WorldWideScience

Sample records for blast loads

  1. 30 CFR 56.6306 - Loading, blasting, and security.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Loading, blasting, and security. 56.6306... § 56.6306 Loading, blasting, and security. (a) When explosive materials or initiating systems are... permitted within the blast site shall be those activities directly related to the blasting operation and...

  2. Effectiveness of eye armor during blast loading.

    Science.gov (United States)

    Bailoor, Shantanu; Bhardwaj, Rajneesh; Nguyen, Thao D

    2015-11-01

    Ocular trauma is one of the most common types of combat injuries resulting from the interaction of military personnel with improvised explosive devices. Ocular blast injury mechanisms are complex, and trauma may occur through various injury mechanisms. However, primary blast injuries (PBI) are an important cause of ocular trauma that may go unnoticed and result in significant damage to internal ocular tissues and visual impairment. Further, the effectiveness of commonly employed eye armor, designed for ballistic and laser protection, in lessening the severity of adverse blast overpressures (BOP) is unknown. In this paper, we employed a three-dimensional (3D) fluid-structure interaction computational model for assessing effectiveness of the eye armor during blast loading on human eyes and validated results against free field blast measurements by Bentz and Grimm (2013). Numerical simulations show that the blast waves focused on the ocular region because of reflections from surrounding facial features and resulted in considerable increase in BOP. We evaluated the effectiveness of spectacles and goggles in mitigating the pressure loading using the computational model. Our results corroborate experimental measurements showing that the goggles were more effective than spectacles in mitigating BOP loading on the eye. Numerical results confirmed that the goggles significantly reduced blast wave penetration in the space between the armor and the eyes and provided larger clearance space for blast wave expansion after penetration than the spectacles. The spectacles as well as the goggles were more effective in reducing reflected BOP at higher charge mass because of the larger decrease in dynamic pressures after the impact. The goggles provided greater benefit of reducing the peak pressure than the spectacles for lower charge mass. However, the goggles resulted in moderate, sustained elevated pressure loading on the eye, that became 50-100% larger than the pressure loading

  3. 30 CFR 57.6306 - Loading, blasting, and security.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Loading, blasting, and security. 57.6306... Transportation-Surface and Underground § 57.6306 Loading, blasting, and security. (a) When explosive materials or... blasting operation and the activities of surveying, stemming, sampling of geology, and reopening of...

  4. Structural Analysis Of Offshore Structures Exposed To Blast Loads

    DEFF Research Database (Denmark)

    Hansen, Hans Jakup; Thygesen, Ulf; Kristensen, Anders;

    2002-01-01

    Numerical methods for simulations of blast loads and resulting structural response are investigated and compared to results obtained from tests. The CFD code EXSIM is used for the simulation of the blast load. This code provides a load profile wich is entered in the FEM analysis model....

  5. Numerical Calculation of Concrete Slab Response to Blast Loading

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiaoqing; HAO Hong; KUZNETSOV Valerian A; WASCHL John

    2006-01-01

    In the present paper,a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading.The interaction between the blast wave and the concrete slab is considered in 3D simulation.In the first stage,the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab,then the results obtained from 2D calculation are remapped to a 3D model.The calculated blast load is compared with that obtained from TM5-1300.Numerical results of the concrete slab response are compared with the explosive test carried out in the Weapons System Division,Defence Science and Technology Organisation,Department of Defence,Australia.

  6. Hybrid S2/Carbon Epoxy Composite Armours Under Blast Loads

    Science.gov (United States)

    Dolce, F.; Meo, Michele; Wright, A.; French, M.; Bernabei, M.

    2012-06-01

    Civil and military structures, such as helicopters, aircrafts, naval ships, tanks or buildings are susceptible to blast loads as terroristic attacks increases, therefore there is the need to design blast resistant structures. During an explosion the peak pressure produced by shock wave is much greater than the static collapse pressure. Metallic structures usually undergo large plastic deformations absorbing blast energy before reaching equilibrium. Due to their high specific properties, fibre-reinforced polymers are being considered for energy absorption applications in blast resistant armours. A deep insight into the relationship between explosion loads, composite architecture and deformation/fracture behaviour will offer the possibility to design structures with significantly enhanced energy absorption and blast resistance performance. This study presents the results of a numerical investigation aimed at understanding the performance of a hybrid composite (glass/carbon fibre) plate subjected to blast loads using commercial LS-DYNA software. In particular, the paper deals with numerical 3D simulations of damages caused by air blast waves generated by C4 charges on two fully clamped rectangular plates made of steel and hybrid (S2/Carbon) composite, respectively. A Multi Materials Arbitrary Lagrangian Eulerian (MMALE) formulation was used to simulate the shock phenomenon. For the steel plates, the Johnson-Cook material model was employed. For the composite plates both in-plane and out-of-plane failure criteria were employed. In particular, a contact tiebreak formulation with a mixed mode failure criteria was employed to simulate delamination failure. As for the steel plates the results showed that excellent correlation with the experimental data for the two blast load conditions in terms of dynamic and residual deflection for two different C4 charges. For the composite plates the numerical results showed that, as expected, a wider delamination damage was observed

  7. Analysis of the blasting effect on the electric shove loading efficiency of the open pit

    Institute of Scientific and Technical Information of China (English)

    FU Tian-guang; SUN Ying

    2008-01-01

    The connection between blasting cost and comprehensive cost is the main concern. Some blasting effect factors (such as unit explosive consumption, uniformity of blockness, shape and porosity of blasting heap), which had an influence on electric shove loading efficiency, were analyzed. In the end a project to properly increase in blasting cost to decrease the comprehensive cost was put forward. At the same time, the hole-by-hole blasting is effective technology to improve blasting effect.

  8. Structural concrete elements subjected to air blast loading

    OpenAIRE

    Magnusson, Johan

    2007-01-01

    In the design of structures to resist the effects of air blast loading or other severe dynamic loads it is vital to have large energy absorbing capabilities, and structural elements with large plastic deformation capacities are therefore desirable. Structures need to be designed for ductile response in order to prevent partial or total collapse due to locally failed elements. The research in this thesis considers experimental and theoretical studies on concrete beams of varying concrete stren...

  9. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Loading of explosives or blasting agents. 1926.905 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.905 Loading of explosives or blasting agents. (a) Procedures that permit safe and...

  10. Vehicle Hull Shape Optimization for Minimum Weight Under Blast Loading

    Science.gov (United States)

    2013-03-01

    Tovar (1)**   Matthew  P.  Castanier(4),  Madanmohan  V...MINIMUN WEIGHT UNDER BLAST LOADING 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) J Israel; H Tan; J Goetz; A Tovar ...past  by  Goetz  and   Tovar  to  develop  two-­‐material  topologies  for  blast  mitigation  [1]  ,  but  

  11. Numerical Analysis of Dynamic Behavior of RC Slabs Under Blast Loading

    Institute of Scientific and Technical Information of China (English)

    DU Hao; LI Zhongxian

    2009-01-01

    In Order to reduce economic and life losses due to terrorism or accidental explosion threats,reinforced concrete(RC)slabs of buildings need to be designed or retrofitted to resist blast loading.In this paper the dynamic behavior Of RC slabs under blast loading and its influencing factors are studied.The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software.Both the strain rate effect and the damage accumulation are taken into account in the material model.The dynamic responses of the RC slab subiected to blast loading are analyzed,and the influence of concrete strength,thickness and reinforcement ratio on the behavior of the RC slab under blast loading iS numerically investigated.Based on the numerical results.some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading.

  12. Mitigation of blast loadings on structures by an anti-blast plastic water wall

    Institute of Scientific and Technical Information of China (English)

    张力; 陈力; 方秦; 张亚栋

    2016-01-01

    Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. The maximum reduction of peak reflected overpressure reaches up to 94.53%, as well as 36.3% of the minimum peak reflected overpressure reduction in the scaled distance ranging from 1.71 m/kg1/3 to 3.42 m/kg1/3. Parametric studies were also carried out. The effects of the scaled gauge height, water/charge scaled distance (the distance between the explosive charge and the water wall), water wall scaled height and water/structure scaled distance (the distance between the water wall and the structure) were systematically investigated and compared with the usual rigid anti-blast wall. It is concluded that these parameters affect the mitigation effects of plastic water wall on blast loadings significantly, which is basically consistent to the trend of usual rigid anti-blast wall. Some formulae are also derived based on the numerical and test results, providing a simple but reliable prediction model to evaluate the peak overpressure of mitigated blast loadings on the structures.

  13. Behaviour of plated structures subjected to blast loading

    Science.gov (United States)

    Aune, Vegard; Børvik, Tore; Langseth, Magnus

    2015-09-01

    An experimental investigation using a new shock tube facility to study blast-load effects on thin aluminium plates is presented. The shock tube is designed to expose materials and structures to extreme loading conditions, such as accidental explosions or terrorist attacks. The intensity of the loading in the present study was determined by the initial conditions of the compressed gas, i.e. volume and pressure, and the resulting loading on the target plate was compared to experimental data from explosive detonations found in the literature. The square plates were manufactured from a low-strength aluminium alloy and had an exposed area of 0.3 × 0.3 m2. Piezoelectric pressure sensors were used for pressure recordings and synchronized with two high-speed cameras operating at a frame rate of 21,000 fps in a stereoscopic setup to capture the dynamic response using a three-dimensional digital image correlation (3D-DIC) technique. The experiment showed that the shock tube is capable of recreating a loading similar to that of an unconfined far-field airblast, and worked as an easily controllable alternative to explosive detonations when studying the dynamic response of structures subjected to blast loading.

  14. Analysis of the blasting effect on the electric shove loading efficiency of the open pit

    Institute of Scientific and Technical Information of China (English)

    FU Tian-guang; SUN Ying

    2008-01-01

    The connection between blasting cost and comprehensive cost is the main concern.Some blasting effect factors (such as unit explosive consumption,uniformity of blockness,shape and porosity of blasting heap),which had an influence on electric shove loading efficiency,were analyzed.In the end a project to properly increase in blasting cost to decrease the comprehensive cost was put forward.At the same time,the hole-by-hole blasting is effective technology to improve blasting effect.

  15. Modelling and Dynamic Response of Steel Reticulated Shell under Blast Loading

    Directory of Open Access Journals (Sweden)

    Ximei Zhai

    2013-01-01

    Full Text Available Explicit finite element programme LS-DYNA was used to simulate a long-span steel reticulated shell under blast loading to investigate the structural dynamic responses in this paper. The elaborate finite element model of the Kiewitt-8 single-layer reticulated shell with span of 40 m subjected to central blast loading was established and all the process from the detonation of the explosive charge to the demolition, including the propagation of the blast wave and its interaction with structure was reproduced. The peak overpressure from the numerical analysis was compared with empirical formulas to verify the credibility and applicability of numerical simulation for blast loading. The dynamic responses of the structure under blast loading with different TNT equivalent weights of explosive and rise-span ratios were obtained. In addition, the response types of Kiewitt-8 single-layer reticulated shell subjected to central explosive blast loading were defined.

  16. Structural Response to Blast Loading: The Effects of Corrosion on Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Hakan Yalciner

    2014-01-01

    Full Text Available Structural blast design has become a necessary part of the design with increasing terrorist attacks. Terrorist attacks are not the one to make the structures important against blast loading where other explosions such as high gas explosions also take an important place in structural safety. The main objective of this study was to verify the structural performance levels under the impact of different blast loading scenarios. The blast loads were represented by using triangular pulse for single degree of freedom system. The effect of blast load on both corroded and uncorroded reinforced concrete buildings was examined for different explosion distances. Modified plastic hinge properties were used to ensure the effects of corrosion. The results indicated that explosion distance and concrete strength were key parameters to define the performance of the structures against blast loading.

  17. Numerical Simulations of Blast Loads from Near-Field Ground Explosions in Air

    Directory of Open Access Journals (Sweden)

    Dobrociński Stanisław

    2015-12-01

    Full Text Available Numerical simulations of air blast loading in the near-field acting on the ground have been performed. A simplified blast model based on empirical blast loading data representing spherical and hemispherical explosive shapes has been simulated. Conwep is an implementation of the empirical blast models presented by Kingery and Bulmash, which is also implemented in the commercial code LS-DYNA based on work done by Rahnders-Pehrson and Bannister. This makes it possible to simulate blast loads acting on structures representing spherical and hemispherical explosive shapes of TNT with reasonable computational effort as an alternative to the SPH and Eulerian model. The CPU time for the simplified blast model is however considerably shorter and may still be useful in time consuming concept studies. Reasonable numerical results using reasonable model sizes can be achieved not only for modelling near-field explosions in air but most areas of geotechnical. Calculation was compared with blast SPH and Eulerian model.

  18. Numerical Simulations of Blast Loads from Near-Field Ground Explosions in Air

    Science.gov (United States)

    Dobrociński, Stanisław; Flis, Leszek

    2015-12-01

    Numerical simulations of air blast loading in the near-field acting on the ground have been performed. A simplified blast model based on empirical blast loading data representing spherical and hemispherical explosive shapes has been simulated. Conwep is an implementation of the empirical blast models presented by Kingery and Bulmash, which is also implemented in the commercial code LS-DYNA based on work done by Rahnders-Pehrson and Bannister. This makes it possible to simulate blast loads acting on structures representing spherical and hemispherical explosive shapes of TNT with reasonable computational effort as an alternative to the SPH and Eulerian model. The CPU time for the simplified blast model is however considerably shorter and may still be useful in time consuming concept studies. Reasonable numerical results using reasonable model sizes can be achieved not only for modelling near-field explosions in air but most areas of geotechnical. Calculation was compared with blast SPH and Eulerian model.

  19. A Review of Current Researches on Blast Load Effects on Building Structures in China

    Institute of Scientific and Technical Information of China (English)

    LI Zhongxian; DU Hao; BAO Chunxiao

    2006-01-01

    The damages of building structures subjected to multifarious explosions cause huge losses of lives and property.It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world.This paper provides an overview of the research work in China on blast loads effect on building structures.It includes modeling blast shock wave propagation and their effects,the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads.The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures,and for deriving effective and economic techniques to design new or to strengthen existing structures.

  20. Mitigation of Mine Blast Loading by Collapsible Structures

    Directory of Open Access Journals (Sweden)

    Izak Marius Snyman

    2013-05-01

    Full Text Available This paper presents research results on the mitigation of mine blast loading by collapsible structures. A baseline test consisting of a test platform with a V-shape body exposed to the charge was executed, recording the imparted impulse and the deformation of the test item. A collapsible structure is added to the test platform and tested (two tests. By the law of conservation of momentum, similar peak imparted impulse values were obtained. However, the average imparted impulse reduced by between 16 % to 18% by adding this collapsible element in the load path. The average impulse is the total momentum transferred after the response of the damping system is filtered into the measurement system. The results are analysed with ANSYS AUTODYN and support the measured effects of the introduction of the mitigation measure.Defence Science Journal, 2013, 63(3, pp.262-270, DOI:http://dx.doi.org/10.14429/dsj.63.2308

  1. Design Considerations For Blast Loads In Pressure Vessels.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, E. A. (Edward A.); Nickell, Robert E.; Pepin, J. E. (Jason E.)

    2007-01-01

    Los Alamos National Laboratory (LANL), under the auspices of the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA), conducts confined detonation experiments utilizing large, spherical, steel pressure vessels to contain the reaction products and hazardous materials from high-explosive (HE) events. Structural design and analysis considerations include: (a) Blast loading phase (i.e., impulsive loading); (b) Dynamic structural response; (c) Fragment (i.e., shrapnel) generation and penetration; (d) Ductile and non-ductile fracture; and (e) Design Criteria to ASME Code Sec. VIII, Div. 3, Impulsively Loaded Vessels. These vessels are designed for one-time-use only, efficiently utilizing the significant plastic energy absorption capability of ductile vessel materials. Alternatively, vessels may be designed for multiple-detonation events, in which case the material response is restricted to elastic or near-elastic range. Code of Federal Regulations, Title 10 Part 50 provides requirements for commercial nuclear reactor licensing; specifically dealing with accidental combustible gases in containment structures that might cause extreme loadings. The design philosophy contained herein may be applied to extreme loading events postulated to occur in nuclear reactor and non-nuclear systems or containments.

  2. Analysis of structural response under blast loads using the coupled SPH-FEM approach

    Institute of Scientific and Technical Information of China (English)

    Jun-xiang XU; Xi-la LIU

    2008-01-01

    A numerical model using the coupled smoothed particle hydrodynamics-finite element method(SPH-FEM)approach is presented for analysis of structures under blast loads.The analyses on two numerical cases,one for free field explosive and the other for structural response under blast loads,are performed to model the whole processes from the propagation of the pressure wave to the response of structures.Based on the simulation,it is concluded that this model can be used for reasonably accurte explosive analysis of structures.The resulting information would be valuable for protecting structures under blast loads.

  3. Reconstruction of improvised explosive device blast loading to personnel in the open

    Science.gov (United States)

    Wiri, Suthee; Needham, Charles

    2016-05-01

    Significant advances in reconstructing attacks by improvised explosive devices (IEDs) and other blast events are reported. A high-fidelity three-dimensional computational fluid dynamics tool, called Second-order Hydrodynamic Automatic Mesh Refinement Code, was used for the analysis. Computer-aided design models for subjects or vehicles in the scene accurately represent geometries of objects in the blast field. A wide range of scenario types and blast exposure levels were reconstructed including free field blast, enclosed space of vehicle cabin, IED attack on a vehicle, buried charges, recoilless rifle operation, rocket-propelled grenade attack and missile attack with single subject or multiple subject exposure to pressure levels from ˜ 27.6 kPa (˜ 4 psi) to greater than 690 kPa (>100 psi). To create a full 3D pressure time-resolved reconstruction of a blast event for injury and blast exposure analysis, a combination of intelligence data and Blast Gauge data can be used to reconstruct an actual in-theatre blast event. The methodology to reconstruct an event and the "lessons learned" from multiple reconstructions in open space are presented. The analysis uses records of blast pressure at discrete points, and the output is a spatial and temporal blast load distribution for all personnel involved.

  4. Experimental study of masonry wall exposed to blast loading

    Directory of Open Access Journals (Sweden)

    Ahmad, S.

    2014-03-01

    Full Text Available The challenge of protecting the nation against the attack of terrorism has raised the importance to explore the understanding of building materials against the explosion. Unlike most of the building materials, brick masonry materials offer relatively small resistance against blast loading. In this research, a brick masonry wall was exposed to varying blast load at different scaled distances. Six tests with different amounts of explosives at various distances were carried out. Pressure time history, acceleration time history and strain at specific location were measured. The parameters measured from experimental pressure time history and acceleration time history is compared with those determined by ConWep to establish the correlations between experimental determined records and ConWep values. The experimental results were also compared with some researchers. These correlations may assist in understanding the behaviour of masonry structures subjected to explosive loading.Con el reto que supone proteger a la nación contra atentados terroristas se ha visto acrecentada la importancia de conocer el comportamiento de materiales de construcción cuando se someten a una carga explosiva. Al contrario de la mayoría de los materiales, las fábricas de ladrillo ofrecen poca resistencia a dichas cargas. En el presente trabajo, se estudió el comportamiento de una fábrica de ladrillo ante cargas explosivas colocadas a diferentes distancias del muro. Se realizaron seis pruebas con explosivos de potencias distintas y a diferentes distancias. Se trazaron las curvas presión-tiempo y aceleración-tiempo, midiéndose asimismo la deformación en un punto concreto. Los valores experimentales de las curvas presión-tiempo y aceleración-tiempo se compararon con los que se calcularon con la ayuda de la aplicación informática ConWep a fin de establecer las correlaciones entre ambos conjuntos de resultados. También se compararon los resultados experimentales

  5. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  6. Manual for the prediction of blast and fragment loadings on structures

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The purpose of this manual is to provide Architect-Engineer (AE) firms guidance for the prediction of air blast, ground shock and fragment loadings on structures as a result of accidental explosions in or near these structures. Information in this manual is the result of an extensive literature survey and data gathering effort, supplemented by some original analytical studies on various aspects of blast phenomena. Many prediction equations and graphs are presented, accompanied by numerous example problems illustrating their use. The manual is complementary to existing structural design manuals and is intended to reflect the current state-of-the-art in prediction of blast and fragment loads for accidental explosions of high explosives at the Pantex Plant. In some instances, particularly for explosions within blast-resistant structures of complex geometry, rational estimation of these loads is beyond the current state-of-the-art.

  7. Numerical Simulation of Dynamic Response and Collapse for Steel Frame Structures Subjected to Blast Load

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiuhua; DUAN Zhongdong; ZHANG Chunwei

    2008-01-01

    The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA.The multi-material Eulerian and Lagrangian coupling algorithm was adopted.A fluid-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground,multiple ALE element for simulating air and TNT explosive material.Numerical simulations of the blast pressure wave propagation,structural dynamic responses and deformation,and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed.The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure.The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation.The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic deformation subjected to intensive blast waves,and columns lost carrying capacity,subsequently leading to the collapse of the whole structure.The approach coupling influence between structural deformation and fluid load well simulated the progressive collapse process of structures,and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.

  8. Plastic Deformation of Metal Tubes Subjected to Lateral Blast Loads

    Directory of Open Access Journals (Sweden)

    Kejian Song

    2014-01-01

    Full Text Available When subjected to the dynamic load, the behavior of the structures is complex and makes it difficult to describe the process of the deformation. In the paper, an analytical model is presented to analyze the plastic deformation of the steel circular tubes. The aim of the research is to calculate the deflection and the deformation angle of the tubes. A series of assumptions are made to achieve the objective. During the research, we build a mathematical model for simply supported thin-walled metal tubes with finite length. At a specified distance above the tube, a TNT charge explodes and generates a plastic shock wave. The wave can be seen as uniformly distributed over the upper semicircle of the cross-section. The simplified Tresca yield domain can be used to describe the plastic flow of the circular tube. The yield domain together with the plastic flow law and other assumptions can finally lead to the solving of the deflection. In the end, tubes with different dimensions subjected to blast wave induced by the TNT charge are observed in experiments. Comparison shows that the numerical results agree well with experiment observations.

  9. Dynamic Behaviour of Concrete Sandwich Panel under Blast Loading

    Directory of Open Access Journals (Sweden)

    Dong Yongxiang

    2009-01-01

    Full Text Available Surface contact explosion experiments were performed to study the dynamic behaviour of concrete sandwich panel subjected to blast loading. Experimental results have shown that there are four damage modes explosion cratering, scabbing of the backside, radial cracking induced failure, and circumferential cracking induced failure. It also illustrates that different foam materials sandwiched in the multi-layered medium have an important effect on damage patterns. Due to the foam material, the stress peak decreases one order of magnitude and the duration is more than four times that of the panel without the soft layer by numerical simulation. Additionally, the multi layered medium with concrete foam demonstrates the favourable protective property compared with that of aluminum foam. Meanwhile, the optimal analysis of the thickness of the foam material in the sandwich panel was performed in terms of experimental and numerical analyseis. The proper thickness proportion of soft layer is about 20 percent to the total thickness of sandwich panel under the conditions in this study.Defence Science Journal, 2009, 59(1, pp.22-29, DOI:http://dx.doi.org/10.14429/dsj.59.1480  

  10. Numerical Analysis of Structural Progressive Collapse to Blast Loads

    Institute of Scientific and Technical Information of China (English)

    HAO Hong; WU Chengqing; LI Zhongxian; ABDULLAH A K

    2006-01-01

    After the progressive collapse of Ronan Point apartment in UK in 1968,intensive research effort had been spent on developing guidelines for design of new or strengthening the existing structures to prevent progressive collapse.However,only very few building design codes provide some rather general guidance,no detailed design requirement is given.Progressive collapse of the Alfred P.Murrah Federal building in Oklahoma City and the World Trade Centre (WTC) sparked again tremendous research interest on progressive collapse of structures.Recently,US Department of Defence (DoD) and US General Service Administration (GSA) issued guidelines for structure progressive collapse analysis.These two guidelines are most commonly used,but their accuracy is not known.This paper presents numerical analysis of progressive collapse of an example frame structure to blast loads.The DoD and GSA procedures are also used to analyse the same example structure.Numerical results are compared and discussed.The accuracy and the applicability of the two design guidelines are evaluated.

  11. Bond interface crack propagation of fresh foundation concrete and rock under blasting load

    Institute of Scientific and Technical Information of China (English)

    WU Liang; LU Wen-bo; ZHONG Dong-wang

    2009-01-01

    According to concrete age,the dynamic stress intensity factors of bond inter-face crack of concrete-rock was calculated.Result shows that the propagation of concrete interface crack is mainly caused by tensile stress and shear stress for stress wave reflec-tion.With the growth of concrete age,interface crack fracture toughness increases,and its capacity of resisting blasting load strengthens.Therefore,blasting vibration should be strictly controlled for fresh concrete.

  12. Blast-Loading Assessment of Multi-Energy Flash Computed Tomography (MEFCT) Diagnostic

    Science.gov (United States)

    2016-08-01

    blast loading, and addresses the implications of these movements on the reconstruction process. 15. SUBJECT TERMS blast, pressure gauge, flyer plate ...5 (support) linkage, the I-2 detector, and the I-1 detector. At the I-5 source location, first movement was detected approximately 0.5 ms after...dependent on the energy release of the high explosive. In the time spanning 0.5 ms to 4 ms , displacement of 6 mm was measured when a 364-g charge

  13. Blast Load Response of Steel Sandwich Panels with Liquid Encasement

    Energy Technology Data Exchange (ETDEWEB)

    Dale Karr; Marc Perlin; Benjamin Langhorst; Henry Chu

    2009-10-01

    We describe an experimental investigation of the response of hybrid blast panels for protection from explosive and impact forces. The fundamental notion is to dissipate, absorb, and redirect energy through plastic collapse, viscous dissipation, and inter-particle forces of liquid placed in sub-structural compartments. The panels are designed to absorb energy from an impact or air blast by elastic-plastic collapse of the panel substructure that includes fluid-filled cavities. The fluid contributes to blast effects mitigation by providing increased initial mass and resistance, by dissipation of energy through viscosity and fluid flow, and by redirecting the momentum that is imparted to the system from the impact and blast impulse pressures. Failure and deformation mechanisms of the panels are described.

  14. Head Kinematics Resulting from Simulated Blast Loading Scenarios

    Science.gov (United States)

    2012-09-17

    pressure wave and the body which commonly damages air-filled organs such as the lungs , gastrointestinal tract, and ears. Secondary blast injury...subsequent impact with surrounding obstacles or the ground. Quaternary injury is the result of other factors including burns or inhalation of dust and gas... Woods , W., Feldman, S., Cummings, T., et al. (2011). Survival Risk Assessment for Primary Blast Exposures to the Head. Journal of neurotrauma, 2328

  15. Blast Load Input Estimation of the Medium Girder Bridgeusing Inverse Method

    Directory of Open Access Journals (Sweden)

    Ming-Hui Lee

    2008-01-01

    Full Text Available Innovative adaptive weighted input estimation inverse methodology for estimating theunknown time-varying blast loads on the truss structure system is presented. This method isbased on the Kalman filter and the recursive least square estimator (RLSE. The filter models thesystem dynamics in a linear set of state equations. The state equations of the truss structureare constructed using the finite element method. The input blast loads of the truss structuresystem are inverse estimated from the system responses measured at two distinct nodes. Thiswork presents an efficient weighting factor  applied in the RLSE, which is capable of providinga reasonable estimation results. The results obtained from the simulations show that the methodis effective in estimating input blast loads, so has great stability and precision.Defence Science Journal, 2008, 58(1, pp.46-56, DOI:http://dx.doi.org/10.14429/dsj.58.1622

  16. Behaviour of a Blast Loaded Laced Reinforced Concrete Structure

    Directory of Open Access Journals (Sweden)

    N. Anandavalli

    2012-09-01

    Full Text Available Normal 0 MicrosoftInternetExplorer4 According to existing provisions, large separation distance has to be maintained between two conventional explosive storage structures to prevent sympathetic detonation. In this paper, reduction of the separation distance with the use of earth covered laced reinforced concrete (LRC storage structure is demonstrated, which will result in saving of land cost. Details of blast resistant design of 75T (NEC storage structure based on unit risk principle are presented. Performance of the storage structure is evaluated in an actual blast trial. Strain and deflection profiles are obtained from the trial. Based on these, the storage structure is found to be re-usable after the blast trial.Defence Science Journal, 2012, 62(5, pp.284-289, DOI:http://dx.doi.org/10.14429/dsj.62.820

  17. An adaptive time integration scheme for blast loading on a saturated soil mass

    NARCIS (Netherlands)

    Al-Khoury, R.; Weerheijm, J.; Dingerdis, K.; Sluys, L.J.

    2011-01-01

    This paper presents a time integration scheme capable of simulating blast loading of relatively high frequency on porous media, using coarse meshes. The scheme is based on the partition of unity finite element method. The discontinuity is imposed on the velocity field, while the displacement field i

  18. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    Directory of Open Access Journals (Sweden)

    Chang Qi

    2014-01-01

    Full Text Available It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  19. Dynamic response and optimal design of curved metallic sandwich panels under blast loading.

    Science.gov (United States)

    Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  20. Damage Assessment for Buried Structures Against Internal Blast Load

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; HUANG Xin; LI Jianchun

    2008-01-01

    The soil-structure interaction(SSI)decoupling is applied to simplify buried structure against internal blast lpad as spring effect.Shear failure.bending failure and Combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element.The critical equations for shear and bending failure are derived respectively.Pressure impulse diagrams are accordingly developed to assess damage of the buried structures against internal blast lpad.Cornparison is done to show influences of soil-structure interaction and shear to-bending strength ratio of a structural element.A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure.

  1. Blast response of centrally and eccentrically loaded flat-, U-, and V-shaped armored plates: comparative study

    Science.gov (United States)

    Trajkovski, J.; Kunc, R.; Prebil, I.

    2016-12-01

    Light armored vehicles (LAVs) can be exposed to blast loading by landmines or improvised explosive devices (IEDs) during their lifetime. The bottom hull of these vehicles is usually made of a few millimeters of thin armored plate that is the vehicle's weak point in a blast-loading scenario. Therefore, blast resistance and blast load redirection are very important characteristics in providing adequate vehicle as well as occupant protection. Furthermore, the eccentric nature of loading caused by landmines was found to be omitted in the studies of simplified structures like beams and plates. For this purpose, blast wave dispersion and blast response of centrally and eccentrically loaded flat-, U-, and V-shaped plates are examined using a combined finite-element-smoothed-particle hydrodynamics (FE-SPH) model. The results showed that V-shaped plates better disperse blast waves for any type of loading and, therefore, can be successfully applied in LAVs. Based on the results of the study and the geometry of a typical LAV 6× 6 , the minimum angle of V-shaped plates is also determined.

  2. Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.

  3. Finite Element Analysis of Composite Hardened Walls Subjected to Blast Loads

    Directory of Open Access Journals (Sweden)

    Girum S. Urgessa

    2009-01-01

    Full Text Available Problem statement: There is currently no standard design guideline to determine the number of composites needed to retrofit masonry walls in order to withstand a given explosion. Past design approaches were mainly based on simplified single-degree-of-freedom analysis. A finite element analysis was conducted for concrete masonry walls hardened with composites and subjected to short duration blast loads. Approach: The analysis focused on displacement time history responses which form the basis for retrofit design guidelines against blast loadings. The blast was determined from 0.5 kg equivalent TNT explosive at 1.83 m stand-off distance to simulate small mailroom bombs. Two and four layered retrofitted walls were investigated. Uncertainties in the finite model analysis of walls such as pressure distributions, effect of mid height explosive bursts versus near the ground explosive bursts and variations in modulus of elasticity of the wall were presented. Results: Uniformly distributed blast loads over the retrofitted wall height produced a small difference in peak displacement results when compared to the non-uniform pressure distribution. Ground explosive burst was shown to produce a 62.7% increase in energy and a higher peak displacement response when compared to mid-height explosive burst. Conclusion: The parametric study on the variation of modulus of elasticity of concrete masonry showed no significant effect on peak displacement affirming the use of the resistance deflection contribution of the composite in retrofit designs.

  4. Blast load estimation using Finite Volume Method and linear heat transfer

    Directory of Open Access Journals (Sweden)

    Lidner Michał

    2016-01-01

    Full Text Available From the point of view of people and building security one of the main destroying factor is the blast load. Rational estimating of its results should be preceded with knowledge of complex wave field distribution in time and space. As a result one can estimate the blast load distribution in time. In considered conditions, the values of blast load are estimating using the empirical functions of overpressure distribution in time (Δp(t. The Δp(t functions are monotonic and are the approximation of reality. The distributions of these functions are often linearized due to simplifying of estimating the blast reaction of elements. The article presents a method of numerical analysis of the phenomenon of the air shock wave propagation. The main scope of this paper is getting the ability to make more realistic the Δp(t functions. An explicit own solution using Finite Volume Method was used. This method considers changes in energy due to heat transfer with conservation of linear heat transfer. For validation, the results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied.

  5. Blast loading of sandwich panels with thin-walled tube cores

    Energy Technology Data Exchange (ETDEWEB)

    Theobold, M.D.; Nurick, G.N. [Cape Town Univ., Cape Town (South Africa). Blast Impact and Survivability Research Unit

    2007-07-01

    This paper presented the results of an experimental and modelling study that investigated the responses to blast loading of a novel sandwich panel used in structural protection. The panel was comprised of thin-walled aluminium alloy square tubes with annealed steel outer plates. A split Hopkinson pressure bar was used to characterize the materials at quasi-static strain rates as well as at high strain rates. A series of blast tests was conducted with explosive charges that ranged from between 13 to 38 g with a blast tube mounted to a ballistic pendulum. Results of the experimental study showed that the panel had a large energy absorption capacity. The tube layout and the choice of materials had a significant influence on panel response. During larger blasts, progressive symmetric buckling was observed in core tubes, and core stability was compromised in lower impulse blasts. It was concluded that finite element analyses conducted on the panels showed good agreement with results obtained during the experimental studies.

  6. Possible Collapse Mode for Slender Reinforced Concrete Plates Subjected to Blast Load

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; DU Xiuli; CHEN Zhen; ZENG Fanna

    2008-01-01

    This paper discusses the collapse mode of thin reinforced concrete (RC) plates subjected to blast load.To extend the well known plastic-mode method to analyze,not only perfectplastic plates,but also RC plates,it is needed to investigate the effect of material cracking on the collapse mode because the plate might have been cracked on both upper and lower surface before the plastic-mode fully develops,creating an unexpected type of collapse mode shape.A new failure mode is proposed and verified by numerical analysis in this paper.The new mode is a result of the material cracking and has an un-negligible effect on the reaction mechanism of the RC plate to the blast load.

  7. A Two-step Approach to Progressive Collapse Analysis of Building Structures under Blast Loading

    Institute of Scientific and Technical Information of China (English)

    XU Jun-xian; LIU Xi-la

    2009-01-01

    Structural collapse under blast loads is a very complex process. For several decades, the engineering profession has considered some approaches to analyze the essential physics of collapse phenomena. Recently, the interest in this topic has risen to an apex since the collapse of the World Trade Center towers. A two-step analysis approach to capture the characteristics of structural collapse during explosions is proposed. A numerical example is presented to illustrate the performance of the presented approach.

  8. Damage Assessment of Two-Way Bending RC Slabs Subjected to Blast Loadings

    Directory of Open Access Journals (Sweden)

    Haokai Jia

    2014-01-01

    Full Text Available Terrorist attacks on vulnerable structures and their individual structural members may cause considerable damage and loss of life. However, the research work on response and damage analysis of single structural components, for example, a slab to blast loadings, is limited in the literature and this is necessary for assessing its vulnerability. This study investigates the blast response and damage assessment of a two-way bending reinforced concrete (RC slab subjected to blast loadings. Numerical modeling and analysis are carried out using the commercial finite element code LS-DYNA 971. A damage assessment criterion for the two-way bending RC slab is defined based on the original and residual uniformly distributed load-carrying capacity. Parametric studies are carried out to investigate the effects of explosive weight and explosive position on the damage mode of the two-way RC slab. Some design parameters, such as the boundary conditions and the negative reinforcement steel bar length, are also discussed. The illustrated results show that the proposed criterion can apply to all failure modes. The damage assessment results are more accurate than the ones due to the conventional deformation criterion.

  9. Dynamic Analysis of Tunnel in Weathered Rock Subjected to Internal Blast Loading

    Science.gov (United States)

    Tiwari, Rohit; Chakraborty, Tanusree; Matsagar, Vasant

    2016-11-01

    The present study deals with three-dimensional nonlinear finite element (FE) analyses of a tunnel in rock with reinforced concrete (RC) lining subjected to internal blast loading. The analyses have been performed using the coupled Eulerian-Lagrangian analysis tool available in FE software Abaqus/Explicit. Rock and RC lining are modeled using three-dimensional Lagrangian elements. Beam elements have been used to model reinforcement in RC lining. Three different rock types with different weathering conditions have been used to understand the response of rock when subjected to blast load. The trinitrotoluene (TNT) explosive and surrounding air have been modeled using the Eulerian elements. The Drucker-Prager plasticity model with strain rate-dependent material properties has been used to simulate the stress-strain response of rock. The concrete damaged plasticity model and Johnson-Cook plasticity model have been used for the simulation of stress-strain response of concrete and steel, respectively. The explosive (TNT) has been modeled using Jones-Wilkins-Lee (JWL) equation of state. The analysis results have been studied for stresses, deformation and damage of RC lining and the surrounding rock. It is observed that damage in RC lining results in higher stress in rock. Rocks with low modulus and high weathering conditions show higher attenuation of shock wave. Higher amount of ground shock wave propagation is observed in case of less weathered rock. Ground heave is observed under blast loading for tunnel close to ground surface.

  10. Numerical Simulation of Response of SRC Columns Subjected to Blast Loading

    Institute of Scientific and Technical Information of China (English)

    SUN Jianyun; LI Guoqiang; LU Yong

    2006-01-01

    The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between steel and concrete.This paper presents a numerical simulation of the response of SRC columns subjected to blast loading using hydrocode LS-DYNA.In the numerical model,a sophisticate concrete material model (the Concrete Damage Model) is employed with consideration of the strain rate effect and the damage accumulation.An erosion technique is adopted to model the spalling process of concrete.The possible failure modes of SRC columns are evaluated.It is observed that the failure of SRC columns subjected to blast load can generally be classified into three modes,namely,a direct failure in concrete body due to the stress wave,a transverse shear failure near the support sections due to the high shear force,and a flexural failure pertaining to large local and global deformation of the reinforcing steel.

  11. Analysis of concrete targets with different kinds of reinforcements subjected to blast loading

    Science.gov (United States)

    Oña, M.; Morales-Alonso, G.; Gálvez, F.; Sánchez-Gálvez, V.; Cendón, D.

    2016-05-01

    In this paper we describe an experimental campaign carried out to study and analyse the behaviour of concrete slabs when subjected to blast loading. Four different types of concrete have been tested: normal strength concrete with steel rebar, normal strength concrete with steel rebar retrofitted with Kevlar coating, steel fibre reinforced concrete (SFRC) and polypropylene fibre reinforced concrete (PFRC). The major asset of the experimental setup used is that it allows to subject up to four specimens to the same blast load what, besides being cost effective, makes possible to have a measure of the experimental scatter. The results of SFRC and PFRC concretes have been analysed by using a previously developed material model for the numerical simulation of concrete elements subjected to blast. The experimental campaign and preliminary results of this numerical analysis show how the high strain rates, in spite of improving the mechanical properties of these kinds of fibre reinforced concretes, lead to an embrittlement of the material, which may be dangerous from the point of view of the structural behaviour.

  12. Design of Blast-Loaded Glazing Windows and Facades: A Review of Essential Requirements towards Standardization

    Directory of Open Access Journals (Sweden)

    Martin Larcher

    2016-01-01

    Full Text Available The determination of the blast protection level of laminated glass windows and facades is of crucial importance, and it is normally done by using experimental investigations. In recent years numerical methods have become much more powerful also with respect to this kind of application. This paper attempts to give a first idea of a possible standardization concerning such numerical simulations. Attention is drawn to the representation of the blast loading and to the proper description of the behaviour of the material of the mentioned products, to the geometrical meshing, and to the modelling of the connections of the glass components to the main structure. The need to validate the numerical models against reliable experimental data, some of which are indicated, is underlined.

  13. A method for rapid vulnerability assessment of structures loaded by outside blasts

    Energy Technology Data Exchange (ETDEWEB)

    Cizelj, Leon [' Jozef Stefan' Institute, Reactor Engineering Division, Jamova 39, SI-1000 Ljubljana (Slovenia)], E-mail: Leon.Cizelj@ijs.si; Leskovar, Matjaz; Cepin, Marko; Mavko, Borut [' Jozef Stefan' Institute, Reactor Engineering Division, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2009-09-15

    The blast loads have in most cases not been assumed as design basis loads of nuclear power plant buildings and structures. Recent developments however stimulated a number of analyses quantifying the potential effects of such loads. An effort was therefore made by the authors to revisit simple and robust structural analysis methods and to propose their use in the vulnerability assessment of blast-loaded structures. The leading idea is to break the structure into a set of typical structural elements, for which the response is estimated by the use of slightly modified handbook formulas. The proposed method includes provisions to predict the inelastic response and failure. Simplicity and versatility of the method facilitate its use in structural reliability calculations. The most important aspects of the proposed method are presented along with illustrative sample applications demonstrating: {center_dot}results comparable to full scale dynamic simulations using explicit finite element codes and {center_dot}the performance of the method in screening the existing structures and providing the structural reliability information for the vulnerability analysis.

  14. Assessment of blast loading effects - Types of explosion and loading effects

    Energy Technology Data Exchange (ETDEWEB)

    Cullis, Ian G., E-mail: igcullis@qinetiq.co [QinetiQ, Fort Halstead, Sevenoaks, Kent TN14 7BP (United Kingdom); Schofield, James, E-mail: jsschofield@qinetiq.co [QinetiQ, Rosyth, Dunfermline KY11 2XR (United Kingdom); Whitby, Angela, E-mail: ajwhitby@qinetiq.co [QinetiQ, Farnborough, Hampshire GU14 0LX (United Kingdom)

    2010-09-15

    There has been a great deal of work undertaken on the modelling and protection of the structure of buildings to explosive blast, fragment and missile penetration. Buildings and tunnels present interesting challenges because of the different energy release characteristics of modern explosives and gaseous mixtures. The paper describes how by combining modelling capabilities in blast-structure interaction with vulnerability models a capability is formed that has a wide range of potential uses, which links the many stages of response planning to an attack or more general emergency. From designing survivable infrastructures and planning protective measures, through training of staff and responders to handling of actual events, the concept provides a comprehensive approach to the whole spectrum of building and infrastructure survivability assessment issues for a wide range of environments. The paper describes its application to buildings and other related infrastructure.

