

    NARCIS (Netherlands)

    Borisov, O.V.; Zhulina, E.B.; Leermakers, F.A.M.; Muller, A.H.E.

    2011-01-01

    We present an overview of statistical thermodynamic theories that describe the self-assembly of amphiphilic ionic/hydrophobic diblock copolymers in dilute solution. Block copolymers with both strongly and weakly dissociating (pH-sensitive) ionic blocks are considered. We focus mostly on structural

  5. AFM study of excimer laser patterning of block-copolymer: Creation of ordered hierarchical, hybrid, or recessed structures

    International Nuclear Information System (INIS)

    Švanda, Jan; Siegel, Jakub; Švorčík, Vaclav; Lyutakov, Oleksiy

    2016-01-01

    Highlights: • Combination of bottom-up (BCP separation) and top-down (laser patterning) technologies allows obtaining hierarchical structures. • Surface morphologies were determined by the order of patterning steps (laser modification, annealing, surface reconstruction). • Tuning the order of steps enables the reorientation of BCP domain at large scale, fabrication of hierarchical, hybrid or recessed structures. • The obtained structures can find potential applications in nanotechnology, plasmonics, information storage, sensors and smart surfaces. - Abstract: We report fabrication of the varied range of hierarchical structures by combining bottom-up self-assembly of block copolymer poly(styrene-block-vinylpyridine) (PS-b-P4VP) with top-down excimer laser patterning method. Different procedures were tested, where laser treatment was applied before phase separation and after phase separation or phase separation and surface reconstruction. Laser treatment was performed using either polarized laser light with the aim to create periodical pattern on polymer surface or non-polarized light for preferential removing of polystyrene (PS) part from PS-b-P4VP. Additionally, dye was introduced into one part of block copolymer (P4VP) with the aim to modify its response to laser light. Resulting structures were analyzed by XPS, UV–vis and AFM techniques. Application of polarized laser light leads to creation of structures with hierarchical, recessed or hybrid geometries. Non-polarized laser beam allows pronouncing the block copolymer phase separated structure. Tuning the order of steps or individual step conditions enables the efficient reorientation of block-copolymer domain at large scale, fabrication of hierarchical, hybrid or recessed structures. The obtained structures can find potential applications in nanotechnology, photonics, plasmonics, information storage, optical devices, sensors and smart surfaces.

  6. Warped Discrete Cosine Transform-Based Low Bit-Rate Block Coding Using Image Downsampling

    Directory of Open Access Journals (Sweden)

    Ertürk Sarp

    2007-01-01

    Full Text Available This paper presents warped discrete cosine transform (WDCT-based low bit-rate block coding using image downsampling. While WDCT aims to improve the performance of conventional DCT by frequency warping, the WDCT has only been applicable to high bit-rate coding applications because of the overhead required to define the parameters of the warping filter. Recently, low bit-rate block coding based on image downsampling prior to block coding followed by upsampling after the decoding process is proposed to improve the compression performance for low bit-rate block coders. This paper demonstrates that a superior performance can be achieved if WDCT is used in conjunction with image downsampling-based block coding for low bit-rate applications.

  7. The Organization of Nanoporous Structure Using Controlled Micelle Size from MPEG-b-PDLLA Block Copolymers

    International Nuclear Information System (INIS)

    Chang, Jeong Ho; Kim, Kyung Ja; Shin, Young Kook

    2004-01-01

    Selected MPEG-b-PDLLA block copolymers have been synthesized by ring-opening polymerization with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. The size and shape of the micelles that spontaneously form in solution are then controlled by the characteristics of the block copolymer template. All the materials prepared in this study showed the tunable pore size of 20-80 A with the increase of hydrophobic chain lengths and up to 660 m 2 /g of specific surface area. The formation mechanism of these nanoporous structures obtained by controlling the micelle size has been confirmed using both liquid and solid state 13 C and 29 Si NMR techniques. This work verifies the formation mechanism of nanoporous structures in which the pore size and wall thickness are closely dependent on the size of hydrophobic cores and hydrophilic shells of the block copolymer templates

  8. Ship Block Transportation Scheduling Problem Based on Greedy Algorithm

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2016-05-01

    Full Text Available Ship block transportation problems are crucial issues to address in reducing the construction cost and improving the productivity of shipyards. Shipyards aim to maximize the workload balance of transporters with time constraint such that all blocks should be transported during the planning horizon. This process leads to three types of penalty time: empty transporter travel time, delay time, and tardy time. This study aims to minimize the sum of the penalty time. First, this study presents the problem of ship block transportation with the generalization of the block transportation restriction on the multi-type transporter. Second, the problem is transformed into the classical traveling salesman problem and assignment problem through a reasonable model simplification and by adding a virtual node to the proposed directed graph. Then, a heuristic algorithm based on greedy algorithm is proposed to assign blocks to available transporters and sequencing blocks for each transporter simultaneously. Finally, the numerical experiment method is used to validate the model, and its result shows that the proposed algorithm is effective in realizing the efficient use of the transporters in shipyards. Numerical simulation results demonstrate the promising application of the proposed method to efficiently improve the utilization of transporters and to reduce the cost of ship block logistics for shipyards.

  9. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  10. Assessment of Structural Strength of Commercial Sandcrete Blocks in Kano State

    Directory of Open Access Journals (Sweden)

    M. Mohammed

    2014-12-01

    Full Text Available This research was aimed at studying the strength properties of the commercial sandcrete blocks produced in Kano State. A total number of 250 block samples were randomly collected from five local government areas, fifty (50 from each of the local governments and cured for 3, 7, 14, 21 and 28 days. The blocks were subjected to various tests at wet and dry conditions as follow: wet compressive test, drying shrinkage, moisture movement and density all in accordance with established standards in the structural laboratory of Department of Civil Engineering, Ahmadu Bello University, Zaria, and the aggregates were subjected to sieve analysis and moisture content determination in the Geotechnical Laboratory of the department. The compressive strength was found to be between 0.25 N/mm2 and 0.92 N/mm2 which are far below the specified values (2.5 N/mm2 to 3.45N/mm2 respectively in the Nigerian Industrial Standard (NIS 87, 2000. It is concluded that the commercially produced sandcrete blocks in Kano State are of lower standard than expected. It is recommended that workshop should be organised periodically to enlighten the producers of sandcrete blocks. The importance of adhering to standard specifications should be emphasised and strict penalties be meted out to erring producers by the Nigerian Industrial Standard Organisation.

  11. Analysis of blocking probability for OFDM-based variable bandwidth optical network

    Science.gov (United States)

    Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi

    2011-12-01

    Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.

  12. Substrate structures for InP-based devices

    International Nuclear Information System (INIS)

    Wanlass, M.W.; Sheldon, P.

    1990-01-01

    A substrate structure for an InP-based semiconductor device having an InP based film is described. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at the opposite end to the InP=based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device

  13. Origami-inspired building block and parametric design for mechanical metamaterials

    Science.gov (United States)

    Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo

    2016-08-01

    An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.

  14. Origami-inspired building block and parametric design for mechanical metamaterials

    International Nuclear Information System (INIS)

    Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo

    2016-01-01

    An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures. (paper)

  15. Structure and ionic conductivity of block copolymer electrolytes over a wide salt concentration range

    Science.gov (United States)

    Chintapalli, Mahati; Le, Thao; Venkatesan, Naveen; Thelen, Jacob; Rojas, Adriana; Balsara, Nitash

    Block copolymer electrolytes are promising materials for safe, long-lasting lithium batteries because of their favorable mechanical and ion transport properties. The morphology, phase behavior, and ionic conductivity of a block copolymer electrolyte, SEO mixed with LiTFSI was studied over a wide, previously unexplored salt concentration range using small angle X-ray scattering, differential scanning calorimetry and ac impedance spectroscopy, respectively. SEO exhibits a maximum in ionic conductivity at twice the salt concentration that PEO, the homopolymer analog of the ion-containing block, does. This finding is contrary to prior studies that examined a more limited range of salt concentrations. In SEO, the phase behavior of the PEO block and LiTFSI closely resembles the phase behavior of homopolymer PEO and LiTFSI. The grain size of the block copolymer morphology was found to decrease with increasing salt concentration, and the ionic conductivity of SEO correlates with decreasing grain size. Structural effects impact the ionic conductivity-salt concentration relationship in block copolymer electrolytes. SEO: polystyrene-block-poly(ethylene oxide); also PS-PEO LiTFSI: lithium bis(trifluoromethanesulfonyl imide

  16. Adaptive block online learning target tracking based on super pixel segmentation

    Science.gov (United States)

    Cheng, Yue; Li, Jianzeng

    2018-04-01

    Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.

  17. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model

    NARCIS (Netherlands)

    Morales Hurtado, Marina; de Vries, Erik G.; Zeng, Xiangqiong; van der Heide, Emile

    2016-01-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating

  18. Synthesis of Fluorinated Amphiphilic Block Copolymers Based on PEGMA, HEMA, and MMA via ATRP and CuAAC Click Chemistry

    Directory of Open Access Journals (Sweden)

    Fatime Eren Erol

    2014-01-01

    Full Text Available Synthesis of fluorinated amphiphilic block copolymers via atom transfer radical polymerization (ATRP and Cu(I catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC was demonstrated. First, a PEGMA and MMA based block copolymer carrying multiple side-chain acetylene moieties on the hydrophobic segment for postfunctionalization was carried out. This involves the synthesis of a series of P(HEMA-co-MMA random copolymers to be employed as macroinitiators in the controlled synthesis of P(HEMA-co-MMA-block-PPEGMA block copolymers by using ATRP, followed by a modification step on the hydroxyl side groups of HEMA via Steglich esterification to afford propargyl side-functional polymer, alkyne-P(HEMA-co-MMA-block-PPEGMA. Finally, click coupling between side-chain acetylene functionalities and 2,3,4,5,6-pentafluorobenzyl azide yielded fluorinated amphiphilic block copolymers. The obtained polymers were structurally characterized by 1H-NMR, 19F-NMR, FT-IR, and GPC. Their thermal characterizations were performed using DSC and TGA.

  19. Effects of structural characteristics on the productivity of shale gas wells: A case study on the Jiaoshiba Block in the Fuling shale gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Ming Hu

    2018-03-01

    Full Text Available For the sake of figuring out the influential mechanisms of structural characteristics on the productivity of shale gas wells, the structural characteristics of the Jiaoshiba Block in the Fuling shale gasfield, Sichuan Basin, were analyzed. Then, based on well test data of more than 190 horizontal wells, the effects of structures on shale gas well productivity were discussed systematically, and the main structural factors of different structural units in the Jiaoshiba Block that influence the productivity of shale gas wells were clarified. The following results were obtained. First, the structural units in the Jiaoshiba Block were obviously different in structural characteristics and their deformation strength is different. Second, the influence of structural characteristics on shale gas well productivity is directly manifested in gas-bearing property and fracturing effect. The stronger the structural deformation and the more developed the large faults and natural fractures, the more easily shale gas escapes and the poorer the gas bearing property will be, and vice versa. Third, The stronger the structural deformation, the more developed the fractures, the greater the burial depth and the higher the compressive stress of negative structures, the worse the fracturing effect will be, and vice versa. And fourth, Tectonics is the key factor controlling the difference of shale gas productivity between different structural units in the Jiaoshiba Block, but the main structural factors influencing the productivity are different in different structural units. Keywords: Sichuan Basin, Fuling shale gasfield, Jiaoshiba, Shale gas, Structural characteristics, Gas bearing property, Fracturing, Productivity

  20. Protograph based LDPC codes with minimum distance linearly growing with block size

    Science.gov (United States)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.

  1. Nano-structured micropatterns by combination of block copolymer self-assembly and UV photolithography

    International Nuclear Information System (INIS)

    Gorzolnik, B; Mela, P; Moeller, M

    2006-01-01

    A procedure for the fabrication of nano-structured micropatterns by direct UV photo-patterning of a monolayer of a self-assembled block copolymer/transition metal hybrid structure is described. The method exploits the selective photochemical modification of a self-assembled monolayer of hexagonally ordered block copolymer micelles loaded with a metal precursor salt. Solvent development of the monolayer after irradiation results in the desired pattern of micelles on the surface. Subsequent plasma treatment of the pattern leaves ordered metal nanodots. The presented technique is a simple and low-cost combination of 'top-down' and 'bottom-up' approaches that allows decoration of large areas with periodic and aperiodic patterns of nano-objects, with good control over two different length scales: nano- and micrometres

  2. New poly(dimethylsiloxane)/poly(perfluorooctylethyl acrylate) block copolymers: structure and order across multiple length scales in thin films

    KAUST Repository

    Martinelli, Elisa; Galli, Giancarlo; Krishnan, Sitaraman; Paik, Marvin Y.; Ober, Christopher K.; Fischer, Daniel A.

    2011-01-01

    Three sets of a new class of low surface tension block copolymers were synthesized consisting of a poly(dimethylsiloxane) (PDMS) block and a poly(perfluorooctylethyl acrylate) (AF8) block. The polymers were prepared using a bromo-terminated PDMS macroinitiator, to which was attached an AF8 block grown using atom transfer radical polymerization (ATRP) in such a designed way that the molecular weight and composition of the two polymer blocks were regularly varied. The interplay of both the phase separated microstructure and the mesomorphic character of the fluorinated domains with their effect on surface structure was evaluated using a suite of analytical tools. Surfaces of spin-coated and thermally annealed films were assessed using a combination of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) studies. Both atomic force microscopy (AFM) measurements and grazing incidence small angle X-ray scattering (GISAXS) studies were carried out to evaluate the microstructure of the thin films. Even in block copolymers in which the PDMS block was the majority component, a significant presence of the lower surface energy AF8 block was detected at the film surface. Moreover, the perfluorooctyl helices of the AF8 repeat units were highly oriented at the surface in an ordered, tilted smectic structure, which was compared with those of the bulk powder samples using wide-angle X-ray powder diffraction (WAXD) studies. © 2011 The Royal Society of Chemistry.

  3. Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers

    DEFF Research Database (Denmark)

    Schulte, Lars; Grydgaard, Anne; Jakobsen, Mathilde R.

    2011-01-01

    matrix component) and secondly degrading PDMS (the expendable component). Depending on the temperature of the cross-linking reaction different morphologies can be ‘frozen’ from the same block copolymer. Starting with a block copolymer precursor of lamellar morphology at room temperature, the gyroid...... structure or a metastable structure showing hexagonal symmetry (probably HPL) were permanently captured by cross-linking the precursor at 140 °C or at 85 °C, respectively. PDMS was degraded by reaction with tetrabutylamonium fluoride; considerations on the mechanism of cleaving reaction are presented...

  4. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee

    2014-04-11

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  5. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee; Moore, David T; Saliba, Michael; Sai, Hiroaki; Estroff, Lara A; Hanrath, Tobias; Snaith, Henry J; Wiesner, Ulrich

    2014-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  6. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    Science.gov (United States)

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  7. Synthesis, characterizations and biocompatibility of novel biodegradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone)

    DEFF Research Database (Denmark)

    Wu, Linping; Wang, Liang; Wang, Xiaojuan

    2010-01-01

    Star block copolymers based on poly[(R)-3-hydroxybutyrate] (PHB) and poly(epsilon-caprolactone) (PCL), termed SPHBCL, were successfully synthesized with structural variation on arm numbers and lengths via coupling reactions and ring opening polymerizations. Arm numbers 3, 4 and 6 of SPHBCL were...... weights of the SPHBCL due to the discrepancy of star copolymer structures. The melting temperature of SPHBCL decreased with increasing degree of branching. Thermal decomposition temperature was revealed to be lower than that of linear block copolymer LPHBCL counterparts based on PHB and PCL. Films made...... from various SPHBCL copolymers had different porous or networking surface morphology, and all possessed improved biocompatibility in terms of less blood clotting and more osteoblast cell growth compared with their corresponding homopolymers PHB and PCL. Among them, it was found, however, that the 4-arm...

  8. Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Beckingsale, D. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Gaudin, W. P. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Hornung, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gunney, B. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gamblin, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herdman, J. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Jarvis, S. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom)

    2014-11-17

    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.

  9. Block Access Token Renewal Scheme Based on Secret Sharing in Apache Hadoop

    Directory of Open Access Journals (Sweden)

    Su-Hyun Kim

    2014-07-01

    Full Text Available In a cloud computing environment, user data is encrypted and stored using a large number of distributed servers. Global Internet service companies such as Google and Yahoo have recognized the importance of Internet service platforms and conducted their own research and development to utilize large cluster-based cloud computing platform technologies based on low-cost commercial off-the-shelf nodes. Accordingly, as various data services are now allowed over a distributed computing environment, distributed management of big data has become a major issue. On the other hand, security vulnerability and privacy infringement due to malicious attackers or internal users can occur by means of various usage types of big data. In particular, various security vulnerabilities can occur in the block access token, which is used for the permission control of data blocks in Hadoop. To solve this problem, we have proposed a weight-applied XOR-based efficient distribution storage and recovery scheme in this paper. In particular, various security vulnerabilities can occur in the block access token, which is used for the permission control of data blocks in Hadoop. In this paper, a secret sharing-based block access token management scheme is proposed to overcome such security vulnerabilities.

  10. Research of Block-Based Motion Estimation Methods for Video Compression

    Directory of Open Access Journals (Sweden)

    Tropchenko Andrey

    2016-08-01

    Full Text Available This work is a review of the block-based algorithms used for motion estimation in video compression. It researches different types of block-based algorithms that range from the simplest named Full Search to the fast adaptive algorithms like Hierarchical Search. The algorithms evaluated in this paper are widely accepted by the video compressing community and have been used in implementing various standards, such as MPEG-4 Visual and H.264. The work also presents a very brief introduction to the entire flow of video compression.

  11. Intramolecular structures in a single copolymer chain consisting of flexible and semiflexible blocks: Monte Carlo simulation of a lattice model

    International Nuclear Information System (INIS)

    Martemyanova, Julia A; Ivanov, Victor A; Paul, Wolfgang

    2014-01-01

    We study conformational properties of a single multiblock copolymer chain consisting of flexible and semiflexible blocks. Monomer units of different blocks are equivalent in the sense of the volume interaction potential, but the intramolecular bending potential between successive bonds along the chain is different. We consider a single flexible-semiflexible regular multiblock copolymer chain with equal content of flexible and semiflexible units and vary the length of the blocks and the stiffness parameter. We perform flat histogram type Monte Carlo simulations based on the Wang-Landau approach and employ the bond fluctuation lattice model. We present here our data on different non-trivial globular morphologies which we have obtained in our model for different values of the block length and the stiffness parameter. We demonstrate that the collapse can occur in one or in two stages depending on the values of both these parameters and discuss the role of the inhomogeneity of intraglobular distributions of monomer units of both flexible and semiflexible blocks. For short block length and/or large stiffness the collapse occurs in two stages, because it goes through intermediate (meta-)stable structures, like a dumbbell shaped conformation. In such conformations the semiflexible blocks form a cylinder-like core, and the flexible blocks form two domains at both ends of such a cylinder. For long block length and/or small stiffness the collapse occurs in one stage, and in typical conformations the flexible blocks form a spherical core of a globule while the semiflexible blocks are located on the surface and wrap around this core.

  12. Analysis of the aggregation structure from amphiphilic block copolymers in solutions by small-angle x-ray scattering

    CERN Document Server

    Rong Li Xia; Wang Jun; Wei Liu He; Li Fu Mian; Li Zi Chen

    2002-01-01

    The aggregation structure of polystyrene-p vinyl benzoic amphiphilic block copolymers which were prepared in different conditions was investigated by synchrotron radiation small-angle x-ray scattering (SAXS). The micelle was self-assembled in selective solvents of the block copolymers. Authors' results demonstrate that the structure of the micelle depends on the factors, such as the composition of the copolymers, the nature of the solvent and the concentration of the solution

  13. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea

    Science.gov (United States)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian

    2016-12-01

    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  14. Optimizing block-based maintenance under random machine usage

    NARCIS (Netherlands)

    de Jonge, Bram; Jakobsons, Edgars

    Existing studies on maintenance optimization generally assume that machines are either used continuously, or that times until failure do not depend on the actual usage. In practice, however, these assumptions are often not realistic. In this paper, we consider block-based maintenance optimization

  15. Automatic registration of remote sensing images based on SIFT and fuzzy block matching for change detection

    Directory of Open Access Journals (Sweden)

    Cai Guo-Rong

    2011-10-01

    Full Text Available This paper presents an automated image registration approach to detecting changes in multi-temporal remote sensing images. The proposed algorithm is based on the scale invariant feature transform (SIFT and has two phases. The first phase focuses on SIFT feature extraction and on estimation of image transformation. In the second phase, Structured Local Binary Haar Pattern (SLBHP combined with a fuzzy similarity measure is then used to build a new and effective block similarity measure for change detection. Experimental results obtained on multi-temporal data sets show that compared with three mainstream block matching algorithms, the proposed algorithm is more effective in dealing with scale, rotation and illumination changes.

  16. Completely random measures for modelling block-structured sparse networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Schmidt, Mikkel Nørgaard; Mørup, Morten

    2016-01-01

    Many statistical methods for network data parameterize the edge-probability by attributing latent traits to the vertices such as block structure and assume exchangeability in the sense of the Aldous-Hoover representation theorem. Empirical studies of networks indicate that many real-world networks...... have a power-law distribution of the vertices which in turn implies the number of edges scale slower than quadratically in the number of vertices. These assumptions are fundamentally irreconcilable as the Aldous-Hoover theorem implies quadratic scaling of the number of edges. Recently Caron and Fox...

  17. Ground reaction curve based upon block theory

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.; Goodman, R.E.

    1985-09-01

    Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. Once a potentially unstable block is identified, the forces affecting it can be calculated to assess its stability. The normal and shear stresses on each block face before displacement are calculated using elastic theory and are modified in a nonlinear way by discontinuity deformations as the keyblock displaces. The stresses are summed into resultant forces to evaluate block stability. Since the resultant forces change with displacement, successive increments of block movement are examined to see whether the block ultimately becomes stable or fails. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were evaluated. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls blocks displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability increases as blocks become more slender

  18. Error Concealment using Neural Networks for Block-Based Image Coding

    Directory of Open Access Journals (Sweden)

    M. Mokos

    2006-06-01

    Full Text Available In this paper, a novel adaptive error concealment (EC algorithm, which lowers the requirements for channel coding, is proposed. It conceals errors in block-based image coding systems by using neural network. In this proposed algorithm, only the intra-frame information is used for reconstruction of the image with separated damaged blocks. The information of pixels surrounding a damaged block is used to recover the errors using the neural network models. Computer simulation results show that the visual quality and the MSE evaluation of a reconstructed image are significantly improved using the proposed EC algorithm. We propose also a simple non-neural approach for comparison.

  19. Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.

    Science.gov (United States)

    Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C

    2014-08-01

    A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantum Image Steganography and Steganalysis Based On LSQu-Blocks Image Information Concealing Algorithm

    Science.gov (United States)

    A. AL-Salhi, Yahya E.; Lu, Songfeng

    2016-08-01

    Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.

  1. A new block cipher based on chaotic map and group theory

    International Nuclear Information System (INIS)

    Yang Huaqian; Liao Xiaofeng; Wong Kwokwo; Zhang Wei; Wei Pengcheng

    2009-01-01

    Based on the study of some existing chaotic encryption algorithms, a new block cipher is proposed. In the proposed cipher, two sequences of decimal numbers individually generated by two chaotic piecewise linear maps are used to determine the noise vectors by comparing the element of the two sequences. Then a sequence of decimal numbers is used to define a bijection map. The modular multiplication operation in the group Z 2 8 +1 * and permutations are alternately applied on plaintext with block length of multiples of 64 bits to produce ciphertext blocks of the same length. Analysis show that the proposed block cipher does not suffer from the flaws of pure chaotic cryptosystems.

  2. Emplacement of small and large buffer blocks

    International Nuclear Information System (INIS)

    Saari, H.; Nikula, M.; Suikki, M.

    2010-05-01

    The report describes emplacement of a buffer structure encircling a spent fuel canister to be deposited in a vertical hole. The report deals with installability of various size blocks and with an emplacement gear, as well as evaluates the achieved quality of emplacement and the time needed for installing the buffer. Two block assembly of unequal size were chosen for examination. A first option involved small blocks, the use of which resulted in a buffer structure consisting of small sector blocks 200 mm in height. A second option involved large blocks, resulting in a buffer structure which consists of eight blocks. In these tests, the material chosen for both block options was concrete instead of bentonite. The emplacement test was a three-phase process. A first phase included stacking a two meter high buffer structure with small blocks for ensuring the operation of test equipment and blocks. A second phase included installing buffer structures with both block options to a height matching that of a canister-encircling cylindrical component. A third phase included testing also the installability of blocks to be placed above the canister by using small blocks. In emplacement tests, special attention was paid to the installability of blocks as well as to the time required for emplacement. Lifters for both blocks worked well. Due to the mass to be lifted, the lifter for large blocks had a more heavy-duty frame structure (and other lifting gear). The employed lifters were suspended in the tests on a single steel wire rope. Stacking was managed with both block sizes at adequate precision and stacked-up towers were steady. The stacking of large blocks was considerably faster. Therefore it is probably that the overall handling of the large blocks will be more convenient at a final disposal site. From the standpoint of reliability in lifting, the small blocks were safer to install above the canister. In large blocks, there are strict shape-related requirements which are

  3. Design of Packet-Based Block Codes with Shift Operators

    Directory of Open Access Journals (Sweden)

    Ilow Jacek

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of information packets to construct redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  4. On the interaction of the morphological structure and the LC behaviour of LC side chain block copolymers

    NARCIS (Netherlands)

    Fischer, H.R.; Poser, S.; Arnold, M.

    1995-01-01

    The interaction between morphological structure and phase behaviour of a LC side group block copolymer has been investigated using DSC, TEM and small angle X-ray diffraction. All samples of Polystyrene-block-2-(3-cholesteryloxycarbonyloxy)ethyl methacrylate (PS-b-PChEMA) show a phase separation

  5. A novel block cryptosystem based on iterating a chaotic map

    International Nuclear Information System (INIS)

    Xiang Tao; Liao Xiaofeng; Tang Guoping; Chen Yong; Wong, Kwok-wo

    2006-01-01

    A block cryptographic scheme based on iterating a chaotic map is proposed. With random binary sequences generated from the real-valued chaotic map, the plaintext block is permuted by a key-dependent shift approach and then encrypted by the classical chaotic masking technique. Simulation results show that performance and security of the proposed cryptographic scheme are better than those of existing algorithms. Advantages and security of our scheme are also discussed in detail

  6. Adaptive bit plane quadtree-based block truncation coding for image compression

    Science.gov (United States)

    Li, Shenda; Wang, Jin; Zhu, Qing

    2018-04-01

    Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.

  7. Text extraction method for historical Tibetan document images based on block projections

    Science.gov (United States)

    Duan, Li-juan; Zhang, Xi-qun; Ma, Long-long; Wu, Jian

    2017-11-01

    Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.

  8. Reflection of block neotectonics in geological structure of paleogene strata of Chornobyl exclusion zone

    International Nuclear Information System (INIS)

    Skvortsov, V.V.; Oleksandrova, N.V.; Khodorovs'kij, A.Ya.

    2014-01-01

    Neotectonic block differentiation of Chernobyl Exclusion zone area was fixed by the results of the geological and structure analysis of paleogene strata in complex with the space survey data interpretation. Structural plan of the latest tectonic movements had a block character; it was shown by the fracture systems, which represent the components of known regional tectonic zones of various trends and are found in the features of phanerozoic rock mass structure. The territory under study is divided into two parts - the northern one, where in the neotectonic movements are generally more intensive with manifestation practically all over the fracture zones, and the southern part, where in the newest breaks belong mainly to submeridional also to south-western regional fracture zones. The southern part of the Exclusion zone, as a whole, holds the greatest promise by comparison with the northern one in the view of neotectonic criteria regarding the geological repository siting for radioactive waste disposal

  9. Saturation Detection-Based Blocking Scheme for Transformer Differential Protection

    Directory of Open Access Journals (Sweden)

    Byung Eun Lee

    2014-07-01

    Full Text Available This paper describes a current differential relay for transformer protection that operates in conjunction with a core saturation detection-based blocking algorithm. The differential current for the magnetic inrush or over-excitation has a point of inflection at the start and end of each saturation period of the transformer core. At these instants, discontinuities arise in the first-difference function of the differential current. The second- and third-difference functions convert the points of inflection into pulses, the magnitudes of which are large enough to detect core saturation. The blocking signal is activated if the third-difference of the differential current is larger than the threshold and is maintained for one cycle. In addition, a method to discriminate between transformer saturation and current transformer (CT saturation is included. The performance of the proposed blocking scheme was compared with that of a conventional harmonic blocking method. The test results indicate that the proposed scheme successfully discriminates internal faults even with CT saturation from the magnetic inrush, over-excitation, and external faults with CT saturation, and can significantly reduce the operating time delay of the relay.

  10. On the interaction of the morphological structure and the LC behaviour of LC side chain block copolymers

    NARCIS (Netherlands)

    Fischer, H.R.; Arnold, M.

    1995-01-01

    The interaction between morphological structure and phase behaviour of a group of LC side group block copolymers have been investigated using DSC, TEM and small angle X-ray diffraction. Generally, phase separation between the two blocks was observed. It was found that in the case of those samples,

  11. Self-sorting of guests and hard blocks in bisurea-based thermoplastic elastomers

    NARCIS (Netherlands)

    Botterhuis, N.E.; Karthikeyan, S.; Spiering, A.J.H.; Sijbesma, R.P.

    2010-01-01

    Self-sorting in thermoplastic elastomers was studied using bisurea-based thermoplastic elastomers (TPEs) which are known to form hard blocks via hierarchical aggregation of bisurea segments into ribbons and of ribbons into fibers. Self-sorting of different bisurea hard blocks in mixtures of polymers

  12. Chain end distribution of block copolymer in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    Science.gov (United States)

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-10-01

    The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.

  13. Design of Packet-Based Block Codes with Shift Operators

    Directory of Open Access Journals (Sweden)

    Jacek Ilow

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of k information packets to construct r redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of k information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of n=k+r received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  14. Controlling sub-microdomain structure in microphase-ordered block copolymers and their nanocomposites

    Science.gov (United States)

    Bowman, Michelle Kathleen

    Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a

  15. Using a best-practice perioperative governance structure to implement better block scheduling.

    Science.gov (United States)

    Heiser, Randy

    2013-01-01

    Achieving, developing, and maintaining a well-functioning OR scheduling system requires a well-designed perioperative governance structure. Traditional OR/surgery committees, consisting mainly of surgeons, have tried to provide this function but often have not succeeded. An OR governance model should be led by an OR executive committee that functions as a board of directors for the surgery program and works closely with the surgery department medical director and an OR advisory committee. Ideally, the OR executive committee should develop a block schedule that includes a mix of block, open, and urgent or emergent OR access, because this combination is most effective for improving OR use and adapting to changes in surgical procedure volume. Copyright © 2013 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  16. Effects of Interlocking and Supporting Conditions on Concrete Block Pavements

    Science.gov (United States)

    Mahapatra, Geetimukta; Kalita, Kuldeep

    2018-02-01

    Concrete Block Paving (CBP) is widely used as wearing course in flexible pavements, preferably under light and medium vehicular loadings. Construction of CBP at site is quick and easy in quality control. Usually, flexible pavement design philosophy is followed in CBP construction, though it is structurally different in terms of small block elements with high strength concrete and their interlocking aspects, frequent joints and discontinuity, restrained edge etc. Analytical solution for such group action of concrete blocks under loading in a three dimensional multilayer structure is complex and thus, the need of conducting experimental studies is necessitated for extensive understanding of the load—deformation characteristics and behavior of concrete blocks in pavement. The present paper focuses on the experimental studies for load transfer characteristics of CBP under different interlocking and supporting conditions. It is observed that both interlocking and supporting conditions affect significantly on the load transfer behavior in CBP structures. Coro-lock block exhibits better performance in terms of load carrying capacity and distortion behavior under static loads. Plate load tests are performed over subgrade, granular sub-base (GSB), CBP with and without GSB using different block shapes. For an example case, the comparison of CBP with conventional flexible pavement section is also presented and it is found that CBP provides considerable benefit in terms of construction cost of the road structure.

  17. Macrocell Builder: IP-Block-Based Design Environment for High-Throughput VLSI Dedicated Digital Signal Processing Systems

    Directory of Open Access Journals (Sweden)

    Urard Pascal

    2006-01-01

    Full Text Available We propose an efficient IP-block-based design environment for high-throughput VLSI systems. The flow generates SystemC register-transfer-level (RTL architecture, starting from a Matlab functional model described as a netlist of functional IP. The refinement model inserts automatically control structures to manage delays induced by the use of RTL IPs. It also inserts a control structure to coordinate the execution of parallel clocked IP. The delays may be managed by registers or by counters included in the control structure. The flow has been used successfully in three real-world DSP systems. The experimentations show that the approach can produce efficient RTL architecture and allows to save huge amount of time.

  18. The effect of film thickness and molecular structure on order and disorder in thin films of compositionally asymmetric block copolymers

    Science.gov (United States)

    Mishra, Vindhya

    Directed self-assembly of thin film block copolymers offer a high throughput-low cost route to produce next generation lithographic devices, if one can bring the defect densities in the self assembled patterns below tolerance limits. However, the ability to control the nanoscale structure or morphology in thin film block copolymers presents challenges due to confinement effects on equilibrium behavior. Using structure characterization techniques such as grazing incidence small angle X-ray scattering (GISAXS), transmission electron and atomic force microscopy as well as self-consistent field theory, we have investigated how film thickness, annealing temperature and block copolymer structure affects the equilibrium behavior of asymmetric block copolymer films. Our studies have revealed the complicated dependence of order-disorder transitions, order-order transitions and symmetry transitions on film thickness. We found that the thickness dependent transition in the packing symmetry of spherical morphology diblock copolymers can be suppressed by blending with a small amount of majority block homopolymer, which allowed us to resolve the driving force behind this transition. Defect densities in, and the order-disorder transition temperature of, thin films of graphoepitaxially aligned diblock copolymer cylinders showed surprising sensitivity to the microdomain spacing. Methods to mitigate defect formation in thin films have been identified. The challenge of quantification of structural order in these systems was overcome using GISAXS, which allowed us to study the phenomena of disordering in two and three dimensions. Through studies on block copolymers which exhibit an order-order transition in bulk, we found that that subtle differences in the packing frustration of the spherical and cylindrical phases as well as the higher configurational entropy of free chain ends at the surface can drive the equilibrium configuration in thin films away from the stable bulk structure

  19. Structural analysis of ceramic blocks sealing or structural incorporated with the industrial laundry sludge; Anllise estrutural de blocos ceramicos de vedacao ou estruturais incorporados com lodo de lavanderia industrial

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P.H.S.; Grippe, V.Y.Q.; Goulart, J.V., E-mail: phsoal@yahoo.com.br [Universidade Federal de Mato Grosso (UFMT), MT (Brazil)

    2016-07-01

    Industrial and commercial development of recent decades has led to an increase in waste generation. Thus, it is necessary to develop alternative and effective methods of treatment, replacing the simple disposal of these wastes in landfills. The objective of this work is to study the incorporation of textile industrial laundries sludge in ceramic blocks sealing or structural. Samples of ceramic blocks were produced using formulation with 20% sludge, the mass of ceramic clay. Structural analysis of the block was observed the tendency of most empty emergence (pores) during the firing of the blocks, as textile sludge was added in the ceramic paste composition. The mechanical testing of blocks compressive strength was above the minimum 3.0 MPa specified by the standard limit. The physical test water absorption of the blocks was within the range 8 to 22% specified by the standard. (author)

  20. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    Science.gov (United States)

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  1. Tackling student neurophobia in neurosciences block with team-based learning

    Directory of Open Access Journals (Sweden)

    Khurshid Anwar

    2015-07-01

    Full Text Available Introduction: Traditionally, neurosciences is perceived as a difficult course in undergraduate medical education with literature suggesting use of the term “Neurophobia” (fear of neurology among medical students. Instructional strategies employed for the teaching of neurosciences in undergraduate curricula traditionally include a combination of lectures, demonstrations, practical classes, problem-based learning and clinico-pathological conferences. Recently, team-based learning (TBL, a student-centered instructional strategy, has increasingly been regarded by many undergraduate medical courses as an effective method to assist student learning. Methods: In this study, 156 students of year-three neuroscience block were divided into seven male and seven female groups, comprising 11–12 students in each group. TBL was introduced during the 6 weeks of this block, and a total of eight TBL sessions were conducted during this duration. We evaluated the effect of TBL on student learning and correlated it with the student's performance in summative assessment. Moreover, the students’ perceptions regarding the process of TBL was assessed by online survey. Results: We found that students who attended TBL sessions performed better in the summative examinations as compared to those who did not. Furthermore, students performed better in team activities compared to individual testing, with male students performing better with a more favorable impact on their grades in the summative examination. There was an increase in the number of students achieving higher grades (grade B and above in this block when compared to the previous block (51.7% vs. 25%. Moreover, the number of students at risk for lower grades (Grade B- and below decreased in this block when compared to the previous block (30.6% vs. 55%. Students generally elicited a favorable response regarding the TBL process, as well as expressed satisfaction with the content covered and felt that such

  2. Copper based superconductors by the combination of blocking and mediating layers

    International Nuclear Information System (INIS)

    Shimizu, K.; Nobumasa, H.; Kawai, T.

    1992-01-01

    Copper based high temperature superconductors are composed of Cu-O 2 sheets in combination with thin atomic mediating layers and thick blocking layers which mediate and intercept interactions between Cu-O 2 sheets, respectively. New possible superconductors can be designed by the stacking of the Cu-O 2 sheets along with the periodic insertion of the mediating layers and different kinds of blocking layers. (orig.)

  3. Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide

    Directory of Open Access Journals (Sweden)

    Andrei Tsarev

    2018-05-01

    Full Text Available This paper discusses the physical nature and the numerical modeling of a novel approach of periodic structures for applications as photonic sensors. The sensing is based on the high sensitivity to the cover index change of the notch wavelength. This sensitivity is due to the effect of abnormal blocking of the guided wave propagating along the silicon wire with periodic strips overhead it through the silica buffer. The structure sensing is numerically modeled by 2D and 3D finite difference time domain (FDTD method, taking into account the waveguide dispersion. The modeling of the long structures (more than 1000 strips is accomplished by the 2D method of lines (MoL with a maximal implementation of the analytical feature of the method. It is proved that the effect of abnormal blocking could be used for the construction of novel types of optical sensors.

  4. Chain conformations of the component polymers and the microphase separation structures of homopolymer/block coplymer blends

    International Nuclear Information System (INIS)

    Torikai, Naoya; Mogi, Yasuhiro; Matsushita, Yushu; Noda, Ichiro; Han, C.C.

    1993-01-01

    Microdomain spacings of lamellar structures formed by styrene homopolymer/styrene-2-vinylpyridine diblock copolymer/2-vinylpyridine homopolymer blends were measured by small-angle X-ray scattering (SAXS) and single chain conformations of block copolymers in the same blend system were measured by small-angle neutron scattering (SANS). The molecular weight of diblock copolymers is 78K-72K, and three kinds of styrene homopolymer (S H ) and 2-vinylpyridine homopolymer (P H ) pairs were blended, their molecular weight ratios to that of host block chains were 0.17, 0.38, and 0.78, respectively. Two blend ratios of homopolymer (H)/block copolymer (B), i.e. 1/2 and 1/1 were examined. It was found that the domain spacings of all blends are larger than that of pure block copolymer and that they are increasing with increasing the molecular weight of homopolymers and/or with increasing the volume fraction of homopolymers. Further, block chains in the blends were confirmed to have almost the same chain dimension as that of block chain in pure block copolymer system in the direction parallel to the domain interface irrespective of molecular weight and volume fraction of homopolymers. (author)

  5. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.

    2016-09-14

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  6. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.; Qiu, Xiaoyan; Behzad, Ali Reza; Musteata, Valentina-Elena; Smilgies, D.-M.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  7. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

    Directory of Open Access Journals (Sweden)

    Yuta Isoda

    2017-05-01

    Full Text Available The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  8. Universal block diagram based modeling and simulation schemes for fractional-order control systems.

    Science.gov (United States)

    Bai, Lu; Xue, Dingyü

    2017-05-08

    Universal block diagram based schemes are proposed for modeling and simulating the fractional-order control systems in this paper. A fractional operator block in Simulink is designed to evaluate the fractional-order derivative and integral. Based on the block, the fractional-order control systems with zero initial conditions can be modeled conveniently. For modeling the system with nonzero initial conditions, the auxiliary signal is constructed in the compensation scheme. Since the compensation scheme is very complicated, therefore the integrator chain scheme is further proposed to simplify the modeling procedures. The accuracy and effectiveness of the schemes are assessed in the examples, the computation results testify the block diagram scheme is efficient for all Caputo fractional-order ordinary differential equations (FODEs) of any complexity, including the implicit Caputo FODEs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Optimal block-tridiagonalization of matrices for coherent charge transport

    International Nuclear Information System (INIS)

    Wimmer, Michael; Richter, Klaus

    2009-01-01

    Numerical quantum transport calculations are commonly based on a tight-binding formulation. A wide class of quantum transport algorithms require the tight-binding Hamiltonian to be in the form of a block-tridiagonal matrix. Here, we develop a matrix reordering algorithm based on graph partitioning techniques that yields the optimal block-tridiagonal form for quantum transport. The reordered Hamiltonian can lead to significant performance gains in transport calculations, and allows to apply conventional two-terminal algorithms to arbitrarily complex geometries, including multi-terminal structures. The block-tridiagonalization algorithm can thus be the foundation for a generic quantum transport code, applicable to arbitrary tight-binding systems. We demonstrate the power of this approach by applying the block-tridiagonalization algorithm together with the recursive Green's function algorithm to various examples of mesoscopic transport in two-dimensional electron gases in semiconductors and graphene.

  10. An Agent-Based Solution Framework for Inter-Block Yard Crane Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Omor Sharif

    2012-06-01

    Full Text Available The efficiency of yard operations is critical to the overall productivity of a container terminal because the yard serves as the interface between the landside and waterside operations. Most container terminals use yard cranes to transfer containers between the yard and trucks (both external and internal. To facilitate vessel operations, an efficient work schedule for the yard cranes is necessary given varying work volumes among yard blocks with different planning periods. This paper investigated an agent-based approach to assign and relocate yard cranes among yard blocks based on the forecasted work volumes. The goal of our study is to reduce the work volume that remains incomplete at the end of a planning period. We offered several preference functions for yard cranes and blocks which are modeled as agents. These preference functions are designed to find effective schedules for yard cranes. In addition, we examined various rules for the initial assignment of yard cranes to blocks. Our analysis demonstrated that our model can effectively and efficiently reduce the percentage of incomplete work volume for any real-world sized problem.

