WorldWideScience

Sample records for blast furnace granulated

  1. Evaluation of Grade 120 Granulated Ground blast Furnace Slag.

    Science.gov (United States)

    1999-06-01

    This study evaluates Grade 120 Granulated Ground Blast Furnace Slag (GGBFS) and its effect on the properties of hydraulic cement concretes used in structural and pavement construction. Several mix designs, structural and pavement, were used for this ...

  2. A Review of Granulation Process for Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Yu Pengfei

    2016-01-01

    Full Text Available Molten slags of blast furnace is a second resources with great value of 1600~1 800 MJ sensible heat per ton. At present, water-quenching process plays a leading role in recovering waste heat of the molten slags. However, this method not only cost lots of water, but also recover little sensible heat and can pollute the surrounding environment. Dry granulation process, as an environmentally friendly method with high-efficiency heat recovery, have attracted widespread attentions. In this paper, the water quenching and dry granulation processes were discussed in detail. After a thorough comparative analysis of various treatment technologies, it can be concluded that centrifugal granulation affiliated with dry granulation is the optimum process, with smaller slag particle size (about 2mm, more glassy phase and higher recovery rate.

  3. Ground granulated blast furnace slag efficiency coefficient (k value) in concrete. Applications and limits

    International Nuclear Information System (INIS)

    Sanjuan, M. A.; Pineiro, A.; Rodriguez, O.

    2011-01-01

    Recently, a k-value for ground granulated blast-furnace slag or k-value has been added to the revision of the European standard EN 206-1:2000. The proposed values during the discussions in the working groups were very different because in most of cases the compressive strength was the only characteristic considered; while only in few cases the concrete durability was taken into account when ground granulated blast-furnace slag is added directly to the mix. Advantages and disadvantages of the k-values found in the literature are discussed in this paper. The final conclusion may be summarised suggesting a logical proposal of addressing to each country the choice of the k-value in function of the concrete application, environment and placing conditions selected according to their own experience. (Author) 15 refs.

  4. Ground granulated blast furnace slag efficiency coefficient (k value) in concrete. Applications and limits

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, M. A.; Pineiro, A.; Rodriguez, O.

    2011-07-01

    Recently, a k-value for ground granulated blast-furnace slag or k-value has been added to the revision of the European standard EN 206-1:2000. The proposed values during the discussions in the working groups were very different because in most of cases the compressive strength was the only characteristic considered; while only in few cases the concrete durability was taken into account when ground granulated blast-furnace slag is added directly to the mix. Advantages and disadvantages of the k-values found in the literature are discussed in this paper. The final conclusion may be summarised suggesting a logical proposal of addressing to each country the choice of the k-value in function of the concrete application, environment and placing conditions selected according to their own experience. (Author) 15 refs.

  5. The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace Slag as binder

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2011-09-01

    Full Text Available In the present study, flexural strength together with pore structure, thermal behavior and microstructure of concrete containing ground granulated blast furnace slag with different amount of ZnO2 nanoparticles has been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impact the properties of concrete, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt. (%. ZnO2 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of 45 wt. (% of ground granulated blast furnace slag and physical and mechanical properties of the specimens was measured. ZnO2 nanoparticle as a partial replacement of cement up to 3 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration and hence increase flexural strength of concrete. The increased the ZnO2 nanoparticles' content more than 3 wt. (%, causes the reduced the flexural strength because of the decreased crystalline Ca(OH2 content required for C-S-H gel formation together with unsuitable dispersion of nanoparticles in the concrete matrix. ZnO2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  6. The role of SiO2 nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2011-01-01

    Research highlights: → Nanoparticles in concrete. → Ground granulated blast furnace slag as concrete's binder. → Mechanical properties of concrete specimens by non-traditional admixtures. - Abstract: In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag and SiO 2 nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. SiO 2 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. SiO 2 nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH) 2 amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased SiO 2 nanoparticles' content by more than 3.0 wt%, causes the reduced strength because of the decreased crystalline Ca(OH) 2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that SiO 2 nanoparticles could improve mechanical and physical properties of the concrete