  15. Analysis of the Dynamic Response in Blast-Loaded CFRP-Strengthened Metallic Beams

    Directory of Open Access Journals (Sweden)

    Zhenyu Wang

    2013-01-01

    Full Text Available Carbon fiber-reinforced polymer composites (CFRPs are good candidates in enhancing the blast resistant performance of vulnerable public buildings and in reinforcing old buildings. The use of CFRP in retrofitting and strengthening applications is traditionally associated with concrete structures. Nevertheless, more recently, there has been a remarkable aspiration in strengthening metallic structures and components using CFRP. This paper presents a relatively simple analytical solution for the deformation and ultimate strength calculation of hybrid metal-CFRP beams when subjected to pulse loading, with a particular focus on blast loading. The analytical model is based on a full interaction between the metal and the FRP and is capable of producing reasonable results in a dynamic loading scenario. A nonlinear finite element (FE model is also developed to reveal the full dynamic behavior of the CFRP-epoxy-steel hybrid beam, considering the detailed effects, that is, large strains, high strain rates in metal, and different failure modes of the hybrid beam. Experimental results confirm the analytical and the FE results and show a strong correlation.

  16. Methods for Progressive Collapse Analysis of Building Structures Under Blast and Impact Loads

    Institute of Scientific and Technical Information of China (English)

    LI Zhongxian; SHI Yanchao

    2008-01-01

    Progressive collapse of building structures under blast and impact lcads has attracted great attention all over the world.Prog ressive collapse analysis is essential for an economic and safe design of building structures against progressive collapse to blast and impact loads.Because of the catastrophic nature of progressive collapse and the potentially high cost of constructing or retrofitting buildings to resist it,is imperative that the progressive collapse analysis methods be reliable.For engineers.their methodology to carry out progressve collapse evaluation need not only be accurate and concise.but also be easily used and works fast.Thus,many researchers have been spending lots of effort in developing reliable,efficient and strajghtforward progressive collapse analysis methods recently.In the present paper,currenf progresslve collapse analysis meth ods available in the literature are reviewed.Their suitability,applicability and reliability are dis cussed.Our recent proposed new method for progressive collapse analysis of relnforced concrete frames under blast lcads is also introduced.

  17. Effect of Large Negative Phase of Blast Loading on Structural Response of RC Elements

    Directory of Open Access Journals (Sweden)

    Syed Zubair Iman

    2016-01-01

    Full Text Available Structural response of reinforced concrete (RC elements for analysis and design are often obtained using the positive phase of the blast pressure curve disregarding the negative phase assuming insignificant contribution from the negative phase of the loading. Although, some insight on the effect of negative phase of blast pressure based on elastic single-degree-of-freedom (SDOF analysis was presented before, the influence of negative phase on different types of resistance functions of SDOF models and on realistic finite element analysis has not been explored. In this study, the effects of inclusion of pulse negative phase on structural response of RC elements from SDOF analysis and from more detailed finite element analysis have been investigated. Investigation of SDOF part has been conducted using MATLAB code that utilizes non-linear resistance functions of SDOF model. Detailed numerical investigation using finite element code DIANA was conducted on the significance of the negative phase on structural response. In the FE model, different support stiffness was used to explore the effect of support stiffness on the structural response due to blast negative phase. Results from SDOF and FE analyses present specific situations where the effect of large negative phase was found to be significant on the structural response of RC elements.

  18. Response of Box-Type Structures Under Internal-Blast Loading

    Institute of Scientific and Technical Information of China (English)

    WANG Zhongqi; WU Jianguo; BAI Chunhua; LU Yong

    2006-01-01

    The tests of box-type structures under internal-blast loading are carried out.Then a numerical analysis of the test structures is done using a fully coupled numerical finite element model.The break-up process of the structure is simulated.The failure modes of the simulated structure agree well with the experimental results.The effects of the size of the reinforcing bars and the detailing of connections among the rebars in the concrete on the throw velocity of the fragments are discussed.

  19. Simulation of Blast and Fragment Loading Usinga Coupled Multi-Solver Approach

    Institute of Scientific and Technical Information of China (English)

    QUAN Xiangyang; GERBER Bence; COWLER Malcolm; BIRNBAUM Naury

    2006-01-01

    Simulating blast and fragment loading simultaneously in a single computation requires the combined use of multiple states of the art solvers.A pipe bomb is an example of simple improvised explosive device (IED) that consists of a piece of pipe filled with explosive material and capped at both ends.To simulate the explosion of a pipe bomb and the damage it causes,a coupled multisolver approach based upon finite element and finite volume methods is applied.The numerical calculation presented demonstrates the ability of ANSYS AUTODYN(R) to correctly simulate the threats of IEDs and provides insight into how the most significant physical phenomena affect the results.

  20. Numerical Study of Head/Helmet Interaction Due to Blast Loading

    Science.gov (United States)

    2014-10-01

    computational convenience. The nose and eyes are filled with skin material; the white matter, grey matter, cerebellum and brain stem are modeled as a...displacement than the brain . 0 100 200 300 400 500 0 1 2 3 4 5 Pr es su re  (K Pa ) Time (ms) air (back) air (behind) air (below) air ( nose ) air (left boundary... Brain Injury (TBI) due to blast and ballistic loading has been a subject of many recent studies. In this report, we report a numerical study to

  1. Composite Vessels for Containment of Extreme Blast Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Pastrnak, J; Henning, C; Grundler, W; Switzer, V; Hollaway, R; Morrison, J; Hagler, L; Kokko, E; Deteresa, S; Hathcoat, B; Dalder, E

    2004-07-15

    A worldwide trend for explosives testing has been to replace open-air detonations with containment vessels, especially when any hazardous materials are involved. As part of the National Nuclear Security Administration's (NNSA) effort to ensure the safety and reliability of the nation's nuclear stockpile, researchers at Lawrence Livermore National Laboratory have been developing a high performance filament wound composite firing vessel that is nearly radiographically transparent. It was intended to contain a limited number of detonations of metal cased explosive assemblies in radiographic facilities such as the Advanced Hydrodynamic Facility (AHF) being studied by Los Alamos National Laboratory. A 2-meter diameter pressure vessel was designed to contain up to 35 kg (80 lb) of TNT equivalent explosive without leakage. Over the past 5 years a total of three half-scale (1 meter diameter) vessels have been constructed, and two of them were tested to 150% load with 8.2 kg (18-pound) spheres of C4 explosive. The low density and high specific strength advantages used in this composite vessel design may have other additional applications such as transporting sensitive explosives that could otherwise be moved only in very small quantities. Also, it could be used for highly portable, explosive containment systems for law enforcement.

  2. Strength and Toughness of Steel Fibre Reinforced Reactive Powder Concrete Under Blast Loading

    Institute of Scientific and Technical Information of China (English)

    KUZNETSOV Valerian A; REBENTROST Mark; WASCHL John

    2006-01-01

    The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack.The damage done by Composition B or Powergel to steel fibre reinforced reactive powder concrete (SFRPC) panels and ordinary reinforced concrete (RC) panels of equivalent static flexural strength is compared.A 0.5 kg charge was detonated at a distance of 0.1 m from the 1.3 m × 1.0 m × 0.1 m (thick) panels,which were simply supported and spaning 1.3 m.Dynamic displacement measurements,high-speed video recording and visual examination of the panels for spall and breach were undertaken.The SFRPC panels withstood the bare charge blast better than the reinforced ordinary concrete panels.Neither type of panel was breached using a 0.5 kg charge.The RC panel exhibited more spalling when Composition B was used.Under successive Composition B loading conditions,the RC panel was breached.In comparison the SFRPC panel was not breached.Exposure to fragmenting charge loading conditions confirmed these performance differences between the SFRPC panel and the reinforced ordinary concrete panel.

  3. Properties and Behavior of Geopolymer Concrete Subjected to Explosive Air Blast Loading: A Review

    Directory of Open Access Journals (Sweden)

    Mohd Mortar Nurul Aida

    2017-01-01

    Full Text Available The severe damage to civilian buildings, public area, jet aircraft impact and defense target under explosive blast loading can cause a huge property loss. Most of researcher discusses the topics on design the concrete material model to sustain againts the explosive detonation. The implementation of modern reinforcement steels and fibres in ordinary Portland cement (OPC concrete matrix can reduce the extreme loading effects. However, most researchers have proved that geopolymer concrete (GPC has better mechanical properties towards high performance concrete, compared to OPC. GPC has the high early compressive strength and high ability to resist the thermal energy from explosive detonation. In addition, OPC production is less environmental friendly than geopolymer cement. Geopolymer used can lead to environmental protection besides being improved in mechanical properties. Thus, this paper highlighted on an experimental, numerical and the analytical studies cause of the explosive detonation impact to concrete structures.

  4. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Candice Frances [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is virtually nonexistent but necessary to ensure adequate protection against injury to the heart and lungs. In this report, we discuss the development of a high-fidelity human torso model, it's merging with the existing Sandia Human Head-Neck Model, and development of the modeling & simulation (M&S) capabilities necessary to simulate wound injury scenarios. Using the new Sandia Human Torso Model, we demonstrate the advantage of virtual simulation in the investigation of wound injury as it relates to the warfighter experience. We present the results of virtual simulations of blast loading and ballistic projectile impact to the tors o with and without notional protective armor. In this manner, we demonstrate the ad vantages of applying a modeling and simulation approach to the investigation of wound injury and relative merit assessments of protective body armor without the need for trial-and-error testing.

  5. Probability Assessment and Risk Management of Progressive Collapse in Strategic Buildings Facing Blast Loads

    Directory of Open Access Journals (Sweden)

    Gholamreza Abdollahzadeh

    2016-12-01

    Full Text Available Nowadays, as a result of increased terrorist and bomb attacks throughout the globe in the vicinity of strategic buildings, designing these structures against impact loads, particularly the blast-related ones, has been taken into more consideration. The current procedure for designing the structure against an explosion is a design against the local failure of the current elements in the first step and then, in the next step, against local damage as well as tactful thinking to prevent this damage from spreading to other parts of the structure. The present research investigates the impacts of explosives, derived from probable terror–stricken scenarios inside and outside a strategic four-story steel building with a special moment frame system. Then, the resistive capacity of the damaged building (due to blast has been evaluated against the progressive collapse, and finally, the rate of the collapse risk and the reliability of the structure have been obtained by presenting a probable method. Thus, the vulnerable parts inside and outside the building are identified and safety measures have been determined, so that in case of no safety or excessive collapse risk- access to dangerous parts of the building could be reinforced or limited. Results show that progressive collapse probability and reliability of the building are 57% and 43% respectively.

  6. Modelling the Slab Failure of an Open Structure Acted by External Blast Loads

    Directory of Open Access Journals (Sweden)

    Nica George Bogdan

    2016-09-01

    Full Text Available The explosion of bombs near buildings generally yields severe damages to the structures. Explosion resistant standards and requirements are constantly being developed and upgraded. This paper focuses on the damages which occur toa RC slab due to blast action. The numerical model replicates a ¼ scale experiment. The analysis is conducted using a software based on the recently developed Applied Element Method. This numerical method is able to model accurately all the structural behavior stages up to failure. The results are compared to experimental data available in the literature. The analysis reveals that the slab failure due to uplift pressures may be avoided by some simple reinforcing details, as they are listed in the Romanian National Annex – accidental loads of the Eurocode EN 1991-1-7.

  7. An examination of blast and impulse effects from the metal loading of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Victor E [Los Alamos National Laboratory; Zucker, Jonathan M [Los Alamos National Laboratory; Mc Afee, John M [Los Alamos National Laboratory; Tappan, Bryce C [Los Alamos National Laboratory; Asay, Blaine W [Los Alamos National Laboratory

    2010-01-01

    Explosive compositions loaded with various metal particulates were produced and tested using a unique experimental configuration. The high explosive HMX was used as the standard and was tested over a range of mass loading fractions using tungsten and tantalum as metal additives. The diagnostics used in this set of experiments included free-field blast sensors, dynamic force sensors, time-of-arrival sensors, and a high-speed digital camera. The experimental arrangement allowed for concurrent spatial measurements of the static pressure from expanding gaseous detonation products, along with the total force from the combination of gaseous products and solid particles. The total pressure from the multi-phase products was calculated by measuring the total force applied to the surface of a newly developed force sensor. The results from the force sensor and other measurement techniques were validated against existing numerical methods. The relationship between static and dynamic pressures as a function of metal loading fraction was examined empirically at several distances from the charge for two distinct metal additives.

  8. Numerical Analysis of Dynamic Response of Corrugated Core Sandwich Panels Subjected to Near-Field Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Pan Zhang

    2014-01-01

    Full Text Available Three-dimensional fully coupled simulation is conducted to analyze the dynamic response of sandwich panels comprising equal thicknesses face sheets sandwiching a corrugated core when subjected to localized impulse created by the detonation of cylindrical explosive. A large number of computational cases have been calculated to comprehensively investigate the performance of sandwich panels under near-field air blast loading. Results show that the deformation/failure modes of panels depend strongly on stand-off distance. The beneficial FSI effect can be enhanced by decreasing the thickness of front face sheet. The core configuration has a negligible influence on the peak reflected pressure, but it has an effect on the deflection of a panel. It is found that the benefits of a sandwich panel over an equivalent weight solid plate to withstand near-field air blast loading are more evident at lower stand-off distance.

  9. Analysis on Dynamic Response of Hard-Soft-Hard Sandwich Panel Under Blast Loading

    Institute of Scientific and Technical Information of China (English)

    DONG Yongxiang; FENG Shunshan; JIN Jun

    2006-01-01

    Surface contact explosion experiments have been performed for the study of dynamic response of the hard-soft-hard sandwich panel under blast loading.Experimental results have shown that there are four damage modes,including explosion cratering,scabbing of the backside,radial cracking induced failure and circumferential cracking induced failure.It also illustrates that the foam material sandwiched in the multi-layered media has an important effect on damage patterns.The phenomena encountered have been analyzed by the calculation with ALE method.Meanwhile,the optimal analysis of foam material thickness and position in the sandwich panel were performed in terms of experimental and numerical analysis.The proper thickness proportion of the soft layer is about 20% to the thickness of sandwich panel and the thickness of the upper hard layer and lower hard layer is in the ratio of 7 to 3 under the condition in this paper when the total thickness of soft layer remains constant.

  10. Evaluation of brain tissue responses because of the underwash overpressure of helmet and faceshield under blast loading.

    Science.gov (United States)

    Sarvghad-Moghaddam, Hesam; Rezaei, Asghar; Ziejewski, Mariusz; Karami, Ghodrat

    2017-01-01

    Head protective tools such as helmets and faceshields can induce a localized high pressure region on the skull because of the underwash of the blast waves. Whether this underwash overpressure can affect the brain tissue response is still unknown. Accordingly, a computational approach was taken to confirm the incidence of underwash with regards to blast direction, as well as examine the influence of this effect on the mechanical responses of the brain. The variation of intracranial pressure (ICP) as one of the major injury predictors, as well as the maximum shear stress were mainly addressed in this study. Using a nonlinear finite element (FE) approach, generation and interaction of blast waves with the unprotected, helmeted, and fully protected (helmet and faceshield protected) FE head models were modeled using a multi-material arbitrary Lagrangian-Eulerian (ALE) method and a fluid-structure interaction (FSI) coupling algorithm. The underwash incidence overpressure was found to greatly change with the blast direction. Moreover, while underwash induced ICP (U-ICP) did not exceed the peak ICP of the unprotected head, it was comparable and even more than the peak ICP imposed on the protected heads by the primary shockwaves (Coup-ICP). It was concluded that while both helmet and faceshield protected the head against blast waves, the underwash overpressure affected the brain tissue response and altered the dynamic load experienced by the brain as it led to increased ICP levels at the countercoup site, imparted elevated skull flexure, and induced high negative pressure regions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Asghar Vatani Oskouei

    2015-12-01

    Full Text Available In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geometric non-linearities are also considered in the numerical simulation. The results obtained are compared with available experimental data to verify the developed FE model. Modeling techniques are described in detail. According to the results, sandwich panels with hollow I-core allowed more plastic deformation and energy dissipation and less midpoint displacement than conventional I-core sandwich panels and also equivalent solid plate with the same weight and material.

  12. Lance for injecting highly-loaded coal slurries into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, D.

    1991-10-29

    A lance is used to inject fuel oil into a blast furnace. This simple design permits conversion of coal water and coal tar slurries to a fine mist at very low flow rates. This design prevents the build-up of deposits which increases service life and steadies the flow rate.

  13. Resistance of Concrete Masonry Walls With Membrane Catcher Systems Subjected to Blast Loading

    Science.gov (United States)

    2010-12-01

    effectiveness of systems comprised of polymers, composites, geotextiles , and thin steel and aluminum sheets has been researched extensively over the past...secondary debris resulting from blast pressure, and the effectiveness of systems comprising polymers, composites, geotextiles , and thin steel and aluminum...wall structure undergoes large transient displacements. Initially, relatively stiff composite laminates and geotextiles were investigated, including

  14. Reducing Structural Weight and Increasing Protection in Simple Structures Subjected to Blast Loads

    Science.gov (United States)

    2014-08-12

    vehicle hull with the intent to share data with academia and the industry to spur innovation in blast mitigation technologies.The main dimensions...Wagner. The ballistic impact characteristics of Kevlar ® woven fabrics impregnated with a colloidal shear thickening fluid, Journal of materials

  15. Ductile Tearing of Thin Aluminum Plates Under Blast Loading. Predictions with Fully Coupled Models and Biaxial Material Response Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gullerud, Arne S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haulenbeek, Kimberly K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reu, Phillip L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The work presented in this report concerns the response and failure of thin 2024- T3 aluminum alloy circular plates to a blast load produced by the detonation of a nearby spherical charge. The plates were fully clamped around the circumference and the explosive charge was located centrally with respect to the plate. The principal objective was to conduct a numerical model validation study by comparing the results of predictions to experimental measurements of plate deformation and failure for charges with masses in the vicinity of the threshold between no tearing and tearing of the plates. Stereo digital image correlation data was acquired for all tests to measure the deflection and strains in the plates. The size of the virtual strain gage in the measurements, however, was relatively large, so the strain measurements have to be interpreted accordingly as lower bounds of the actual strains in the plate and of the severity of the strain gradients. A fully coupled interaction model between the blast and the deflection of the structure was considered. The results of the validation exercise indicated that the model predicted the deflection of the plates reasonably accurately as well as the distribution of strain on the plate. The estimation of the threshold charge based on a critical value of equivalent plastic strain measured in a bulge test, however, was not accurate. This in spite of efforts to determine the failure strain of the aluminum sheet under biaxial stress conditions. Further work is needed to be able to predict plate tearing with some degree of confidence. Given the current technology, at least one test under the actual blast conditions where the plate tears is needed to calibrate the value of equivalent plastic strain when failure occurs in the numerical model. Once that has been determined, the question of the explosive mass value at the threshold could be addressed with more confidence.

  16. Process for Design Optimization of Honeycomb Core Sandwich Panels for Blast Load Mitigation

    Science.gov (United States)

    2012-12-01

    damage causing potential of the blast impulse. Though metal sandwich panels have been used for a long time in aircraft and other light weight struc...aluminum alloy with bilinear isotropic-hardening elastoplastic material model is used for the foil. Since the yield and ultimate strength of the AL5052...foil are very close, bilinear elastoplastic mate- rial model with very low tangent modulus is a reasonable approximation. The adhesive is modeled as

  17. A Manual for the Prediction of Blast and Fragment Loadings on Structures

    Science.gov (United States)

    1981-08-01

    Melting Point Vapor Pressure Toxicity CHEMICAL PROPERTIES Common Name Heat of Formation Heat of Detonation Heat.of Combustion -0 SENSITIVITY AND...4,900,OOO psi. The most important single parameter for determining air blast wave characteristics of high explosives is the total heat of detonation , E...mass M of the explosive. Any given explosive has a specific heat of detonation , AH per unit weight or mass, which can be either calculated from

  18. A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates

    Science.gov (United States)

    Børvik, T.; Olovsson, L.; Hanssen, A. G.; Dharmasena, K. P.; Hansson, H.; Wadley, H. N. G.

    2011-05-01

    The structural response of a stainless steel plate subjected to the combined blast and sand impact loading from a buried charge has been investigated using a fully coupled approach in which a discrete particle method is used to determine the load due to the high explosive detonation products, the air shock and the sand, and a finite element method predicts the plate deflection. The discrete particle method is based on rigid, spherical particles that transfer forces between each other during collisions. This method, which is based on a Lagrangian formulation, has several advantages over coupled Lagrangian-Eulerian approaches as both advection errors and severe contact problems are avoided. The method has been validated against experimental tests where spherical 150 g C-4 charges were detonated at various stand-off distances from square, edge-clamped 3.4 mm thick AL-6XN stainless steel plates. The experiments were carried out for a bare charge, a charge enclosed in dry sand and a charge enclosed in fully saturated wet sand. The particle-based method is able to describe the physical interactions between the explosive reaction products and soil particles leading to a realistic prediction of the sand ejecta speed and momentum. Good quantitative agreement between the experimental and predicted deformation response of the plates is also obtained.

  19. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is nonexistent but necessary to protect the heart and lungs. In tests against ballistic projectiles, protective apparel is placed over ballistic clay and the projectiles are fired into the armor/clay target. The clay represents the human torso and its behind-armor, permanent deflection is the principal metric used to assess armor protection. Although this approach provides relative merit assessment of protection, it does not examine the behind-armor blunt trauma to crucial torso organs. We propose a modeling and simulation (M&S) capability for wound injury scenarios to the head, neck, and torso of the warfighter. We will use this toolset to investigate the consequences of, and mitigation against, blast exposure, blunt force impact, and ballistic projectile penetration leading to damage of critical organs comprising the central nervous, cardiovascular, and respiratory systems. We will leverage Sandia codes and our M&S expertise on traumatic brain injury to develop virtual anatomical models of the head, neck, and torso and the simulation methodology to capture the physics of wound mechanics. Specifically, we will investigate virtual wound injuries to the head, neck, and torso without and with protective armor to demonstrate the advantages of performing injury simulations for the development of body armor. The proposed toolset constitutes a significant advance over current methods by providing a virtual simulation capability to investigate wound injury and optimize armor design without the need for extensive field testing.

  20. Numerical simulation of muzzle blast

    NARCIS (Netherlands)

    Tyler-Street, M.

    2014-01-01

    Structural design methods for naval ships include environmental, operational and military load cases. One of the operational loads acting on a typical naval vessel is the muzzle blast from a gun. Simulating the muzzle blast load acting on a ship structure with CFD and ALE methods leads to large nume

  1. Evaluation of observed blast loading effects on NIF x-ray diagnostic collimators.

    Science.gov (United States)

    Masters, N D; Fisher, A; Kalantar, D; Prasad, R; Stölken, J S; Wlodarczyk, C

    2014-11-01

    We present the "debris wind" models used to estimate the impulsive load to which x-ray diagnostics and other structures are subject during National Ignition Facility experiments. These models are used as part of the engineering design process. Isotropic models, based on simulations or simplified "expanding shell" models, are augmented by debris wind multipliers to account for directional anisotropy. We present improvements to these multipliers based on measurements of the permanent deflections of diagnostic components: 4× for the polar direction and 2× within the equatorial plane-the latter relaxing the previous heuristic debris wind multiplier.

  2. Numerical analysis of the damage on Ⅰ-core sandwich panels subjected to combined blast and fragment loading%冲击波和破片联合作用下Ⅰ型夹层板毁伤仿真

    Institute of Scientific and Technical Information of China (English)

    段新峰; 程远胜; 张攀; 刘均; 李勇

    2015-01-01

    基于非线性有限元软件LS-DYNA,通过在TNT炸药底部布置预制破片模拟战斗部爆炸产生的冲击波与破片联合作用载荷,计算3种TNT炸药当量下Ⅰ型夹层板的毁伤响应,分析冲击波单独作用及冲击波与破片联合作用下Ⅰ型夹层板失效模式的差异,研究夹层板芯层配置以及上、下面板厚度配置对其失效模式的影响,并与等效实体板的抗毁伤性能进行对比.同时,从吸能的角度分析不同载荷工况下Ⅰ型夹层板的吸能特性.数值仿真结果表明:在冲击波与破片联合作用下,结构的毁伤程度远大于冲击波单独作用时;当载荷强度较小时,I型夹层板的抗毁伤性能优于等效实体板;载荷强度、载荷类型(冲击波单独作用或冲击波与破片联合作用)及上、下面板厚度配置对Ⅰ型夹层板的失效模式有较大影响;从吸能特性来看,在冲击波单独作用下,上面板和芯层是主要的吸能构件,而在冲击波与破片联合作用下,上面板和下面板是主要的吸能构件.%In this paper, the combined blast and fragment loads due to close-in warhead explosion is simu-lated by placing prefabricated fragments at the bottom of bare TNT explosive, and the corresponding dam-age on Ⅰ-core sandwich panels are evaluated using the software LS-DYNA. The differences of failure modes of sandwich panels subjected to only blast and combined blast and fragment loads are analyzed, and the effects of core configuration and thickness configuration between the front and back plates on the fail-ure modes are studied. The anti-damage performance of sandwich panels is then compared with that of the equivalent solid plate. In addition, the energy absorption characteristics of Ⅰ-core sandwich panels under different loads are also analyzed. Numerical results show that the overall damage of both the sandwich pan-els and solid plates subjected to combined blast and fragment loads is more severe than that caused

  3. Demystifying blast effects on buildings

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, A.; Carson, D.; Stevens, T. [Halsall Associates Ltd., Toronto, ON (Canada)

    2007-07-01

    This paper presented methods of designing the structures of building structures in such a way that the effects of blast loads can be mitigated. The methods were designed to provide strength and ductility so that kinetic energy delivered by the blast is resisted by strain energy. Fundamental aspects of blast effects were examined, and the design of flexural members subject to blast loading were discussed. An equivalent static load procedure based on the equivalency of kinetic and strain energies was also presented along with a threat independent approach which included principles to prevent progressive collapse, ductile columns, and the addition of upward resistance to floors. Measures to mitigate damage caused by shattered glass and other cladding elements during blasts were also discussed.

  4. Rock fragmentation control in opencast blasting

    Directory of Open Access Journals (Sweden)

    P.K. Singh

    2016-04-01

    Full Text Available The blasting operation plays a pivotal role in the overall economics of opencast mines. The blasting sub-system affects all the other associated sub-systems, i.e. loading, transport, crushing and milling operations. Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole, varying initiation practice in blast design and its effect on explosive energy release characteristic. This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India. The mines use draglines and shovel–dumper combination for removal of overburden. Despite its pivotal role in controlling the overall economics of a mining operation, the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance. Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance. Ninety one blasts were conducted with varying blast designs and charging patterns, and their impacts on the rock fragmentation were documented. A high-speed camera was deployed to record the detonation sequences of the blasts. The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.

  5. Blast mitigation experimental and numerical studies

    CERN Document Server

    2013-01-01

    Presents experimental methods of material and structural response to dynamic blast loads Includes computational analysis of material and structural response to dynamic blast loads Offers mitigation measures for structures in various environments Relates lab experiments to larger field tests Features more than 150 illustrations

  6. Effects of Cylindrical Charge Geometry and Secondary Combustion Reactions on the Internal Blast Loading of Reinforced Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Price, Matthew A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2005-05-01

    An understanding of the detonation phenomenon and airblast behavior for cylindrical high-explosive charges is essential in developing predictive capabilities for tests and scenarios involving these charge geometries. Internal tests on reinforced concrete structures allowed for the analysis of cylindrical charges and the effect of secondary reactions occurring in confined structures. The pressure profiles that occur close to a cylindrical explosive charge are strongly dependent on the length-to-diameter ratio (L/D) of the charge. This study presents a comparison of finite-element code models (i.e., AUTODYN) to empirical methods for predicting airblast behavior from cylindrical charges. Current finite element analysis (FEA) and blast prediction codes fail to account for the effects of secondary reactions (fireballs) that occur with underoxidized explosives. Theoretical models were developed for TNT and validated against literature. These models were then applied to PBX 9501 for predictions of the spherical fireball diameter and time duration. The following relationships for PBX 9501 were derived from this analysis (units of ft, lb, s). Comparison of centrally located equivalent weight charges using cylindrical and spherical geometries showed that the average impulse on the interior of the structure is ~3%–5% higher for the spherical charge. Circular regions of high impulse that occur along the axial direction of the cylindrical charge must be considered when analyzing structural response.

  7. 爆炸荷载下桩基竖向动承载力研究%Study on vertical bearing capacity of pile foundation under blast loading

    Institute of Scientific and Technical Information of China (English)

    王后裕; 姚焕忠; 言志信; 张剑寒; 杨进勇

    2013-01-01

    针对地面抗爆工程建设中桩基设计问题,采用动三轴试验、动力有限元方法等手段,开展了爆炸作用下地基土的动力特性及桩基抗爆承载力研究,结果表明桩基竖向极限抗爆承载力为其竖向极限静承载力2倍以上,高于按照现行桩基规范得到的1.25 ~1.5倍范围值,表明将常规抗震设计的办法直接用于抗爆炸冲击荷载的桩基设计时偏保守.%For the problem of pile foundation design of ground protective projects subjected to blast loading,a series of resrearches of dynamic property of soil and bearing capacity of pile under shock waves are carried out by the methods of dynamic triaxial test and dynamic FEM and so on.The result shows that the dynamic bearing capacity of pile is two times greater than that of static bearing capacity and 1.25 ~ 1.5 times greater than that of current pile code method.Therefore it is conservative to estimate the dynamic bearing capacity of pile with current pile code method.

  8. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  9. Design of Blast Resistant Structure

    Directory of Open Access Journals (Sweden)

    C. K. Gautam

    1997-04-01

    Full Text Available A shock blast resistant structure designed, developed and experimentally evaluated by the authors is described. We structure, capable of with standing dynamic loading (12 psi and a static pressure of 1.5 m earth cover due to blast or any other explosion, also gives protection against radiation, chemical and thermal hazards. Some results and details of analysis and experimentation are presented.

  10. Blast Valve Design and Related Studies : A Review

    Directory of Open Access Journals (Sweden)

    P. K. Sharma

    2016-04-01

    Full Text Available The protective structures required for performing critical operations are vulnerable to the blast and shock loads of advanced weapons. A blast valve is an important component of such structures for ventilation during normal conditions and for protection from blast/ shock during explosion. In this paper, various aspects of blast valve design and related studies are briefly reviewed. The concept and effects of blast wave, blast impact, numerical modelling and deformation of circular plate (one of the critical components of blast valve have been discussed. The merits and demerits of sensing mechanisms viz. remote and direct sensing are discussed. The leakage of blast pressure during finite closing period of the valve (one of the critical problems and the shock tube as a major experimental facility for testing of blast valves are briefly discussed.

  11. Dynamic loads caused by pressure blasts, steam explosions, and earth quakes; Dynamische Belastungen durch Druckstoesse, Dampfexplosionen und Erdbeben

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, H.H. [SDK Ingenieurunternehmen GmbH, Basel (Switzerland)

    1998-11-01

    The paper deals with description of structures and the relevant dynamic loads. As to the structures, gas, fluid, or solid structures are to be considered. They determine the characteristic vibrational behaviour of the structures in the interconnected system. The excitation type determines the component that will be induced to change characteristic vibrational behaviour of the structure, depending on the load increasing time and the period of excitation. Three examples are given to illustrate the processes. (Water tank subject to quasi-seismic conditions; pipeline affected by blow-down; shut-off valve for a pipe). (orig./CB) [Deutsch] In diesem Beitrag soll auf die Erfassung der Strukturen und die Erfassung der dynamischen Belastungen eingegangen werden. Zur Erfassung der Strukturen sind `Gas-, Fluid- und Festkoerper-Strukturen` zu beachten. Sie bestimmen das Eigenschwingverhalten im Verbund. Die Erregung bestimmt nun, welcher Bereich aus dem Eigen-Schwingverhalten der Struktur ueber die Lastanstiegs-Zeit und die Zeitdauer der Erregung anregbar ist. Drei Beispiele sollen die Aufgabenstellung erlaeutern (Wasserbehaelter unter erdbebenaehnlichen Bedingungen; Rohrleitung unter `Blow-down-Belastung`; Absperrklappe fuer eine Rohrleitung). (orig./MM)

  12. Dynamic responses and influential parameters of reticulated shell subjected to external blast loading%外部爆炸荷载作用下网壳结构的动力响应及其影响参数分析

    Institute of Scientific and Technical Information of China (English)

    翟希梅; 黄明

    2012-01-01

    Finite element software ANSYS/LS-DYNA is used to establish a refined kiewitt8 single-layer reticulated shell finite element model,which contains reticulated shell member, purlin hanger, purlin, rivet and roof boarding to simulate the dynamic responses of a structure subjected to external blast loading by using ALE (Arbitrary-La-grange-Euler) algorithm. The strain rate effect of materials and the inter-collision of the components are considered. The responses of the structure under external eccentric blast loading with varied TNT equivalent weights, explosion point position, section size of reticulated shell bar, rise-span ratio, supporting condition, thickness of roof board-ing, roof boarding load and the form of roof boarding are obtained by the comparison of the plastic strain, the plastic development degree and the displacement of the structure, which could provide a reference for reasonable defense design of reticulated shell structure to resisting blast. The results show that with the changes of each parameter, there are four damage modes of kiewitt8 single-layer reticulated shell under external blast loading, that is intact, local deformation, local damage and total collapse.%运用ANSYS/LS-DYNA动力有限元软件建立了包含网壳杆件、檩托、檩条、铆钉、屋面板在内的精细化K8型单层球面网壳有限元模型,通过选择考虑材料应变率效应的钢材本构关系,采用流固耦合算法并考虑构件相互碰撞影响,对结构在外部爆炸荷载作用下的动力响应进行了数值模拟,获得了TNT炸药当量、爆炸点距离、杆件截面、矢跨比、支承条件、屋面板厚度、屋面荷载及屋面板形式等参数对结构动力响应的影响规律,可为网壳抗爆防护设计提供参考.网壳结构在外部爆炸荷载作用下,随着各参数取值的变化,存在“完好无损、局部凹陷、局部破坏、整体倒塌”四种破坏类型.

  13. 爆炸荷载作用下钢框架结构连续倒塌分析%Numerical analysis on damage and collapse process of steel frame structures under blast loads

    Institute of Scientific and Technical Information of China (English)

    丁阳; 汪明; 李忠献

    2012-01-01

    The traditional numerical methods for simulating the dynamic response and progressive collapse of entire structures require complicated modeling work and extremely time-consuming calculation, resulting in their rare application. In this paper, a new method for the numerical analysis of entire structural model is proposed, which is directly employed to analyze the dynamic response and damage patterns of steel frame structures subjected to blast loads. According to the new method, the simulation process is divided into two steps. Firstly, the propagation of blast wave in air is simulated by the Remap tool of AUTODYN. The numerical gauges are used to record the pressure time history on the surfaces of structural members, e.g. columns and beams. Secondly, a refined finite element model of steel frame structure is created, and the blast load is applied on the surfaces of members according to the measured data in the first step for further analysis of structural response and damage procedure using the explicit solver of LS- DYNA. The whole simulation of structural response of a typical steel frame structure caused by blast load is carried out. The numerical results show that the steel frame structure is capable of resisting blast load, which is adequate to survive a medium-scaled ( up to 1 000 kg equivalent of TNT charge) out-door explosion. Severe progressive collapse or local damage as downfall of secondary beam is likely to be induced by a huge-scaled blast load case (more than 1 500 kg equivalent of TNT charge).%传统数值方法模拟建筑结构在爆炸荷载作用下的结构响应和连续倒塌时,具有计算模型复杂、计算量大的特点,实际应用价值不大。基于将爆炸荷载作用下结构响应分析分两步进行的数值模拟方法,利用非线性显式动力分析软件AUTODYN的Remap技术模拟爆炸波在空气中的传播过程,利用压强测点记录结构构件表面的爆炸压强时程曲线;建立结构精

  14. Aspects of blast resistant masonry design

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, D.E.

    1989-01-01

    Blast resistant design should be examined for building code incorporation, due to the potential of explosions occurring in an industrial society. Specifically, public and commercial structures of concrete masonry construction need additional building code criteria, since these buildings have high density populations to protect. Presently, blast resistant design is accomplished by using government published manuals, but these do not address industry standard construction. A design air blast load of 4.54 kg (10 lbs) of TNT, located 0.91 m (3 ft) above ground surface and 30.48 m (100 ft) from a structure should be considered standard criteria. This loading would be sufficient to protect against blast, resist progressive failure, and yet not be an economic impediment. Design details and adequate inspection must be observed to ensure blast resistant integrity. 10 refs., 3 figs., 1 tab.

  15. FINITE ELEMENT ANALYSIS OF FAILURE MODES OF BLAST-LOADED R/C BEAMS%爆炸荷载作用下钢筋混凝土梁破坏形态有限元分析

    Institute of Scientific and Technical Information of China (English)

    方秦; 柳锦春; 张亚栋; 钱七虎

    2001-01-01

    The flexural failure mode of R/C frames or beams is usually observed in case of blast loads with long duration. However, shear failure mode may occur before the flexural failure takes place in case of blast loads with short duration such as impulsive loadings induced by chemical explosion. This phenomenon is observed in both laboratory and in-situ tests. The reason is that the impulsive loading excites the shear force in the component of the structures and causes the structures fail in the manner of shear failure. Based on Timoshenko beam theory, a non-linear layered beam element is proposed in this paper to investigate the response and failure modes of blast-loaded R/C beams. Non-linear material properties, strain-rate effects of concrete and steel are taken into account in the material models. The dynamic responses and various failure modes, including flexure, flexure-shear and shear of the blast-loaded R/C beams are predicted. A good agreement between the numerical results and experimental results is reached.%在持续时间较长的爆炸荷载作用下,钢筋混凝土框架或梁通常会发生常见的弯曲破坏形态,但是在持续时间较短的爆炸荷载,如化学爆炸产生的脉冲荷载作用下,钢筋混凝土结构有可能在弯曲破坏发生之前产生剪切破坏。这种现象已被室内外试验所证实,其原因是脉冲荷载激发了结构中的剪力,从而使结构产生剪切破坏。为了预报钢筋混凝土梁在爆炸荷载下的响应和破坏形态,本文提出了一种基于Timoshenko梁理论的非线性分层梁有限元法。在材料模型中考虑了混凝土和钢筋的非线性和应变速率效应等因素。应用这方法,本文计算分析了爆炸荷载作用下钢筋混凝土梁的动态响应以及弯曲、弯剪和剪切等不同的破坏形态,计算预报的结构动态响应和破坏形态与现场试验结果有较好的一致性。

  16. Soil Behavior Under Blast Loading

    Science.gov (United States)

    2010-12-01

    Chen, W.F. and Baladi, G.Y. (1985), Soil plasticity : Theory and Implementation, Elsevier, Amsterdam, The Netherlands. Cui, Y.J. and...is a simple cone in principal stress space as shown in FIG. 2-9. Both Mohr-Coulomb model and Drucker-Prager model capture soil ... plasticity behavior very well and ensure a unique solution. However, these perfectly-plastic soil models have inherent limitations and shortcomings: (1

  17. Dynamic Response and Damage Process Analysis of Urban Bridge Subjected to Blast Load%爆炸荷载作用下城市桥梁动态响应及其损伤过程分析

    Institute of Scientific and Technical Information of China (English)

    朱劲松; 邢扬

    2015-01-01

    In order to obtain reasonable anti-blast design and risk assessment of urban municipal bridges in a densely populated city,dynamic response and damage process analysis method for urban bridges subjected to blast load is proposed in this paper. By analyzing the explosion risk sources of urban bridges,the explosion source types and blast load conditions likely to be encountered by urban bridges are determined. Then,the finite element models of bridge,dynamite and air are established in ANSYS/LS-DYNA software. The dynamite model and the air model are defined by the JWL (Jones-Wilkins-Lee) state equation and linear polynomial state equation,respectively. The ALE (arbitrary Lagrange-Euler) algorithm is used to simulate the propagation of shock wave actuated by explosion. The effects of position and quantity of dynamite on the response of displacement and the Von-Mises stress distribution in the key parts of the bridge are investigated,and then the damage process and failure modes of the bridge are ana-lyzed. Based on the Tuler-Butcher cumulative damage rule,the damage accumulation curves under different explo-sion distances and TNT equivalence blast loadings of specified elements are obtained. In the end,taking a large-span steel truss arch bridge as an illustrative example,the calculation process of the proposed method in this paper is de-scribed. The results of this paper can be used as the foundation for anti-blast design and risk assessment of bridge.%为了对人流、车流密集的城市市政桥梁进行合理的抗爆设计和爆炸风险评估,提出了爆炸荷载作用下城市桥梁动态响应与损伤过程分析的数值方法。首先,通过对城市桥梁爆炸风险源的分析,确定城市桥梁可能遭遇的爆炸源类型及爆炸荷载工况。然后,基于大型通用有限元软件 ANSYS/LS-DYNA 建立桥梁、炸药和空气三者的有限元模型,分别选择 JWL(Jones-Wilkins-Lee)状态方程与线性多项式状态方程对炸

  18. Design and Analysis of Single Plate Blast Resistant Door

    Directory of Open Access Journals (Sweden)

    Nilesh S. Aitavade

    2013-06-01

    Full Text Available Blast Resistant Doors are used to withstand high intensity impulsive blast loads. They are designed to prevent the impact of the blast from travelling from one side to the other side of the door. Taking into account the limitations and the growing need of efficient blast resistant doors, a design was developed using ASTM A36 as the material of construction instead of concrete. Analytical calculations for the actual pressure-impulse loading condition were done as per the UFC 3-340-02, and the results of analytical calculations were compared with results of the simulation of the numerical model for the given boundary conditions.

  19. A Preliminary Investigation of Traumatically Induced Axonal Injury in a Three-Dimensional (3-D) Finite Element Model (FEM) of the Human Head During Blast-Loading

    Science.gov (United States)

    2013-07-01

    SUBJECT TERMS diffuse axonal injury (DAI), traumatic brain injury (TBI), blast TBI (bTBI), computational biomechanics of brain tissue, finite...resulting biomechanical response and injury (11). Therefore, once validated, simulations like this would need to be reanalyzed with typical head-borne...protective systems that might alter the inertial response. 13 Although active muscles have an effect on the response of the cervical spine in

  20. Blasting practices in a quarry with karstic cavities

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The blasting practices in a limestone quarry with karstic cavities have been presented. The existence of karstic cavities in the quarry has reduced blasting efficiency significantly. In order to improve blasting efficiency different blasting strategies (loading holes with ANFO in plastic bag, recording cavity location along the holes and charging the holes according to this information, and modifying blasting pattern according to karstic cavities) had been implemented and the results were evaluated on per ton cost basis. It was concluded that efficient blasting in such aquarries requires determining the size and shape of karstic cavities and based on this information, to modify the blast pattern and charge the holes. The suggested method is to record the cavity along the drill hole and to generate 3D model of cavities. By doing this, the production cost in the limestone quarry has decreased from 0.407 $/t to 0.354 $/t.