  11. Exploring atmospheric blocking with GPS radio occultation observations

    Directory of Open Access Journals (Sweden)

    L. Brunner

    2016-04-01

    Full Text Available Atmospheric blocking has been closely investigated in recent years due to its impact on weather and climate, such as heat waves, droughts, and flooding. We use, for the first time, satellite-based observations from Global Positioning System (GPS radio occultation (RO and explore their ability to resolve blocking in order to potentially open up new avenues complementing models and reanalyses. RO delivers globally available and vertically highly resolved profiles of atmospheric variables such as temperature and geopotential height (GPH. Applying a standard blocking detection algorithm, we find that RO data robustly capture blocking as demonstrated for two well-known blocking events over Russia in summer 2010 and over Greenland in late winter 2013. During blocking episodes, vertically resolved GPH gradients show a distinct anomalous behavior compared to climatological conditions up to 300 hPa and sometimes even further up into the tropopause. The accompanying increase in GPH of up to 300 m in the upper troposphere yields a pronounced tropopause height increase. Corresponding temperatures rise up to 10 K in the middle and lower troposphere. These results demonstrate the feasibility and potential of RO to detect and resolve blocking and in particular to explore the vertical structure of the atmosphere during blocking episodes. This new observation-based view is available globally at the same quality so that blocking in the Southern Hemisphere can also be studied with the same reliability as in the Northern Hemisphere.

  12. Reliability study of Piezoelectric Structures Dedicated to Energy Harvesting by the Way of Blocking Force Investigation

    International Nuclear Information System (INIS)

    Maaroufi, S; Parrain, F; Lefeuvre, E; Boutaud, B; Molin, R Dal

    2015-01-01

    In this paper we propose an approach to study the reliability of piezoelectric structures and more precisely energy harvesting micro-devices dedicated to autonomous active medical implants (new generation pacemakers). The structure under test is designed as a bimorph piezoelectric cantilever with a seismic mass at its tip. Good understanding of material aging and mechanical failure is critical for this kind of system. To study the reliability and durability of the piezoelectric part we propose to establish a new accelerated methodology and an associated test bench where the environment and stimuli can be precisely controlled over a wide period of time. This will allow the identification of potential failure modes and the study of their impacts by the way of direct mechanical investigation based on stiffness and blocking force measurements performed periodically. (paper)

  13. Reliability study of Piezoelectric Structures Dedicated to Energy Harvesting by the Way of Blocking Force Investigation

    Science.gov (United States)

    Maaroufi, S.; Parrain, F.; Lefeuvre, E.; Boutaud, B.; Dal Molin, R.

    2015-12-01

    In this paper we propose an approach to study the reliability of piezoelectric structures and more precisely energy harvesting micro-devices dedicated to autonomous active medical implants (new generation pacemakers). The structure under test is designed as a bimorph piezoelectric cantilever with a seismic mass at its tip. Good understanding of material aging and mechanical failure is critical for this kind of system. To study the reliability and durability of the piezoelectric part we propose to establish a new accelerated methodology and an associated test bench where the environment and stimuli can be precisely controlled over a wide period of time. This will allow the identification of potential failure modes and the study of their impacts by the way of direct mechanical investigation based on stiffness and blocking force measurements performed periodically.

  14. Coastal protection using topological interlocking blocks

    Science.gov (United States)

    Pasternak, Elena; Dyskin, Arcady; Pattiaratchi, Charitha; Pelinovsky, Efim

    2013-04-01

    The coastal protection systems mainly rely on the self-weight of armour blocks to ensure its stability. We propose a system of interlocking armour blocks, which form plate-shape assemblies. The shape and the position of the blocks are chosen in such a way as to impose kinematic constraints that prevent the blocks from being removed from the assembly. The topological interlocking shapes include simple convex blocks such as platonic solids, the most practical being tetrahedra, cubes and octahedra. Another class of topological interlocking blocks is so-called osteomorphic blocks, which form plate-like assemblies tolerant to random block removal (almost 25% of blocks need to be removed for the assembly to loose integrity). Both classes require peripheral constraint, which can be provided either by the weight of the blocks or post-tensioned internal cables. The interlocking assemblies provide increased stability because lifting one block involves lifting (and bending) the whole assembly. We model the effect of interlocking by introducing an equivalent additional self-weight of the armour blocks. This additional self-weight is proportional to the critical pressure needed to cause bending of the interlocking assembly when it loses stability. Using beam approximation we find an equivalent stability coefficient for interlocking. It is found to be greater than the stability coefficient of a structure with similar blocks without interlocking. In the case when the peripheral constraint is provided by the weight of the blocks and for the slope angle of 45o, the effective stability coefficient for a structure of 100 blocks is 33% higher than the one for a similar structure without interlocking. Further increase in the stability coefficient can be reached by a specially constructed peripheral constraint system, for instance by using post-tension cables.

  15. π-Extended Isoindigo-Based Derivative: A Promising Electron-Deficient Building Block for Polymer Semiconductors.

    Science.gov (United States)

    Xu, Long; Zhao, Zhiyuan; Xiao, Mingchao; Yang, Jie; Xiao, Jian; Yi, Zhengran; Wang, Shuai; Liu, Yunqi

    2017-11-22

    The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and F 4 IVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PF 4 IVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions. In comparison to PIVI2T, the fluorinated PF 4 IVI2T exhibits stronger intra- and intermolecular interactions, lower HOMO/LUMO energy levels up to -5.74/-4.17 eV, and more ordered molecular packing with a smaller π-π stacking distance of up to 3.53 Å, resulting in an excellent ambipolar transporting behavior and a promising application in logic circuits for PF 4 IVI2T in ambient with hole and electron mobilities of up to 1.03 and 1.82 cm 2 V -1 s -1 , respectively. The results reveal that F 4 IVI is a promising and strong electron-deficient building unit to construct high-performance semiconducting polymers, which provides an insight into the structure-property relationships for the exploration and molecular engineering of excellent electron-deficient building blocks in the field of organic electronics.

  16. Experiments on graphite block gaps connected with leak flow in bottom-core structure of experimental very high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Futakawa, Masatoshi; Takizuka, Takakazu; Kaburaki, Hideo; Sanokawa, Konomo

    1984-01-01

    In order to minimize the leak flow rate of an experimental VHTR (a multi-purpose very high-temperature gas-cooled reactor), the graphite blocks are tightened to reduce the gap distance between blocks by core restrainers surrounded outside of the fixed reflectors of the bottom-core structure and seal elements are placed in the gaps. By using a 1/2.75-scale model of the bottom-core structure, the experiments on the following items have been carried out: a relationship between core restraint force and block gap, a relationship between core restraint force and inclined angle of the model, leak flow characteristics of seal elements etc. The conclusions derived from the experiments are as follows: (1) Core restraint force is significantly effective for decreasing the gap distance between hot plenum blocks, but ineffective for the gap between hot plenum block and fixed reflector. (2) Graphite seal element reduces the leak flow rate from the top surface of hot plenum block into plenum region to one-third. (author)

  17. Block-induced Complex Structures Building the Flare-productive Solar Active Region 12673

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhu, Xiaoshuai [Max-Planck Institute for Solar System Research, D-37077 Göttingen (Germany); Song, Qiao, E-mail: shuhongyang@nao.cas.cn [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China)

    2017-11-10

    Solar active region (AR) 12673 produced 4 X-class, 27 M-class, and numerous lower-class flares during its passage across the visible solar disk in 2017 September. Our study is to answer the questions why this AR was so flare-productive and how the X9.3 flare, the largest one of the past decade, took place. We find that there was a sunspot in the initial several days, and then two bipolar regions emerged nearby it successively. Due to the standing of the pre-existing sunspot, the movement of the bipoles was blocked, while the pre-existing sunspot maintained its quasi-circular shaped umbra only with the disappearance of a part of penumbra. Thus, the bipolar patches were significantly distorted, and the opposite polarities formed two semi-circular shaped structures. After that, two sequences of new bipolar regions emerged within the narrow semi-circular zone, and the bipolar patches separated along the curved channel. The new bipoles sheared and interacted with the previous ones, forming a complex topological system, during which numerous flares occurred. At the highly sheared region, a great deal of free energy was accumulated. On September 6, one negative patch near the polarity inversion line began to rapidly rotate and shear with the surrounding positive fields, and consequently the X9.3 flare erupted. Our results reveal that the block-induced complex structures built the flare-productive AR and the X9.3 flare was triggered by an erupting filament due to the kink instability. To better illustrate this process, a block-induced eruption model is proposed for the first time.

  18. Structure, rheology and shear alignment of Pluronic block copolymer mixtures.

    Science.gov (United States)

    Newby, Gemma E; Hamley, Ian W; King, Stephen M; Martin, Christopher M; Terrill, Nicholas J

    2009-01-01

    The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.

  19. Formation and Characterization of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth

    2012-02-01

    Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.

  20. Kinetic control of block copolymer self-assembly into multicompartment and novel geometry nanoparticles

    Science.gov (United States)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin

    2012-02-01

    Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.

  1. Research on manufacturing service behavior modeling based on block chain theory

    Science.gov (United States)

    Zhao, Gang; Zhang, Guangli; Liu, Ming; Yu, Shuqin; Liu, Yali; Zhang, Xu

    2018-04-01

    According to the attribute characteristics of processing craft, the manufacturing service behavior is divided into service attribute, basic attribute, process attribute, resource attribute. The attribute information model of manufacturing service is established. The manufacturing service behavior information is successfully divided into public and private domain. Additionally, the block chain technology is introduced, and the information model of manufacturing service based on block chain principle is established, which solves the problem of sharing and secreting information of processing behavior, and ensures that data is not tampered with. Based on the key pairing verification relationship, the selective publishing mechanism for manufacturing information is established, achieving the traceability of product data, guarantying the quality of processing quality.

  2. Mesoscopic multiphase structures and the interfaces of block and graft copolymers in bulk

    International Nuclear Information System (INIS)

    Matsushita, Yushu

    1996-01-01

    Microphase-separated structures of copolymers with various architectures and their polymer/polymer interfaces were studied. They are SP diblock, PSP triblock, and SPP graft copolymers, where S and P denote polystyrene and poly(2-vinylpyridine), respectively. Morphological observations were carried out by means of transmission electron microscopy and small-angle X-ray scattering. Chain dimensions of component polymers were measured by small-angle neutron scattering and microphase-separated interfaces were observed by neutron reflectivity measurements using deuterium-labeled samples. It was clarified that morphological phase transitions among thermodynamically equilibrium structures for SP diblock and PSP triblock copolymers occur at almost the same compositions; however, those of SPP graft copolymers tend to occur at higher volume fraction of polystyrene, φ s , than those for block copolymers. As for alternating lamellar structures it turned out to be clear that lamellar domain spacings, D's, were scaled as the 2/3 power of the molecular weight of polymers irrespective of their architectures. S block chains of SP diblock and PSP triblock copolymers in lamellar structures were both confirmed to be deformed toward the direction perpendicular to the lamellar interfaces, but it revealed that their volumes were preserved. Further, S/P interfacial thicknesses of SP and PSP were essentially the same to each other and the values defined as the FWHM of the error functions which express the segment density distributions of the interfaces were determined to be about 4 nm. (author)

  3. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang

    2015-03-24

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  4. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang; Cai, Rong; Pham, Tony T.; Forrest, Katherine A.; Hogan, Adam; Nugent, Patrick S.; Williams, Kia R.; Wojtas, Łukasz; Luebke, Ryan; Weselinski, Lukasz Jan; Zaworotko, Michael J.; Space, Brian; Chen, Yusheng; Eddaoudi, Mohamed; Shi, Xiaodong; Ma, Shengqian

    2015-01-01

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  5. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  6. Gravity evidence for shaping of the crustal structure of the Ameca graben (Jalisco block northern limit). Western Mexico

    Science.gov (United States)

    Alatorre-Zamora, Miguel Angel; Campos-Enríquez, José Oscar; Fregoso-Becerra, Emilia; Quintanar-Robles, Luis; Toscano-Fletes, Roberto; Rosas-Elguera, José

    2018-03-01

    The Ameca tectonic depression (ATD) is located at the NE of the Jalisco Block along the southwestern fringe of the NW-SE trending Tepic-Zacoalco Rift, in the west-central part of the Trans-Mexican Volcanic Belt, western Mexico. To characterize its shallow crustal structure, we conducted a gravity survey based on nine N-S gravity profiles across the western half of the Ameca Valley. The Bouguer residual anomalies are featured by a central low between two zones of positive gravity values with marked gravity gradients. These anomalies have a general NW-SE trend similar to the Tepic-Zacoalco Rift general trend. Basement topography along these profiles was obtained by means of: 1) a Tsuboi's type inverse modeling, and 2) forward modeling. Approximately northward dipping 10° slopes are modeled in the southern half, with south tilted down faulted blocks of the Cretaceous granitic basement and its volcano-sedimentary cover along sub-vertical and intermediate normal faults, whereas southward dipping slopes of almost 15° are observed at the northern half. According to features of the obtained models, this depression corresponds to a slight asymmetric graben. The Ameca Fault is part of the master fault system along its northern limit. The quantitative interpretation shows an approximately 500 to 1100 m thick volcano-sedimentary infill capped by alluvial products. This study has several implications concerning the limit between the Jalisco Block and the Tepic-Zacoalco Rift. The established shallow crustal structure points to the existence of a major listric fault with its detachment surface beneath the Tepic-Zacoalco Rift. The Ameca Fault is interpreted as a secondary listric fault. The models indicate the presence of granitic bodies of the Jalisco Block beneath the TMVB volcanic products of the Tepic-Zacoalco rift. This implies that the limit between these two regional structures is not simple but involves a complex transition zone. A generic model suggests that the

  7. Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks.

    Science.gov (United States)

    Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio

    2018-02-01

    Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, F; Moon, S J; Emre, A E; Turali, E S; Song, Y S; Hacking, S A; Demirci, U [Department of Medicine, Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Nagatomi, J, E-mail: udemirci@rics.bwh.harvard.ed [Department of Bioengineering, Clemson University, Clemson, SC (United States)

    2010-03-15

    Tissue engineering based on building blocks is an emerging method to fabricate 3D tissue constructs. This method requires depositing and assembling building blocks (cell-laden microgels) at high throughput. The current technologies (e.g., molding and photolithography) to fabricate microgels have throughput challenges and provide limited control over building block properties (e.g., cell density). The cell-encapsulating droplet generation technique has potential to address these challenges. In this study, we monitored individual building blocks for viability, proliferation and cell density. The results showed that (i) SMCs can be encapsulated in collagen droplets with high viability (>94.2 +- 3.2%) for four cases of initial number of cells per building block (i.e. 7 +- 2, 16 +- 2, 26 +- 3 and 37 +- 3 cells/building block). (ii) Encapsulated SMCs can proliferate in building blocks at rates that are consistent (1.49 +- 0.29) across all four cases, compared to that of the controls. (iii) By assembling these building blocks, we created an SMC patch (5 mm x 5 mm x 20 mum), which was cultured for 51 days forming a 3D tissue-like construct. The histology of the cultured patch was compared to that of a native rat bladder. These results indicate the potential of creating 3D tissue models at high throughput in vitro using building blocks.

  9. Study of matrix micro-cracking in nano clay and acrylic tri-block-copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available In fiber-reinforced polymer pressure-retaining structures, such as pipes and vessels, micro-level failure commonly causes fluid permeation due to matrix cracking. This study explores the effect of nano-reinforcements on matrix cracking in filament-wound basalt fiber/epoxy composite structures. The microstructure and mechanical properties of bulk epoxy nanocomposites and hybrid fiber-reinforced composite pipes modified with acrylic tri-block-copolymer and organophilic layered silicate clay were investigated. In cured epoxy, the tri-block-copolymer phase separated into disordered spherical micelle inclusions; an exfoliated and intercalated structure was observed for the nano-clay. Block-copolymer addition significantly enhanced epoxy fracture toughness by a mechanism of particle cavitation and matrix shear yielding, whereas toughness remained unchanged in nano-clay filled nanocomposites due to the occurrence of lower energy resistance phenomena such as crack deflection and branching.Tensile stiffness increased with nano-clay content, while it decreased slightly for block-copolymer modified epoxy. Composite pipes modified with either the organic and inorganic nanoparticles exhibited moderate improvements in leakage failure strain (i.e. matrix cracking strain; however, reductions in functional and structural failure strength were observed.

  10. Synthesis of amylose-block-polystyrene rod-coil block copolymers

    NARCIS (Netherlands)

    Loos, Katja; Stadler, Reimund

    1997-01-01

    In the present communication we demonstrate the synthesis of a hybrid block copolymer based on the combination of a biopolymer (amylose) with a synthetic block (polystyrene). To obtain such materials, amino-functionalized polymers were modified with maltoheptaose moieties that serve as initiators

  11. Block copolymer libraries: modular versatility of the macromolecular Lego system.

    Science.gov (United States)

    Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S

    2004-12-21

    The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships.

  12. Numerical modeling of block structure dynamics: Application to the Vrancea region and study of earthquakes sequences in the synthetic catalogs

    International Nuclear Information System (INIS)

    Soloviev, A.A.; Vorobieva, I.A.

    1995-08-01

    A seismically active region is represented as a system of absolutely rigid blocks divided by infinitely thin plane faults. The interaction of the blocks along the fault planes and with the underlying medium is viscous-elastic. The system of blocks moves as a consequence of prescribed motion of boundary blocks and the underlying medium. When for some part of a fault plane the stress surpasses a certain strength level a stress-drop (''a failure'') occurs. It can cause a failure for other parts of fault planes. The failures are considered as earthquakes. As a result of the numerical simulation a synthetic earthquake catalogue is produced. This procedure is applied for numerical modeling of dynamics of the block structure approximating the tectonic structure of the Vrancea region. By numerical experiments the values of the model parameters were obtained which supplied the synthetic earthquake catalog with the space distribution of epicenters close to the real distribution of the earthquake epicenters in the Vrancea region. The frequency-magnitude relations (Gutenberg-Richter curves) obtained for the synthetic and real catalogs have some common features. The sequences of earthquakes arising in the model are studied for some artificial structures. It is found that ''foreshocks'', ''main shocks'', and ''aftershocks'' could be detected among earthquakes forming the sequences. The features of aftershocks, foreshocks, and catalogs of main shocks are analysed. (author). 5 refs, 12 figs, 16 tabs

  13. Stratigraphy of amethyst geode-bearing lavas and fault-block structures of the Entre Rios mining district, Paraná volcanic province, southern Brazil

    Directory of Open Access Journals (Sweden)

    LÉO A. HARTMANN

    2014-03-01

    Full Text Available The Entre Rios mining district produces a large volume of amethyst geodes in underground mines and is part of the world class deposits in the Paraná volcanic province of South America. Two producing basalt flows are numbered 4 and 5 in the lava stratigraphy. A total of seven basalt flows and one rhyodacite flow are present in the district. At the base of the stratigraphy, beginning at the Chapecó river bed, two basalt flows are Esmeralda, low-Ti type. The third flow in the sequence is a rhyodacite, Chapecó type, Guarapuava subtype. Above the rhyodacite flow, four basalt flows are Pitanga, high-Ti type including the two mineralized flows; only the topmost basalt in the stratigraphy is a Paranapanema, intermediate-Ti type. Each individual flow is uniquely identified from its geochemical and gamma-spectrometric properties. The study of several sections in the district allowed for the identification of a fault-block structure. Blocks are elongated NW and the block on the west side of the fault was downthrown. This important structural characterization of the mining district will have significant consequences in the search for new amethyst geode deposits and in the understanding of the evolution of the Paraná volcanic province.

  14. Photoresponsive Block Copolymers Containing Azobenzenes and Other Chromophores

    Directory of Open Access Journals (Sweden)

    Takaomi Kobayashi

    2010-01-01

    Full Text Available Photoresponsive block copolymers (PRBCs containing azobenzenes and other chromophores can be easily prepared by controlled polymerization. Their photoresponsive behaviors are generally based on photoisomerization, photocrosslinking, photoalignment and photoinduced cooperative motions. When the photoactive block forms mesogenic phases upon microphase separation of PRBCs, supramolecular cooperative motion in liquid-crystalline PRBCs enables them to self-organize into hierarchical structures with photoresponsive features. This offers novel opportunities to photocontrol microphase-separated nanostructures of well-defined PRBCs and extends their diverse applications in holograms, nanotemplates, photodeformed devices and microporous films.

  15. Origami-based tunable truss structures for non-volatile mechanical memory operation.

    Science.gov (United States)

    Yasuda, Hiromi; Tachi, Tomohiro; Lee, Mia; Yang, Jinkyu

    2017-10-17

    Origami has recently received significant interest from the scientific community as a method for designing building blocks to construct metamaterials. However, the primary focus has been placed on their kinematic applications by leveraging the compactness and auxeticity of planar origami platforms. Here, we present volumetric origami cells-specifically triangulated cylindrical origami (TCO)-with tunable stability and stiffness, and demonstrate their feasibility as non-volatile mechanical memory storage devices. We show that a pair of TCO cells can develop a double-well potential to store bit information. What makes this origami-based approach more appealing is the realization of two-bit mechanical memory, in which two pairs of TCO cells are interconnected and one pair acts as a control for the other pair. By assembling TCO-based truss structures, we experimentally verify the tunable nature of the TCO units and demonstrate the operation of purely mechanical one- and two-bit memory storage prototypes.Origami is a popular method to design building blocks for mechanical metamaterials. Here, the authors assemble a volumetric origami-based structure, predict its axial and rotational movements during folding, and demonstrate the operation of mechanical one- and two-bit memory storage.

  16. Visualization of the distribution of surface-active block copolymers in PDMS-based coatings

    DEFF Research Database (Denmark)

    Noguer, A. Camós; Latipov, R.; Madsen, F. B.

    2018-01-01

    the distribution and release of these block copolymers from PDMS-based coatings has been previously reported. However, the distribution and behaviour of these compounds in the bulk of the PDMS coating are not fully understood. A novel fluorescent-labelled triblock PEG-b-PDMS-b-PEG copolymer was synthesized...... results in non-specific protein adsorption and wettability issues. Poly(ethylene glycol)-based surface-active block copolymers and surfactants have been added to PDMS coatings and films to impart biofouling resistance and hydrophilicity to the PDMS surface with successful results. Information regarding...

  17. Effect of autonomic blocking agents and structurally related substances on the “salt arousal of drinking”

    NARCIS (Netherlands)

    Wied, D. de

    The effect of autonomic blocking agents and structurally related substances was studied in rats in which thirst was produced by the administration of a hypertonic sodium chloride solution. Scopolamine, methamphetamine, amphetamine, chlorpromazine, atropine, mecamylamine, hexamethonium, nethalide,

  18. Microstructure and structural phase transitions in iron-based superconductors

    International Nuclear Information System (INIS)

    Wang Zhen; Cai Yao; Yang Huai-Xin; Tian Huan-Fang; Wang Zhi-Wei; Ma Chao; Chen Zhen; Li Jian-Qi

    2013-01-01

    Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-T c superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe 2 Pn 2 (Pn = P As, Sb) or Fe 2 Ch 2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the K 0.8 Fe 1.6+x Se 2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed. (topical review - iron-based high temperature superconductors)

  19. The effect of heat treatment on the internal structure of nanostructured block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Sepe, A; Hoppe, E T; Jaksch, S; Magerl, D; Zhong, Q; Papadakis, C M [Technische Universitaet Muenchen, Physikdepartment, Fachgebiet Physik weicher Materie/Lehrstuhl fuer funktionelle Materialien, James-Franck-Strasse 1, 85747 Garching (Germany); Perlich, J [HASYLAB at DESY, Notkestrasse 85, 22603 Hamburg (Germany); Posselt, D [IMFUFA, Department of Science, Systems and Models, Roskilde University, PO Box 260, 4000 Roskilde (Denmark); Smilgies, D-M, E-mail: papadakis@tum.de [Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States)

    2011-06-29

    We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular to the substrate. In situ GISAXS measurements elucidate the structural changes during heat treatment at temperatures between 60 and 130 {sup 0}C. Thermal treatment below 100 {sup 0}C does not destroy the perpendicular lamellar order. In contrast, treatment between 105 and 120 {sup 0}C leads to a broad distribution of lamellar orientations which only partially recovers upon subsequent cooling. Treatment at 130 {sup 0}C leads to severe changes of the film structure. We attribute the change of behavior at 100 {sup 0}C to the onset of the glass transition of the polystyrene block and the related increase of long-range mobility. Our results indicate that the perpendicular lamellar orientation for high molar mass samples is not stable under all conditions.

  20. Reduction of shunt current in buffer-free IrMn based spin-valve structures

    Science.gov (United States)

    Kocaman, B.; Akdoğan, N.

    2018-06-01

    The presence of thick buffer layers in magnetic sensor devices decreases sensor sensitivity due to shunt currents. With this motivation, we produced IrMn-based spin-valve multilayers without using buffer layer. We also studied the effects of post-annealing and IrMn thickness on exchange bias field (HEB) and blocking temperature (TB) of the system. Magnetization measurements indicate that both HEB and TB values are significantly enhanced with post-annealing of IrMn layer. In addition, we report that IrMn thickness of the system strongly influences the magnetization and transport characteristics of the spin-valve structures. We found that the minimum thickness of IrMn layer is 6 nm in order to achieve the lowest shunt current and high blocking temperature (>300 K). We also investigated the training of exchange bias to check the long-term durability of IrMn-based spin-valve structures for device applications.

  1. Quantifying private benefits of control from a structural model of block trades

    NARCIS (Netherlands)

    Albuquerque, R.; Schroth, E.

    2009-01-01

    We study the determinants of private benefits of control in negotiated block transactions. We estimate the block pricing model in Burkart, Gromb, and Panunzi (2000) explicitly accounting for both block premia and block discounts in the data. The evidence suggests that the occurrence of a block

  2. Photostabilizing of bisphenol A polycarbonate by using UV-absorbers and self protective block copolymers based on resorcinol polyarylate blocks

    NARCIS (Netherlands)

    Diepens, M.; Gijsman, P.

    2009-01-01

    Bisphenol A polycarbonate degrades due to sunlight, humidity and oxygen. In this study two possible techniques to stabilize the polymer were compared, i.e. blending of UV-absorbers (UVAs) into the polymer or using block copolymers based on resorcinol polyarylates. Combination of different analysis

  3. An enhanced chaotic key-based RC5 block cipher adapted to image encryption

    Science.gov (United States)

    Faragallah, Osama S.

    2012-07-01

    RC5 is a block cipher that has several salient features such as adaptability to process different word lengths with a variable block size, a variable number of rounds and a variable-length secret key. However, RC5 can be broken with various attacks such as correlation attack, timing attack, known plaintext correlation attack and differential attacks, revealing weak security. We aimed to enhance the RC5 block cipher to be more secure and efficient for real-time applications while preserving its advantages. For this purpose, this article introduces a new approach based on strengthening both the confusion and diffusion operations by combining chaos and cryptographic primitive operations to produce round keys with better pseudo-random sequences. Comparative security analysis and performance evaluation of the enhanced RC5 block cipher (ERC5) with RC5, RC6 and chaotic block cipher algorithm (CBCA) are addressed. Several test images are used for inspecting the validity of the encryption and decryption algorithms. The experimental results show the superiority of the suggested enhanced RC5 (ERC5) block cipher to image encryption algorithms such as RC5, RC6 and CBCA from the security analysis and performance evaluation points of view.

  4. Enhancement of Endurance in HfO2-Based CBRAM Device by Introduction of a TaN Diffusion Blocking Layer

    KAUST Repository

    Chand, Umesh

    2017-08-05

    We propose a new method to improve resistive switching properties in HfO2 based CBRAM crossbar structure device by introducing a TaN thin diffusion blocking layer between the Cu top electrode and HfO2 switching layer. The Cu/TaN/HfO2/TiN device structure exhibits high resistance ratio of OFF/ON states without any degradation in switching during endurance test. The improvement in the endurance properties of the Cu/TaN/HfO2/TiN CBRAM device is thus attributed to the relatively low amount of Cu migration into HfO2 switching layer.

  5. Ionic Liquids As Self-Assembly Guide for the Formation of Nanostructured Block Copolymer Membranes

    KAUST Repository

    Madhavan, Poornima

    2015-04-30

    Nanostructured block copolymer membranes were manufactured by water induced phase inversion, using ionic liquids (ILs) as cosolvents. The effect of ionic liquids on the morphology was investigated, by using polystyrene-b-poly(4-vinyl pyridine) (PS-b-PV4P) diblock as membrane copolymer matrix and imidazolium and pyridinium based ILs. The effect of IL concentration and chemical composition was evident with particular interaction with P4VP blocks. The order of block copolymer/ILs solutions previous to the membrane casting was confirmed by cryo scanning electron microscopy and the morphologies of the manufactured nanostructured membranes were characterized by transmission and scanning electron microscopy. Non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ILs led to a lamella-structured membrane. The rheology of the IL/block copolymer solutions was investigated, evaluating the storage and loss moduli. Most membranes prepared with ionic liquid had higher water flux than pure block copolymer membranes without additives.

  6. Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect

    International Nuclear Information System (INIS)

    Niculae, G; Lacatusu, I; Badea, N; Meghea, A

    2012-01-01

    The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions. (paper)

  7. Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect

    Science.gov (United States)

    Niculae, G.; Lacatusu, I.; Badea, N.; Meghea, A.

    2012-08-01

    The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions.

  8. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  9. The influence of polarity of additive molecules on micelle structures of polystyrene-block-poly(4-vinylpyridine) in the fabrication of nano-porous templates.

    Science.gov (United States)

    Chua, Kee Sze; Koh, Ai Peng; Lam, Yeng Ming

    2010-11-01

    Block copolymers are useful for in situ synthesis of nanoparticles as well as producing nanoporous templates. As such, the effects of precursors on the block copolymer micelle structure is important. In this study, we investigate the effects of polarity of molecules introduced into block copolymer micelle cores on the micelle structure. The molecular dipole moment of the additive molecules has been evaluated and their effects on the block copolymer micelles investigated using light scattering spectroscopy, small-angle X-ray scattering, transmission electron microscopy and atomic force microscopy. The molecule with the largest dipole moment resulted in spherical structures with a polydispersity of less than 0.06 in a fully translational diffusion system. Surprisingly, the less polar additive molecules produced elongated micelles and the aspect ratio increases with decreasing polarity. The change in structure from spherical to elongated structure was attributed to P4VP chain extension, where compounds with polarity most similar to P4VP induce the most chain extension. The second virial coefficients of the solutions with elongated micelles are lower than that for spherical micelle systems by up to one order in magnitude, indicating a strong tendency for micelles to coalesce. On rinsing the spin-cast films, pores were obtained from spherical micelles and ridges from elongated micelles, suggesting a viable alternative for morphology modification using mild conditions where external annealing treatments to the film are not preferred. The knowledge of polarity effects of additive molecules on micelle structure has wider implications for supramolecular block copolymer systems where, depending on the application requirements, changes to the shape of the micelle structure can be induced or avoided. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Block Textured a-Si:H Solar Cell

    Directory of Open Access Journals (Sweden)

    Seung Jae Moon

    2014-01-01

    Full Text Available A series of etching experiments on light trapping structure have been carried out by glass etching. The block structure provides long light traveling path and a constant distance between the cathode and anode electrodes regardless of the block height, which results in higher efficiency of the block textured solar cell. In terms of etching profile of the glass substrate, the addition of NH4F resulted in the smooth and clean etching profile, and the steep slope of the block was obtained by optimizing the composition of etching solution. For a higher HF concentration, a more graded slope was obtained and the addition of HNO3 and NH4F provided steep slope and clean etching profile. The effects of the block textured glass were verified by a comparison of the solar cell efficiency. For the textured solar cell, the surface was much rougher than that of the plain glass, which also contributes to the improvement of the efficiency. We accomplished block shaped light trapping structure for the first time by wet etching of the glass substrate, which enables the high efficiency thin film solar cell with the aid of the good step coverage deposition.

  11. High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes

    Science.gov (United States)

    Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew

    Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.

  12. Crustal block motion model and interplate coupling along Ecuador-Colombia trench based on GNSS observation network

    Science.gov (United States)

    Ito, T.; Mora-Páez, H.; Peláez-Gaviria, J. R.; Kimura, H.; Sagiya, T.

    2017-12-01

    IntroductionEcuador-Colombia trench is located at the boundary between South-America plate, Nazca Plate and Caribrian plate. This region is very complexes such as subducting Caribrian plate and Nazca plate, and collision between Panama and northern part of the Andes mountains. The previous large earthquakes occurred along the subducting boundary of Nazca plate, such as 1906 (M8.8) and 1979 (M8.2). And also, earthquakes occurred inland, too. So, it is important to evaluate earthquake potentials for preparing huge damage due to large earthquake in near future. GNSS observation In the last decade, the GNSS observation was established in Columbia. The GNSS observation is called by GEORED, which is operated by servicing Geologico Colomiano. The purpose of GEORED is research of crustal deformation. The number of GNSS site of GEORED is consist of 60 continuous GNSS observation site at 2017 (Mora et al., 2017). The sampling interval of almost GNSS site is 30 seconds. These GNSS data were processed by PPP processing using GIPSY-OASYS II software. GEORED can obtain the detailed crustal deformation map in whole Colombia. In addition, we use 100 GNSS data at Ecuador-Peru region (Nocquet et al. 2014). Method We developed a crustal block movements model based on crustal deformation derived from GNSS observation. Our model considers to the block motion with pole location and angular velocity and the interplate coupling between each block boundaries, including subduction between the South-American plate and the Nazca plate. And also, our approach of estimation of crustal block motion and coefficient of interplate coupling are based on MCMC method. The estimated each parameter is obtained probably density function (PDF). Result We tested 11 crustal block models based on geological data, such as active fault trace at surface. The optimal number of crustal blocks is 11 for based on geological and geodetic data using AIC. We use optimal block motion model. And also, we estimate

  13. Matlab/Simulink Implementation of Wave-based Models for Microstrip Structures utilizing Short-circuited and Opened Stubs

    Directory of Open Access Journals (Sweden)

    Biljana P. Stošić

    2011-12-01

    Full Text Available This paper describes modeling and analyzing procedures for microstrip filters based on use of one-dimensional wave digital approach. Different filter structures are observed. One filter is based on quarter-wave length short-circuited stubs and connecting transmission lines. The other one is based on cross-junction opened stubs. Frequency responses are obtained by direct analysis of the block-based networks formed in Simulink toolbox of MATLAB environment. This wave-based method allows an accurate and efficient analysis of different microwave structures.

  14. Structured nanoporous surfaces from hybrid block copolymer micelle films with metal ions

    International Nuclear Information System (INIS)

    Kim, Minsoo P; Yi, Gi-Ra; Kim, Hyeong Jun; Kim, Bumjoon J

    2015-01-01

    We present a novel method for producing structured nanoporous thin films using block copolymer (BCP) micelles loaded with metallic ions. The BCP micellar thin films containing gold (Au) ions were prepared by spin-coating poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) micelle solutions in which Au precursors (AuCl 4 − ) were selectively loaded onto the P4VP core. When the micellar films were exposed to cetyltrimethylammonium bromide (CTAB) solutions, the Au precursors were selectively extracted from the P4VP domains due to their strong electrostatic interaction with CTAB, leading to the formation of pores in the micelles. Consequently, regularly patterned nanoporous surfaces were formed. By controlling the molecular weight (M n ) of PS-b-P4VP and the amount of Au precursors (λ) that were loaded in the P4VP domains, the pore size and depth could be tuned precisely. In particular, when a sufficient amount of Au precursors was loaded (λ  ≥ 0.3), the porous surface nanostructure was well developed. In addition, the pore size and depth of the nanostructure increased as the λ value increased. For instance, when the λ value increased from 0.3 to 1.0, the pore size increased from 22.8 nm to 28.8 nm, and the pore depth increased from 2.1 nm to 3.2 nm. Interestingly, the transition from the nonporous structures to the porous structures in the micellar film could be reversibly controlled by adding and removing the Au precursors in the film. Moreover, our method for the preparation of nanoporous films can be extended to micellar film by incorporating other metal ions such as silver (Ag) and iron (Fe). (paper)

  15. Self-Assembly Behavior and pH-Stimuli-Responsive Property of POSS-Based Amphiphilic Block Copolymers in Solution

    Directory of Open Access Journals (Sweden)

    Yiting Xu

    2018-05-01

    Full Text Available Stimuli-responsive polymeric systems containing special responsive moieties can undergo alteration of chemical structures and physical properties in response to external stimulus. We synthesized a hybrid amphiphilic block copolymer containing methoxy polyethylene glycol (MePEG, methacrylate isobutyl polyhedral oligomeric silsesquioxane (MAPOSS and 2-(diisopropylaminoethyl methacrylate (DPA named MePEG-b-P(MAPOSS-co-DPA via atom transfer radical polymerization (ATRP. Spherical micelles with a core-shell structure were obtained by a self-assembly process based on MePEG-b-P(MAPOSS-co-DPA, which showed a pH-responsive property. The influence of hydrophobic chain length on the self-assembly behavior was also studied. The pyrene release properties of micelles and their ability of antifouling were further studied.

  16. Conformation of single block copolymer chain in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    Science.gov (United States)

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-05-21

    The localization and orientation of the symmetric diblock copolymer chain in a quasi-two-dimensional microphase-separated structure were studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(isobutyl methacrylate)-block-poly(octadecyl methacrylate) (PiBMA-b-PODMA), the individual PiBMA subchains were directly observed by SNOM, and the center of mass (CM) and orientational angle relative to the phase interface were examined at the single chain level. It was found that the position of the CM and the orientation of the PiBMA subchain in the lamellar structure were dependent on the curvature of the PiBMA/PODMA interface. As the interface was bent toward the objective chain, the block chain preferred the CM position closer to the domain center, and the conformation was strongly oriented perpendicularly to the domain interface. With increase of the curvature, the steric hindrance among the block chain increases, resulting in the stretched conformation.

  17. Emulsion Solvent Evaporation-Induced Self-Assembly of Block Copolymers Containing pH-Sensitive Block.

    Science.gov (United States)

    Wu, Yuqing; Wang, Ke; Tan, Haiying; Xu, Jiangping; Zhu, Jintao

    2017-09-26

    A simple yet efficient method is developed to manipulate the self-assembly of pH-sensitive block copolymers (BCPs) confined in emulsion droplets. Addition of acid induces significant variation in morphological transition (e.g., structure and surface composition changes) of the polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) assemblies, due to the hydrophobic-hydrophilic transition of the pH-sensitive P4VP block via protonation. In the case of pH > pKa (P4VP) (pKa (P4VP) = 4.8), the BCPs can self-assemble into pupa-like particles because of the nearly neutral wetting of PS and P4VP blocks at the oil/water interface. As expected, onion-like particles obtained when pH is slightly lower than pKa (P4VP) (e.g., pH = 3.00), due to the interfacial affinity to the weakly hydrophilic P4VP block. Interestingly, when pH was further decreased to ∼2.5, interfacial instability of the emulsion droplets was observed, and each emulsion droplet generated nanoscale assemblies including vesicles, worm-like and/or spherical micelles rather than a nanostructured microparticle. Furthermore, homopolymer with different molecular weights and addition ratio are employed to adjust the interactions among copolymer blocks. By this means, particles with hierarchical structures can be obtained. Moreover, owing to the kinetically controlled processing, we found that temperature and stirring speed, which can significantly affect the kinetics of the evaporation of organic solvent and the formation of particles, played a key role in the morphology of the assemblies. We believe that manipulation of the property for the aqueous phase is a promising strategy to rationally design and fabricate polymeric assemblies with desirable shapes and internal structures.

  18. Staining pattern classification of antinuclear autoantibodies based on block segmentation in indirect immunofluorescence images.

    Directory of Open Access Journals (Sweden)

    Jiaqian Li

    Full Text Available Indirect immunofluorescence based on HEp-2 cell substrate is the most commonly used staining method for antinuclear autoantibodies associated with different types of autoimmune pathologies. The aim of this paper is to design an automatic system to identify the staining patterns based on block segmentation compared to the cell segmentation most used in previous research. Various feature descriptors and classifiers are tested and compared in the classification of the staining pattern of blocks and it is found that the technique of the combination of the local binary pattern and the k-nearest neighbor algorithm achieve the best performance. Relying on the results of block pattern classification, experiments on the whole images show that classifier fusion rules are able to identify the staining patterns of the whole well (specimen image with a total accuracy of about 94.62%.

  19. Using block pulse functions for seismic vibration semi-active control of structures with MR dampers

    Science.gov (United States)

    Rahimi Gendeshmin, Saeed; Davarnia, Daniel

    2018-03-01

    This article applied the idea of block pulse functions in the semi-active control of structures. The BP functions give effective tools to approximate complex problems. The applied control algorithm has a major effect on the performance of the controlled system and the requirements of the control devices. In control problems, it is important to devise an accurate analytical technique with less computational cost. It is proved that the BP functions are fundamental tools in approximation problems which have been applied in disparate areas in last decades. This study focuses on the employment of BP functions in control algorithm concerning reduction the computational cost. Magneto-rheological (MR) dampers are one of the well-known semi-active tools that can be used to control the response of civil Structures during earthquake. For validation purposes, numerical simulations of a 5-story shear building frame with MR dampers are presented. The results of suggested method were compared with results obtained by controlling the frame by the optimal control method based on linear quadratic regulator theory. It can be seen from simulation results that the suggested method can be helpful in reducing seismic structural responses. Besides, this method has acceptable accuracy and is in agreement with optimal control method with less computational costs.

  20. Structural analysis of cellular blocks for a prestressed cast iron reactor pressure vessel

    International Nuclear Information System (INIS)

    Thomas, R.G.; Head, J.L.

    1979-01-01

    The cast segments from which the prestressed cast iron nuclear reactor pressure vessel may be constructed are not readily amenable to detailed three-dimensional finite element analysis because their complex internal web structure requires a very large number of elements if reasonable aspect ratios are to be retained. A technique has been developed of modelling these blocks using plate bending elements from the ASKA code. By this means it has been possible to study in detail several designs of casting and to identify favourable features. The results of these studies, and others in which assessments are made of the sensitivity of the structure to prestressing load changes and machining errors, are reported. (orig.)

  1. Manipulating Interfaces through Surface Confinement of Poly(glycidyl methacrylate)-block-poly(vinyldimethylazlactone), a Dually Reactive Block Copolymer

    International Nuclear Information System (INIS)

    Lokitz, Bradley S.; Wei, Jifeng; Hinestrosa Salazar, Juan P.; Ivanov, Ilia N.; Browning, James B.; Ankner, John Francis; Kilbey, S. Michael II; Messman, Jamie M.