  7. The role of SiO{sub 2} nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Felestin Sq., Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Felestin Sq., Saveh (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Nanoparticles in concrete. {yields} Ground granulated blast furnace slag as concrete's binder. {yields} Mechanical properties of concrete specimens by non-traditional admixtures. - Abstract: In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag and SiO{sub 2} nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. SiO{sub 2} nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. SiO{sub 2} nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH){sub 2} amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased SiO{sub 2} nanoparticles' content by more than 3.0 wt%, causes the reduced strength because of the decreased crystalline Ca(OH){sub 2} content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that SiO{sub 2} nanoparticles could

  8. Cold experiments on ligament formation for blast furnace slag granulation

    International Nuclear Information System (INIS)

    Liu Junxiang; Yu Qingbo; Li Peng; Du Wenya

    2012-01-01

    Rotary cup atomization for molten slag granulation is an attractive alternative to water quenching. However, the mechanism of disintegration of molten slag must be assessed. In the present study, a glycerol/water mixture was substituted for molten slag, and the mechanism of ligament formation in a rotary cup was investigated using photos taken by a high-speed camera. The effects of the angular speed and inner depth of the rotary cup on ligament disintegration was investigated. The results showed that one state of disintegration may transform into another state as the angular speed of the rotary cup increases at a given liquid flow rate. During ligament formation, the number of ligaments increased with an increase in the angular speed of the rotary cup, and a decrease in the diameter of ligament and liquid drop was observed. Moreover, the initial point of disintegration of the ligament moved to the lip of the rotary cup as the angular speed increased. An equation describing the relationship between the diameter of the liquid drop and various factors was used to predict the diameter of the liquid drop. A rotary cup with an inner depth of 30 mm was the best choice for granulation. The results of the present study will be useful for designing devices used in molten slag granulation. - Highlights: ►The results can be used in the granulation of molten blast furnace slag. ► The three different states of disintegration occur as the angular speed of rotary cup increases. ► The mechanism of ligament disintegration is analyzed. ► Eq. can be used to predict the diameter of liquid drop. ► A rotary cup with an inner depth of 30 mm is optimal for granulation.

  9. AN EXPERIMENTAL STUDY ON BEHAVIOUR OF RECYCLED AGGREGATE CONCRETE WITH GROUND GRANULATED BLAST FURNACE SLAG FLYASH

    OpenAIRE

    B.Sasikala*, K.Shanthi, B.Jose RavindraRaj

    2017-01-01

    Concrete is the single largest manufactured material in the world . The use of recycled materials in construction is an issue of great importance. Utilization of Recycled Aggregates (RA), Ground Granulated Blast Furnace Slag (GGBFS) and fly ash in concrete addresses this issue. In this project, strength, durability of Recycled Aggregate Concrete (RAC) with GGBFS was studied. M-50 grade concrete with 0.30 w/c ratio and maximum size of 16mm course aggregate was used for this study. Totally 16 m...

  10. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    Keywords: Silica sand; Blast Furnace Slag; Mould properties; Ferrous and nonferrous ... raw material for the production of cast components in foundry industries. ... applications for conserving natural resources and reduce the cost of the raw .... in an elevated temperature melting furnace with temperature values of 750 to.

  11. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement

    International Nuclear Information System (INIS)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-01-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  12. Repulsion forces of superplasticizers on ground granulated blast furnace slag in alkaline media, from AFM measurements to rheological properties

    OpenAIRE

    Palacios, M.; Bowen, P.; Kappl, M.; Butt, H. J.; Stuer, M.; Pecharromán, C.; Aschauer, U.; Puertas, F.

    2012-01-01

    The electrostatic and steric repulsion induced by different superplasticizers on ground granulated blast furnace slag in alkaline media have been studied. The superplasticizers were sulfonated naphthalene, sulfonated melamine, vinyl copolymer, and polycarboxylate- based admixtures. With these superplasticizers the slag suspensions had negative zeta potentials, ranging from -3 to -10 mV. For the first time the adsorbed layer thicknesses for superplasticizers on slag using colloidal probe atomi...