  1. On dynamic buckling of cylindrical shell in soil subjected to blast loads%爆炸荷载作用下土埋圆柱壳动力屈曲分析

    Institute of Scientific and Technical Information of China (English)

    刘新宇; 马林建; 方秦; 张川; 马淑娜

    2012-01-01

    To investigate the dynamic stability of cylindrical shell in shallow soil,the calculation model of soil spring-shell interaction was established based on the stress characteristic of the shell subjected to blast loads. The nonlinear FEM method was utilized to solve the structural dynamic responses. The B-R buckling rule was applied to determining the critical buckling load following the numerical simulation of the shell buckling progress. The influence of the soil layer deformation on the structural buckling load was analyzed in detail. The quantitative relationship between the buckling load of the structure and the elastic modulus of the soil was obtained. The results indicate that the structural buckling load increases nonlinear-ly with the soil elastic modulus.%为研究爆炸动载作用下土中圆柱壳结构的动力稳定特性,依据爆炸动载作用下土埋圆柱壳的受力特征,建立了考虑土与圆柱壳相互作用的土弹簧一柱壳计算模型,应用非线性有限元方法进行了数值计算.在圆柱壳结构动力屈曲过程数值分析的基础上,运用B-R屈曲准则判定土埋圆柱壳在爆炸动载作用下的屈曲临界荷载,并重点讨论了土层变形性质对圆柱壳屈曲荷载的影响,得到了土中圆柱壳屈曲荷载和土体弹性常数K的定量关系.结果表明,屈曲荷载随土体弹性常数的增大而非线性增大.

  2. Blast vulnerability assessment : challenges and myths

    Energy Technology Data Exchange (ETDEWEB)

    Braimah, A.; Contestabile, E. [Natural Resources Canada, Ottawa, ON (Canada). Canadian Explosives Research Laboratory

    2007-07-01

    Challenges related to the creation of a comprehensive blast vulnerability assessment program for Canadian buildings was presented. Many building owners are now seeking to assess the vulnerability of their structures to blast loads, and wish to increase the survivability of both occupants and structures. However, the engineering community has not yet incorporated existing physical security measures into comprehensive mitigation strategies and designs. Different institutions are currently using varying amounts of explosives in vulnerability assessments, and there is an urgent need for information on terrorist capabilities in both the present and the future. Pressure-impulse diagrams are now used by engineers to assess component responses to blasts. However, pressure-impulse diagrams are based on single modes of failure, and may not be capable of capturing all failure modes of building components, nor are they able to ensure that vulnerability assessments do not overestimate the blast load resistance of buildings.

  3. Material Systems for Blast-Energy Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    James Schondel; Henry S. Chu

    2010-10-01

    Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

  4. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  5. Time History Analysis of Slope Stability under the Blasting Loading%爆破动力荷载下边坡稳定性的时程分析

    Institute of Scientific and Technical Information of China (English)

    陈鹏辉; 楼晓明; 周文海

    2015-01-01

    For the significant impact of blasting on slope stability during open-pit mining process,the dynamic finite ele-ment method is used to analyze the variation of slope stability with the time in blasting. Firstly,the finite element model of mine slope is established,then the finite element strength reduction method is adopted to get the most dangerous sliding surface and safety coefficient of the slope. After that,based on the most dangerous sliding surface obtained,a three-dimensional entity model of slope and explosives was created,the blasting parameters are arranged and the initiation time for each hole is set up. Next, this model is calculated after the initiation. The dynamic response process after slope explosive for 30 s is solved by LS-DYNA large dynamic finite element program. Combining with the limit equilibrium method and dynamic finite element method, the safety factors of slope at every moment under unified detonation are calculated. Slope stability should be comprehensively evalu-ated by the time-history safety coefficient and whether the elements of the sliding surface are destroyed at the same time. The simulation results can dynamically display the security status of slope blasting process,and the result is very close to that by the limit equilibrium method. This research could make a reference for the blasting design.%针对露天矿开采过程中,爆破开挖作业对最终边坡稳定的影响问题,采用动力有限元法分析爆破过程中边坡的稳定性随时间变化情况。首先建立矿山边坡的二维有限元模型,利用有限元强度折减法求解,得到边坡的最危险滑动面及折减安全系数;再根据得到的最危险滑动面,重新建立边坡和炸药的三维实体模型,布置爆破孔网参数并设置各个炮孔的起爆时间,通过LS-DYNA大型动力有限元程序,求解边坡在炸药爆炸后30 s时间内的动力响应过程。结合极限平衡法和动力有限元法计算结果

  6. Damage Characteristics of Surrounding Rock Subjected to VCR Mining Blasting Shock

    Directory of Open Access Journals (Sweden)

    Nan Jiang

    2015-01-01

    Full Text Available For limiting the damage range caused by explosive shock loads in vertical crater retreat (VCR mining, the blasting damage characteristics of surrounding rock were studied by two methods: numerical simulation and ultrasonic testing. Combined with the mining blasting in Dongguashan Copper Mine of China, the VCR blasting shock characteristics under different conditions are obtained by using LSDYNA. Based on statistical fracture mechanics and damage mechanics theories, a damage constitutive model for rock mass subjected to blasting shock load was established. Then by using the fast Lagrange analysis codes (FLAC3D, the blasting damage characteristics of surrounding rock were analyzed by applying the blasting shock loads obtained from the VCR mining and the damage zone is obtained. At last, the relationship between the amount of explosives and the radius of damaged surrounding rock mass was discussed, and its formula was also derived. The research provides a theoretical basis for rationally controlling stope boundaries and optimizing mining blasting parameters.

  7. 汽车炸弹钢箱梁内部爆炸局部破坏效应分析%Analysis on local damage of steel box girder under internal blast loading of vehicle bomb

    Institute of Scientific and Technical Information of China (English)

    姚术健; 蒋志刚; 卢芳云; 张舵; 赵楠

    2015-01-01

    采用ALE(Arbitrary Lagrangian Eulerian,ALE)多物质流固耦合算法,对汽车炸弹(TNT当量200 kg~1500 kg)在双层桥梁下层桥面典型位置爆炸的局部破坏效应进行了数值模拟,研究了内爆炸冲击作用下钢箱梁的响应过程、破坏模式、破坏参数及其主要影响因素。结果表明:破坏模式及破坏参数与爆炸位置和TNT当量密切相关,爆炸位置对桥梁主要受力体系的受损程度影响较为明显,加劲肋对其垂直方向的破口具有约束作用,箱体对冲击波的约束效应使破坏作用加剧。合理设置加劲肋、加强重要构件和设置防爆层等措施有利于提高桥梁结构抗爆能力。%The response process,failure modes and damage parameters of a double deck steel box girder subjected to internal blast loading of vehicle bombs (TNT equivalent 200kg&1500kg)were simulated by using the ALE (Arbitrary Lagrangian Eulerian)multi-material fluid-solid coupling arithmetic.In the simulation,three typical blast locations on the lower deck were considered.The results show that:the failure modes and damage parameters have a clear correlation with the TNT weight and blast location,and the explosion locations have strong effects on the damage degree of steel trusses. Stiffening ribs can restrict the crack in its vertical direction.The damage effects will be intensified by the restriction of the box-shaped girder.Some useful measurements were also proposed which can help engineers in bridge designing and protection consideration against possible explosion events.

  8. Behavior of RCC Structural Members for Blast Analysis: A Review

    Directory of Open Access Journals (Sweden)

    Prof. C. M. Deshmukh

    2016-11-01

    Full Text Available n today’s scenario threat of enemies and terrorist attack is increasing. Therefore consideration of blast load in analysis and design is essential. A bomb explosion within or nearby outside the building can cause catastrophic failure of building. Blast loads have, in the recent past, become important service loads for certain categories of structure. An important task in blast resistance design is to make a realistic prediction of blast pressure. The distance of explosion from the structure is an important datum, governing the magnitude and duration of blast loads. In the present study, the RCC frame was analyzed by using conventional code for gravity loads using moment resisting frame. The blast load was calculated using UFC-340-02 (2008 or IS 4991-1968 for 500 kg and 100 Kg TNT at standoff distance of 10m and 30m from face of column at first floor level. The triangular impulse was applied as nodal time history at all front face joints. The analysis was performed using Computer aided software. The response of structure of will be evaluated under various blast scenarios. The response will be checked for safety of the structure on many parameters like displacement, acceleration and velocity.

  9. Blast event simulation for a vehicle subjected to an explosion

    NARCIS (Netherlands)

    Zhang, G.; Vlahopoulos, N.; Goetz, R.; Velde, R. van de

    2007-01-01

    One of the main threats to military vehicles originates from blasts. In order to improve the survivability of the occupants it is important to design a military vehicle for increased occupant safety. Simulation technology that combines modeling of the blast loads from an explosion, the response of t

  10. Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling

    Science.gov (United States)

    Chandra, N.; Ganpule, S.; Kleinschmit, N. N.; Feng, R.; Holmberg, A. D.; Sundaramurthy, A.; Selvan, V.; Alai, A.

    2012-09-01

    Shock tubes have been extensively used in the study of blast traumatic brain injury due to increased incidence of blast-induced neurotrauma in Iraq and Afghanistan conflicts. One of the important aspects in these studies is how to best replicate the field conditions in the laboratory which relies on reproducing blast wave profiles. Evolution of the blast wave profiles along the length of the compression-driven air shock tube is studied using experiments and numerical simulations with emphasis on the shape and magnitude of pressure time profiles. In order to measure dynamic pressures of the blast, a series of sensors are mounted on a cylindrical specimen normal to the flow direction. Our results indicate that the blast wave loading is significantly different for locations inside and outside of the shock tube. Pressure profiles inside the shock tube follow the Friedlander waveform fairly well. Upon approaching exit of the shock tube, an expansion wave released from the shock tube edges significantly degrades the pressure profiles. For tests outside the shock tube, peak pressure and total impulse reduce drastically as we move away from the exit and majority of loading is in the form of subsonic jet wind. In addition, the planarity of the blast wave degrades as blast wave evolves three dimensionally. Numerical results visually and quantitatively confirm the presence of vortices, jet wind and three-dimensional expansion of the planar blast wave near the exit. Pressure profiles at 90° orientation show flow separation. When cylinder is placed inside, this flow separation is not sustained, but when placed outside the shock tube this flow separation is sustained which causes tensile loading on the sides of the cylinder. Friedlander waves formed due to field explosives in the intermediate-to far-field ranges are replicated in a narrow test region located deep inside the shock tube.

  11. Solution to the dynamical equations of reinforced concrete elements under blast loads with the finite difference method%爆炸荷载下混凝土构件动力方程的差分解

    Institute of Scientific and Technical Information of China (English)

    孙文彬

    2011-01-01

    The dynamical equations of the reinforced concrete under blast loads were the non-homogeneous partial differential equations,it was usually investigated numerically by an iterative method, in the meantime, the nonlinear of material behavior and the strain rate effect should be taken into account in the iterative process.A finite difference method was used to solve numerically the dynamical equations of structural concrete elements under blast loads, it can simultaneously accommodate flexural and shear deformations,incorporated the nonlinear of material behavior and the strain rate effects on the strength of the concrete and steel into the each step of the iterative process, utilized the layered analysis model to compute the node moments, took over the nonlinear degradation of crosssectional flexural rigid and the nonlinear variation of deformation caused by concrete crack.These improved procedures up-graded the tightness and accuracy of the numerical investigation.The results from the finite difference method agreed well with the experimental data obtained by other investigators,and had the same accuracy with the results by applying the LS-DYNA.%爆炸荷载下混凝土构件的动力方程为非齐次偏微分方程,通常采用数值法迭代求解,迭代过程需同时考虑材料非线性和应变率效应.采用差分法求解爆炸荷载下构件的动力方程,同时考虑弯曲变形和剪切变形,将材料非线性和应变率效应融入差分迭代过程,应用分层法模型计算节点弯矩,考虑混凝土开裂引起的截面弯曲刚度退化和变形的非线性变化,这些改进步骤,提高了分析的严密性和精确度.差分结果与他人实验数据吻合良好,与LS-DYNA有限元分析具有相当的精度.

  12. Experimental study of blast mitigating devices based on combined construction

    Science.gov (United States)

    Takayama, K.; Silnikov, M. V.; Chernyshov, M. V.

    2016-09-01

    A robust blast inhibiting bin is the most often used device for damage blast effects suppression. In particular, a top open cylindrical bin significantly reduces a fragmentation effect resulted from a detonation of an explosive device placed inside the bin. However, reduction of blast wave overpressure and impulse by such cylindrical bins is not sufficient [1]. A reasonable alternative to endless increase of height and thickness of robust blast inhibiting bins is a development of destructible inhibitors having no solid elements in their structure and, therefore, excluding secondary fragmentation. So, the family of "Fountain" inhibitors [2,3] localizes and suppresses damaging blast effects due to multiphase working system. The present study is analyzing data obtained in testing of prototypes of new combined inhibitors. Their structure combines robust elements (bottoms, side surfaces) with elements responsible for blast loads reduction due to multi-phase working system (top and low transverse embeddings) and fairings impeding wave propagation in undesirable directions.

  13. Mechanical and histological characterization of trachea tissue subjected to blast-type pressures

    Science.gov (United States)

    Butler, B. J.; Bo, C.; Tucker, A. W.; Jardine, A. P.; Proud, W. G.; Williams, A.; Brown, K. A.

    2014-05-01

    Injuries to the respiratory system can be a component of polytrauma in blast-loading injuries. Tissues located at air-liquid interfaces, including such tissues in the respiratory system, are particularly vulnerable to damage by blast overpressures. There is a lack of information about the mechanical and cellular responses that contribute to the damage of this class of tissues subjected to the high strain rates associated with blast loading. Here, we describe the results of dynamic blast-like pressure loading tests at high strain rates on freshly harvested ex vivo trachea tissue specimens.

  14. 爆炸荷载作用下饱和土中隧道的瞬态动力响应%Transient dynamic response of tunnels subjected to blast loads in saturated soil

    Institute of Scientific and Technical Information of China (English)

    蔡袁强; 陈成振; 孙宏磊

    2011-01-01

    用解析方法研究了爆炸荷载作用下饱和土中圆形隧道的动力响应问题.模型假定饱和土体中的圆形隧道中心处发生爆炸,爆炸荷载采用简化形式,衬砌运动方程基于Flügge壳体理论,饱和土采用 Biot波动方程,通过引入两个势函数,在Laplace变换域中推导了爆炸荷载作用下圆形隧道位移和应力响应的表达式.利用Laplace数值逆变换得到爆炸荷载作用下衬砌与土体的时域计算结果,分析了排水条件对位移、应力变化的影响,并讨论了饱和土参数、衬砌和土的相对刚度的影响.数值结果表明,爆炸荷载作用下,不排水条件下应力和位移的响应幅值比排水条件下有所增大:饱和土参数b*对土体应力的幅值有明显的影响;衬砌与土的相对刚度越大,土体位移和应力响应的幅值越小,衰减的速度也越快.%Using an analytical method, the dynamic response of a circular tunnel in the saturated soil is investigated.Assuming that the blast occurs in the center of the tunnel, a model is established using simplified blast loads.The motions of the liner are considered specially based on the Fliigge theory.The Biot's theory is used to describe the saturated soil.By introducing two potential functions, the analytical solutions of displacement and hoop stress induced by the blast loads are derived in Laplace transforms domain.Numerical results are obtained by inversion of Laplace transforms presented.The influences of permeable property of interface between the liner and soil on dynamic response of the tunnel are analyzed.Also, the influences of the parameters of the saturated soil and the relative rigidity of the liner are discussed.It is shown that the maximum stresses anddisplacements are both higher under impermeable conditions than those under permeable conditions.The parameter b has a significant effect on the amplitude of hoop stress.What's more, the attenuation of the responses becomes more apparent

  15. Retrofitting of RC Slabs Against Explosive Loads

    Institute of Scientific and Technical Information of China (English)

    WU Chengqing; OEHLERS Deric John; XIA Shaohua

    2006-01-01

    With the increase of terrorist bomb attacks on buildings,there is a need to develop advanced retrofitting techniques to strengthen structures against blast loads.Currently,several guidelines including an Australian version for retrofitting reinforced concrete (RC) structures are available for the design of retrofitting systems against seismic and monotonic loads using steel or fibre reinforced polymer (FRP) plates that can be either adhesively bonded to the surface or near surface mounted to the concrete cover.However,none of these guidelines provide advice suitable for retrofitting structures subjected to blast loads.In this paper,numerical models are used to simulate the performance of retrofitted RC slabs subjected to blast loads.Airblast pressure distributions on the surface of the slabs estimated in a previous study are used as input in the analysis.A material damage model developedpreviously for concrete and an elastoplastic model for steel bars are employed in this research for modelling reinforced concrete behaviour due to explosive loads.The material models and blast loading are coded into a finite element computer program LS-DYNA3D to do the analysis.With the numerical model,parametric studies are conducted to investigate RC slabs retrofitted by either externally bonded or near-surface mounted plates or GFRP sheets subjected to blast loads.Discussion is made on the effectiveness of the retrofitting system for RC slabs against blast loads.

  16. Blast Technologies

    Science.gov (United States)

    2011-06-27

    rollover  VAT: Vertical forces and floor deformation  HIP : Head protection systems Payoff: MABS  State-of-the-art unique piece of test equipment...13 14 15 16 17 Energy Absorbing Seats w/ Restraints Blast Mats and other Interior Treatments Data Recorders and Sensors Methods and Standards... treatments .  Airbag or comparable technologies such as bolsters.  Sensors that can detect and deploy/trigger interior treatments within the timeframe of a

  17. Optimization Of Blasting Design Parameters On Open Pit Bench A Case Study Of Nchanga Open Pits

    Directory of Open Access Journals (Sweden)

    Victor Mwango Bowa

    2015-08-01

    Full Text Available Abstract In hard rock mining blasting is the most productive excavation technique applied to fragment insitu rock to the required size for efficient loading and crushing. In order to blast the insitu rock to the desired fragment size blast design parameter such as bench height hole diameter spacing burden hole length bottom charge specific charge and rock factor are considered. The research was carried out as a practical method on Nchanga Open Pits NOP ore Bench to optimize the blasting design parameters that can yield the required fragmentation size thereby reducing the shovel loading times and maximizing efficiency of the subsequent mining unit operations such as hauling and crushing. Fragmentation characteristics such as the mean fragment size were measured by means of a digital measuring tape and predicated using the Kuznetsov equation and rock factor value of ore bench was calculated using Lilly 1986 equations by means of rock characteristics. Traditional blasting design parameters were acquired for NOP and modified using Langerfors and Sharma P.A approaches. Several blast operations were conducted using both traditional and modified blasting design parameters on the same ore bench with the same geological conditions. Loading times of the shovel and fragment sizes were obtained after the blasts from ore bench where both the traditional and modified blasting design parameters were applied. Results show that mean fragment size and loading times were reduced from 51cm and 12minutes to 22cm and 3minutes where traditional and modified blasting design parameters were applied respectively.

  18. Blast-Resistant Improvement of Sandwich Armor Structure with Aluminum Foam Composite

    Directory of Open Access Journals (Sweden)

    Shu Yang

    2013-01-01

    Full Text Available Sandwich armor structures with aluminum foam can be utilized to protect a military vehicle from harmful blast load such as a landmine explosion. In this paper, a system-level dynamic finite element model is developed to simulate the blast event and to evaluate the blast-resistant performance of the sandwich armor structure. It is found that a sandwich armor structure with only aluminum foam is capable of mitigating crew injuries under a moderate blast load. However, a severe blast load causes force enhancement and results in much worse crew injury. An isolating layer between the aluminum foam and the vehicle floor is introduced to remediate this drawback. The results show that the blast-resistant capability of the innovative sandwich armor structure with the isolating layer increases remarkably.

  19. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    Science.gov (United States)

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  20. Numerical Simulation on Collapse Behavior of RC Frames with a Column Removal under Blast Loads%爆炸移除钢筋混凝土框架柱抗倒塌性能数值模拟∗

    Institute of Scientific and Technical Information of China (English)

    何庆锋; 周超; 易伟建

    2016-01-01

    基于已有的爆炸移除钢筋混凝土框架柱的实验数据,利用有限元软件 AUTO-DYN建立了一个分离式与整体式相结合的4层2跨钢筋混凝土框架结构的三维有限元模型,并采用三阶段分析法,对爆炸移除钢筋混凝土柱的结构动力响应和破坏形态进行了数值模拟,且考虑炸药、空气与结构的流固耦合作用和应变率对材料的动态本构特性的影响。在爆炸移除短边中柱与角柱两种工况下,计算得到的柱破坏形态和梁柱节点动态位移与实验结果吻合较好,还分析了柱内纵筋对 RC 框架结构的动态响应的影响以及柱的破坏失效过程。计算结果表明:对发生塑性和弹性变形区域分别采用分离式和整体式建模,不仅保证了钢筋混凝土框架柱的爆破作用过程数值模拟的真实性和适用性,又大量缩短了计算时间,可为今后爆炸荷载作用下RC框架的参数影响分析和连续倒塌破坏模式控制提供参考。%Based on the existing experimental investigation on RC frame with a column removal,the three-dimensional finite element simulation with a combination of separated and integral models for a four-story two-span RC frame structure was established by using the finite element software AUTODYN,and analyzed through three stages.The effect of gas-solid interaction was considered to simulate the dynamic response and failure modes of RC frame due to the removal of reinforced concrete columns under explosion loads.In the numerical simulation,the strain rate effects were also taken into account for the dynamical constitutive behaviors of the materials.In the case of the failure of the corner column or the short side col-umn under blast loads,the failure modes of the column and the dynamic displacement of the beam-column j oints from FE models agreed well with the experimental results.Meanwhile,the failure process of the column removal and the influence of the longitudinal

  1. Study of vibration characteristics of rockbolt and shotcrete structures near the explosion source under blasting load%近区锚喷结构的爆破振动特性研究

    Institute of Scientific and Technical Information of China (English)

    周纪军; 单仁亮; 贾志欣; 耿慧辉; 赵宇飞; 刘立鹏

    2013-01-01

      选用水泥砂浆和玻璃钢分别模拟岩石和锚杆,浇筑2.5 m×1.8 m×2.1 m 尺寸的岩体模型,通过模型试验研究近区锚喷结构在掏槽爆破作用下的振动特性。利用测试锚杆测得不同设置情况锚杆上的应变波。试验结果表明,端锚锚杆中部锚固段与锚杆尾部自由段测得的振动波形和变形形式完全不同,中部锚固段振动幅值稍大;在不设置喷层和预应力时,尾部自由段的应变波规律性更强,且持续时间长;随着离爆源距离的增加,锚杆的振动频率和幅值衰减明显,但振动持续时间则稍有增长;通过小波变化的时频方法分析应变波的能量,临近工作面锚杆的振动能量大,但能量分布分散,振动时间有限,稍远的锚杆虽振动能量小,但能量集中,持续时间长;两种不同能量对锚喷结构产生不同的损坏模式。试验和实践发现,爆破容易造成附近喷层的损坏和锚杆的失效,钢纤维混凝土可增加喷层的抗动载性能,调整支护工艺也是减小爆破影响的有效方法。%In order to explore influence of engineering blasting on rockbolt and shotcrete, cement mortar and glass fiber reinforced plastics are used to simulate the rock and rockbolt respectively; and some 2.5 m×1.8 m×2.1 m rockmass models are built. By model test, construction process is simulated according to similarity. Vibration characteristics of rockbolt and shotcrete structures near the explosion source are studied under cut blasting load. Strain waves were obtained from the measured rockbolts at different setting condition. Test results show that: (1) For end-anchored rockbolts, vibration waveforms and deformation pattern are different between the anchoring segment of rockbolts’ middle and the free segment of its tail. And vibration amplitude of anchoring segment is relatively larger than free segment. (2) Without shotcrete and prestress, strain wave on free

  2. Calculation of driling and blasting parameters in blasting performance

    OpenAIRE

    Dambov, Risto; Karanakova Stefanovska, Radmila; Dambov, Ilija

    2015-01-01

    In all mining technology drilling and blasting parameters and works are one of the main production processes at each mine. The parameters of drilling and blasting and explosives consumption per ton of blasting mass are define economic indicators of any blasting no matter for what purpose and where mining is performed. The calculation of rock blasting should always have in mind that the methodology of calculation of all drilling and blasting parameters in blasting performance are performed for...

  3. Modelling and Testing of Blast Effect On the Structures

    Science.gov (United States)

    Figuli, Lucia; Jangl, Štefan; Papán, Daniel

    2016-10-01

    As a blasting agent in the blasting and mining engineering, has been using one of so called new generation of explosives which offer greater flexibility in their range and application, and such explosive is ANFO. It is type of explosive consists of an oxidiser and a fuel (ammonium nitrate and fuel oil). One of such ANFO explosives which are industrially made in Slovakia is POLONIT. The explosive is a mixture of ammonium nitrate, methyl esters of higher fatty acids, vegetable oil and red dye. The paper deals with the analysis of structure subjected to the blast load created by the explosion of POLONIT charge. First part of paper is describing behaviour and characteristic of blast wave generated from the blast (detonation characteristics, physical characteristics, time-history diagram etc.) and the second part presents the behaviour of such loaded structures, because of the analysis of such dynamical loaded structure is required knowing the parameters of blast wave, its effect on structure and the tools for the solution of dynamic analysis. The real field tests of three different weight of charges and two different structures were done. The explosive POLONIT was used together with 25 g of ignition explosive PLNp10. Analytical and numerical model of blast loaded structure is compared with the results obtained from the field tests (is compared with the corresponding experimental accelerations). For the modelling structures were approximated as a one-degree system of freedom (SDOF), where the blast wave was estimated with linear decay and exponential decay using positive and negative phase of blast wave. Numerical solution of the steel beam dynamic response was performed via FEM (Finite Element Method) using standard software Visual FEA.

  4. Dynamic response of PVC foam sandwich panel subjected to air blast loading%空中爆炸载荷下PVC泡沫夹芯板动态响应分析

    Institute of Scientific and Technical Information of China (English)

    周天宇; 张攀; 程远胜; 刘均

    2016-01-01

    In this paper, the dynamic response of PVC foam sandwich panel subjected to the air blast loading was simu-lated by using the software ABAQUS/EXPLICIT, and the influence of the face-sheet’s thickness, and TNT mass to the dy-namic response was evaluated. In addition, the absorption characteristics of sandwich panel were also analyzed. The simula-tion results showed that the structure responses of sandwich panel were sensitive to its configuration, and the permanent de-flection of the bottom face-sheet decreases with increase in top face-sheet and core thickness. The total energy absorbed by the sandwich panel was closely related to the top face-sheet thickness, and the absorption energy increases with the increase of the top face-sheet thickness, while the relativity of the absorption energy and the core thickness was not obvious. In the same load cases, the proportion of the energy absorbed by top face-sheet increased with increase of top face-sheet thickness, and the proportion of the energy absorbed by core increased with increase of core thickness. The local bending of the top face-sheet and the compression of the core were the dominant deformation modes when the TNT mass was relatively small, while the overall bending of the sandwich panel was the key deformation mode when the TNT mass was relatively large. Findings of this paper would provide a reference for optimal design of blast resistance of PVC sandwich panels.%基于 Abaqus/Explicit,计算分析 PVC夹芯板在空爆载荷作用下的动态响应,考察夹芯板上面板厚度、芯层高度及炸药当量对其抗爆性能的影响,并从能量吸收的角度分析不同工况下 PVC夹芯板的吸能特性。数值结果表明夹芯板的动态响应对其结构配置比较敏感,增加上面板厚度及芯层高度可以明显减小下面板挠度,从而提高结构的抗爆性能。夹芯板的总体吸能量与上面板厚度密切相关,与芯层高度没有明显关联,减小上

  5. 钢箱梁桥面板爆炸冲击响应数值模拟研究%Numerical simulation for response of a steel box girder deck to blast loading

    Institute of Scientific and Technical Information of China (English)

    蒋志刚; 白志海; 严波; 朱新明

    2012-01-01

    大跨度缆索承重桥梁遭受恐怖爆炸袭击的风险比一般桥梁大.运用LS-DYNA非线性有限元软件,研究了箱包炸弹和小轿车炸弹(TNT当量10~500 kg)桥面爆炸冲击作用下缆索承重桥梁钢箱梁正交异性桥面板的塑性变形、开裂与破口及耗能.结果表明:桥面板的主要耗能机制为盖板和加劲肋的塑性变形耗能,占爆炸输入能量的70%以上;加劲肋和横隔板对桥面板破口有约束作用,TNT当量为300~500 kg时,纵桥向破口尺寸小于等于横隔板间距,并小于横桥向破口尺寸.%Large span cable-supported bridges suffer greater risk of terrorful explosion than normal bridges do. The plastic deformation, rupture, tearing and energy dissipation of an orthotropic steel deck under blasting loads of hand-placed bombs and sedan bombs (TNT equivalent 10kg-500kg) were investigated with nonlinear finite element software LS-DYNA. The results showed that the bridge decks main energy dissipation mechanisms are the plastic deformation of cover plates and lengthways stiffeners, and the ratio of plastic deformation energy to explosion energy exceeds 70% ; the rupture of deck is constrained by the stiffeners and diaphragms, the lengths of ruptures in lengthways are not longer than the distance between two diaphragms, and shorter than those in width way while TNT equivalent is from 300kg to 500kg.

  6. 方孔蜂窝夹层板在爆炸载荷下的吸能特性%Energy absorption characteristics of a square hole honeycomb sandwich plate under blast loading

    Institute of Scientific and Technical Information of China (English)

    邓磊; 王安稳; 毛柳伟; 李魁彬

    2012-01-01

    The deformation mechanism and energy absorption characteristics of a square hole honeycomb sandwich plate under blast loading were analyzed with finite element numerical simulation method. With the given per unit area mass, cell size and core height, by comparing sandwich plate's energy absorptivity and face sheets's maximum deflection under different core relative densities, the optimal core relative density of the sandwich plate was obtained. It was shown that with this relative density, the core has the highest energy absorptivity, the minimum deflection in the bottom face sheet and the sandwich plate has superior shock resistance. Furthermore, the effects of geometrical parameters including cell size, core web thickness, core height and face sheet thickness on the energy absorptivity were discussed to obtain the optimal sandwich plate structure.%通过有限元数值模拟方法,对方孔蜂窝夹层板在爆炸冲击载荷下的变形机理和吸能特性进行了分析.在单位面积质量以及夹层板芯层薄壁间距、高度给定的情况下,通过对不同夹芯层相对密度下夹层板的吸能率以及上、下面板最大变形的比较,得出了最优的夹芯层相对密度.在此相对密度下,夹芯层吸能率最高,下面板变形最小,夹层板的抗冲击性能最优.同时还讨论了夹层板芯层薄壁间距、厚度、高度以及面板厚度对其各部分吸能率的影响,以得到最优化的夹层板结构.

  7. Damage Characteristics of Surrounding Rock Subjected to VCR Mining Blasting Shock

    OpenAIRE

    Nan Jiang; Chuanbo Zhou; Xuedong Luo; Shiwei Lu

    2015-01-01

    For limiting the damage range caused by explosive shock loads in vertical crater retreat (VCR) mining, the blasting damage characteristics of surrounding rock were studied by two methods: numerical simulation and ultrasonic testing. Combined with the mining blasting in Dongguashan Copper Mine of China, the VCR blasting shock characteristics under different conditions are obtained by using LSDYNA. Based on statistical fracture mechanics and damage mechanics theories, a damage constitutive mode...

  8. An Animal-to-Human Scaling Law for Blast-Induced Traumatic Brain Injury Risk Assessment

    Science.gov (United States)

    2014-10-28

    injury biomechanics (13–15, 17), the peak intra- cranial pressure was chosen as a characteristic metric of blast intensity transmitted to the brain tissue...Management, and Rehabilitation ( Springer , Berlin), pp 1–13. 7. Magnuson J, Leonessa F, Ling GSF (2012) Neuropathology of explosive blast traumatic brain...Front Neurol 3:70. 17. Sundaramurthy A, et al. (2012) Blast-induced biomechanical loading of the rat: An experimental and anatomically accurate

  9. Evaluation of blast-induced vibration effects on structures 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Gyu Shick; Lee, Dae Soo; Joo, Kwang Ho; Lee, Woong Keon [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of); Ryu, Chang Ha; Chung, So Keul; Lee, Kyung Won; Shin, Hee Soon; Chun, Sun Woo; Park, Yeon Jun; Synn, Joong Ho; Choi, Byung Hee [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-31

    Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants to maintain the safety of structures and facilities in power plants. Our own standard for safety level of blast vibration is not prepared yet, and foreign standards have been generally employed without theoretical and experimental verification. Safety-related structures of power plants and facilities have to be protected against the effects of possible hazards due to blast vibration. Earthquakes have been considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibration are not. In order to ensure the safety, rational safe criterion should be established and blast design should be satisfy it, which requires the development of a model for prediction of vibration level through more systematic measurement and analysis. The main objectives of the study are : to provide background data for establishing the rational safe vibration limits, to develop models for prediction of blast vibration level, to establish safe blast design criterion, and to accumulate techniques for field measurements, data acquisition and analysis (author). 80 refs., 347 figs.

  10. Dynamic response of tunnel in viscoelastic saturated soil subjected to blast loads%黏弹性饱和土中隧道在爆炸荷载作用下的动力响应

    Institute of Scientific and Technical Information of China (English)

    蔡袁强; 陈成振; 孙宏磊

    2011-01-01

    The dynamic response of a circular tunnel in the viscoelastic poroelastic soil was investigated u-sing an analytical method to provide theoretical basis for anti-blast protection design of tunnel. Assuming that the blast occurred in the center of the circular tunnel, a model was established using decrease three-stage triangle loads. Biot's theory was used to describe saturated soil and Kelvin-Voigt model was used for soil skeleton. The motions of the liner were considered specially based on Fliigge theory. By introducing potential functions, numerical results were obtained in time-domain by using the Laplace transforms and inversion of Laplace transforms. The curves of displacement and hoop stress with time for different b* , which denotes the permeability of the soil, on the interface between the liner and soil were presented, and compared with those of the single-phase medium. The influences of viscous damping coefficient η on the displacement and stress response were emphatically analyzed in the viscoelastic saturated soil. The results show that the amplituds of displacement and hoop stress increase with the increasing parameter b* . The amplitudes of displacement and stress in the viscoelastic saturated soil are smaller than that in the viscoe-lastic medium. With the increasing of η, the amplitude of the wave attenuates fast, whereas the maximum the displacement and stress response get smaller.%为了给隧道的抗爆防护设计提供理论依据,采用解析法研究了爆炸荷载作用下黏弹性饱和土体中圆形隧道的动力响应问题.假定爆炸发生在圆形隧道中心处,爆炸荷载采用峰值递减的三段突加三角形荷载,应用Biot波动方程模拟饱和士体,将土骨架视为Kelvin-Voigt饱和土体,衬砌运动方程基于Flügge壳体理论,通过引入势函数,利用Laplace变换及数值逆变换,得到爆炸荷载作用下土体响应的时域计算结果,给出了在不同土体渗透性参数b*时的黏弹性饱和

  11. Blast Diffusion by Different Shapes of Domes

    Directory of Open Access Journals (Sweden)

    Ram Ranjan Sahu

    2015-03-01

    Full Text Available Domes have been used since ancient times in constructions. These are effective structures in supporting loads for large span. Dome has an added advantage of having good looking in structural applications. Many shapes of domes are being used nowadays for residential, commercial, and industrial purposes. Specific purpose domes are also used for nuclear containment. Main threats to structures are from the bomb blast. Hence, domes too are to be designed to withstand effectively the pressure energy generated by the blast. A comparative theoretical study is proposed on the different shapes of domes having same weight and thickness. Various responses are estimated through numerical method after simulating blast and comparing their intensities.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.77-82, DOI:http://dx.doi.org/10.14429/dsj.65.6908

  12. Detonation safety of blasting caps

    Institute of Scientific and Technical Information of China (English)

    谢兴华; 彭小圣

    2002-01-01

    By means of researching into sympathetic detonation of blasting detonators in air, the regular patterns are concluded from blasting detonators interaction with the shock loading. The aerial distribution of initiating ability of detonators looks like a butterfly. The initiating ability mainly consists of shock wave, explosive gases and fliers. But fundamental questions remain. When does shock wave take the leading role? When and how does the explosive gases or the fliers take function? For those questions, there is less quantitative research. Through the theoretic deduction of the overpressure, the energy calculation of fliers and the experiment of sympathetic detonation of detonators, we can learn the sympathetic detonation distances of several kinds of detonators and make an inquiry into the lateral initiating regulations of detonators. So, we can provide the base data for the research into no sympathetic detonation of herd blasting detonators and then control the detonation between them. Then we can make full use of detonators and reduce the frequency of accidents caused by detonators.

  13. Blast event simulation for a structure subjected to a landmine explosion

    NARCIS (Netherlands)

    Sun, J.; Vlahopoulos, N.; Stabryla, T.J.; Goetz, R.; Velde, R. van de

    2006-01-01

    One of the main threats to military vehicles originates from landmine blasts. In order to improve the survivability of the occupants it is important to design a military vehicle for increased occupant safety. Simulation technology that combines modeling of the blast loads from the landmine explosion

  14. Numerical simulation for local failure of a steel box girder under blast loading%钢箱梁爆炸冲击局部破坏的数值模拟

    Institute of Scientific and Technical Information of China (English)

    蒋志刚; 朱新明; 严波; 姚术健

    2013-01-01

    The local failure of a steel box girder under blasting loads of vehicle bomb (TNT equivalent 100-500kg)was investigated with the nonlinear finite element software LS-DYNA and the fluid-solid coupling method ALE Multimaterial formulations.The results showed that there are two local failure modes of a steel box girder,one is that the deck and bottom plates rupture locally; the other is that the deck plate ruptures locally and the bottom plate does not rupture but has a local large plastic deformation; the main failure modes of diaphragms are large bending plastic deformation and rupture; the failure parameters increase nonlinearly with increase in explosive TNT equivalent; the impact effect of shock wave within the box on the bottom plate and diaphragms is less than the impact effect of the deck's fragments,the latter is the main cause of the local large plastic deformation and rupture of the bottom plate and diaphragms.%运用LS-DYNA非线性有限元软件,采用ALE多物质流-固耦合算法,研究了汽车炸弹(TNT当量100~500 kg)桥面爆炸冲击作用下钢箱梁的局部破坏.结果表明,钢箱梁局部破坏模式有两种:(1)桥面板和底板均破口;(2)桥面板破口,底板产生局部塑性大变形.隔板的主要破坏模式为弯曲塑性大变形和破口.破坏参数随炸药当量的增加呈非线性增加.箱体内冲击波对底板、隔板的冲击作用相对较小,顶板破片的冲击作用是底板和隔板产生局部塑性大变形和破口的主要原因.

  15. Dry ice blasting

    Science.gov (United States)

    Lonergan, Jeffrey M.

    1992-04-01

    As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.

  16. Destabilization analysis of overlapping underground chambers induced by blasting vibration with catastrophe theory

    Institute of Scientific and Technical Information of China (English)

    YAN Chang-bin; XU Guo-yuan; ZUO Yu-jun

    2006-01-01

    According to the main characters of overlapping underground chambers, the roof (floor) of two adjacent underground chambers is simplified to the mechanical model that is the beam with build-in ends. And vibration load due to blasting is simplified to harmonic wave. The catastrophic model of double cusp for underground chambers destabilization induced by blasting vibration has been established under the circumstances of considering deadweight of the beam, and the condition of destabilization has been worked out. The critical safety thickness of the roof (floor) of underground chambers has been confirmed according to the destabilization condition. The influence of amplitude and frequency of blasting vibration load on the critical safety thickness has been analyzed, and the quantitative relation between velocity, frequency of blasting vibration and critical safety thickness has been determined. Research results show that the destabilization of underground chambers is not only dependent on the amplitude and frequency of blasting vibration load, but also related to deadweight load and intrinsic attribute. It is accordant to testing results and some related latest research results of blasting seismic effect. With increasing amplitude, the critical safety thickness of underground chambers decreases gradually. And the possibility of underground chambers destabilization increases. When the frequency of blasting vibration is equal to or very close to the frequency of beam, resonance effect will take place in the system. Then the critical safety thickness will turn to zero, underground chambers will be damaged severely, and its loading capacity will lose on the whole.

  17. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment.

    Science.gov (United States)

    Jean, Aurélie; Nyein, Michelle K; Zheng, James Q; Moore, David F; Joannopoulos, John D; Radovitzky, Raúl

    2014-10-28

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans.

  18. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model

    Science.gov (United States)

    Morin, Mario A.; Ficarazzo, Francesco

    2006-04-01

    Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.

  19. 爆炸作用下钢筋混凝土柱非线性动力响应及破坏模式影响因素分析%Analysis on nonlinear dynamic responses and failure modes of RC columns under blast loads

    Institute of Scientific and Technical Information of China (English)

    方秦; 程国亮; 陈力

    2012-01-01

    The purpose of this paper is to predict dynamic responses and failure modes of RC columns subjected to blast loads.In this paper,the three failure criteria corresponding to the typical flexure failure,diagonal shear failure and direct shear failure were firstly presented.And an effective approach to predict the dynamic responses and failure modes of blast-loaded RC columns was established,incorporating the explicit finite difference method proposed in the reference [1] with the failure criteria.The effects of the blast loading(peak pressure,duration and intensity distribution on RC columns),cross-sectional resistance(bending capacity and shear capacity),axial loads and length on the responses and failure modes of RC columns were analyzed and discussed.It is demonstrated that the blast-loaded RC columns may suffer from typical flexure failure,diagonal shear failure and direct shear failure,just like RC beams.However,the diagonal shear failure is the most frequently observed.The shorter the loading duration is,the higher the peak value becomes.The weaker sectional shear capacityis,the more vulnerable to diagonal shear failure and even direct shear failure RC columns is.And the greater axial force,the longer column length,the more vulnerable to bending failure RC columns was.%为研究RC柱在爆炸作用下动力响应及破坏模式,在文献[1]建立的爆炸作用下RC柱非线性响应的有限差分分析方法基础上,提出了RC柱在爆炸作用下弯曲、斜剪、直剪等破坏模式的判别准则,建立了RC柱在爆炸作用下破坏模式的分析方法,分析了爆炸作用(峰值、作用时间及其沿柱上分布形式)、截面抗力(受弯能力、受剪能力)、轴力、柱长等对RC柱破坏模式的影响特点及规律。研究表明:在爆炸作用下,RC柱会发生与RC梁一样的弯曲破坏、斜剪破坏、直剪破坏等3种典型破坏模式,但主要以斜剪破坏为主;爆炸作用时间越短,峰值越高,柱截面

  20. Mine Blast Loading: Experiments and Simulations

    Science.gov (United States)

    2010-04-01

    The experimental data were tabulated, and then used to develop a computer program for floor plate response from land mine explosions. One...large-caliber KE weapon (assuming no perforation). The accelerations at the pelvic area exceeded limits for total incapacitation, although the...pores in dry and partially saturated materials (the p-α model is also used to describe swelling behavior , when it exists); and 3) the CTH

  1. Evaluation of Blast-Resistant Performance Predicted by Damaged Plasticity Model for Concrete

    Institute of Scientific and Technical Information of China (English)

    HUAN Yi; FANG Qin; CHEN Li; ZHANG Yadong

    2008-01-01

    In order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS.Simulation results agree with the experimental observations.It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.