    2012-01-01

    The assembly of dually reactive, well-defined diblock copolymers incorporating the chemoselective/functional monomer, 4,4-dimethyl-2-vinylazlactone (VDMA) and the surface-reactive monomer glycidyl methacrylate (GMA) is examined to understand how competition between surface attachment and microphase segregation influences interfacial structure. Reaction of the PGMA block with surface hydroxyl groups not only anchors the copolymer to the surface, but limits chain mobility, creating brush-like structures comprising PVDMA blocks, which contain reactive azlactone groups. The block copolymers are spin coated at various solution concentrations and annealed at elevated temperature to optimize film deposition to achieve a molecularly uniform layer. The thickness and structure of the polymer thin films are investigated by ellipsometry, infrared spectroscopy, and neutron reflectometry. The results show that deposition of PGMA-b-PVDMA provides a useful route to control film thickness while preserving azlactone groups that can be further modified with biotin-poly(ethylene glycol)amine to generate designer surfaces. The method described herein offers guidance for creating highly functional surfaces, films, or coatings through the use of dually reactive block copolymers and postpolymerization modification.

  2. Structures of PEP–PEO Block Copolymer Micelles: Effects of Changing Solvent and PEO Length and Comparison to a Thermodynamic Model

    DEFF Research Database (Denmark)

    Jensen, Grethe Vestergaard; Shi, Qing; Deen, G. Roshan

    2012-01-01

    Structures of poly(ethylene propylene)–poly(ethylene oxide) (PEP–PEO) block copolymer micelles were determined from small-angle X-ray scattering and static light scattering and compared to predictions from a thermodynamic model. Both the corona block length and the solvent water–ethanol ratio were...... changed, leading to a thorough test of this model. With increasing ethanol fraction, the PEP core–solvent interfacial tension decreases, and the solvent quality for PEO changes. The weight-average block masses were 5.0 kDa for PEP and 2.8–49 kDa for PEO. For the lowest PEO molar mass and samples in pure...... water (except for the highest PEO molar mass), the micelles were cylindrical; for other conditions they were spherical. The structural parameters can be reasonably well described by the thermodynamic model by Zhulina et al. [Macromolecules2005, 38 (12), 5330–5351]; however, they have a stronger...

  3. Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles.

    Science.gov (United States)

    Guo, Qianqian; Zhang, Tianqi; An, Jinxia; Wu, Zhongming; Zhao, Yu; Dai, Xiaomei; Zhang, Xinge; Li, Chaoxing

    2015-10-12

    To explore the effect of polymer structure on their self-assembled aggregates and their unique characteristics, this study was devoted to developing a series of amphiphilic block and random phenylboronic acid-based glycopolymers by RAFT polymerization. The amphiphilic glycopolymers were successfully self-assembled into spherically shaped nanoparticles with narrow size distribution in aqueous solution. For block and random copolymers with similar monomer compositions, block copolymer nanoparticles exhibited a more regular transmittance change with the increasing glucose level, while a more evident variation of size and quicker decreasing tendency in I/I0 behavior in different glucose media were observed for random copolymer nanoparticles. Cell viability of all the polymer nanoparticles investigated by MTT assay was higher than 80%, indicating that both block and random copolymers had good cytocompatibility. Insulin could be encapsulated into both nanoparticles, and insulin release rate for random glycopolymer was slightly quicker than that for the block ones. We speculate that different chain conformations between block and random glycopolymers play an important role in self-assembled nanoaggregates and underlying glucose-sensitive behavior.

  4. Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results

    OpenAIRE

    Barbosa, C. S.; Hanai, J.B.

    2009-01-01

    This paper deals with correlations among mechanical properties of hollow blocks and those of concrete used to make them. Concrete hollow blocks and test samples were moulded with plastic consistency concrete, to assure the same material in all cases, in three diferente levels of strength (nominally 10 N/mm², 20 N/mm² and 30 N/mm²). The mechanical properties and structural behaviour in axial compression and tension tests were determined by standard tests in blocks and cylinders. Stress and str...

  5. A completely transparent, adhesively bonded soda-lime glass block masonry system

    Directory of Open Access Journals (Sweden)

    F. Oikonomopoulou

    2015-01-01

    Full Text Available A pioneering, all transparent, self-supporting glass block facade is presented in this paper. Previously realized examples utilize embedded metal components in order to obtain the desired structural performance despite the fact that these elements greatly affect the facade’s overall transparency level. Undeniably, the oxymoron ‘transparency and strength’ remains the prime concern in such applications. In this paper, a new, innovative structural system for glass block facades is described, which demonstrably meets both criteria. The structure is exclusively constructed by monolithic glass blocks, bonded with a colourless, UV-curing adhesive, obtaining thus a maximum transparency. In addition, the desired structural performance is achieved solely through the masonry system, without any opaque substructure. Differing from previous realized projects, solid soda-lime glass blocks are used rather than borosilicate ones. This article provides an overview of the integrated architectural and structural design and discusses the choice of materials. The structural verification of the system is demonstrated. The results show that the adhesively bonded glass block structure has the required self-structural behaviour, but only if strict tolerances are met in the geometry of the glass blocks.

  6. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems...... of such PEG-based block copolymers in aqueous suspensions are reviewed. Based on scattering experiments using either X-ray or neutrons, the phase behavior is characterized, showing that the thermo-reversible gelation is a result of micellar ordering into mesoscopic crystalline phases of cubic, hexagonal...

  7. Seismic fragility analysis of the block masonry wall in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Z-L.; Pandey, M.D.; Xie, X-C.

    2014-01-01

    The evaluation of seismic fragility of a structure is an integral part in the Seismic Probabilistic Risk Analysis (SPRA). The block masonry wall, a commonly used barrier in nuclear power plants, is fairly vulnerable to failure under an earthquake. In practice, the seismic fragility of block walls is commonly evaluated using a simple deterministic approach called Conservative Deterministic Failure Margin (CDFM) method. This paper presents a more formal fragility analysis of a block wall based on rigorous probabilistic methods and the accuracy of the CDFM method is evaluated by comparison to the more rigorous FA method. (author)

  8. Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Nykanen, A; Toivanen, M; ten Brinke, G; Ruokolainen, J; Ikkala, O; Nykänen, Antti

    2006-01-01

    Porous materials with controlled pore size and large surface area (see Figure) have been prepared by crosslinking phenolic resin in the presence of a self-assembled block-copolymer template, followed by pyrolysis. Many phenolic hydroxyl groups remain at the matrix and pore walls, which can be used

  9. Minimum Description Length Block Finder, a Method to Identify Haplotype Blocks and to Compare the Strength of Block Boundaries

    OpenAIRE

    Mannila, H.; Koivisto, M.; Perola, M.; Varilo, T.; Hennah, W.; Ekelund, J.; Lukk, M.; Peltonen, L.; Ukkonen, E.

    2003-01-01

    We describe a new probabilistic method for finding haplotype blocks that is based on the use of the minimum description length (MDL) principle. We give a rigorous definition of the quality of a segmentation of a genomic region into blocks and describe a dynamic programming algorithm for finding the optimal segmentation with respect to this measure. We also describe a method for finding the probability of a block boundary for each pair of adjacent markers: this gives a tool for evaluating the ...

  10. Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics

    International Nuclear Information System (INIS)

    Gong, Chengzhu; Yu, Shiwei; Zhu, Kejun; Hailu, Atakelty

    2016-01-01

    Designing a desirable increasing block tariff for the residential gas retail market has been a challenging task for regulated utilities, especially in China. To deal with such problems, in this paper, we establish an agent-based, computational economics system to provide a formal evaluation of the direct and indirect influences of several issued increasing block tariffs in the residential gas market. Moreover, a comprehensive demand response behaviour model has been improved in term of price elasticity, while still coping with income levels and complex social environment. We also compute and compare the outcomes of several increasing block tariffs with the initial flat tariff by running the system on a test-case using real-world data from a middle-scale gas retail market in Wuhan. The results indicate that there is an appropriate increasing block gas tariff scheme that has greater ability to improve social equity while still ensuring operator revenue and promoting gas conservation. In order to offset the limitations of the proposed increasing block tariffs, the regulator should adopt some complementary measures, such as applying appropriate policies targeting the intended consumers, and allowing large families to obtain extra allowance of volume. - Highlights: •Analyse the influence of increasing block tariffs in residential gas sector. •An agent-based computational economics system is utilised for policy analysis. •Increasing block tariff can generate revenue while still promote gas conservation. •The increasing subsidy for low income household can improve the social equity.

  11. Cryptanalysis on an image block encryption algorithm based on spatiotemporal chaos

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; He Guo-Xiang

    2012-01-01

    An image block encryption scheme based on spatiotemporal chaos has been proposed recently. In this paper, we analyse the security weakness of the proposal. The main problem of the original scheme is that the generated keystream remains unchanged for encrypting every image. Based on the flaws, we demonstrate a chosen plaintext attack for revealing the equivalent keys with only 6 pairs of plaintext/ciphertext used. Finally, experimental results show the validity of our attack. (general)

  12. High blocking temperature in SnO{sub 2} based super-paramagnetic diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Salmani, E. [LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); El Moussaoui, H. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi (Morocco); Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Ez-Zahraouy, H. [LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-11-25

    Highlights: • Simple doping, (Sn,Fe)O{sub 2} exhibits a soft ferromagnetism at low temperature. • High blocking temperature was observed for Cu doped (Sn,Fe)O{sub 2} nanocrystalline. • Experimental results are confirmed by ab initio calculations. - Abstract: (Fe,Cu)-doped SnO{sub 2} nanocrystals was synthesized using the co-precipitation method. Magnetic Properties Measurement System (MPMS) revealed that for simple doping, Fe-doped SnO{sub 2} soft ferromagnetism at low temperature appears, while the ferromagnetic phase is stable at temperature higher than room temperature for Cu co-doping element. The ferromagnetism is significantly enhanced by the Cu addition to Fe-doped SnO{sub 2}, according to the ZFC and FC magnetizations and the hysteresis loops. The evidences for the existence of superparamagnetism are characterized and high blocking temperature super-paramagnetism in (Fe,Cu)-doped SnO{sub 2} nanocrystals was observed. Based on first-principles calculations, we have investigated electronic structures and magnetic properties of Fe-doped SnO{sub 2} and (Fe,Cu)-doped SnO{sub 2} with and without defect with LDA and LDA-SIC approximations. The results suggest that the oxygen vacancies (V{sub O}) play a critical role in the activation of ferromagnetism in Fe doped SnO{sub 2}. For (Fe,Cu)-doped SnO{sub 2} the results exhibit that Cu strongly influences on the magnetic properties of these doped systems which are in good agreement with the experimental observations. Electronic structure show that the presence of Cu promote the ferromagnetic bound magnetic polaron interaction through the carriers introduce by d (Cu)

  13. CO2 permeation properties of poly(ethylene oxide)-based segmented block copolymers

    NARCIS (Netherlands)

    Husken, D.; Visser, Tymen; Wessling, Matthias; Gaymans, R.J.

    2010-01-01

    This paper discusses the gas permeation properties of poly(ethylene oxide) (PEO)-based segmented block copolymers containing monodisperse amide segments. These monodisperse segments give rise to a well phase-separated morphology, comprising a continuous PEO phase with dispersed crystallised amide

  14. Abdominal wall blocks in adults

    DEFF Research Database (Denmark)

    Børglum, Jens; Gögenür, Ismail; Bendtsen, Thomas F

    2016-01-01

    been introduced with success. Future research should also investigate the effect of specific abdominal wall blocks on neuroendocrine and inflammatory stress response after surgery.  Summary USG abdominal wall blocks in adults are commonplace techniques today. Most abdominal wall blocks are assigned......Purpose of review Abdominal wall blocks in adults have evolved much during the last decade; that is, particularly with the introduction of ultrasound-guided (USG) blocks. This review highlights recent advances of block techniques within this field and proposes directions for future research.......  Recent findings Ultrasound guidance is now considered the golden standard for abdominal wall blocks in adults, even though some landmark-based blocks are still being investigated. The efficiency of USG transversus abdominis plane blocks in relation to many surgical procedures involving the abdominal wall...

  15. Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fang; Qin, Xiaoshuai; Li, Yancai; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-08-30

    Highlights: • QAS-containing fluorosilicone multi-block copolymers were synthesized. • The block length of PHFBMA in the copolymers was tailored via RAFT polymerization. • Surface roughness of the copolymers decreased with the increased PHFBMA content. • A certain length of PHFBMA block enhanced C−N{sup +} percentage on the surface. - Abstract: Symmetrically structured fluorosilicone multi-block copolymers containing poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(hexafluorobutyl methacrylate) (PHFBMA) were sequentially synthesized via reversible addition–fragmentation chain transfer polymerization, using a polydimethylsiloxane (PDMS) chain transfer agent with dithiocarbonate groups at both ends. Then, the CBABC-type block copolymers were quaternized with n-octyliodide to tether quaternary ammonium salt (QAS) groups in the PDMAEMA blocks for the antimicrobial use. The obtained fluorosilicone copolymers showed clear variations in the C-N{sup +} composition and surface morphology on their films depending on the content of the PHFBMA blocks, which were characterized by X-ray photoelectron spectroscopy and atomic force microscopy, respectively. The results indicated that the symmetrical CBABC structure favored PDMS and QAS tethered blocks migrating to the film surface. With the mass percentage of the PHFBMA increased from 0 to 32.5%, the surface roughness of the copolymer film decreased gradually with a tendency to form a smooth surface. Owing to the surface properties, fluorosilicone multi-block copolymers containing a certain amount of PHFBMA with higher C-N{sup +} content and relatively smooth morphology demonstrated obvious antimicrobial activity against Gram-positive bacteria, Bacillus subtilis and Gram-negative bacteria, Escherichia coli. The functionalized multi-block copolymers based on fluorosilicone and QAS groups would have potential applications in antimicrobial coatings.

  16. Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose

    International Nuclear Information System (INIS)

    Zhou, Fang; Qin, Xiaoshuai; Li, Yancai; Ren, Lixia; Zhao, Yunhui; Yuan, Xiaoyan

    2015-01-01

    Highlights: • QAS-containing fluorosilicone multi-block copolymers were synthesized. • The block length of PHFBMA in the copolymers was tailored via RAFT polymerization. • Surface roughness of the copolymers decreased with the increased PHFBMA content. • A certain length of PHFBMA block enhanced C−N + percentage on the surface. - Abstract: Symmetrically structured fluorosilicone multi-block copolymers containing poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(hexafluorobutyl methacrylate) (PHFBMA) were sequentially synthesized via reversible addition–fragmentation chain transfer polymerization, using a polydimethylsiloxane (PDMS) chain transfer agent with dithiocarbonate groups at both ends. Then, the CBABC-type block copolymers were quaternized with n-octyliodide to tether quaternary ammonium salt (QAS) groups in the PDMAEMA blocks for the antimicrobial use. The obtained fluorosilicone copolymers showed clear variations in the C-N + composition and surface morphology on their films depending on the content of the PHFBMA blocks, which were characterized by X-ray photoelectron spectroscopy and atomic force microscopy, respectively. The results indicated that the symmetrical CBABC structure favored PDMS and QAS tethered blocks migrating to the film surface. With the mass percentage of the PHFBMA increased from 0 to 32.5%, the surface roughness of the copolymer film decreased gradually with a tendency to form a smooth surface. Owing to the surface properties, fluorosilicone multi-block copolymers containing a certain amount of PHFBMA with higher C-N + content and relatively smooth morphology demonstrated obvious antimicrobial activity against Gram-positive bacteria, Bacillus subtilis and Gram-negative bacteria, Escherichia coli. The functionalized multi-block copolymers based on fluorosilicone and QAS groups would have potential applications in antimicrobial coatings

  17. Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Yeol Yeom, Jung; Morishita, Yuki; Sato, Hiroki; Endo, Takanori; Usuki, Yoshiyuki; Kamada, Kei; Yoshikawa, Akira

    2014-01-01

    A depth-of-interaction (DOI) detector is required for developing a high resolution and high sensitivity PET system. Ce-doped Gd 3 Al 2 Ga 3 O 12 (GAGG fast: GAGG-F) is a promising scintillator for PET applications with high light output, no natural radioisotope and suitable light emission wavelength for semiconductor based photodetectors. However, no DOI detector based on pulse shape analysis with GAGG-F has been developed to date, due to the lack of appropriate scintillators of pairing. Recently a new variation of this scintillator with different Al/Ga ratios—Ce-doped Gd 3 Al 2.6 Ga 2.4 O 12 (GAGG slow: GAGG-S), which has slower decay time was developed. The combination of GAGG-F and GAGG-S may allow us to realize high resolution DOI detectors based on pulse shape analysis. We developed and tested two GAGG phoswich DOI block detectors comprised of pixelated GAGG-F and GAGG-S scintillation crystals. One phoswich block detector comprised of 2×2×5 mm pixel that were assembled into a 5×5 matrix. The DOI block was optically coupled to a silicon photomultiplier (Si-PM) array (Hamamatsu MPPC S11064-050P) with a 2-mm thick light guide. The other phoswich block detector comprised of 0.5×0.5×5 mm (GAGG-F) and 0.5×0.5×6 mm 3 (GAGG-S) pixels that were assembled into a 20×20 matrix. The DOI block was also optically coupled to the same Si-PM array with a 2-mm thick light guide. In the block detector of 2-mm crystal pixels (5×5 matrix), the 2-dimensional histogram revealed excellent separation with an average energy resolution of 14.1% for 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 8.7. In the block detector that used 0.5-mm crystal pixels (20×20 matrix), the 2-dimensional histogram also showed good separation with energy resolution of 27.5% for the 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 6.5. These results indicate that phoswich DOI

  18. Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs.

    Science.gov (United States)

    Yang, Jia-Liang; Cao, Xiao-Han; Zhang, Cheng-Jian; Wu, Hai-Lin; Zhang, Xing-Hong

    2018-01-31

    A one-pot synthesis of block copolymer with regioregular poly(monothiocarbonate) block is described via metal-free catalysis. Lewis bases such as guanidine, quaternary onium salts, and Lewis acid triethyl borane (TEB) were equivalently combined and used as the catalysts. By using polyethylene glycol (PEG) as the macromolecular chain transfer agent (CTA), narrow polydispersity block copolymers were obtained from the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO). The block copolymers had a poly(monothiocarbonate) block with perfect alternating degree and regioregularity. Unexpectedly, the addition of CTA to COS/PO copolymerization system could dramatically improve the turnover frequency (TOF) of PO (up to 240 h -1 ), higher than that of the copolymerization without CTA. In addition, the conversion of CTA could be up to 100% in most cases, as revealed by ¹H NMR spectra. Of consequence, the number-average molecular weights ( M n s) of the resultant block copolymers could be regulated by varying the feed ratio of CTA to PO. Oxygen-sulfur exchange reaction (O/S ER), which can generate randomly distributed thiocarbonate and carbonate units, was effectively suppressed in all of the cases in the presence of CTA, even at 80 °C. This work presents a versatile method for synthesizing sulfur-containing block copolymers through a metal-free route, providing an array of new block copolymers.

  19. Structure of PEP-PEO block copolymer micelles: Exploiting the complementarity of small-angle X-ray scattering and static light scattering

    DEFF Research Database (Denmark)

    Jensen, Grethe Vestergaard; Shi, Qing; Hernansanz, María J.

    2011-01-01

    )-b-poly(ethylene oxide) (PEP-PEO) in a 70% ethanol solution are investigated. The polymers have identical PEP blocks of 5.0 kDa and varying PEO blocks of 2.8-49 kDa. The SLS contrasts of PEP and PEO are similar, providing a homogeneous contrast, making SLS ideal for determining the overall micelle morphology. The SAXS...... contrasts of the two components are very different, allowing for resolution of the internal micelle structure. A core-shell model with a PEP core and PEO corona is fitted simultaneously to the SAXS and SLS data using the different contrasts of the two blocks for each technique. With increasing PEO molecular...

  20. ALS insertion device block measurement and inspection

    International Nuclear Information System (INIS)

    Marks, S.; Carrieri, J.; Cook, C.; Hassenzahl, W.V.; Hoyer, E.; Plate, D.

    1991-05-01

    The performance specifications for ALS insertion devices require detailed knowledge and strict control of the Nd-Fe-B permanent magnet blocks incorporated in these devices. This paper describes the measurement and inspection apparatus and the procedures designed to qualify and characterize these blocks. A detailed description of a new, automated Helmholtz coil facility for measurement of the three components of magnetic moment is included. Physical block inspection and magnetic moment measurement procedures are described. Together they provide a basis for qualifying blocks and for specifying placement of blocks within an insertion devices' magnetic structures. 1 ref., 4 figs

  1. The Research and Evaluation of Road Environment in the Block of City Based on 3-D Streetscape Data

    Science.gov (United States)

    Guan, L.; Ding, Y.; Ge, J.; Yang, H.; Feng, X.; Chen, P.

    2018-04-01

    This paper focus on the problem of the street environment of block unit, based on making clear the acquisition mode and characteristics of 3D streetscape data, the paper designs the assessment model of regional block unit based on 3D streetscape data. The 3D streetscape data with the aid of oblique photogrammetry surveying and mobile equipment, will greatly improve the efficiency and accuracy of urban regional assessment, and expand the assessment scope. Based on the latest urban regional assessment model, with the street environment assessment model of the current situation, this paper analyzes the street form and street environment assessment of current situation in the typical area of Beijing. Through the street environment assessment of block unit, we found that in the megacity street environment assessment model of block unit based on 3D streetscape data has greatly help to improve the assessment efficiency and accuracy. At the same time, motor vehicle lane, green shade deficiency, bad railings and street lost situation is still very serious in Beijing, the street environment improvement of the block unit is still a heavy task. The research results will provide data support for urban fine management and urban design, and provide a solid foundation for the improvement of city image.

  2. Block-based wavelet transform coding of mammograms with region-adaptive quantization

    Science.gov (United States)

    Moon, Nam Su; Song, Jun S.; Kwon, Musik; Kim, JongHyo; Lee, ChoongWoong

    1998-06-01

    To achieve both high compression ratio and information preserving, it is an efficient way to combine segmentation and lossy compression scheme. Microcalcification in mammogram is one of the most significant sign of early stage of breast cancer. Therefore in coding, detection and segmentation of microcalcification enable us to preserve it well by allocating more bits to it than to other regions. Segmentation of microcalcification is performed both in spatial domain and in wavelet transform domain. Peak error controllable quantization step, which is off-line designed, is suitable for medical image compression. For region-adaptive quantization, block- based wavelet transform coding is adopted and different peak- error-constrained quantizers are applied to blocks according to the segmentation result. In view of preservation of microcalcification, the proposed coding scheme shows better performance than JPEG.

  3. A novel block encryption scheme based on chaos and an S-box for wireless sensor networks

    International Nuclear Information System (INIS)

    Tong Xiao-Jun; Zuo Ke; Wang Zhu

    2012-01-01

    The wireless sensor network (WSN) has been widely used in various fields, but it still remains in the preliminary discovery and research phase with a lack of various related mature technologies. Traditional encryption schemes are not suitable for wireless sensor networks due to intrinsic features of the nodes such as low energy, limited computation capability, and lack of storage resources. In this paper, we present a novel block encryption scheme based on the integer discretization of a chaotic map, the Feistel network structure, and an S-box. The novel scheme is fast, secure, has low resource consumption and is suitable for wireless sensor network node encryption schemes. The experimental tests are carried out with detailed analysis, showing that the novel block algorithm has a large key space, very good diffusion and disruptive performances, a strict avalanche effect, excellent statistical balance, and fast encryption speed. These features enable the encryption scheme to pass the SP800-22 test. Meanwhile, the analysis and the testing of speed, time, and storage space on the simulator platform show that this new encryption scheme is well able to hide data information in wireless sensor networks. (general)

  4. Performance Comparison of Assorted Color Spaces for Multilevel Block Truncation Coding based Face Recognition

    OpenAIRE

    H.B. Kekre; Sudeep Thepade; Karan Dhamejani; Sanchit Khandelwal; Adnan Azmi

    2012-01-01

    The paper presents a performance analysis of Multilevel Block Truncation Coding based Face Recognition among widely used color spaces. In [1], Multilevel Block Truncation Coding was applied on the RGB color space up to four levels for face recognition. Better results were obtained when the proposed technique was implemented using Kekre’s LUV (K’LUV) color space [25]. This was the motivation to test the proposed technique using assorted color spaces. For experimental analysis, two face databas...

  5. SYNTHESIS OF STYRENE-METHYL METHACRYLATE BLOCK COPOLYMER BY POLYAZOAMIDE AS INITIATOR

    Institute of Scientific and Technical Information of China (English)

    WANG Zhongyi; WEI Jeqing

    1996-01-01

    Polyazoamide(PAA) was used as initiator to prepare block copolymer P(MMA-b-St) by free radical polymerization. The fraction of block copolymer was about 50%. The structure of the block-copolymer was characterized by IR and the results of 1H-NMR and GPC showed that the content of the block and the molecular weight (-Mw) of the prepolymer and block copolymer could be controlled by varying the mol ratio of styrene/PAA and MMA/prepolymer. DSC and TEM results revealed that the block copolymer has two separated glass transition temperatures and phase separation within the domain structure.

  6. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers

    KAUST Repository

    Zhang, H.; Alkayal, N.; Gnanou, Yves; Hadjichristidis, Nikolaos

    2013-01-01

    A novel one-pot methodology combining anionic polymerization and polyhomologation, through a "bridge" molecule (BF3OEt 2), was developed for the synthesis of polyethylene (PE)-based block copolymers. The anionically synthesized macroanion reacts

  7. Design for an IO block array in a tile-based FPGA

    International Nuclear Information System (INIS)

    Ding Guangxin; Chen Lingdou; Liu Zhongli

    2009-01-01

    A design for an IO block array in a tile-based FPGA is presented. Corresponding with the characteristics of the FPGA, each IO cell is composed of a signal path, local routing pool and configurable input/output buffers. Shared programmable registers in the signal path can be configured for the function of JTAG, without specific boundary scan registers/latches, saving layout area. The local routing pool increases the flexibility of routing and the routability of the whole FPGA. An auxiliary power supply is adopted to increase the performance of the IO buffers at different configured IO standards. The organization of the IO block array is described in an architecture description file, from which the array layout can be accomplished through use of an automated layout assembly tool. This design strategy facilitates the design of FPGAs with different capacities or architectures in an FPGA family series. The bond-out schemes of the same FPGA chip in different packages are also considered. The layout is based on SMIC 0.13 μm logic 1P8M salicide 1.2/2.5 V CMOS technology. Our performance is comparable with commercial SRAM-based FPGAs which use a similar process. (semiconductor integrated circuits)

  8. Evaluation on Behavior of Single Block Subject to Harmonic Excitation

    International Nuclear Information System (INIS)

    Choi, Woo-Seok; Kim, Dong-Ok; Park, Keun-Bae; Lee, Won-Jae

    2007-01-01

    NHDD(Nuclear Hydrogen Development and Demonstration) project team in KAERI(Korea Atomic Energy Research Institute) has been developing a methodology on the seismic evaluation of VHTR(Very High Temperature Reactor). Roughly, there are a block type and a pebble type reactor in VHTR. In the block type reactor, several blocks are stacked and the stacked blocks are arrayed in certain pattern. To evaluate a behavior style and an integrity of the stacked structure subject to a seismic load, a modeling technique to represent the contact surface characteristics between a block and a block support structure and between blocks is necessary. The way to evaluate a load path is also needed. However, it is difficult to deal with a realistic seismic load and to figure out the characteristic of block behavior since it has very complicated time history. In this study, the evaluation of single block subject to a harmonic excitation is conducted for a preliminary evaluation

  9. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.

    Science.gov (United States)

    Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L

    2012-10-23

    One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.

  10. Surface tectonics of nanoporous networks of melamine-capped molecular building blocks formed through interface Schiff-base reactions.

    Science.gov (United States)

    Liu, Xuan-He; Wang, Dong; Wan, Li-Jun

    2013-10-01

    Control over the assembly of molecules on a surface is of great importance for the fabrication of molecule-based miniature devices. Melamine (MA) and molecules with terminal MA units are promising candidates for supramolecular interfacial packing patterning, owing to their multiple hydrogen-bonding sites. Herein, we report the formation of self-assembled structures of MA-capped molecules through a simple on-surface synthetic route. MA terminal groups were successfully fabricated onto rigid molecular cores with 2-fold and 3-fold symmetry through interfacial Schiff-base reactions between MA and aldehyde groups. Sub-molecular scanning tunneling microscopy (STM) imaging of the resultant adlayer revealed the formation of nanoporous networks. Detailed structural analysis indicated that strong hydrogen-bonding interactions between the MA groups persistently drove the formation of nanoporous networks. Herein, we demonstrate that functional groups with strong hydrogen-bond-formation ability are promising building blocks for the guided assembly of nanoporous networks and other hierarchical 2D assemblies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A novel partitioning method for block-structured adaptive meshes

    Science.gov (United States)

    Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-07-01

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  12. A novel partitioning method for block-structured adaptive meshes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-07-15

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  13. Secure Chaotic Map Based Block Cryptosystem with Application to Camera Sensor Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Khurram Khan

    2011-01-01

    Full Text Available Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network.

  14. Fast assembly of ordered block copolymer nanostructures through microwave annealing.

    Science.gov (United States)

    Zhang, Xiaojiang; Harris, Kenneth D; Wu, Nathanael L Y; Murphy, Jeffrey N; Buriak, Jillian M

    2010-11-23

    Block copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density. The approach is applied to the commonly used poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) and poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) families of block copolymers, and it is found that the substrate resistivity, solvent environment, and anneal temperature all critically influence the self-assembly process. For selected systems, highly ordered patterns were achieved in less than 3 min. In addition, we establish the compatibility of the technique with directed assembly by graphoepitaxy.

  15. Image Blocking Encryption Algorithm Based on Laser Chaos Synchronization

    Directory of Open Access Journals (Sweden)

    Shu-Ying Wang

    2016-01-01

    Full Text Available In view of the digital image transmission security, based on laser chaos synchronization and Arnold cat map, a novel image encryption scheme is proposed. Based on pixel values of plain image a parameter is generated to influence the secret key. Sequences of the drive system and response system are pretreated by the same method and make image blocking encryption scheme for plain image. Finally, pixels position are scrambled by general Arnold transformation. In decryption process, the chaotic synchronization accuracy is fully considered and the relationship between the effect of synchronization and decryption is analyzed, which has characteristics of high precision, higher efficiency, simplicity, flexibility, and better controllability. The experimental results show that the encryption algorithm image has high security and good antijamming performance.

  16. Lamellar Microdomains of Block-Copolymer-Based Ionic Supramolecules Exhibiting a Hierarchical Self-Assembly

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Almdal, Kristoffer; Zhu, Kaizheng

    2014-01-01

    (Cn; n = 8, 12, and 16) trimethylammonium counterions (i.e., side chains) at various ion (pair) fractions X [i.e., counterion/side-chain grafting density; X = number of alkyl counterions (i.e., side chains) per acidic group of the parent PMAA block] these L-b-AC ionic supramolecules exhibit...... a spherical-in-lamellar hierarchical self-assembly. For these systems, (1) the effective Flory-Huggins interaction parameter between L- and AC-blocks chi'(Cn/x) was extracted, and (2) analysis of the lamellar microdomains showed that when there is an increase in X, alkyl counterion (i.e., side chain) length l......Based on a parent diblock copolymer of poly(styrene)-b-poly(methacrylic acid), PS-b-PMAA, linear-b-amphiphilic comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] are synthesized in which the poly(methacrylate) backbone of the ionic supramolecular AC-block is neutralized by alkyl...

  17. Cryptanalysis of Lin et al.'s Efficient Block-Cipher-Based Hash Function

    NARCIS (Netherlands)

    Liu, Bozhong; Gong, Zheng; Chen, Xiaohong; Qiu, Weidong; Zheng, Dong

    2010-01-01

    Hash functions are widely used in authentication. In this paper, the security of Lin et al.'s efficient block-cipher-based hash function is reviewed. By using Joux's multicollisions and Kelsey et al.'s expandable message techniques, we find the scheme is vulnerable to collision, preimage and second

  18. Heat flow, heat generation and crustal thermal structure of the northern block of the South Indian Craton

    Science.gov (United States)

    Gupta, Mohan L.; Sharma, S. R.; Sundar, A.

    Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.

  19. Heat flow, heat generation and crustal thermal structure of the northern block of the South Indian Craton

    Science.gov (United States)

    Gupta, Mohan L.; Sharma, S. R.; Sundar, A.

    1988-01-01

    Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.

  20. Comparison of compressive strength of paving block with a mixture of Sinabung ash and paving block with a mixture of lime

    Science.gov (United States)

    Hastuty, I. P.; Sembiringand Nursyamsi, I. S.

    2018-02-01

    Paving block is one of the material used as the top layer of road structure besides asphalt and concrete paving block is usually made of mixed material such as Portland cement or other adhesive material, water, and aggregate. People nowadays prefer paving block compared to other pavement such as concrete or asphalt. Their interest toward the use of paving block increase because paving block is an eco-friendly construction which is very useful in helping soil water conservation, can be done faster, has easier installation and maintenance, has a variety of shades that increase the aesthetic value, also costs cheaper than the other. Preparation of the specimens with a mixture of Sinabung ash and a mixture of Sinabung ash and lime are implemented with a mixture ratio of cement : sand : stone ash is 1: 2 : 3. The mixture is used as a substitute material by reducing the percentage amount of the weight of the cement with the composition ratio variation based on the comparative volume category of the paving block aggregate, i.e. 0%, 5%, 10%, 15%, 20%, and 25%. The result of this research shows that the maximum compressive strength value is 42.27 Mpa, it was obtained from a mixture of 10% lime with curing time 28 days. The maximum compressive strength value which is obtained from the mixture of sinabung ash is 41.60 Mpa, it was obtained from a mixture of 15% sinabung ash. From the use of these two materials, paving blocks produced are classified as paving blocks quality A and B (350 - 400 Mpa) in accordance to specification from SNI 03-0691-1996.

  1. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  2. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  3. Short-Block Protograph-Based LDPC Codes

    Science.gov (United States)

    Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher

    2010-01-01

    Short-block low-density parity-check (LDPC) codes of a special type are intended to be especially well suited for potential applications that include transmission of command and control data, cellular telephony, data communications in wireless local area networks, and satellite data communications. [In general, LDPC codes belong to a class of error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels.] The codes of the present special type exhibit low error floors, low bit and frame error rates, and low latency (in comparison with related prior codes). These codes also achieve low maximum rate of undetected errors over all signal-to-noise ratios, without requiring the use of cyclic redundancy checks, which would significantly increase the overhead for short blocks. These codes have protograph representations; this is advantageous in that, for reasons that exceed the scope of this article, the applicability of protograph representations makes it possible to design highspeed iterative decoders that utilize belief- propagation algorithms.

  4. Assessment of Structural Strength of Commercial Sandcrete Blocks ...

    African Journals Online (AJOL)

    makorede

    cement to 6 or 8 parts of sand (1:6 or 1:8) with a water/cement ratio of between 50 and .... FACTORS AFFECTING QUALITY OF SANDCRETE. BLOCKS. Compressive ... that it is a cohesionless aggregate of rounded angular or sub angular ...

  5. Amphiphilic block copolymers for biomedical applications

    Science.gov (United States)

    Zupancich, John Andrew

    Amphiphilic block copolymer self-assembly provides a versatile means to prepare nanoscale objects in solution. Control over aggregate shape is granted through manipulation of amphiphile composition and the synthesis of well-defined polymers offers the potential to produce micelles with geometries optimized for specific applications. Currently, polymer micelles are being investigated as vehicles for the delivery of therapeutics and attempts to increase efficacy has motivated efforts to incorporate bioactive ligands and stimuli-responsive character into these structures. This thesis reports the synthesis and self-assembly of biocompatible, degradable polymeric amphiphiles. Spherical, cylindrical, and bilayered vesicle structures were generated spontaneously by the direct dispersion of poly(ethylene oxide)-b-poly(gamma-methyl-ε-caprolactone) block copolymers in water and solutions were characterized with cryogenic transmission electron microscopy (cryo-TEM). The dependence of micelle structure on diblock copolymer composition was examined through the systematic variation of the hydrophobic block molecular weight. A continuous evolution of morphology was observed with coexistence of aggregate structures occurring in windows of composition intermediate to that of pure spheres, cylinders and vesicles. A number of heterobifunctional poly(ethylene oxide) polymers were synthesized for the preparation of ligand-functionalized amphiphilic diblock copolymers. The effect of ligand conjugation on block copolymer self-assembly and micelle morphology was also examined. An RGD-containing peptide sequence was efficiently conjugated to a set of well characterized poly(ethylene oxide)-b-poly(butadiene) copolymers. The reported aggregate morphologies of peptide-functionalized polymeric amphiphiles deviated from canonical structures and the micelle clustering, cylinder fragmentation, network formation, and multilayer vesicle generation documented with cryo-TEM was attributed to

  6. Improving Conductivity Image Quality Using Block Matrix-based Multiple Regularization (BMMR Technique in EIT: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2011-06-01

    Full Text Available A Block Matrix based Multiple Regularization (BMMR technique is proposed for improving conductivity image quality in EIT. The response matrix (JTJ has been partitioned into several sub-block matrices and the highest eigenvalue of each sub-block matrices has been chosen as regularization parameter for the nodes contained by that sub-block. Simulated boundary data are generated for circular domain with circular inhomogeneity and the conductivity images are reconstructed in a Model Based Iterative Image Reconstruction (MoBIIR algorithm. Conductivity images are reconstructed with BMMR technique and the results are compared with the Single-step Tikhonov Regularization (STR and modified Levenberg-Marquardt Regularization (LMR methods. It is observed that the BMMR technique reduces the projection error and solution error and improves the conductivity reconstruction in EIT. Result show that the BMMR method also improves the image contrast and inhomogeneity conductivity profile and hence the reconstructed image quality is enhanced. ;doi:10.5617/jeb.170 J Electr Bioimp, vol. 2, pp. 33-47, 2011

  7. Rapid self-assembly of block copolymers to photonic crystals

    Science.gov (United States)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  8. Self-assembling peptide-based building blocks in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan; Srivastava, Samanvaya; Chung, Eun Ji; Schnorenberg, Mathew R.; Barrett, John C.; LaBelle, James L.; Tirrell, Matthew

    2017-02-01

    Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. The studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.

  9. Economic analysis of sectional concrete blocks uses in biological shieldings

    International Nuclear Information System (INIS)

    Ivanov, V.N.

    1977-01-01

    The relative economy of different structural embodiments of the biological protection of a research reactor has been evaluated. The alternatives include cast in-situ concrete and prefabricated blocks with different linear dimension tolerances (+-2, +-5 and +-7 mm). The cost-benefit estimates have been done according to the reduced cost calculated for the final products - the erected structures. It has been found that the optimum tolerances for 6 meter-long blocks are not less than +-5 mm for the other linear dimensions. The optimum concrete block volume for dismountable structures is 1 to 1.5 m 3 and for prefabricated protection structures -more than 4 m 3

  10. Coupled vertical-rocking response of base-isolated structures

    International Nuclear Information System (INIS)

    Pan, T.C.; Kelly, J.M.

    1984-01-01

    A base-isolated building can have a small horizontal eccentricity between the center of mass of the superstructure and the center of rigidity of the supporting bearings. The structure can be modeled as a rigid block with tributary masses supported on massless rubber bearings placed at a constant elevation below the center of mass. Perturbation methods are implemented to find the dynamic characteristics for both the detuned and the perfectly tuned cases. The Green's functions for the displacement response of the system are derived for the undamped and the damped conditions. The response spectrum modal superposition method is used in estimating the maximum acceleration. A simple method, accounting for the effect of closely spaced modes, is proposed for combining modal maxima and results in an approximate single-degree-of-freedom solution. This approximate solution may be used for thepreliminary design of a base-isolated structure. Numerical results for a base-isolated building subjected to the vertical component of the El Centro earthquake of 1940 were carried out for comparison with analytical results. It is shown that the effect of rocking coupling on the vertical seismic response of baseisolated structures can generally be neglected because of the combined effects of the time lag between the maximum translational and rotational responses and the influence of damping in the isolation system

  11. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  12. Three-dimensional Reconstruction of Block Shape Irregularity and its Effects on Block Impacts Using an Energy-Based Approach

    Science.gov (United States)

    Zhang, Yulong; Liu, Zaobao; Shi, Chong; Shao, Jianfu

    2018-04-01

    This study is devoted to three-dimensional modeling of small falling rocks in block impact analysis in energy view using the particle flow method. The restitution coefficient of rockfall collision is introduced from the energy consumption mechanism to describe rockfall-impacting properties. Three-dimensional reconstruction of falling block is conducted with the help of spherical harmonic functions that have satisfactory mathematical properties such as orthogonality and rotation invariance. Numerical modeling of the block impact to the bedrock is analyzed with both the sphere-simplified model and the 3D reconstructed model. Comparisons of the obtained results suggest that the 3D reconstructed model is advantageous in considering the combination effects of rockfall velocity and rotations during colliding process. Verification of the modeling is carried out with the results obtained from other experiments. In addition, the effects of rockfall morphology, surface characteristics, velocity, and volume, colliding damping and relative angle are investigated. A three-dimensional reconstruction modulus of falling blocks is to be developed and incorporated into the rockfall simulation tools in order to extend the modeling results at block scale to slope scale.

  13. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science.

    Science.gov (United States)

    Czarnecki, Sebastian; Bertin, Annabelle

    2018-03-07

    Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    Science.gov (United States)

    Morales Hurtado, M; de Vries, E G; Zeng, X; van der Heide, E

    2016-09-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Block-Parallel Data Analysis with DIY2

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Peterka, Tom [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-30

    DIY2 is a programming model and runtime for block-parallel analytics on distributed-memory machines. Its main abstraction is block-structured data parallelism: data are decomposed into blocks; blocks are assigned to processing elements (processes or threads); computation is described as iterations over these blocks, and communication between blocks is defined by reusable patterns. By expressing computation in this general form, the DIY2 runtime is free to optimize the movement of blocks between slow and fast memories (disk and flash vs. DRAM) and to concurrently execute blocks residing in memory with multiple threads. This enables the same program to execute in-core, out-of-core, serial, parallel, single-threaded, multithreaded, or combinations thereof. This paper describes the implementation of the main features of the DIY2 programming model and optimizations to improve performance. DIY2 is evaluated on benchmark test cases to establish baseline performance for several common patterns and on larger complete analysis codes running on large-scale HPC machines.

  16. The wild tapered block bootstrap

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    In this paper, a new resampling procedure, called the wild tapered block bootstrap, is introduced as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The method consists in tapering each overlapping block...... of the series first, the applying the standard wild bootstrap for independent and heteroscedastic distrbuted observations to overlapping tapered blocks in an appropriate way. Its perserves the favorable bias and mean squared error properties of the tapered block bootstrap, which is the state-of-the-art block......-order asymptotic validity of the tapered block bootstrap as well as the wild tapered block bootstrap approximation to the actual distribution of the sample mean is also established when data are assumed to satisfy a near epoch dependent condition. The consistency of the bootstrap variance estimator for the sample...