  13. Simulation of blast furnace operation during the substitution of coke and pulverized coal with granulated waste plastic

    Directory of Open Access Journals (Sweden)

    Kovačević Tihomir M.

    2014-01-01

    Full Text Available The possibility of using the waste plastic as reducing agent in blast furnace for obtaining pig iron is in focus for the past couple year. The simulation of blast furnace process in BFC software has been performed in order to analyze the coke and coals saving, CO2 emission and determining the economic benefits. Three different batches were made for comparative analysis, depending on the batch composition and input of batch components into the blast furnace: case 1 (C1, case 2 (C2 and case 3 (C3. The base case, C1 contains sinter (bulk material which is needed for obtaining 1 tone of pig iron, quartz which provides slag alkalinity and coke as reducing and energy agent. C2 has the same components as C1, but contains pulverized coal instead one part of coke and C3 contains granulated waste plastic instead coke in an approximately the same amount as pulverized coal. The substitution of coke with pulverized coal and waste plastic is 18.6 % and 25.2 %, respectively. The economic, productivity and ecologic aspects have been analyzed. The consumption of each tone of waste plastic in blast furnace saves 360 $, which is 18 times more than its price, bearing in mind that the market price of coke is 380 $/t % and waste plastic 20 $/t. Regarding the specific productivity, it decreases from 2.13 for C1 to 1.87 for C3. From an environmental aspect there are two main benefits: reduction of CO2 emission and impossibility of dioxin formation. The CO2 emission was 20.18, 19.46 and 17.21 for C1, C2 and C3, respectively.

  14. EFFECTS OF BLAST-FURNACE SLAG ON NATURAL POZZOLAN-BASED GEOPOLYMER CEMENT

    Directory of Open Access Journals (Sweden)

    MAHSHAD YAZDANIPOUR

    2011-03-01

    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  15. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    International Nuclear Information System (INIS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-01-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi_2O_3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μ_m) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Z_e_f_f) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  16. CONTACT STRENGTH OF MECHANOACTIVATED FINE CONCRETES FROM GRANULATED BLAST-FURNACE SLAGS

    Directory of Open Access Journals (Sweden)

    V. I. Bolshakov

    2014-10-01

    Full Text Available Purpose. Strengthening of fine concrete contact zone by mechanical processing of all components of the concrete mix in a mixer-activator and aggregate application with rough surface. Methodology. Rotary activator PC-06, developed by Scientific and Research Institute of Construction Technology, was used as a mixer-activator to achieve this purpose. Granulated blast furnace slag, having a more developed rough surface than sand, was used as fine aggregate. This apparatus provides intensive homogeneous mixing of concrete mix components, processing of raw materials (purification of their particles from contaminants, and mechanical destruction of granulated blast furnace slag surface layers and other components of the mix. Findings. During the preparation work, experimental research of new formations composition of fine concretes, using differential thermal and x-ray phase analysis methods, and physical-mechanical properties of fine concretes in accordance with the applicable standards of Ukraine, were carried out. It is established that the phase composition of new formations of fine concretes made from activated and non-activated mixes, is not changed. Their main difference is the size of generated effects and temperature intervals of occurrence of these peaks. Thus, in fine concretes made on the basis of the activated mixes, magnitude of effects is less, indicating a higher hydration degree of its components. Besides, TG curves of concrete specimens show that weight loss of gel calcium hydrosilicate of concrete from a mechanically activated mix is 0.5...0.7 % more than of concrete from a non-activated mix, which indicates a larger number of these formations in concrete from activated mixes. In general, concretes of different composition, made from a mix, processed in the mixer-activator, have higher mechanical strength. Originality. Ideas about the influence of mechanical activation of components of fine concrete mixes with forming humidity in a

  17. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    International Nuclear Information System (INIS)

    Kovtun, Maxim; Kearsley, Elsabe P.; Shekhovtsova, Julia

    2015-01-01

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator

  18. Chloride-binding Effect of Blast Furnace Slag in Cement Pastes ...

    African Journals Online (AJOL)

    NICO

    2017-05-16

    May 16, 2017 ... ground granulated blast furnace slag (GGBS) and silica fume (SF), to concrete mixtures to increase the corrosion resistance of the reinforcement in the matrix and its subsequent design life span. Various investigations have reported on the effect of mineral admixtures and additions on chloride binding in ...