  2. Mitigation of Blast Effects on Aluminum Foam Protected Masonry Walls

    Institute of Scientific and Technical Information of China (English)

    SU Yu; WU Chengqing; GRIFFITH Mike

    2008-01-01

    Terrorist attacks using improvised explosive devices (lED) can result in unreinforced masonry (URM) wall collapse.Protecting URM wall from lED attack is very complicated.An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy.However,mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world.In this palaer,numerical models are used to simulate the performance of aluminum foam protected URM walls subjected to blast loads.A distinctive model,in which mortar and brick units of masonry are discritized individually,is used to model the performance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model.The aluminum foam is modelled by a nonlinear elastoplastic material model.The material models for masonry,aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads.Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.

  3. Strain Rate Effects in CFRP Used For Blast Mitigation

    Directory of Open Access Journals (Sweden)

    Sarah. L. Orton

    2014-04-01

    Full Text Available The purpose of this research is to gain a better understanding of strain rate effects in carbon fiber reinforced polymer (CFRP laminates exposed to blast loading. The use of CFRP offers an attractive option for mitigating structures exposed to blasts. However, the effect of high strain rates in CFRP composites commonly used in the civil industry is unknown. This research conducted tensile tests of 21 CFRP coupons using a hydraulically powered dynamic loader. The strain rates ranged from 0.0015 s−1 to 7.86 s−1 and are representative of strain rates that CFRP may see in a blast when used to strengthen reinforced concrete structures. The results of the testing showed no increase in the tensile strength or stiffness of the CFRP at the higher strain rates. In addition, the results showed significant scatter in the tensile strengths possibly due to the rate of loading or manufacture of the coupon.

  4. Study of blast wave interactions with structures using a phase-stepped double reference beam holographic interferometer

    NARCIS (Netherlands)

    Booij, S.M.; Absil, L.H.J.; Bruinsma, A.J.A.; Braat, J.J.M.; Brug, H. van

    1999-01-01

    An optical study of blast wave propagation and interaction with multiple structures is presented, as well as a method for obtaining quantitative information on the pressure distribution from a number of phase-stepped images. The blast load distribution on buildings is studied by scaling down the bui

  5. Field experiment for blasting crater

    Institute of Scientific and Technical Information of China (English)

    YE Tu-qiang

    2008-01-01

    A series of single hole blasting crater experiments and a variable distance multi-hole simultaneous blasting experiment was carded in the Yunfu Troilite Mine, according to the Livingston blasting crater theory. We introduce in detail, our methodology of data collection and processing from our experiments. Based on the burying depth of the explosives, the blasting crater volume was fitted by the method of least squares and the characteristic curve of the blasting crater was obtained using the MATLAB software. From this third degree polynomial, we have derived the optimal burying depth, the critical burying depth and the optimal explosive specific charge of the blasting crater.

  6. Analysis of the Blasting Compaction on Gravel Soil

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available The settlement control is critical for the safety of road based on high filled embankment. The traditional construction methods have the characteristic with less soil thickness compacted at a time. There are many advantages to compact the gravel soil with blasting. The cavity in soil is formed by blasting and its fillings to form a composite foundation for the embankment. The field data show this composite foundation can meet the requirement of loading and settlement control with less construction time. In geotechnical blasting, the high temperature due to blasting will swell the material around, so its worthy to do the coupled analysis with thermal mechanics (TM and blasting compaction in the high filled embankment. In this paper, a 3D model is built with FLAC3D to simulate a single hole to predict the range and degree of thermal propagation. Then, the thermal strains got from the model are used to estimate the displacement of surrounding soil to predict the degree of compaction and optimize the distribution of blast holes in plan.

  7. Modelling Blast Effects on a Reinforced Concrete Bridge

    Directory of Open Access Journals (Sweden)

    Markellos Andreou

    2016-01-01

    Full Text Available The detailed investigation of blast phenomena and their catastrophic effects on existing structures are the main objectives of the present paper. It is well known that blast phenomena may be characterized by significant complexity, often involving complicated wave propagation effects as well as distinguishable material behaviors. Considering the above and in an attempt to provide a simplified modelling approach for the simulation of blast effects, a novel procedure is presented herein based on well-established methodologies and common engineering practices. In the above framework, firstly, the “predominant” deformation shape of the structure is estimated based on elastic finite element simulations under blast loads and then the structural response of the system is evaluated as a result of common computational beam-element tools such as displacement-based pushover analysis. The proposed methodology provides an immediate first estimation of the structural behavior under blast loads, based on familiar engineering procedures. A two-span reinforced concrete bridge was thoroughly investigated and the results provide insightful information regarding the damage patterns and localization.

  8. Blast Overpressure Studies.

    Science.gov (United States)

    1998-05-01

    USAARL Contract Report No. CR-98-Ö3 Blast Overpressure Studies By Daniel L. Johnson EG&G Management Systems, Inc. Albuquerque, New Mexico May...Both studies were done at the Blast Overpressure-Kirtland Test Site (BOP-KTS) in New Mexico . Under a contract conducted for the USAMRMC, EG&G was... TDH -4 9 elements mounted in a David Clark 9AN/2 ear muff for added noise isolation. The calibration of the earphones was accomplished using a Bruel

  9. ESF BLAST DESIGN ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    E.F. fitch

    1995-03-13

    The purpose and objective of this design analysis are to develop controls considered necessary and sufficient to implement the requirements for the controlled drilling and blasting excavation of operations support alcoves and test support alcoves in the Exploratory Studies Facility (ESF). The conclusions reached in this analysis will flow down into a construction specification ensuring controlled drilling and blasting excavation will be performed within the bounds established here.

  10. In-Tunnel Blast Pressure Empirical Formulas for Detonations External, Internal and at the Tunnel Entrance

    Institute of Scientific and Technical Information of China (English)

    LI Xiudi; ZHENG Yingren

    2006-01-01

    In order to define the loading on protective doors of an underground tunnel,the exact knowledge of the blast propagation through tunnels is needed.Thirty-three scale high-explosive tests are conducted to obtain in-tunnel blast pressure for detonations external,internal and at the tunnel entrance.The cross section of the concrete model tunnel is 0.67 m2.Explosive charges of TNT,ranging in mass from 400 g to 4 600 g,are detonated at various positions along the central axis of the model tunnel.Blast gages are flush-installed in the interior surface of the tunnel to record side-on blast pressure as it propagates down the tunnel.The engineering empirical formulas for predicting blast peak pressure are evaluated,and are found to be reasonably accurate for in-tunnel pressure prediction.

  11. PRESSURE-IMPULSE DIAGRAM OF MULTI-LAYERED ALUMINUM FOAM PANELS UNDER BLAST PRESSURE

    Directory of Open Access Journals (Sweden)

    CHANG-SU SHIM

    2013-06-01

    Full Text Available Anti-terror engineering has increasing demand in construction industry, but basis of design (BOD is normally not clear for designers. Hardening of structures has limitations when design loads are not defined. Sacrificial foam claddings are one of the most efficient methods to protect blast pressure. Aluminum foam can have designed yield strength according to relative density and mitigate the blast pressure below a target transmitted pressure. In this paper, multi-layered aluminum foam panels were proposed to enhance the pressure mitigation by increasing effective range of blast pressure. Through explicit finite element analyses, the performance of blast pressure mitigation by the multi-layered foams was evaluated. Pressure-impulse diagrams for the foam panels were developed from extensive analyses. Combination of low and high strength foams showed better applicability in wider range of blast pressure.

  12. Assessment, development, and testing of glass for blast environments.

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Sarah Jill

    2003-06-01

    Glass can have lethal effects including fatalities and injuries when it breaks and then flies through the air under blast loading (''the glass problem''). One goal of this program was to assess the glass problem and solutions being pursued to mitigate it. One solution to the problem is the development of new glass technology that allows the strength and fragmentation to be controlled or selected depending on the blast performance specifications. For example the glass could be weak and fail, or it could be strong and survive, but it must perform reliably. Also, once it fails it should produce fragments of a controlled size. Under certain circumstances it may be beneficial to have very small fragments, in others it may be beneficial to have large fragments that stay together. The second goal of this program was to evaluate the performance (strength, reliability, and fragmentation) of Engineered Stress Profile (ESP) glass under different loading conditions. These included pseudo-static strength and pressure tests and free-field blast tests. The ultimate goal was to provide engineers and architects with a glass whose behavior under blast loading is less lethal. A near-term benefit is a new approach for improving the reliability of glass and modifying its fracture behavior.

  13. Physical Modelling of Mine Blast Impact on Armoured Vehicles

    Science.gov (United States)

    Bochorishvili, Nika; Chikhradze, Nikoloz; Mataradze, Edgar; Akhvlediani, Irakli

    2016-10-01

    Studies related to the impact of a mine blast on armoured vehicles focus on aspects such as i) dynamic loads acting on the armoured vehicle at the moment of mine blast; ii) armoured vehicle response under the impact of a dynamic load; iii) dynamic loads acting on the crew and the assessment of potential human traumas. The paper presents similarity criteria for physical modelling of the mine blast under the armoured vehicle and the results of modelling of dynamic behaviour of vehicles. Similarity criteria, established as a result of the analysis of the governing parameters and similarity theory, are adequate to the processes of blast impact on the vehicle. Modelling experiments were conducted in the underground experimental base of the Mining Institute especially designed for the study of explosion processes. Physical modelling can be used for preliminary studies with the purpose of the evaluation of the protective level of armoured vehicles as well as for pre-testing experiments in accordance with STANAG 4569 requirements.

  14. Effect of the Location of the Detonation Initiation Point for Bench Blasting

    Directory of Open Access Journals (Sweden)

    Liang Liu

    2015-01-01

    Full Text Available Uneven floor and fragmentation play an important role in blasting operations due to the direct effects on the efficiency of hauling and loading. This paper focuses on the influences of initiation position on bench blasting in order to improve blasting effects. The numerical simulations of bench blasting at different initiation points (top, middle, and bottom are implemented based on secondary development of LS-DYNA with a tensile-compressive damage model. The damage spatial distribution characteristics of different initiation points are compared. The outlines of rock foundation and boulder areas are analyzed with the damage threshold of critical breakage that is ascertained by acoustic characteristic of damage rock mass. Results of the numerical simulations demonstrate that different initiation points make a great influence on the stress and energy distribution in blasting process and induce different blasting effects. Middle initiation turns out to be the best initiation to increase the flatness of the floor and decrease the oversize boulder ratio simultaneously, which will increase the damage areas of the bottom and top regions and give a better blasting effect. Field experiment in Baihetan Station was carried out to validate conclusions of numerical simulation. Research could provide a good reference for the improvement of rock blasting.

  15. Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties

    Institute of Scientific and Technical Information of China (English)

    Ranjan Kumar; Deepankar Choudhury; Kapilesh Bhargava

    2016-01-01

    In the recent decades, effects of blast loads on natural and man-made structures have gained considerable attention due to increase in threat from various man-made activities. Site-specific empirical relationships for calculation of blast-induced vibration parameters like peak particle velocity (PPV) and peak particle displacement (PPD) are commonly used for estimation of blast loads in design. However, these relation-ships are not able to consider the variation in rock parameters and uncertainty of in situ conditions. In this paper, a total of 1089 published blast data of various researchers in different rock sites have been collected and used to propose generalized empirical model for PPV by considering the effects of rock parameters like unit weight, rock quality designation (RQD), geological strength index (GSI), and uniaxial compressive strength (UCS). The proposed PPV model has a good correlation coefficient and hence it can be directly used in prediction of blast-induced vibrations in rocks. Standard errors and coefficient of correlations of the predicted blast-induced vibration parameters are obtained with respect to the observed field data. The proposed empirical model for PPV has also been compared with the empirical models available for blast vibrations predictions given by other researchers and found to be in good agreement with specific cases.

  16. Research on Progressive Collapse Mechanism and Collapse Modes of High-Rise Reinforced Concrete Structure Under Blast Load%爆炸荷载下高层钢筋混凝土结构连续倒塌机制与模式研究

    Institute of Scientific and Technical Information of China (English)

    丁阳; 刘卫宗

    2015-01-01

    高层建筑结构构件尺寸较大,爆炸荷载作用下应力波传播造成的材料破坏效应不能忽略,需要采用精细化模型来分析其非线性响应行为与连续倒塌过程,计算效率低,实用性差。本文将多尺度建模方法引入到爆炸荷载作用下高层建筑结构的连续倒塌分析中,依据爆炸荷载作用下高层建筑结构非线性破坏与连续倒塌的特点,提出了多尺度模型不同区域的确定方法,使用该方法对某高层建筑结构的连续倒塌机制和倒塌模式进行了研究。结果表明,相同 TNT 当量炸药的爆炸荷载作用下,比例距离较小时,高层钢筋混凝土结构可能发生单柱失效-双向联合倒塌模式;比例距离增大至某一区间时,结构则可能发生多柱失效-竖向倒塌模式。多柱失效-竖向倒塌模式影响范围广,对结构危害大,应通过采取防护措施避免该倒塌模式的发生。%Because of the huge member size of high-rise building structure,material damage effect caused by stress wave propagation under blast load cannot be ignored,but the nonlinear response and progressive collapse processof high-rise buildings can only be well-captured by refined model with low efficiency. Multi-scale modeling method is used in this paper to analyze progressive collapse of high-rise building structure under blast load. The method for de-termining the different regions of multi-scale model is proposed based on the nonlinear structural response and pro-gressive collapse characteristics of high-rise building under blast load. Progressive collapse mechanism and collapse modes of a typical high-rise building structure are studied. Results show that with the same amount of equivalent of TNT charge,vertical and horizontal progressive collapse mode caused by damage of one column tends to occur when scaled distance is small;vertical progressive collapse mode caused by damage of multiple columns may occur when scaled

  17. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    Science.gov (United States)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  18. A $55 Shock Tube for Simulated Blast Waves

    CERN Document Server

    Courtney, Elijah; Courtney, Michael

    2015-01-01

    Shock tubes are commonly employed to test candidate armor materials, validate numerical models, and conduct simulated blast experiments in animal models. As DoD interests desire to field wearable sensors as blast dosimeters, shock tubes may also serve for calibration and testing of these devices. The high blast pressures needed for experimental testing of candidate armors are unnecessary to test these sensors. An inexpensive, efficient, and easily available way of testing these pressure sensors is desirable. It is known that releasing compressed gas suddenly can create a repeatable shock front, and the pressures can be finely tuned by changing the pressure to which the gas is compressed. A Crosman 0.177 caliber air pistol was used (without loading any pellets) to compress and release air in one end of a 24 inch long 3/4 inch diameter standard pipe nipple to simulate a blast wave at the other end of the tube. A variable number of pumps were used to vary the peak blast pressure. As expected, the trials where 10...

  19. Effect of Foam Cladding for Blast Mitigation: Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; YE Ziqing; ZHANG Xingui

    2006-01-01

    Two numerical simulations were performed to investigate the protective effect of the foam cladding.One simulation is based on a previous experimental study,which is a ballistic pendulum with and without a foam cladding subjected to close-range blast loading.The other model is a steel beam with and without a foam cladding under blast loading.The overpressure due to the blast event can be calculated by the empirical function ConWep or by an arbitrary Lagrangian-Eulerian (ALE)coupling model.The first approach is relatively simple and widely used.The second approach can model the propagation of the blast wave in the air and the interaction between the air and the solid.Itis found that the pendulum with the foam cladding always swings to a larger rotation angel compared to a bare pendulum.However,the steel beam with an appropriate foam cladding has a smaller deflection compared to the bare beam without a foam cladding.It is concluded that the protective effect of the foam cladding depends on the properties of the foam and the protected structure.

  20. CONTROL OF FRAGMENTATION BY BLASTING

    Directory of Open Access Journals (Sweden)

    Branko Božić

    1998-12-01

    Full Text Available The degree of fragmentation influences the economy of the excavation operations. Characteristics of blasted rock such as fragment size, volume and mass are fundamental variables effecting the economics of a mining operation and are in effect the basis for evaluating the quality of a blast. The properties of fragmentation, such as size and shape, are very important information for the optimization of production. Three factors control the fragment size distribution: the rock structure, the quantity of explosive and its distribution within the rock mass. Over the last decade there have been considerable advances in our ability to measure and analyze blasting performance. These can now be combined with the continuing growth in computing power to develop a more effective description of rock fragmentation for use by future blasting practitioners. The paper describes a view of the fragmentation problem by blasting and the need for a new generation of engineering tools to guide the design and implementation of blasting operations.

  1. Blast effects of external explosions

    OpenAIRE

    Sochet, Isabelle

    2010-01-01

    International audience; Security considerations for industrial production and storage require characterization of the mechanical effects caused by blast waves resulting from a detonation or deflagration. This paper evaluates current analytical methods to determine the characteristic parameters of a blast wave with respect to the pressure, impulse and duration of the positive phase of the blast. In the case of a detonation, the trinitrotoluene (TNT) equivalent-based method determines the mass ...

  2. Rock blasting and explosives engineering

    Energy Technology Data Exchange (ETDEWEB)

    Persson, P.-A.; Holmberg, R.; Lee, J. (New Mexico Institute of Mining and Technology, Socorro, NM (United States). Research Center for Energetic Materials)

    1994-01-01

    The book covers the practical engineering aspects of different kinds of rock blasting. It includes a thorough analysis of the cost of the entire process of tunneling by drilling and blasting compared with full-face boring. It covers the economics of the entire rock blasting operation and its dependence on the size of excavation. The book highlights the fundamentals of rock mechanics, shock waves and detonation, initiation and mechanics of rock motion. It describes the engineering design principles and computational techniques for many separate mining methods and rock blasting operations. 274 refs.

  3. Mesh Size Effect in Numerical Simulation of Blast Wave Propagation and Interaction with Structures

    Institute of Scientific and Technical Information of China (English)

    SHI Yanchao; LI Zhongxian; HAO Hong

    2008-01-01

    Numerical method is popular in analysing the blast wave propagation and interaction with structures.However, because of the extremely short duration of blast wave and energy transmission between different grids, the numerical results are sensitive to the finite element mesh size.Previous numerical simulations show that a mesh size acceptable to one blast scenario might not be proper for another case, even though the difference between the two scenarios is very small,indicating a simple numerical mesh size convergence test might not be enough to guarantee accurate numerical results.Therefore, both coarse mesh and fine mesh were used in different blast scenarios to investigate the mesh size effect on numerical results of blast wave propagation and interaction with structures.Based on the numerical results and their comparison with field test results and the design charts in TM5-1300, a numerical modification method was proposed to correct the influence of the mesh size on the simulated results.It can be easily used to improve the accuracy of the numerical results of blast wave propagation and blast loads on structures.

  4. Blast Quantification Using Hopkinson Pressure Bars.

    Science.gov (United States)

    Clarke, Samuel D; Fay, Stephen D; Rigby, Samuel E; Tyas, Andrew; Warren, James A; Reay, Jonathan J; Fuller, Benjamin J; Gant, Matthew T A; Elgy, Ian D

    2016-07-05

    Near-field blast load measurement presents an issue to many sensor types as they must endure very aggressive environments and be able to measure pressures up to many hundreds of megapascals. In this respect the simplicity of the Hopkinson pressure bar has a major advantage in that while the measurement end of the Hopkinson bar can endure and be exposed to harsh conditions, the strain gauge mounted to the bar can be affixed some distance away. This allows protective housings to be utilized which protect the strain gauge but do not interfere with the measurement acquisition. The use of an array of pressure bars allows the pressure-time histories at discrete known points to be measured. This article also describes the interpolation routine used to derive pressure-time histories at un-instrumented locations on the plane of interest. Currently the technique has been used to measure loading from high explosives in free air and buried shallowly in various soils.

  5. Risk Assessment and Optimisation of Blast Mitigation Strategies for Design and Strengthening of Built Infrastructure

    Institute of Scientific and Technical Information of China (English)

    STEWART Mark G

    2006-01-01

    A probabilistic risk assessment procedure is developed which can predict risks of explosive blast damage to built infrastructure,and when combined with life-cycle cost analysis,the procedure can be used to optimise blastmitigation strategies.The paper focuses on window glazing since this is a load-capacity system which,when subjected to blast loading,has caused significant damage and injury to building occupants.Structural reliability techniques are used to derive blast reliability curves for annealed and toughened glazing subjected to explosive blast for a variety of threat scenarios.The probabilistic analyses include the uncertainties associated with blast modelling,glazing response and glazing failure criteria.Damage risks are calculated for an individual window and for windows in the facade of a multi-storey commercial building.The paper shows an illustrative exampie of how this information,when combined with risk-based decision-making criteria,can be used to optimise blast mitigation strategies.

  6. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting circuits. 75.1323 Section 75.1323... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1323 Blasting circuits. (a) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made...

  7. 29 CFR 1926.912 - Underwater blasting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Underwater blasting. 1926.912 Section 1926.912 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.912 Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired...

  8. 30 CFR 57.6803 - Blasting lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting lines. 57.6803 Section 57.6803 Mineral... and Underground § 57.6803 Blasting lines. Permanent blasting lines shall be properly supported. All blasting lines shall be insulated and kept in good repair. General Requirements—Surface and Underground...

  9. 30 CFR 56.6312 - Secondary blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting. 56.6312 Section 56.6312... Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from one source. Electric Blasting...

  10. 30 CFR 56.6803 - Blasting lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting lines. 56.6803 Section 56.6803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Blasting lines. Permanent blasting lines shall be properly supported. All blasting lines shall be...

  11. Skull Flexure from Blast Waves: A New Mechanism for Brain Injury with Implications for Helmet Design

    CERN Document Server

    Moss, William C; Blackman, Eric G

    2008-01-01

    Traumatic brain injury [TBI] has become the signature injury of current military conflicts. The debilitating effects of TBI on society are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various mechanisms, including impacts caused by the blast, have been investigated, but blast-induced deformation of the skull has been neglected. Through the use of hydrodynamical numerical simulations, we have discovered that non-lethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. This mechanism has implications for the diagnosis of TBI in soldiers and the design of protective equipment such as helmets.

  12. An investigation of a reticulated foam - perforated steel sheet combination as a blast mitigation structure

    Science.gov (United States)

    Nguyen, Thuy-Tien N.; Proud, William G.

    2017-01-01

    Explosions are one of the main causes of injuries during battles and conflicts, with improvised explosive devices (IEDs) becoming increasingly common. Blast waves produced from such explosions can inflict very complex injuries on human and serious damage to structures. Here, the interaction between blast waves and sandwich structures of reticulated foam and perforated sheets is studied using a shock tube. The level of mitigation for primary blast injuries of these structures are discussed in terms of pulse shape, pressure magnitude and impulse. Schlieren photography and other high-speed imaging were used to capture the form of the blast wave. The results show up to 95% mitigation in both pressure and impulse with the structures studied. The behaviors of these mitigating sandwich panels under two loadings, Mach 2.0 and Mach 2.6, are also discussed.

  13. Identification of blast resistance genes for managing rice blast disease

    Science.gov (United States)

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...

  14. Assessment of the Effect of Blast Hole Diameter on the Number of Oversize Boulders Using ANN Model

    Science.gov (United States)

    Dhekne, Prakash; Pradhan, Manoj; Jade, Ravi Krishnarao

    2016-04-01

    Now-a-days, blasts are planned using large diameter blast holes. The loading density (kg/m) and subsequently the energy available for the breakage of the rockmass increase with the diameter. The in-hole velocity of detonation (VoD) of non-ideal explosive also boosts up with the increase in diameter till the optimum diameter is reached. The increase in the energy content and in-hole VoD cause a sizable effect on the rock fragmentation. The effect can be assessed by counting the number of oversize boulders. This paper explains as to how the technique of artificial neural network modeling was used to predict the number of oversize boulders resulting from ANFO and SME blasts with blast holes of different diameters. The results from ANFO blasts indicated that there was no significant variation in the number of oversize boulders with the diameter whereas a perceptible variation was noticed in case of SME blasts with the change in the diameter. The change in the number of oversize boulders in ANFO blasts was negligible because mean energy factor remained almost same even when the diameter of the blast holes was altered. The decrease in the number of oversize boulders in SME blasts was on account of increase in mean energy factor when the blast hole diameter was increased. The increase in the in-hole VoD due to increase in the diameter of the hole was not found to have an effect on the generation of oversize boulders as this increase was not substantial both in SME and ANFO blasts.

  15. Discrete fiber-reinforced polyurea systems for infrastructure strengthening and blast mitigation

    Science.gov (United States)

    Carey, Natalia L.

    The research presented in this dissertation focused on evaluating the effectiveness of various blast mitigation materials and coating technologies to be used for enhancing blast resistance of structural members. Mechanical properties and blast mitigation performance of different discrete fiber-reinforced polyurea (DFRP) systems were investigated through experimental and analytical work. Four technical papers discuss the research efforts conducted within this dissertation. The first paper examined the development and characterization of different DFRP systems for infrastructure strengthening and blast retrofit. The behavior of various systems which consisted of chopped E-glass fibers discretely integrated in with the polyurea matrix was evaluated through coupon tensile testing. The addition of glass fiber to a polymer coating provided improved stiffness and strength to the composite system while the polyurea base material provided ductility. The second paper evaluated the behavior of hybrid, plain, and steel fiber-reinforced concrete panels coated with various polyurea and DFRP systems under blast loading. Hybrid panels demonstrated higher blast mitigation performance compared to plain and steel fiber-reinforced concrete panels due to sacrificial hybrid layer. The addition of plain polyurea or DFRP systems on the tension side improved panel performance by containing fragmentation during a blast event. The third paper presents an analytical investigation conducted using the explicit finite element program LS-DYNA to model panel and coating response under blast loading. Several modeling solutions were undertaken and compared for concrete formulation. Modeling results were analyzed and compared to the experimental work to validate the conclusions. The final paper describes an internal equilibrium mechanics based model developed to predict the flexural capacity of reinforced concrete beams strengthened with various DFRP systems. The developed model was validated using

  16. NCBI BLAST: a better web interface.

    Science.gov (United States)

    Johnson, Mark; Zaretskaya, Irena; Raytselis, Yan; Merezhuk, Yuri; McGinnis, Scott; Madden, Thomas L

    2008-07-01

    Basic Local Alignment Search Tool (BLAST) is a sequence similarity search program. The public interface of BLAST, http://www.ncbi.nlm.nih.gov/blast, at the NCBI website has recently been reengineered to improve usability and performance. Key new features include simplified search forms, improved navigation, a list of recent BLAST results, saved search strategies and a documentation directory. Here, we describe the BLAST web application's new features, explain design decisions and outline plans for future improvement.

  17. Shock tubes and blast injury modeling

    Institute of Scientific and Technical Information of China (English)

    Ya-Lei Ning; Yuan-Guo Zhou

    2015-01-01

    Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks.The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments.Therefore,development of stable,reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research.The present review addresses the modeling of blast injury and applications of shock tubes.

  18. Circulation in blast driven instabilities

    Science.gov (United States)

    Henry de Frahan, Marc; Johnsen, Eric

    2016-11-01

    Mixing in many natural phenomena (e.g. supernova collapse) and engineering applications (e.g. inertial confinement fusion) is often initiated through hydrodynamic instabilities. Explosions in these systems give rise to blast waves which can interact with perturbations at interfaces between different fluids. Blast waves are formed by a shock followed by a rarefaction. This wave profile leads to complex time histories of interface acceleration. In addition to the instabilities induced by the acceleration field, the rarefaction from the blast wave decompresses the material at the interface, further increasing the perturbation growth. After the passage of the wave, circulation circulation generated by the blast wave through baroclinic vorticity continues to act upon the interface. In this talk, we provide scaling laws for the circulation and amplitude growth induced by the blast wave. Numerical simulations of the multifluid Euler equations solved using a high-order accurate Discontinuous Galerkin method are used to validate the theoretical results.

  19. BLAST: the Redshift Survey

    CERN Document Server

    Eales, Stephen; Devlin, Mark J; Dye, Simon; Halpern, Mark; Hughes, David H; Marsden, Gaelen; Mauskopf, Philip; Moncelsi, Lorenzo; Netterfield, Calvin B; Pascale, Enzo; Patanchon, Guillaume; Raymond, Gwenifer; Rex, Marie; Scott, Douglas; Semisch, Christopher; Siana, Brian; Truch, Matthew D P; Viero, Marco P

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed ~=8.7 deg^2 centered on GOODS-South at 250, 350 and 500 microns. In Dye et al. (2009) we presented the catalogue of sources detected at $\\rm 5\\sigma$ in at least one band in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 83 of these counterparts. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST band...

  20. Blast Protection of Unreinforced Masonry Walls: A State-of-the-Art Review

    Directory of Open Access Journals (Sweden)

    Lucas Lantz

    2016-01-01

    Full Text Available The recent rise of terrorist attacks has reinforced the need for mitigation of damage caused by blast loading on unreinforced masonry walls. The primary goal of the techniques is to prevent the loss of life while simultaneously preserving the integrity of the structure. This paper presents a compilation of recently available literature on blast protection of unreinforced masonry walls. It seeks to present the state of the art in this field, including mitigation techniques considered as well as testing methods selected. Fiber reinforced polymers and polyurea are the two dominant retrofitting techniques being assessed in the field. Other techniques include but are not limited to polyurethane, steel sheets, and aluminum foam. Since there is no widely implemented standard for blast loading test procedures, direct comparisons between the efficiencies of the mitigation techniques proposed are not always feasible. Although fragmentation is an indicator of the efficiency of retrofits, it is currently measured by subjective observation of postblast debris.

  1. Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach

    Directory of Open Access Journals (Sweden)

    Amichai Mitelman

    2014-12-01

    Full Text Available This paper presents the application of a hybrid finite-discrete element method to study blast-induced damage in circular tunnels. An extensive database of field tests of underground explosions above tunnels is used for calibrating and validating the proposed numerical method; the numerical results are shown to be in good agreement with published data for large-scale physical experiments. The method is then used to investigate the influence of rock strength properties on tunnel durability to withstand blast loads. The presented analysis considers blast damage in tunnels excavated through relatively weak (sandstone and strong (granite rock materials. It was found that higher rock strength will increase the tunnel resistance to the load on one hand, but decrease attenuation on the other hand. Thus, under certain conditions, results for weak and strong rock masses are similar.

  2. The behavior limestone under explosive load

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.

    2016-11-01

    Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.

  3. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.

    Science.gov (United States)

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1-3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68-1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared

  4. A Study on Nuclear Blast Overpressure on Buildings and other infrastructures using Geospatial Technology

    Directory of Open Access Journals (Sweden)

    D. Thirumalaivasan

    2012-01-01

    Full Text Available An Improvised Nuclear Device or nuclear bomb of yield 10 kiloton to 20 kiloton explodes in any major city due to terrorism or any other reason can cause catastrophic damages on the building's and other infrastructures and also shutting down of critical life-safety systems.. The explosion may produce blast overpressure, thermal radiation and harmful instant and delayed nuclear radiations. The buildings and other Civil Engineering structures may be highly vulnerabke due to the blast overpressure from the explosion and thermal radiation. In this present study Remote Sensing and Geographical Information System is effectively utilized to model the blast affected zone from the ground Zero of the study area. This study also introduces different emperical methods to estimate blast loads and structural response. The purpose is to describe the blast effects of a nuclear explosion, thereby informing people of the real dangers posed by nuclear weapons. Therefore, as a case study, we consider a hypothetical City as a target for detonation. Due to security reasons the data for existing City is not used for this study purpose. The study area is hypothetically detonated with a 15 kiloton yield nuclear explosion as surface blast and wind spped is assumed as 5 meters per second.

  5. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    CERN Document Server

    Courtney, Michael

    2011-01-01

    Instrumentation is needed to produce realistic blast waves in a laboratory setting. This paper describes the development and characterization of oxy-acetylene driven, laboratory scale shock tubes for use in studying blast injury, candidate armor materials, and material properties at blast loading rates. The pressure-time profiles show a true shock front and exponential decay characteristic of blast waves and have relevant durations. The modular design includes shock tube diameters of 27 mm and 41 mm, and a selection of peak pressures from 204 kPa to 920 kPa can be produced by selection of the driver section diameter and placement of the test sample. Characterization studies of several driver/driven section combinations showed consistent results, with peak pressures having 0.8 - 6.9 percent uncertainty in the mean. This shock tube design provides a more realistic blast profile than current air-driven shock tubes. In addition, operation does not require specialized personnel or facilities like most blast-driven...

  6. Lumped mass modeling of overburden motion during explosive blasting

    Energy Technology Data Exchange (ETDEWEB)

    Schamaun, J. T.

    1981-02-01

    The in situ extraction of oil from most oil shale beds is highly dependent upon explosive fracturing and rubbling of rock in a controlled and predictable manner. Besides the rubbling requirement, it is also important that the surrounding rock remain competent to minimize fluid leakage during processing. For rubbling concepts in which the overburden is explosively lifted to provide the required void in an oil shale zone, an engineering lumped mass model has been devised to describe the motion of the overburden. The model simulates the overburden as an array of interacting lumped masses which are loaded from below with a time-dependent force to approximate the explosive load. Correlation with experimental data obtained from field blasting operations shows that this model will provide an adequate approximation of overburden behavior. The basic features of the model are described in the report along with the correlations with field data. Results from several parametric studies are also presented which were used to aid in blast design. This lumped mass model can be extended to include other parameters and has potential for the study of other related blasting situations.

  7. 75 FR 56489 - Separation Distances of Ammonium Nitrate and Blasting Agents From Explosives or Blasting Agents...

    Science.gov (United States)

    2010-09-16

    ... Ammonium Nitrate and Blasting Agents From Explosives or Blasting Agents (2002R-226P) AGENCY: Bureau of... CFR 555.220 set forth a table of separation distances of ammonium nitrate and blasting agents from explosives or blasting agents followed by six explanatory notes. Note three (3) states that the...

  8. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...... the fatigue loads, the rotor, blades and tower moments are presented. The fatigue loads are evaluated using rainflow counting described in detail in Ref. [1]. The 1Hz equivalent load ranges are calculated at different wind speeds. All information regarding the instrumentation is collected in [ref 4] and [ref...

  9. Dynamic Analysis of Structural Columns Subjected to Impulsive Loading

    Institute of Scientific and Technical Information of China (English)

    GONG Shunfeng; LU Yong; GAO Feng; JIN Weiliang

    2006-01-01

    For a building structure subjected to impulsive loading,particularly shock and impact loading,the response of the critical columns is crucial to the behaviour of the entire system during and after the blast loading phase.Therefore,an appropriate evaluation of the column response and damage under short-duration impulsive loading is important in a comprehensive assessment of the performance of a building system.This paper reports a dynamic analysis approach for the response of RC columns subjected to impulsive loading.Considering that the dynamic response of a column in a frame structure can also be affected by the floor movement which relates to the global vibration of the frame system,a generic column-mass model is used,in which a concentrated mass is attached to the column top to simulate the effect of a global vibration.To take into account the high shear effect under impulsive load,the model is formulated using Timoshenko beam theory,and three main nonlinear mechanisms are considered.Two typical scenarios,one under a direct air blast loading,and another under a blast-induced ground excitation,are analyzed and the primary response features are highlighted.

  10. Ultimate deformation capacity of reinforced concrete slabs underblast load

    NARCIS (Netherlands)

    Doormaal, J.C.A.M. van; Weerheijm, J.

    1996-01-01

    In this paper a test method to determine the deformation capacity and the resistance-deformation curve of blast-loaded slabs is described. This method was developed at TNO-PML. The method has been used to determine the ultimate deformation capacity of some simply supported reinforced concrete slabs

  11. The propagation of blast pulses through dampened granular media

    Science.gov (United States)

    Badham, Henry; Chalmers, Max; Nguyen, Thuy-Tien Ngoc; Proud, William Graham

    2017-01-01

    The propagation of stress through granular and dampened granular material has been reported previously, the addition of significant amounts of liquid in granular beds causes the mechanism of transmission of blast from one of percolation through the bed pores to one of stress transmission through the granules of the bed. It has been shown, however, that limited amounts liquid can retard propagation within blast-loaded beds by approximately an order of magnitude. This paper presents data on percolation through dampened granular beds using a shock tube as the pressure driver. The effect of particle shape and size was investigated using angular grains of quartz sand as well as smooth glass microspheres. The effect of addition of small amounts of liquids is presented.

  12. Source model for blasting vibration

    Institute of Scientific and Technical Information of China (English)

    DING; Hua(丁桦); ZHENG; Zhemin(郑哲敏)

    2002-01-01

    By analyzing and comparing the experimental data, the point source moment theory and the cavity theory, it is concluded that the vibrating signals away from the blasting explosive come mainly from the natural vibrations of the geological structures near the broken blasting area. The source impulses are not spread mainly by the inelastic properties (such as through media damping, as believed to be the case by many researchers) of the medium in the propagation pass, but by this structure. Then an equivalent source model for the blasting vibrations of a fragmenting blasting is proposed, which shows the important role of the impulse of the source's time function under certain conditions. For the purpose of numerical simulation, the model is realized in FEM, The finite element results are in good agreement with the experimental data.

  13. Reliability of Hydrox explosive blasting

    Energy Technology Data Exchange (ETDEWEB)

    Chikunov, V.I.; Chulkov, O.G.; Domanov, V.P.

    1980-03-01

    The safest method of blasting in coal mines with methane and coal dust hazards is with the flameless Hydrox charges. The results of operational tests on Hydrox BV-A2U charges with a I-43 initiator in underground coal mines are discussed. Efficiency and reliability of blasting using Hydrox BV-A2U compared to BV-48 Hydrox charges is evaluated. Results of blasting and the percentage of charge failures are given in tables. It is suggested that BV-A2U Hydrox charges are superior to BV-48, as no charge failures occur, operational time of BV-A2U is up to 5 seconds and the maximum operational time spread is 1.8 sec (weight of initiator 0.05 kg). Blasting properties of BV-A2U are stable and do not change as a result of long storage. (In Russian)

  14. Explosive Blast Neuropathology and Seizures

    Directory of Open Access Journals (Sweden)

    S. Krisztian eKovacs

    2014-04-01

    Full Text Available Traumatic brain injury (TBI due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies.

  15. Blasting Vibration Generated by Breaking-Blasting Large Barriers with EBBLB

    OpenAIRE

    Wang Zhen-xiong; Gu Wen-bin; Liang Ting; Liu Jian-qing; Xu Jing-lin; Liu Xin

    2016-01-01

    Equipment for breaking and blasting large barriers (EBBLB) is new break-blast equipment, which inevitably induces ground vibration and may cause substantial damage to rock mass and nearby structures as well as human beings. The ground vibration induced by break-blast is one of the inevitable outcomes. By monitoring vibration at measuring points at different distances from blasting center, time history curve of vibrating velocity can be obtained; it can be drawn that blasting seismic waves are...

  16. Porcine head response to blast

    Directory of Open Access Journals (Sweden)

    Jay eShridharani

    2012-05-01

    Full Text Available Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposed porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110-740 kPa peak incident overpressure with scaled durations from 1.3-6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. The bulk head acceleration and the pressure at the surface of the head and in the cranial cavity were measured. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within thirty seconds and the remaining two recovered within 8 minutes following bagging and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80-685 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300-2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385-3845 G’s and were well correlated with peak incident overpressure (R2=0.90. One standard deviation corridors for the surface pressure, intracranial pressure, and head acceleration are presented to provide experimental data for

  17. Centrifugal shot blast system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997.

  18. Load Measurements

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regardi...

  19. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.

    Science.gov (United States)

    Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  20. 30 CFR 72.610 - Abrasive blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abrasive blasting. 72.610 Section 72.610... HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.610 Abrasive blasting. (a) Surface and underground mines. When an abrasive blasting operation is performed, all exposed miners shall properly...

  1. BLEVE blast by expansion-controlled evaporation

    NARCIS (Netherlands)

    Berg, A.C. van den; Voort, M.M. van der; Weerheijm, J.; Versloot, N.H.A.

    2006-01-01

    This report presents a new method to calculate the blast effects originating from an exploding vessel of liquefied gas. Adequate blast calculation requires full knowledge of the blast source characteristics, that is, the release and subsequent evaporation rate of the flashing liquid. Because the con

  2. 30 CFR 57.6312 - Secondary blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting. 57.6312 Section 57.6312... Transportation-Surface and Underground § 57.6312 Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from one source. Electric Blasting—Surface and Underground...

  3. 30 CFR 58.610 - Abrasive blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abrasive blasting. 58.610 Section 58.610... SAFETY AND HEALTH HEALTH STANDARDS FOR METAL AND NONMETAL MINES Miscellaneous § 58.610 Abrasive blasting. (a) Surface and underground mines. When an abrasive blasting operation is performed, all...

  4. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  5. 30 CFR 77.1300 - Explosives and blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting. 77.1300 Section 77... Explosives and Blasting § 77.1300 Explosives and blasting. (a) No explosives, blasting agent, detonator, or any other related blasting device or material shall be stored, transported, carried, handled,...

  6. 30 CFR 75.1326 - Examination after blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Examination after blasting. 75.1326 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1326 Examination after blasting. (a) After blasting, the blasting area shall not be entered until it is clear of...

  7. Numerical simulation of stress for the blasting of foundation pit

    Institute of Scientific and Technical Information of China (English)

    FEI Hong-lu; ZHAO Xin-pu

    2008-01-01

    Through the simulation of explicit dynamic analysis software LS-DYNA, made an analysis to the particle velocity and the stress distribution of surrounding rock when the explosives blasting. Explicated the mechanical character of surrounding rock in the foun-dation pit blasting, provided a basis to set of blasting parameters and optimized the blast-ing construction.

  8. 30 CFR 780.13 - Operation plan: Blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: Blasting. 780.13 Section 780.13... Operation plan: Blasting. (a) Blasting plan. Each application shall contain a blasting plan for the proposed... methods to be applied in controlling the adverse effects of blasting operations. (b) Monitoring...

  9. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Science.gov (United States)

    2010-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Blasting agent Minimum thickness of artificial barricades (in.) 100 3 11 12 100 300 4 14 12 300 600 5 18...

  10. Toxicology of blast overpressure.

    Science.gov (United States)

    Elsayed, N M

    1997-07-25

    Blast overpressure (BOP) or high energy impulse noise, is the sharp instantaneous rise in ambient atmospheric pressure resulting from explosive detonation or firing of weapons. Blasts that were once confined to military and to a lesser extent, occupational settings, are becoming more universal as the civilian population is now increasingly at risk of exposure to BOP from terrorist bombings that are occurring worldwide with greater frequency. Exposure to incident BOP waves can cause auditory and non-auditory damage. The primary targets for BOP damage are the hollow organs, ear, lung and gastrointestinal tract. In addition, solid organs such as heart, spleen and brain can also be injured upon exposure. However, the lung is more sensitive to damage and its injury can lead to death. The pathophysiological responses, and mortality have been extensively studied, but little attention, was given to the biochemical manifestations, and molecular mechanism(s) of injury. The injury from BOP has been, generally, attributed to its external physical impact on the body causing internal mechanical damage. However, a new hypothesis has been proposed based on experiments conducted in the Department of Respiratory Research, Walter Reed Army Institute of Research, and later in the Department of Occupational Health, University of Pittsburgh. This hypothesis suggests that subtle biochemical changes namely, free radical-mediated oxidative stress occur and contribute to BOP-induced injury. Understanding the etiology of these changes may shed new light on the molecular mechanism(s) of injury, and can potentially offer new strategies for treatment. In this symposium. BOP research involving auditory, non-auditory, physiological, pathological, behavioral, and biochemical manifestations as well as predictive modeling and current treatment modalities of BOP-induced injury are discussed.