  17. 3D Reasoning from Blocks to Stability.

    Science.gov (United States)

    Zhaoyin Jia; Gallagher, Andrew C; Saxena, Ashutosh; Chen, Tsuhan

    2015-05-01

    Objects occupy physical space and obey physical laws. To truly understand a scene, we must reason about the space that objects in it occupy, and how each objects is supported stably by each other. In other words, we seek to understand which objects would, if moved, cause other objects to fall. This 3D volumetric reasoning is important for many scene understanding tasks, ranging from segmentation of objects to perception of a rich 3D, physically well-founded, interpretations of the scene. In this paper, we propose a new algorithm to parse a single RGB-D image with 3D block units while jointly reasoning about the segments, volumes, supporting relationships, and object stability. Our algorithm is based on the intuition that a good 3D representation of the scene is one that fits the depth data well, and is a stable, self-supporting arrangement of objects (i.e., one that does not topple). We design an energy function for representing the quality of the block representation based on these properties. Our algorithm fits 3D blocks to the depth values corresponding to image segments, and iteratively optimizes the energy function. Our proposed algorithm is the first to consider stability of objects in complex arrangements for reasoning about the underlying structure of the scene. Experimental results show that our stability-reasoning framework improves RGB-D segmentation and scene volumetric representation.

  18. Numerical Upscaling of Solute Transport in Fractured Porous Media Based on Flow Aligned Blocks

    Science.gov (United States)

    Leube, P.; Nowak, W.; Sanchez-Vila, X.

    2013-12-01

    High-contrast or fractured-porous media (FPM) pose one of the largest unresolved challenges for simulating large hydrogeological systems. The high contrast in advective transport between fast conduits and low-permeability rock matrix, including complex mass transfer processes, leads to the typical complex characteristics of early bulk arrivals and long tailings. Adequate direct representation of FPM requires enormous numerical resolutions. For large scales, e.g. the catchment scale, and when allowing for uncertainty in the fracture network architecture or in matrix properties, computational costs quickly reach an intractable level. In such cases, multi-scale simulation techniques have become useful tools. They allow decreasing the complexity of models by aggregating and transferring their parameters to coarser scales and so drastically reduce the computational costs. However, these advantages come at a loss of detail and accuracy. In this work, we develop and test a new multi-scale or upscaled modeling approach based on block upscaling. The novelty is that individual blocks are defined by and aligned with the local flow coordinates. We choose a multi-rate mass transfer (MRMT) model to represent the remaining sub-block non-Fickian behavior within these blocks on the coarse scale. To make the scale transition simple and to save computational costs, we capture sub-block features by temporal moments (TM) of block-wise particle arrival times to be matched with the MRMT model. By predicting spatial mass distributions of injected tracers in a synthetic test scenario, our coarse-scale solution matches reasonably well with the corresponding fine-scale reference solution. For predicting higher TM-orders (such as arrival time and effective dispersion), the prediction accuracy steadily decreases. This is compensated to some extent by the MRMT model. If the MRMT model becomes too complex, it loses its effect. We also found that prediction accuracy is sensitive to the choice of

  19. Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.

    Science.gov (United States)

    Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo

    2017-07-01

    Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.

  20. Electric field responsive origami structures using electrostriction-based active materials

    Science.gov (United States)

    Ahmed, Saad; Arrojado, Erika; Sigamani, Nirmal; Ounaies, Zoubeida

    2015-04-01

    The objective of origami engineering is to combine origami principles with advanced materials to yield active origami shapes, which fold and unfold in response to external stimuli. We are investigating the use of P(VDF-TrFE-CTFE), a relaxor ferroelectric terpolymer, to realize origami-inspired folding and unfolding of structures and to actuate so-called action origami structures. To accomplish these two objectives, we have explored different approaches to the P(VDF-TrFECTFE) polymer actuator construction, ranging from unimorph to multilayered stacks. Electromechanical characterization of the terpolymer-based actuators is conducted with a focus on free strain, force-displacement and blocked force. Moreover dynamic thickness strains of P(VDF-TrFE-CTFE) terpolymer at different frequencies ranging from 0.1Hz to 10Hz is also measured. Quantifying the performance of terpolymer-based actuators is important to the design of action origami structures. Following these studies, action origami prototypes based on catapult, flapping butterfly wings and barking fox are actuated and characterization of these prototypes are conducted by studying impact of various parameters such as electric field magnitude and frequency, number of active layers, and actuator dimensions.

  1. Method for Generating Pseudorandom Sequences with the Assured Period Based on R-blocks

    Directory of Open Access Journals (Sweden)

    M. A. Ivanov

    2011-03-01

    Full Text Available The article describes the characteristics of a new class of fast-acting pseudorandom number generators, based on the use of stochastic adders or R-blocks. A new method for generating pseudorandom sequences with the assured length of period is offered.

  2. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  3. Binaural noise reduction via cue-preserving MMSE filter and adaptive-blocking-based noise PSD estimation

    Science.gov (United States)

    Azarpour, Masoumeh; Enzner, Gerald

    2017-12-01

    Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome

  4. Reforming residential electricity tariff in China: Block tariffs pricing approach

    International Nuclear Information System (INIS)

    Sun, Chuanwang; Lin, Boqiang

    2013-01-01

    The Chinese households that make up approximately a quarter of world households are facing a residential power tariff reform in which a rising block tariff structure will be implemented, and this tariff mechanism is widely used around the world. The basic principle of the structure is to assign a higher price for higher income consumers with low price elasticity of power demand. To capture the non-linear effects of price and income on elasticities, we set up a translog demand model. The empirical findings indicate that the higher income consumers are less sensitive than those with lower income to price changes. We further put forward three proposals of Chinese residential electricity tariffs. Compared to a flat tariff, the reasonable block tariff structure generates more efficient allocation of cross-subsidies, better incentives for raising the efficiency of electricity usage and reducing emissions from power generation, which also supports the living standards of low income households. - Highlights: • We design a rising block tariff structure of residential electricity in China. • We set up a translog demand model to find the non-linear effects on elasticities. • The higher income groups are less sensitive to price changes. • Block tariff structure generates more efficient allocation of cross-subsidies. • Block tariff structure supports the living standards of low income households

  5. Block Gas Sol Unit in Haderslev

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    2000-01-01

    Investigation of a SDHW system based on a Block Gas Sol Unit from Baxi A/S installed by a consumer i Haderslev, Denmark.......Investigation of a SDHW system based on a Block Gas Sol Unit from Baxi A/S installed by a consumer i Haderslev, Denmark....

  6. Programming Education with a Blocks-Based Visual Language for Mobile Application Development

    Science.gov (United States)

    Mihci, Can; Ozdener, Nesrin

    2014-01-01

    The aim of this study is to assess the impact upon academic success of the use of a reference block-based visual programming tool, namely the MIT App Inventor for Android, as an educational instrument for teaching object-oriented GUI-application development (CS2) concepts to students; who have previously completed a fundamental programming course…

  7. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tercjak, A; Garcia, I; Mondragon, I [Materials-Technologies Group, Departamento IngenierIa Quimica y M Ambiente, Escuela Politecnica, Universidad PaIs Vasco/Euskal Herriko Unibertsitatea, Plaza Europa 1, E-20018 Donostia-San Sebastian (Spain)], E-mail: scptesza@sc.ehu.es, E-mail: inaki.mondragon@ehu.es

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  8. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal.

    Science.gov (United States)

    Tercjak, A; Garcia, I; Mondragon, I

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  9. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    International Nuclear Information System (INIS)

    Tercjak, A; Garcia, I; Mondragon, I

    2008-01-01

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface

  10. Molecular bases of protective immune responses against botulinum neurotoxin A--how antitoxin antibodies block its action.

    Science.gov (United States)

    Atassi, M Zouhair; Dolimbek, Behzod Z; Steward, Lance E; Aoki, K Roger

    2007-01-01

    In studies from this laboratory, we localized the regions on the H chain of botulinum neurotoxin A (BoNT/A) that are recognized by anti-BoNT/A antibodies (Abs) and block the activity of the toxin in vivo. These Abs were obtained from cervical dystonia patients who had been treated with BoNT/A and had become unresponsive to the treatment, as well as blocking Abs raised in mouse, horse, and chicken. We also localized the regions involved in BoNT/A binding to mouse brain synaptosomes (snp). Comparison of spatial proximities in the three-dimensional structure of the Ab-binding regions and the snp binding showed that except for one, the Ab-binding regions either coincide or overlap with the snp regions. It should be folly expected that protective Abs when bound to the toxin at sites that coincide or overlap with snp binding would prevent the toxin from binding to nerve synapse and therefore block toxin entry into the neuron. Thus, analysis of the locations of the Ab-binding and the snp-binding regions provides a molecular rationale for the ability of protecting Abs to block BoNT/A action in vivo.

  11. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G J L; Leermakers, Frans A M; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with the

  12. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G.J.L.; Leermakers, Frans A.M.; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with

  13. Dispersion and alignment of nanorods in cylindrical block copolymer thin films.

    Science.gov (United States)

    Rasin, Boris; Chao, Huikuan; Jiang, Guoqian; Wang, Dongliang; Riggleman, Robert A; Composto, Russell J

    2016-02-21

    Although significant progress has been made in controlling the dispersion of spherical nanoparticles in block copolymer thin films, our ability to disperse and control the assembly of anisotropic nanoparticles into well-defined structures is lacking in comparison. Here we use a combination of experiments and field theoretic simulations to examine the assembly of gold nanorods (AuNRs) in a block copolymer. Experimentally, poly(2-vinylpyridine)-grafted AuNRs (P2VP-AuNRs) are incorporated into poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) thin films with a vertical cylinder morphology. At sufficiently low concentrations, the AuNRs disperse in the block copolymer thin film. For these dispersed AuNR systems, atomic force microscopy combined with sequential ultraviolet ozone etching indicates that the P2VP-AuNRs segregate to the base of the P2VP cylinders. Furthermore, top-down transmission electron microscopy imaging shows that the P2VP-AuNRs mainly lie parallel to the substrate. Our field theoretic simulations indicate that the NRs are strongly attracted to the cylinder base where they can relieve the local stretching of the minority block of the copolymer. These simulations also indicate conditions that will drive AuNRs to adopt a vertical orientation, namely by increasing nanorod length and/or reducing the wetting of the short block towards the substrate.

  14. How Young Children Learn to Program with Sensor, Action, and Logic Blocks

    Science.gov (United States)

    Wyeth, Peta

    2008-01-01

    Electronic Blocks are a new programming environment designed specifically for children aged between 3 and 8 years. These physical, stackable blocks include sensor blocks, action blocks, and logic blocks. By connecting these blocks, children can program a wide variety of structures that interact with one another and the environment. Electronic…

  15. Small angle neutron scattering study of the micelle structure of amphiphilic block copolymers

    International Nuclear Information System (INIS)

    Yamaoka, H.; Matsuoka, H.; Sumaru, K.; Hanada, S.

    1994-01-01

    The amphiphilic block copolymers of vinyl ether were prepared by living cationic polymerization. The partially deuterated copolymers for SANS experiments were especially synthesized by introducing deuterated phenyl units in the hydrophobic chain. SANS measurements were performed for aqueous solutions of these copolymers by changing H 2 O/D 2 O ratios. The SANS profiles indicate that the micelles in the present system exhibit a core-shell structure and that the size and shape of micelles are largely dependent on the length of hydrophobic chain. The micelle of shorter hydrophobic chain was found to be nearly spherical, whereas the micelle of longer hydrophobic chain was confirmed to have an ellipsoidal shape

  16. The improvement of GaN-based LED grown on concave nano-pattern sapphire substrate with SiO2 blocking layer

    International Nuclear Information System (INIS)

    Lin, Jyun-Hao; Huang, Shyh-Jer; Su, Yan-Kuin; Huang, Kai-Wen

    2015-01-01

    Highlights: • Concave nano-patterned sapphire substrates with SiO 2 blocking layer. • The IQE is almost two times larger than that of conventional one. • The EQE was extremely enhanced more than 100%. - Abstract: In contrast to convex nano-pattern sapphire substrates (NPSS), which are frequently used to fabricate high-quality nitride-based light-emitting diodes (LEDs), concave NPSS have been paid relatively less attention. In this study, a concave NPSS was fabricated, and its nitride epitaxial growth process was evaluated in a step by step manner. A SiO 2 layer was used to avoid nucleation over the sidewall and bottom of the nano-patterns to reduce dislocation reformation. Traditional LED structures were grown on the NPSS layer to determine its influence on device performance. X-ray diffraction, etched pit density, inverse leakage current, and internal quantum efficiency (IQE) results showed that dislocations and non-radiative recombination centers are reduced by the NPSS constructed with a SiO 2 blocking layer. An IQE twice that on a planar substrate was also achieved; such a high IQE significantly enhanced the external quantum efficiency of the resultant device. Taken together, the results demonstrate that the SiO 2 blocking layer proposed in this work can enhance the performance of LEDs.

  17. Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control

    Science.gov (United States)

    Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej

    2017-08-01

    In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.

  18. A review on "A Novel Technique for Image Steganography Based on Block-DCT and Huffman Encoding"

    Science.gov (United States)

    Das, Rig; Tuithung, Themrichon

    2013-03-01

    This paper reviews the embedding and extraction algorithm proposed by "A. Nag, S. Biswas, D. Sarkar and P. P. Sarkar" on "A Novel Technique for Image Steganography based on Block-DCT and Huffman Encoding" in "International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010" [3] and shows that the Extraction of Secret Image is Not Possible for the algorithm proposed in [3]. 8 bit Cover Image of size is divided into non joint blocks and a two dimensional Discrete Cosine Transformation (2-D DCT) is performed on each of the blocks. Huffman Encoding is performed on an 8 bit Secret Image of size and each bit of the Huffman Encoded Bit Stream is embedded in the frequency domain by altering the LSB of the DCT coefficients of Cover Image blocks. The Huffman Encoded Bit Stream and Huffman Table

  19. Amphiphilic star block copolymers as gene carrier Part I: Synthesis via ATRP using calix[4]resorcinarene-based initiators and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Anna; Xue, Yan; Wei, Dafu [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Guan, Yong, E-mail: yguan@ecust.edu.cn [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining [Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (Canada)

    2013-01-01

    In this work, a cationic star polymer [poly(2-dimethylamino)ethyl methacrylate (PDMAEMA)] was prepared via atom transfer radical polymerization (ATRP), using brominated calix[4]resorcinarene as an initiator. Hydrophobic moieties, methyl methacrylate (MMA) and butyl acrylate (BA), were further incorporated via 'one-pot' method. Well-defined eight-armed star block copolymers bearing hydrophilic blocks inside and hydrophobic blocks outside were synthesized. The molecular weight, particle size, electrophoretic mobility and apparent charge density were determined by gel permeation chromatography (GPC), dynamic light scattering (DLS), phase analysis light scattering (PALS) and colloidal titration, respectively. The zeta potentials and apparent charge densities of the products exhibited the characteristics of polyelectrolyte. The incorporation of hydrophobic moieties generated electrostatic screening effect. The as-synthesized amphiphilic star copolymer is promising as a thermo-sensitive gene carrier for gene therapy. Highlights: Black-Right-Pointing-Pointer Amphiphilic cationic star block copolymers with well-controlled structures were prepared via ATRP. Black-Right-Pointing-Pointer The molecular structures and properties of the initiator and copolymers were systematically characterized. Black-Right-Pointing-Pointer The products exhibited the positive charged character, and hydrophobic moieties generated electrostatic screening effect.

  20. A 3D Analysis of Rock Block Deformation and Failure Mechanics Using Terrestrial Laser Scanning

    Science.gov (United States)

    Rowe, Emily; Hutchinson, D. Jean; Kromer, Ryan A.; Edwards, Tom

    2017-04-01

    Many natural geological hazards are present along the Thompson River corridor in British Columbia, Canada, including one particularly hazardous rocky slope known as the White Canyon. Railway tracks used by Canadian National (CN) and Canadian Pacific (CP) Railway companies pass through this area at the base of the Canyon slope. The geologically complex and weathered rock face exposed at White Canyon is prone to rockfalls. With a limited ditch capacity, these falling rocks have the potential to land on the tracks and therefore increase the risk of train derailment. Since 2012, terrestrial laser scanning (TLS) data has been collected at this site on a regular basis to enable researchers at Queen's University to study these rockfalls in greater detail. In this paper, the authors present a summary of an analysis of these TLS datasets including an examination of the pre-failure deformation patterns exhibited by failed rock blocks as well as an investigation into the influence of structural constraints on the pre-failure behavior of these blocks. Aligning rockfall source zones in an early point cloud dataset to a later dataset generates a transformation matrix describing the movement of the block from one scan to the next. This process was repeated such that the motion of the block over the entire TLS data coverage period was measured. A 3D roto-translation algorithm was then used to resolve the motion into translation and rotation components (Oppikofer et al. 2009; Kromer et al. 2015). Structural information was plotted on a stereonet for further analysis. A total of 111 rockfall events exceeding a volume of 1 m3 were analyzed using this approach. The study reveals that although some rockfall source blocks blocks do not exhibit detectable levels of deformation prior to failure, others do experience cm-level translation and rotation on the order of 1 to 6 degrees before detaching from the slope. Moreover, these movements may, in some cases, be related to the discontinuity

  1. Quality-aware features-based noise level estimator for block matching and three-dimensional filtering algorithm

    Science.gov (United States)

    Xu, Shaoping; Hu, Lingyan; Yang, Xiaohui

    2016-01-01

    The performance of conventional denoising algorithms is usually controlled by one or several parameters whose optimal settings depend on the contents of the processed images and the characteristics of the noises. Among these parameters, noise level is a fundamental parameter that is always assumed to be known by most of the existing denoising algorithms (so-called nonblind denoising algorithms), which largely limits the applicability of these nonblind denoising algorithms in many applications. Moreover, these nonblind algorithms do not always achieve the best denoised images in visual quality even when fed with the actual noise level parameter. To address these shortcomings, in this paper we propose a new quality-aware features-based noise level estimator (NLE), which consists of quality-aware features extraction and optimal noise level parameter prediction. First, considering that image local contrast features convey important structural information that is closely related to image perceptual quality, we utilize the marginal statistics of two local contrast operators, i.e., the gradient magnitude and the Laplacian of Gaussian (LOG), to extract quality-aware features. The proposed quality-aware features have very low computational complexity, making them well suited for time-constrained applications. Then we propose a learning-based framework where the noise level parameter is estimated based on the quality-aware features. Based on the proposed NLE, we develop a blind block matching and three-dimensional filtering (BBM3D) denoising algorithm which is capable of effectively removing additive white Gaussian noise, even coupled with impulse noise. The noise level parameter of the BBM3D algorithm is automatically tuned according to the quality-aware features, guaranteeing the best performance. As such, the classical block matching and three-dimensional algorithm can be transformed into a blind one in an unsupervised manner. Experimental results demonstrate that the

  2. Rapid shear alignment of sub-10 nm cylinder-forming block copolymer films based on thermal expansion mismatch

    Science.gov (United States)

    Nicaise, Samuel M.; Gadelrab, Karim R.; G, Amir Tavakkoli K.; Ross, Caroline A.; Alexander-Katz, Alfredo; Berggren, Karl K.

    2018-01-01

    Directed self-assembly of block copolymers (BCPs) provided by shear-stress can produce aligned sub-10 nm structures over large areas for applications in integrated circuits, next-generation data storage, and plasmonic structures. In this work, we present a fast, versatile BCP shear-alignment process based on coefficient of thermal expansion mismatch of the BCP film, a rigid top coat and a substrate. Monolayer and bilayer cylindrical microdomains of poly(styrene-b-dimethylsiloxane) aligned preferentially in-plane and orthogonal to naturally-forming or engineered cracks in the top coat film, allowing for orientation control over 1 cm2 substrates. Annealing temperatures, up to 275 °C, provided low-defect alignment up to 2 mm away from cracks for rapid (<1 min) annealing times. Finite-element simulations of the stress as a function of annealing time, annealing temperature, and distance from cracks showed that shear stress during the cooling phase of the thermal annealing was critical for the observed microdomain alignment.

  3. In-vitro cytotoxic activities of poly(2-ethyl-2-oxazoline-based amphiphilic block copolymers prepared by CuAAC click chemistry

    Directory of Open Access Journals (Sweden)

    S. Gulyuz

    2018-02-01

    Full Text Available Synthesis and characterization of well-defined amphiphilic block copolymers containing poly(2-ethyl-2-oxazoline as hydrophilic block and poly(ε-caprolactone or poly(L-lactide as hydrophobic block is achieved by copper-catalyzed azide-alkyne cycloaddition (CuAAC click chemistry. The clickable precursors, α-alkyne-functionalized poly(ε-caprolactone and poly(L-lactide and ω-azido-functionalized poly(2-ethyl-2-oxazoline are simply prepared and joined using copper sulfate/ascorbic acid catalyst system at room temperature. The structures of precursors and amphiphilic block copolymers are characterized by spectroscopic, chromatographic and thermal analyses. The cytotoxic activities of resulting amphiphilic block copolymers and their precursors are investigated in the prostate epithelial and cancer cells under in-vitro conditions. The treatment of the healthy prostate epithelial cell line PNT1A reveals that no significant cytotoxicity, whereas some significant toxic effects on the prostate cancer cell lines are observed.

  4. Block-classified bidirectional motion compensation scheme for wavelet-decomposed digital video

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, S. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Zhang, Y.Q. [David Sarnoff Research Center, Princeton, NJ (United States); Jabbari, B. [George Mason Univ., Fairfax, VA (United States)

    1997-08-01

    In this paper the authors introduce a block-classified bidirectional motion compensation scheme for the previously developed wavelet-based video codec, where multiresolution motion estimation is performed in the wavelet domain. The frame classification structure described in this paper is similar to that used in the MPEG standard. Specifically, the I-frames are intraframe coded, the P-frames are interpolated from a previous I- or a P-frame, and the B-frames are bidirectional interpolated frames. They apply this frame classification structure to the wavelet domain with variable block sizes and multiresolution representation. They use a symmetric bidirectional scheme for the B-frames and classify the motion blocks as intraframe, compensated either from the preceding or the following frame, or bidirectional (i.e., compensated based on which type yields the minimum energy). They also introduce the concept of F-frames, which are analogous to P-frames but are predicted from the following frame only. This improves the overall quality of the reconstruction in a group of pictures (GOP) but at the expense of extra buffering. They also study the effect of quantization of the I-frames on the reconstruction of a GOP, and they provide intuitive explanation for the results. In addition, the authors study a variety of wavelet filter-banks to be used in a multiresolution motion-compensated hierarchical video codec.

  5. Thermo-responsive block copolymers

    NARCIS (Netherlands)

    Mocan Cetintas, Merve

    2017-01-01

    Block copolymers (BCPs) are remarkable materials because of their self-assembly behavior into nano-sized regular structures and high tunable properties. BCPs are in used various applications such as surfactants, nanolithography, biomedicine and nanoporous membranes. In these thesis, we aimed to

  6. Development of Universal Controller Architecture for SiC Based Power Electronic Building Blocks

    Science.gov (United States)

    2017-10-30

    SiC Based Power Electronic Building Blocks Award Number Title of Research 30 October 2017 SUBMITTED BY D R. HERBERT L. G INN, Pl DEPT. OF...Naval Research , Philadelphia PA, Aug. 2017. • Ginn, H.L. Bakos J., "Development of Universal Controller Architecture for SiC Based Power Electronic...Controller Implementation for MMC Converters", Workshop on Control Architectures for Modular Power Conversion Systems, Office of Naval Research , Arlington VA

  7. The Astro-E/XRS Blocking Filter Calibration

    Science.gov (United States)

    Audley, Michael D.; Arnaud, Keith A.; Gendreau, Keith C.; Boyce, Kevin R.; Fleetwood, Charles M.; Kelley, Richard L.; Keski-Kuha, Ritva A.; Porter, F. Scott; Stahle, Caroline K.; Szymkowiak, Andrew E.

    1999-01-01

    We describe the transmission calibration of the Astro-E XRS blocking filters. The XRS instrument has five aluminized polyimide blocking filters. These filters are located at thermal stages ranging from 200 K to 60 mK. They are each about 1000 A thick. XRS will have high energy resolution which will enable it to see some of the extended fine structure around the oxygen and aluminum K edges of these filters. Thus, we are conducting a high spectral resolution calibration of the filters near these energies to resolve out extended flue structure and absorption lines.

  8. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.

    Science.gov (United States)

    Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao

    2017-07-19

    Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.

  9. A block matching-based registration algorithm for localization of locally advanced lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D., E-mail: gdhugo@vcu.edu [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, 23298 (United States)

    2014-04-15

    Purpose: To implement and evaluate a block matching-based registration (BMR) algorithm for locally advanced lung tumor localization during image-guided radiotherapy. Methods: Small (1 cm{sup 3}), nonoverlapping image subvolumes (“blocks”) were automatically identified on the planning image to cover the tumor surface using a measure of the local intensity gradient. Blocks were independently and automatically registered to the on-treatment image using a rigid transform. To improve speed and robustness, registrations were performed iteratively from coarse to fine image resolution. At each resolution, all block displacements having a near-maximum similarity score were stored. From this list, a single displacement vector for each block was iteratively selected which maximized the consistency of displacement vectors across immediately neighboring blocks. These selected displacements were regularized using a median filter before proceeding to registrations at finer image resolutions. After evaluating all image resolutions, the global rigid transform of the on-treatment image was computed using a Procrustes analysis, providing the couch shift for patient setup correction. This algorithm was evaluated for 18 locally advanced lung cancer patients, each with 4–7 weekly on-treatment computed tomography scans having physician-delineated gross tumor volumes. Volume overlap (VO) and border displacement errors (BDE) were calculated relative to the nominal physician-identified targets to establish residual error after registration. Results: Implementation of multiresolution registration improved block matching accuracy by 39% compared to registration using only the full resolution images. By also considering multiple potential displacements per block, initial errors were reduced by 65%. Using the final implementation of the BMR algorithm, VO was significantly improved from 77% ± 21% (range: 0%–100%) in the initial bony alignment to 91% ± 8% (range: 56%–100%;p < 0

  10. A block matching-based registration algorithm for localization of locally advanced lung tumors

    International Nuclear Information System (INIS)

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2014-01-01

    Purpose: To implement and evaluate a block matching-based registration (BMR) algorithm for locally advanced lung tumor localization during image-guided radiotherapy. Methods: Small (1 cm 3 ), nonoverlapping image subvolumes (“blocks”) were automatically identified on the planning image to cover the tumor surface using a measure of the local intensity gradient. Blocks were independently and automatically registered to the on-treatment image using a rigid transform. To improve speed and robustness, registrations were performed iteratively from coarse to fine image resolution. At each resolution, all block displacements having a near-maximum similarity score were stored. From this list, a single displacement vector for each block was iteratively selected which maximized the consistency of displacement vectors across immediately neighboring blocks. These selected displacements were regularized using a median filter before proceeding to registrations at finer image resolutions. After evaluating all image resolutions, the global rigid transform of the on-treatment image was computed using a Procrustes analysis, providing the couch shift for patient setup correction. This algorithm was evaluated for 18 locally advanced lung cancer patients, each with 4–7 weekly on-treatment computed tomography scans having physician-delineated gross tumor volumes. Volume overlap (VO) and border displacement errors (BDE) were calculated relative to the nominal physician-identified targets to establish residual error after registration. Results: Implementation of multiresolution registration improved block matching accuracy by 39% compared to registration using only the full resolution images. By also considering multiple potential displacements per block, initial errors were reduced by 65%. Using the final implementation of the BMR algorithm, VO was significantly improved from 77% ± 21% (range: 0%–100%) in the initial bony alignment to 91% ± 8% (range: 56%–100%;p < 0.001). Left

  11. Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments

    NARCIS (Netherlands)

    Husken, D.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra-amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra-amide segment (T6T6T)

  12. Mesomorphic structure of poly(styrene)-block-poly(4-vinylpyridine) with oligo(ethylene oxide)sulfonic acid side chains as a model for molecularly reinforced polymer electrolyte

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Hartikainen, J; Eerikainen, H; Torkkeli, M; Jokela, K; Serimaa, R; Sundholm, F; ten Brinke, G; Ikkala, O; Eerikäinen, Hannele

    2002-01-01

    We report self-organized polymer electrolytes based on poly(styrene)-block-poly(4-vinylpyridine) (PS-block-P4VP). Liquidlike ethylene oxide (EO) oligomers with sulfonic acid end groups are bonded to the P4VP block, leading to comb-shaped supramolecules with the PS-block-P4VP backbone. Lithium

  13. Mechanical behavior analysis of small-scale modeling of ceramic block masonry structures: geometries effect

    Directory of Open Access Journals (Sweden)

    E. Rizzatti

    Full Text Available This paper presents the experimental results of a research program with ceramic block masonry under compression. Four different block geometries were investigated. Two of them had circular hollows with different net area. The third one had two rectangular hollow and the last block was with rectangular hollows and a double central webs. The prisms and walls were built with two mortar type 1:1:6 (I and 1:0,5:4 (II (proportions by volume of cement: lime: sand. One:three small scale blocks were used to test block, prisms and walls on compression. It was possible to conclude that the block with double central webs gave better results of compressive strength showing to be more efficient. The mortar didn't influenced the compressive strength of prisms and walls.

  14. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    Science.gov (United States)

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  15. STRUCTURAL SOLUTIONS AND SPECIAL FEATURES OF THE THERMAL PROTECTION ANALYSIS OF EXTERIOR WALLS OF BUILDINGS MADE OF AUTOCLAVED GAS-CONCRETE BLOCKS

    Directory of Open Access Journals (Sweden)

    Bedov Anatolij Ivanovich

    2012-10-01

    Full Text Available Relevant structural solutions, physical and mechanical characteristics, coefficients of thermal conductivity for exterior masonry walls made of autoclaved gas-concrete blocks are provided in the article. If a single-layer wall is under consideration, an autoclaved gas-concrete block is capable of performing the two principal functions of a shell structure, including the function of thermal protection and the bearing function. The functions are performed simultaneously. Therefore, the application of the above masonry material means the design development and erection of exterior walls of residential buildings noteworthy for their thermal efficiency. In the event of frameless structures, the height of the residential building in question may be up to 5 stories, while the use of a monolithic or a ready-made frame makes it possible to build high-rise buildings, and the number of stories is not limited in this case. If the average block density is equal to 400…500 kilograms per cubic meter, the designed wall thickness is to be equal to 400 mm. Its thermal resistance may be lower than the one set in the event of the per-element design of the thermal protection (Rreq = 3.41 м2 C/Watt, in Ufa, although it will meet the requirements of the applicable regulations if per-unit power consumption rate is considered.

  16. Modelling of composite concrete block pavement systems applying a cohesive zone model

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe

    This paper presents a numerical analysis of the fracture behaviour of the cement bound base material in composite concrete block pavement systems, using a cohesive zone model. The functionality of the proposed model is tested on experimental and numerical investigations of beam bending tests....... The pavement is modelled as a simple slab on grade structure and parameters influencing the response, such as analysis technique, geometry and material parameters are studied. Moreover, the analysis is extended to a real scale example, modelling the pavement as a three-layered structure. It is found...... block pavements. It is envisaged that the methodology implemented in this study can be extended and thereby contribute to the ongoing development of rational failure criteria that can replace the empirical formulas currently used in pavement engineering....

  17. Automation of block assignment planning using a diagram-based scenario modeling method

    Directory of Open Access Journals (Sweden)

    In Hyuck Hwang

    2014-03-01

    Full Text Available Most shipbuilding scheduling research so far has focused on the load level on the dock plan. This is because the dock is the least extendable resource in shipyards, and its overloading is difficult to resolve. However, once dock scheduling is completed, making a plan that makes the best use of the rest of the resources in the shipyard to minimize any additional cost is also important. Block assignment planning is one of the midterm planning tasks; it assigns a block to the facility (factory/shop or surface plate that will actually manufacture the block according to the block characteristics and current situation of the facility. It is one of the most heavily loaded midterm planning tasks and is carried out manually by experienced workers. In this study, a method of representing the block assignment rules using a diagram was suggested through analysis of the existing manual process. A block allocation program was developed which automated the block assignment process according to the rules represented by the diagram. The planning scenario was validated through a case study that compared the manual assignment and two automated block assignment results.

  18. Automation of block assignment planning using a diagram-based scenario modeling method

    Directory of Open Access Journals (Sweden)

    Hwang In Hyuck

    2014-03-01

    Full Text Available Most shipbuilding scheduling research so far has focused on the load level on the dock plan. This is be¬cause the dock is the least extendable resource in shipyards, and its overloading is difficult to resolve. However, once dock scheduling is completed, making a plan that makes the best use of the rest of the resources in the shipyard to minimize any additional cost is also important. Block assignment planning is one of the midterm planning tasks; it assigns a block to the facility (factory/shop or surface plate that will actually manufacture the block according to the block characteristics and current situation of the facility. It is one of the most heavily loaded midterm planning tasks and is carried out manu¬ally by experienced workers. In this study, a method of representing the block assignment rules using a diagram was su¬ggested through analysis of the existing manual process. A block allocation program was developed which automated the block assignment process according to the rules represented by the diagram. The planning scenario was validated through a case study that compared the manual assignment and two automated block assignment results.

  19. Synthesis and Characterization of Novel Magnetite Nanoparticle Block Copolymer Complexes

    OpenAIRE

    Zhang, Qian

    2007-01-01

    Superparamagnetic Magnetite (Fe3O4) nanoparticles were synthesized and complexed with carboxylate-functionalized block copolymers, and aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants possessed either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all contained a polyurethane center block with pendant carboxylate functi...

  20. Analysis of Block OMP using Block RIP

    OpenAIRE

    Wang, Jun; Li, Gang; Zhang, Hao; Wang, Xiqin

    2011-01-01

    Orthogonal matching pursuit (OMP) is a canonical greedy algorithm for sparse signal reconstruction. When the signal of interest is block sparse, i.e., it has nonzero coefficients occurring in clusters, the block version of OMP algorithm (i.e., Block OMP) outperforms the conventional OMP. In this paper, we demonstrate that a new notion of block restricted isometry property (Block RIP), which is less stringent than standard restricted isometry property (RIP), can be used for a very straightforw...

  1. Semiotics Of Shape Of Block Notation As Icon Of Planetary Orbit

    Directory of Open Access Journals (Sweden)

    Ketut Sumerjana

    2017-05-01

    Full Text Available Block notation has a specific shape; however, its existence and the function of its shape are not recognized and are made to be intangible by its function as a symbol of tapping sound. In general, the basic shape of the block notation looks like an ellipse and is similar to the planetary orbit. Therefore, this present study focuses on the ellipse-shaped block notation as the icon of the planetary orbit. The phenomenological qualitative method was employed to interpret the meaning of the basic shape of the block notation as the icon of planetary orbit. The data were collected through guided interview and library research. The data were analyzed using the semiotic process, meaning that in the first phase the text was analyzed based on the shape structure and in the second phase the text was heuristically analyzed. The result of the study shows that the ellipse-shaped block notation is the planetary orbit whose function changes from the manifest function into the latent one, resulting from the function as the tapping sound value. Keywords: form, notation, icon, orbit, planet

  2. Implementation of evidence-based medicine in a health promotion teaching block for Thai medical students.

    Science.gov (United States)

    Liabsuetrakul, Tippawan; Suntharasaj, Thitima; Sangsupawanich, Pasuree; Kongkamol, Chanon; Pornsawat, Panumad

    2017-12-01

    Evidence-based medicine (EBM) is well known in medical practice. Although health promotion (HP) is promoted worldwide, there is still some debate as to whether EBM is needed or useful in the teaching of health promotion. To assess the perceived usefulness of EBM in the teaching of HP among medical students and faculty members. A comparative study was conducted between two groups of fourth-year medical students in the academic year 2012 during the five-week Health Promotion Teaching Block at Prince of Songkla University, southern Thailand. A one-week EBM course was conducted with half the students in the first week of the block and the other half of the students in the last week of the block. All activities in the HP block were similar except for the different periods of the one-week of EBM teaching. The effect on knowledge, ability and perceived application of EBM in future practice was assessed by student self-evaluations before versus after taking the EBM course, and by faculty member evaluation of the students' end-of-block presentations. All evaluation items were rated from 1 (lowest) to 5 (highest). Data were analyzed using a t-test or Wilcoxon test, as appropriate. The students' self-evaluations of knowledge and ability on EBM between the two groups were similar. The perception that teaching EBM is beneficial in health promotion and future practice increased significantly ( phigher scores for the first group than the second group, although the rating differences were not at the level of significance. Ninety percent of the students believed that EBM was a useful addition to the teaching of HP. Medical students and faculty members perceived that EBM is useful in the HP context. Future studies to evaluate the effect of using evidence-based teaching for health promotion are needed.

  3. 31 CFR 595.301 - Blocked account; blocked property.

    Science.gov (United States)

    2010-07-01

    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TERRORISM SANCTIONS REGULATIONS General Definitions § 595.301 Blocked account; blocked property. The terms blocked account and blocked...

  4. Investigation of Kevlar fabric-based materials for use with inflatable structures

    Science.gov (United States)

    Niccum, R. J.; Munson, J. B.; Rueter, L. L.

    1977-01-01

    Design, manufacture and testing of laminated and coated composite materials incorporating a structural matrix of Kevlar are reported. The practicality of using Kevlar in aerostat materials is demonstrated, and data are provided on practical weaves, lamination and coating particulars, rigidity, strength, weight, elastic coefficients, abrasion resistance, crease effects, peel strength, blocking tendencies, helium permeability, and fabrication techniques. Properties of the Kevlar-based materials are compared with conventional Dacron-reinforced counterparts. A comprehensive test and qualification program is discussed, and considerable quantitative biaxial tensile and shear test data are provided.

  5. An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition

    Science.gov (United States)

    Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni

    2010-08-01

    This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).

  6. Nerve Blocks

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Nerve Blocks A nerve block is an injection to ... the limitations of Nerve Block? What is a Nerve Block? A nerve block is an anesthetic and/ ...

  7. Maximum volume cuboids for arbitrarily shaped in-situ rock blocks as determined by discontinuity analysis—A genetic algorithm approach

    Science.gov (United States)

    Ülker, Erkan; Turanboy, Alparslan

    2009-07-01

    The block stone industry is one of the main commercial use of rock. The economic potential of any block quarry depends on the recovery rate, which is defined as the total volume of useful rough blocks extractable from a fixed rock volume in relation to the total volume of moved material. The natural fracture system, the rock type(s) and the extraction method used directly influence the recovery rate. The major aims of this study are to establish a theoretical framework for optimising the extraction process in marble quarries for a given fracture system, and for predicting the recovery rate of the excavated blocks. We have developed a new approach by taking into consideration only the fracture structure for maximum block recovery in block quarries. The complete model uses a linear approach based on basic geometric features of discontinuities for 3D models, a tree structure (TS) for individual investigation and finally a genetic algorithm (GA) for the obtained cuboid volume(s). We tested our new model in a selected marble quarry in the town of İscehisar (AFYONKARAHİSAR—TURKEY).

  8. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela; Lee, Jinwoo; Crossland, Edward J. W.; Warren, Scott C.; Orilall, M. Christopher; Guldin, Stefan; Hü ttner, Sven; Ducati, Catarina; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich; Snaith, Henry J.

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO

  9. Parametric Optimization Design of Brake Block Based on Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Jin Hua-wei

    2017-01-01

    Full Text Available As one of the key part of automotive brake,the performance of brake block has a direct impact on the safety and comfort of cars. Modeling the brake block of disc brake in reverse parameterization by reverse engineering software, analyzing and optimizing the reconstructed model by CAE software. Processing the scanned point cloud by Geomagic Studio and reconstructing the CAD model of the brake block with the parametric surface function of the software, then analyzing and optimizing it by Wrokbench. The example shows that it is quick to reconstruct the CAD model of parts by using reverse parameterization method and reduce part re-design development cycle significantly.

  10. Multilayer Stochastic Block Models Reveal the Multilayer Structure of Complex Networks

    Directory of Open Access Journals (Sweden)

    Toni Vallès-Català

    2016-03-01

    Full Text Available In complex systems, the network of interactions we observe between systems components is the aggregate of the interactions that occur through different mechanisms or layers. Recent studies reveal that the existence of multiple interaction layers can have a dramatic impact in the dynamical processes occurring on these systems. However, these studies assume that the interactions between systems components in each one of the layers are known, while typically for real-world systems we do not have that information. Here, we address the issue of uncovering the different interaction layers from aggregate data by introducing multilayer stochastic block models (SBMs, a generalization of single-layer SBMs that considers different mechanisms of layer aggregation. First, we find the complete probabilistic solution to the problem of finding the optimal multilayer SBM for a given aggregate-observed network. Because this solution is computationally intractable, we propose an approximation that enables us to verify that multilayer SBMs are more predictive of network structure in real-world complex systems.

  11. Natural convective flows in a horizontal channel provided with heating isothermal blocks: Effect of the inter blocks spacing

    International Nuclear Information System (INIS)

    Bakkas, M.; Hasnaoui, M.; Amahmid, A.

    2010-01-01

    A numerical study of laminar steady natural convection induced in a two dimensional horizontal channel provided with rectangular heating blocks, periodically mounted on its lower wall, is carried out. The blocks' surface temperature, T H ' , is maintained constant and the former are connected with adiabatic surfaces. The upper wall of the channel is maintained cold at a temperature T C ' H ' . Fluid flow, temperature fields and heat transfer rates are presented for different combinations of the governing parameters which are the Rayleigh number (10 2 ≤Ra≤2x10 6 ), the blocks' spacing (1/4≤C=l ' /H ' ≤1), the blocks' height (1/8≤B=h ' /H ' ≤1/2) and the relative width of the blocks (A=(L ' -l ' )/H ' =1/2). The results obtained in the case of air (Pr = 0.72) show that the flow structure and the heat transfer are significantly influenced by the control parameters. It is found that there are situations where the increase of the blocks' spacing leads to a reduction of heat transfer.

  12. Experimental and Numerical Studies on Tire Tread Block Friction Characteristics Based on a New Test Device

    Directory of Open Access Journals (Sweden)

    J. Wu

    2014-01-01

    Full Text Available A new device was developed for tire tread block slip friction tests. Then the friction characteristics were investigated under different loads and contact roads. Based on this, a friction model for contact between tire tread block and different road surfaces was developed. A finite element slip friction model of rubber block was developed for studying the tread contact stress, stiffness under different pattern slope angles, and ditch radius. Results indicate that friction coefficient between tread and ice road increases when the temperature decreases; different tread patterns have a certain influence on the friction coefficient; its average difference was less than 10%. Different roads impact the coefficient of friction more significantly; the greater the pattern slope, the greater the radial stiffness.

  13. Compressed normalized block difference for object tracking

    Science.gov (United States)

    Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge

    2018-04-01

    Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.