  19. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  20. Preparation of fly ash-granulated blast furnace slag-carbide slag binder and application in total tailings paste backfill

    Science.gov (United States)

    Li, Chao; Hao, Ya-fei; Zhao, Feng-qing

    2018-03-01

    Based on activation and synergistic effect among various materials, a low-cost mine backfill cementing material, FGC binder, was prepared by using fly ash, granulated blast-furnace slag (GBFS), carbide slag and composite activator. The proper proportioning of FGC binder is obtained by response surface experiment optimization method: fly ash 62 %, GBFS 20 %, carbide slag 8 % and compound activators 10 %. Adjusting the material ratio obtains different cementing material which could satisfy requirements of different mined-out areas. With the mass ratio of cementing material and tailings 1:4∼1:8, the concentration of total solid 70 %, the compressive strength values of total tailings filling body at 28 d reaches 1.64∼4.14 MPa, and the backfilling cost is 20 % lower than using OPC cement.

  1. Behavior of coke in large blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N

    1978-01-01

    Three blast furnaces were quenched in operation and the contents were examined; the temperature distribution was also measured, using Tempil pellets. The furnaces examined included a low productivity one, which was examined to see what was wrong. Changes in the quality of coke as it descends in the furnace, and coke behavior in the raceway and hearth are reported. The functions required of coke, and the effects of poor coke quality, are explained, together with the coke quality required in large blast furnaces. A theoretical study of the role of coke in large blast furnaces is included.

  2. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Science.gov (United States)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  3. Incorporation of cement bypass flue dust in fly ash and blast furnace slag-based geopolymer

    Directory of Open Access Journals (Sweden)

    Mohamed E. Sultan

    2018-06-01

    Full Text Available This work utilizes cement kiln dust in fly ash and blast furnace slag-based geopolymer. Geopolymer cement was produced using different compositions of ground, granulated blast furnace slag with fly ash and cement bypass flue dust. Crystalline sodium metasilicate pentahydrate was used as an activator at 10, 15 and 20% (by weight of the geopolymer source materials. The geopolymer is formed in the solid state like ordinary Portland cement. The mechanical and chemical properties of the geopolymeric materials were examined. Measuring of mechanical properties by compressive strength of the hardened geopolymer pastes at different curing ages; microstructure was evaluated by X-ray diffraction (XRD and scanning electron microscope (SEM; thermal properties were estimated by thermogravimetry analysis (TGA and derivative thermogravimetric analysis (DTG. The results indicate that the compressive strength of the geopolymer pastes is increased with higher Na2SiO3.5H2O content. The geopolymeric properties were enhanced by higher pH, which helps in the dissolution of geopolymer source materials during geopolymerization. SEM showed that mixes containing 15 and 20% sodium metasilicate had more compact and dense structures. On the other hand, GGBFS mix (G-20 exhibits more hydration and geopolymeric products during TGA/DTG compared with other mixes which contain FA with/without GGBFS. Keywords: Cement bypass flue dust, Geopolymer, Ground granulated blast furnace, Fly ash

  4. Predictive control of thermal state of blast furnace

    Science.gov (United States)

    Barbasova, T. A.; Filimonova, A. A.