  11. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-14

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts. The debilitating effects of TBI are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various possibilities have been investigated, but blast-induced deformation of the skull has been neglected. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. The possibility that this mechanism may contribute to TBI has implications for the diagnosis of soldiers and the design of protective equipment such as helmets.

  12. Performance testing of lead free primers: blast waves, velocity variations, and environmental testing

    CERN Document Server

    Courtney, Elya; Summer, Peter David; Courtney, Michael

    2014-01-01

    Results are presented for lead free primers based on diazodinitrophenol (DDNP)compared with tests on lead styphnate based primers. First, barrel friction measurements in 5.56 mm NATO are presented. Second, shot to shot variations in blast waves are presented as determined by detonating primers in a 7.62x51mm rifle chamber with a firing pin, but without any powder or bullet loaded and measuring the blast wave at the muzzle with a high speed pressure transducer. Third, variations in primer blast waves, muzzle velocities, and ignition delay are presented after environmental conditioning (150 days) for two lead based and two DDNP based primers under cold and dry (-25 deg C,0% relative humidity), ambient (20 deg C, 50% relative humidity), and hot & humid (50 deg C, 100% relative humidity) conditions in 5.56 mm NATO. Taken together, these results indicate that DDNP based primers are not sufficiently reliable for service use.

  13. Two-material optimization of plate armour for blast mitigation using hybrid cellular automata

    Science.gov (United States)

    Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.

    2012-08-01

    With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.

  14. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast

    Directory of Open Access Journals (Sweden)

    S. N. Raman

    2012-01-01

    Full Text Available The main distinction of blast load from other types of dynamic loadings is its impulsive nature, where the loads usually act for a very short duration but transmit very high impulsive pressures. This paper presents an overview of the present retrofitting techniques in use to enhance the capacity of structural elements to withstand the effects of blast loads, and introduces an alternative retrofitting approach by utilizing polymer coatings. The authors have demonstrated the positive effects of this approach by conducting a numerical investigation on the behavior of an unretrofitted reinforced concrete panel subjected to the blast load from a 2 kg charge at 1.6 m stand-off distance, and subsequently comparing its performance with several polymer coated panels. The analysis was performed by using an explicit nonlinear finite element (FE code. The results demonstrate the contributions of this technique in terms of panel displacement control and energy dissipation. Considering that the polymer coating can also act as a protective layer in improving the durability of structural materials, this technique can also be optimized favorably to enhance the overall sustainability of structures.

  15. Simulating geometrically complex blast scenarios

    Institute of Scientific and Technical Information of China (English)

    Ian G. CULLIS; Nikos NIKIFORAKIS; Peter FRANKL; Philip BLAKELY; Paul BENNETT; Paul GREENWOOD

    2016-01-01

    The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs) often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length-and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  16. Simulating geometrically complex blast scenarios

    Directory of Open Access Journals (Sweden)

    Ian G. Cullis

    2016-04-01

    Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  17. Blast impact behaviour of concrete with different fibre reinforcement

    Directory of Open Access Journals (Sweden)

    Drdlová Martina

    2015-01-01

    Full Text Available The paper summarizes the results of the development of special concrete intended for the explosion resistance applications, with the emphasis on minimal secondary fragments formation at the explosion. The fine-grained concrete matrix has been reinforced by various types of short dispersed fibers (metallic, mineral and polymer of different sizes and by their combination and the effect of the fibre reinforcement on the physico-mechanical properties and blast resistance was observed. The concrete prism specimens have been subjected to the determination of mechanical parameters (compressive and flexural strength at quasi-static load. The blast tests were conducted on the slab specimens prepared from selected mixtures. The material characteristics and explosion test data have been used for numerical investigation, which defined the optimal wall composition and dimensions of the concrete element which should resist the explosion defined by type, size, weight and placement of the blast. In the next step the test elements resistance was verified by real explosion test.

  18. Blast testing and analysis of composite steel stud wall panels

    Energy Technology Data Exchange (ETDEWEB)

    Wesevich, J.W.; Lowak, M.J.; Hu, W.; Bingham, B.L. [Baker Engineering and Risk Consultants Inc., San Antonio, TX (United States); Hallisy, J. [Fiberwrap Composite Technologies, Calverton, NY (United States); Calcetas, P. [Lafarge North America, Concord, ON (Canada)

    2007-07-01

    This paper described a novel modular blast resistant composite steel stud wall panel system. The system was manufactured by casting steel studs with thin, high-strength concrete. Ten composite panel design specimens were evaluated and tested at a shock tube test facility. Specimens included both 12 and 16 gauge 6 inch cold-formed double or single studs spaced at either 12 or 16 inches on center. Samples also included both steam and ambient cured concretes with steel or organic fibers ranging in thickness between 1 and 2 inches. A welded wire mesh within the concrete layer was used to provide composite action. Results of the blast tests showed that the composite panels achieved minimal damage levels under applied blast loads, which ranged from between 15.9 psi to 205 psi. Peak dynamic reflections ranged from between 2.75 increase to 12 inches. It was concluded that finite element models and single-degree-of-freedom (SDOF) analyses showed good agreement with the experimental studies.

  19. 30 CFR 57.20031 - Blasting underground in hazardous areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting underground in hazardous areas. 57... MINES Miscellaneous § 57.20031 Blasting underground in hazardous areas. In underground areas where... removed to safe places before blasting....

  20. Development of Andalusite Bricks for Hot Blast Stove

    Institute of Scientific and Technical Information of China (English)

    KANG Huarong; LI Xianming; DONG Shengying; XUE Wendong; LI Yong; SONG Wen

    2008-01-01

    Low-creep andalusite bricks are characterized by high refractoriness under load, good anti-creep property, high mechanical strength, low porosity, good thermal shock resistance, etc. In this study, low-creep andalusite brick specimens were investigated in the lab using mullite, bauxite and andalusite. Andalusite with the different panicle sizes were used in the experiment and the specimen with the best property was selected as the production standard. In addition, the industrial produced low-creep andalusite bricks were compared with other low-creep bricks. The results show that the developed low-creep andalusite bricks is an excellent material for hot blast stove.

  1. Blast-Induced Damage on Millisecond Blasting Model Test with Multicircle Vertical Blastholes

    Directory of Open Access Journals (Sweden)

    Qin-yong Ma

    2015-01-01

    Full Text Available To investigate the blast-induced damage effect on surrounding rock in vertical shaft excavation, 4 kinds of millisecond blasting model tests with three-circle blastholes were designed and carried out with excavation blasting in vertical shaft as the background. The longitudinal wave velocity on the side of concrete model was also measured before and after blasting. Then blast damage factor was then calculated by measuring longitudinal wave velocity before and after blasting. The test results show that the blast-induced damage factor attenuated gradually with the centre of three-circle blastholes as centre. With the threshold value of 0.19 for blast-induced damage factor, blast-induced damage zones for 4 kinds of model tests are described and there is an inverted cone blast-induced damage zone in concrete model. And analyses of cutting effect and blast-induced damage zone indicate that in order to minimize the blast-induced damage effect and ensure the cutting effect the reasonable blasting scheme for three-circle blastholes is the inner two-circle blastholes initiated simultaneously and the outer third circle blastholes initiated in a 25 ms delay.

  2. Hard rock excavation at the CSM/OCRD test site using Swedish blast design techniques

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, R.

    1983-09-01

    This report is the third in a series describing research conducted by the Colorado School of Mines for the Office of Crystalline Repository Development (OCRD) to determine the extent of blast damage in rock surrounding an underground opening. A special room, called the CSM/OCRD room, was excavated at the CSM experimental mine for the purpose of assessing blast damage in the rock around the room. Even though this mine is not proposed as a nuclear waste repository site, the instrumentation and methods of blast damage assessment developed in this project are applicable to proposed repository sites. This report describes the application of Swedish blasting technology for the excavation of the test room. The design of the blasting patterns including the selection of explosives, hole sizes and location, explosive loading densities, and delay intervals is based upon the theories of Langefors and Kihlstrom in combination with methods used at the Swedish Detonic Research Foundation for minimizing unwanted rock damage. The practical application of the design procedures to seven rounds and the achieved results is discussed.

  3. Improved BLAST for wireless communications

    Institute of Scientific and Technical Information of China (English)

    Li Yongzhao; Liao Guisheng; Wang Feng

    2006-01-01

    Bell layered space-time architecture (BLAST) is a multi-antenna communication structure with high spectrum efficiency, and it has found wide applications in LANs and WLANs. However, its performance is much poorer than those of other space-time coding approaches. In order to improve its performance, an improved BLAST based on RAKE receiving is investigated. The new system introduces orthogonal spreading sequences (OSS) into the transmitter while retains the basic structure of BLAST. The proposed receiver suppresses interferences from other antennas by the orthogonality contained in the received signals, and extracts information from each receiving antenna by using RAKE receiving principle to construct efficient statistic decision. Simulation results show that the improved system performs well over both frequency-flat and frequency-selective fading channels.

  4. Blast Wave Characteristics and Equivalency

    OpenAIRE

    Sochet, Isabelle; Schneider, Helmut

    2010-01-01

    ISBN 978-5-94588-079-5; The characteristics of blast waves generated by detonation of gas clouds are studies theoretically and validated by both small-scale and large-scale experiments with ethylene-air mixtures of different equivalence ratio. The mixtures were confined in hemispherical or spherical balloons made from thin polyethylene foils of 0.75 m³ and 15 m³ in volume. The detonation of gas mixtures was initiated by a solid explosive. The characteristics of the blast wave in terms of over...

  5. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties.

    Science.gov (United States)

    Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L

    2016-02-01

    Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components.

  6. Blast Loading of Epoxy Panels Using a Shock Tube

    Science.gov (United States)

    Pankow, Mark; Waas, Anthony M.; Bednarcyk, Brett

    2010-01-01

    The high strain rate mechanical response of thin polymer plates has been studied using a modified shock tube. Diagnostics include the pressure-time history of the incident and reflected pulses and the use of digital image correlation (DIC) techniques to extract the time-history of the out-of-plane displacement distribution. Additionally, finite element models have been developed to understand the plate response and to validate and modify plate material constitutive models that have been proposed.

  7. Blast Loading on above Ground Barricaded Munition Storage Magazines.

    Science.gov (United States)

    1984-05-01

    2073 227 0.490 0.49 p2. * . -- .4’ -ID fi1~~< .*. di * ~22 -o, ..i w7I-.7-, .* , . -. -. • . ’... .7 7 9 .. . TEST: QUICKLOAD AMMO 309 SHOT: 3 488...S5 5%5. * .-....-. ’.... -%...- - -.- .- - TEST: QUICKLOAD AMMO 3r SHOT. 3 480 256STATION: 3 1 - 388 ~ISM 296 * V) . 8 0.5 t 1.5 2 TID, HSEC TEST...STATION: 2 los - a 8.5 I 1.5 2 TII( MSEC TEST: QUICKLOAD AMMO 3880 SHOT: 4 2 480 3STATION- 2 388 28W lo wO oo " . 9 _5_ 8 8 .51 . TME, MSEC TEST

  8. In Vitro Studies of Primary Explosive Blast Loading on Neurons

    Science.gov (United States)

    2015-09-01

    serum, 5% fetal bovine serum, and 1% antibiotic /antimycotic complete medium at 37C and 5% CO2. Cells were seeded at a density of 5,000 cells/well on the... Antibiotics / antimycotics (10,000 I.U. penicillin, 10,000 mg/ml streptomy- cin, and 25 mg/ml amphotericin [per milliliter]) were obtained from Cellgro...12-mm coverslips in 24-well plates in high- glucose DMEM with 1% horse serum, 0.5% calf serum, and 1% antibiotic /antimycotic differentiation medium

  9. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area

    Institute of Scientific and Technical Information of China (English)

    XU Guo-yuan; YAN Chang-bin

    2006-01-01

    Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions (FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.

  10. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  11. Mask materials for powder blasting

    NARCIS (Netherlands)

    Wensink, Henk; Jansen, Henri V.; Berenschot, J.W.; Elwenspoek, Miko C.

    2001-01-01

    Powder blasting, or abrasive jet machining (AJM), is a technique in which a particle jet is directed towards a target for mechanical material removal. It is a fast, cheap and accurate directional etch technique for brittle materials such as glass, silicon and ceramics. The particle jet (which expand

  12. Plastic Media Blasting Data Gathering Study

    Science.gov (United States)

    1986-12-01

    matt, reducing the filtering surface. 25 3) Cartridge Collectors: Cartridge dust collectors consist of a number of nonwoven tubular filters placed...Engineering Command 03 SPLASTIC MEDIA BLASTING DATA GATHERING STUDY: FINAL REPORT ABSTRAC>lastic Media Blasting (PMB) is proving to be a cost effective method...facilities; needed blasting and media recovery equipment; different types of media ; and media disposal. The Economics section gives two examples of economic

  13. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  14. Evaluating the Effectiveness of Various Blast Loading Descriptors as Occupant Injury Predictors for Underbody Blast Events

    Science.gov (United States)

    2013-08-22

    duration T. The target pulse can be achieved by controlling the energy absorption characteristics of the floor on which the platform is dropped upon...so equipped (Also known as vertical sled). These two scenarios are completely equivalent in the occupant response behavior for the same given pulse...and 7ms clips of chest resultant acceleration, (7) 7ms clip of pelvic vertical acceleration, (8,9) 7ms and 30ms clips of lumbar spine compression

  15. Evaluating the Effectiveness of Various Blast Loading Descriptors as Occupant Injury Predictors for Underbody Blast Events

    Science.gov (United States)

    2014-01-09

    34168 2 T i m e d u r ation o "f p u ls e ... T , m s ..,. I 1 ,.,,~~·""""’"""’"’·"’’""·’’’"lr ~ 7 3 "’r " factor, % ( d e" fau l t 5

  16. Numerical simulation of stress for the blasting of foundation pit

    Institute of Scientific and Technical Information of China (English)

    FEI Hong-lu; ZHAO Xin-pu

    2008-01-01

    Through the simulation of explicit dynamic analysis software LS-DYNA,made an analysis to the particle velocity and the stress distribution of surrounding rock when the explosives blasting.Explicated the mechanical character of surrounding rock in the foundation pit blasting,provided a basis to set of blasting parameters and optimized the blasting construction.

  17. 30 CFR 56.6605 - Isolation of blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Isolation of blasting circuits. 56.6605 Section... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact...

  18. 30 CFR 77.1304 - Blasting agents; special provisions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting agents; special provisions. 77.1304... COAL MINES Explosives and Blasting § 77.1304 Blasting agents; special provisions. (a) Sensitized ammonium nitrate blasting agents, and the components thereof prior to mixing, shall be mixed and stored...

  19. Condition for Contur Blasting use on Openpit Mines

    OpenAIRE

    Krsmanovic, I; Dambov, Risto

    2010-01-01

    For purpose of obtaining a stable final slope in open pit mines practice, the most common approach is the contour blasting method and investigation of possible applications of various primary blasting methods for purpose of gaining the optimal techno-economical effects. This paper presents one of the contour blasting methods, drilling and blasting parameters, construction of explosive charges and method of initiation.

  20. 30 CFR 75.1320 - Multiple-shot blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Multiple-shot blasting. 75.1320 Section 75.1320... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1320 Multiple-shot blasting... periods of 1,000 milliseconds or less shall be used. (d) When blasting in anthracite mines, each...

  1. 29 CFR 1926.910 - Inspection after blasting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inspection after blasting. 1926.910 Section 1926.910 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.910 Inspection after blasting. (a) Immediately after the blast has been fired, the firing line shall...

  2. 30 CFR 75.1316 - Preparation before blasting.

    Science.gov (United States)

    2010-07-01

    ... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1316 Preparation... using a blasting multimeter or other instrument specifically designed for such use. (3) The blasting... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Preparation before blasting. 75.1316 Section...

  3. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  4. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder for

  5. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  6. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  7. The use of blast furnace slag

    OpenAIRE

    V. Václavík; V. Dirner; T. Dvorský; J. Daxner

    2012-01-01

    The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  8. Fabrication of microstructures by powder blasting

    NARCIS (Netherlands)

    Wensink, Hendrik

    2002-01-01

    This thesis deals with the use of powder blasting as a micromachining technique to create micro systems. Powder blasting is a technology in which small particles, accelerated by an air jet, are directed towards a brittle target for mechanical material removal. It is especially useful for glass machi

  9. Refractory Pellet for Hot Blast Stove

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Peng Xigao

    2011-01-01

    1 Scope This standard specifies the term,definition,classification,specification,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of refractory pellet for hot blast stove.This standard is applicable to refractory pellet for hot blast stove.

  10. Safety of collieries blasting operations

    Energy Technology Data Exchange (ETDEWEB)

    Carbonel, P. (Cerchar, 75 - Paris (France))

    1984-01-01

    The slight increase in periodicity of blasting incidents and their nature have led to remind one of the basic safety principles: to reduce the probability of dust and methane ignition by the explosive used or by the shotfiring line; to carefully select the explosive in accordance to the work to be carried out. It is reminded that using an anti-gassy explosive does not necessarily mean that no ignition will occur.

  11. Laboratory blast wave driven instabilities

    Science.gov (United States)

    Kuranz, Carolyn

    2008-11-01

    This presentation discusses experiments involving the evolution of hydrodynamic instabilities in the laboratory under high-energy-density (HED) conditions. These instabilities are driven by blast waves, which occur following a sudden, finite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. Instabilities evolving under HED conditions are relevant to astrophysics. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 μm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface having a 2D or 3D sinusoidal structure that serves as a seed perturbation for hydrodynamic instabilities. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability in the nonlinear regime. We have detected the interface structure under these conditions using x-ray backlighting. Recent advances in our diagnostic techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed or predicted by current simulations. The observed effect is potentially of great importance as a source of mass transport to places not anticipated by current theory and simulation. I will discuss the amount of mass in these spike extensions, the associated uncertainties, and hypotheses regarding their origin We also plan to show comparisons of experiments using single mode and multimode as well as 2D and 3D initial conditions. This work is sponsored by DOE/NNSA Research Grants DE-FG52-07NA28058 (Stewardship Sciences Academic Alliances) and DE-FG52-04NA00064 (National Laser User

  12. A multiscale approach to blast neurotrauma modeling: Part I - Development of novel test devices for in vivo and in vitro blast injury models

    Directory of Open Access Journals (Sweden)

    Matthew B Panzer

    2012-03-01

    Full Text Available The loading conditions used in some current in vivo and in vitro blast-induced neurotrauma models may not be representative of real-world blast conditions. To address these limitations, we developed a compressed-gas driven shock tube with different driven lengths that can generate Friedlander-type blasts. The shock tube can generate overpressures up to 650 kPa with durations between 0.3 and 1.1 ms using compressed helium driver gas, and peak overpressures up to 450 kPa with durations between 0.6 and 3 ms using compressed nitrogen. This device is used for short duration blast overpressure loading for small animal in vivo injury models, and contrasts the more frequently used long duration/high impulse blast overpressures in the literature. We also developed a new apparatus that is used with the shock tube to recreate the in vivo intracranial overpressure response for loading in vitro culture preparations. The receiver device surrounds the culture with materials of similar impedance to facilitate the propagation of a single overpressure pulse through the tissue. This method prevents pressure waves reflecting off the tissue that can cause unrealistic deformation and injury. The receiver performance was characterized using the longest helium-driven shock tube, and produced in-fluid overpressures up to 1500 kPa at the location where a culture would be placed. This response was well correlated with the overpressure conditions from the shock tube (R2 = 0.97. Finite element models of the shock tube and receiver were developed and validated to better elucidate the mechanics of this methodology. A demonstration exposing a culture to the loading conditions created by this system suggest tissue strains less than 5% for all pressure levels simulated, which was well below functional deficit thresholds for strain rates less than 50 s-1. This novel system is not limited to a specific type of culture model and can be modified to reproduce more complex pressure

  13. IED blast postconcussive syncope and autonomic dysregulation.

    Science.gov (United States)

    Sams, Richard; LaBrie, D Walter; Norris, Jacob; Schauer, Judy; Frantz, Earl

    2012-01-01

    Concussions are the most frequent battle injury sustained in Afghanistan. The Concussion Restoration Care Center provides multidisciplinary care to concussed service members in theater. The Concussion Restoration Care Center has managed over 500 concussions, the majority being from improvised explosive device (IED) blasts. Syncope following a concussion without a loss of consciousness is rarely reported in the literature. The pathophysiology of concussion from a blast injury may be distinct from a concussion secondary to blunt trauma. Two cases of syncope following concussions with an alteration of consciousness are presented, and a mechanism of action is proposed. Post-IED blast concussive symptom frequency at initial presentation on a cohort of patients is reported, with 1.3% of patients experiencing postconcussive syncope. Syncope following an IED blast may be related to centrally mediated autonomic dysregulation at the brain stem level. Syncope should be added to the list of possible symptoms that occur following concussions, in particular concussions following a blast injury.

  14. The Next Generation BLAST Experiment

    CERN Document Server

    Galitzki, Nicholas; Angilè, Francesco E; Ashton, Peter; Beall, James A; Becker, Dan; Bradford, Kristi J; Che, George; Cho, Hsiao-Mei; Devlin, Mark J; Dober, Bradley J; Fissel, Laura M; Fukui, Yasuo; Gao, Jiansong; Groppi, Christopher E; Hillbrand, Seth; Hilton, Gene C; Hubmayr, Johannes; Irwin, Kent D; Klein, Jeffrey; Van Lanen, Jeff; Li, Dale; Li, Zhi-Yun; Lourie, Nathan P; Mani, Hamdi; Martin, Peter G; Mauskopf, Philip; Nakamura, Fumitaka; Novak, Giles; Pappas, David P; Pascale, Enzo; Pisano, Giampaolo; Santos, Fabio P; Savini, Giorgio; Scott, Douglas; Stanchfield, Sara; Tucker, Carole; Ullom, Joel N; Underhill, Matthew; Vissers, Michael R; Ward-Thompson, Derek

    2014-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was a suborbital experiment designed to map magnetic fields in order to study their role in star formation processes. BLASTPol made detailed polarization maps of a number of molecular clouds during its successful flights from Antarctica in 2010 and 2012. We present the next-generation BLASTPol instrument (BLAST-TNG) that will build off the success of the previous experiment and continue its role as a unique instrument and a test bed for new technologies. With a 16-fold increase in mapping speed, BLAST-TNG will make larger and deeper maps. Major improvements include a 2.5 m carbon fiber mirror that is 40% wider than the BLASTPol mirror and ~3000 polarization sensitive detectors. BLAST-TNG will observe in three bands at 250, 350, and 500 microns. The telescope will serve as a pathfinder project for microwave kinetic inductance detector (MKID) technology, as applied to feedhorn coupled submillimeter detector arrays. The liquid he...

  15. Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system (ANFIS)

    Institute of Scientific and Technical Information of China (English)

    Karami Alireza; Afiuni-Zadeh Somaieh

    2013-01-01

    One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks. We developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80%passing size (K80) of Golgohar iron mine of Sirjan, Iran. Comparing the results of ANFIS and RBF models shows that although the statistical parame-ters RBF model is acceptable but ANFIS proposed model is superior and also simpler because ANFIS model is constructed using only two input parameters while seven input parameters used for construction of RBF model.

  16. Numerical Simulation for Blast Analysis of Insulating Glass in a Curtain Wall

    Science.gov (United States)

    Deng, Rong-bing; Jin, Xian-long

    2010-04-01

    This article presents a three-dimensional numerical simulation method for blast response calculation of insulating glass in a curtain wall based on multi-material arbitrary Lagrangian-Eulerian (ALE) formulation and high-performance computer. The whole analytical model consists of explosion, air, curtain wall system, and ground. In particular, detailed components including insulating glass panels, aluminum column, silicone sealant, and other parts in the curtain wall are set up in terms of actual size and actual assembly. This model takes account of the coupling between blast and structure, nonlinear material behavior, brittle failure of glass material, and non-reflecting boundary definition. Final calculation has been performed on the Dawning 4000A supercomputer using the finite-element code LS-DYNA 971 MPP. The propagation of shock wave in air and blast-structure interaction is quite well estimated by numerical calculation. The damage regions of outer and inner glass are reproduced in the numerical simulations, which are in agreement with the experimental observations. The result provides a global understanding of insulating glass panels under blast loading in the curtain wall system. It may be generated to supplement experimental studies for developing appropriate design guidelines for curtain wall systems as well.

  17. Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Corey C. (University of New Mexico, Albuquerque, NM); Taylor, Paul Allen

    2008-02-01

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

  18. Induced caving by blasting: innovative experiments in blasting gallery panels of underground coal mines of India

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P.P.; Sawmliana, C.; Bhagat, N.K.; Madhu, M. [CMRI, Dhanbad (India). Blasting Dept.

    2003-04-01

    Induced caving by blasting during depillaring of panels in underground coal mines has received limited attention. This technique has become an integral part of a mining operation known as the blasting gallery (BG) method in India. Systematical deep hole (16-30 m) blasting has been successfully carried out from underground split galleries in BG panels. A study of drilling and blasting parameters, gas hazards, strata behaviour and ground vibration was undertaken as part of a research project for the Indian Ministry of Coal and Mines. Strata behaviour during blasting and ground movements were critically investigated. All experiments were conducted using newly developed explosive and detonating cord systems. A new blast damage index is proposed for damage assessment of the underground roof and pillars of BG panels. Useful mathematical formulas are described as an aid to future design.

  19. Dynamic response of scale models subjected to impact loading

    Science.gov (United States)

    Hillsdon, Graham K.

    1997-05-01

    Presented with the problem of possible failure of large structures due to dynamic loading, and the cost of staging full scale tests. The Oxford University's Department of Engineering Science, supported by British Gas and Rolls Royce, has been scale modeling these events experimentally. The paper looks at two areas of research: (1) The structural integrity of a particular type of Liquified Natural Gas Storage Tank, and its vulnerability to blast loading. (2) The ability of Large Aero Engine Fan blades to withstand impacts associated with birds, stones, ice etc.

  20. Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing.

    Science.gov (United States)

    Singh, Ajay K; Ditkofsky, Noah G; York, John D; Abujudeh, Hani H; Avery, Laura A; Brunner, John F; Sodickson, Aaron D; Lev, Michael H

    2016-01-01

    Although most trauma centers have experience with the imaging and management of gunshot wounds, in most regions blast wounds such as the ones encountered in terrorist attacks with the use of improvised explosive devices (IEDs) are infrequently encountered outside the battlefield. As global terrorism becomes a greater concern, it is important that radiologists, particularly those working in urban trauma centers, be aware of the mechanisms of injury and the spectrum of primary, secondary, tertiary, and quaternary blast injury patterns. Primary blast injuries are caused by barotrauma from the initial increased pressure of the explosive detonation and the rarefaction of the atmosphere immediately afterward. Secondary blast injuries are caused by debris carried by the blast wind and most often result in penetrating trauma from small shrapnel. Tertiary blast injuries are caused by the physical displacement of the victim and the wide variety of blunt or penetrating trauma sustained as a result of the patient impacting immovable objects such as surrounding cars, walls, or fences. Quaternary blast injuries include all other injuries, such as burns, crush injuries, and inhalational injuries. Radiography is considered the initial imaging modality for assessment of shrapnel and fractures. Computed tomography is the optimal test to assess penetrating chest, abdominal, and head trauma. The mechanism of blast injuries and the imaging experience of the victims of the Boston Marathon bombing are detailed, as well as musculoskeletal, neurologic, gastrointestinal, and pulmonary injury patterns from blast injuries.

  1. Numerical simulations of blast-impact problems using the direct simulation Monte Carlo method

    Science.gov (United States)

    Sharma, Anupam

    There is an increasing need to design protective structures that can withstand or mitigate the impulsive loading due to the impact of a blast or a shock wave. A preliminary step in designing such structures is the prediction of the pressure loading on the structure. This is called the "load definition." This thesis is focused on a numerical approach to predict the load definition on arbitrary geometries for a given strength of the incident blast/shock wave. A particle approach, namely the Direct Simulation Monte Carlo (DSMC) method, is used as the numerical model. A three-dimensional, time-accurate DSMC flow solver is developed as a part of this study. Embedded surfaces, modeled as triangulations, are used to represent arbitrary-shaped structures. Several techniques to improve the computational efficiency of the algorithm of particle-structure interaction are presented. The code is designed using the Object Oriented Programming (OOP) paradigm. Domain decomposition with message passing is used to solve large problems in parallel. The solver is extensively validated against analytical results and against experiments. Two kinds of geometries, a box and an I-shaped beam are investigated for blast impact. These simulations are performed in both two- and three-dimensions. A major portion of the thesis is dedicated to studying the uncoupled fluid dynamics problem where the structure is assumed to remain stationary and intact during the simulation. A coupled, fluid-structure dynamics problem is solved in one spatial dimension using a simple, spring-mass-damper system to model the dynamics of the structure. A parametric study, by varying the mass, spring constant, and the damping coefficient, to study their effect on the loading and the displacement of the structure is also performed. Finally, the parallel performance of the solver is reported for three sample-size problems on two Beowulf clusters.

  2. Effect of Helmet Pads on the Load Transfer to Head under Blast Loadings

    Science.gov (United States)

    2015-06-01

    318. [2] Moss W., and King M., 2011, “Impact Response of US Army and National Football League Helmet Pad Systems”, LLNL-SR-464951, Lawrence Livermore...Cavitation pressure in water”, Physical Review E, 74. [13] Caupin F, and Herbert E, 2006, “Cavitation in water: a review”, Comptes Rendus

  3. Lipid Mediators and Human Leukemic Blasts

    Directory of Open Access Journals (Sweden)

    Rémi Fiancette

    2011-01-01

    Full Text Available Some of the most potent inflammatory mediators share a lipid origin. They regulate a wide spectrum of cellular processes including cell proliferation and apoptosis. However, the precise roles and ways (if any in which these compounds impact the growth and apoptosis of leukemic blasts remain incompletely resolved. In spite of this, significant advances have been recently made. Here we briefly review the current knowledge about the production of lipid mediators (prostaglandins, leukotrienes, platelet-activating factor by leukemic blasts, the enzymatic activities (phospholipase A2, cyclooxygenases, lipoxygenases involved in their productions and their effects (through specific membrane bound receptors on the growth, and apoptosis of leukemic blasts.

  4. Effect of Shock Wave on Fabricated Anti-Blast Wall and Distribution Law Around the Wall Under Near Surface Explosion

    Institute of Scientific and Technical Information of China (English)

    WU Jun; LIU Jingbo; YAN Qiushi

    2008-01-01

    The loads of shock wave effect on fabricated anti-blast wall and distribution law around the wall were investigated by using near surface explosion test method and FEM.The pressure-time histories and variety law on the foreside and backside of the anti-blast wall were adopted in the tests of variety of different explosion distances and dynamites,as well as in the comparison between the test and numerical calculation.The test results show that the loads of shock wave effect on the anti-blast wall were essen-tially consistent with calculation results using criterion under surface explosion when explosion distances exceed 2 m,the distribution of overpressure behind wall was gained according to variety law based on small-large-small.It is also demonstrated that the peak overpressure behind wall had commonly appeared in wall height by 1.5--2.5 multiples,and the peak overpressures of protective building behind wall could be reduced effectively by using the fabricated anti-blast wall.

  5. Optimum crushing level of blasted rock at the Prokop'evsk surface coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Gemba, V.I.; Starkov, V.L.; Ustyuzhanin, V.S.

    1987-06-01

    Explains that improving the quality of rock crushing using blasting energy increases the efficiency of excavators and other mining equipment, reduces the energy required for scooping and loading tasks and hence reduces the cost of excavating and transporting rock. Investigations performed in surface mines in the Southern Urals and the Kuzbass coal sections showed that changing the mean linear dimensions of the lumps of blasted rock from 0.2 to 0.8 m increased the power consumption of a EhKG-4,6 excavator from 0.12 to 0.3 kWh/m/sup 3/ and that of loading from 0.1 to 1.56 kWh/m/sup 3/. Uses actual values for the efficiency and costs of blasting, excavation and transporting operations (presented in tabular form) as the basis for a comparative evaluation with the aim of determining how to achieve maximum cost-efficiency and, taking all factors into account, calculates that for the Prokop'evsk surface mine the optimum lump size is 0.4 m.

  6. Blast Wave Experiments at Z

    Science.gov (United States)

    2007-06-01

    radiation flows upward, it passes though a 1.7-mm high, tapered, 25-μm thick gold wall cone that is filled 20 ± 3 mg/cm3 silica aerogel (SiO2). Above...this cone is a 20 ± 3 mg/cm3 silica aerogel filled, 1-mm high, 2.4-mm inner diameter, 25-μm thick gold wall cylinder. On the cylinder rests a 4-mm...diameter gold platform that supports a higher density (40-60 mg/cm3) silica aerogel . This aerogel is the region where the blast wave forms after

  7. Peak Overpressures for Internal Blast

    Science.gov (United States)

    1979-06-01

    condensed into relatively simple algebraic equa- tions for the (logarithm of the) equilibrium constant of formation as a function of absolute...blast for three conventional fuels-benzene, JP-4 (a hydrocarbon fuel with an empirical formula C9H17 ), and ethylene oxide-are plotted as a function of...256 .26 9.4 6.36 2166 7.89 2666 .27 Cubica . 9.5 6.66 2244 7.91 2591 .13 0.028 9.7 6.51 2197 7.97 2801 .19 9.9 6.17 2090 8.01 2607 .23 9.9 7.59 2495

  8. Impact Pseudostatic Load Equivalent Model and the Maximum Internal Force Solution for Underground Structure of Tunnel Lining

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available The theoretical formula of the maximum internal forces for circular tunnel lining structure under impact loads of the underground is deduced in this paper. The internal force calculation formula under different equivalent forms of impact pseudostatic loads is obtained. Furthermore, by comparing the theoretical solution with the measured data of the top blasting model test of circular formula under different equivalent forms of impact pseudostatic loads are obtained. Furthermore, by comparing the theoretical solution with the measured data of the top blasting model test of circular tunnel, it is found that the proposed theoretical results accord with the experimental values well. The corresponding equivalent impact pseudostatic triangular load is the most realistic pattern of all test equivalent forms. The equivalent impact pseudostatic load model and maximum solution of the internal force for tunnel lining structure are partially verified.

  9. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Riley

    2002-10-21

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in

  10. BLAST-EXPLORER helps you building datasets for phylogenetic analysis

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2010-01-01

    Full Text Available Abstract Background The right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task. Results To fill this gap, we designed BLAST-Explorer, an original and friendly web-based application that combines a BLAST search with a suite of tools that allows interactive, phylogenetic-oriented exploration of the BLAST results and flexible selection of homologous sequences among the BLAST hits. Once the selection of the BLAST hits is done using BLAST-Explorer, the corresponding sequence can be imported locally for external analysis or passed to the phylogenetic tree reconstruction pipelines available on the Phylogeny.fr platform. Conclusions BLAST-Explorer provides a simple, intuitive and interactive graphical representation of the BLAST results and allows selection and retrieving of the BLAST hit sequences based a wide range of criterions. Although BLAST-Explorer primarily aims at helping the construction of sequence datasets for further phylogenetic study, it can also be used as a standard BLAST server with enriched output. BLAST-Explorer is available at http://www.phylogeny.fr

  11. Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment

    Science.gov (United States)

    Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.

    2009-01-01

    An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.

  12. Impulsive Loading of Armour by High Explosive Squash Head Munition

    Directory of Open Access Journals (Sweden)

    P.U. Deshpande

    2003-10-01

    Full Text Available Results obtained by theoretical modelling studies involving classical stress-strain theories, duly validated by experimental investigation in understanding the mechanism of impulsive loading (scabbing and blast under dynamic and static conditions, are discussed. This concept has been used in designing a high explosive squash head ammunition being effective in defeating monolithic armour. Efforts have been made to carry out an in-depth study in understanding the mechanism of scabbing under static and dynamic (live firing conditions. For this purpose, a one-dimensional computer code has been used to predict the spread of explosive against time on the target. The simulations were carried out using a 2-D Lagrangian hydrodynamic code for scabbing effect. The blast effect that follows under static and dynamic conditions has also been studied. Blast parameters have been computed in terms of TNT equivalent and compared with experimental results. The events occurring during impulsive loading of 135 mm monolithic rolled homogenous armour have been illustrated.

  13. Full scale numerical analysis of high performance concrete columns designed to withstand severe blast impact

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Georgakis, Christos; Stang, Henrik;

    2007-01-01

    Polymer reinforced Compact Reinforced Composite, PCRC, is a Fiber reinforced Densified Small Particle system, FDSP, combined with a high strength longitudinal flexural rebar arrangement laced together with polymer lacing to avoid shock initiated disintegration of the structural element under blast...... load. Scaled experimental and numerical results of PCRC columns (200x200x1600mm) subjected to close-in detonation are presented in this paper. Based on these results and the use of geometrical scaling lows, a full scale column (800x800x6400mm) is designed and verified numerically to withstand 486.5 kg...... of PETN (85/15) High Explosives at stand off 1600 mm. Additionally, a LS-DYNA material model suitable for predicting the response of Polymer reinforced Compact Reinforced Concrete improved for close-in detonation and a description of the LS-DYNA multi-material Eulerian method for modeling the blast event...

  14. Study on blast furnace cooling stave for various refractory linings based on numerical modeling

    Science.gov (United States)

    Mohanty, T. R.; Sahoo, S. K.; Moharana, M. K.

    2016-02-01

    Cooling technology for refractory lining of blast furnace is very important for the metallurgical industry, because it can substantially increase output and operation life of furnaces. A three dimensional mathematical model for the temperature field of the blast furnace stave cooler with refractory lining has been developed and analyzed. The temperature and heat dissipated by stave cooler is examined by using the finite element method. The cast steel stave is studied and computational analysis is made to know the effect of the cooling water velocity, temperature, and the lining material on the maximum temperature of the stave hot surface. The refractory lining materials, which are used in this experiment, are high alumina bricks with different stave materials (copper, aluminum and cast iron). The obtained numerical calculations are compared with that obtained from experiments performed at Rourkela Steel Plant, Odisha taking a stave in belly zone having maximum heat load shows very good agreement.

  15. Pattern of injury in those dying from traumatic amputation caused by bomb blast.

    Science.gov (United States)

    Hull, J B; Bowyer, G W; Cooper, G J; Crane, J

    1994-08-01

    Traumatic amputation of limbs caused by bomb blast carries a high risk of mortality. This paper describes 73 amputations in 34 deaths from bomb blast in Northern Ireland. The principal aim was to determine the sites of traumatic amputation to provide a biophysical basis for the development of protective measures. Few amputations were through joints; nearly all were through the bone shafts. The most common site in the tibia was the upper third. The distribution of femoral sites resulting from car bombs differed from that characterizing other types of explosion. For car bombs the principal site of amputation was the upper third; for other types of device it was the lower third. It is concluded that flailing is not a notable contributor to limb avulsion. The pattern of amputation is consistent with direct local pressure loads leading to bone fracture; the amputation itself is a secondary event arising from the flow of combustion products.

  16. Basic Local Alignment Search Tool (BLAST)

    Data.gov (United States)

    U.S. Department of Health & Human Services — BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the...

  17. Anhydrous Taphole Mix for Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan

    2010-01-01

    @@ 1 Scope This standard specifies the term,definition,brand,label,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of anhydrous taphole mix for blast furnace.

  18. Kaolinite Refractory Bricks for Blast Furnaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ This standard is suitable to the fireclay bricks for blast furnace. 1 Classification, Shape and Dimension 1 According to physical and chemical indexes, the brick can be divided into two trademarks: ZGN-42 and GN-42.

  19. Silica Brick for Hot Blast Stove

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 1 Scope This standard specifies the glossary and definition, marking, shape and dimension, technical requirements, test method, quality appraisal procedure, packing, label, transportation, storage and quality certification of silica brick for hot blast stove.

  20. Fireclay Refractory Bricks for Hot Blast Stove

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Zhang Yongfang; Chai Junlan

    2008-01-01

    @@ 1 Scope This standard specifies the classification, shape, dimension, technical requirements, test method,inspection rules, packing, marking,transportation,storage and quality certification of fireclay refractory bricks for hot blast stove.

  1. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  2. Design and commissioning of a semi-confined blast chamber

    Institute of Scientific and Technical Information of China (English)

    I.M. SNYMAN; F.J. MOSTERT; W. GRUNDLING

    2016-01-01

    This paper presents the design, test and analysis of a scaled cylindrical blast chamber. The blast chamber is a one-fifth dimensional size replica of the full-scale blast chamber (Emily). The blast chamber is semi-confined as one end is open. The scaled blast chamber is used to test concepts for closing the open end and allows the gas to vent at the same time. ANSYS AUTODYN calculated the pressure time histories for different closure scenarios. Comparing the results suggested a viable scenario, namely a structure consisting of a circular disc and a frame positioned at the open end of the blast chamber. The structure and cylindrical blast chamber were subjected to scaled blast tests and the pressure results are presented and discussed.

  3. Brain Injury Risk from Primary Blast

    Science.gov (United States)

    2012-02-29

    injury has been studied extensively in air-containing organs such as the lungs , gastrointestinal tract, and ear due to their increased...veterans (Owens, 2008). Primary blast injury has been studied extensively in air-containing organs such as the lungs , gastrointestinal tract, and ear... contusions typically on or around the brainstem though there were no skull fractures for any blast intensity. Risk functions were developed that

  4. The Effects of Underwater Blast on Divers

    Science.gov (United States)

    2007-11-02

    bladder, including hepatic tear can cause referred right shoulder pain. Transient paralysis in the lower limbs, testicular pain, nausea, vomiting...blast trauma . This is probably because most immersion blast has been studied with heads above the water, 24 sinus injury is unlikely to threaten life and...without impediment. Close to the explosive source, however; there is violent trauma to the rib-cage, chest and abdominal contents, and limb fractures

  5. Reduction of sidewall inclination and blast lag of powder blasted channels

    NARCIS (Netherlands)

    Wensink, Henk; Elwenspoek, Miko C.

    2002-01-01

    Powder blasting (abrasive jet machining) is a fast directional machining technique for brittle materials like silicon and glass. The cross-section of a powder blasted channel has a rounded V-shape. These inclined sidewalls are caused by the typical impact angle dependent removal rate for brittle mat

  6. Design of SC walls and slabs for impulsive loading

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Amit H. [Purdue Univ., West Lafayette, IN (United States)

    2015-11-11

    Reinforced concrete (RC) structures have historically been the preferred choice for blast resistant structures because of their mass and the ductility provided by steel reinforcement. Steel-plate composite (SC) walls are a viable alternative to RC for protecting the infrastructure against explosive threats. SC structures consist of two steel faceplates with a plain concrete core between them. The steel faceplates are anchored to the concrete using stud anchors and connected to each other using tie bars. SC structures provide mass from the concrete infill and ductility from the continuous external steel faceplates. This dissertation presents findings and recommendations from experimental and analytical investigations of the performance of SC walls subjected to far-field blast loads.