  14. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin

    2017-12-08

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference algorithms for such a model are increasingly limited due to their high time complexity and poor scalability. In this paper, we propose a multi-stage maximum likelihood approach to recover the latent parameters of the stochastic block model, in time linear with respect to the number of edges. We also propose a parallel algorithm based on message passing. Our algorithm can overlap communication and computation, providing speedup without compromising accuracy as the number of processors grows. For example, to process a real-world graph with about 1.3 million nodes and 10 million edges, our algorithm requires about 6 seconds on 64 cores of a contemporary commodity Linux cluster. Experiments demonstrate that the algorithm can produce high quality results on both benchmark and real-world graphs. An example of finding more meaningful communities is illustrated consequently in comparison with a popular modularity maximization algorithm.

  15. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    Science.gov (United States)

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  16. Research on Disaster Early Warning and Disaster Relief Integrated Service System Based on Block Data Theory

    Science.gov (United States)

    Yang, J.; Zhang, H.; Wang, C.; Tang, D.

    2018-04-01

    With the continuous development of social economy, the interaction between mankind and nature has become increasingly evident. Disastrous global catastrophes have occurred from time to time, causing huge losses to people's lives and property. All governments recognize the importance of the establishment of disaster early warning and release mechanisms, and it is also an urgent issue to improve the comprehensive service level of emergency response and disaster relief. However, disaster early warning and emergency relief information is usually generated by different departments, and the diverse data sources, difficult integration, and limited release speed have always been difficult issues to be solved. Block data is the aggregation of various distributed (point data) and segmentation (data) big data on a specific platform and make them happen continuous polymerization effect, block data theory is a good solution to cross-sectoral, cross-platform Disaster information data sharing and integration problems. This paper attempts to discuss the integrated service mechanism of disaster information aggregation and disaster relief based on block data theory and introduces a location-based integrated service system for disaster early warning and disaster relief.

  17. A Slicing Tree Representation and QCP-Model-Based Heuristic Algorithm for the Unequal-Area Block Facility Layout Problem

    Directory of Open Access Journals (Sweden)

    Mei-Shiang Chang

    2013-01-01

    Full Text Available The facility layout problem is a typical combinational optimization problem. In this research, a slicing tree representation and a quadratically constrained program model are combined with harmony search to develop a heuristic method for solving the unequal-area block layout problem. Because of characteristics of slicing tree structure, we propose a regional structure of harmony memory to memorize facility layout solutions and two kinds of harmony improvisation to enhance global search ability of the proposed heuristic method. The proposed harmony search based heuristic is tested on 10 well-known unequal-area facility layout problems from the literature. The results are compared with the previously best-known solutions obtained by genetic algorithm, tabu search, and ant system as well as exact methods. For problems O7, O9, vC10Ra, M11*, and Nug12, new best solutions are found. For other problems, the proposed approach can find solutions that are very similar to previous best-known solutions.

  18. Compound La[B5O8(OH)2] with a new type of pentaborate layer based on the 5[3T + 2Δ] block: Topology-symmetry analysis and the position in the structural system

    International Nuclear Information System (INIS)

    Ivanova, A. G.; Belokoneva, E. L.; Dimitrova, O. V.; Mochenova, N. N.

    2006-01-01

    Crystals of a new rare-earth borate, LaB 5 O 8 (OH) 2 (space group P2 1 /n), are synthesized under hydrothermal conditions. The crystal structure is determined by the heavy-atom method without prior knowledge of the chemical formula. The radical anion is a layer composed of pentaborate blocks 5[3T + 2Δ]. The topological and symmetric patterns of their condensation differ from those observed in all known layered pentaborates containing the same block. The building blocks are shared by vertices of tetrahedra to form chains. These chains are joined into a corrugated layer in such a way that one of the BO 3 triangles of the building block is terminal and the layer itself is denser than those previously revealed in all other borates. In contrast to the majority of layer borates, the new La borate does not contain water molecules, because it crystallizes from more concentrated solutions. The La atoms are located inside the walls of the hollows of corrugated layers, thus centering the holes of the layers

  19. Neuromuscular blocking and cardiovascular effects of Org 9487, a new short-acting aminosteroidal blocking agent, in anaesthetized animals and in isolated muscle preparations

    NARCIS (Netherlands)

    Muir, A.W.; Sleigh, T.; Marshall, R.J.; Pow, E.; Anderson, K.; Booij, L.H.D.J.; Hill, D.R.

    1998-01-01

    This study was undertaken to investigate the neuromuscular blocking profile and cardiovascular effects of Org 9487, a new aminosteroidal, non-depolarizing, neuromuscular blocking agent structurally related to vecuronium, in anaesthetized animals and in isolated muscle preparations. In in vitro

  20. Application of Transfer Matrix Approach to Modeling and Decentralized Control of Lattice-Based Structures

    Science.gov (United States)

    Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea

    2015-01-01

    This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.

  1. Testing block subdivision algorithms on block designs

    Science.gov (United States)

    Wiseman, Natalie; Patterson, Zachary

    2016-01-01

    Integrated land use-transportation models predict future transportation demand taking into account how households and firms arrange themselves partly as a function of the transportation system. Recent integrated models require parcels as inputs and produce household and employment predictions at the parcel scale. Block subdivision algorithms automatically generate parcel patterns within blocks. Evaluating block subdivision algorithms is done by way of generating parcels and comparing them to those in a parcel database. Three block subdivision algorithms are evaluated on how closely they reproduce parcels of different block types found in a parcel database from Montreal, Canada. While the authors who developed each of the algorithms have evaluated them, they have used their own metrics and block types to evaluate their own algorithms. This makes it difficult to compare their strengths and weaknesses. The contribution of this paper is in resolving this difficulty with the aim of finding a better algorithm suited to subdividing each block type. The proposed hypothesis is that given the different approaches that block subdivision algorithms take, it's likely that different algorithms are better adapted to subdividing different block types. To test this, a standardized block type classification is used that consists of mutually exclusive and comprehensive categories. A statistical method is used for finding a better algorithm and the probability it will perform well for a given block type. Results suggest the oriented bounding box algorithm performs better for warped non-uniform sites, as well as gridiron and fragmented uniform sites. It also produces more similar parcel areas and widths. The Generalized Parcel Divider 1 algorithm performs better for gridiron non-uniform sites. The Straight Skeleton algorithm performs better for loop and lollipop networks as well as fragmented non-uniform and warped uniform sites. It also produces more similar parcel shapes and patterns.

  2. Efficient block processing of long duration biotelemetric brain data for health care monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Soumya, I. [Department of E.I.E, GITAM University, Visakhapatnam (India); Zia Ur Rahman, M., E-mail: mdzr-5@ieee.org [Department of E.C.E, K.L. University, Vaddeswaram, Green Fields, Guntur, Andhra Pradesh (India); Rama Koti Reddy, D. V. [Department of Instrumentation Engineering, College of Engineering, Andhra University, Visakhapatnam (India); Lay-Ekuakille, A. [Department of Innovation Engineering, University of Salento, Lecce (Italy)

    2015-03-15

    In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS, which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence.

  3. Efficient block processing of long duration biotelemetric brain data for health care monitoring

    International Nuclear Information System (INIS)

    Soumya, I.; Zia Ur Rahman, M.; Rama Koti Reddy, D. V.; Lay-Ekuakille, A.

    2015-01-01

    In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS, which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence

  4. The block Gauss-Seidel method in sound transmission problems

    OpenAIRE

    Poblet-Puig, Jordi; Rodríguez Ferran, Antonio

    2009-01-01

    Sound transmission through partitions can be modelled as an acoustic fluid-elastic structure interaction problem. The block Gauss-Seidel iterative method is used in order to solve the finite element linear system of equations. The blocks are defined in a natural way, respecting the fluid and structural domains. The convergence criterion (spectral radius of iteration matrix smaller than one) is analysed and interpreted in physical terms by means of simple one-dimensional problems. This anal...

  5. Modified Three-Step Search Block Matching Motion Estimation and Weighted Finite Automata based Fractal Video Compression

    Directory of Open Access Journals (Sweden)

    Shailesh Kamble

    2017-08-01

    Full Text Available The major challenge with fractal image/video coding technique is that, it requires more encoding time. Therefore, how to reduce the encoding time is the research component remains in the fractal coding. Block matching motion estimation algorithms are used, to reduce the computations performed in the process of encoding. The objective of the proposed work is to develop an approach for video coding using modified three step search (MTSS block matching algorithm and weighted finite automata (WFA coding with a specific focus on reducing the encoding time. The MTSS block matching algorithm are used for computing motion vectors between the two frames i.e. displacement of pixels and WFA is used for the coding as it behaves like the Fractal Coding (FC. WFA represents an image (frame or motion compensated prediction error based on the idea of fractal that the image has self-similarity in itself. The self-similarity is sought from the symmetry of an image, so the encoding algorithm divides an image into multi-levels of quad-tree segmentations and creates an automaton from the sub-images. The proposed MTSS block matching algorithm is based on the combination of rectangular and hexagonal search pattern and compared with the existing New Three-Step Search (NTSS, Three-Step Search (TSS, and Efficient Three-Step Search (ETSS block matching estimation algorithm. The performance of the proposed MTSS block matching algorithm is evaluated on the basis of performance evaluation parameters i.e. mean absolute difference (MAD and average search points required per frame. Mean of absolute difference (MAD distortion function is used as the block distortion measure (BDM. Finally, developed approaches namely, MTSS and WFA, MTSS and FC, and Plane FC (applied on every frame are compared with each other. The experimentations are carried out on the standard uncompressed video databases, namely, akiyo, bus, mobile, suzie, traffic, football, soccer, ice etc. Developed

  6. Segmented block copolymers with monodisperse aramide end-segments

    NARCIS (Netherlands)

    Araichimani, A.; Gaymans, R.J.

    2008-01-01

    Segmented block copolymers were synthesized using monodisperse diaramide (TT) as hard segments and PTMO with a molecular weight of 2 900 g · mol-1 as soft segments. The aramide: PTMO segment ratio was increased from 1:1 to 2:1 thereby changing the structure from a high molecular weight multi-block

  7. TiO2 nanofiber solid-state dye sensitized solar cells with thin TiO2 hole blocking layer prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Li, Jinwei; Chen, Xi; Xu, Weihe; Nam, Chang-Yong; Shi, Yong

    2013-01-01

    We incorporated a thin but structurally dense TiO 2 layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO 2 nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO 2 layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO 2 precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO 2 layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO 2 blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO 2 layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime

  8. Analgesic efficacy of ultrasound guided versus landmark-based bilateral superficial cervical plexus block for thyroid surgery

    Directory of Open Access Journals (Sweden)

    Rasha M. Hassan

    2017-10-01

    Full Text Available Background: The use of bilateral superficial cervical plexus block (BSCPB to provide analgesia for thyroid operations remains debatable. This study was done to assess the analgesic efficacy and safety of ultrasound (US guided or landmark-based BSCPB, performed under general anesthesia, compared to systemic narcotics in thyroid surgery. Patients and methods: A total of 69 patients ASA I and II scheduled for thyroid surgery were randomly assigned into three groups (23 patients each: Group (US received US guided BSCPB. Group (LM received landmark-based BSCPB. In both groups, the block was performed under general anesthesia and before surgery using 0.5% bupivacaine 12 ml on each side. Group (C who didn’t receive any block. We measured intra-operative hemodynamics and fentanyl requirements. We also measured postoperative analgesia within 24 h of surgery as regard: pethidine consumption, visual analogue scale (VAS pain scores and time to first rescue analgesic demand. Postoperative nausea and vomiting (PONV and other adverse events were noted as well. Results: There was a significant reduction in systolic blood pressure (SBP and heart rate (HR in groups US and LM compared with group C. Intra-operative fentanyl requirements were significantly increased in group C compared to groups US and LM. Time to first analgesic request was significantly longer in groups US and LM than in group C. Postoperative pethidine consumption and VAS scores, measured during the first postoperative day, were significantly higher in group C than groups US and LM. No significant difference was noted between the three groups regarding PONV. No other adverse events were recorded. No significant differences were noted between groups US and LM. Conclusion: BSCPB (US guided or landmark-based, performed under general anesthesia, effectively decreased peri-operative analgesic requirements in thyroid operations. However, there was no significant difference in analgesic efficacy or

  9. Polymer-based platform for microfluidic systems

    Science.gov (United States)

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  10. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    Science.gov (United States)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  11. Side-chain amino-acid-based pH-responsive self-assembled block copolymers for drug delivery and gene transfer.

    Science.gov (United States)

    Kumar, Sonu; Acharya, Rituparna; Chatterji, Urmi; De, Priyadarsi

    2013-12-10

    Developing safe and effective nanocarriers for multitype of delivery system is advantageous for several kinds of successful biomedicinal therapy with the same carrier. In the present study, we have designed amino acid biomolecules derived hybrid block copolymers which can act as a promising vehicle for both drug delivery and gene transfer. Two representative natural chiral amino acid-containing (l-phenylalanine and l-alanine) vinyl monomers were polymerized via reversible addition-fragmentation chain transfer (RAFT) process in the presence of monomethoxy poly(ethylene glycol) based macro-chain transfer agents (mPEGn-CTA) for the synthesis of well-defined side-chain amino-acid-based amphiphilic block copolymers, monomethoxy poly(ethylene glycol)-b-poly(Boc-amino acid methacryloyloxyethyl ester) (mPEGn-b-P(Boc-AA-EMA)). The self-assembled micellar aggregation of these amphiphilic block copolymers were studied by fluorescence spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Potential applications of these hybrid polymers as drug carrier have been demonstrated in vitro by encapsulation of nile red dye or doxorubicin drug into the core of the micellar nanoaggregates. Deprotection of side-chain Boc- groups in the amphiphilic block copolymers subsequently transformed them into double hydrophilic pH-responsive cationic block copolymers having primary amino groups in the side-chain terminal. The DNA binding ability of these cationic block copolymers were further investigated by using agarose gel retardation assay and AFM. The in vitro cytotoxicity assay demonstrated their biocompatible nature and these polymers can serve as "smart" materials for promising bioapplications.

  12. Morphological studies on block copolymer modified PA 6 blends

    Energy Technology Data Exchange (ETDEWEB)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  13. Quantization Distortion in Block Transform-Compressed Data

    Science.gov (United States)

    Boden, A. F.

    1995-01-01

    The popular JPEG image compression standard is an example of a block transform-based compression scheme; the image is systematically subdivided into block that are individually transformed, quantized, and encoded. The compression is achieved by quantizing the transformed data, reducing the data entropy and thus facilitating efficient encoding. A generic block transform model is introduced.

  14. ITER blanket module shield block design and analysis

    International Nuclear Information System (INIS)

    Mitin, D.; Khomyakov, S.; Razmerov, A.; Strebkov, Yu.

    2008-01-01

    This paper presents the alternative design of the shield block cooling path for a typical ITER blanket module with a predominantly sequential flow circuit. A number of serious disadvantages have been observed for the reference design, where the parallel flow circuit is used, which is inherent in the majority of blanket modules. The paper discusses these disadvantages and demonstrates the benefit of the alternative design based on the detailed design and the technological, hydraulic, thermal, structural and strength analyses, conducted for module no. 17

  15. Capacitor blocks for linear transformer driver stages.

    Science.gov (United States)

    Kovalchuk, B M; Kharlov, A V; Kumpyak, E V; Smorudov, G V; Zherlitsyn, A A

    2014-01-01

    In the Linear Transformer Driver (LTD) technology, the low inductance energy storage components and switches are directly incorporated into the individual cavities (named stages) to generate a fast output voltage pulse, which is added along a vacuum coaxial line like in an inductive voltage adder. LTD stages with air insulation were recently developed, where air is used both as insulation in a primary side of the stages and as working gas in the LTD spark gap switches. A custom designed unit, referred to as a capacitor block, was developed for use as a main structural element of the transformer stages. The capacitor block incorporates two capacitors GA 35426 (40 nF, 100 kV) and multichannel multigap gas switch. Several modifications of the capacitor blocks were developed and tested on the life time and self breakdown probability. Blocks were tested both as separate units and in an assembly of capacitive module, consisting of five capacitor blocks. This paper presents detailed design of capacitor blocks, description of operation regimes, numerical simulation of electric field in the switches, and test results.

  16. Sortase-Mediated Ligation of Purely Artificial Building Blocks

    Directory of Open Access Journals (Sweden)

    Xiaolin Dai

    2018-02-01

    Full Text Available Sortase A (SrtA from Staphylococcus aureus has been often used for ligating a protein with other natural or synthetic compounds in recent years. Here we show that SrtA-mediated ligation (SML is universally applicable for the linkage of two purely artificial building blocks. Silica nanoparticles (NPs, poly(ethylene glycol and poly(N-isopropyl acrylamide are chosen as synthetic building blocks. As a proof of concept, NP–polymer, NP–NP, and polymer–polymer structures are formed by SrtA catalysis. Therefore, the building blocks are equipped with the recognition sequence needed for SrtA reaction—the conserved peptide LPETG—and a pentaglycine motif. The successful formation of the reaction products is shown by means of transmission electron microscopy (TEM, matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS, and dynamic light scattering (DLS. The sortase catalyzed linkage of artificial building blocks sets the stage for the development of a new approach to link synthetic structures in cases where their synthesis by established chemical methods is complicated.

  17. Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations

    Science.gov (United States)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.

    2018-04-01

    Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.

  18. Block Copolymer Micellization as a Protection Strategy for DNA Origami.

    Science.gov (United States)

    Agarwal, Nayan P; Matthies, Michael; Gür, Fatih N; Osada, Kensuke; Schmidt, Thorsten L

    2017-05-08

    DNA nanotechnology enables the synthesis of nanometer-sized objects that can be site-specifically functionalized with a large variety of materials. For these reasons, DNA-based devices such as DNA origami are being considered for applications in molecular biology and nanomedicine. However, many DNA structures need a higher ionic strength than that of common cell culture buffers or bodily fluids to maintain their integrity and can be degraded quickly by nucleases. To overcome these deficiencies, we coated several different DNA origami structures with a cationic poly(ethylene glycol)-polylysine block copolymer, which electrostatically covered the DNA nanostructures to form DNA origami polyplex micelles (DOPMs). This straightforward, cost-effective, and robust route to protect DNA-based structures could therefore enable applications in biology and nanomedicine where unprotected DNA origami would be degraded. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mn-based nanostructured building blocks: Synthesis, characterization and applications

    Science.gov (United States)

    Beltran Huarac, Juan

    The quest for smaller functional elements of devices has stimulated increased interest in charge-transfer phenomena at the nanoscale. Mn-based nanostructured building blocks are particularly appealing given that the excited states of high-spin Mn2+ ions induce unusual d-d energy transfer processes, which is critical for better understanding the performance of electronic and spintronic devices. These nanostructures also exhibit unique properties superior to those of common Fe- and Co-based nanomaterials, including: excellent structural flexibility, enhanced electrochemical energy storage, effective ion-exchange dynamics, more comprehensive transport mechanisms, strong quantum yield, and they act as effective luminescent centers for more efficient visible light emitters. Moreover, Mn-based nanostructures (MBNs) are crucial for the design and assembly of inexpensive nanodevices in diluted magnetic semiconductors (DMS), optoelectronics, magneto-optics, and field-effect transistors, owing to the great abundance and low-cost of Mn. Nonetheless, the paucity of original methods and techniques to fabricate new multifunctional MBNs that fulfill industrial demands limits the sustainable development of innovative technology in materials sciences. In order to meet this critical need, in this thesis we develop and implement novel methods and techniques to fabricate zero- and one-dimensional highly-crystalline new-generation MBNs conducive to the generation of new technology, and provide alternative and feasible miniaturization strategies to control and devise at nanometric precision their size, shape, structure and composition. Herein, we also establish the experimental conditions to grow Mn-based nanowires (NWs), nanotubes (NTs), nanoribbons (NRs), nanosaws (NSs), nanoparticles (NPs) and nanocomposites (NCs) via chemical/physical deposition and co-precipitation chemical routes, and determine the pertinent arrangements to our experimental schemes in order to extend our bottom

  20. Backfilling of deposition tunnels, block alternative

    International Nuclear Information System (INIS)

    Keto, P.; Roennqvist, P.-E.

    2007-03-01

    This report presents a preliminary process description of backfilling the deposition tunnels with pre-compacted blocks consisting of a mixture of bentonite and ballast (30:70). The process was modified for the Finnish KBS-3V type repository assuming that the amount of spent fuel canisters disposed of yearly is 40. Backfilling blocks (400 x 300 x 300 mm) are prepared in a block production plant with a hydraulic press with an estimated production capacity of 840 blocks per day. Some of the blocks are modified further to fit the profile of the tunnel roof. Prior to the installation of the blocks, the deposition tunnel floor is levelled with a mixture of bentonite and ballast (15:85). The blocks are placed in the tunnel with a modified reach truck. Centrifugal pellet throwing equipment is used to fill the gap between the blocks and the rock surface with bentonite pellets. Based on a preliminary assessment, the average dry density achieved with block backfill is sufficient to fulfil the criteria set for the backfill in order to ensure long-term safety and radiation protection. However, there are uncertainties concerning saturation, homogenisation, erosion, piping and self-healing of the block backfill that need to be studied further with laboratory and field tests. In addition, development efforts and testing concerning block manufacturing and installation are required to verify the technical feasibility of the concept. (orig.)

  1. Synthesis of Inorganic Nanocomposites by Selective Introduction of Metal Complexes into a Self-Assembled Block Copolymer Template

    Directory of Open Access Journals (Sweden)

    Hiroaki Wakayama

    2015-01-01

    Full Text Available Inorganic nanocomposites have characteristic structures that feature expanded interfaces, quantum effects, and resistance to crack propagation. These structures are promising for the improvement of many materials including thermoelectric materials, photocatalysts, and structural materials. Precise control of the inorganic nanocomposites’ morphology, size, and chemical composition is very important for these applications. Here, we present a novel fabrication method to control the structures of inorganic nanocomposites by means of a self-assembled block copolymer template. Different metal complexes were selectively introduced into specific polymer blocks of the block copolymer, and subsequent removal of the block copolymer template by oxygen plasma treatment produced hexagonally packed porous structures. In contrast, calcination removal of the block copolymer template yielded nanocomposites consisting of metallic spheres in a matrix of a metal oxide. These results demonstrate that different nanostructures can be created by selective use of processes to remove the block copolymer templates. The simple process of first mixing block copolymers and magnetic nanomaterial precursors and then subsequently removing the block copolymer template enables structural control of magnetic nanomaterials, which will facilitate their applicability in patterned media, including next-generation perpendicular magnetic recording media.

  2. A Novel DEM Approach to Simulate Block Propagation on Forested Slopes

    Science.gov (United States)

    Toe, David; Bourrier, Franck; Dorren, Luuk; Berger, Frédéric

    2018-03-01

    In order to model rockfall on forested slopes, we developed a trajectory rockfall model based on the discrete element method (DEM). This model is able to take the complex mechanical processes at work during an impact into account (large deformations, complex contact conditions) and can explicitly simulate block/soil, block/tree contacts as well as contacts between neighbouring trees. In this paper, we describe the DEM model developed and we use it to assess the protective effect of different types of forest. In addition, we compared it with a more classical rockfall simulation model. The results highlight that forests can significantly reduce rockfall hazard and that the spatial structure of coppice forests has to be taken into account in rockfall simulations in order to avoid overestimating the protective role of these forest structures against rockfall hazard. In addition, the protective role of the forests is mainly influenced by the basal area. Finally, the advantages and limitations of the DEM model were compared with classical rockfall modelling approaches.

  3. Cryptanalysis and improvement on a block cryptosystem based on iteration a chaotic map

    International Nuclear Information System (INIS)

    Wang Yong; Liao Xiaofeng; Xiang Tao; Wong, Kwok-Wo; Yang Degang

    2007-01-01

    Recently, a novel block encryption system has been proposed as an improved version of the chaotic cryptographic method based on iterating a chaotic map. In this Letter, a flaw of this cryptosystem is pointed out and a chosen plaintext attack is presented. Furthermore, a remedial improvement is suggested, which avoids the flaw while keeping all the merits of the original cryptosystem

  4. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers

    KAUST Repository

    Zhang, H.

    2013-08-07

    A novel one-pot methodology combining anionic polymerization and polyhomologation, through a "bridge" molecule (BF3OEt 2), was developed for the synthesis of polyethylene (PE)-based block copolymers. The anionically synthesized macroanion reacts with the "bridge" molecule to afford a 3-arm star (trimacromolecular borane) which serves as an initiator for the polyhomologation. 2013 The Royal Society of Chemistry.

  5. Cutaneous Sensory Block Area, Muscle-Relaxing Effect, and Block Duration of the Transversus Abdominis Plane Block

    DEFF Research Database (Denmark)

    Støving, Kion; Rothe, Christian; Rosenstock, Charlotte V

    2015-01-01

    BACKGROUND AND OBJECTIVES: The transversus abdominis plane (TAP) block is a widely used nerve block. However, basic block characteristics are poorly described. The purpose of this study was to assess the cutaneous sensory block area, muscle-relaxing effect, and block duration. METHODS: Sixteen...... healthy volunteers were randomized to receive an ultrasound-guided unilateral TAP block with 20 mL 7.5 mg/mL ropivacaine and placebo on the contralateral side. Measurements were performed at baseline and 90 minutes after performing the block. Cutaneous sensory block area was mapped and separated...... into a medial and lateral part by a vertical line through the anterior superior iliac spine. We measured muscle thickness of the 3 lateral abdominal muscle layers with ultrasound in the relaxed state and during maximal voluntary muscle contraction. The volunteers reported the duration of the sensory block...

  6. Stimuli-Responsive Block Copolymer-Based Assemblies for Cargo Delivery and Theranostic Applications

    Directory of Open Access Journals (Sweden)

    Jun Yin

    2016-07-01

    Full Text Available Although a number of tactics towards the fabrication and biomedical exploration of stimuli-responsive polymeric assemblies being responsive and adaptive to various factors have appeared, the controlled preparation of assemblies with well-defined physicochemical properties and tailor-made functions are still challenges. These responsive polymeric assemblies, which are triggered by stimuli, always exhibited reversible or irreversible changes in chemical structures and physical properties. However, simple drug/polymer nanocomplexes cannot deliver or release drugs into the diseased sites and cells on-demand due to the inevitable biological barriers. Hence, utilizing therapeutic or imaging agents-loaded stimuli-responsive block copolymer assemblies that are responsive to tumor internal microenvironments (pH, redox, enzyme, and temperature, etc. or external stimuli (light and electromagnetic field, etc. have emerged to be an important solution to improve therapeutic efficacy and imaging sensitivity through rationally designing as well as self-assembling approaches. In this review, we summarize a portion of recent progress in tumor and intracellular microenvironment responsive block copolymer assemblies and their applications in anticancer drug delivery and triggered release and enhanced imaging sensitivity. The outlook on future developments is also discussed. We hope that this review can stimulate more revolutionary ideas and novel concepts and meet the significant interest to diverse readers.

  7. Organic photovoltaic cell incorporating electron conducting exciton blocking layers

    Science.gov (United States)

    Forrest, Stephen R.; Lassiter, Brian E.

    2014-08-26

    The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to an analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.

  8. Self-assembled Block Copolymer Membranes with Bioinspired Artificial Channels

    KAUST Repository

    Sutisna, Burhannudin

    2018-04-01

    Nature is an excellent design that inspires scientists to develop smart systems. In the realm of separation technology, biological membranes have been an ideal model for synthetic membranes due to their ultrahigh permeability, sharp selectivity, and stimuliresponse. In this research, fabrications of bioinspired membranes from block copolymers were studied. Membranes with isoporous morphology were mainly prepared using selfassembly and non-solvent induced phase separation (SNIPS). An effective method that can dramatically shorten the path for designing new isoporous membranes from block copolymers via SNIPS was first proposed by predetermining a trend line computed from the solvent properties, interactions and copolymer block sizes of previously-obtained successful systems. Application of the method to new copolymer systems and fundamental studies on the block copolymer self-assembly were performed. Furthermore, the manufacture of bioinspired membranes was explored using (1) poly(styrene-b-4-hydroxystyrene-b-styrene) (PS-b-PHS-b-PS), (2) poly(styrene-bbutadiene- b-styrene) (PS-b-PB-b-PS) and (3) poly(styrene-b-γ-benzyl-L-glutamate) (PSb- PBLG) copolymers via SNIPS. The structure formation was investigated using smallangle X-ray scattering (SAXS) and time-resolved grazing-Incidence SAXS. The PS-b- PHS-b-PS membranes showed preferential transport for proteins, presumably due to the hydrogen bond interactions within the channels, electrostatic attraction, and suitable pore dimension. Well-defined nanochannels with pore sizes of around 4 nm based on PS-b- PB-b-PS copolymers could serve as an excellent platform to fabricate bioinspired channels due to the modifiable butadiene blocks. Photolytic addition of thioglycolic acid was demonstrated without sacrificing the self-assembled morphology, which led to a five-fold increase in water permeance compared to that of the unmodified. Membranes with a unique feather-like structure and a lamellar morphology for dialysis and

  9. Self-Assembled Structures of PMAA-PMMA Block Copolymers : Synthesis, Characterization, and Self-Consistent Field Computations

    NARCIS (Netherlands)

    Li, Feng; Schellekens, Mike; de Bont, Jens; Peters, Ron; Overbeek, Ad; Leermakers, Frans A. M.; Tuinier, Remco

    2015-01-01

    Block copolymers composed of methacrylic acid (MAA) and methyl methacrylate (MMA) blocks are interesting candidates for replacing surfactants in emulsion polymerization methods. Here the synthesis and experimental characterization of well-defined PMAA-PMMA block copolymers made via RAFT

  10. Self-assembled structures of PMAA-PMMA block copolymers: Synthesis, characterization, and self-consistent field computations

    NARCIS (Netherlands)

    Li, F.; Schellekens, J.; Bont, de J.A.M.; Peters, R.; Overbeek, A.; Leermakers, F.A.M.; Tuinier, R.

    2015-01-01

    Block copolymers composed of methacrylic acid (MAA) and methyl methacrylate (MMA) blocks are interesting candidates for replacing surfactants in emulsion polymerization methods. Here the synthesis and experimental characterization of well-defined PMAA–PMMA block copolymers made via RAFT

  11. Non-linear model supported predicted strategy of regulation for the block regulation of a membrane based oxyfuel power plant process; Nichtlineare modellgestuetzte praediktive Regelungsstrategie fuer Blockregelung eines membranbasierten Oxyfuel-Kraftwerksprozesses

    Energy Technology Data Exchange (ETDEWEB)

    Hoelemann, Sebastian

    2011-07-01

    As a part of the OXYCOAL AC project a concept of a fossil-fired power plant without emissions of CO{sub 2} is developed in which the recirculated flue gas in a high-temperature ceramic membrane is enriched with oxygen for the combustion of coal. This enables a separation of CO{sub 2} at relatively low efficiency losses. The contribution under consideration deals with the design of a block control strategy for this dynamic extremely demanding process. A cascaded control structure with two non-linear model-based predictive controllers is implemented. An essential component of the cascade structure is an adaptation of this specially developed algorithm with which the underlying controller determines the values for restrictions that are valid in the super-posed regulator in determining the setpoint. The block control approach is examined using a simulation model.

  12. Amphiphilic block copolymers for drug delivery.

    Science.gov (United States)

    Adams, Monica L; Lavasanifar, Afsaneh; Kwon, Glen S

    2003-07-01

    Amphiphilic block copolymers (ABCs) have been used extensively in pharmaceutical applications ranging from sustained-release technologies to gene delivery. The utility of ABCs for delivery of therapeutic agents results from their unique chemical composition, which is characterized by a hydrophilic block that is chemically tethered to a hydrophobic block. In aqueous solution, polymeric micelles are formed via the association of ABCs into nanoscopic core/shell structures at or above the critical micelle concentration. Upon micellization, the hydrophobic core regions serve as reservoirs for hydrophobic drugs, which may be loaded by chemical, physical, or electrostatic means, depending on the specific functionalities of the core-forming block and the solubilizate. Although the Pluronics, composed of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), are the most widely studied ABC system, copolymers containing poly(L-amino acid) and poly(ester) hydrophobic blocks have also shown great promise in delivery applications. Because each ABC has unique advantages with respect to drug delivery, it may be possible to choose appropriate block copolymers for specific purposes, such as prolonging circulation time, introduction of targeting moieties, and modification of the drug-release profile. ABCs have been used for numerous pharmaceutical applications including drug solubilization/stabilization, alteration of the pharmacokinetic profile of encapsulated substances, and suppression of multidrug resistance. The purpose of this minireview is to provide a concise, yet detailed, introduction to the use of ABCs and polymeric micelles as delivery agents as well as to highlight current and past work in this area. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  13. TRUE Block Scale Continuation Project. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Peter; Byegaard, Johan [Geosigma AB (Sweden); Billaux, Daniel [Itasca Consultants SA (France); Cvetkovic, Vladimir [Royal Inst. of Technology, Stockholm (Sweden); Dershowitz, William; Doe, Thomas [Golder Associates Inc. (United States); Hermanson, Jan [Golder Associates AB (Sweden); Poteri, Antti [VTT (Finland); Tullborg, Eva-Lena [Terralogica AB (Sweden); Winberg, Anders [Conterra AB (SE)] (ed.)

    2007-03-15

    developed microstructural model. It is noted that the observed difference is applicable to experimental time scales while at longer time scales the retention capacity of the fault type fractures may become saturated. The overall retention (taking effects of both {kappa} and {beta} into account) in the background fracture Flow path II is found to be about one order of magnitude higher than for Flow path I. This finding is attributed to the fact that that the flow rate is significantly lower compared with Flow path I, resulting in longer residence times. The presented results are consistent with Flow path I being contained in a planar structure with immobile zones assigned according to the microstructural model. Similarly, the results suggest Flow path II is being made up of a set of background fractures, including BG1. The uncertainty associated with the analysis and interpretations has been evaluated quantitatively, demonstrating that the uncertainty in the hydrodynamic (pathway length and velocity) parameter group {beta} is higher than that for the retention (physical and geochemical) parameter group {kappa}. This analysis supports the development of more realistic hydrostructural models with uncertainty represented through discrete fracture network (DFN) simulations for radionuclide transport in crystalline rock. The analysis (prediction and evaluation) made of the TRUE Block Scale Continuation tracer tests demonstrates clearly that a good geological basis (as expressed in the developed hydrostructural and microstructure models) is important for understanding sorbing tracer transport in fractured crystalline rock.The quantitative analysis pertaining to the background fracture Flow path II suggests that background fracture flow paths, although with poor material retention properties, may contribute significantly to retention because of the low flow rates expected in them. Given that the current results are based on one sole experimental result there exists a need to

  14. 31 CFR 594.301 - Blocked account; blocked property.

    Science.gov (United States)

    2010-07-01

    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions § 594.301 Blocked account; blocked property. The terms blocked account and...

  15. Studies and mechanical properties of a new type of 'hybrid' ceramic block for buildings in structural masonry

    International Nuclear Information System (INIS)

    Camara, Cassio Freire; Gomes, Uilame Umbelino

    2012-01-01

    This paper presents the development of a hybrid ceramic block to the use of resides in the buildings executed with structural masonry. This work seeking new materials and / or products with the purpose of increasing the compressive strength of the ceramic blocks, without neglecting other properties (water absorption and linear shrinkage). After the obtained material (clay powder and crushed), the packaging (in percentages ranging from 0%, 5%, 10% and 15% substitution of crushed clay powder), the identification and measuring (weights and lengths) of the bodies of the test piece, was performed on the approach characterized by fluorescence, mineralogy and SEM of these materials as well as the characterization (SEM) of ceramic blocks after the sintering (temperature of the 900 deg C, 1000 deg C, and 1100 deg C rate with heating tax of 5 o C/minute and soak for 1 hour). Then the samples were subjected to the tests (compressive strength and water absorption) and the respective calculated linear shrinkage. After conducting the analysis of the results of these tests (according to the criteria and parameters required by the ABNT NBR 15270) was found that the 'hybrid' block with the addition of 10% crushed powder obtained the best results, increasing the compressive strength at 16 % without compromising the other parameters required by the Standard. (author)

  16. Increased luminance of MEH-PPV and PFO based PLEDs by using salmon DNA as an electron blocking layer

    International Nuclear Information System (INIS)

    Madhwal, Devinder; Rait, S.S.; Verma, A.; Kumar, Amit; Bhatnagar, P.K.; Mathur, P.C.; Onoda, M.

    2010-01-01

    The effect of salmon DNA-CTMA as an electron blocking layer (EBL) has been examined on the performance of MEH-PPV and PFO-based light emitting diodes. Though the turn-on voltage increases with incorporation of EBL, a significant increase in luminance and luminous efficiency for both the devices is observed. The EBL improves the device performance by blocking electrons at the EBL-polymer interface, thereby increasing the recombination probability of electrons and holes. The luminance of the MEH-PPV based Bio-LED increases to 100 cd/m 2 from 30 cd/m 2 while a corresponding increase for the PFO based LED is to 160 cd/m 2 from 80 cd/m 2 with and without EBL, respectively.

  17. Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: A Monte Carlo simulation

    KAUST Repository

    Zhu, Yutian

    2012-01-01

    In the current study, we applied the Monte Carlo method to study the self-assembly of linear ABC amphiphiles composed of two solvophobic A and B blocks and a solvophilic C block. A great number of multicompartment micelles are discovered from the simulations and the detailed phase diagrams for the ABC amphiphiles with different block lengths are obtained. The simulation results reveal that the micellar structure is largely controlled by block length, solvent quality, and incompatibility between the different block types. When the B block is longer than or as same as the terminal A block, a rich variety of micellar structures can be formed from ABC amphiphiles. By adjusting the solvent quality or incompatibility between the different block types, multiple morphological transitions are observed. These morphological sequences are well explained and consistent with all the previous experimental and theoretical studies. Despite the complexity of the micellar structures and morphological transitions observed for the self-assembly of ABC amphiphiles, two important common features of the phase behavior are obtained. In general, the micellar structures obtained in the current study can be divided into zero-dimensional (sphere-like structures, including bumpy-surfaced spheres and sphere-on-sphere structures), one-dimensional (cylinder-like structures, including rod and ring structures), two-dimensional (layer-like structures, including disk, lamella and worm-like and hamburger structures) and three-dimensional (vesicle) structures. It is found that the micellar structures transform from low- to high- dimensional structures when the solvent quality for the solvophobic blocks is decreased. In contrast, the micellar structures transform from high- to low-dimensional structures as the incompatibility between different block types increases. Furthermore, several novel micellar structures, such as the CBABC five-layer vesicle, hamburger, CBA three-layer ring, wormlike shape with

  18. GEODYNAMICS AS WAVE DYNAMICS OF THE MEDIUM COMPOSED OF ROTATING BLOCKS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2015-01-01

    Full Text Available The geomedium block concept envisages that stresses in the medium composed of rotating blocks have torque and thus predetermine the medium's energy capacity (in terms of [Ponomarev, 2008]. The present paper describes the wave nature of the global geodynamic process taking place in the medium characterized by the existence of slow and fast rotation strain waves that are classified as a new type of waves. Movements may also occur as rheid, superplastic and/or superfluid motions and facilitate the formation of vortex geological structures in the geomedium.Our analysis of data on almost 800 strong volcanic eruptions shows that the magma chamber’s thickness is generally small, about 0.5 km, and this value is constant, independent of the volcanic process and predetermined by properties of the crust. A new magma chamber model is based on the idea of 'thermal explosion’/‘self-acceleration' manifested by intensive plastic movements along boundaries between the blocks in conditions of the low thermal conductivity of the geomedium. It is shown that if the solid rock in the magma chamber is overheated above its melting point, high stresses may occur in the surrounding area, and their elastic energy may amount to 1015 joules per 1 km3 of the overheated solid rock. In view of such stresses, it is possible to consider the interaction between volcano’s magma chambers as the migration of volcanic activity along the volcanic arc and provide an explanation of the interaction between volcanic activity and seismicity within the adjacent parallel arcs.The thin overheated interlayer/magma chamber concept may be valid for the entire Earth's crust. In our hypothesis, properties of the Moho are determined by the phase transition from the block structure of the crust to the nonblock structure of the upper mantle.

  19. Detector block based on arrays of 144 SiPMs and monolithic scintillators: A performance study

    International Nuclear Information System (INIS)

    González, A.J.; Conde, P.; Iborra, A.; Aguilar, A.; Bellido, P.; García-Olcina, R.; Hernández, L.; Moliner, L.; Rigla, J.P.; Rodríguez-Álvarez, M.J.; Sánchez, F.; Seimetz, M.; Soriano, A.; Torres, J.; Vidal, L.F.; Benlloch, J.M.

    2015-01-01

    We have developed a detector block composed by a monolithic LYSO scintillator coupled to a custom made 12×12 SiPMs array. The design is mainly focused to applications such as Positron Emission Tomography. The readout electronics is based on 3 identical and scalable Application Specific Integrated Circuits (ASIC). We have determined the main performance of the detector block namely spatial, energy, and time resolution but also the system capability to determine the photon depth of interaction, for different crystal surface treatments. Intrinsic detector spatial resolution values as good as 1.7 mm FWHM and energies of 15% for black painted crystals were measured

  20. Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.

    Science.gov (United States)

    Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng

    2018-03-01

    Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. STACK DECODING OF LINEAR BLOCK CODES FOR DISCRETE MEMORYLESS CHANNEL USING TREE DIAGRAM

    Directory of Open Access Journals (Sweden)

    H. Prashantha Kumar

    2012-03-01

    Full Text Available The boundaries between block and convolutional codes have become diffused after recent advances in the understanding of the trellis structure of block codes and the tail-biting structure of some convolutional codes. Therefore, decoding algorithms traditionally proposed for decoding convolutional codes have been applied for decoding certain classes of block codes. This paper presents the decoding of block codes using tree structure. Many good block codes are presently known. Several of them have been used in applications ranging from deep space communication to error control in storage systems. But the primary difficulty with applying Viterbi or BCJR algorithms to decode of block codes is that, even though they are optimum decoding methods, the promised bit error rates are not achieved in practice at data rates close to capacity. This is because the decoding effort is fixed and grows with block length, and thus only short block length codes can be used. Therefore, an important practical question is whether a suboptimal realizable soft decision decoding method can be found for block codes. A noteworthy result which provides a partial answer to this question is described in the following sections. This result of near optimum decoding will be used as motivation for the investigation of different soft decision decoding methods for linear block codes which can lead to the development of efficient decoding algorithms. The code tree can be treated as an expanded version of the trellis, where every path is totally distinct from every other path. We have derived the tree structure for (8, 4 and (16, 11 extended Hamming codes and have succeeded in implementing the soft decision stack algorithm to decode them. For the discrete memoryless channel, gains in excess of 1.5dB at a bit error rate of 10-5 with respect to conventional hard decision decoding are demonstrated for these codes.