  7. Post Mortem Human Surrogate Injury Response of the Pelvis and Lower Extremities to Simulated Underbody Blast.

    Science.gov (United States)

    Bailey, Ann M; Christopher, John J; Brozoski, Frederick; Salzar, Robert S

    2015-08-01

    Military vehicle underbody blast (UBB) is the cause of many serious injuries in theatre today; however, the effects of these chaotic events on the human body are not well understood. The purpose of this research was to replicate both UBB loading conditions and investigate occupant response in a controlled laboratory setting. In addition to better understanding the response of the human to high rate vertical loading, this test series also aimed to identify high rate injury thresholds. Ten whole body post mortem human surrogate (PMHS) tests were completed using the University of Virginia's ODYSSEY simulated blast rig under a range of loading conditions. Seat pan accelerations ranged from 291 to 738 g's over 3 ms of positive phase duration, and foot pan accelerations from 234 to 858 g's over 3 ms of positive phase duration. Post-test computed tomography (CT) scans and necropsies were performed to determine injuries, and revealed a combination of pelvic, lumbar, thoracic, and lower extremity injuries. The research in this paper discusses pelvis and lower extremity injuries under high rate vertical loads.

  8. Information modeling system for blast furnace control

    Science.gov (United States)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  9. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    Science.gov (United States)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  10. Comparison of ATD to PMHS Response in the Under-Body Blast Environment.

    Science.gov (United States)

    Danelson, Kerry A; Kemper, Andrew R; Mason, Matthew J; Tegtmeyer, Michael; Swiatkowski, Sean A; Bolte, John H; Hardy, Warren N

    2015-11-01

    A blast buck (Accelerative Loading Fixture, or ALF) was developed for studying underbody blast events in a laboratory-like setting. It was designed to provide a high-magnitude, high-rate, vertical loading environment for cadaver and dummy testing. It consists of a platform with a reinforcing cage that supports adjustable-height rigid seats for two crew positions. The platform has a heavy frame with a deformable floor insert. Fourteen tests were conducted using fourteen PMHS (post mortem human surrogates) and the Hybrid III ATD (Anthropomorphic Test Device). Tests were conducted at two charge levels: enhanced and mild. The surrogates were tested with and without PPE (Personal Protective Equipment), and in two different postures: nominal (knee angle of 90°) and obtuse (knee angle of 120°). The ALF reproduces damage in the PMHS commensurate with injuries experienced in theater, with the most common damage being to the pelvis and ankle. Load is transmitted through the surrogates in a caudal-to-cranial sequential fashion. Damage to the PMHS lower extremities begins within 2 ms after the initiation of foot/floor motion. The Hybrid III cannot assume the posture of the PMHS in rigid seats and exhibits a stiffer overall response compared to the PMHS. The ATD does not mimic the kinematic response of the PMHS lower extremities. Further, the Hybrid III does not have the capability to predict the potential for injury in the high-rate, vertical loading environment. A new ATD dedicated to under-body blast is needed to assist in the effort to mitigate injuries sustained by the mounted soldier.

  11. Comparison of Some Blast Vibration Predictors for Blasting in Underground Drifts and Some Observations

    Science.gov (United States)

    Bhagwat, Vaibhab Pramod; Dey, Kaushik

    2016-04-01

    Drilling and blasting are the most economical excavation techniques in underground drifts driven through hard rock formation. Burn cut is the most popular drill pattern, used in this case, to achieve longer advance per blast round. The ground vibration generated due to the propagation of blast waves on the detonation of explosive during blasting is the principal cause for structural and rock damage. Thus, ground vibration is a point of concern for the blasting engineers. The ground vibration from a blast is measured using a seismograph placed at the blast monitoring station. The measured vibrations, in terms of peak particle velocity, are related to the maximum charge detonated at one instant and the distance of seismograph from the blast point. The ground vibrations from a number of blast rounds of varying charge/delay and distances are monitored. A number of scaling factors of these dependencies (viz. Distance and maximum charge/delay) have been proposed by different researchers, namely, square root, cube root, CMRI, Langefors and Kihlstrom, Ghosh-Daemon, Indian standard etc. Scaling factors of desired type are computed for all the measured blast rounds. Regression analysis is carried out between the scaling factors and peak particle velocities to establish the coefficients of the vibration predictor equation. Then, the developed predictor equation is used for designing the blast henceforth. Director General of Mine Safety, India, specified that ground vibrations from eight to ten blast rounds of varying charge/delay and distances should be monitored to develop a predictor equation; however, there is no guideline about the type of scaling factor to be used. Further to this, from the statistical point of view, a regression analysis on a small sample population cannot be accepted without the testing of hypothesis. To show the importance of the above, in this paper, seven scaling factors are considered for blast data set of a hard-rock underground drift using burn

  12. A Table-top Blast Driven Shock Tube

    OpenAIRE

    Courtney, Michael; Courtney, Amy

    2011-01-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The d...

  13. VRPI Temporal Progression of Closed Globe Injury from Blast Exposure

    Science.gov (United States)

    2015-09-01

    Experimental animals were separated into three survival time groups: 1 day, 1 week and 4 week. Before the blast exposure was performed, each animal ...150µL was reached. The sample was then separated into three equal tubes. FIGURE 1. PRESSURE-TIME HISTORY AT LOCATION OF ANIMAL PLACEMENT WITHIN BLAST...have found that the behaviorally assessed visual acuity of blast exposed animals is significantly degraded following blast exposure. The decrease in

  14. A blast absorber test: measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Berg, F. van den; Hof, J. van 't; Arkel, E. van

    2006-01-01

    A blast absorber test was conducted at the Aberdeen Test Centre from 13 to 17 June 2005. The test was set up to determine the absorbing and shielding effect of a gravel pile, of 1.5 meters high and 15 by 15 meters wide, on blasts from large weapons: e.g. armor, artillery or demolition. The blast was

  15. 30 CFR 57.6605 - Isolation of blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Isolation of blasting circuits. 57.6605 Section... Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting circuits. Lead wires and... shall be protected from sources of stray or static electricity. Blasting circuits shall be...

  16. Spreading of sediment due to underwater blasting and dredging

    DEFF Research Database (Denmark)

    Nielsen, Morten Holtegaard; Bach, Lis; Bollwerk, Sandra

    2015-01-01

    impacts of suspended sediment from underwater blasting, which could include coverage of the benthos or increased turbidity, can be managed by timing the blast favourably relative to currents, waves and stratification. It is argued that the environmental impact of blasting can be minimized by decreasing...

  17. 30 CFR 56.6300 - Control of blasting operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of blasting operations. 56.6300 Section... § 56.6300 Control of blasting operations. (a) Only persons trained and experienced in the handling and use of explosive material shall direct blasting operations and related activities. (b) Trainees...

  18. 30 CFR 57.6300 - Control of blasting operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of blasting operations. 57.6300 Section... Transportation-Surface and Underground § 57.6300 Control of blasting operations. (a) Only persons trained and experienced in the handling and use of explosive material shall direct blasting operations and...

  19. 30 CFR 816.64 - Use of explosives: Blasting schedule.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting schedule. 816.64... ACTIVITIES § 816.64 Use of explosives: Blasting schedule. (a) General requirements. (1) The operator shall conduct blasting operations at times approved by the regulatory authority and announced in the...

  20. 30 CFR 57.22607 - Blasting on shift (III mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting on shift (III mines). 57.22607 Section... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22607 Blasting on shift (III mines). When blasting on shift, tests for methane shall be made in the mine atmosphere by a competent person...

  1. 30 CFR 75.1310 - Explosives and blasting equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting equipment. 75.1310... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310 Explosives and blasting equipment. (a) Only permissible explosives, approved sheathed explosive units,...

  2. Loads and loads and loads: The influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Directory of Open Access Journals (Sweden)

    Beat eMeier

    2015-06-01

    Full Text Available In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load can affect prospective memory performance. The existence of multiple target events increases prospective load and adding complexity to the to-be-remembered action increases retrospective load. In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of prospective load on costs in the ongoing task for categorical targets (Experiment 2, but not for specific targets (Experiment 1. Retrospective load and ongoing task load both affected remembering the retrospective component of the prospective memory task. We suggest that prospective load can enhance costs in the ongoing task due to additional monitoring requirements. Retrospective load and ongoing task load seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  3. Cygnus Loop Supernova Blast Wave

    Science.gov (United States)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  4. FastBLAST: homology relationships for millions of proteins.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    Full Text Available BACKGROUND: All-versus-all BLAST, which searches for homologous pairs of sequences in a database of proteins, is used to identify potential orthologs, to find new protein families, and to provide rapid access to these homology relationships. As DNA sequencing accelerates and data sets grow, all-versus-all BLAST has become computationally demanding. METHODOLOGY/PRINCIPAL FINDINGS: We present FastBLAST, a heuristic replacement for all-versus-all BLAST that relies on alignments of proteins to known families, obtained from tools such as PSI-BLAST and HMMer. FastBLAST avoids most of the work of all-versus-all BLAST by taking advantage of these alignments and by clustering similar sequences. FastBLAST runs in two stages: the first stage identifies additional families and aligns them, and the second stage quickly identifies the homologs of a query sequence, based on the alignments of the families, before generating pairwise alignments. On 6.53 million proteins from the non-redundant Genbank database ("NR", FastBLAST identifies new families 25 times faster than all-versus-all BLAST. Once the first stage is completed, FastBLAST identifies homologs for the average query in less than 5 seconds (8.6 times faster than BLAST and gives nearly identical results. For hits above 70 bits, FastBLAST identifies 98% of the top 3,250 hits per query. CONCLUSIONS/SIGNIFICANCE: FastBLAST enables research groups that do not have supercomputers to analyze large protein sequence data sets. FastBLAST is open source software and is available at http://microbesonline.org/fastblast.

  5. Antibacterial Efficacy of a New Gentamicin-Coating for Cementless Prostheses Compared to Gentamicin-Loaded Bone Cement

    NARCIS (Netherlands)

    Neut, Danielle; Dijkstra, Rene J. B.; Thompson, Jonathan I.; van der Mei, Henny C.; Busscher, Henk J.

    2011-01-01

    Cementless prostheses are increasingly popular but require alternative prophylactic measures than the use of antibiotic-loaded bone cements. Here, we determine the 24-h growth inhibition of gentamicin-releasing coatings from grit-blasted and porous-coated titanium alloys, and compare their antibacte

  6. Vibration velocity and frequency of underwater short-hole blasting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the measuring data of underwater blasting vibrationand the regression analysis results of these data, two formulae usually used of blasting vibration velocity were compared. Factors that canaffect blasting vibration and frequency were summarized and analyzed.It is thought that the effect of the number of freedom face and burden direction on blasting vibration should be considered during blastingdesign. Based on the relevant research results and the regression results of these data, a formula to calculate under water blasting frequency was put forward.

  7. Electrical load detection aparatus

    DEFF Research Database (Denmark)

    2010-01-01

    A load detection technique for a load comprising multiple frequency-dependant sub-loads comprises measuring a representation of the impedance characteristic of the load; providing stored representations of a multiplicity of impedance characteristics of the load; each one of the stored representat...

  8. Conceptual design and simulation analysis of thermal behaviors of TGR blast furnace and oxygen blast furnace

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Extensive use of carbon based fuel is the main inducement for global warming and more extreme weather.Reducing carbon dioxide emission and enhancing energy use is a common subject in steel industry.In the integrated steel plant,decreasing carbon dioxide emission must consider energy balance in the whole iron and steel works,and secondary energy must be actively utilized.As promising blast-furnaces,top gas recovery blast furnace(TGR-BF) and oxygen blast furnace have been investigated.In this paper,conceptual TGR blast furnace and oxygen blast furnace are proposed.Base on the idea of blast furnace gas de-CO2 circulating as reducing agent and the idea of pure oxygen blast decreasing the thermal reserve zone temperature,process modeling is conducted with ASPEN Plus.It is shown that the developed model reasonably describes the energy balance and mass balance feature of the furnace,and provides basic thermodynamic condition for furnaces.The effects of changes in different operation conditions are studied by sensitivity analysis and reference data from simulation.

  9. Blast-induced traumatic brain injury: a new trend of blast injury research

    Institute of Scientific and Technical Information of China (English)

    Yan Zhao; Zheng-Guo Wang

    2015-01-01

    Blast injury has become the major life-and function-threatening injuries in recent warfares.There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI),which has been proved as one of the "signature wounds" in modern battlefield.We reviewed the recent progresses in bTBl-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  10. Distribution load estimation (DLE)

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A.; Lehtonen, M. [VTT Energy, Espoo (Finland)

    1998-08-01

    The load research has produced customer class load models to convert the customers` annual energy consumption to hourly load values. The reliability of load models applied from a nation-wide sample is limited in any specific network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to find improvements to the load models or, in general, improvements to the load estimates. In Distribution Load Estimation (DLE) the measurements from the network are utilized to improve the customer class load models. The results of DLE will be new load models that better correspond to the loading of the distribution network but are still close to the original load models obtained by load research. The principal data flow of DLE is presented

  11. Design of Cellular Composite Sandwich Panels for Maximum Blast Resistance Via Energy Absorption

    Science.gov (United States)

    McConnell, Jennifer Righman; Su, Hong

    2016-06-01

    This paper presents a design methodology for optimizing the energy absorption under blast loads of cellular composite sandwich panels. A combination of dynamic finite element analysis (FEA) and simplified analytical modeling techniques are used. The analytical modeling calculates both the loading effects and structural response resulting from user-input charge sizes and standoff distances and offers the advantage of expediting iterative design processes. The FEA and the analytical model results are compared and contrasted then used to compare the energy response of various cellular composite sandwich panels under blast loads, where various core shapes and dimensions are the focus. As a result, it is concluded that the optimum shape consists of vertically-oriented webs while the optimum dimensions can be generally described as those which cause the most inelasticity without failure of the webs. These dimensions are also specifically quantified for select situations. This guidance is employed, along with the analytical method developed by the authors and considerations of the influences of material properties, to suggest a general design procedure that is a simple yet sufficiently accurate method for design. The suggested design approach is also demonstrated through a design example.

  12. Normal Strength Steel Fiber Reinforced Concrete Subjected to Explosive Loading

    Directory of Open Access Journals (Sweden)

    Mohammed Alias Yusof

    2011-07-01

    Full Text Available This paper presents the results of an experimental investigation on the behavior of plain reinforced concrete and Normal strength steel fiber reinforced concrete panels (SFRC subjected to explosive loading. The experiment were performed by the Blast Research Unit Faculty of Engineering, University Pertahanan Nasional Malaysia A total of 8 reinforced concrete panels of 600mm x 600mm x 100mm were tested. The steel fiber reinforced concrete panels incorporated three different volume fraction, 0.5%, 1.0%, and 1.5% of hooked end steel fibers. The panels were subjected to explosive loading generated by the detonation of 1kg of explosive charge located at a 0.6m standoff. This investigation indicates that the steel fiber reinforced concrete panel containing of 1.5% volume fraction gave the best performance under explosive loading.

  13. Blast Protection Shelter by Using Hollow Steel Filled with Recycled Concrete

    Institute of Scientific and Technical Information of China (English)

    LI Jianchun; HUANG Xin; MA Guowei

    2008-01-01

    Under extreme loading condition, a shelter will provide a safe place to protect people from injury caused by blast wave and fragments.In order to save resource and reuse waste materials, a new design concept for blast protection shelter was explored.The new construction was composed of I-section steel panel or C-channel steel panel filled with recycled concrete aggregate.The compaction process of the recycled concrete aggregate filled in the steel construction was experimentally investigated.A single storey shelter based on the proposed design concept was numerically simulated by using LS-DYNA software.In the 3D numerical model, three walls were designed using I-section steel and one wall using C-channel steel, and all of the four walls were filled with recycled concrete aggregate.The penetration analysis was done by using ConWep.Some penetration tests were also carried out by using a gas gun.It is found that the proposed shelter based on the design concept is effective for blast protection.

  14. Neuropsychological outcome from blast versus non-blast: mild traumatic brain injury in U.S. military service members.

    Science.gov (United States)

    Lange, Rael T; Pancholi, Sonal; Brickell, Tracey A; Sakura, Sara; Bhagwat, Aditya; Merritt, Victoria; French, Louis M

    2012-05-01

    The purpose of this study was to compare the neuropsychological outcome from blast-related versus non-blast related mild traumatic brain injury (MTBI). Participants were 56 U.S. military service members who sustained an MTBI, divided into two groups based on mechanism of injury: (a) non-blast related (Non-blast; n = 21), and (b) blast plus secondary blunt trauma (Blast Plus; n = 35). All participants had sustained their injury in theatre whilst deployed during Operation Iraqi Freedom or Operation Enduring Freedom. Patients had been seen for neuropsychological evaluation at Walter Reed Army Medical Center on average 4.4 months (SD = 4.1) post-injury. Measures included 14 clinical scales from the Personality Assessment Inventory (PAI) and 12 common neurocognitive measures. For the PAI, there were no significant differences between groups on all scales (p > .05). However, medium effect sizes were found for the Depression (d = .49) and Stress (d = .47) scales (i.e., Blast Plus > Non-blast). On the neurocognitive measures, after controlling for the influence of psychological distress (i.e., Depression, Stress), there were no differences between the Non-blast and Blast Plus groups on all measures. These findings provide little evidence to suggest that blast exposure plus secondary blunt trauma results in worse cognitive or psychological recovery than blunt trauma alone. (JINS, 2012, 18, 595-605).

  15. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations......Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...

  16. Distribution load estimation - DLE

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A. [VTT Energy, Espoo (Finland)

    1996-12-31

    The load research project has produced statistical information in the form of load models to convert the figures of annual energy consumption to hourly load values. The reliability of load models is limited to a certain network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to make improvements in the load models. Distribution load estimation (DLE) is the method developed here to improve load estimates from the load models. The method is also quite cheap to apply as it utilises information that is already available in SCADA systems

  17. ROLE OF UNDERGROUND STRUCTURE DEFORMATION VELOCITY IN THE ANALYSIS OF BLAST-RESISTANT STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    赵晓兵; 方秦

    2002-01-01

    The structural deformation velocity plays a significant role in the dynamic calculation of underground blast-resistant structures. The motion differentiating equation of a structure system taking into account the role of deformation velocity of the structure will truthfully describe the actual situation of structural vibration. With the one-dimensional plane wave theory, the expression of load on the structural periphery is developed, and the generalized variation principle for the dynamic analysis of underground arched-bar structures is given. At the same time, the results of the numerical calculation are compared.

  18. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury.

    Science.gov (United States)

    Goeller, Jacques; Wardlaw, Andrew; Treichler, Derrick; O'Bruba, Joseph; Weiss, Greg

    2012-07-01

    Cavitation was investigated as a possible damage mechanism for war-related traumatic brain injury (TBI) due to an improvised explosive device (IED) blast. When a frontal blast wave encounters the head, a shock wave is transmitted through the skull, cerebrospinal fluid (CSF), and tissue, causing negative pressure at the contrecoup that may result in cavitation. Numerical simulations and shock tube experiments were conducted to determine the possibility of cranial cavitation from realistic IED non-impact blast loading. Simplified surrogate models of the head consisted of a transparent polycarbonate ellipsoid. The first series of tests in the 18-inch-diameter shock tube were conducted on an ellipsoid filled with degassed water to simulate CSF and tissue. In the second series, Sylgard gel, surrounded by a layer of degassed water, was used to represent the tissue and CSF, respectively. Simulated blast overpressure in the shock tube tests ranged from a nominal 10-25 pounds per square inch gauge (psig; 69-170 kPa). Pressure in the simulated CSF was determined by Kulite thin line pressure sensors at the coup, center, and contrecoup positions. Using video taken at 10,000 frames/sec, we verified the presence of cavitation bubbles at the contrecoup in both ellipsoid models. In all tests, cavitation at the contrecoup was observed to coincide temporally with periods of negative pressure. Collapse of the cavitation bubbles caused by the surrounding pressure and elastic rebound of the skull resulted in significant pressure spikes in the simulated CSF. Numerical simulations using the DYSMAS hydrocode to predict onset of cavitation and pressure spikes during cavity collapse were in good agreement with the tests. The numerical simulations and experiments indicate that skull deformation is a significant factor causing cavitation. These results suggest that cavitation may be a damage mechanism contributing to TBI that requires future study.

  19. Blast-Induced Acceleration in a Shock Tube: Distinguishing Primary and Tertiary Blast Injury

    Science.gov (United States)

    2014-10-01

    Annual, Year 2 3. DATES COVERED 4. TITLE AND SUBTITLE Blast-Induced Acceleration in a Shock Tube : Distinguishing Primary and Tertiary 5a...Using a highly characterized shock tube simulation of blast, rats will be exposed to BOP with varied peak amplitudes and impulse in association...understanding of the relation of the former to the latter. As the use of shock tubes has greatly expanded in recent years for biomedical research

  20. Improved blasting results with precise initiation:Numerical simulation of sublevel caving blasting

    OpenAIRE

    Yi, Changping

    2013-01-01

    A series of numerical simulations of rock blasting using LS-DYNA software havebeen conducted to investigate the effect of short delay time on the fragmentation inunderground mines. The purpose was to test the hypothesis proposed by Rossmaniththat stress wave interaction could result in finer fragmentation by controlling theinitiation times. The blasted rock was simulated with RHT material model. After thecalculation, the elements with damage level above 0.6 were removed to simulate thefractur...

  1. Mathematical model and software for control of commissioning blast furnace

    Science.gov (United States)

    Spirin, N. A.; Onorin, O. P.; Shchipanov, K. A.; Lavrov, V. V.

    2016-09-01

    Blowing-in is a starting period of blast furnace operation after construction or major repair. The current approximation methods of blowing-in burden analysis are based on blowing-in practice of previously commissioned blast furnaces. This area is theoretically underexplored; there are no common scientifically based methods for selection of the burden composition and blast parameters. The purpose of this paper is development and scientific substantiation of the methods for selection of the burden composition and blast parameters in the blast furnace during the blowing-in period. Research methods are based on physical regularities of main processes running in the blast furnace, system analysis, and application of modern principles for development and construction of mathematical models, algorithms and software designed for automated control of complex production processes in metallurgy. As consequence of the research made by the authors the following results have been achieved: 1. A set of mathematical models for analysis of burden arrangement throughout the height of the blast furnace and for selection of optimal blast and gas dynamic parameters has been developed. 2. General principles for selection of the blowing-in burden composition and blast and gas dynamic parameters have been set up. 3. The software for the engineering and process staff of the blast furnace has been developed and introduced in the industry.

  2. Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading

    Science.gov (United States)

    Wei, Xiaoding; Latourte, Felix; Feinberg, Zack; Olson, Gregory; Espinosa, Horacio; Micro; Nanomechanics Laboratory Team; Olson Group Team

    2011-06-01

    To characterize the performance of naval structures, underwater blast experiments have been developed. Martensitic and austenitic steel alloys were designed to optimize the performance of structures subjected to impulsive loads. The deformation and fracture characteristics of the designed steel alloys were investigated experimentally and computationally. The experiments were based on an instrumented fluid structure interaction apparatus, in which deflection profiles were recorded. The computational study was based on a modified Gurson damage model able to accurately describe ductile failure under various loading paths. The model was calibrated for two high performance martensitic steels (HSLA-100 and BA-160) and an austenitic steel (TRIP-120). The martensitic steel (BA-160) was designed to maximize strength and fracture toughness while the austenitic steel (TRIP-120) was designed to maximize uniform ductility. The combined experimental-computational approach provided insight into the relationships between material properties and blast resistance of structures.

  3. Distinguishing Realistic Military Blasts from Firecrackers in Mitigation Studies of Blast Induced Traumatic Brain Injury

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2011-01-21

    In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cm from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff implies

  4. Modelling the Source of Blasting for the Numerical Simulation of Blast-Induced Ground Vibrations: A Review

    Science.gov (United States)

    Ainalis, Daniel; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges

    2017-01-01

    The mining and construction industries have long been faced with considerable attention and criticism in regard to the effects of blasting. The generation of ground vibrations is one of the most significant factors associated with blasting and is becoming increasingly important as mining sites are now regularly located near urban areas. This is of concern to not only the operators of the mine but also residents. Mining sites are subjected to an inevitable compromise: a production blast is designed to fragment the utmost amount of rock possible; however, any increase in the blast can generate ground vibrations which can propagate great distances and cause structural damage or discomfort to residents in surrounding urban areas. To accurately predict the propagation of ground vibrations near these sensitive areas, the blasting process and surrounding environment must be characterised and understood. As an initial step, an accurate model of the source of blast-induced vibrations is required. This paper presents a comprehensive review of the approaches to model the blasting source in order to critically evaluate developments in the field. An overview of the blasting process and description of the various factors which influence the blast performance and subsequent ground vibrations are also presented. Several approaches to analytically model explosives are discussed. Ground vibration prediction methods focused on seed waveform and charge weight scaling techniques are presented. Finally, numerical simulations of the blasting source are discussed, including methods to estimate blasthole wall pressure time-history, and hydrodynamic codes.

  5. Device for Underwater Laboratory Simulation of Unconfined Blast Waves

    CERN Document Server

    Courtney, Elijah; Courtney, Michael

    2015-01-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source.

  6. An experimental investigation of blast driven turbulence

    Science.gov (United States)

    Musci, Benjamin; Ranjan, Devesh

    2016-11-01

    In the Georgia Tech Shock and Advanced Mixing Lab, a facility is being built to study blast driven turbulence. Motivated by the discrepancies observed between actual and modeled supernovae, this facility aims to resolve the important spatial scales in the extensive mixing of the outer layers. These outer layers will be modeled by subjecting two-three gases of varying density to a blast wave generated by Exploding Bridge Wires. The blast wave's interaction with perturbations at the gaseous, membrane-less, interfaces will induce the Richtmeyer-Meshkov or Rayleigh Taylor Instability, depending on the acceleration history and perturbation amplitude. Through the use of simultaneous Particle Image Velocimetry, and Planar Laser Induced Fluorescence, this project aims to determine the effect of interface initial conditions on turbulence. A 2D Diverging Wedge and 3D Diverging Conical Tube are being built to enable repeatable blast-wave production, continuous optical viewing of the flow, reproducible multi-layer interface creation, and the collection of simultaneous density-velocity measurements to directly measure turbulent quantities. The preliminary analysis informing the design of this facility, the construction progress, and updates on newly realized design constraints are presented.

  7. Carbon monoxide exposure in blast furnace workers.

    Science.gov (United States)

    Lewis, S; Mason, C; Srna, J

    1992-09-01

    This study investigated the occupational exposure to carbon monoxide (CO) of a group of blast furnace workers from an integrated steelworks, compared to a control group having no significant occupational CO exposure from other areas in the same works. The study was undertaken in 1984 at Port Kembla, New South Wales. Carboxyhaemoglobin (COHb) levels before and after an eight-hour work shift were measured in 98 male steelworkers: 52 from two CO-exposed iron blast furnaces and 46 controls from production areas in the same steelworks. The sample was stratified by smoking habits. Environmental air CO levels had been found to be consistently higher on one furnace than on the other. Absorption of CO from the working environment occurred in workers on the blast furnace with higher CO levels, regardless of smoking habits. On this blast furnace, some readings of COHb levels after a workshift in nonsmokers approached the proposed Australian occupational limit of 5 per cent COHb saturation. Overall, workers with the highest occupational exposure who smoked most heavily had the highest absorption of CO over a work shift. Biological monitoring gives an accurate measure of individual worker 'dose' of CO from all sources. Both environmental monitoring and biological monitoring need to be included as part of a program for controlling occupational CO exposure.

  8. Modeling of Near-Field Blast Performance

    Science.gov (United States)

    2013-11-01

    The freeze-out temperature is chosen by comparison of calorimetry experiments (2, 3) and thermoequilibrium calculations using CHEETAH (4). The near...P.; Vitello, P. CHEETAH Users Manual; Lawrence Livermore National Laboratory: Livermore, CA, 2012. 5. Walter, P. Introduction to Air Blast

  9. Media selection for micro blasting medical parts.

    Science.gov (United States)

    Whelan, T

    2008-10-01

    Micro blasting is used in a range of applications including catheter, stent and pacemaker manufacturing. The correct media to use for the required surface is defined here together with some of the finer points of the process to ensure successful results.

  10. The radiological management of bomb blast injury.

    Science.gov (United States)

    Hare, S S; Goddard, I; Ward, P; Naraghi, A; Dick, E A

    2007-01-01

    A need to understand the nature and patterns of bomb blast injury, particularly in confined spaces, has come to the fore with the current worldwide threat from terrorism. The purpose of this review article is to familiarize the radiologist with the imaging they might expect to see in a mass casualty terrorist event, illustrated by examples from two of the main institutions receiving patients from the London Underground tube blasts of 7 July 2005. We present examples of injuries that are typical in blast victims, as well as highlighting some blast sequelae that might also be found in other causes of multiple trauma. This should enable the radiologist to seek out typical injuries, including those that may not be initially clinically apparent. Terror-related injuries are often more severe than those seen in other trauma cases, and multi-system trauma at distant anatomical sites should be anticipated. We highlight the value of using a standardized imaging protocol to find clinically undetected traumatic effects and include a discussion on management of multiple human and non-human flying fragments. This review also discusses the role of radiology in the management and planning for a mass casualty terrorist incident and the optimal deployment of radiographic services during such an event.

  11. Developments in vapour cloud explosion blast modeling

    NARCIS (Netherlands)

    Mercx, W.P.M.; Berg, A.C. van den; Hayhurst, C.J.; Robertson, N.J.; Moran, K.C.

    2000-01-01

    TNT Equivalency methods are widely used for vapour cloud explosion blast modeling. Presently, however, other types of models are available which do not have the fundamental objections TNT Equivalency models have. TNO Multi-Energy method is increasingly accepted as a more reasonable alternative to be

  12. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  13. Compliance Monitoring of Underwater Blasting for Rock Removal at Warrior Point, Columbia River Channel Improvement Project, 2009/2010

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Johnson, Gary E.; Woodley, Christa M.; Skalski, J. R.; Seaburg, Adam

    2011-05-10

    The U.S. Army Corps of Engineers, Portland District (USACE) conducted the 20-year Columbia River Channel Improvement Project (CRCIP) to deepen the navigation channel between Portland, Oregon, and the Pacific Ocean to allow transit of fully loaded Panamax ships (100 ft wide, 600 to 700 ft long, and draft 45 to 50 ft). In the vicinity of Warrior Point, between river miles (RM) 87 and 88 near St. Helens, Oregon, the USACE conducted underwater blasting and dredging to remove 300,000 yd3 of a basalt rock formation to reach a depth of 44 ft in the Columbia River navigation channel. The purpose of this report is to document methods and results of the compliance monitoring study for the blasting project at Warrior Point in the Columbia River.

  14. Development of heat-transfer circuits in the blast furnace

    Science.gov (United States)

    Spirin, N. A.; Yaroshenko, Yu G.; Lavrov, V. V.

    2016-09-01

    The development of heat-transfer circuits in the blast furnace as the technologies of blast-furnace smelting are improved are considered. It is shown that there are two zones of intense heat-transfer, and in modern conditions, when different kinds of iron ore are smelted, the use of combined blast with high parameters is a prerequisite for the stability of blastfurnace smelting operation and the smelting efficiency.

  15. Practical aspects of drilling and blasting in NCL

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, T.; Rai, V.K.; Choubey, S.N. [ICI India Limited (India)

    2000-05-01

    Drilling and blasting play a vital role in mining of Northern Coalfields Ltd.'s large opencast mines in India. The article deals with the practical aspects of drilling and blasting and discusses the company's strategy adopted in different projects to ensure accurate, safe and efficient drilling to achieve good blast for high productivity of excavating equipment. 3 figs., 1 tab.

  16. High Power Disk Loaded Guide Load

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  17. Multiple Dissipative Devices for Blast-Resisting Cable-Supported Glazing Façades

    Directory of Open Access Journals (Sweden)

    Claudio Amadio

    2013-01-01

    Full Text Available The paper analyzes the structural response of a high-level air blast loaded cable-supported façade. Since the glass panels and the cables present a typical brittle behavior and are subjected to elevated tensile stresses when a high-level explosion occurs, multiple dissipative devices are simultaneously introduced in the conventional glazing system to mitigate the maximum effects of the design blast wave. Dynamic analyses are performed using a sophisticated FE-model to describe accurately the response of the façade equipped by dissipative devices. Based on numerical results of previous contributions, viscoelastic spider connectors (VESCs are introduced in the points of connection between glass panels and pretensioned cables, to replace “rigid” spider connectors commonly used in practice. At the same time, rigid-plastic frictional devices (RPDs are installed at the top of the bearing cables to mitigate furthermore the bracing system. As a result, due to the combined use of VESCs and RPDs opportunely calibrated, the maximum tensile stresses in the glass panels and in the cables appear strongly reduced. In addition, the proposed devices do not trouble the aesthetics of such transparent structural systems. At last, simple design rules are presented to predict the response of cable-supported façades subjected to high-level dynamic loads and to preliminary estimate the mechanical parameters of combined VESCs and RPDs.

  18. Blast Analysis of Laminated Glass Curtain Walls Equipped by Viscoelastic Dissipative Devices

    Directory of Open Access Journals (Sweden)

    Chiara Bedon

    2012-09-01

    Full Text Available Nonlinear numerical simulations are reported for a conventional unitized laminated glass curtain wall subjected to high- and low-level air blast loading. The studied curtain wall, spanning floor to floor, consisted of a laminated glass panel, a continuous bead of structural silicone sealant, a split screw spline frame and four rigid brackets. Firstly, a linear elastic FE-model (M01 is presented to investigate dynamic stresses and deflections due to explosion, by taking into account geometrical nonlinearities. Since, in similar glazing systems, it is important to take into account the possible cracking of glass lites, a second model (M02, calibrated to previous experimental data, is proposed. In it, glass behaves as a brittle-elastic material, whereas an elastoplastic characteristic curve is assumed for mullions. As a result, the design explosion seriously affects the main components of the curtain wall, especially the bead of silicone. To address these criticalities, additional viscoelastic (VE devices are installed at the frame corners (M03. Their effectiveness explains the additional deformability provided to the conventional curtain wall, as well as the obvious dissipation of the incoming energy due to blast loading. Structural and energy capabilities provided by devices are highlighted by means of numerical simulations.

  19. Assessment of Blasting Operations Effects During Highway Tunnel Construction

    Directory of Open Access Journals (Sweden)

    Valašková Veronika

    2015-12-01

    Full Text Available Blasting operations are one of the fundamental parts of daily civil engineering. Drilling and blasting still remain the only possible ways of tunnelling in very adverse geological conditions. However, this method is a source of various disadvantages, the main one being tremors propagating through the geological environment which not only affect buildings, but also disturb the comfort of living in the vicinity of the source. Designing this procedure is mostly done using standardized empirical relations. This article shows the possibility of using a FEM technique in predicting blast effects. This approach is demonstrated in a simple case study on the impact of blasting operations on steel pipes.

  20. Study on orientation fracture blasting with shaped charge in rock

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of the theories of mechanics of explosive and rock fracture mechanics, the mechanism of crack initiation and its expansion of directional fracture controlled blasting with shaped charges in rock were studied, then the blasting parameters were designed and tested by a model test in laboratory and field experiment. The experimental and test results showed that the energy from blasting is directionally concentrated for the cumulative action. The directional expansion of cracks is satisfactory, the results of the model test and field test suggested that the orientation fracture blasting with shaped charge is a good means of excavating tunnels or cutting rock.

  1. Mechanisms of hearing loss after blast injury to the ear.

    Directory of Open Access Journals (Sweden)

    Sung-Il Cho

    Full Text Available Given the frequent use of improvised explosive devices (IEDs around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the body's most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction.

  2. Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers

    Science.gov (United States)

    Wierschem, Nicholas E.; Hubbard, Sean A.; Luo, Jie; Fahnestock, Larry A.; Spencer, Billie F.; McFarland, D. Michael; Quinn, D. Dane; Vakakis, Alexander F.; Bergman, Lawrence A.

    2017-02-01

    Limiting peak stresses and strains in a structure subjected to high-energy, short-duration transient loadings, such as blasts, is a challenging problem, largely due to the well-known insensitivity of the first few cycles of the structural response to damping. Linear isolation, while a potential solution, requires a very low fundamental natural frequency to be effective, resulting in large nearly-rigid body displacement of the structure, while linear vibration absorbers have little or no effect on the early-time response where relative motions, and thus stresses and strains, are at their highest levels. The problem has become increasingly important in recent years with the expectation of blast-resistance as a design requirement in new construction. In this paper, the problem is examined experimentally and computationally in the context of offset-blast loading applied to a custom-built nine story steel frame structure. A fully-passive response mitigation system consisting of six lightweight, essentially nonlinear vibration absorbers (termed nonlinear energy sinks - NESs) is optimized and deployed on the upper two floors of this structure. Two NESs have vibro-impact nonlinearities and the other four possess smooth but essentially nonlinear stiffnesses. Results of the computational and experimental study demonstrate the efficacy of the proposed passive nonlinear mitigation system to rapidly and efficiently attenuate the global structural response, even at early time (i.e., starting at the first response cycle), thus minimizing the peak demand on the structure. This is achieved by nonlinear redistribution of the blast energy within the modal space through low-to-high energy scattering due to the action of the NESs. The experimental results validate the theoretical predictions.

  3. 30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator...

  4. 30 CFR 57.22601 - Blasting from the surface (I-A mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting from the surface (I-A mines). 57.22601... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22601 Blasting from the surface (I-A mines... blast area and through at least one atmospheric monitoring sensor. (b) After blasting, if the...

  5. 30 CFR 57.6404 - Separation of blasting circuits from power source.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of blasting circuits from power... NONMETAL MINES Explosives Electric Blasting-Surface and Underground § 57.6404 Separation of blasting circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall...

  6. 22 CFR 121.11 - Military demolition blocks and blasting caps.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Military demolition blocks and blasting caps... blasting caps. Military demolition blocks and blasting caps referred to in Category IV(a) do not include the following articles: (a) Electric squibs. (b) No. 6 and No. 8 blasting caps, including...

  7. 30 CFR 56.6404 - Separation of blasting circuits from power source.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of blasting circuits from power... MINES Explosives Electric Blasting § 56.6404 Separation of blasting circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall be locked in the open position...

  8. 77 FR 58173 - Proposed Extension of Existing Information Collection; Explosive Materials and Blasting Units...

    Science.gov (United States)

    2012-09-19

    ... Materials and Blasting Units (Pertains to Metal and Nonmetal Underground Mines Deemed To Be Gassy AGENCY... materials and blasting units as permissible for use in the mining industry. However, since there are no permissible explosives or blasting units available that have adequate blasting capacity for some metal...

  9. 30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall—...

  10. Electro- or Turbo-Driven?—Analysis of Different Blast Processes of Blast Furnace

    Directory of Open Access Journals (Sweden)

    Wenqiang Sun

    2016-08-01

    Full Text Available There has always been a dispute about the energy efficiency and energy cost of electro-driven and turbo-driven blast furnace (BF blast processes. In order to find where the problem lies, energy efficiency analysis models and energy cost analysis models of electro-driven and turbo-driven blast processes were established, and the differences between the two driving processes in terms of theoretical minimum steam consumption, energy efficiency and energy cost were studied. The results showed that the theoretical minimum steam consumption of a blast process depends on steam thermodynamic properties and is unrelated to drive mode and drive process. A certain overlapped interval between electro-driven and turbo-driven blast processes in terms of energy efficiency exists. The equation for calculating the standard coal coefficient of steam was proposed, and the relationship to judge strengths and weaknesses of the two driving modes in terms of energy efficiency and energy cost was established. Finally, two companies were selected for case study research. The results led to different conclusions because of the differences between energy media in terms of standard coal coefficient and unit price. To select the best driving mode, plant-running conditions and energy prices of the region of operation in addition to other relevant factors should all be taken into account.

  11. Lightening the Load

    OpenAIRE

    Remington, Anna M.; Swettenham, John G.; Lavie, Nilli

    2012-01-01

    Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enh...

  12. Effect of Protective Devices on Brain Trauma Mechanics Under Idealized Shock Wave Loading

    Science.gov (United States)

    2015-03-29

    sensor 1, which is located slightly above the eye socket , which is in the line of the jet wind effect. Figure 22 (c) shows the acceleration recorded in...inside the 28” shock tube. Accelerometer 1 Accelerometer 2 A cc el er at io n (G ) A cc el er at io n (G ) Time (µs) ARO/NATICK Project Report...loading is insignificant. Figure 10: Angular rate history of RED head about Z axis during a 3 ms blast loading inside 28” shock tube. A cc el er at io

  13. MEASUREMENT OF WASTE LOADING IN SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V

    2008-07-18

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. One of those properties of importance is the Waste Loading (WL) of the decontaminated salt solution (DSS) in the Saltstone waste form. Waste loading is a measure of the amount of waste that can be incorporated within a waste form. The value of the Saltstone waste loading ultimately determines the number of vaults that will be required to disposition all of the DSS. In this report, the waste loading is defined as the volume in milliliters of DSS per liter of Saltstone waste form. The two most important parameters that determine waste loading for Saltstone are water to cementitious material (w/cm) ratio and the cured grout density. Data are provided that show the dependence of waste loading on the w/cm ratio for a fixed DSS composition using the current premix material (45% Blast Furnace Slag (BFS), 45% Fly Ash (FA) and 10% Ordinary Portland Cement (OPC)). The impact of cured grout density on waste loading was also demonstrated. Mixes (at 0.60 w/cm) made with a Modular Caustic side extraction Unit (MCU) simulant and either OPC or BFS have higher cured grout densities than mixes made with premix and increase the WL to 709 mL/L for the OPC mix and 689 mL/L for the BFS mix versus the value of 653 mL/L for MCU in premix at 0.60 w/cm ratio. Bleed liquid reduces the waste loading and lowers the effective w/cm ratio of Saltstone. A method is presented (and will be used in future tasks) for correcting the waste loading and the w/cm ratio of the as-batched mixes in those cases where bleed liquid is present. For example, the Deliquification, Dissolution and Adjustment (DDA) mix at an as-batched 0.60 w/cm ratio, when corrected for % bleed, gives a mix with a 0.55 w/cm ratio and a WL that has been reduced from 662 to 625 mL/L. An example is provided that

  14. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Spatial Electric Load Forecasting Consumer Demand for Power and ReliabilityCoincidence and Load BehaviorLoad Curve and End-Use ModelingWeather and Electric LoadWeather Design Criteria and Forecast NormalizationSpatial Load Growth BehaviorSpatial Forecast Accuracy and Error MeasuresTrending MethodsSimulation Method: Basic ConceptsA Detailed Look at the Simulation MethodBasics of Computerized SimulationAnalytical Building Blocks for Spatial SimulationAdvanced Elements of Computerized SimulationHybrid Trending-Simulation MethodsAdvanced

  15. Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul Allen; Ford, Corey C. (University of New Mexico, Albuquerque, NM)

    2008-04-01

    U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.

  16. Control of City Shallow Buried Tunnel Blasting Hazard to Surface Buildings

    Directory of Open Access Journals (Sweden)

    Yang Deqiang

    2015-01-01

    Full Text Available Combining with the blasting test of an under-construction tunnel, this paper optimizes the overall blasting construction scheme. The optimized blasting scheme is used in the site construction test and the peak particle vibration velocity is strictly controlled under working conditions through blasting vibration monitoring to ensure the safety of surrounding buildings and structures in the construction process. The corresponding control measures are proposed to reduce the blasting vibration which brings certain guiding significance to the following construction project.

  17. Duration of load revisited

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Sørensen, John Dalsgaard

    2007-01-01

    were formed. Four groups were subjected to short-term strength tests, and four groups were subjected to long-term tests. Creep and time to failure were moni-tored. Time to failure as a function of stress level was established and the reliability of stress level assessment was discussed. A significant...... mechanosorptive effect was demonstrated both in terms of increased creep and shortening of time to failure. The test results were employed for the calibration of four existing duration of load models. The effect of long-term loading was expressed as the stress level SL50 to cause failure after 50 years of loading...... and of the short-term and long-term strengths. For permanent and imposed library loads, reliability-based estimation of the load duration factor gave almost the same results as direct, deterministic calibration. Keywords: Creep, damage models, duration of load, equal rank assumption, load duration factor, matched...

  18. New technique for identifying varieties resistance to rice blast

    Institute of Scientific and Technical Information of China (English)

    ZHUPeiliang

    1994-01-01

    After 8 yrs lab experiments and field tests, an advanced technique for identifying varieties resistance to rice blast was developed by a research group in Plant Protection Institute, Zhejiang Academy of AgricuLltural Sciences. With this technique, the inoculum was prepared on a maizc-rice-straw-agar media which was suitable for sporulation of most rice blast pathogen isolates.

  19. Reduction Mechanism of Chromite Ore in Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    LI Yi-wei; DING Wei-zhong; LU Xiong-gang; XU Kuang-di

    2004-01-01

    The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDXA). The smelting reduction mechanism of chromite in blast furnace was primarily discussed.

  20. Preliminary blasting as a means of constructing the final slopes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimeno, E.; Lopez Jimeno, C. (Lignitos de Meirama, La Coruna (Spain))

    1983-01-01

    In order to undertake construction of a new belt at the Meirama opencast lignite workings in the Province of Coruna it has been necessary partially to re-site the slope of the general haulage drift. Preliminary blasting was thought to be the most suitable method of blasting in order to maintain slope stability of the rock mass. (17 refs.)

  1. The composition of the products from flameless blasting

    Energy Technology Data Exchange (ETDEWEB)

    Chikunov, V.I.; Chikunova, G.V.; Domanov, V.P.; Nezyrova, L.P.

    1979-01-01

    Results are given from research on the composition of the products resulting from Hydrox coal blasting together with a mechanism for the conversion of the components during the reaction process. Methods for decreasing the quantity of toxic gases during blasting in the stopes of coal mines that have dangerous gas and dust levels are recommended.

  2. Dry ice blasting for the conservation cleaning of metals

    NARCIS (Netherlands)

    R. van der Molen; I. Joosten; T. Beentjes; L. Megens

    2010-01-01

    This research was carried out to assess the feasibility of dry ice blasting as a replacement for solvent cleaning for the removal of organic layers from metal cultural heritage objects. The effects of dry ice blasting on test samples of aluminium, bronze and weathering steel were studied along with

  3. Methodology of Testing Shot Blasting Machines in Industrial Conditions

    Directory of Open Access Journals (Sweden)

    R. Wrona

    2012-04-01

    Full Text Available Shot blasting machines are widely used for automated surface treatment and finishing of castings. In shot blasting processes the stream of shots is generated and shaped by blasting turbines, making up a kinetic and dynamic system comprising a separating rotor, an adapting sleeve and a propelling rotor provided with blades. The shot blasting performance- i.e. the quality of shot treated surfaces depends on the actual design and operational parameters of the unit whilst the values of relevant parameters are associated with the geometry of turbine components and the level of its integration with the separator system. The circulation of the blasting medium becomes the integrating factor of the process line, starting from the hopper, through the propeller turbine, casting treatment, separation of contaminated abrasive mixture, to its recycling and reuse.Inferior quality of the abrasive agent (shot and insufficient purity of the abrasive mixture are responsible for low effectiveness of shot blasting. However, most practitioners fail to fully recognise the importance of proper diagnostics of the shot blasting process in industrial conditions. The wearing of major machine components and of the blasting agent and quality of shot treated surfaces are often misinterpreted, hence the need to take into account all factors involved in the process within the frame of a comprehensive methodology.This paper is an attempt to formulate and apply the available testing methods to the engineering practice in industrial conditions.

  4. Dry ice blasting for the conservation cleaning of metals

    NARCIS (Netherlands)

    van der Molen, R.; Joosten, I.; Beentjes, T.; Megens, L.; Mardikian, P.; Chemello, C.; Watters, C.; Hull, P.

    2011-01-01

    This research was carried out to assess the feasibility of dry ice blasting as a replacement for solvent cleaning for the removal of organic layers from metal cultural heritage objects. The effects of dry ice blasting on test samples of aluminium, bronze and weathering steel were studied along with

  5. Thermodynamic modeling of lead blast furnace

    Institute of Scientific and Technical Information of China (English)

    TAN Peng-fu

    2005-01-01

    A thermodynamic model was developed to predict the distribution behavior of Cu,Fe,S,O,Pb,Zn,As,and the heat balance in a lead blast furnace.The modeling results are validated by the plant data of a lead smelter in Kazakhstan.The model can be used to predict any set of controllable process parameters such as feed composition,smelting temperature,degree of oxygen enrichment and volume of oxygen-enriched air.The effects of the blast air,industrial oxygen,and coke charge on the distribution of Cu,Fe,S,O,Pb,Zn,As,the heat balance,and the lead loss in slag,were presented and discussed.

  6. Histologic and biomechanical evaluation of alumina-blasted/acid-etched and resorbable blasting media surfaces.

    Science.gov (United States)

    Bonfante, Estevam A; Marin, Charles; Granato, Rodrigo; Suzuki, Marcelo; Hjerppe, Jenni; Witek, Lukasz; Coelho, Paulo G

    2012-10-01

    This study evaluated the early biomechanical fixation and bone-to-implant contact (BIC) of an alumina-blasted/acid-etched (AB/AE) compared with an experimental resorbable blasting media (RBM) surface in a canine model. Higher texturization was observed for the RBM than for the AB/AE surface, and the presence of calcium and phosphorus was only observed for the RBM surface. Time in vivo and implant surface did not influence torque. For both surfaces, BIC significantly increased from 2 to 4 weeks.

  7. Prevention of Blast-Related Injuries

    Science.gov (United States)

    2015-07-14

    al (2012) conducted porcine blast experiments in a compressed gas shock tube, and found that the ICP was lower than the reflected pressure and also...was recently shown that TGF beta from immature astrocytes could initiate synaptic elimination in postnatal thalamus by regulating the expression of...Stevens B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. Dec 2013;16(12):1773- 1782. 38 22

  8. Centrifugal shot blasting. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  9. Seamounts, Direct Blast and Volume Reverberation Upgrades

    Science.gov (United States)

    1988-11-30

    Highway. Suits 1204. Arlington, VA 22202-4302. "n to the Office of Management and Budget. Peperworik Reduction Project (0704-0188). Washington. DC 2050M. 1...Subtitle. 5. Funding Numbers. Seamounts, Direct Blast And Volume Reverberation Upgrades proram Eemen No 3 7 85N Project No R02017 6. Author(s). L...Section Pae 1 INTRODUCTION ................................. 1-1 2 ASERT: DATA PREPARATION FOR ASTRAL ........... 2-1 2.1 Overview and Purpose of

  10. Blast Injuries: What Clinicians Need to Know

    Centers for Disease Control (CDC) Podcasts

    2008-11-05

    In this podcast, Dr. Richard C. Hunt, Director of the CDC’s Division of Injury Response, National Center for Injury Prevention and Control provides a brief overview for health care providers on how to respond and care for persons injured by an explosion or blast event.  Created: 11/5/2008 by National Center for Injury Prevention and Control (NCIPC), Division of Injury Response (DIR).   Date Released: 11/6/2008.

  11. Response Mechanism: Blast/Fire Interactions.

    Science.gov (United States)

    1983-11-01

    present research. The problem of blast interaction with fire was studied theoretically by Fendell at TRW [6) and experimentally by Martin, Backovsky and...Editors, SRI International Report for DCPA, Contract No. DCPA01-78-C-0279, Work Unit 2563F (September 1979). 6. Carrier, G., Fendell , F., Feldman P...Engineering University of California Gainesville, FL 32601 P.O. Box 808, L-140 Livermore, CA 94550 Dr. Francis E. Fendell R1/1038 Mr. Edward L. Hill TRW

  12. Prevention of Blast-Related Injuries

    Science.gov (United States)

    2014-07-01

    curvature changes. Figure 38. Locations with element disconnect issues 2. Modeling air blast wave propagation using a 2-D to 3-D mapping...sagittal sinus, transverse sinus, cerebral spinal fluid (CSF), hemispheres of the cerebrum with distinct white and gray matter, cerebellum, brainstem...brain and cerebral spinal fluid (CSF) were meshed and defined with Lagrangian formulation-based elements. The CSF fills the subarachnoid space

  13. Structural Optimization for Blast Mitigation Using HCA

    Science.gov (United States)

    2009-08-14

    UNCLASSIFIED
 Structural Optimization for Blast Mitigation Using HCA University of Notre Dame John Goetz, Huade Tan, Andrés Tovar , John Renaud...John Goetz; Huande Tan; Andres Tovar ; John Renaud 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...Overview: Algorithm •  A continuum-based topology optimization –  First utilized for bone remodeling ( Tovar ’04) –  Extend bone remodeling technique for

  14. Note: A table-top blast driven shock tube.

    Science.gov (United States)

    Courtney, Michael W; Courtney, Amy C

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  15. A Table-top Blast Driven Shock Tube

    CERN Document Server

    Courtney, Michael; 10.1063/1.3518970

    2011-01-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer which explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  16. Influence of maximum decking charge on intensity of blasting vibration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the character of short-time non-stationary random signal, the relationship between the maximum decking charge and energy distribution of blasting vibration signals was investigated by means of the wavelet packet method. Firstly, the characteristics of wavelet transform and wavelet packet analysis were described. Secondly, the blasting vibration signals were analyzed by wavelet packet based on software MATLAB, and the change of energy distribution curve at different frequency bands were obtained. Finally, the law of energy distribution of blasting vibration signals changing with the maximum decking charge was analyzed. The results show that with the increase of decking charge, the ratio of the energy of high frequency to total energy decreases, the dominant frequency bands of blasting vibration signals tend towards low frequency and blasting vibration does not depend on the maximum decking charge.

  17. Study of blasting vibrations in Sarcheshmeh copper mine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ground vibration is one of the side effects of blasting, in which way considerable amount of explosive energy is exhausted, and causes decrease in production and even decline in mine development workings. In this study, 57 recorded 3-C seismograms from 11 blasts in Sarcheshmeh copper mine, Kerman, Iran, are processed and analyzed. These data were recorded by digital seismograph PDAS-100 and analyzed by DADISP software. Finally, blasting parameters, such as explosive weight and type, distance between the structures and blasting site, blasting delays, affecting ground vibration are reviewed and their influence on peak particle velocity (PPV) are studied. Based on this study, suitable detonation delays and explosive type is determined. Considering these data, a graph of PPV versus scaled distance for Sarcheshmeh copper mine is prepared, by the help of which, safe distance for structures and accordingly explosive quantity could be determined.

  18. The past and present of blast injury research in China

    Institute of Scientific and Technical Information of China (English)

    Yan Zhao; Yuan-Guo Zhou

    2015-01-01

    With the increasing incidence of blast injury,the research on its mechanisms and protective measures draws more and more attention.Blast injury has many characteristics different from general war injuries or trauma.For example,soldiers often have various degrees of visceral injury without significant surface damage,combined injuries and arterial air embolism.Researchers in China began to investigate blast injury later than the United States and Sweden,but the development is so fast that lots of achievements have been gained,including the development of biological shock tube,the mechanisms and characteristics of blast injury in various organs,as well as protective measures under special environments.This article reviews the past and current situation of blast injury research in China.

  19. High-speed measurement of firearm primer blast waves

    CERN Document Server

    Courtney, Michael; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

  20. Air-Decking Technique in Bench Blasting

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong-bing; LU Wen-bo; WU Liang

    2006-01-01

    The mechanism and the design parameters of blasting with air-decking are studied. The theory of detonation waves is used to investigate the processes of the one-dimensional plane detonation wave within a borehole. The interaction of the rarefaction wave with an interface and reflection on a rigid wall is also analyzed. The same courses of the shock wave are also investigated. This decides the distribution of the pressure of the explosion products changing with time along the borehole. Based on the above theoretical analysis, two conditions should be met for a reasonable range of values of the air-decking ratio in blasting rock. First, the rarefaction wave from the contact interface between detonation products and air reaches the bottom earlier than that of the reflected shock wave from the end of the stemming. Second,the reflected shock wave reaches the contact interface between the detonation products and air earlier than that of the reflected rarefaction wave from the bottom of the borehole. Finally, the reasonable value of the air-decking ratio must be decided theoretically in air-decking blasting. For different explosives, the reasonable range of air-decking ratio varies from 0.15 to 0.4. This result is well consistent with what was obtained by previous researchers.

  1. D-BLAST OFDM with Channel Estimation

    Directory of Open Access Journals (Sweden)

    Du Jianxuan

    2004-01-01

    Full Text Available Multiple-input and multiple-output (MIMO systems formed by multiple transmit and receive antennas can improve performance and increase capacity of wireless communication systems. Diagonal Bell Laboratories Layered Space-Time (D-BLAST structure offers a low-complexity solution for realizing the attractive capacity of MIMO systems. However, for broadband wireless communications, channel is frequency-selective and orthogonal frequency division multiplexing (OFDM has to be used with MIMO techniques to reduce system complexity. In this paper, we investigate D-BLAST for MIMO-OFDM systems. We develop a layerwise channel estimation algorithm which is robust to channel variation by exploiting the characteristic of the D-BLAST structure. Further improvement is made by subspace tracking to considerably reduce the error floor. Simulation results show that the layerwise estimators require 1 dB less signal-to-noise ratio (SNR than the traditional blockwise estimator for a word error rate (WER of when Doppler frequency is 40 Hz. Among the layerwise estimators, the subspace-tracking estimator provides a 0.8 dB gain for WER with 200 Hz Doppler frequency compared with the DFT-based estimator.

  2. Optimisation of load control

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, P. [VTT Energy, Espoo (Finland)

    1998-08-01

    Electricity cannot be stored in large quantities. That is why the electricity supply and consumption are always almost equal in large power supply systems. If this balance were disturbed beyond stability, the system or a part of it would collapse until a new stable equilibrium is reached. The balance between supply and consumption is mainly maintained by controlling the power production, but also the electricity consumption or, in other words, the load is controlled. Controlling the load of the power supply system is important, if easily controllable power production capacity is limited. Temporary shortage of capacity causes high peaks in the energy price in the electricity market. Load control either reduces the electricity consumption during peak consumption and peak price or moves electricity consumption to some other time. The project Optimisation of Load Control is a part of the EDISON research program for distribution automation. The following areas were studied: Optimization of space heating and ventilation, when electricity price is time variable, load control model in power purchase optimization, optimization of direct load control sequences, interaction between load control optimization and power purchase optimization, literature on load control, optimization methods and field tests and response models of direct load control and the effects of the electricity market deregulation on load control. An overview of the main results is given in this chapter

  3. BLAST: A balloon-borne, large-aperture, submillimetre telescope

    Science.gov (United States)

    Wiebe, Donald Victor

    BLAST is a balloon-borne large-aperture, submillimetre telescope, which makes large area (1--200 square degree) surveys of Galactic and extragalactic targets. Since BLAST observes in the stratosphere, it is able to make broad-band observations between 200 mum and 550 mum which are difficult or impossible to perform from the ground. BLAST has been designed to probe star formation both in the local Galaxy and in the high redshift (z = 1--4) universe. Because BLAST is flown on an unmanned stratospheric balloon platform, it has been designed to be able to operate autonomously, without needing operator intervention to perform its scientific goals. This thesis includes an overview of the design of the BLAST platform, with emphasis on the command and control systems used to operate the telescope. BLAST has been flown on two long-duration balloon flights. The first of these, from Esrange, Sweden in June of 2005, acquired ˜70 hours of primarily Galactic data. During the second flight, from Willy Field, Antarctica in December of 2006, BLAST acquired ˜225 hours of both Galactic and extragalactic data. Operational performance of the platform during these two flights is reviewed, with the goal of providing insight on how future flights can be improved. Reduction of the data acquired by these large-format bolometer arrays is a challenging procedure, and techniques developed for BLAST data reduction are reviewed. The ultimate goal of this reduction is the generation of high quality astronomical maps which can be used for subsequent portions of data analysis. This thesis treats, in detail, the iterative, maximum likelihood map maker developed for BLAST. Results of simulations performed on the map maker to characterise its ability to reconstruct astronomical signals are presented. Finally, astronomical maps produced by this map maker using real data acquired by BLAST are presented, with a discussion on non-physical map pathologies resulting from the data reduction pipeline and

  4. 青海德尔尼铜矿爆破效果评估及优化%Blasting Effect Evaluation and Optimization of Deerni Copper Mine in Qinghai

    Institute of Scientific and Technical Information of China (English)

    周驭; 周文海; 楼晓明

    2015-01-01

    青海德尔尼铜矿一直以来爆破效果不佳,针对大块率高、根底状况差、爆堆分散、铲装效率低、生产缓慢的现状,应用模糊综合评估模型对4254、4398 m平台爆破效果进行评估优化。运用数学方法拟合和考虑各子集评估体系之间的相互关系,对定性指标量化、定量指标无量纲化后确定其评估权重,在此基础上形成德尔尼铜矿爆破效果评估综合模型,计算分析评估结果。总结出由于施工管理不当,导致现场凿岩穿孔出现超钻欠钻、装药结构不合理、充填高度不够、爆破网络设计与现场需求不够匹配等影响爆破效果的主要因素。基于现状,通过试验对比,依据具体施工地质条件,改进爆破工艺设计,分别设计普通平台以及靠近边坡2种爆破网络图。分析结果表明,该评估优化可指导德尔尼铜矿爆破生产、改善爆破效果、提高矿山生产能力、增加经济效益,对实现露天矿爆破效果的改善具有指导意义。%There are always poor blasting effect in Qinghai Deerni Copper Mine. In view of the high level of big block rate,bad bottom conditions,dispersive blasting piles,low loading efficiency,and low production efficiency,the comprehensive fuzzy evaluation model was used to evaluate and optimize the blasting effect at 4 254,4 398 m platform. Therefore,the open-pit mine blasting effect evaluation model was set up,and the weight of the quantization of the qualitative index,and the non-dimen-sionalizing of the quantitative index are determined by means of mathematical fitting methods and considering the relationship between each evaluation sub-system. Based on these,the comprehensive evaluation model for blasting effect of Deerni Copper Mine is formed,and the evaluation results are calculated and analyzed. The key factors of affecting the blasting such as over or less drilling in on-site field,unreasonable charging structure

  5. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.

    Science.gov (United States)

    Nehrenheim, E; Gustafsson, J P

    2008-04-01

    Storm water and landfill leachate can both contain significant amounts of toxic metals such as Zn, Cu, Pb, Cr and Ni. Pine bark and blast furnace slag are both residual waste products that have shown a large potential for metal removal from contaminated water. There are however many variables that must be optimized in order to achieve efficient metal retention. One of these variables is the time of which the solution is in contact with each unit of filter material. Metal sorption was studied in two laboratory experiments to improve the knowledge of the effects of contact time. The results showed that pine bark was generally more efficient than blast furnace slag when the metal concentrations were relatively small, whereas blast furnace slag sorbed most metals to a larger extent at increased metal loads. In addition, sorption to blast furnace slag was found to be faster than metal binding to pine bark. A pseudo-second-order kinetic model was able to describe the data well within 1000 s of reaction time.

  6. PERFORMANCE OF RC AND FRC WALL PANELS REINFORCED WITH MILD STEEL AND GFRP COMPOSITES IN BLAST EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Garfield; William D. Richins; Thomas K. Larson; Chris P. Pantelides; James E. Blakeley

    2011-06-01

    The structural integrity of reinforced concrete structures in blast events is important for critical facilities. This paper presents experimental data generated for calibrating detailed finite element models that predict the performance of reinforced concrete wall panels with a wide range of construction details under blast loading. The test specimens were 1.2 m square wall panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consists of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bar reinforcement (Type A); FRC panels without additional reinforcement (Type B); FRC panels with steel bar reinforcement (Type C); NWC panels with glass fiber reinforced polymer (GFRP) bar reinforcement (Type D); and NWC panels reinforced with steel bar reinforcement and external bidirectional GFRP overlays on both faces (Type E). An additional three Type C panels were used as control specimens (CON). Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. The panels were instrumented with strain gauges, and accelerometers; in addition, pressure sensors and high speed videos were employed during the blast events. Panel types C and E had the best performance, whereas panel type B did not perform well. Preliminary dynamic simulations show crack patterns similar to the experimental results.

  7. Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system and radial basis function

    Institute of Scientific and Technical Information of China (English)

    Karami Alireza; Afiuni-Zadeh Somaieh

    2012-01-01

    One of the most important characters of blasting,a basic step of surface mining,is rock fragmentation.It directly effects on the costs of drilling and economics of the subsequent operations of loading,hauling and crushing in mines.Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF)show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks.In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (K80) of Golgohar iron ore mine of Sir jan,Iran.Comparing the results of ANFIS and RBF models shows that although the statistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model.

  8. Anchor Loads on Pipelines

    OpenAIRE

    Wei, Ying

    2015-01-01

    Anchor hooking on a subsea pipeline has been investigated in this thesis. Anchor loads on pipelines is in general a rarely occurring event, however, the severity when it occurs could easily jeopardize the integrity of any pipeline. It is considered as an accidental load in the design of pipelines. Pipeline Loads, limit state criteria and anchor categories are defined by the DNV standards. For pipeline, DNV-OS-F101 (08.2012), Submarine Pipeline Systems is adopted. Offshore standard DNV-RP...

  9. Load induced blindness

    OpenAIRE

    Macdonald, J. S. P.; Lavie, N.

    2008-01-01

    Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied oil indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005. for a review). Here we varied the level of perceptual load in a letter-search task and assessed its effect oil the conscious perception of a search-irrelevant shape stimulus appearing in the pe...

  10. Electrical load modeling

    Energy Technology Data Exchange (ETDEWEB)

    Valgas, Helio Moreira; Pinto, Roberto del Giudice R.; Franca, Carlos [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Lambert-Torres, Germano; Silva, Alexandre P. Alves da; Pires, Robson Celso; Costa Junior, Roberto Affonso [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    Accurate dynamic load models allow more precise calculations of power system controls and stability limits, which are critical mainly in the operation planning of power systems. This paper describes the development of a computer program (software) for static and dynamic load model studies using the measurement approach for the CEMIG system. Two dynamic load model structures are developed and tested. A procedure for applying a set of measured data from an on-line transient recording system to develop load models is described. (author) 6 refs., 17 figs.

  11. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  12. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  13. A Blast Headform Surrogate for the Assessment of Blast-Induced Traumatic Brain Injury

    Science.gov (United States)

    2012-11-27

    Correct fit of headwear , Representative blast diffraction around headform – Biofidelic wrt internal geometry and material selection: Stress transmission...overpressure histories • With and without protective headwear BI2PED – Recent results Introduction Strategy Facilities Iterations BI2PED & results

  14. Features of energy distribution for blast vibration signals based on wavelet packet decomposition

    Institute of Scientific and Technical Information of China (English)

    LING Tong-hua; LI Xi-bing; DAI Ta-gen; PENG Zhen-bin

    2005-01-01

    Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.

  15. An Energy-Based Safety Evaluation Index of Blast Vibration

    Directory of Open Access Journals (Sweden)

    Mingsheng Zhao

    2015-01-01

    Full Text Available The combined peak particle velocity (PPV and frequency safety criterion for blast vibration is widely used in blasting engineering. However, some field investigations are inconsistent with this criterion. On the basis of field investigations, it is found that there are two failure modes of structures subjected to blasting seismic waves, that is, first-excursion failure and cumulative plastic damage failure. Moreover, the nature of structural responses under blast vibrations is a process of energy input, transformation, and dissipation. Therefore, an energy-based dual safety standard is proposed in this work to more comprehensively explain all failure modes of structures under blast vibrations. To this end, structures are simplified into elastic-plastic single degree of freedom (SDOF systems with bilinear restoring force models, and energy responses of SDOF systems are then determined using the Newmark-β method. From the energy responses, the maximum instantaneous input energy and hysteretic energy are selected as the basis of the dual safety criterion, because they can reflect first-excursion failure and cumulative plastic damage failure, respectively. Finally, field investigations in a blasting site in Zunyi, Guizhou province, China, are used to prove that compared to the PPV-frequency criterion the proposed energy-based dual safety criterion is more capable of assessing the damage potential of blast vibrations.

  16. Integrating Gene Ontology and Blast to predict gene functions

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-gang; MO Zhi-hong

    2007-01-01

    A GoBlast system was built to predict gene function by integrating Blast search and Gene Ontology (GO) annotations together. The operation system was based on Debian Linux 3.1, with Apache as the web server and Mysql database as the data storage system. FASTA files with GO annotations were taken as the sequence source for blast alignment, which were formatted by wu-formatdb program. The GoBlast system includes three Bioperl modules in Perl: a data input module, a data process module and a data output module. A GoBlast query starts with an amino acid or nucleotide sequence. It ends with an output in an html page, presenting high scoring gene products which are of a high homology to the queried sequence and listing associated GO terms beside respective gene poducts. A simple click on a GO term leads to the detailed explanation of the specific gene function. This avails gene function prediction by Blast. GoBlast can be a very useful tool for functional genome research and is available for free at http://bioq.org/goblast.

  17. Explosively driven air blast in a conical shock tube.

    Science.gov (United States)

    Stewart, Joel B; Pecora, Collin

    2015-03-01

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  18. Explosively driven air blast in a conical shock tube

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  19. Microcavitation as a Neuronal Damage Mechanism in Blast Traumatic Brain Injury

    Science.gov (United States)

    Franck, Christian; Estrada, Jonathan

    2015-11-01

    Blast traumatic brain injury (bTBI) is a leading cause of injury in the armed forces. Diffuse axonal injury, the hallmark feature of blunt TBI, has been investigated in direct mechanical loading conditions. However, recent evidence suggests inertial cavitation as a possible bTBI mechanism, particularly in the case of exposure to blasts. Cavitation damage to free surfaces has been well-studied, but bubble interactions within confined 3D environments, in particular their stress and strain signatures are not well understood. The structural damage due to cavitation in living tissues - particularly at the cellular level - are incompletely understood, in part due to the rapid bubble formation and deformation strain rates of up to ~ 105-106 s-1. This project aims to characterize material damage in 2D and 3D cell culture environments by utilizing a novel high-speed red-blue diffraction assisted image correlation method at speeds of up to 106 frames per second. We gratefully acknowledge funding from the Office of Naval Research (POC: Dr. Tim Bentley).

  20. Response of single piles and pipelines in liquefaction-induced lateral spreads using controlled blasting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two full-scale experiments using controlled blasting were conducted in the Port of Tokachi on Hokkaido Island,Japan, to assess the behavior of piles and pipelines subjected to lateral spreading. Test specimens were extensively instrumented with strain gauges to measure the distribution of moment during lateral spreading. This allowed us to compute the loading condition, as well as to conduct damage and performance assessments on the piles and pipelines. This paper presents the test results and discussions on the response of single piles and pipelines observed from the full-scale experiments. Based on the test results, it can be concluded that using controlled blasting successfully liquefied the soil, and subsequently induced lateral spreading. The movements of the single pile, as well as the transverse pipelines, were approximately the same as the free field soil movement. Observed moment distribution of the single pile indicated that global translation of the liquefied soil layer provided insignificant force to the pile. In addition, the degree of fixity at the pile tip significantly affected the moment along the pile as well as the pile head displacement. The pile with a higher degree of fixity at the pile tip had smaller pile head displacement but larger maximum moment.

  1. A Novel Technique for Making Cold Briquettes for Charging in Blast Furnace

    Science.gov (United States)

    Mohanty, M. K.; Mishra, S.; Mishra, B.; Sarkar, S.; Samal, S. K.

    2016-02-01

    Different metallurgical wastes are generated during pyro processing of iron ore, which is used for making sponge iron or hot metal and for producing steel. Apart from these wastes, coke fines are generated during the coke making, and iron ore fines are generated during mining of iron ore. Although iron ore fines are used for making pellet after beneficiation still, it generates a huge quantity of iron ore waste during beneficiation with comparatively lower iron content. In the present study, briquettes are made by a stiff extrusion process from metallurgical waste like iron ore fines and coke fines with the addition of Portland cement as a binder and clay as a rheology modifier. Physical properties of the briquettes are evaluated, and reducibility of the briquettes is studied in comparison to lumpy iron ore. Phase analysis and microstructural analysis of the briquettes and lumpy iron ore are carried out after firing at different temperatures in the simulated blast furnace condition. Physical and mineralogical properties are correlated with the reducibility of the briquettes and lumpy iron ore. Briquettes made by a stiff extrusion process show a better mechanical strength fired at a different temperature to take the load of burden and better reducibility than lumpy iron ore. The briquettes after self-curing are charged to a 23 mt3 blast furnace which shows encouraging results.

  2. Combination of external loads

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, S.; Tarp Johansen, N.J.; Joergensen, H. [Forskningscenter Risoe, Roskilde (Denmark); Gravesen, H.; Soerensen, S.L. [Carl Bro, Glostrup (Denmark); Pedersen, J. [Elsam Engineering, Fredericia (Denmark); Zorn, R.; Hvidberg Knudsen, M. [DHI Water and Environment, Hoersholm (Denmark); Voelund, P. [Energi E2, Koebenhavn (Denmark)

    2003-09-01

    The project onbectives have been: To improve and consequently opimise the basis for design of offshore wind turbines. This is done through 1) mapping the wind, wave ice and current as well as correlations of these, and 2) by clarifyring how these external conditions transform into loads. A comprehensive effort has been made to get a thorough understanding of the uncertainties that govern the reliability of wind turbines with respect to wind and wave loading. One of the conclusions is that the reliability of wind turbines is generally lower, than the average reliability of building structures that are subject not only to environmental loads, which are very uncertain, but also imposed loads and self weight, which are less uncertain than the environmental loads. The implication is that, at the moment lower load partial safety factors for onshore wind turbines cannot be recommended. For the combination of wind and wave design loads the problem is twofold: 1). A very conservative design will be generated by simply adding the individual wind and wave design loads disregarding the independence of the short-term fluctuations of wind and wave loads. 2). Characteristic values and partial safety factors for wind and wave loads are not defined similarly. This implies that the reliability levels of turbine support structures subject to purely aerodynamic loads and subject to purely hydrodynamic loads are not identical. For the problem of combining aerodynamic design loads and hydrodynamic design loads two results have been obtained in the project: 1). By simple means a site specific wave load safety factor rendering the same safety level for hydrodynamic loads as for aerodynamic loads is derived, and next, by direct square summation of extreme fluctuations, the wind and wave load safety factors are weighted. 2). Under the assumptions that a deep water site is considered and that the wave loading is a fifty-fifty mix of drag and inertia the same wind and wave load safety factor

  3. Load Induced Blindness

    Science.gov (United States)

    Macdonald, James S. P.; Lavie, Nilli

    2008-01-01

    Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied on indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005, for a review). Here we varied the level of…

  4. Indentation load relaxation test

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, S.P.; Stone, D.; Li, C.Y. (Cornell Univ., Ithaca, NY (USA))

    Most of the models that are used to describe the nonelastic behavior of materials utilize stress-strain rate relations which can be obtained by a load relaxation test. The conventional load relaxation test, however, cannot be performed if the volume of the material to be tested is very small. For such applications the indentation type of test offers an attractive means of obtaining data necessary for materials characterization. In this work the feasibility of the indentation load relaxation test is studied. Experimental techniques are described together with results on Al, Cu and 316 SS. These results are compared to those of conventional uniaxial load relaxation tests, and the conversion of the load-indentation rate data into the stress-strain rate data is discussed.

  5. Portland cement-blast furnace slag blends in oilwell cementing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.T.; DiLullo, G.; Hibbeler, J. [and others

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  6. Promising blast resistance entries from 20th-23rd IRBN in Hangzhou

    Institute of Scientific and Technical Information of China (English)

    ZHUPeiliang; YUANXiaoping; ZHAOXinhua; SHENYing

    1994-01-01

    Evaluation for blast resistances of rice entries of 20th to 23rd International Rice Blast Nursery (IRBN) was conducted at CNRRI during 1990-1993. The resistance to seedling blast (SB)was evaluated in a greenhouse at 3-4 leaf stage with artificial inoculation while resistance to leaf blast (LB) and neck blast (NB) were evaluated in the natural field as instructed by the International Network of Genetic Evaluation for Rice (INGER). Materials with high level of blast resistante and good agronomic traits were selected andre-evaluated in suoceeding years.

  7. Evaluation of copper slag blast media for railcar maintenance

    Science.gov (United States)

    Sagers, N. W.; Finlayson, Mack H.

    1989-06-01

    Copper slag was tested as a blasting substitute for zirconium silicate which is used to remove paint from railroad cars. The copper slag tested is less costly, strips paint faster, is produced near the point of need, provides a good bonding surface for paint, and permits the operator to work in a more comfortable position, i.e., standing nearly erect instead of having to crouch. Outdoor blasting with the tested Blackhawk (20 to 40 mesh) copper slag is also environmentally acceptable to the State of Utah. Results of tests for the surface erosion rate with copper slag blasting are included.

  8. Evaluation of copper slag blast media for railcar maintenance

    Science.gov (United States)

    Sagers, N. W.; Finlayson, Mack H.

    1989-01-01

    Copper slag was tested as a blasting substitute for zirconium silicate which is used to remove paint from railroad cars. The copper slag tested is less costly, strips paint faster, is produced near the point of need, provides a good bonding surface for paint, and permits the operator to work in a more comfortable position, i.e., standing nearly erect instead of having to crouch. Outdoor blasting with the tested Blackhawk (20 to 40 mesh) copper slag is also environmentally acceptable to the State of Utah. Results of tests for the surface erosion rate with copper slag blasting are included.

  9. Computation of Blast Pressures foam Propellant for Compaction of Soil

    Directory of Open Access Journals (Sweden)

    K. B. Agarwal

    1974-01-01

    Full Text Available The knowledge of blast pressure characteristics is a pre-requisite for a suitable application of foam propellant to emergency military construction such as compacting of the soil from an aircraft using the foam propellant. The foam propellant considered here is a combination of hydrazine and ammonium perchlorate. The blast pressure is found to be a function of the quantity of foam propellant used and the distance of the observation point. This paper attempts to compute the blast pressure versus time characteristics of a foam propellant strip.

  10. Load Balancing Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, Olga Tkachyshyn [Texas A & M Univ., College Station, TX (United States)

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  11. Evaluation and Genetic Analysis of Five Parental Varieties Resistant to Rice Blast Pathogen in Heilongjiang Province

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhong-chen; Liu Hong-liang; Gao Hong-xiu; Liu Hai-ying; Jin Zheng-xun

    2012-01-01

    Five F2 segregation populations, derived from crosses between the susceptible japonica cultivars (cvs.) Kongyul31 and donor cvs. Aichi Asahi (AA), BL1, Digu, Pai-kan-tao (PKT) and Oryzica Llanos 5 (ORL5), were used to evaluate their natural resistance to blast in cold region. The field test of their blast resistance was conducted in 858 Farm, which showed that Aichi Asahi, BL 1 and Digu were highly resistant to either leaf blast or neck blast and could be used to develop molecular breeding by design, and genetic analysis indicated that the field resistance of Aichi Asahi, BLland Digu to leaf blast and neck blast was controlled by a single dominant gene, and the leaf blast and neck blast resistance in the donor cv. Pai-kan-tao was inherited as a single recessive gene, the neck blast resistance of the donor cv. Oryzica Llanos 5 was controlled by a single recessive gene while its leaf blast resistance was not controlled by this gene. These results suggested that five parental varieties positively contributed to resistance to either leaf blast or neck blast and could be used to expand the genetic germplasms resistant to blast in cold region using molecular assisted selection.

  12. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  13. Refractory Gunning Material for Inner Lining Maintenance of Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan; Peng Xigao

    2010-01-01

    @@ 1 Scope This standard specifies the term and definition,classification, technical requirements, test methods,quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of refractory gunning material for inner lining maintenance of blast furnace .

  14. Removal of phosphate from aqueous solution with blast furnace slag.

    Science.gov (United States)

    Oguz, Ensar

    2004-10-18

    Blast furnace slag was used to remove phosphate from aqueous solutions. The influence of pH, temperature, agitation rate, and blast furnace slag dosage on phosphate removal was investigated by conducting a series of batch adsorption experiments. In addition, the yield and mechanisms of phosphate removal were explained on the basis of the results of X-ray spectroscopy, measurements of zeta potential of particles, specific surface area, and images of scanning electron microscopy (SEM) of the particles before and after adsorption. The specific surface area of the blast furnace slag was 0.4m(2)g(-1). The removal of phosphate predominantly has taken place by a precipitation mechanism and weak physical interactions between the surface of adsorbent and the metallic salts of phosphate. In this study, phosphate removal in excess of 99% was obtained, and it was concluded that blast furnace slag is an efficient adsorbent for the removal of phosphate from solution.

  15. Blast shocks in quasi-two-dimensional supersonic granular flows.

    Science.gov (United States)

    Boudet, J F; Cassagne, J; Kellay, H

    2009-11-27

    In a thin, dilute, and fast flowing granular layer, the impact of a small sphere generates a fast growing hole devoid of matter. The growth of this hole is studied in detail, and its dynamics is found to mimic that of blast shocks in gases. This dynamics can be decomposed into two stages: a fast initial stage (the blast) and a slower growth regime whose growth velocity is given by the speed of sound in the medium used. A simple model using ingredients already invoked for the case of blast shocks in gases but including the inelastic nature of collisions between grains accounts accurately for our results. The system studied here allows for a detailed study of the full dynamics of a blast as it relaxes from a strong to a weak shock and later to an acoustic disturbance.

  16. BICARBONATE OF SODA BLASTING TECHNOLOGY FOR AIRCRAFT WHEEL PAINTING

    Science.gov (United States)

    This evaluation addressed product quality, waste reduction/pollution prevention and economics in replacing chemical solvent strippers with a bicarbonate of soda blasting technology for removal of paint from aircraft wheels. The evaluation was conducted in the Paint Stripping Sho...

  17. 30 CFR 77.1910 - Explosives and blasting; general.

    Science.gov (United States)

    2010-07-01

    ... COAL MINES Slope and Shaft Sinking § 77.1910 Explosives and blasting; general. (a) Light and power... drill holes are being charged and until after all shots have been fired. (h) The sides of the slope...

  18. Vibration Superposition in Tunnel Blasting with Millisecond Delay

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun-jie; LOU Xiao-ming; LUO De-pi

    2009-01-01

    According to explosion dynamics and elastic wave theory,the models of particle vibration velocity for simultaneous blasting and millisecond blasting are built.In the models,influential factors such as delay interval and charge quantity,are considered.The calculated vibration velocity is compared with the field test results,which shows that the theoretical values are close to the experimental ones.Meanwhile,the particle vibration velocity decreases quickly with time due to the damping of rock mass and has a harmonic motion,and the particle vibration velocity of millisecond blasting has short interval.The superposition of particle vibration velocities may reduce vibration because of wave interference,or magnify the surrounding rock response to the blasting-induced vibration.

  19. Blast overpressure after tire explosion: a fatal case.

    Science.gov (United States)

    Pomara, Cristoforo; D'Errico, Stefano; Riezzo, Irene; Perilli, Gabriela; Volpe, Umberto; Fineschi, Vittorio

    2013-12-01

    Fatal blast injuries are generally reported in literature as a consequence of the detonation of explosives in war settings. The pattern of lesion depends on the position of the victim in relation to the explosion, on whether the blast tracks through air or water, and whether it happens in the open air or within an enclosed space and the distance from the explosion. Tire explosion-related injuries are rarely reported in literature. This study presents a fatal case of blast overpressure due to the accidental explosion of a truck tire occurring in a tire repair shop. A multidisciplinary approach to the fatality involving forensic pathologists and engineers revealed that the accidental explosion, which caused a series of primary and tertiary blast wave injuries, was due to tire deterioration.

  20. LOADING SIMULATION PROGRAM C

    Data.gov (United States)

    U.S. Environmental Protection Agency — LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for...

  1. Lumbriculus variegatus loading study

    Data.gov (United States)

    U.S. Environmental Protection Agency — Results from sediment bioaccumulation tests with Lumbriculus variegatus with evaluating the effects of organism loading density. This dataset is associated with the...

  2. Static Loads Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to perform large-scale structural loads testing on spacecraft and other structures. Results from these tests can be used to verify...

  3. Plug Load Data

    Data.gov (United States)

    National Aeronautics and Space Administration — We provide MATLAB binary files (.mat) and comma separated values files of data collected from a pilot study of a plug load management system that allows for the...

  4. Preliminary Study of Realistic Blast Impact on Cultured Brain Slices

    Science.gov (United States)

    2015-04-01

    integral membrane protein belonging to the glutamate-gated ion channel family, whereas a triple blast insult caused a significant reduction in the...24 I.U. per mg), 5-units/ml penicillin , and 5-mg/l streptomycin. The prepared slice cultures were supplied with fresh HSM 24 h later (culture day 1... penicillin , and 5-mg/L streptomycin. Just prior to submerging the blast plate, a control plate of slices was flooded with warmed SFM to provide tissue

  5. Finite Element Model to Reduce Fire and Blast Vulnerability

    Science.gov (United States)

    2013-01-01

    blast without a foam pad The tibia and fibula both fracture ...... 16 Figure 18. Force time history of the tibia for the 20 kg under body blast without...pad The tibia and fibula both fracture UNCLASSIFIED 16 UNCLASSIFIED The results of the study show that the addition of the foam reduce the...tibia forces by at least 35%. The reduction is likely higher since the tibia and fibula fractured in the baseline analysis therefore limiting the

  6. Application of Grid Planning Method in Drilling-Blasting Operations

    OpenAIRE

    Dambov, Risto; Spasovski, Orce

    2012-01-01

    The problem occurs almost every day in operation and causes troubles to mining engineers. The right performance of drilling-blasting work is important for the successful operation of the entire excavation. The aim of the paper is to point out the importance of planning and how it can contribute to the right organization and make drilling-blasting and other mining activities in mine operations easier. Defining the activities and practical example that has been given are carried out by the u...