  2. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Determan, Michael Duane [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  3. Speechlessness in Gilles de la Tourette Syndrome: Cannabis-Based Medicines Improve Severe Vocal Blocking Tics in Two Patients.

    Science.gov (United States)

    Jakubovski, Ewgeni; Müller-Vahl, Kirsten

    2017-08-10

    We report the cases of two young German male patients with treatment-resistant Tourette syndrome (TS), who suffer from incapacitating stuttering-like speech disfluencies caused by vocal blocking tics and palilalia. Case 1: a 19-year old patient received medical cannabis at a dose of 1 × 0.1 g cannabis daily. Case 2: a 16-year old patient initially received dronabinol at a maximum dose of 22.4-33.6 mg daily. Both treatments provided significant symptom improvement of vocal blocking tics as well as of comorbid conditions and were well tolerated. Thus, cannabis-based medicine appears to be effective in treatment-resistant TS patients with vocal blocking tics.

  4. Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside.

    Science.gov (United States)

    Filippov, Sergey K; Verbraeken, Bart; Konarev, Petr V; Svergun, Dmitri I; Angelov, Borislav; Vishnevetskaya, Natalya S; Papadakis, Christine M; Rogers, Sarah; Radulescu, Aurel; Courtin, Tim; Martins, José C; Starovoytova, Larisa; Hruby, Martin; Stepanek, Petr; Kravchenko, Vitaly S; Potemkin, Igor I; Hoogenboom, Richard

    2017-08-17

    Herein, we provide a direct proof for differences in the micellar structure of amphiphilic diblock and gradient copolymers, thereby unambiguously demonstrating the influence of monomer distribution along the polymer chains on the micellization behavior. The internal structure of amphiphilic block and gradient co poly(2-oxazolines) based on the hydrophilic poly(2-methyl-2-oxazoline) (PMeOx) and the hydrophobic poly(2-phenyl-2-oxazoline) (PPhOx) was studied in water and water-ethanol mixtures by small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), static and dynamic light scattering (SLS/DLS), and 1 H NMR spectroscopy. Contrast matching SANS experiments revealed that block copolymers form micelles with a uniform density profile of the core. In contrast to popular assumption, the outer part of the core of the gradient copolymer micelles has a distinctly higher density than the middle of the core. We attribute the latter finding to back-folding of chains resulting from hydrophilic-hydrophobic interactions, leading to a new type of micelles that we refer to as micelles with a "bitterball-core" structure.

  5. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2016-03-01

    Full Text Available Compressive sensing (CS theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%.

  6. Amphiphilic block co-polymers: preparation and application in nanodrug and gene delivery.

    Science.gov (United States)

    Xiong, Xiao-Bing; Binkhathlan, Ziyad; Molavi, Ommoleila; Lavasanifar, Afsaneh

    2012-07-01

    Self-assembly of amphiphilic block co-polymers composed of poly(ethylene oxide) (PEO) as the hydrophilic block and poly(ether)s, poly(amino acid)s, poly(ester)s and polypropyleneoxide (PPO) as the hydrophobic block can lead to the formation of nanoscopic structures of different morphologies. These structures have been the subject of extensive research in the past decade as artificial mimics of lipoproteins and viral vectors for drug and gene delivery. The aim of this review is to provide an overview of the synthesis of commonly used amphiphilic block co-polymers. It will also briefly go over some pharmaceutical applications of amphiphilic block co-polymers as "nanodelivery systems" for small molecules and gene therapeutics. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. A Review on Block Matching Motion Estimation and Automata Theory based Approaches for Fractal Coding

    Directory of Open Access Journals (Sweden)

    Shailesh Kamble

    2016-12-01

    Full Text Available Fractal compression is the lossy compression technique in the field of gray/color image and video compression. It gives high compression ratio, better image quality with fast decoding time but improvement in encoding time is a challenge. This review paper/article presents the analysis of most significant existing approaches in the field of fractal based gray/color images and video compression, different block matching motion estimation approaches for finding out the motion vectors in a frame based on inter-frame coding and intra-frame coding i.e. individual frame coding and automata theory based coding approaches to represent an image/sequence of images. Though different review papers exist related to fractal coding, this paper is different in many sense. One can develop the new shape pattern for motion estimation and modify the existing block matching motion estimation with automata coding to explore the fractal compression technique with specific focus on reducing the encoding time and achieving better image/video reconstruction quality. This paper is useful for the beginners in the domain of video compression.

  8. Anti-Biofouling Properties of Comblike Block Copolymers with Amphiphilic Side Chains

    International Nuclear Information System (INIS)

    Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J.; Sohn, K.; Perry, R.; Ober, C.; Kramer, E.; Callow, M.

    2006-01-01

    Surfaces of novel block copolymers with amphiphilic side chains were studied for their ability to influence the adhesion of marine organisms. The surface-active polymer, obtained by grafting fluorinated molecules with hydrophobic and hydrophilic blocks to a block copolymer precursor, showed interesting bioadhesion properties. Two different algal species, one of which adhered strongly to hydrophobic surfaces, and the other, to hydrophilic surfaces, showed notably weak adhesion to the amphiphilic surfaces. Both organisms are known to secrete adhesive macromolecules, with apparently different wetting characteristics, to attach to underwater surfaces. The ability of the amphiphilic surface to undergo an environment-dependent transformation in surface chemistry when in contact with the extracellular polymeric substances is a possible reason for its antifouling nature. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) was used, in a new approach based on angle-resolved X-ray photoelectron spectroscopy (XPS), to determine the variation in chemical composition within the top few nanometers of the surface and also to study the surface segregation of the amphiphilic block. A mathematical model to extract depth-profile information from the normalized NEXAFS partial electron yield is developed

  9. Accelerating nuclear configuration interaction calculations through a preconditioned block iterative eigensolver

    Science.gov (United States)

    Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; Ng, Esmond G.; Maris, Pieter; Vary, James P.

    2018-01-01

    We describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. The use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. We also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.

  10. Language identification of information blocks based on lexico-grammatic markers

    Directory of Open Access Journals (Sweden)

    Sergey N. Kalegin

    2017-12-01

    Full Text Available This article is a continuation of the author's series of publications on the subjects of language identification of texts. In the article is being considered the creation of a technological basis for language identification systems of unstructured information blocks based on lexico-grammatical markers, in which are used the forms of verbs, verbal formations or functionally analogous constructions, are described method and algorithm for its software implementation. These developments will significantly reduce the resource intensity and improve the quality of such systems, which will give a significant economic effect and the possibility of creating fundamentally new technologies for determining the linguistic affiliation of information in a multilingual environment. Consequently, the study is of interest for computer linguists and developers of automatic word processing systems, such as: global monitoring systems, multilingual knowledge bases, automatic translation systems, information retrieval systems, document summarizing systems, literature catalogers, etc.

  11. Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell-carrier building blocks for bottom-up cartilage tissue engineering

    Science.gov (United States)

    Zhou, Yong; Gao, Huai-Ling; Shen, Li-Li; Pan, Zhao; Mao, Li-Bo; Wu, Tao; He, Jia-Cai; Zou, Duo-Hong; Zhang, Zhi-Yuan; Yu, Shu-Hong

    2015-12-01

    Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation. Recently, as a valuable alternative, a bottom-up TE approach utilizing cell-loaded micrometer-scale modular components as building blocks to reconstruct a new tissue in vitro or in vivo has been proved to demonstrate a number of desirable advantages compared with the traditional bulk scaffold based top-down TE approach. Nevertheless, micro-components with an ECM-mimicking nanofibrous structure are still very scarce and highly desirable. Chitosan (CS), an accessible natural polymer, has demonstrated appealing intrinsic properties and promising application potential for TE, especially the cartilage tissue regeneration. According to this background, we report here the fabrication of chitosan microspheres with an ECM-mimicking nanofibrous structure for the first time based on a physical gelation process. By combining this physical fabrication procedure with microfluidic technology, uniform CS microspheres (CMS) with controlled nanofibrous microstructure and tunable sizes can be facilely obtained. Especially, no potentially toxic or denaturizing chemical crosslinking agent was introduced into the products. Notably, in vitro chondrocyte culture tests revealed that enhanced cell attachment and proliferation were realized, and a macroscopic 3D geometrically shaped cartilage-like composite can be easily constructed with the nanofibrous CMS (NCMS) and chondrocytes, which demonstrate significant application potential of NCMS as the bottom-up cell-carrier components for cartilage tissue engineering.Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation

  12. Characterizing permanent magnet blocks with Helmholtz coils

    Science.gov (United States)

    Carnegie, D. W.; Timpf, J.

    1992-08-01

    Most of the insertion devices to be installed at the Advanced Photon Source will utilize permanent magnets in their magnetic structures. The quality of the spectral output is sensitive to the errors in the field of the device which are related to variations in the magnetic properties of the individual blocks. The Advanced Photon Source will have a measurement facility to map the field in the completed insertion devices and equipment to test and modify the magnetic strength of the individual magnet blocks. One component of the facility, the Helmholtz coil permanent magnet block measurement system, has been assembled and tested. This system measures the total magnetic moment vector of a block with a precision better than 0.01% and a directional resolution of about 0.05°. The design and performance of the system will be presented.

  13. ["Habitual" left branch block alternating with 2 "disguised" bracnch block].

    Science.gov (United States)

    Lévy, S; Jullien, G; Mathieu, P; Mostefa, S; Gérard, R

    1976-10-01

    Two cases of alternating left bundle branch block and "masquerading block" (with left bundle branch morphology in the stnadard leads and right bundle branch block morphology in the precordial leads) were studied by serial tracings and his bundle electrocardiography. In case 1 "the masquerading" block was associated with a first degree AV block related to a prolongation of HV interval. This case is to our knowledge the first cas of alternating bundle branch block in which his bundle activity was recorded in man. In case 2, the patient had atrial fibrilation and His bundle recordings were performed while differents degrees of left bundle branch block were present: The mechanism of the alternation and the concept of "masquerading" block are discussed. It is suggested that this type of block represents a right bundle branch block associated with severe lesions of the "left system".

  14. Semiexperimental equilibrium structures for building blocks of organic and biological molecules: the B2PLYP route.

    Science.gov (United States)

    Penocchio, Emanuele; Piccardo, Matteo; Barone, Vincenzo

    2015-10-13

    The B2PLYP double hybrid functional, coupled with the correlation-consistent triple-ζ cc-pVTZ (VTZ) basis set, has been validated in the framework of the semiexperimental (SE) approach for deriving accurate equilibrium structures of molecules containing up to 15 atoms. A systematic comparison between new B2PLYP/VTZ results and several equilibrium SE structures previously determined at other levels, in particular B3LYP/SNSD and CCSD(T) with various basis sets, has put in evidence the accuracy and the remarkable stability of such model chemistry for both equilibrium structures and vibrational corrections. New SE equilibrium structures for phenylacetylene, pyruvic acid, peroxyformic acid, and phenyl radical are discussed and compared with literature data. Particular attention has been devoted to the discussion of systems for which lack of sufficient experimental data prevents a complete SE determination. In order to obtain an accurate equilibrium SE structure for these situations, the so-called templating molecule approach is discussed and generalized with respect to our previous work. Important applications are those involving biological building blocks, like uracil and thiouracil. In addition, for more general situations the linear regression approach has been proposed and validated.

  15. Blocking Mechanism Study of Self-Compacting Concrete Based on Discrete Element Method

    Science.gov (United States)

    Zhang, Xuan; Li, Zhida; Zhang, Zhihua

    2017-11-01

    In order to study the influence factors of blocking mechanism of Self-Compaction Concrete (SCC), Roussel’s granular blocking model was verified and extended by establishing the discrete element model of SCC. The influence of different parameters on the filling capacity and blocking mechanism of SCC were also investigated. The results showed that: it was feasible to simulate the blocking mechanism of SCC by using Discrete Element Method (DEM). The passing ability of pebble aggregate was superior to the gravel aggregate and the passing ability of hexahedron particles was bigger than tetrahedron particles, while the tetrahedron particle simulation results were closer to the actual situation. The flow of SCC as another significant factor affected the passing ability that with the flow increased, the passing ability increased. The correction coefficient λ of the steel arrangement (channel section shape) and flow rate γ in the block model were introduced that the value of λ was 0.90-0.95 and the maximum casting rate was 7.8 L/min.

  16. Prototypic implementations of the building block for component based open Hypermedia systems (BB/CB-OHSs)

    DEFF Research Database (Denmark)

    Mohamed, Omer I. Eldai

    2005-01-01

    In this paper we describe the prototypic implementations of the BuildingBlock (BB/CB-OHSs) that proposed to address some of the Component-based Open Hypermedia Systems (CB-OHSs) issues, including distribution and interoperability [4, 11, 12]. Four service implementations were described below. The...

  17. Dsm Based Orientation of Large Stereo Satellite Image Blocks

    Science.gov (United States)

    d'Angelo, P.; Reinartz, P.

    2012-07-01

    High resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on CARTOSAT-1 imagery is presented, with emphasis on fully automated georeferencing. The proposed system processes level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The RPC are derived from orbit and attitude information and have a much lower accuracy than the ground resolution of approximately 2.5 m. In order to use the images for orthorectification or DSM generation, an affine RPC correction is required. In this paper, GCP are automatically derived from lower resolution reference datasets (Landsat ETM+ Geocover and SRTM DSM). The traditional method of collecting the lateral position from a reference image and interpolating the corresponding height from the DEM ignores the higher lateral accuracy of the SRTM dataset. Our method avoids this drawback by using a RPC correction based on DSM alignment, resulting in improved geolocation of both DSM and ortho images. Scene based method and a bundle block adjustment based correction are developed and evaluated for a test site covering the nothern part of Italy, for which 405 Cartosat-1 Stereopairs are available. Both methods are tested against independent ground truth. Checks against this ground truth indicate a lateral error of 10 meters.

  18. Radial expansion for spinning conformal blocks

    CERN Document Server

    Costa, Miguel S.; Penedones, João; Trevisani, Emilio

    2016-07-12

    This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

  19. Influence of topographically patterned angled guidelines on directed self-assembly of block copolymers

    Science.gov (United States)

    Rebello, Nathan; Sethuraman, Vaidyanathan; Blachut, Gregory; Ellison, Christopher J.; Willson, C. Grant; Ganesan, Venkat

    2017-11-01

    Single chain in mean-field Monte Carlo simulations were employed to study the self-assembly of block copolymers (BCP) in thin films that use trapezoidal guidelines to direct the orientation and alignment of lamellar patterns. The present study explored the influence of sidewall interactions and geometry of the trapezoidal guidelines on the self-assembly of perpendicularly oriented lamellar morphologies. When both the sidewall and the top surface exhibit preferential interactions to the same block of the BCP, trapezoidal guidelines with intermediate taper angles were found to result in less defective perpendicularly orientated morphologies. Similarly, when the sidewall and top surface are preferential to distinct blocks of the BCP, intermediate tapering angles were found to be optimal in promoting defect free structures. Such results are rationalized based on the energetics arising in the formation of perpendicularly oriented lamella on patterned substrates.

  20. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate-block-poly(Ethylene Oxide Copolymers

    Directory of Open Access Journals (Sweden)

    Elżbieta Piesowicz

    2016-06-01

    Full Text Available A series of poly(trimethylene terephthalate-block-poly(ethylene oxide (PTT-b-PEOT copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied from 30 up to 50 wt %. The phase separation was assessed using differential scanning calorimetry (DSC and dynamic mechanical thermal analysis (DMTA. The crystal structure of the synthesised block copolymers and their microstructure on the manometer scale was evaluated by using WAXS and SAXS analysis. Depending on the PTT/PEOT ratio, but also on the rigid and flexible segment length in PTT-b-PEO copolymers, four different domains were observed i.e.,: a crystalline PTT phase, a crystalline PEO phase (which exists for the whole series based on three types of PEOT segments, an amorphous PTT phase (only at 50 wt % content of PTT rigid segments and an amorphous PEO phase. Moreover, the elastic deformability and reversibility of PTT-b-PEOT block copolymers were studied during a cyclic tensile test. Determined values of permanent set resultant from maximum attained stain (100% and 200% for copolymers were used to evaluate their elastic properties.

  1. E-Block: A Tangible Programming Tool with Graphical Blocks

    Directory of Open Access Journals (Sweden)

    Danli Wang

    2013-01-01

    Full Text Available This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transferred to computer by microcomputers and then translated into semantic information. The system applies wireless and infrared technologies and provides user with feedbacks on both screen and programming blocks. Preliminary user studies using observation and user interview methods are shown for E-Block's prototype. The test results prove that E-Block is attractive to children and easy to learn and use. The project also highlights potential advantages of using single chip microcomputer (SCM technology to develop tangible programming tools for children.

  2. Effect of annealing and UV-radiation time over micropore architecture of self-assembled block copolymer thin film

    Directory of Open Access Journals (Sweden)

    G. del C. Pizarro

    2015-06-01

    Full Text Available Block copolymers have been recognized as versatile materials to prepare nanoporous polymer films or membranes, but their potential has not been completely explored. This study focuses on the formation and characterization of nanoporous polymer films based on poly(styrene-block-(methylmethacrylate/methacrylic acid; (PS-b-MMA/MAA were obtained through atom transfer radical polymerization (ATRP, by using two different protocols: annealing and annealingirradiation; for improving the formation of microporous surface. The composition, crystallinity and structural order of the films were studied by Raman spectroscopy. The film polymer thickness was obtained through very high resolution ellipsometry (VHRE. Finally, atomic force microcopy (AFM and scanning electron microscopy (SEM techniques were used to detect changes in the porous-structure. These results show that the morphological properties of the block copolymer were affected via the modification of two variables, UV-radiation time and annealing. SEM and AFM micrographs showed that the morphology exhibit a porous ordered structure. Contact angle measurement suggests additional interactions between hydrophilic functional groups that influence the film wettability.

  3. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin; Zhang, Zhihua; Wong, Ka-Chun; Zhang, Xiangliang; Keyes, David E.

    2017-01-01

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference

  4. Effect of cyclic block loading on character of deformation and strength of structural materials in plane stressed state

    International Nuclear Information System (INIS)

    Kul'chitskij, N.M.; Troshchenko, A.V.; Koval'chuk, B.I.; Khamaza, L.A.; Nikolaev, I.A.

    1982-01-01

    The paper is concerned with choice of conditions for preliminary cyclic block loading, determination of fatigue failure resistance characteristics for various structural materials under regular and selected block loading, investigation of the preliminary cyclic loading effect on regularities of elastoplastic deformation of materials concerned in the biaxial stressed state. Under selected conditions of cyclic block loading the character of damage accumulation is close to the linear law for the materials of high-srength doped steel, and VT6 alloys of concern. These materials in the initial state and after preliminary cyclic loading are anisotropic. Axial direction is characterized by a higher plastic strain resistance for steel and tangential direction - for VT6 alloy. The generalized strain curves for the materials in question are not invariant as to the stressed state type. It is stated that the effect of preliminary unsteady cyclic loading on resistance and general regularities of material deformation in the complex stressed state is insignificant. It is observed that stress-strain properties of the materials tend to vary in the following way: plastic strain resistance of the steel lowers and that of VT6 rises, anisotropy of the materials somehow decreases. The variation in the material anisotropy may be attributed to a decrease in residual stresses resulting from preliminary cyclic loading

  5. Vision-Based Bicycle Detection Using Multiscale Block Local Binary Pattern

    Directory of Open Access Journals (Sweden)

    Hongyu Hu

    2014-01-01

    Full Text Available Bicycle traffic has heavy proportion among all travel modes in some developing countries, which is crucial for urban traffic control and management as well as facility design. This paper proposes a real-time multiple bicycle detection algorithm based on video. At first, an effective feature called multiscale block local binary pattern (MBLBP is extracted for representing the moving object, which is a well-classified feature to distinguish between bicycles and nonbicycles; then, a cascaded bicycle classifier trained by AdaBoost algorithm is proposed, which has a good computation efficiency. Finally, the method is tested with video sequence captured from the real-world traffic scenario. The bicycles in the test scenario are successfully detected.

  6. Shear Creep Simulation of Structural Plane of Rock Mass Based on Discontinuous Deformation Analysis

    Directory of Open Access Journals (Sweden)

    Guoxin Zhang

    2017-01-01

    Full Text Available Numerical simulations of the creep characteristics of the structural plane of rock mass are very useful. However, most existing simulation methods are based on continuum mechanics and hence are unsuitable in the case of large displacements and deformations. The discontinuous deformation analysis method proposed by Genhua is a discrete one and has a significant advantage when simulating the contacting problem of blocks. In this study, we combined the viscoelastic rheological model of Burgers with the discontinuous deformation analysis (DDA method. We also derived the recurrence formula for the creep deformation increment with the time step during numerical simulations. Based on the minimum potential energy principle, the general equilibrium equation was derived, and the shear creep deformation in the structural plane was considered. A numerical program was also developed and its effectiveness was confirmed based on the curves obtained by the creep test of the structural plane of a rock mass under different stress levels. Finally, the program was used to analyze the mechanism responsible for the creep features of the structural plane in the case of the toppling deformation of the rock slope. The results showed that the extended DDA method is an effective one.

  7. Fragmented Agrarian Space: Building Blocks and Modernisation Trajectories. The Case of Slovenia

    Directory of Open Access Journals (Sweden)

    Slavič Irma Potočnik

    2017-06-01

    Full Text Available Production, processing and consumption within Slovenian agrarian space are fragmented due to physical constraints (72.4% of the territory categorised as ANC and socio-geographic factors. Based on available data, five essential building blocks of contemporary Slovenian agrarian space (available land, change management, integrated circular economy, adjustable policies, and flexibility of institutions are discussed. Interrelations among the building blocks shape the modernisation trajectories of approx. 70,000 agricultural holdings in Slovenia. The coexistence of three modernisation trajectories, i.e. practised autarky, various forms of pluri-activity, and small-scale intensive and innovative modernisation, creates a complex mosaic. The governance of multifunctional and multi-structured agrarian space is becoming more demanding.

  8. Seismic analysis of fast breeder reactor block

    International Nuclear Information System (INIS)

    Gantenbein, F.

    1990-01-01

    Seismic analysis of LMFBR reactor block is complex due mainly to the fluid structure interaction and the 3D geometry of the structure. Analytical methods which have been developed for this analysis will be briefly described in the paper and applications to a geometry similar to SPX1 will be shown

  9. A block structured method for the simulation of the flow around complex configurations; Ein blockstrukturiertes Verfahren zur Simulation der Umstroemung komplexer Konfigurationen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, T.O.

    2005-07-01

    A block structured method for the simulation of the viscous flow around complex configurations is presented. The computational domain is discretized with overlapping meshes. The meshes are composed of individually created grids for the components of a configuration and an automatically generated Cartesian background grid. The background grid is a multi-block mesh with hanging grid nodes, which is adapted to the cell size of the component grids. The cells of the background grid can be cubes or cuboids. The overlapping grid approach simplifies the generation of block structured grids significantly. The flow computations are performed with a Navier-Stokes solver. The Chimera capabilities of the solver are extended by methods for the computation of interpolation coefficients and global forces in case of grid overlap on body surfaces. Additionally, a flux conservative boundary condition for the hanging grid nodes is implemented. The consistency and accuracy of the methods is proved by grid refinement studies. Validation test cases include a three element airfoil, a helicopter fuselage and an airplane in landing configuration. Numerical results obtained for Chimera meshes as well as conventional grids agree very well. The agreement with wind tunnel experiments is good. The computational costs for Chimera computations are slightly higher than for conventional grids. (orig.)

  10. Responsive linear-dendritic block copolymers.

    Science.gov (United States)

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. E-Block: A Tangible Programming Tool with Graphical Blocks

    OpenAIRE

    Danli Wang; Yang Zhang; Shengyong Chen

    2013-01-01

    This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transfer...

  12. Extrapunitive and Intropunitive Individuals Activate Different Parts of the Prefrontal Cortex under an Ego-Blocking Frustration

    OpenAIRE

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem...

  13. Lithosphere Structure of the Rivera Plate - Jalisco Block Contact Zone: Septentrional Region of the Islas Marías (Mexico)

    Science.gov (United States)

    Madrigal-Ávalos, L. A.; Nunez, D.; Escalona-Alcazar, F. D. J.; Nuñez-Cornu, F. J.; Barba, D. C., Sr.; Danobeitia, J.

    2017-12-01

    The western margin of Mexico is a tectonic complex region where large earthquakes occurred with very destructive consequences, including the generation of big tsunamis. This fact is mainly the result of the Rivera plate subduction beneath the North American plate and the Jalisco Block implying a high potential seismic risk. In the north, between the Tamayo Fracture Zone and the Mesoamerican Trench, the Islas Marías region is a complex tectonic limit within the interaction of the Rivera plate oceanic crust and the Jalisco Block continental crust. In order to know the shallow and deep structure of the Rivera plate - Jalisco Block contact zone and to be able to determine these potential seismic sources, the TSUJAL geophysical experiment was carried out from 2012 to 2016. As part of this project, we present the results of the processed and analyzed MCS and WAS data along the TS09 and RTSIM01 seismic transects, respectively, across the septentrional region of Islas Marías. These marine seismic lines are coincident with 110 km length for MCS and 240 km for WAS, and perpendicular to the coastline with SW-NE orientation. The seismic sources used in this work aboard RRS James Cook consisted of 12 guns with a total capacity for WAS data of 5800 in3 every 120 s and 3540 in3 every 50 m for MCS data. The MCS data were acquired with a 5.85 km length streamer with a 468 active channels, while the WAS data were recorded by a network of 4 OBS and 27 land seismic stations. After data processing and joint interpretation, it was possible to determine that shallow structure is mainly constituted by normal faults associated to graben structures forming sedimentary basins with non-deformed sediments in the basement. While the deep structure is characterized by depths from 9 to 12 km in the oceanic crust and 18 to 21 km in the continental crust. The deepest layers of the upper mantle were determined up to 35 km depth. In this study, it was possible to calculate a dip angle between 6

  14. Natural convection in a horizontal channel provided with heat generating blocks: Discussion of the isothermal blocks validity

    International Nuclear Information System (INIS)

    Mouhtadi, D.; Amahmid, A.; Hasnaoui, M.; Bennacer, R.

    2012-01-01

    Highlights: ► We examine the validity of isothermal model for blocks with internal heat generation. ► Criteria based on comparison of total and local quantities are adopted. ► Thermal conductivity and Biot number required for the validity of the isothermal model are dependent on the Rayleigh number. ► The validity conditions are also affected by the multiplicity of solutions. - Abstract: This work presents a numerical study of air natural convection in a horizontal channel provided with heating blocks periodically distributed on its lower adiabatic surface. The blocks are submitted to a uniform heat generation and the channel upper surface is maintained at a cold constant temperature. The main objective of this study is to examine the validity of the model with isothermal blocks for the system under consideration. Then the calculations are performed using two different models. In the first (denoted Model 1 or M1) the calculations are performed by imposing a uniform volumetric heat generation inside the blocks. In the second model (denoted Model 2 or M2), the blocks are maintained isothermal at the average blocks surface temperature deduced from the Model 1. The controlling parameters of the present problem are the thermal conductivity ratio of the solid block and the fluid (0.1 ⩽ k* = k s /k a ⩽ 200) and the Rayleigh number (10 4 ⩽ Ra ⩽ 10 7 ). The validity of the isothermal model is examined for various Ra by using criteria based on local and mean heat transfer characteristics. It is found that some solutions of the isothermal model do not reproduce correctly the results of the first model even for very large conductivity ratios. The Biot number below which the Model 2 is valid depends strongly on the Rayleigh number and the type of solution.

  15. On a Three-Channel Cosmic Ray Detector based on Aluminum Blocks

    Science.gov (United States)

    Arceo, L.; Félix, J.

    2017-10-01

    There are many general purpose cosmic ray detectors based on plastic scintillators and electronic boards from the market. This is a new cosmic ray detector designed on three 2.54 cm × 5.08 cm × 20.32 cm Aluminum blocks in stack arrangement, and three Hamamatsu S12572-100P photodiodes. The photodiode board, the passive electronic board, and the discriminator board are own designed. The electronic signals are stored with a CompactRIO -cRIO- by National Instruments. It is presented the design, the construction, the data acquisition system algorithm, and the preliminary physical results.

  16. Two injection digital block versus single subcutaneous palmar injection block for finger lacerations.

    Science.gov (United States)

    Okur, O M; Şener, A; Kavakli, H Ş; Çelik, G K; Doğan, N Ö; Içme, F; Günaydin, G P

    2017-12-01

    We aimed to compare two digital nerve block techniques in patients due to traumatic digital lacerations. This was a randomized-controlled study designed prospectively in the emergency department of a university-based training and research hospital. Randomization was achieved by sealed envelopes. Half of the patients were randomised to traditional (two-injection) digital nerve block technique while single-injection digital nerve block technique was applied to the other half. Score of pain due to anesthetic infiltration and suturing, onset time of total anesthesia, need for an additional rescue injection were the parameters evaluated with both groups. Epinephrin added lidocaine hydrochloride preparation was used for the anesthetic application. Visual analog scale was used for the evaluation of pain scores. Outcomes were compared by using Mann-Whitney U test and Student t-test. Fifty emergency department patients ≥18 years requiring digital nerve block were enrolled in the study. Mean age of the patients was 33 (min-max: 19-86) and 39 (78 %) were male. No statistically significant difference was found between the two groups in terms of our main parameters; anesthesia pain score, suturing pain score, onset time of total anesthesia and rescue injection need. Single injection volar digital nerve block technique is a suitable alternative for digital anesthesias in emergency departments.

  17. A block structure Laplacian for hyperspectral image data clustering

    CSIR Research Space (South Africa)

    Lunga, D

    2013-12-01

    Full Text Available and points to new directions that boost unsupervised pattern classification. In particular, the paper offers design insights on the generation of a well structured graph Laplacian based on an affinity function that induces context-dependence to create compact...

  18. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  19. Cutting method for structural component into block like shape, and device used for cutting

    International Nuclear Information System (INIS)

    Nakazawa, Koichi; Ito, Akira; Tateiwa, Masaaki.

    1995-01-01

    Two grooves each of a predetermined depth are formed along a surface of a structural component, and a portion between the two grooves is cut in the direction of the depth from the surface of the structural component by using a cutting wire of a wire saw device. Then, the cutting wire is moved in the extending direction of the grooves while optionally changing the position in the direction of the depth to conduct cutting for the back face. Further, the cutting wire is moved in the direction of the depth of the groove toward the surface, to cut a portion between the two grooves. The wire saw device comprises a wire saw main body movable along the surface of the structural component, a pair of wire guide portions extending in the direction of the depth, guide pooleys capable of guiding the cutting wire guides revolvably and rotatably disposed at the top end, and an endless annular cutting wire extending between the wire guide portions. Thus, it is possible to continuously cut out blocks set to optional size and thickness. In addition, remote cutting is possible with no requirement for an operator to access to the vicinity of radioactivated portions. (N.H.)

  20. Opportunity-based block replacement: the single component case

    NARCIS (Netherlands)

    R. Dekker (Rommert); E. Smeitink

    1991-01-01

    textabstractIn this paper we consider a block replacement model in which a component can be replaced preventively at maintenance opportunities only. Maintenance opportunities occur randomly and are modelled through a renewal process. In the first, theoretical part of the paper we derive an

  1. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  2. Manipulation of partially oriented hydroxyapatite building blocks to form flowerlike bundles without acid-base regulation.

    Science.gov (United States)

    Wen, Zhenliang; Wang, Zihao; Chen, Jingdi; Zhong, Shengnan; Hu, Yimin; Wang, Jianhua; Zhang, Qiqing

    2016-06-01

    The application of hydroxyapatite (HAP) in different fields depends greatly on its morphology, composition and structure. Besides, the main inorganic building blocks of human bones and teeth are also HAP. Therefore, accurate shape and aggregation control and of hydroxyapatite particles will be of great interest. Herein, oriented bundles of flowerlike HAP nanorods were successfully prepared through hydrothermal treatment without acid-base regulation, with the mono-alkyl phosphate (MAP) and sodium citrate as surfactant and chelating agent, respectively. The prepared samples were characterized by the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and zeta potential, the pH value and conductivity value of suspension were characterized by pH meter and conductivity measurement. The results showed that the MAP and citrate play an important role in assembly of HAP nanorods without acid-base regulation. Citrate calcium complex could decompose slowly and release citrate ions at hydrothermal conditions. Besides, the further decomposition of citrate ions could release aconitic acid as the reaction time prolongs. Moreover, the possible scheme for the formation process was discussed in detail. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Conformational Studies of ε- CBz- L- Lysine and L- Valine Block Copolypeptides

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2010-01-01

    Full Text Available Conformational studies of ε-CBz-L-lysine and L-valine block copoylpeptides using x- ray diffraction and CD spectra are described. The block copolypeptides contain valine block in the center and on both side of the valine are ε-CBz-L-lysine blocks. The conformation of the copolypeptides changes with increases in the chain length of ε- CBz-L- lysine blocks. When length of ε- CBZ- L- lysine blocks is 9, the block copolypeptide has exclusive beta sheet structure. With the increase in chain length of ε-CBz-L-lysine blocks from 9 to 14, the block copolypeptide shows presence of both alpha helix and beta sheet components. With further increase in chain length of ε- CBz- L- lysine blocks, the beta sheet component disappears and block copolypeptides exhibits exclusive α -helix conformation.

  4. Structure-directing star-shaped block copolymers: supramolecular vesicles for the delivery of anticancer drugs.

    Science.gov (United States)

    Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan

    2015-06-28

    Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant

  5. Distribution of lithostratigraphic units within the central block of Yucca Mountain, Nevada: A three-dimensional computer-based model, Version YMP.R2.0

    International Nuclear Information System (INIS)

    Buesch, D.C.; Nelson, J.E.; Dickerson, R.P.; Drake, R.M. II; San Juan, C.A.; Spengler, R.W.; Geslin, J.K.; Moyer, T.C.

    1996-01-01

    Yucca Mountain, Nevada is underlain by 14.0 to 11.6 Ma volcanic rocks tilted eastward 3 degree to 20 degree and cut by faults that were primarily active between 12.7 and 11.6 Ma. A three-dimensional computer-based model of the central block of the mountain consists of seven structural subblocks composed of six formations and the interstratified-bedded tuffaceous deposits. Rocks from the 12.7 Ma Tiva Canyon Tuff, which forms most of the exposed rocks on the mountain, to the 13.1 Ma Prow Pass Tuff are modeled with 13 surfaces. Modeled units represent single formations such as the Pah Canyon Tuff, grouped units such as the combination of the Yucca Mountain Tuff with the superjacent bedded tuff, and divisions of the Topopah Spring Tuff such as the crystal-poor vitrophyre interval. The model is based on data from 75 boreholes from which a structure contour map at the base of the Tiva Canyon Tuff and isochore maps for each unit are constructed to serve as primary input. Modeling consists of an iterative cycle that begins with the primary structure-contour map from which isochore values of the subjacent model unit are subtracted to produce the structure contour map on the base of the unit. This new structure contour map forms the input for another cycle of isochore subtraction to produce the next structure contour map. In this method of solids modeling, the model units are presented by surfaces (structure contour maps), and all surfaces are stored in the model. Surfaces can be converted to form volumes of model units with additional effort. This lithostratigraphic and structural model can be used for (1) storing data from, and planning future, site characterization activities, (2) preliminary geometry of units for design of Exploratory Studies Facility and potential repository, and (3) performance assessment evaluations

  6. About Block Dynamic Model of Earthquake Source.

    Science.gov (United States)

    Gusev, G. A.; Gufeld, I. L.

    One may state the absence of a progress in the earthquake prediction papers. The short-term prediction (diurnal period, localisation being also predicted) has practical meaning. Failure is due to the absence of the adequate notions about geological medium, particularly, its block structure and especially in the faults. Geological and geophysical monitoring gives the basis for the notion about geological medium as open block dissipative system with limit energy saturation. The variations of the volume stressed state close to critical states are associated with the interaction of the inhomogeneous ascending stream of light gases (helium and hydrogen) with solid phase, which is more expressed in the faults. In the background state small blocks of the fault medium produce the sliding of great blocks in the faults. But for the considerable variations of ascending gas streams the formation of bound chains of small blocks is possible, so that bound state of great blocks may result (earthquake source). Recently using these notions we proposed a dynamical earthquake source model, based on the generalized chain of non-linear bound oscillators of Fermi-Pasta-Ulam type (FPU). The generalization concerns its in homogeneity and different external actions, imitating physical processes in the real source. Earlier weak inhomogeneous approximation without dissipation was considered. Last has permitted to study the FPU return (return to initial state). Probabilistic properties in quasi periodic movement were found. The chain decay problem due to non-linearity and external perturbations was posed. The thresholds and dependence of life- time of the chain are studied. The great fluctuations of life-times are discovered. In the present paper the rigorous consideration of the inhomogeneous chain including the dissipation is considered. For the strong dissipation case, when the oscillation movements are suppressed, specific effects are discovered. For noise action and constantly arising

  7. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    Science.gov (United States)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  8. Fabrication of Completely Polymer-Based Solar Cells with p- and n-Type Semiconducting Block Copolymers with Electrically Inert Polystyrene

    Directory of Open Access Journals (Sweden)

    Eri Tomita

    2018-02-01

    Full Text Available It is widely recognized that fullerene derivatives show several advantages as n-type materials in photovoltaic applications. However, conventional [6,6]-phenyl-C61-butyric acid methyl ester (PCBM exhibits weak absorption in the visible region, and poor morphological stability, due to the facile aggregation. For further improvement of the device performance and durability, utilization of n-type polymeric materials instead of PCBM is considered to be a good way to solve the problems. In this study, we fabricated completely polymer-based solar cells utilizing p- and n-type block copolymers consisting of poly(3-hexylthiophene (P3HT and poly{[N,N′-bis(2-octyldodecylnaphthalene-1,4,5,8-bis(dicarboximide-2,6-diyl]-alt-5,5′-(2,2′-bithiophene} [P(NDI2OD-T2], respectively, containing common polystyrene (PSt inert blocks, which decreased the size of phase separated structures. Electron mobility in synthesized P(NDI2OD-T2-b-PSt film enhanced by a factor of 8 compared with homopolymer. The root mean square roughness of the blend film of two block copolymers (12.2 nm was decreased, compared with that of the simple homopolymers blend (18.8 nm. From the current density-voltage characteristics, it was confirmed that the introduction of PSt into both P3HT and P(NDI2OD-T2 improves short-circuit current density (1.16 to 1.73 mA cm−2 and power-conversion efficiency (0.24% to 0.32%. Better performance is probably due to the uniformity of the phase separation, and the enhancement of charge mobility.

  9. Designing block copolymer architectures for targeted membrane performance

    KAUST Repository

    Dorin, Rachel Mika

    2014-01-01

    Using a combination of block copolymer self-assembly and non-solvent induced phase separation, isoporous ultrafiltration membranes were fabricated from four poly(isoprene-b-styrene-b-4-vinylpyridine) triblock terpolymers with similar block volume fractions but varying in total molar mass from 43 kg/mol to 115 kg/mol to systematically study the effect of polymer size on membrane structure. Small-angle X-ray scattering was used to probe terpolymer solution structure in the dope. All four triblocks displayed solution scattering patterns consistent with a body-centered cubic morphology. After membrane formation, structures were characterized using a combination of scanning electron microscopy and filtration performance tests. Membrane pore densities that ranged from 4.53 × 1014 to 1.48 × 1015 pores/m 2 were observed, which are the highest pore densities yet reported for membranes using self-assembly and non-solvent induced phase separation. Hydraulic permeabilities ranging from 24 to 850 L m-2 h-1 bar-1 and pore diameters ranging from 7 to 36 nm were determined from permeation and rejection experiments. Both the hydraulic permeability and pore size increased with increasing molar mass of the parent terpolymer. The combination of polymer characterization and membrane transport tests described here demonstrates the ability to rationally design macromolecular structures to target specific performance characteristics in block copolymer derived ultrafiltration membranes. © 2013 Elsevier Ltd. All rights reserved.

  10. Adaptability of the Logistics System in National Economic Mobilization Based on Blocking Flow Theory

    Directory of Open Access Journals (Sweden)

    Xiangyuan Jing

    2014-01-01

    Full Text Available In the process of national economic mobilization, the logistics system usually suffers from negative impact and/or threats of such emergency events as wars and accidents, which implies that adaptability of the logistics system directly determines realization of economic mobilization. And where the real-time rescue operation is concerned, heavy traffic congestion is likely to cause a great loss of or damage to human beings and their properties. To deal with this situation, this article constructs a blocking-resistance optimum model and an optimum restructuring model based on blocking flow theories, of which both are illustrated by numerical cases and compared in characteristics and application. The design of these two models is expected to eliminate or alleviate the congestion situation occurring in the logistics system, thus effectively enhancing its adaptability in the national economic mobilization process.

  11. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    Science.gov (United States)

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational

  12. Influence of 1,2-PB matrix cross-linking on structure and properties of selectively etched 1,2-PB-b-PDMS block copolymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Andreasen, Jens Wenzel; Vigild, Martin Etchells

    2007-01-01

    of the cross-linked samples in toluene was converted into a degree of cross-linking following the Flory scheme; a simple relation between the Flory cross-linking degree and the fraction of consumed double bonds during the cross-linking reaction followed. The structure of the block copolymer at different stages...... of preparation was characterized by small-angle X-ray scattering (SAXS). In addition, scanning electron microscopy (SEM) gave direct images of the nanoporous polymer structure. Nanocavities are accessible to methanol, and observations of methanol uptake were combined with structural information from SAXS...

  13. Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Directory of Open Access Journals (Sweden)

    M.S. Rodrigues

    Full Text Available The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF or by rice husk ash (RHA, and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement and Portland cement replacement (10% by mass with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones.

  14. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    Science.gov (United States)

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  15. Importance of crystallinity of anchoring block of semi-solid amphiphilic triblock copolymers in stabilization of silicone nanoemulsions.