  7. Blast trauma: the fourth weapon of mass destruction.

    Science.gov (United States)

    Born, C T

    2005-01-01

    Injury from blast is becoming more common in the non-military population. This is primarily a result of an increase in politically motivated bombings within the civilian sector. Explosions unrelated to terrorism may also occur in the industrial setting. Civilian physicians and surgeons need to have an understanding of the pathomechanics and physiology of blast injury and to recognize the hallmarks of severity in order to increase survivorship. Because victims may be transported rapidly to the hospital, occult injury to gas and fluid containing organs (particularly the ears, bowel and lungs) may go unrecognized. Information surrounding the physical environment of the explosion (whether inside or outside, underwater, associated building collapse, etc) will prove useful. Most of the immediate deaths are caused by primary blast injury from the primary blast wave, but secondary blast injury from flying debris can also be lethal and involve a much wider radius. Liberal use of X-ray examination in areas of skin punctures will help to identify a need for exploration and/or foreign body removal. Biologic serum markers may have a role in identifying victims of primary blast injury and assist in monitoring their clinical progress. Tertiary blast injury results from the airborne propulsion of the victim by the shockwave and is a source of additional blunt head and torso trauma as well as fractures. Miscellaneous (quaternary) blast injury include thermal or dust inhalation exposure as well as crush and compartment syndromes from building collapse. Any explosion has the potential to be associated with nuclear, biologic or chemical contaminants, and this should remain a consideration for healthcare givers until proven otherwise.

  8. Anomaly detection of blast furnace condition using tuyere cameras

    Science.gov (United States)

    Yamahira, Naoshi; Hirata, Takehide; Tsuda, Kazuro; Morikawa, Yasuyuki; Takata, Yousuke

    2016-09-01

    We present a method of anomaly detection using multivariate statistical process control(MSPC) to detect the abnormal behaviors of a blast furnace. Tuyere cameras attached circumferentially at the lower side of a blast furnace are used to monitor the inside of the furnace and this method extracts abnormal behaviors of intensities. It is confirmed that with our method, detecting timing is earlier than operators' notice. Besides, misalignment of cameras doesn't affect detecting performance, which is important property in actual use.

  9. Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury

    Science.gov (United States)

    2010-06-01

    Patho- genesis of pulmonary edema caused by blast waves]. Vojno- sanit. Pregl. 48, 507–514. Cernak, I., Savic, J., Zunic, G., Pejnovic, N., Jovanikic...Cernak I, Savic J, Mrsulja B, Duricic B. [Pathogenesis of pulmonary edema caused by blast waves]. Vojnosanit Pregl. 1991;48:507–514 [in Serbian]. 37...generally accepted definition, a biomarker has the characteristic that it can be objectively measured 1Center of Innovative Research, Banyan Biomarkers, Inc

  10. Powder blasting for three-dimensional microstructuring of glass

    OpenAIRE

    Belloy, E.; Sayah, A.; M.A.M. Gijs

    2000-01-01

    We report on powder blasting as a promising technology for the three-dimensional structuring of brittle materials. We investigate the basic parameters of this process, which is based on the erosion of a masked substrate by a high-velocity eroding powder beam, using glass substrates. We study the effect of various parameters on the etching rate, like the powder velocity and the mask feature size, which induces geometrical effects to the erosion process. We introduce oblique powder blasting and...

  11. Genetic Networks Activated by Blast Injury to the Eye

    Science.gov (United States)

    2014-08-01

    Geisert, Eldon E. Biomarkers for Neuronal Injury Following Blast Trauma to the Eye. Association for Research in Vision and Ophthalmology (ARVO...Ocular Blast Trauma in the DBA/2J Mouse. Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting, May 5-9,2013, Seattle, Washington...Geisert E.E., Joe Caron, XiangDi Wang, SOX11 Marks injured retinal ganglion cells. Association for Research in Vision and Ophthalmology (ARVO

  12. A Blast Model of Traumatic Brain Injury in Swine

    Science.gov (United States)

    2009-05-01

    public release; distribution unlimited Although blast-induced traumatic brain injury (BI- TBI ) is a significant cause of morbidity and behavioral...survival model of BI- TBI in swine. Traumatic Brain Injury , Swine, Blast, Model Development U U U 7 USAMRMC W81XWH-08-2-0082... Injury , TBI Scientific Advisor, Defense Center of Excellence for Psychological Health and Traumatic Brain Injury ) and Dr. Tamara Crowder at the DoD

  13. Modeling of aqueous foam blast wave attenuation

    Directory of Open Access Journals (Sweden)

    Domergue L.

    2011-01-01

    Full Text Available The use of aqueous foams enables the mitigation of blast waves induced by the explosion of energetic materials. The two-phase confinement gives rise to interphase interactions between the gaseous and liquid phases, which role have been emphasized in shock-tube studies with solid foams [1, 2]. Multifluid formalism enables the thermo-mechanical disequilibria between phases to be taken into account. The flow model ensures the correct estimation of the acoustic impedance of the two-phase media. As for the numerical scheme, Riemann solvers are used to describe the microscopic fluid interactions, the summation of which provides the multiphase flux. The role of the different transfer mechanisms is evaluated in the case where the liquid ligaments of the foam matrix have been shattered into droplets by the shock impingement. Characteristics of blast waves in heterogeneous media leads to a decrease of overpressure. The numerical results have been compared favorably to experimental data [3, 4].

  14. Durability of Alkali Activated Blast Furnace Slag

    Science.gov (United States)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  15. Mercury in dumped blast furnace sludge.

    Science.gov (United States)

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2014-03-01

    Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was dumped in sedimentation ponds. Sixty-five samples from seven BFS locations in Europe were investigated regarding the toxic element mercury (Hg) for the first time. The charge material of the blast furnace operations revealed Hg contents from 0.015 to 0.097mgkg(-1). In comparison, the Hg content of BFS varied between 0.006 and 20.8mgkg(-1) with a median of 1.63mgkg(-1), which indicates enrichment with Hg. For one site with a larger sample set (n=31), Hg showed a stronger correlation with the total non-calcareous carbon (C) including coke and graphite (r=0.695; n=31; p<0.001). It can be assumed that these C-rich compounds are hosting phases for Hg. The solubility of Hg was rather low and did not exceed 0.43% of total Hg. The correlation between the total Hg concentration and total amount of NH4NO3-soluble Hg was relatively poor (r=0.496; n=27; p=0.008) indicating varying hazard potentials of the different BFS. Finally, BFS is a mercury-containing waste and dumped BFS should be regarded as potentially mercury-contaminated sites.

  16. Combat Helmets and Blast Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Duncan Wallace

    2012-01-01

    Full Text Available Background: The conflicts in Iraq and Afghanistan and the prominence of traumatic brain injury (TBI, mostly from improvised explosive devices, have focused attention on the effectiveness of combat helmets. Purpose: This paper examines the importance of TBI, the role and history of the development of combat helmets, current helmet designs and effectiveness, helmet design methodology, helmet sensors, future research and recommendations. Method: A literature review was conducted using search terms – combat helmets, traumatic brain injury, concussion, Iraq, Afghanistan and helmet sensors, searching PubMed, MEDLINE, ProQuest and Google Scholar. Conclusions: At present, no existing helmet is able to fully protect against all threats faced on the battlefield. The prominence of traumatic brain injury from improvised explosive devices in the current conflicts in Iraq and Afghanistan has highlighted the limitations in knowledge about blast and how to provide protection from it. As a result, considerable research is currently occurring in how to protect the head from blast over-pressure. Helmet sensors may provide valuable data. Some new combat helmets may be able to protect against rifle rounds, but may result in injuries occurring behind body armour. Optimal combat helmet design requires a balance between the need for protection from trauma and the comfort and practicality of the helmet for the user to ensure the best outcomes.

  17. Discussion of "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140

    Science.gov (United States)

    Svinkin, Mark R.

    2016-12-01

    The authors suggested a hybrid method for modeling the time history of structural vibrations triggered by impact dynamic loads from construction equipment and blasting, and they stated, "In this work, a hybrid method has been proposed to calculate the theoretical seismograms of structural vibrations. The word "hybrid" denotes a combination of field measurements and computer simulations. Then, based on nonlinear system theory, a novel method is proposed to predict the signal induced by impact loading".

  18. Influence law of multipoint vibration load on slope stability in Xiaolongtan open pit mine in Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    韩流; 舒继森; N.R. HANIF; 席文佳; 李鑫; 靖洪文; 马力

    2015-01-01

    The purpose of this work was to explore the influence law of vibration load on rock mass structure and slope stability. Based on the type and transmission way of vibration stress wave, the main stress in the horizontal and vertical directions was analyzed and the superposition effect of the stress wave was revealed. After the mechanical analysis of the sliding mass, the calculation formulas of the anti-sliding force and the sliding force were derived and the damage mechanism of blasting vibration to the structural plane was defined. In addition, according to the structure and lithologic parameter of the slope as well as the vibration monitoring data, the west slope stability of Xiaolongtan open pit mine was analyzed. The results show that the time-dependent stability factor is proportional to the vibration speed and the peak values appear at the same time. Vibration load promotes the breakage of the structural plane leading to the drop of the west slope stability factor by 0.23%. Under the multipoint simultaneous blasting, the fluctuating laws of the stability factors are consistent. The more the start-up points are, the higher the weakening degree to the slope stability is. Under the multipoint allochronic blasting, the stability factor depends on the synthetic waveform structure of all vibration waves. The greater the blasting time difference is, the lower the weakening degree to the slope stability is. Selecting the reasonable quantity of start-up points and time difference could fully reduce the adverse influence of vibration load to slope stability.

  19. Hippocampal vulnerability and subacute response following varied blast magnitudes.

    Science.gov (United States)

    Sajja, Venkata Siva Sai Sujith; Ereifej, Evon S; VandeVord, Pamela J

    2014-06-06

    Clinical outcomes from blast neurotrauma are associated with higher order cognitive functions such as memory, problem solving skills and attention. Current literature is limited to a single overpressure exposure or repeated exposures at the same level of overpressure and is focused on the acute response (magnitudes (low, moderate and high) were used to evaluate molecular injury thresholds. Immunohistochemical analysis demonstrated increased cleaved caspase-3 levels and loss of neuronal population (NeuN+) within the hippocampus of all pressure groups. On the contrary, selective activation of microglia was observed in the low blast group. In addition, increased astrocytes (GFAP), membrane signal transduction protein (Map2k1) and calcium regulator mechanosensitive protein (Piezo 2) were observed in the moderate blast group. Results from gene expression analysis suggested ongoing neuroprotection, as brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) and Mn and CuZn superoxide dismutases (SOD) all increased in the low and moderate blast groups. Ongoing neuroprotection was further supported by increased SOD levels observed in the moderate group using immunohistochemistry. The gene expression level of glutamate aspartate transporter (GLAST) was upregulated in the low, but downregulated in the high blast group, while no changes were found in the moderate group. Overall, the data shown here provides evidence of a diverse neuroprotective and glial response to various levels of blast exposure. This mechanistic role of neuroprotection is vital in understanding ongoing cellular stress, both at the gene and protein levels, in order to develop interventional studies for the prognosis of injury.

  20. Finite element modeling of blast lung injury in sheep.

    Science.gov (United States)

    Gibbons, Melissa M; Dang, Xinglai; Adkins, Mark; Powell, Brian; Chan, Philemon

    2015-04-01

    A detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic-plastic material model was used for the ribs based on three-point bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strain-rate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.

  1. Monitoring Method for Blast Furnace Wall With Copper Staves

    Institute of Scientific and Technical Information of China (English)

    CHENG Su-sen; QIAN Liang; ZHAO Hong-bo

    2007-01-01

    A monitoring method that has been designed for the first time for blast furnace wall with copper staves manufactured in China was introduced. Combining the method of "inverse problem" and the concept "non-inverse problem", the monitoring program for blast furnace wall with copper staves has been realized, which can be used to calculate online the accretion thickness and temperature of hot surface of copper staves after obtaining the values of thermocouples of copper staves. The accretion state obtained in the actual investigation has proved that the result of the program is correct. The monitoring program shows that the accretion would easily fluctuate when the accretion layer is extremely thick or thin, thereby the stable and smooth operation of the blast furnace is hindered. By maintaining appropriate accretion thickness, both long campaigns and high productivity of the blast furnace can be achieved; furthermore, it can also optimize the operation of blast furnace and maximize its production. Approximately 30-50 mm in thickness of accretion layer is maintained on the wall of Shougang blast furnace 2, which can meet the requirement for obtaining both long campaign and high productivity.

  2. Experimental Investigation of a Novel Blast Wave Mitigation Device

    Directory of Open Access Journals (Sweden)

    Zhenbi Su

    2009-01-01

    Full Text Available A novel blast wave mitigation device was investigated experimentally in this paper. The device consists of a piston-cylinder assembly. A shock wave is induced within the cylinder when a blast wave impacts on the piston. The shock wave propagates inside the device and is reflected repeatedly. The shock wave propagation process inside the device lengthens the duration of the force on the base of the device to several orders of magnitude of the duration of the blast wave, while it decreases the maximum pressure over an order of magnitude. Two types of experiments were carried out to study the blast wave mitigation device. The first type of experiments was done with honeycomb structures protected by the blast wave mitigation device. Experimental results show that the device can adequately protect the honeycomb structure. A second type of experiments was done using a Hopkinson bar to measure the pressure transmitted through the blast wave mitigation device. The experimental results agree well with results from a theoretical model.

  3. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Science.gov (United States)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  4. Study on Blast Pressure Resistance of Foamed Concrete Material

    Directory of Open Access Journals (Sweden)

    A.M. Ahmad Zaidi

    2009-12-01

    Full Text Available Great demand exist for more efficient design to protect personals and critical components against explosion or blast wave, generated both accidentally and deliberately, in various blast scenarios in both civilian and military activities. Concrete is a common material used in protective design of structures. Recently, the demands on producing the lighter concrete material have become interest in concrete research. Foamed concrete is a possible alternative of lightweight concrete for producing intermediate strength capabilities with excellent thermal insulation, freeze-thaw resistance, high-impact resistance and good shock absorption. This paper explores the role and development of Blast Pressure Resistant Materials (BPRM’s on foamed concrete. The explosive tests were conducted to determine the blast mitigating properties. The results show that when the foamed concrete density is increases the blast energy absorption capability will be decreases due to reduce of cavity volume. This is suggested that cavity plays an important role to dissipate and absorb the shock energy of the blast.

  5. 'INCAB' - induced caving by blasting: software for blasting gallery (BG) panel of underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P.P.; Kumar, A.; Sawmliana, C.; Bhagat, N.K. [Central Mining Research Institute, Dhanbad (India). Blasting Department

    2002-03-01

    In this paper, a brief methodology of induced caving by blasting is discussed in the perspective of one indigenously developed software package 'INCAB' for carrying out successful induced blasting in blasting gallery panels. The development is basically a part of one S & T project jointly sponsored by the Ministry of Coal (GOI) and Singareni Collieries Company Ltd. (SCCL). 'INCAB' is a comprehensive, menu-driven, graphics software package developed in JAVA (Swing) language under Windows environment for designing and analyzing induced caving by blasting in BG panels of underground coal mines. It can be operative in any standard Pentium based IBM compatible system with VGA display unit. Practical validity of the programme was tested in 4 operating BG panels in the country. 2 refs., 5 figs.

  6. The effect of blast furnace coke quality on the possibility of its use

    OpenAIRE

    A. Konstanciak

    2013-01-01

    In the paper behavior of the blast-furnace coke in the high temperature was presented. Comparative analysis of the chemical composition of the blast-furnace coke and the heat treatment of it were done. Coefficients M10 and M40 with the thermo-abrasiveness for chosen cokes were compared. The influence of ash content of the coke on the blast-furnace bed permeability was defined. Usefulness of the coke to blast-furnace process was also defined.

  7. Incidence of Primary Blast Injury in US Military Overseas Contingency Operations: A Retrospective Study

    Science.gov (United States)

    2010-06-01

    blast lung injury,27 codes 860.4 (traumatic pneumothorax, closed) and 861.21 ( pulmonary contusion , closed) were searched in the JTTR. The records of...the explosion-injured patients with closed pneumothoraces and/or closed pulmonary contusions were re- viewed. Patients found to have rib fractures...pressure. The JTTR was searched for these codes with no results. No specific codes for blast lung injury/ pulmonary blast injury or intes- tinal blast

  8. Experimental and Theoretical Study on Influence of Different Charging Structures on Blasting Vibration Energy

    OpenAIRE

    Wenbin Gu; Zhenxiong Wang; Jianghai Chen; Jianqing Liu; Ming Lu

    2015-01-01

    As an important parameter in blasting design, charging structure directly influences blasting effect. Due to complex conditions of this blasting and excavating engineering in Jiangsu, China, the authors carried out comparative researches with coupling structure, air-decoupling structure, and water-decoupling structure. After collecting, comparing, and analyzing produced signals on blasting vibration, the authors summarized that when proportional distances are the same, water-decoupling struct...

  9. Controlled fragmentation and contours in rock blasting:theoretical and technical approaches

    OpenAIRE

    Rustan, Agne

    1995-01-01

    The Swedish mining and construction industries have a large interest in improving blasting technology, in milling concerning rock fragmentation by blasting (especially underground in large diameter hole blasting, > 100 mm) and in construction and mining concerning controlled and safe contours in blasted tunnels. This doctoral thesis deals with these matters and includes a licentiate thesis (published in 1970) and five papers A-E included in the doctoral thesis and published during 1983 to ...

  10. File list: ALL.Bld.05.AllAg.Leukemic_blast_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Leukemic_blast_cell hg19 All antigens Blood Leukemic blast cell SR...X1122119,SRX099357,SRX061973 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.Leukemic_blast_cell.bed ...

  11. File list: His.Bld.05.AllAg.Leukemic_blast_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Leukemic_blast_cell hg19 Histone Blood Leukemic blast cell SRX1122...119,SRX099357,SRX061973 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.AllAg.Leukemic_blast_cell.bed ...

  12. File list: Unc.Bld.05.AllAg.Leukemic_blast_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Leukemic_blast_cell hg19 Unclassified Blood Leukemic blast cell ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Leukemic_blast_cell.bed ...

  13. File list: ALL.Bld.50.AllAg.Leukemic_blast_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Leukemic_blast_cell hg19 All antigens Blood Leukemic blast cell SR...X1122119,SRX099357,SRX061973 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.Leukemic_blast_cell.bed ...

  14. File list: Unc.Bld.50.AllAg.Leukemic_blast_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Leukemic_blast_cell hg19 Unclassified Blood Leukemic blast cell ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Leukemic_blast_cell.bed ...

  15. File list: Pol.Bld.20.AllAg.Leukemic_blast_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Leukemic_blast_cell hg19 RNA polymerase Blood Leukemic blast cell ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.AllAg.Leukemic_blast_cell.bed ...

  16. File list: Pol.Bld.05.AllAg.Leukemic_blast_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Leukemic_blast_cell hg19 RNA polymerase Blood Leukemic blast cell ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.05.AllAg.Leukemic_blast_cell.bed ...

  17. File list: Unc.Bld.10.AllAg.Leukemic_blast_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Leukemic_blast_cell hg19 Unclassified Blood Leukemic blast cell ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Leukemic_blast_cell.bed ...

  18. File list: His.Bld.50.AllAg.Leukemic_blast_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Leukemic_blast_cell hg19 Histone Blood Leukemic blast cell SRX1122...119,SRX099357,SRX061973 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.50.AllAg.Leukemic_blast_cell.bed ...

  19. File list: DNS.Bld.20.AllAg.Leukemic_blast_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Leukemic_blast_cell hg19 DNase-seq Blood Leukemic blast cell http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.Leukemic_blast_cell.bed ...

  20. Analysis of key technologies and development of integrated digital processing system for cast blasting design

    Institute of Scientific and Technical Information of China (English)

    丁小华; 李克民; 肖双双; 狐为民

    2015-01-01

    Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.

  1. 30 CFR 816.68 - Use of explosives: Records of blasting operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Records of blasting...-SURFACE MINING ACTIVITIES § 816.68 Use of explosives: Records of blasting operations. The operator shall... § 816.67(e). (e) Weather conditions, including those which may cause possible adverse blasting...

  2. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Blasting in excavation work under compressed air. 1926.913... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.913 Blasting in excavation work under compressed air. (a) Detonators...

  3. 30 CFR 57.22602 - Blasting from the surface (I-C mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting from the surface (I-C mines). 57.22602... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22602 Blasting from the surface (I-C mines). (a) All blasting shall be initiated from the surface after all persons are out of the mine and...

  4. 30 CFR 817.68 - Use of explosives: Records of blasting operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Records of blasting...-UNDERGROUND MINING ACTIVITIES § 817.68 Use of explosives: Records of blasting operations. The operator shall... § 817.67 (e). (e) Weather conditions, including those which may cause possible adverse blasting...

  5. 77 FR 31878 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Blasting...

    Science.gov (United States)

    2012-05-30

    ...; Blasting Operations and Use of Explosives Standard ACTION: Notice. SUMMARY: The Department of Labor (DOL... collection request (ICR) titled, ``Blasting Operations and Use of Explosives Standard,'' to the Office of..._PUBLIC@dol.gov . SUPPLEMENTARY INFORMATION: The Blasting and Use of Explosives Standard at 29 CFR...

  6. 29 CFR 1926.904 - Storage of explosives and blasting agents.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Storage of explosives and blasting agents. 1926.904 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.904 Storage of explosives and blasting agents. (a) Explosives and related materials...

  7. 30 CFR 57.22606 - Explosive materials and blasting units (III mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosive materials and blasting units (III... materials and blasting units (III mines). (a) Mine operators shall notify the appropriate MSHA District Manager of all nonapproved explosive materials and blasting units to be used prior to their use....

  8. 30 CFR 57.22605 - Blasting from the surface (V-A mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting from the surface (V-A mines). 57.22605... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons...

  9. A review of three cases of mobile blast: The new culprit of hand injury

    Directory of Open Access Journals (Sweden)

    Nikunj B Mody

    2016-01-01

    Full Text Available Although blast injuries are common with war; cooking gas; firecracker, mobile phone blast cases are increasing in number in last couple of years. We present 3 cases of mobile blast in 3 children causing injury to dominant hand in them.

  10. Controlled blasting and its implications for the NNWSI project exploratory shaft

    Energy Technology Data Exchange (ETDEWEB)

    Van Eeckhout, E.M.

    1987-09-01

    This report reviews controlled blasting techniques for shaft sinking. Presplitting and smooth blasting are the techniques of principal interest. Smooth blasting is preferred for the Nevada Nuclear Waste Storage Investigations exploratory shaft. Shaft damage can be monitored visually or by peak velocity measurements and refractive techniques. Damage into the rock should be limited to 3 ft. 40 refs., 22 figs., 7 tabs.

  11. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Science.gov (United States)

    2010-07-01

    ... blasting caps shall not be grounded. (j) In underground operations when firing from a power circuit, a..., shall use only blasting galvanometers or other instruments that are specifically designed for this... 29 Labor 8 2010-07-01 2010-07-01 false Initiation of explosive charges-electric blasting....

  12. Lasting retinal injury in a mouse model of blast-induced trauma

    Science.gov (United States)

    Traumatic brain injury (TBI) due to blast exposure is currently the most prevalent of war injuries. While secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure has been reported among survivors of explosions, but with limited understanding of the resulti...

  13. TE(01) High Power Disk Loaded Guide Load

    CERN Document Server

    Farkas, Zoltan D

    2005-01-01

    A method to design a matching section from a smooth guide to a disk loaded guide, using a variation of broadband matching* is described. Using this method, we show how to design high power loads, filters and attenuators. The load consists of a disk loaded coaxial guide, operating in the T01

  14. E-2C Loads Calibration in DFRC Flight Loads Lab

    Science.gov (United States)

    Schuster, Lawrence S.

    2008-01-01

    Objectives: a) Safely and efficiently perform structural load tests on NAVAIR E-2C aircraft to calibrate strain gage instrumentation installed by NAVAIR; b) Collect load test data and derive loads equations for use in NAVAIR flight tests; and c) Assist flight test team with use of loads equations measurements at PAX River.

  15. Dynamic Brazilian Tests of Granite Under Coupled Static and Dynamic Loads

    Science.gov (United States)

    Zhou, Zilong; Li, Xibing; Zou, Yang; Jiang, Yihui; Li, Guonan

    2014-03-01

    Rocks in underground projects at great depth, which are under high static stresses, may be subjected to dynamic disturbance at the same time. In our previous work (Li et al. Int J Rock Mech Min Sci 45(5):739-748, 2008), the dynamic compressive behaviour of pre-stressed rocks was investigated using coupled-load equipment. The current work is devoted to the investigation of the dynamic tensile behaviour of granite rocks under coupled loads using the Brazilian disc (BD) method with the aid of a high-speed camera. Through wave analyses, stress measurements and crack photography, the fundamental problems of BD tests, such as stress equilibrium and crack initiation, were investigated by the consideration of different loading stresses with abruptly or slowly rising stress waves. The specially shaped striker method was used for the coupled-load test; this generates a slowly rising stress wave, which allows gradual stress accumulation in the specimen, whilst maintaining the load at both ends of the specimen in an equilibrium state. The test results showed that the tensile strength of the granite under coupled loads decreases with increases in the static pre-stresses, which might lead to modifications of the blasting design or support design in deep underground projects. Furthermore, the failure patterns of specimens under coupled loads have been investigated.

  16. Concrete under severe conditions. Environment and loading

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The objective of the CONSEC Conferences is to focus on concrete infrastructures, either subjected to severe environment or severe loading, or any combination of severe conditions. Experience from the performance of existing concrete structures, and especially under severe environmental conditions, severe accidental loading or extended lifespan, has demonstrated the need for better integration of structural and durability design, new design concepts including reliability-based durability design, performance-based material requirements, structural robustness, and an improved basis for documentation of obtained construction quality and durability properties during concrete construction. An improved basis for operation and preventive maintenance of concrete structures including repairs and retrofitting is also very important. Premature corrosion of reinforcing steel, inadequate structural design for seismic or blast loading, are examples of reduced service life of concrete structures that not only represent technical and economical problems, but also a huge waste of natural resources and hence also, an environmental and ecological problem. Experience of structures effectively submitted to severe conditions represents a unique benchmark for quantifying the actual safety and durability margin of concrete structures. In fact for several reasons, most concrete design codes, job specifications and other requirements for concrete structures have frequently shown to yield insufficient and unsatisfactory results and ability to solve the above problems, as well as issues raised by specific very long-term or very severe requirements for nuclear and industrial waste management, or civil works of strategic relevance. Recently available high to ultra-high performance concrete may find rational and valuable application in such cases. It is very important, therefore, to bring people with different professional backgrounds together to exchange experience and develop multi

  17. Dielectrically Loaded Biconical Antennas

    Science.gov (United States)

    Nusseibeh, Fouad Ahmed

    1995-01-01

    Biconical antennas are of great interest to those who deal with broadband applications including the transmission/reception of pulses. In particular, wide-angle conical antennas are an attractive choice in many applications including Electronic Support Measures (ESM) and the measurements of transient surface currents and charge densities on aircraft. Dielectric loading in the interior region of a conical antenna can be used to reduce the size of the antenna especially at low frequencies and/or for structural strength. Therefore, having an analytical solution for the input impedance and the frequency response is very helpful in optimizing the design and understanding the behavior of the antenna. From the quasi-analytical solution for the input impedance and the electric field of a wide-angle conical antenna, it can be seen that the dielectric loading in the antenna region improves the input impedance at low frequencies, but increases the number of resonance points and the magnitude of these peaks. When an inhomogeneous dielectric load is used, the magnitude of the resonance peaks is decreased (depending on the way the load is distributed), improving the input impedance of the antenna significantly. Introducing a dielectric load in the interior region of an electrically short receiving cone makes the antenna behave as an electrically longer antenna. However, this is not true for the case for electrical1y long antennas. For the case of pulse transmission, the dielectric load affects only the amplitude. Of course, if the dielectric fills the whole space, both transmitting and receiving antennas behave as electrically longer antennas.

  18. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    Science.gov (United States)

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components

  19. 30 CFR 57.22608 - Secondary blasting (I-A, II-A, and V-A mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting (I-A, II-A, and V-A mines... blasting (I-A, II-A, and V-A mines). Prior to secondary blasting, tests for methane shall be made in the mine atmosphere at blast sites by a competent person. Secondary blasting shall not be done when...

  20. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    In this thesis results from experiments on mortar joints and masonry as well as methods of calculation of strength and deformation of laterally loaded masonry are presented. The strength and deformation capacity of mortar joints have been determined from experiments involving a constant compressive...... stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...

  1. Wave Loads on Cylinders

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Frigaard, Peter

    1989-01-01

    Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....

  2. A Modified Surface on Titanium Deposited by a Blasting Process

    Directory of Open Access Journals (Sweden)

    Caroline O’Sullivan

    2011-09-01

    Full Text Available Hydroxyapatite (HA coating of hard tissue implants is widely employed for its biocompatible and osteoconductive properties as well as its improved mechanical properties. Plasma technology is the principal deposition process for coating HA on bioactive metals for this application. However, thermal decomposition of HA can occur during the plasma deposition process, resulting in coating variability in terms of purity, uniformity and crystallinity, which can lead to implant failure caused by aseptic loosening. In this study, CoBlastTM, a novel blasting process has been used to successfully modify a titanium (V substrate with a HA treatment using a dopant/abrasive regime. The impact of a series of apatitic abrasives under the trade name MCD, was investigated to determine the effect of abrasive particle size on the surface properties of both microblast (abrasive only and CoBlast (HA/abrasive treatments. The resultant HA treated substrates were compared to substrates treated with abrasive only (microblasted and an untreated Ti. The HA powder, apatitic abrasives and the treated substrates were characterized for chemical composition, coating coverage, crystallinity and topography including surface roughness. The results show that the surface roughness of the HA blasted modification was affected by the particle size of the apatitic abrasives used. The CoBlast process did not alter the chemistry of the crystalline HA during deposition. Cell proliferation on the HA surface was also assessed, which demonstrated enhanced osteo-viability compared to the microblast and blank Ti. This study demonstrates the ability of the CoBlast process to deposit HA coatings with a range of surface properties onto Ti substrates. The ability of the CoBlast technology to offer diversity in modifying surface topography offers exciting new prospects in tailoring the properties of medical devices for applications ranging from dental to orthopedic settings.

  3. Bioluminescent assay for human lymphocyte blast transformation.

    Science.gov (United States)

    Bulanova, E G; Budagyan, V M; Romanova, N A; Brovko LYu; Ugarova, N N

    1995-05-01

    One of the basic tests of in vitro evaluation of immune cell functional activity is a proliferative response of lymphocytes on the action of external stimuli such as mitogenic lectines, antigens, etc. We compared two methods used to assess the lymphocyte functional status. (1) [3H]thymidine incorporation and (2) bioluminescence for determination of intracellular ATP in blast cells. Comparison has been done for healthy donors and patients with proven low immunological status. The proposed bioluminescent method for evaluation of the proliferative response was shown to be sensitive enough for diagnostic purposes. This method allows one to process a large number of samples at the same time and correlates highly with the radionuclide test use hazardous radioactive materials.

  4. Power Tillers for Demining: Blast Test

    Directory of Open Access Journals (Sweden)

    Emanuela Elisa Cepolina

    2008-11-01

    Full Text Available Power tillers are very simple and versatile machines with large scale diffusion in developing countries, where they are commonly used both for agriculture and for transportation purposes. A new integrated participatory approach that makes use of and improves local end-users knowledge has been used to design a new robotic system for humanitarian demining applications in Sri Lanka, using power tiller as core module. A demining machine composed by a tractor unit, a ground processing tool and a vegetation cutting tool is here presented together with results obtained from the first blast test on the preliminary version of tractor unit armouring. Different breakable connections between wheels and axle have been designed to cause physical detachment and interrupt the transmission of the shock wave released by the explosion of a mine under one wheel. Effects of explosions on different types of wheels and on the chassis have been recorded and commented.

  5. Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST

    Directory of Open Access Journals (Sweden)

    Oliver Melvin J

    2005-04-01

    Full Text Available Abstract Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST, which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN. W.ND-BLAST provides intuitive Graphic User Interfaces (GUI for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is

  6. Load research and load estimation in electricity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A. [VTT Energy, Espoo (Finland). Energy Systems

    1996-12-31

    The topics introduced in this thesis are: the Finnish load research project, a simple form customer class load model, analysis of the origins of customers load distribution, a method for the estimation of the confidence interval of customer loads and Distribution Load Estimation (DLE) which utilises both the load models and measurements from distribution networks. The Finnish load research project started in 1983. The project was initially coordinated by the Association of Finnish Electric Utilities and 40 utilities joined the project. Now there are over 1000 customer hourly load recordings in a database. A simple form customer class load model is introduced. The model is designed to be practical for most utility applications and has been used by the Finnish utilities for several years. The only variable of the model is the customers annual energy consumption. The model gives the customers average hourly load and standard deviation for a selected month, day and hour. The statistical distribution of customer loads is studied and a model for customer electric load variation is developed. The model results in a lognormal distribution as an extreme case. Using the `simple form load model`, a method for estimating confidence intervals (confidence limits) of customer hourly load is developed. The two methods selected for final analysis are based on normal and lognormal distribution estimated in a simplified manner. The estimation of several cumulated customer class loads is also analysed. Customer class load estimation which combines the information from load models and distribution network load measurements is developed. This method, called Distribution Load Estimation (DLE), utilises information already available in the utilities databases and is thus easy to apply

  7. Simulation of Blast Loading on an Ultrastructurally-based Computational Model of the Ocular Lens

    Science.gov (United States)

    2013-10-01

    tion that may require cataract surgery ( implantation of an intraocular lens (IOL)) are not well understood in comparison to the mature and ever-improving...showing promise, and we are confi- dent we can obtain good structural identification of lens fiber cell structure pre and post-test. This will be used...being investigated as part of the research. References MR. Banitt, JB. Malta, SL. Mian, and H.K Soong. Rupture of anterior lens capsule from blunt

  8. Simulation of Blast Loading on an Ultrastructurally-based Computational Model of the Ocular Lens

    Science.gov (United States)

    2015-10-01

    public release; distribution unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be...cells) is stressed by the passing shock wave. Traumatic cataract can result in a partially or fully clouded lens, complete dislo- cation of the lens...CSLM), and type IV collagen ultrastructure in lens capsule using cyro- electron tomography: 6b - On as-received porcine lens capsules, image type IV

  9. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; Aanhold, J.E. van; Meulen, O.R. van der; Sagimon, M.

    2010-01-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and a

  10. Characterisation of blast loading in complex, confined geometries using quarter symmetry experimental methods

    Science.gov (United States)

    Anthistle, T.; Fletcher, D. I.; Tyas, A.

    2016-11-01

    Explosions in confined spaces lead to complicated patterns of shock wave reflection and interactions which are best investigated by use of experimental tests or numerical simulations. This paper describes the design and outcome of a series of experiments using a test cell to measure the pressures experienced when structures were placed inside to alter the propagation of shock waves, utilising quarter symmetry to reduce the size of the required test cell and charge. An 80 g charge of PE4 (a conventional RDX-based plastic explosive) was placed at half height in one corner of the test cell, which represents the centre of a rectangular enclosure when symmetry is taken into consideration. Steel cylinders and rectangular baffles were placed within the test cell at various locations. Good reproducibility was found between repeated tests in three different arrangements, in terms of both the recorded pressure data and the calculated cumulative impulse. The presence of baffles within the test cell made a small difference to the pressures and cumulative impulse experienced compared to tests with no baffles present; however, the number and spacing of baffles was seen to make minimal difference to the experienced pressures and no noticeable difference to the cumulative impulse history. The paper presents useful experimental data that may be used for three-dimensional code validation.

  11. Failure criteria applied to ship structures subjected to explosive blast loadings

    NARCIS (Netherlands)

    Tyler Street, M.; Luyten, J.M.

    2009-01-01

    Both the dedicated element methodology and the material model with damage have been implemented into the explicit code LSDYNA as separate user defined subroutines. The predicted failure of an bulkhead to deck weld using the dedicated element methodology is shown in Figure 5, only the innermost of th

  12. Structures to Resist the Effects of Accidental Explosions. Volume 2. Blast, Fragment, and Shock Loads

    Science.gov (United States)

    1986-12-01

    Heat of Detonation and...on explosive material, of a specific shape, relative to that of TNT, of similar shape, can be expressed as function of the heat of detonation of the...H d heat of detonation of TNTHTNT di H d heat of detonation of explosive in question EXP The heat of detonation of some of the more commonly

  13. Novel Approach to Conducting Blast Load Analyses Using Abaqus/Explicit-CEL

    Science.gov (United States)

    2010-05-01

    ground burst of a cylindrical projectile filled with Comp-B explosive at 6500ft elevation– i.e. not TNT, not spherical, not free air, not uncased...11 reflect off the slanted roof at the rear of the vehicle before impacting the armor panels. As a...the armor panels and brackets were meshed using SC8R 8-node continuum shell elements. The remainder of the brackets and the windows were meshed

  14. Effects of Rock Joints on Failure of Tunnels Subject to Blast Loading

    Science.gov (United States)

    2013-11-01

    normal) bar barn British thermal unit (thermochemical) calorie (thermochemical) cal (thermochemical/cm 2 ) curie degree (angle) degree...motion in the presence of asperities causes dilata- tion, or opening of the joint, (vii) dilatation due to shear affects the plastic response of...additional dilatation , and (ix) the in-plane normal components of strain and transverse shear strain are assumed to be governed by the adjacent rock mass. In

  15. Simulation of Blast Loading on an Ultrastructurally-based Computational Model of the Ocular Lens

    Science.gov (United States)

    2014-10-01

    year have been the imaging ones (Task 6), and mul- tiscale computational modeling (Task 1-3). For Task 6, undergraduate students Sai and Sri Rad ...C.J. Fowler, R.J. Brechner, and J.M. Tielsch. Char- acteristics and causes of penetrating eye injuries reported to the National Eye Trauma System...American Journal of Ophthalmology, 54(5):856–&, 1962. E.D. Weichel and M.H. Colyer. Combat ocular trauma and systemic injury. Cur- rent Opinion in

  16. Mitigation Systems for Confined Blast Loading - Crew Protection in Armored Vehicles

    Science.gov (United States)

    2009-04-01

    reactants; this volume contains about 80 percent of the original reactants by weight. Sintered bronze barriers were found to be effective in...Effects of Tungsten Alloy Property Variations on Penetrator Performance for Spaced Armors.” Advances in Powder Metallurgy and Particulate Materials

  17. Mechanical Loading of Neurons and Astrocytes with Application to Blast Traumatic Brain Injury

    Science.gov (United States)

    2010-01-01

    traumatic brain injury ( TBI ). Neurons and astrocytes are susceptible to damage mechanisms arising from various...further developments may be pursued to unravel the key mechanical pathways potentially involved in TBI . 1. INTRODUCTION Traumatic brain injury ... injury mechanisms at the cellular level. This is especially important when studying traumatic brain injury ( TBI ). Neurons and astrocytes

  18. Simulation of Blast Loading on an Ultrastructurally-based Computational Model of the Ocular Lens

    Science.gov (United States)

    2012-10-01

    Laura Willson. Your support and encourage- ment throughout this whole ordeal has been tremendous. From keeping me focused, to providing comedic...show the lenses’ initial response characteristics. 3.1 Previous Testing Done A previous student, Laura Hatanaka, completed a series of unconfined...2000] Fineman, M. S., Fischer , D. H., Jeffers, J. B., Buerger, D. G., and Repke, C. (2000). Changing trends in paintball sport-related ocular injuries

  19. Characterization and Fine Mapping of a Blast Resistant Gene Pi-jnw1 from the japonica Rice Landrace Jiangnanwan

    Science.gov (United States)

    Wang, Ruisen; Fang, Nengyan; Guan, Changhong; He, Wanwan; Bao, Yongmei; Zhang, Hongsheng

    2016-01-01

    Rice blast is a destructive disease caused by Magnaporthe oryzae, and it has a large impact on rice production worldwide. Compared with leaf blast resistance, our understanding of panicle blast resistance is limited. The japonica landrace Jiangnanwan from Taihu Lake region in China shows highly resistance to panicle and leaf blast. In this study, three generations (F2:5, F2:6, F2:7) consisting of 221 RILs (recombination inbreeding lines), developed from the cross of Jiangnanwan and Suyunuo, a susceptible-blast japonica variety, were evaluated for panicle blast resistance in the fields and leaf blast resistance in greenhouse in Nanjing in 2013, 2014 and 2015. A blast resistance gene Pi-jnw1 referring to panicle blast resistance and leaf blast resistance was identified in the three generations and located in the region of RM27273 and RM27381 in chromosome 11. The RIL18 line harboring Pi-jnw1 was selected to be backcrossed with Suyunuo to develop BC2F2 populations. According to the genotyping of 1,150 BC2F2 individuals and panicle blast and leaf blast resistance evaluation of 47 recombinants between RM27150 and RM27381, Pi-jnw1 was finally mapped to the 282 kb region between markers W28 and BS39. This study revealed that Jiangnanwan harboring a panicle blast and leaf blast resistance gene Pi-jnw1 could be a genetic source for breeding new rice cultivars with panicle blast resistance. PMID:28036378

  20. Characterization and Fine Mapping of a Blast Resistant Gene Pi-jnw1 from the japonica Rice Landrace Jiangnanwan.

    Science.gov (United States)

    Wang, Ruisen; Fang, Nengyan; Guan, Changhong; He, Wanwan; Bao, Yongmei; Zhang, Hongsheng

    2016-01-01

    Rice blast is a destructive disease caused by Magnaporthe oryzae, and it has a large impact on rice production worldwide. Compared with leaf blast resistance, our understanding of panicle blast resistance is limited. The japonica landrace Jiangnanwan from Taihu Lake region in China shows highly resistance to panicle and leaf blast. In this study, three generations (F2:5, F2:6, F2:7) consisting of 221 RILs (recombination inbreeding lines), developed from the cross of Jiangnanwan and Suyunuo, a susceptible-blast japonica variety, were evaluated for panicle blast resistance in the fields and leaf blast resistance in greenhouse in Nanjing in 2013, 2014 and 2015. A blast resistance gene Pi-jnw1 referring to panicle blast resistance and leaf blast resistance was identified in the three generations and located in the region of RM27273 and RM27381 in chromosome 11. The RIL18 line harboring Pi-jnw1 was selected to be backcrossed with Suyunuo to develop BC2F2 populations. According to the genotyping of 1,150 BC2F2 individuals and panicle blast and leaf blast resistance evaluation of 47 recombinants between RM27150 and RM27381, Pi-jnw1 was finally mapped to the 282 kb region between markers W28 and BS39. This study revealed that Jiangnanwan harboring a panicle blast and leaf blast resistance gene Pi-jnw1 could be a genetic source for breeding new rice cultivars with panicle blast resistance.