    Science.gov (United States)

    Le Kim, Trang Huyen; Jun, Hwiseok; Nam, Yoon Sung

    2017-10-01

    Polymer emulsifiers solidified at the interface between oil and water can provide exceptional dispersion stability to emulsions due to the formation of unique semi-solid interphase. Our recent works showed that the structural stability of paraffin-in-water emulsions highly depends on the oil wettability of hydrophobic block of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL). Here we investigate the effects of the crystallinity of hydrophobic block of triblock copolymer-based emulsifiers, PCLL-b-PEG-b-PCLL, on the colloidal properties of silicone oil-in-water nanoemulsions. The increased ratio of l-lactide to ε-caprolactone decreases the crystallinity of the hydrophobic block, which in turn reduces the droplet size of silicone oil nanoemulsions due to the increased chain mobility at the interface. All of the prepared nanoemulsions are very stable for a month at 37°C. However, the exposure to repeated freeze-thaw cycles quickly destabilizes the nanoemulsions prepared using the polymer with the reduced crystallinity. This work demonstrates that the anchoring chain crystallization in the semi-solid interphase is critically important for the structural robustness of nanoemulsions under harsh physical stresses. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Implicit gas-kinetic unified algorithm based on multi-block docking grid for multi-body reentry flows covering all flow regimes

    Science.gov (United States)

    Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu

    2016-12-01

    Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single

  17. Block Fusion Systems and the Center of the Group Ring

    DEFF Research Database (Denmark)

    Jacobsen, Martin Wedel

    This thesis develops some aspects of the theory of block fusion systems. Chapter 1 contains a brief introduction to the group algebra and some simple results about algebras over a field of positive characteristic. In chapter 2 we define the concept of a fusion system and the fundamental property...... of saturation. We also define block fusion systems and prove that they are saturated. Chapter 3 develops some tools for relating block fusion systems to the structure of the center of the group algebra. In particular, it is proven that a block has trivial defect group if and only if the center of the block...... algebra is one-dimensional. Chapter 4 consists of a proof that block fusion systems of symmetric groups are always group fusion systems of symmetric groups, and an analogous result holds for the alternating groups....

  18. TiO{sub 2} nanofiber solid-state dye sensitized solar cells with thin TiO{sub 2} hole blocking layer prepared by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinwei; Chen, Xi; Xu, Weihe [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Nam, Chang-Yong, E-mail: cynam@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States); Shi, Yong, E-mail: Yong.Shi@stevens.edu [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2013-06-01

    We incorporated a thin but structurally dense TiO{sub 2} layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO{sub 2} nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO{sub 2} layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO{sub 2} precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO{sub 2} layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO{sub 2} blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO{sub 2} layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime.

  19. Poly(ferrocenylsilane)-block-Polylactide Block Copolymers

    NARCIS (Netherlands)

    Roerdink, M.; van Zanten, Thomas S.; Hempenius, Mark A.; Zhong, Zhiyuan; Feijen, Jan; Vancso, Gyula J.

    2007-01-01

    A PFS/PLA block copolymer was studied to probe the effect of strong surface interactions on pattern formation in PFS block copolymer thin films. Successful synthesis of PFS-b-PLA was demonstrated. Thin films of these polymers show phase separation to form PFS microdomains in a PLA matrix, and

  20. Block adjustment of airborne InSAR based on interferogram phase and POS data

    Science.gov (United States)

    Yue, Xijuan; Zhao, Yinghui; Han, Chunming; Dou, Changyong

    2015-12-01

    High-precision surface elevation information in large scale can be obtained efficiently by airborne Interferomatric Synthetic Aperture Radar (InSAR) system, which is recently becoming an important tool to acquire remote sensing data and perform mapping applications in the area where surveying and mapping is difficult to be accomplished by spaceborne satellite or field working. . Based on the study of the three-dimensional (3D) positioning model using interferogram phase and Position and Orientation System (POS) data and block adjustment error model, a block adjustment method to produce seamless wide-area mosaic product generated from airborne InSAR data is proposed in this paper. The effect of 6 parameters, including trajectory and attitude of the aircraft, baseline length and incline angle, slant range, and interferometric phase, on the 3D positioning accuracy is quantitatively analyzed. Using the data acquired in the field campaign conducted in Mianyang county Sichuan province, China in June 2011, a mosaic seamless Digital Elevation Model (DEM) product was generated from 76 images in 4 flight strips by the proposed block adjustment model. The residuals of ground control points (GCPs), the absolute positioning accuracy of check points (CPs) and the relative positioning accuracy of tie points (TPs) both in same and adjacent strips were assessed. The experimental results suggest that the DEM and Digital Orthophoto Map (DOM) product generated by the airborne InSAR data with sparse GCPs can meet mapping accuracy requirement at scale of 1:10 000.

  1. Wrong-site nerve blocks: A systematic literature review to guide principles for prevention.

    Science.gov (United States)

    Deutsch, Ellen S; Yonash, Robert A; Martin, Donald E; Atkins, Joshua H; Arnold, Theresa V; Hunt, Christina M

    2018-05-01

    Wrong-site nerve blocks (WSBs) are a significant, though rare, source of perioperative morbidity. WSBs constitute the most common type of perioperative wrong-site procedure reported to the Pennsylvania Patient Safety Authority. This systematic literature review aggregates information about the incidence, patient consequences, and conditions that contribute to WSBs, as well as evidence-based methods to prevent them. A systematic search of English-language publications was performed, using the PRISMA process. Seventy English-language publications were identified. Analysis of four publications reporting on at least 10,000 blocks provides a rate of 0.52 to 5.07 WSB per 10,000 blocks, unilateral blocks, or "at risk" procedures. The most commonly mentioned potential consequence was local anesthetic toxicity. The most commonly mentioned contributory factors were time pressure, personnel factors, and lack of site-mark visibility (including no site mark placed). Components of the block process that were addressed include preoperative nerve-block verification, nerve-block site marking, time-outs, and the healthcare facility's structure and culture of safety. A lack of uniform reporting criteria and divergence in the data and theories presented may reflect the variety of circumstances affecting when and how nerve blocks are performed, as well as the infrequency of a WSB. However, multiple authors suggest three procedural steps that may help to prevent WSBs: (1) verify the nerve-block procedure using multiple sources of information, including the patient; (2) identify the nerve-block site with a visible mark; and (3) perform time-outs immediately prior to injection or instillation of the anesthetic. Hospitals, ambulatory surgical centers, and anesthesiology practices should consider creating site-verification processes with clinician input and support to develop sustainable WSB-prevention practices. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    International Nuclear Information System (INIS)

    Liu, Dandan; Dai, Fangna; Tang, Zhe; Liu, Yunqi; Liu, Chenguang

    2015-01-01

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state 27 Al nuclear magnetic resonance ( 27 Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m 2 /g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina

  3. Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform

    Science.gov (United States)

    Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin

    2013-12-01

    Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.

  4. A controlled release system for proteins based on poly(ether ester) block-copolymers: polymer network characterization

    NARCIS (Netherlands)

    Bezemer, J.M.; Grijpma, Dirk W.; Dijkstra, Pieter J.; van Blitterswijk, Clemens; Feijen, Jan

    1999-01-01

    The properties of a series of multiblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(butylene terephthalate) (PBT) blocks were investigated with respect to their application as a matrix for controlled release of proteins. The degree of swelling, Q, of the

  5. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo.

    Science.gov (United States)

    Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung

    2018-02-27

    Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.

  6. Unilateral cervical plexus block for prosthetic laryngoplasty in the standing horse.

    Science.gov (United States)

    Campoy, L; Morris, T B; Ducharme, N G; Gleed, R D; Martin-Flores, M

    2018-04-20

    Locoregional anaesthetic techniques can facilitate certain surgeries being performed under standing procedural sedation. The second and third spinal cervical nerves (C2, C3) are part of the cervical plexus and provide sensory innervation to the peri-laryngeal structures in people; block of these nerves might permit laryngeal lateralisation surgery in horses. To describe the anatomical basis for an ultrasound-guided cervical plexus block in horses. To compare this block with conventional local anaesthetic tissue infiltration in horses undergoing standing prosthetic laryngoplasty. Cadaveric study followed by a double-blinded prospective clinical trial. A fresh equine cadaver was dissected to characterise the distribution of C2 and C3 to the perilaryngeal structures on the left side. A second cadaver was utilised to correlate ultrasound images with the previously identified structures; a tissue marker was injected to confirm the feasibility of an ultrasound-guided approach to the cervical plexus. In the clinical study, horses were assigned to two groups, CP (n = 17; cervical plexus block) and INF (n = 17; conventional tissue infiltration). Data collection and analyses included time to completion of surgical procedure, sedation time, surgical field conditions and surgeon's perception of block quality. We confirmed that C2 and C3 provided innervation to the perilaryngeal structures. The nerve root of C2 was identified ultrasonographically located between the longus capitis and the cleidomastoideus muscles, caudal to the parotid gland. The CP group was deemed to provide better (Pblock is a viable alternative to tissue infiltration and it improves the surgical field conditions. © 2018 EVJ Ltd.

  7. Modelling of multi-block data

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar; Svinning, K.

    2006-01-01

    Here is presented a unified approach to modelling multi-block regression data. The starting point is a partition of the data X into L data blocks, X = (X-1, X-2,...X-L), and the data Y into M data-blocks, Y = (Y-1, Y-2,...,Y-M). The methods of linear regression, X -> Y, are extended to the case...... of a linear relationship between each X-i and Y-j. X-i -> Y-j. A modelling strategy is used to decide if the residual X-i should take part in the modelling of one or more Y(j)s. At each step the procedure of finding score vectors is based on well-defined optimisation procedures. The principle of optimisation...... is based on that the score vectors should give the sizes of the resulting Y(j)s loading vectors as large as possible. The partition of X and Y are independent of each other. The choice of Y-j can be X-j, Y-i = X-i, thus including the possibility of modelling X -> X-i,i=1,...,L. It is shown how...

  8. Small angle neutron scattering study on star di-block copolymers

    International Nuclear Information System (INIS)

    Ertugrul, O.

    2006-01-01

    Determining structural properties, phase transitions and stability of polymer mixtures is very important to produce new materials with desired and interesting properties. Small Angle Neutron Scattering Technique (SANS) has been one of the most powerful and intensely used methods for the characterization of polymers for last decades, m this study, we use a model based on Gaussian Random Phase Approximation (RPA) to describe Star Di-block Copolymers (SDC) mixtures with homo-polymers. We could able to predict the miscibility and phase transitions of the various mixtures along with their structure factors, producing a thermodynamic picture of the system. Also the results suggest that scattering intensity will be dictated by the structure factor of the core or shell parts of star polymer only, which depends on the homo-polymer type of the mixture

  9. Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries: development of personalized finite element models.

    Science.gov (United States)

    Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram

    2018-03-12

    Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.

  10. A fast image encryption algorithm based on only blocks in cipher text

    Science.gov (United States)

    Wang, Xing-Yuan; Wang, Qian

    2014-03-01

    In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simultaneously. The cipher-text image is divided into blocks and each block has k ×k pixels, while the pixels of the plain-text are scanned one by one. Four logistic maps are used to generate the encryption key stream and the new place in the cipher image of plain image pixels, including the row and column of the block which the pixel belongs to and the place where the pixel would be placed in the block. After encrypting each pixel, the initial conditions of logistic maps would be changed according to the encrypted pixel's value; after encrypting each row of plain image, the initial condition would also be changed by the skew tent map. At last, it is illustrated that this algorithm has a faster speed, big key space, and better properties in withstanding differential attacks, statistical analysis, known plaintext, and chosen plaintext attacks.

  11. A fast image encryption algorithm based on only blocks in cipher text

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Wang Qian

    2014-01-01

    In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simultaneously. The cipher-text image is divided into blocks and each block has k ×k pixels, while the pixels of the plain-text are scanned one by one. Four logistic maps are used to generate the encryption key stream and the new place in the cipher image of plain image pixels, including the row and column of the block which the pixel belongs to and the place where the pixel would be placed in the block. After encrypting each pixel, the initial conditions of logistic maps would be changed according to the encrypted pixel's value; after encrypting each row of plain image, the initial condition would also be changed by the skew tent map. At last, it is illustrated that this algorithm has a faster speed, big key space, and better properties in withstanding differential attacks, statistical analysis, known plaintext, and chosen plaintext attacks

  12. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  13. Block and sub-block boundary strengthening in lath martensite

    NARCIS (Netherlands)

    Du, C.; Hoefnagels, J.P.M.; Vaes, R.; Geers, M.G.D.

    2016-01-01

    Well-defined uniaxial micro-tensile tests were performed on lath martensite single block specimens and multi-block specimens with different number of block boundaries parallel to the loading direction. Detailed slip trace analyses consistently revealed that in the {110}<111> slip system with the

  14. A Versatile and Efficient GPU Data Structure for Spatial Indexing

    KAUST Repository

    Schneider, Jens

    2016-08-10

    In this paper we present a novel GPU-based data structure for spatial indexing. Based on Fenwick trees—a special type of binary indexed trees—our data structure allows construction in linear time. Updates and prefixes can be computed in logarithmic time, whereas point queries require only constant time on average. Unlike competing data structures such as summed-area tables and spatial hashing, our data structure requires a constant amount of bits for each data element, and it offers unconstrained point queries. This property makes our data structure ideally suited for applications requiring unconstrained indexing of large data, such as block-storage of large and block-sparse volumes. Finally, we provide asymptotic bounds on both run-time and memory requirements, and we show applications for which our new data structure is useful.

  15. A Versatile and Efficient GPU Data Structure for Spatial Indexing

    KAUST Repository

    Schneider, Jens; Rautek, Peter

    2016-01-01

    In this paper we present a novel GPU-based data structure for spatial indexing. Based on Fenwick trees—a special type of binary indexed trees—our data structure allows construction in linear time. Updates and prefixes can be computed in logarithmic time, whereas point queries require only constant time on average. Unlike competing data structures such as summed-area tables and spatial hashing, our data structure requires a constant amount of bits for each data element, and it offers unconstrained point queries. This property makes our data structure ideally suited for applications requiring unconstrained indexing of large data, such as block-storage of large and block-sparse volumes. Finally, we provide asymptotic bounds on both run-time and memory requirements, and we show applications for which our new data structure is useful.

  16. On the Eigenvalues and Eigenvectors of Block Triangular Preconditioned Block Matrices

    KAUST Repository

    Pestana, Jennifer

    2014-01-01

    Block lower triangular matrices and block upper triangular matrices are popular preconditioners for 2×2 block matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned matrices are related. © 2014 Society for Industrial and Applied Mathematics.

  17. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.

    Science.gov (United States)

    Wang, Chao; Wang, Zhiqiang; Zhang, Xi

    2012-04-17

    The process of self-assembly spontaneously creates well-defined structures from various chemical building blocks. Self-assembly can include different levels of complexity: it can be as simple as the dimerization of two small building blocks driven by hydrogen bonding or as complicated as a cell membrane, a remarkable supramolecular architecture created by a bilayer of phospholipids embedded with functional proteins. The study of self-assembly in simple systems provides a fundamental understanding of the driving forces and cooperativity behind these processes. Once the rules are understood, these guidelines can facilitate the research of highly complex self-assembly processes. Among the various components for self-assembly, an amphiphilic molecule, which contains both hydrophilic and hydrophobic parts, forms one of the most powerful building blocks. When amphiphiles are dispersed in water, the hydrophilic component of the amphiphile preferentially interacts with the aqueous phase while the hydrophobic portion tends to reside in the air or in the nonpolar solvent. Therefore, the amphiphiles aggregate to form different molecular assemblies based on the repelling and coordinating forces between the hydrophilic and hydrophobic parts of the component molecules and the surrounding medium. In contrast to conventional amphiphiles, supra-amphiphiles are constructed on the basis of noncovalent interactions or dynamic covalent bonds. In supra-amphiphiles, the functional groups can be attached to the amphiphiles by noncovalent synthesis, greatly speeding their construction. The building blocks for supra-amphiphiles can be either small organic molecules or polymers. Advances in the development of supra-amphiphiles will not only enrich the family of conventional amphiphiles that are based on covalent bonds but will also provide a new kind of building block for the preparation of complex self-assemblies. When polymers are used to construct supra-amphiphiles, the resulting

  18. Powder wastes confinement block and manufacturing process of this block

    International Nuclear Information System (INIS)

    Dagot, L.; Brunel, G.

    1996-01-01

    This invention concerns a powder wastes containment block and a manufacturing process of this block. In this block, the waste powder is encapsulated in a thermo hardening polymer as for example an epoxy resin, the encapsulated resin being spread into cement. This block can contain between 45 and 55% in mass of wastes, between 18 and 36% in mass of polymer and between 14 and 32% in mass of cement. Such a containment block can be used for the radioactive wastes storage. (O.M.). 4 refs

  19. Assay for intrinsic factor based on blocking of the R binder of gastric juice by cobinamide

    International Nuclear Information System (INIS)

    Begley, J.A.; Trachtenberg, A.

    1979-01-01

    An in vitro assay for measurement of gastric juice intrinsic factor (IF) was developed based on the ability of the cobinamide (Cbi) [(CN, OH) Cbi] to bind to the gastric juice R-type binders of cobalamin (Cbl) and not to the IF binder. Subsequently added radioactive Cbl, CN-[ 57 Co] Cbl, binds only to the IF binders and allows for direct measurement of this Cbl binding protein. This Cbi blocking assay was found to function as well as the more conventional methods of IF measurement, G-100 column chromatography, and IF blocking antibody assay. The present assay has the advantage of eliminating the need for elaborate forms of protein separation and does not rely on a source of antibody

  20. Cooperative storage of shared files in a parallel computing system with dynamic block size

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2015-11-10

    Improved techniques are provided for parallel writing of data to a shared object in a parallel computing system. A method is provided for storing data generated by a plurality of parallel processes to a shared object in a parallel computing system. The method is performed by at least one of the processes and comprises: dynamically determining a block size for storing the data; exchanging a determined amount of the data with at least one additional process to achieve a block of the data having the dynamically determined block size; and writing the block of the data having the dynamically determined block size to a file system. The determined block size comprises, e.g., a total amount of the data to be stored divided by the number of parallel processes. The file system comprises, for example, a log structured virtual parallel file system, such as a Parallel Log-Structured File System (PLFS).

  1. Blocked Randomization with Randomly Selected Block Sizes

    Directory of Open Access Journals (Sweden)

    Jimmy Efird

    2010-12-01

    Full Text Available When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  2. Population Blocks.

    Science.gov (United States)

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  3. Well-Defined Polyethylene-Based Random, Block, and Bilayered Molecular Cobrushes

    KAUST Repository

    Zhang, Hefeng

    2015-06-09

    Novel well-defined polyethylene-based random, block, and bilayered molecular cobrushes were synthesized through the macromonomer strategy. Two steps were involved in this approach: (i) synthesis of norbornyl-terminated macromonomers of polyethylene (PE), polycaprolactone (PCL), poly(ethylene oxide) (PEO), and polystyrene (PS), as well as polyethylene-b-polycaprolactone (PE-b-PCL), by esterification of the hydroxyl-terminated precursors (PE, PCL, PEO, PS, and PE-b-PCL) with 5-norbornene-2-carboxylic acid and (ii) ring-opening metathesis (co)polymerization of the resulting macromonomers to afford the PE-based molecular cobrushes. The PE-macromonomers were synthesized by polyhomologation of dimethylsulfoxonium methylide, while the others by anionic polymerization. Proton nuclear magnetic resonance spectroscopy (1H NMR) and high-temperature gel permeation chromatography (HT-GPC) were used to imprint the molecular characteristics of all macromonomers and molecular brushes and differential scanning calorimetry (DSC) for the thermal properties. The bilayered molecular cobrushes of P(PE-b-PCL) adopt a wormlike morphology on silica wafer as visualized by atomic force microscopy (AFM). © 2015 American Chemical Society.

  4. Round Gating for Low Energy Block Ciphers

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco

    2016-01-01

    design techniques for implementing block ciphers in a low energy fashion. We concentrate on round based implementation and we discuss how gating, applied at round level can affect and improve the energy consumption of the most common lightweight block cipher currently used in the internet of things....... Additionally, we discuss how to needed gating wave can be generated. Experimental results show that our technique is able to reduce the energy consumption in most block ciphers by over 60% while incurring only a minimal overhead in hardware....

  5. A TEACHING PROPOSAL OF PRODUCTION OF DISSERTATIVE-ARGUMENTATIVE TEXTS BASED ON THE THEORY OF SEMANTIC BLOCKS

    Directory of Open Access Journals (Sweden)

    Cláudio Primo Delanoy

    2015-12-01

    Full Text Available This paper aims to explain a teaching proposal of production of dissertative-argumentative texts, based on concepts and principles of the Theory of Argumentation within Language (ADL of Ducrot (1990, 2009, and above all in tools made available by the Theory of Semantic Blocks (TBS, Carel (1995, 2005, and Carel and Ducrot (2005. In order to do so, first, the text production proposal of Enem 2012 is analyzed, so as to find the basic semantic units of its motivational texts, which, by being associated to argumentative aspects of semantic blocks that originate those semantic units, may guide effective argumentative routes to be realized in dissertative argumentative text from semantic relations within the same block. It is verified, also, to what extent argumentative transgressive chaining are presented in argumentative essays as more convincing than the normative argumentative ones. As a result, this work may provide theoretical and methodological support for teachers that have been working directly with the teaching of reading and writing, in basic or superior education levels.

  6. Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems

    Science.gov (United States)

    Du, Mao-Kang; He, Bo; Wang, Yong

    2011-01-01

    Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14 (2009) 574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.

  7. Synthesis of Fluorinated Amphiphilic Block Copolymers Based on PEGMA, HEMA, and MMA via ATRP and CuAAC Click Chemistry

    OpenAIRE

    Erol, Fatime Eren; Sinirlioglu, Deniz; Cosgun, Sedat; Muftuoglu, Ali Ekrem

    2014-01-01

    Synthesis of fluorinated amphiphilic block copolymers via atom transfer radical polymerization (ATRP) and Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC) was demonstrated. First, a PEGMA and MMA based block copolymer carrying multiple side-chain acetylene moieties on the hydrophobic segment for postfunctionalization was carried out. This involves the synthesis of a series of P(HEMA-co-MMA) random copolymers to be employed as macroinitiators in the controlled synthesis of P(HEMA-co-M...

  8. Video error concealment using block matching and frequency selective extrapolation algorithms

    Science.gov (United States)

    P. K., Rajani; Khaparde, Arti

    2017-06-01

    Error Concealment (EC) is a technique at the decoder side to hide the transmission errors. It is done by analyzing the spatial or temporal information from available video frames. It is very important to recover distorted video because they are used for various applications such as video-telephone, video-conference, TV, DVD, internet video streaming, video games etc .Retransmission-based and resilient-based methods, are also used for error removal. But these methods add delay and redundant data. So error concealment is the best option for error hiding. In this paper, the error concealment methods such as Block Matching error concealment algorithm is compared with Frequency Selective Extrapolation algorithm. Both the works are based on concealment of manually error video frames as input. The parameter used for objective quality measurement was PSNR (Peak Signal to Noise Ratio) and SSIM(Structural Similarity Index). The original video frames along with error video frames are compared with both the Error concealment algorithms. According to simulation results, Frequency Selective Extrapolation is showing better quality measures such as 48% improved PSNR and 94% increased SSIM than Block Matching Algorithm.

  9. 3-D crustal-scale gravity model of the San Rafael Block and Payenia volcanic province in Mendoza, Argentina

    Directory of Open Access Journals (Sweden)

    Daniel Richarte

    2018-01-01

    Based on gravimetric and magnetic data, together with isostatic and elastic thickness analyses, we modeled the crustal structure of the area. Information obtained has allowed us to understand the crust where the SRB and the Payenia volcanic province are located. Bouguer anomalies indicate that the SRB presents higher densities to the North of Cerro Nevado and Moho calculations suggest depths for this block between 40 and 50 km. Determinations of elastic thickness would indicate that the crust supporting the San Rafael Block presents values of approximately 10 km, being enough to support the block loading. However, in the Payenia region, elastic thickness values are close to zero due to the regional temperature increase.

  10. SU-G-BRA-02: Development of a Learning Based Block Matching Algorithm for Ultrasound Tracking in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, A; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To develop an ultrasound learning-based tracking algorithm with the potential to provide real-time motion traces of anatomy-based fiducials that may aid in the effective delivery of external beam radiation. Methods: The algorithm was developed in Matlab R2015a and consists of two main stages: reference frame selection, and localized block matching. Immediately following frame acquisition, a normalized cross-correlation (NCC) similarity metric is used to determine a reference frame most similar to the current frame from a series of training set images that were acquired during a pretreatment scan. Segmented features in the reference frame provide the basis for the localized block matching to determine the feature locations in the current frame. The boundary points of the reference frame segmentation are used as the initial locations for the block matching and NCC is used to find the most similar block in the current frame. The best matched block locations in the current frame comprise the updated feature boundary. The algorithm was tested using five features from two sets of ultrasound patient data obtained from MICCAI 2014 CLUST. Due to the lack of a training set associated with the image sequences, the first 200 frames of the image sets were considered a valid training set for preliminary testing, and tracking was performed over the remaining frames. Results: Tracking of the five vessel features resulted in an average tracking error of 1.21 mm relative to predefined annotations. The average analysis rate was 15.7 FPS with analysis for one of the two patients reaching real-time speeds. Computations were performed on an i5-3230M at 2.60 GHz. Conclusion: Preliminary tests show tracking errors comparable with similar algorithms at close to real-time speeds. Extension of the work onto a GPU platform has the potential to achieve real-time performance, making tracking for therapy applications a feasible option. This work is partially funded by NIH grant R01CA

  11. SU-G-BRA-02: Development of a Learning Based Block Matching Algorithm for Ultrasound Tracking in Radiotherapy

    International Nuclear Information System (INIS)

    Shepard, A; Bednarz, B

    2016-01-01

    Purpose: To develop an ultrasound learning-based tracking algorithm with the potential to provide real-time motion traces of anatomy-based fiducials that may aid in the effective delivery of external beam radiation. Methods: The algorithm was developed in Matlab R2015a and consists of two main stages: reference frame selection, and localized block matching. Immediately following frame acquisition, a normalized cross-correlation (NCC) similarity metric is used to determine a reference frame most similar to the current frame from a series of training set images that were acquired during a pretreatment scan. Segmented features in the reference frame provide the basis for the localized block matching to determine the feature locations in the current frame. The boundary points of the reference frame segmentation are used as the initial locations for the block matching and NCC is used to find the most similar block in the current frame. The best matched block locations in the current frame comprise the updated feature boundary. The algorithm was tested using five features from two sets of ultrasound patient data obtained from MICCAI 2014 CLUST. Due to the lack of a training set associated with the image sequences, the first 200 frames of the image sets were considered a valid training set for preliminary testing, and tracking was performed over the remaining frames. Results: Tracking of the five vessel features resulted in an average tracking error of 1.21 mm relative to predefined annotations. The average analysis rate was 15.7 FPS with analysis for one of the two patients reaching real-time speeds. Computations were performed on an i5-3230M at 2.60 GHz. Conclusion: Preliminary tests show tracking errors comparable with similar algorithms at close to real-time speeds. Extension of the work onto a GPU platform has the potential to achieve real-time performance, making tracking for therapy applications a feasible option. This work is partially funded by NIH grant R01CA

  12. Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code

    Science.gov (United States)

    Bartels, Robert E.

    2005-01-01

    A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.

  13. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    Energy Technology Data Exchange (ETDEWEB)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  14. Conservation analysis of dengue virust-cell epitope-based vaccine candidates using peptide block entropy

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Zhang, Guang Lan; Keskin, Derin B.

    2011-01-01

    residues. The block entropy analysis provides broad coverage of variant antigens. We applied the block entropy analysis method to the proteomes of the four serotypes of dengue virus (DENV) and found 1,551 blocks of 9-mer peptides, which cover 99% of available sequences with five or fewer unique peptides...

  15. A conditioned level-set method with block-division strategy to flame front extraction based on OH-PLIF measurements

    International Nuclear Information System (INIS)

    Han Yue; Cai Guo-Biao; Xu Xu; Bruno Renou; Abdelkrim Boukhalfa

    2014-01-01

    A novel approach to extract flame fronts, which is called the conditioned level-set method with block division (CLSB), has been developed. Based on a two-phase level-set formulation, the conditioned initialization and region-lock optimization appear to be beneficial to improve the efficiency and accuracy of the flame contour identification. The original block-division strategy enables the approach to be unsupervised by calculating local self-adaptive threshold values autonomously before binarization. The CLSB approach has been applied to deal with a large set of experimental data involving swirl-stabilized premixed combustion in diluted regimes operating at atmospheric pressures. The OH-PLIF measurements have been carried out in this framework. The resulting images are, thus, featured by lower signal-to-noise ratios (SNRs) than the ideal image; relatively complex flame structures lead to significant non-uniformity in the OH signal intensity; and, the magnitude of the maximum OH gradient observed along the flame front can also vary depending on flow or local stoichiometry. Compared with other conventional edge detection operators, the CLSB method demonstrates a good ability to deal with the OH-PLIF images at low SNR and with the presence of a multiple scales of both OH intensity and OH gradient. The robustness to noise sensitivity and intensity inhomogeneity has been evaluated throughout a range of experimental images of diluted flames, as well as against a circle test as Ground Truth (GT). (interdisciplinary physics and related areas of science and technology)

  16. Impact-Contact Analysis of Prismatic Graphite Blocks Using Abaqus

    International Nuclear Information System (INIS)

    Kang, Ji Ho; Kim, Gyeong Ho; Choi, Woo Seok

    2010-12-01

    Graphite blocks are the important core components of the high temperature gas-cooled reactor. As these blocks are simply stacked in array, collisions among neighboring components may occur during earthquakes or accidents. The final objective of the research project is to develop a reliable seismic model of the stacked graphite blocks from which their behavior can be predicted and, thus, they are designed to have sufficient strength to maintain their structural integrity during the anticipated occurrences. The work summarized in this report is a first step toward the big picture and is dedicated to build a realistic impact-contact dynamics model of the graphite block using a commercial FEM package, Abaqus. The developed model will be further used to assist building a reliable lumped dynamics model of these stacked graphite components

  17. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    A new method for performing thermal stress analyses in structures with multiple penetrations was applied to these analyses. This method couples the development of an equivalent thermal conductivity for the blocks, a technique that has been used extensively for modeling the thermal characteristics of reactor cores, with the use of the equivalent solid plate method for stress analysis. Using this equivalent thermal conductivity, which models as one material the heat transfer characteristics of the fuel, coolant, and graphite two-dimensional, steady-state thermal analyses of the fuel and control rod fuel blocks were performed to establish all temperature boundaries required for the stress analyses. In applying the equivalent solid plate method, the region of penetrations being modeled was replaced by a pseudo material having the same dimensions but whose materials properties were adjusted to account for the penetration. The peak stresses and strains were determined by applying stress and strain intensification factors to the calculated distributions. The condition studied was where the blocks were located near the center of the furnace. In this position, the axial surface of the block is heated near one end and cooled near the other. The approximate axial surface temperatures ranged from 1521 0 C at both the heated and the cooled ends to a peak of 1800 0 C near the center. Five specific cases were analyzed: plane (two-dimensional thermal, plane stress strain) analyses of each end of a standard fuel block (2 cases), plane analyses of each end of a control rod fuel block (2 cases), and a two-dimensional analysis of a fuel block treated as an axisymmetric cylind

  18. Reversible Dual-Image-Based Hiding Scheme Using Block Folding Technique

    Directory of Open Access Journals (Sweden)

    Tzu-Chuen Lu

    2017-10-01

    Full Text Available The concept of a dual-image based scheme in information sharing consists of concealing secret messages in two cover images; only someone who has both stego-images can extract the secret messages. In 2015, Lu et al. proposed a center-folding strategy where each secret symbol is folded into the reduced digit to reduce the distortion of the stego-image. Then, in 2016, Lu et al. used a frequency-based encoding strategy to reduce the distortion of the frequency of occurrence of the maximum absolute value. Because the folding strategy can obviously reduce the value, the proposed scheme includes the folding operation twice to further decrease the reduced digit. We use a frequency-based encoding strategy to encode a secret message and then use the block folding technique by performing the center-folding operation twice to embed secret messages. An indicator is needed to identify the sequence number of the folding operation. The proposed scheme collects several indicators to produce a combined code and hides the code in a pixel to reduce the size of the indicators. The experimental results show that the proposed method can achieve higher image quality under the same embedding rate or higher payload, which is better than other methods.

  19. Production Potential Of Nchanga Underground Mines Collapsed Blocks

    Directory of Open Access Journals (Sweden)

    Eugie Kabwe

    2015-08-01

    Full Text Available Abstract the main purpose of this study is to recommend modification to block caving at Nchanga ensure that it meets anticipated production levels and address the adverse ground conditions of the intensely fractured orebody. Excavations of current methods are driven close to the incompetent orebody. Determination of the appropriate method based on criteria of selection techniques together with the analysis of operating costs and safety. Reclamation of ore in the collapsed blocks entirely depended on maximizing revenue recovery of the mineral and safe working environment for equipment and personnel. On recommendation of a suitable method extent of the collapsed blocks was another aspect considered. The proposed methods of extraction were variants of block caving further shortlisted based on the extent of collapse. Economic appraisal of both the recommended and current mining methods employed included extraction recovery development reclamation costs revenue estimation and revenue raised from finished copper.

  20. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Huiyan Jiang

    2012-01-01

    Full Text Available An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  1. EnviroAtlas - Phoenix, AZ - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Phoenix, AZ EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  2. EnviroAtlas - Fresno, CA - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Fresno, CA EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  3. Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling

    Energy Technology Data Exchange (ETDEWEB)

    Wenning, Brandon M. [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy; Martinelli, Elisa [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy; Mieszkin, Sophie [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Finlay, John A. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Fischer, Daniel [National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States; Callow, James A. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Callow, Maureen E. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Leonardi, Amanda K.; Ober, Christopher K.; Galli, Giancarlo [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy

    2017-05-02

    A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, with the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.

  4. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  5. Application of blocking diagnosis methods to general circulation models. Part I: a novel detection scheme

    Energy Technology Data Exchange (ETDEWEB)

    Barriopedro, D. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Ed. C-8, Lisbon (Portugal); Universidad de Extremadura, Departamento de Fisica, Facultad de Ciencias, Badajoz (Spain); Garcia-Herrera, R. [Universidad Complutense de Madrid, Departamento de Fisica de la Tierra II, Facultad de C.C. Fisicas, Madrid (Spain); Trigo, R.M. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Ed. C-8, Lisbon (Portugal)

    2010-12-15

    This paper aims to provide a new blocking definition with applicability to observations and model simulations. An updated review of previous blocking detection indices is provided and some of their implications and caveats discussed. A novel blocking index is proposed by reconciling two traditional approaches based on anomaly and absolute flows. Blocks are considered from a complementary perspective as a signature in the anomalous height field capable of reversing the meridional jet-based height gradient in the total flow. The method succeeds in identifying 2-D persistent anomalies associated to a weather regime in the total flow with blockage of the westerlies. The new index accounts for the duration, intensity, extension, propagation, and spatial structure of a blocking event. In spite of its increased complexity, the detection efficiency of the method is improved without hampering the computational time. Furthermore, some misleading identification problems and artificial assumptions resulting from previous single blocking indices are avoided with the new approach. The characteristics of blocking for 40 years of reanalysis (1950-1989) over the Northern Hemisphere are described from the perspective of the new definition and compared to those resulting from two standard blocking indices and different critical thresholds. As compared to single approaches, the novel index shows a better agreement with reported proxies of blocking activity, namely climatological regions of simultaneous wave amplification and maximum band-pass filtered height standard deviation. An additional asset of the method is its adaptability to different data sets. As critical thresholds are specific of the data set employed, the method is useful for observations and model simulations of different resolutions, temporal lengths and time variant basic states, optimizing its value as a tool for model validation. Special attention has been paid on the devise of an objective scheme easily applicable

  6. On some properties of the block linear multi-step methods | Chollom ...

    African Journals Online (AJOL)

    The convergence, stability and order of Block linear Multistep methods have been determined in the past based on individual members of the block. In this paper, methods are proposed to examine the properties of the entire block. Some Block Linear Multistep methods have been considered, their convergence, stability and ...

  7. 4P-NPD ultra thin-films as efficient exciton blocking layers in DBP/C70 based organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Liu, Yiming; Qamar, Talha

    2017-01-01

    Exciton blocking effects from ultra thin layers of N,N'-di-1-naphthalenyl-N,N'-diphenyl [1,1':4',1'':4'',1'''-quaterphenyl]-4,4'''-diamine (4P-NPD) was investigated in small molecule based inverted Organic Solar Cells (OSCs) using Tetraphenyldibenzoperiflanthene (DBP) as the electron donor material...... and fullerene (C70) as the electron acceptor material. The short-circuit current density (Jsc) and PCE of the optimized OSCs with 0.7 nm thick 4P-NPD were approx. 16 % and 24 % higher, respectively, compared to reference devices without exciton blocking layers. Drift diffusion based device modeling...... was conducted to model the full Current density – Voltage (JV) characteristics and EQE spectrum of the OSCs, and photoluminescence measurements was conducted to investigate the exciton blocking effects with increasing thicknesses of the 4P-NPD layer. Importantly, coupled optical and electrical modeling studies...

  8. High-Resolution Crystal Structure of a Silver(I)-RNA Hybrid Duplex Containing Watson-Crick-like C-Silver(I)-C Metallo-Base Pairs.

    Science.gov (United States)

    Kondo, Jiro; Tada, Yoshinari; Dairaku, Takenori; Saneyoshi, Hisao; Okamoto, Itaru; Tanaka, Yoshiyuki; Ono, Akira

    2015-11-02

    Metallo-base pairs have been extensively studied for applications in nucleic acid-based nanodevices and genetic code expansion. Metallo-base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo-base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T-Hg(II)-T base pairs. Herein, we have determined a high-resolution crystal structure of the second natural metallo-base pair between pyrimidine bases C-Ag(I)-C formed in an RNA duplex. One Ag(I) occupies the center between two cytosines and forms a C-Ag(I)-C base pair through N3-Ag(I)-N3 linear coordination. The C-Ag(I)-C base pair formation does not disturb the standard A-form conformation of RNA. Since the C-Ag(I)-C base pair is structurally similar to the canonical Watson-Crick base pairs, it can be a useful building block for structure-based design and fabrication of nucleic acid-based nanodevices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Phonons as building blocks in nuclear structure

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    1980-01-01

    The structure of a nuclear system in terms of eigenmodes (phonons) of subsystems is investigated in three different approaches. In the frame of nuclear field theory the three identical particle system is analysed and the elimination of spurious states due to the violation of the Pauli principle is emphasized. In terms of weak coupling, a new approach of the shell model is proposed which is shown to be rapidly convergent with the number of basis vectors. Applications of three particle systems in the lead region are made. Lastly, a microscopic multiphonon theorie of collective K=0 states in deformed nuclei based on a Tamm Dancoff phonon is developed. The role of the Pauli principle as well as comparisons with boson expansion methods are deeply analysed [fr

  10. Effect of the inter-block spacing on the thermal performance of a PCM based heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Faraji, M.; El Qarnia, H. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire de mecanique des fluides et d' energetique; El Khadir, L. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire d' tomatique de l' Environnement et Procedes de Transferts

    2010-07-01

    Advanced electronic devices require efficient thermal control systems. Heat transfer analysis of such systems is challenging because of constraints regarding space limitations, power consumption and noise level. This study considered the problem of melting and natural convection in a rectangular enclosure heated with 3 heat sources with a constant and uniform volumetric heat generation. The heat sources were protruding and mounted on a vertical conducting plate. Conjugate conduction in a plate and heat sources coupled with natural convection and melting process were examined in an effort to determine the effects of the inter-blocks spacing ratio on the thermal performance of the cooling PCM-heat sink. The percentage contribution of substrate heat conduction on the total removed heat from heat sources was also investigated. Correlations were derived for the non- dimensional secured working time and the corresponding melt fraction. In order to investigate the thermal behaviour of the proposed heat sink, a mathematical model was developed based on the mass, momentum and energy conservation equations. The results revealed that for lower inter-blocks spacing, the dimensionless secured working time needed by the chips to reach the critical temperature was maximized. The highest inter-blocks spacing ratio provoked a sudden rise in chip temperatures and thus reduced the dimensionless secured working time. It was concluded that this approach can be used in the design of PCM-based cooling systems. 9 refs., 2 tabs., 4 figs.

  11. Synthesis of Functional Block Copolymers Carrying One Poly( p -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure

    KAUST Repository

    Menk, Florian

    2016-02-29

    Block copolymers composed of a MEH-PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60-95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optical properties depending on the polymer composition and the micellization procedure. Furthermore, the reactive ester carrying block copolymers enabled the introduction of anchor groups which facilitated the preparation of nanocomposites with CdSe/CdZnS core-shell QDs. The obtained composites were studied using time-resolved photoluminescence measurements. The results revealed an increased interaction based on an accelerated decay of the QD emission for composites as compared to the mixture of the QDs with unfunctionalized polymers. © 2016 American Chemical Society.

  12. Synthesis of Functional Block Copolymers Carrying One Poly( p -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure

    KAUST Repository

    Menk, Florian; Shin, Suyong; Kim, Kyung-Oh; Scherer, Martin; Gehrig, Dominik; Laquai, Fré dé ric; Choi, Tae-Lim; Zentel, Rudolf

    2016-01-01

    Block copolymers composed of a MEH-PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60-95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optical properties depending on the polymer composition and the micellization procedure. Furthermore, the reactive ester carrying block copolymers enabled the introduction of anchor groups which facilitated the preparation of nanocomposites with CdSe/CdZnS core-shell QDs. The obtained composites were studied using time-resolved photoluminescence measurements. The results revealed an increased interaction based on an accelerated decay of the QD emission for composites as compared to the mixture of the QDs with unfunctionalized polymers. © 2016 American Chemical Society.

  13. Development of a Blocking ELISA Using a Monoclonal Antibody to a Dominant Epitope in Non-Structural Protein 3A of Foot-and-Mouth Disease Virus, as a Matching Test for a Negative-Marker Vaccine.

    Directory of Open Access Journals (Sweden)

    Yuanfang Fu

    Full Text Available Foot-and-mouth disease (FMD is a devastating animal disease. Strategies for differentiation of infected from vaccinated animals (DIVA remain very important for controlling disease. Development of an epitope-deleted marker vaccine and accompanying diagnostic method will improve the efficiency of DIVA. Here, a monoclonal antibody (Mab was found to recognize a conserved "AEKNPLE" epitope spanning amino acids 109-115 of non-structural protein (NSP 3A of foot-and-mouth disease virus (FMDV; O/Tibet/CHA/99 strain, which could be deleted by a reverse-genetic procedure. In addition, a blocking ELISA was developed based on this Mab against NSP 3A, which could serve as a matching test for a negative-marker vaccine. The criterion of this blocking ELISA was determined by detecting panels of sera from different origins. The serum samples with a percentage inhibition (PI equal or greater than 50% were considered to be from infected animals, and those with <50% PI were considered to be from non-infected animals. This test showed similar performance when compared with other 2 blocking ELISAs based on an anti-NSP 3B Mab. This is the first report of the DIVA test for an NSP antibody based on an Mab against the conserved and predominant "AEKNPLE" epitope in NSP 3A of FMDV.

  14. Imputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure.

    Science.gov (United States)

    Kabisch, Maria; Hamann, Ute; Lorenzo Bermejo, Justo

    2017-10-17

    Genotypes not directly measured in genetic studies are often imputed to improve statistical power and to increase mapping resolution. The accuracy of standard imputation techniques strongly depends on the similarity of linkage disequilibrium (LD) patterns in the study and reference populations. Here we develop a novel approach for genotype imputation in low-recombination regions that relies on the coalescent and permits to explicitly account for population demographic factors. To test the new method, study and reference haplotypes were simulated and gene trees were inferred under the basic coalescent and also considering population growth and structure. The reference haplotypes that first coalesced with study haplotypes were used as templates for genotype imputation. Computer simulations were complemented with the analysis of real data. Genotype concordance rates were used to compare the accuracies of coalescent-based and standard (IMPUTE2) imputation. Simulations revealed that, in LD-blocks, imputation accuracy relying on the basic coalescent was higher and less variable than with IMPUTE2. Explicit consideration of population growth and structure, even if present, did not practically improve accuracy. The advantage of coalescent-based over standard imputation increased with the minor allele frequency and it decreased with population stratification. Results based on real data indicated that, even in low-recombination regions, further research is needed to incorporate recombination in coalescence inference, in particular for studies with genetically diverse and admixed individuals. To exploit the full potential of coalescent-based methods for the imputation of missing genotypes in genetic studies, further methodological research is needed to reduce computer time, to take into account recombination, and to implement these methods in user-friendly computer programs. Here we provide reproducible code which takes advantage of publicly available software to facilitate

  15. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    KAUST Repository

    Orilall, M. Christopher; Wiesner, Ulrich

    2011-01-01

    to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various

  16. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies.

    Science.gov (United States)

    Wright, Katherine E; Hjerrild, Kathryn A; Bartlett, Jonathan; Douglas, Alexander D; Jin, Jing; Brown, Rebecca E; Illingworth, Joseph J; Ashfield, Rebecca; Clemmensen, Stine B; de Jongh, Willem A; Draper, Simon J; Higgins, Matthew K

    2014-11-20

    Invasion of host erythrocytes is essential to the life cycle of Plasmodium parasites and development of the pathology of malaria. The stages of erythrocyte invasion, including initial contact, apical reorientation, junction formation, and active invagination, are directed by coordinated release of specialized apical organelles and their parasite protein contents. Among these proteins, and central to invasion by all species, are two parasite protein families, the reticulocyte-binding protein homologue (RH) and erythrocyte-binding like proteins, which mediate host-parasite interactions. RH5 from Plasmodium falciparum (PfRH5) is the only member of either family demonstrated to be necessary for erythrocyte invasion in all tested strains, through its interaction with the erythrocyte surface protein basigin (also known as CD147 and EMMPRIN). Antibodies targeting PfRH5 or basigin efficiently block parasite invasion in vitro, making PfRH5 an excellent vaccine candidate. Here we present crystal structures of PfRH5 in complex with basigin and two distinct inhibitory antibodies. PfRH5 adopts a novel fold in which two three-helical bundles come together in a kite-like architecture, presenting binding sites for basigin and inhibitory antibodies at one tip. This provides the first structural insight into erythrocyte binding by the Plasmodium RH protein family and identifies novel inhibitory epitopes to guide design of a new generation of vaccines against the blood-stage parasite.

  17. A novel image block cryptosystem based on a spatiotemporal chaotic system and a chaotic neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Bao Xue-Mei

    2013-01-01

    In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption. (general)

  18. Nanostructured Double Hydrophobic Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Membrane Manufactured Via Phase Inversion Technique

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Peinemann, Klaus-Viktor

    2016-01-01

    In this paper, we demonstrate the formation of nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer membranes via state-of-the-art phase inversion technique. The nanostructured membrane morphologies are tuned by different solvent and block copolymer compositions. The membrane morphology has been investigated using FESEM, AFM and TEM. Morphological investigation shows the formation of both cylindrical and lamellar structures on the top surface of the block copolymer membranes. The PS-b-PMMA having an equal block length (PS160K-b-PMMA160K) exhibits both cylindrical and lamellar structures on the top layer of the asymmetric membrane. All membranes fabricated from PS160K-b-PMMA160K shows an incomplete pore formation in both cylindrical and lamellar morphologies during the phase inversion process. However, PS-b-PMMA (PS135K-b-PMMA19.5K) block copolymer having a short PMMA block allowed us to produce open pore structures with ordered hexagonal cylindrical pores during the phase inversion process. The resulting PS-b-PMMA nanostructured block copolymer membranes have pure water flux from 105-820 l/m2.h.bar and 95% retention of PEG50K

  19. Nanostructured Double Hydrophobic Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Membrane Manufactured Via Phase Inversion Technique

    KAUST Repository

    Karunakaran, Madhavan

    2016-03-11

    In this paper, we demonstrate the formation of nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer membranes via state-of-the-art phase inversion technique. The nanostructured membrane morphologies are tuned by different solvent and block copolymer compositions. The membrane morphology has been investigated using FESEM, AFM and TEM. Morphological investigation shows the formation of both cylindrical and lamellar structures on the top surface of the block copolymer membranes. The PS-b-PMMA having an equal block length (PS160K-b-PMMA160K) exhibits both cylindrical and lamellar structures on the top layer of the asymmetric membrane. All membranes fabricated from PS160K-b-PMMA160K shows an incomplete pore formation in both cylindrical and lamellar morphologies during the phase inversion process. However, PS-b-PMMA (PS135K-b-PMMA19.5K) block copolymer having a short PMMA block allowed us to produce open pore structures with ordered hexagonal cylindrical pores during the phase inversion process. The resulting PS-b-PMMA nanostructured block copolymer membranes have pure water flux from 105-820 l/m2.h.bar and 95% retention of PEG50K

  20. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo; Kwak, Joon Seop, E-mail: jskwak@sunchon.ac.kr

    2016-10-15

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective current path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.

  1. Cipher block based authentication module: A hardware design perspective

    NARCIS (Netherlands)

    Michail, H.E.; Schinianakis, D.; Goutis, C.E.; Kakarountas, A.P.; Selimis, G.

    2011-01-01

    Message Authentication Codes (MACs) are widely used in order to authenticate data packets, which are transmitted thought networks. Typically MACs are implemented using modules like hash functions and in conjunction with encryption algorithms (like Block Ciphers), which are used to encrypt the

  2. An O([Formula: see text]) algorithm for sorting signed genomes by reversals, transpositions, transreversals and block-interchanges.

    Science.gov (United States)

    Yu, Shuzhi; Hao, Fanchang; Leong, Hon Wai

    2016-02-01

    We consider the problem of sorting signed permutations by reversals, transpositions, transreversals, and block-interchanges. The problem arises in the study of species evolution via large-scale genome rearrangement operations. Recently, Hao et al. gave a 2-approximation scheme called genome sorting by bridges (GSB) for solving this problem. Their result extended and unified the results of (i) He and Chen - a 2-approximation algorithm allowing reversals, transpositions, and block-interchanges (by also allowing transversals) and (ii) Hartman and Sharan - a 1.5-approximation algorithm allowing reversals, transpositions, and transversals (by also allowing block-interchanges). The GSB result is based on introduction of three bridge structures in the breakpoint graph, the L-bridge, T-bridge, and X-bridge that models goodreversal, transposition/transreversal, and block-interchange, respectively. However, the paper by Hao et al. focused on proving the 2-approximation GSB scheme and only mention a straightforward [Formula: see text] algorithm. In this paper, we give an [Formula: see text] algorithm for implementing the GSB scheme. The key idea behind our faster GSB algorithm is to represent cycles in the breakpoint graph by their canonical sequences, which greatly simplifies the search for these bridge structures. We also give some comparison results (running time and computed distances) against the original GSB implementation.

  3. Responsive Block Copolymer and Gold Nanoparticle Hybrid Nanotubes.

    Science.gov (United States)

    Chang, Sehoon; Singamaneni, Srikanth; Young, Seth; Tsukruk, Vladimir

    2009-03-01

    We demonstrate the facile fabrication of responsive polymer and metal nanoparticle composite nanotube structures. The nanotubes are comprised of responsive block copolymer, polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), and gold nanoparticles. PS-b-P2VP nanotubes were fabricated using porous alumina template and in situ reduction of the gold nanoparticles in P2VP domains. Owing to the pH sensitive nature of P2VP (anionic polymer with a pKa of 3.8), the nanotubes exhibit a dramatic change in topology in response to the changes in the external pH. Furthermore, the gold nanoparticles in the responsive block exhibit a reversible aggregation, causing a reversible change in optical properties such as absorption.

  4. Improving the performance of AlGaN-based deep-ultraviolet light-emitting diodes using electron blocking layer with a heart-shaped graded Al composition

    Science.gov (United States)

    Kwon, M. R.; Park, T. H.; Lee, T. H.; Lee, B. R.; Kim, T. G.

    2018-04-01

    We propose a design for highly efficient AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using a heart-shaped graded Al composition electron-blocking layer (EBL). This novel structure reduced downward band bending at the interface between the last quantum barrier and the EBL and flattened the electrostatic field in the interlayer between the barriers of the multi-quantum barrier EBL. Consequently, electron leakage was significantly suppressed and hole injection efficiency was found to have improved. The parameter values of simulation were extracted from the experimental data of the reference DUV LEDs. Using the SimuLED, we compared the electrical and optical properties of three structures with different Al compositions in the active region and the EBL. The internal quantum efficiency of the proposed structure was shown to exceed those of the reference DUV LEDs by a factor of 1.9. Additionally, the output power at 20 mA was found to increase by a factor of 2.1.

  5. Protein Modification with Amphiphilic Block Copoly(2-oxazoline)s as a New Platform for Enhanced Cellular Delivery

    KAUST Repository

    Tong, Jing; Luxenhofer, Robert; Yi, Xiang; Jordan, Rainer; Kabanov, Alexander V.

    2010-01-01

    Several homopolymers, random copolymers and block copolymers based on poly(2-oxazoline)s (POx) were synthesized and conjugated to horseradish peroxidase (HRP) using biodegradable and nonbiodegradable linkers. These conjugates were characterized by amino group titration, polyacrylamide gel electrophoresis (PAGE), isoelectric focusing, enzymatic activity assay and conformation analysis. The conjugates contained on average from about one to two polymer chains per enzyme. From 70% to 90% of enzymatic activity was retained in most cases. Circular dichroism (CD) analysis revealed that HRP modification affected the secondary structure of the apoprotein but did not affect the tertiary structure and heme environment. Enhanced cellular uptake was found in the conjugates of two block copolymers using both MDCK cells and Caco-2 cells, but not in the conjugates of random copolymer and homopolymer. Conjugation with a block copolymer of 2-methyl-2-oxazoline and 2-butyl-2-oxazoline led to the highest cellular uptake as compared to other conjugates. Our data indicates that modification with amphiphilic POx has the potential to modulate and enhance cellular delivery of proteins.

  6. Protein Modification with Amphiphilic Block Copoly(2-oxazoline)s as a New Platform for Enhanced Cellular Delivery

    KAUST Repository

    Tong, Jing

    2010-08-02

    Several homopolymers, random copolymers and block copolymers based on poly(2-oxazoline)s (POx) were synthesized and conjugated to horseradish peroxidase (HRP) using biodegradable and nonbiodegradable linkers. These conjugates were characterized by amino group titration, polyacrylamide gel electrophoresis (PAGE), isoelectric focusing, enzymatic activity assay and conformation analysis. The conjugates contained on average from about one to two polymer chains per enzyme. From 70% to 90% of enzymatic activity was retained in most cases. Circular dichroism (CD) analysis revealed that HRP modification affected the secondary structure of the apoprotein but did not affect the tertiary structure and heme environment. Enhanced cellular uptake was found in the conjugates of two block copolymers using both MDCK cells and Caco-2 cells, but not in the conjugates of random copolymer and homopolymer. Conjugation with a block copolymer of 2-methyl-2-oxazoline and 2-butyl-2-oxazoline led to the highest cellular uptake as compared to other conjugates. Our data indicates that modification with amphiphilic POx has the potential to modulate and enhance cellular delivery of proteins.

  7. Investigating self-assembly and metal nanoclusters in aqueous di-block copolymers solutions

    CERN Document Server

    Lo Celso, F; Triolo, R; Triolo, A; Strunz, P; Bronstein, L; Zwanziger, J; Lin, J S

    2002-01-01

    Self-assembling properties of di-block copolymers/ surfactant hybrids in aqueous solution can be exploited to obtain metal nanoparticles stable dispersion. Results will be presented here for polystyrene-block-poly(ethylene oxide) solutions. A SANS structural investigation has been performed over different molecular weights of both hydrophilic and hydrophobic block, by varying temperature and concentration of the copolymer. A SAXS characterization of micellar systems containing Pt nanoparticles is reported. (orig.)

  8. Preparation and self-assembly behavior of polystyrene-block-poly (dimethylaminoethyl methacrylate amphiphilic block copolymer using atom transfer radical polymerization

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available Asymmetric and semi-symmetric amphiphilic diblock copolymers polystyrene-block-poly (dimethylaminoethyl methacrylate (PS-b-PDMAEMA with the same PS block length of 62 repeat units and quite short (3 repeat units or equivalent (47 repeat units length of PDMAEMA have been prepared simply by varying the ratio of the bromine-terminated macroinitiator polystyrene (PS-Br to DMAEMA using atom transfer radical polymerization (ATRP. The chemical structures and compositions of the PS-b-PDMAEMA block copolymers are studied by nuclear magnetic resonance (NMR spectroscopy, gel permeation chromatography (GPC, and elementary analysis (EA. The self-assembly behaviors of copolymers in N,N-dimethyl formamide (DMF with different pH and dioxane/water binary solvent mixture by direct dissolution method (DD, are studied by transmission electron microscopy (TEM, electron diffracting analysis (EDA, and energy-dispersive analysis of X-rays (EDAX techniques. Transmission electron microscopy results suggest that asymmetric block copolymer PS62-b-PDMAEMA3 (the numbers in the form of footnotes represent repeated units of each monomer in the copolymer can form spherical core-shell micelles, large compound reverse micelles (LCRMs, hexagonal/rhombic phases, reverse hexagonal/rhombic phases, vesicles, reverse vesicles and necklace-like reverse micelles, controlled by common or selective solvent and pH, while most of the aggregates of semi-symmetric PS62-b-PDMAEMA47 are simply spherical, such as spherical core-shell micelles and reverse spherical core-shell micelles, besides hexagonal/rhombic phases. All above structures are controlled by three components of the free energy of aggregation: core-chain stretching, interfacial energy and intercoronal chain interaction.

  9. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghoroury, Hussein S.; Yeh, Milton; Chen, J. C., E-mail: jc.chen@ostendo.com; Li, X.; Chuang, Chih-Li [EPI Lab, Ostendo Technologies, Inc., 679 Brea Canyon Rd, Walnut, CA 91789 (United States)

    2016-07-15

    Specially designed intermediate carrier blocking layers (ICBLs) in multi-active regions of III-nitride LEDs were shown to be effective in controlling the carrier injection distribution across the active regions. In principle, the majority of carriers, both holes and electrons, can be guided into targeted quantum wells and recombine to generate light of specific wavelengths at controlled current-densities. Accordingly we proposed and demonstrated a novel monolithic InGaN-based LED to achieve three primary colors of light from one device at selected current densities. This LED structure, which has three different sets of quantum wells separated with ICBLs for three primary red-green-blue (RGB) colors, was grown by metal-organic chemical vapor deposition (MOCVD). Results show that this LED can emit light ranging from 460 to 650 nm to cover the entire visible spectrum. The emission wavelength starts at 650 nm and then decreases to 460 nm or lower as the injection current increases. In addition to three primary colors, many other colors can be obtained by color mixing techniques. To the best of our knowledge, this is the first demonstration of monolithic full-color LED grown by a simple growth technique without using re-growth process.

  10. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers

    International Nuclear Information System (INIS)

    El-Ghoroury, Hussein S.; Yeh, Milton; Chen, J. C.; Li, X.; Chuang, Chih-Li

    2016-01-01

    Specially designed intermediate carrier blocking layers (ICBLs) in multi-active regions of III-nitride LEDs were shown to be effective in controlling the carrier injection distribution across the active regions. In principle, the majority of carriers, both holes and electrons, can be guided into targeted quantum wells and recombine to generate light of specific wavelengths at controlled current-densities. Accordingly we proposed and demonstrated a novel monolithic InGaN-based LED to achieve three primary colors of light from one device at selected current densities. This LED structure, which has three different sets of quantum wells separated with ICBLs for three primary red-green-blue (RGB) colors, was grown by metal-organic chemical vapor deposition (MOCVD). Results show that this LED can emit light ranging from 460 to 650 nm to cover the entire visible spectrum. The emission wavelength starts at 650 nm and then decreases to 460 nm or lower as the injection current increases. In addition to three primary colors, many other colors can be obtained by color mixing techniques. To the best of our knowledge, this is the first demonstration of monolithic full-color LED grown by a simple growth technique without using re-growth process.

  11. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    KAUST Repository

    Orilall, M. Christopher

    2011-01-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices. © 2011 The Royal Society of Chemistry.

  12. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells.

    Science.gov (United States)

    Orilall, M Christopher; Wiesner, Ulrich

    2011-02-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

  13. Experimental demonstration of an OFDM based visible light communication system using inter-block precoding and superimposed pilots

    Science.gov (United States)

    Zhang, Junwei; Hong, Xuezhi; Liu, Jie; Guo, Changjian

    2018-04-01

    In this work, we investigate and experimentally demonstrate an orthogonal frequency division multiplexing (OFDM) based high speed wavelength-division multiplexed (WDM) visible light communication (VLC) system using an inter-block data precoding and superimposed pilots (DP-SP) based channel estimation (CE) scheme. The residual signal-to-pilot interference (SPI) can be eliminated by using inter-block data precoding, resulting in a significant improvement in estimated accuracy and the overall system performance compared with uncoded SP based CE scheme. We also study the power allocation/overhead problem of the training for DP-SP, uncoded SP and conventional preamble based CE schemes, from which we obtain the optimum signal-to-pilot power ratio (SPR)/overhead percentage for all above cases. Intra-symbol frequency-domain averaging (ISFA) is also adopted to further enhance the accuracy of CE. By using the DP-SP based CE scheme, aggregate data rates of 1.87-Gbit/s and 1.57-Gbit/s are experimentally demonstrated over 0.8-m and 2-m indoor free space transmission, respectively, using a commercially available red, green and blue (RGB) light emitting diode (LED) with WDM. Experimental results show that the DP-SP based CE scheme is comparable to the conventional preamble based CE scheme in term of received Q factor and data rate while entailing a much smaller overhead-size.

  14. Structure and Properties of Nanocomposites based on PTT-block-PTMO Copolymer and Graphene Oxide prepared by in Situ Polymerization

    OpenAIRE

    Paszkiewicz, Sandra; Szymczyk, Anna; Špitalský, Zdenko; Mosnáček, Jaroslav; Kwiatkowski, Konrad; Rosłaniec, Zbigniew

    2014-01-01

    Poly(trimethylene terephthalate-block-tetramethylene oxide) (PTT-PTMO) copolymer/graphene oxide nanocomposites were prepared by in situ polymerization. From the SEM and TEM images of PTT-PTMO/GO nanocomposite, it can be seen that GO sheets are clearly well-dispersed in the PTT-PTMO matrix. TEM images also showed that graphene was well exfoliated into individual sheets, suggesting that in situ polymerization is a highly efficient method for preparing nanocomposites. The influence of GO on the ...

  15. Reduction of Under-Determined Linear Systems by Sparce Block Matrix Technique

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Poulsen, Peter Noe; Damkilde, Lars

    1996-01-01

    numerical stability of the aforementioned reduction. Moreover the coefficient matrix for the equilibrium equations is typically very sparse. The objective is to deal efficiently with the full pivoting reduction of sparse rectangular matrices using a dynamic storage scheme based on the block matrix concept.......Under-determined linear equation systems occur in different engineering applications. In structural engineering they typically appear when applying the force method. As an example one could mention limit load analysis based on The Lower Bound Theorem. In this application there is a set of under......-determined equilibrium equation restrictions in an LP-problem. A significant reduction of computer time spent on solving the LP-problem is achieved if the equilib rium equations are reduced before going into the optimization procedure. Experience has shown that for some structures one must apply full pivoting to ensure...

  16. A DNA-Encoded Library of Chemical Compounds Based on Common Scaffolding Structures Reveals the Impact of Ligand Geometry on Protein Recognition.

    Science.gov (United States)

    Favalli, Nicholas; Biendl, Stefan; Hartmann, Marco; Piazzi, Jacopo; Sladojevich, Filippo; Gräslund, Susanne; Brown, Peter J; Näreoja, Katja; Schüler, Herwig; Scheuermann, Jörg; Franzini, Raphael; Neri, Dario

    2018-06-01

    A DNA-encoded chemical library (DECL) with 1.2 million compounds was synthesized by combinatorial reaction of seven central scaffolds with two sets of 343×492 building blocks. Library screening by affinity capture revealed that for some target proteins, the chemical nature of building blocks dominated the selection results, whereas for other proteins, the central scaffold also crucially contributed to ligand affinity. Molecules based on a 3,5-bis(aminomethyl)benzoic acid core structure were found to bind human serum albumin with a K d value of 6 nm, while compounds with the same substituents on an equidistant but flexible l-lysine scaffold showed 140-fold lower affinity. A 18 nm tankyrase-1 binder featured l-lysine as linking moiety, while molecules based on d-Lysine or (2S,4S)-amino-l-proline showed no detectable binding to the target. This work suggests that central scaffolds which predispose the orientation of chemical building blocks toward the protein target may enhance the screening productivity of encoded libraries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of Single Nucleotide Polymorphism Marker Density on Haplotype Block Partition

    Directory of Open Access Journals (Sweden)

    Sun Ah Kim

    2016-12-01

    Full Text Available Many researchers have found that one of the most important characteristics of the structure of linkage disequilibrium is that the human genome can be divided into non-overlapping block partitions in which only a small number of haplotypes are observed. The location and distribution of haplotype blocks can be seen as a population property influenced by population genetic events such as selection, mutation, recombination and population structure. In this study, we investigate the effects of the density of markers relative to the full set of all polymorphisms in the region on the results of haplotype partitioning for five popular haplotype block partition methods: three methods in Haploview (confidence interval, four gamete test, and solid spine, MIG++ implemented in PLINK 1.9 and S-MIG++. We used several experimental datasets obtained by sampling subsets of single nucleotide polymorphism (SNP markers of chromosome 22 region in the 1000 Genomes Project data and also the HapMap phase 3 data to compare the results of haplotype block partitions by five methods. With decreasing sampling ratio down to 20% of the original SNP markers, the total number of haplotype blocks decreases and the length of haplotype blocks increases for all algorithms. When we examined the marker-independence of the haplotype block locations constructed from the datasets of different density, the results using below 50% of the entire SNP markers were very different from the results using the entire SNP markers. We conclude that the haplotype block construction results should be used and interpreted carefully depending on the selection of markers and the purpose of the study.

  18. Control of systems with I/O delay via reduction to a one-block problem

    NARCIS (Netherlands)

    Meinsma, Gjerrit; Mirkin, Leonid; Zhong, Qing-Chang

    2002-01-01

    In this paper, the standard (four-block) H/sup /spl infin// control problem for systems with a single delay in the feedback loop is studied. A simple procedure of the reduction of the problem to an equivalent one-block problem having particularly simple structure is proposed. The one-block problem

  19. Micro- and nanophase separations in hierarchical self-assembly of strongly amphiphilic block copolymer-based ionic supramolecules

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Zhu, Kaizheng; Nyström, Bo

    2013-01-01

    block), a class of ionic supramolecules are successfully synthesized whose molecular architecture consists of a poly(styrene) PS block (Linear block) covalently connected to a strongly amphiphilic comb-like block (AmphComb block), i.e. Linear-b-AmphComb. In the melt state, these ionic supramolecules can.......20 (SLL/C and SBCC/C) and ∼0.28 (C/L). Finally, the specific influences of the strongly amphiphilic nature of the AmphComb blocks on the observed morphological and hierarchical behaviours of our system are discussed. For reference, stoichiometric strongly amphiphilic comb-like (AmphComb) ionic...

  20. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    Science.gov (United States)

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  1. The rapid cooling of the Nansha Block, southern South China Sea

    Science.gov (United States)

    Dong, M.; Zhang, J.

    2017-12-01

    Since the Late Cretaceous and Cenozoic, the Nansha Block has experienced a series of tectonic process and separated from South China continent to the south. As an exotic micro-continental, Nansha Block has an obvious different lithospheric rheology property from surrounding region. The lithosphere and mantle dynamic and rheology are mainly controlled by temperature. Therefore, we calculated the 3D temperature field and geothermal gradient of Nansha Block's upper mantle by using the S-wave velocity structure from surface wave tomography. The results show that the depth where temperature of 1300° as the lithospheric thickness is in close correspondence with the top of the seismic low velocity zone. The temperature of the upper mantle in Nansha Block is significantly lower than that of surrounding. It implies that Nansha Block experienced a rapid cooling event. We propose that the rapid cooling can be partly attributed to three reasons: 1) Nansha Block is a relatively stable block with no interior geothermal activity. 2) No external heat source to provide energy. 3) Abnormal mantle convection under Nansha Block accelerated the cooling.

  2. Structure to function: Spider silk and human collagen

    Science.gov (United States)

    Rabotyagova, Olena S.

    Nature has the ability to assemble a variety of simple molecules into complex functional structures with diverse properties. Collagens, silks and muscles fibers are some examples of fibrous proteins with self-assembling properties. One of the great challenges facing Science is to mimic these designs in Nature to find a way to construct molecules that are capable of organizing into functional supra-structures by self-assembly. In order to do so, a construction kit consisting of molecular building blocks along with a complete understanding on how to form functional materials is required. In this current research, the focus is on spider silk and collagen as fibrous protein-based biopolymers that can shed light on how to generate nanostructures through the complex process of self-assembly. Spider silk in fiber form offers a unique combination of high elasticity, toughness, and mechanical strength, along with biological compatibility and biodegrability. Spider silk is an example of a natural block copolymer, in which hydrophobic and hydrophilic blocks are linked together generating polymers that organize into functional materials with extraordinary properties. Since silks resemble synthetic block copolymer systems, we adopted the principles of block copolymer design from the synthetic polymer literature to build block copolymers based on spider silk sequences. Moreover, we consider spider silk to be an important model with which to study the relationships between structure and properties in our system. Thus, the first part of this work was dedicated to a novel family of spider silk block copolymers, where we generated a new family of functional spider silk-like block copolymers through recombinant DNA technology. To provide fundamental insight into relationships between peptide primary sequence, block composition, and block length and observed morphological and structural features, we used these bioengineered spider silk block copolymers to study secondary structure

  3. Zero-block mode decision algorithm for H.264/AVC.

    Science.gov (United States)

    Lee, Yu-Ming; Lin, Yinyi

    2009-03-01

    In the previous paper , we proposed a zero-block intermode decision algorithm for H.264 video coding based upon the number of zero-blocks of 4 x 4 DCT coefficients between the current macroblock and the co-located macroblock. The proposed algorithm can achieve significant improvement in computation, but the computation performance is limited for high bit-rate coding. To improve computation efficiency, in this paper, we suggest an enhanced zero-block decision algorithm, which uses an early zero-block detection method to compute the number of zero-blocks instead of direct DCT and quantization (DCT/Q) calculation and incorporates two adequate decision methods into semi-stationary and nonstationary regions of a video sequence. In addition, the zero-block decision algorithm is also applied to the intramode prediction in the P frame. The enhanced zero-block decision algorithm brings out a reduction of average 27% of total encoding time compared to the zero-block decision algorithm.

  4. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  5. Preparation and development of block copolypeptide vesicles and hydrogels for biological and medical applications

    OpenAIRE

    Deming, TJ

    2014-01-01

    There have been many recent advances in the controlled polymerization of α-amino acid-N-carboxyanhydride (NCA) monomers into well-defined block copolypeptides. Transition metal initiating systems allow block copolypeptide synthesis with excellent control over number and lengths of block segments, chain length distribution, and chain-end functionality. Using this and other methods, block copolypeptides of controlled dimensions have been prepared and their self-assembly into organized structure...

  6. The role of frictional contact of constituent blocks on the stability of masonry domes.

    Science.gov (United States)

    Beatini, Valentina; Royer-Carfagni, Gianni; Tasora, Alessandro

    2018-01-01

    The observation of old construction works confirms that masonry domes can withstand tensile hoop stresses, at least up to a certain level. Here, such tensile resistance, rather than a priori assumed as a property of the bulk material, is attributed to the contact forces that are developed at the interfaces between interlocked blocks under normal pressure, specified by Coulomb's friction law. According to this rationale, the aspect ratio of the blocks, as well as the bond pattern, becomes of fundamental importance. To investigate the complex assembly of blocks, supposed rigid, we present a non-smooth contact dynamic analysis, implemented in a custom software based on the Project Chrono C++ framework and complemented with parametric-design interfaces for pre- and post-processing complex geometries. Through this advanced tool, we investigate the role of frictional forces resisting hoop stresses in the stability of domes, either circular or oval, under static and dynamic loading, focusing, in particular, on the structural role played by the underlying drum and the surmounting tiburium .

  7. Investigation of Kevlar fabric based materials for use with inflatable structures

    Science.gov (United States)

    Niccum, R. J.; Munson, J. B.

    1974-01-01

    Design, manufacture and testing of laminated and coated composite materials incorporating a structural matrix of Kevlar are reported in detail. The practicality of using Kevlar in aerostat materials is demonstrated and data are provided on practical weaves, lamination and coating particulars, rigidity, strength, weight, elastic coefficients, abrasion resistance, crease effects, peel strength, blocking tendencies, helium permeability, and fabrication techniques. Properties of the Kevlar based materials are compared with conventional, Dacron reinforced counterparts. A comprehensive test and qualification program is discussed and quantitative biaxial tensile and shear test data are provided. The investigation shows that single ply laminates of Kevlar and plastic films offer significant strength to weight improvements, are less permeable than two ply coated materials, but have a lower flex life.

  8. SNUPPS power block engineering

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C A [Bechtel Power Corp., San Francisco, Calif. (USA)

    1975-11-01

    The Standard Power Block is based on a modular concept and consists of the following: turbine building, auxiliary building, fuel building, control building, radwaste building, diesel generators building, and outside storage tanks and transformers. Each power block unit includes a Westinghouse pressurized water reactor and has a thermal power rating of 3425 MW(t). The corresponding General Electric turbine generator net electrical output is 1188 MW(e). This standardization approach results in not only a reduction in the costs of engineering, licensing, procurement, and project planning, but should also result in additional savings by the application of experience gained in the construction of the first unit to the following units and early input of construction data to design.

  9. The blocking reagent optimization for the magnetoelastic biosensor

    Science.gov (United States)

    Hu, Jiajia; Chai, Yating; Horikawa, Shin; Wikle, Howard C.; Wang, Feng'en; Du, Songtao; Chin, Bryan A.; Hu, Jing

    2015-06-01

    The wireless phage-based magnetoelastic (ME) biosensor has proven to be promising for real-time detection of pathogenic bacteria on fresh produces. The ME biosensor consists of a freestanding ME resonator as the signal transducer and filamentous phage as the biomolecular-recognition element, which can specifically bind to a pathogen of interest. Due to the Joule magnetostriction effect, the biosensors can be placed into mechanical resonance when subjected to a time-varying magnetic field alternating at the sensor's resonant frequency. Upon the attachment of the target pathogen, the mass of the biosensor increases, thereby decreasing its resonant frequency. This paper presents an investigation of blocking reagents immobilization for detecting Salmonella Typhimurium on fresh food surfaces. Three different blocking reagents (BSA, SuperBlock blocking buffer, and blocker BLOTTO) were used and compared. The optical microscope was used for bacterial cells binding observation. Student t-test was used to statistically analysis the experiment results. The results shows that SuperBlock blocking buffer and blocker BLOTTO have much better blocking performance than usually used BSA.

  10. Secure Block Ciphers - Cryptanalysis and Design

    DEFF Research Database (Denmark)

    Tiessen, Tyge

    be applied to the AES can be transferred to this block cipher, albeit with a higher attack complexity. The second publication introduces a new block cipher family which is targeted for new applications in fully homomorphic encryption and multi-party computation. We demonstrate the soundness of the design...... is encrypted using so-called symmetric ciphers. The security of our digital infrastructure thus rests at its very base on their security. The central topic of this thesis is the security of block ciphers – the most prominent form of symmetric ciphers. This thesis is separated in two parts. The first part...... is an introduction to block ciphers and their cryptanalysis, the second part contains publications written and published during the PhD studies. The first publication evaluates the security of a modification of the AES in which the choice of S-box is unknown to the attacker. We find that some of the attacks that can...

  11. Designation and influence of household increasing block electricity tariffs in China

    International Nuclear Information System (INIS)

    Lin Boqiang; Jiang Zhujun

    2012-01-01

    Electricity is the guarantee of normal life, and the electricity price is widely concerned. As a developing country in the transition stage, abundant policy implications are included in the electricity price in China, thus, whether to adjust the resident electricity price is a dilemma for the government. However, the current single tariff system cannot cope with the complex social and environmental problems. A new price mechanism is indeed needed. This paper tries to design an increasing block tariffs system with the consideration of residential income and electricity consumption. The result indicates that the increasing block tariffs system with four-tier structure is more reasonable for China. Although the increasing block tariffs will result in the increase of electricity price, it is still acceptable and affordable. The increasing block tariffs will greatly improve the equity and efficiency, and promote the electricity saving and emissions reduction. Moreover, the power companies will increase tariffs revenue, which would use to the transmission networks investment in poor area. In order to the offset the limitations of the increasing block tariffs, the government should adopt some complementary measures. - Highlights: ► We design an increasing block tariffs for residential electricity consumption with four-tier structure. ► Both the equity and efficiency will be greatly improved. ► Electricity demand and CO 2 emissions will reduce by 26.68 billion kWh and 14.11 million tons. ► Some measures should be taken as the complement to make the increasing block tariffs mechanism more efficient.

  12. Coarse mesh and one-cell block inversion based diffusion synthetic acceleration

    Science.gov (United States)

    Kim, Kang-Seog

    DSA (Diffusion Synthetic Acceleration) has been developed to accelerate the SN transport iteration. We have developed solution techniques for the diffusion equations of FLBLD (Fully Lumped Bilinear Discontinuous), SCB (Simple Comer Balance) and UCB (Upstream Corner Balance) modified 4-step DSA in x-y geometry. Our first multi-level method includes a block Gauss-Seidel iteration for the discontinuous diffusion equation, uses the continuous diffusion equation derived from the asymptotic analysis, and avoids void cell calculation. We implemented this multi-level procedure and performed model problem calculations. The results showed that the FLBLD, SCB and UCB modified 4-step DSA schemes with this multi-level technique are unconditionally stable and rapidly convergent. We suggested a simplified multi-level technique for FLBLD, SCB and UCB modified 4-step DSA. This new procedure does not include iterations on the diffusion calculation or the residual calculation. Fourier analysis results showed that this new procedure was as rapidly convergent as conventional modified 4-step DSA. We developed new DSA procedures coupled with 1-CI (Cell Block Inversion) transport which can be easily parallelized. We showed that 1-CI based DSA schemes preceded by SI (Source Iteration) are efficient and rapidly convergent for LD (Linear Discontinuous) and LLD (Lumped Linear Discontinuous) in slab geometry and for BLD (Bilinear Discontinuous) and FLBLD in x-y geometry. For 1-CI based DSA without SI in slab geometry, the results showed that this procedure is very efficient and effective for all cases. We also showed that 1-CI based DSA in x-y geometry was not effective for thin mesh spacings, but is effective and rapidly convergent for intermediate and thick mesh spacings. We demonstrated that the diffusion equation discretized on a coarse mesh could be employed to accelerate the transport equation. Our results showed that coarse mesh DSA is unconditionally stable and is as rapidly convergent

  13. Fast electromagnetic characterization of integrated circuit passive isolation structures based on interference blocking

    NARCIS (Netherlands)

    Grau Novellas, M.; Serra, R.; Rose, Matthias

    2017-01-01

    An early characterization of integrated circuit passive isolation structures is crucial to predict their performance and effectiveness in minimizing substrate coupling. In this paper, an electromagnetic (EM) modeling methodology is proposed, which can be applied to different types of isolation

  14. Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers.

    Science.gov (United States)

    van Genabeek, Bas; Lamers, Brigitte A G; de Waal, Bas F M; van Son, Martin H C; Palmans, Anja R A; Meijer, E W

    2017-10-25

    Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block.

  15. Post-Metamorphic Thermal Anomaly across the Nacimiento Block, Central California: a Hydrothermal Overprint?

    Science.gov (United States)

    Lacroix, B.; Hughes, J.; Lahfid, A.; Delchini, S.

    2017-12-01

    The thermal history of the Nacimiento block located within the Franciscan Complex (California, USA) has been previously proposed based on both vitrinite reflectance (Rm) and illite cristallinity methods (Underwood et al., 1995). These authors suggest that the Nacimiento block is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by post-metamorphic hydrothermal activity linked to the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both thermal anomaly and deposit seem spatially correlated, their relationship is still poorly constrained. Detailed geological and structural mapping within the Los Burros Mining District (LBMD) coupled with a thermal study was conducted to better understand processes responsible for the anomalous temperatures recorded near the deposit. The regional maximum temperature reached by metasediments from the Nacimiento block have been first investigated using the Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through careful fluid-inclusion and stable isotopes (O and C) studies on the deposit, the temperature and the potential source of the fluid responsible for the Los Burros Au-deposit emplacement were investigated. RSCM technique confirms the presence of a thermal anomaly in the range 260-320ºC near LBMD. However, our structural and petrographic results suggest that the thermal anomaly is not correlated to a post-metamorphic hydrothermal overprint but rather to a late, transpressive deformation uplifting buried metamorphic rocks.

  16. Nonlinear analysis techniques of block masonry walls in nuclear power plants

    International Nuclear Information System (INIS)

    Hamid, A.A.; Harris, H.G.

    1986-01-01

    Concrete masonry walls have been used extensively in nuclear power plants as non-load bearing partitions serving as pipe supports, fire walls, radiation shielding barriers, and similar heavy construction separations. When subjected to earthquake loads, these walls should maintain their structural integrity. However, some of the walls do not meet design requirements based on working stress allowables. Consequently, utilities have used non-linear analysis techniques, such as the arching theory and the energy balance technique, to qualify such walls. This paper presents a critical review of the applicability of non-linear analysis techniques for both unreinforced and reinforced block masonry walls under seismic loading. These techniques are critically assessed in light of the performance of walls from limited available test data. It is concluded that additional test data are needed to justify the use of nonlinear analysis techniques to qualify block walls in nuclear power plants. (orig.)

  17. Photocatalytic pavement blocks. Air purification by pavement blocks. Final results of the research at BRRC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The use of materials can influence to a large extent the environmental impact of traffic and of road infrastructure. Especially in urban areas, where the risk on smog formation during hot summer days is high, the use of photocatalytic pavement blocks can reduce the air pollution significantly. A project on environmental friendly concrete pavement blocks is conducted at the Belgian Road Research Centre. The use of photocatalytic material in the surface of pavement blocks to obtain air purifying materials is investigated. In contact with light, TiO2 as photocatalyst, is able to reduce the NO and NO2 content in the air, caused by the exhaust of traffic. The efficiency is tested on pavement blocks, but the technique can as well be applied on other road elements (e.g. noise reducing walls, linear elements) or as a coating on new materials or existing structures. At the previous TRA conference in Gotenborgh, Sweden, the principle of photocatalysis was presented. In this paper, emphasis will be put on the final results of the 4-year project obtained in laboratory as well as on site at the Leien of Antwerp (10,000 m{sup 2}). The results indicate a durable efficiency towards NOx reduction, which is in favour for the diminishing of the risk on ozone formation. However, the precise translation from the laboratory towards the site is still in question. The results obtained during the project are discussed in this paper.

  18. Photocatalytic pavement blocks. Air purification by pavement blocks. Final results of the research at BRRC

    International Nuclear Information System (INIS)

    2009-01-01

    The use of materials can influence to a large extent the environmental impact of traffic and of road infrastructure. Especially in urban areas, where the risk on smog formation during hot summer days is high, the use of photocatalytic pavement blocks can reduce the air pollution significantly. A project on environmental friendly concrete pavement blocks is conducted at the Belgian Road Research Centre. The use of photocatalytic material in the surface of pavement blocks to obtain air purifying materials is investigated. In contact with light, TiO2 as photocatalyst, is able to reduce the NO and NO2 content in the air, caused by the exhaust of traffic. The efficiency is tested on pavement blocks, but the technique can as well be applied on other road elements (e.g. noise reducing walls, linear elements) or as a coating on new materials or existing structures. At the previous TRA conference in Gotenborgh, Sweden, the principle of photocatalysis was presented. In this paper, emphasis will be put on the final results of the 4-year project obtained in laboratory as well as on site at the Leien of Antwerp (10,000 m 2 ). The results indicate a durable efficiency towards NOx reduction, which is in favour for the diminishing of the risk on ozone formation. However, the precise translation from the laboratory towards the site is still in question. The results obtained during the project are discussed in this paper

  19. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    Directory of Open Access Journals (Sweden)

    Takehiro Minamoto

    Full Text Available Different people make different responses when they face a frustrating situation: some punish others (extrapunitive, while others punish themselves (intropunitive. Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9 showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9 showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  20. A global perspective on atmospheric blocking using GPS radio occultation – one decade of observations

    Directory of Open Access Journals (Sweden)

    L. Brunner

    2017-12-01

    Full Text Available Atmospheric blocking represents a weather pattern where a stationary high-pressure system weakens or reverses the climatological westerly flow at mid-latitudes for up to several weeks. It is closely connected to strong anomalies in key atmospheric variables such as geopotential height, temperature, and humidity. Here we provide, for the first time, a comprehensive, global perspective on atmospheric blocking and related impacts by using an observation-based data set from Global Positioning System (GPS radio occultation (RO from 2006 to 2016. The main blocking regions in both hemispheres and seasonal variations are found to be represented well in RO data. The effect of blocking on vertically resolved temperature and humidity anomalies in the troposphere and lower stratosphere is investigated for blocking regions in the Northern and Southern hemispheres, respectively. We find a statistically significant correlation of blocking with positive temperature anomalies, exceeding 3 K in the troposphere, and a reversal above the tropopause with negative temperature anomalies below −3 K in the lower stratosphere. Specific humidity is positively correlated with temperature throughout the troposphere with larger anomalies revealed in the Southern Hemisphere. At the eastern and equatorward side of the investigated blocking regions, a band of tropospheric cold anomalies reveals advection of cold air by anticyclonic motion around blocking highs, which is less distinct in the Southern Hemisphere due to stronger zonal flow. We find GPS RO to be a promising new data set for blocking research that gives insight into the vertical atmospheric structure, especially in light of the expected increase in data coverage that future missions will provide.