    2018-05-01

    The work describes the structure of the model for predictive control of the thermal state of a blast furnace. The proposed model contains the following input parameters: coke rate; theoretical combustion temperature, comprising: natural gas consumption, blasting temperature, humidity, oxygen, blast furnace cooling water; blast furnace gas utilization rate. The output parameter is the cast iron temperature. The results for determining the cast iron temperature were obtained following the identification using the Hammerstein-Wiener model. The result of solving the cast iron temperature stabilization problem was provided for the calculated values of process parameters of the target area of the respective blast furnace operation mode.

  5. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  6. Application of Carbon Composite Bricks for Blast Furnace Hearth

    Science.gov (United States)

    Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin

    Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.

  7. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    Science.gov (United States)

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  8. IDENTIFICATION OF PHASE COMPOSITION OF BINDERS FROM ALKALI-ACTIVATED MIXTURES OF GRANULATED BLAST FURNACE SLAG AND FLY ASH

    Directory of Open Access Journals (Sweden)

    JOZEF VLČEK

    2014-03-01

    Full Text Available The prepared alkali-activated binders (AAB and composites using suitable latent hydraulic raw materials represent an alternative to materials based on Portland cements. This paper deals with ways how to influence the functional parameters of AAB by setting up mixtures of granulated blast furnace slag (GBFS and fly ash with selected chemical compositions. In this way the course of hydration process is modified and the phase composition of products of alkali activation is changed as well as their final properties. The amorphous character of the hydration products makes evaluation of the phase composition of hardened AAB difficult and significantly limits the number of experimental techniques suitable to characterise their phase composition. It was observed that measuring the pH of water extracts obtained from the alkali-activated mixtures can give supplementary information about the process of hardening of alkali-activated mixtures of GBFS and fly ash.

  9. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk

    2015-08-15

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.

  10. The fate of injectant coal in blast furnaces: The origin of extractable materials of high molecular mass in blast furnace carryover dusts

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.N.; Wu, L.; Paterson, N.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [University of London Imperial College of Science & Technology, London (United Kingdom). Dept. of Chemical Engineering

    2005-07-01

    The aim of the work was to investigate the fate of injectant coal in blast furnaces and the origin of extractable materials in blast furnace carryover dusts. Two sets of samples including injectant coal and the corresponding carryover dusts from a full sized blast furnace and a pilot scale rig have been examined. The samples were extracted using 1-methyl-2-pyrrolidinone (NMP) solvent and the extracts studied by size exclusion chromatography (SEC). The blast furnace carryover dust extracts contained high molecular weight carbonaceous material, of apparent mass corresponding to 10{sup 7}-10{sup 8} u, by polystyrene calibration. In contrast, the feed coke and char prepared in a wire mesh reactor under high temperature conditions did not give any extractable material. Meanwhile, controlled combustion experiments in a high-pressure wire mesh reactor suggest that the extent of combustion of injectant coal in the blast furnace tuyeres and raceways is limited by time of exposure and very low oxygen concentration. It is thus likely that the extractable, soot-like material in the blast furnace dust originated in tars is released by the injectant coal. Our results suggest that the unburned tars were thermally altered during the upward path within the furnace, giving rise to the formation of heavy molecular weight (soot-like) materials.

  11. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  12. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  13. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  14. Estimation of Corrosion-Free Life for Concrete Containing Ground Granulated Blast-Furnace Slag under a Chloride-Bearing Environment

    Directory of Open Access Journals (Sweden)

    Sung In Hong

    2017-01-01

    Full Text Available The rate of chloride transport by diffusion in concrete containing ground granulated blast-furnace slag (GGBS was mathematically estimated to predict the corrosion-free service life of concrete structures exposed to seawater environment. As a factor to corrosiveness of steel embedment, replacement ratio of GGBS was selected, accounting for 25 and 50% to total binder. As a result, it was found that an increase in the GGBS content resulted in an increase in the chloride binding capacity, which would give rise to a lower chloride diffusion rate, thereby reducing the risk of chloride-induced corrosion. When it comes to the sensitivity of parameters to service life, the effective diffusivity showed a marginal influence on serviceability, irrespective of GGBS contents while surface chloride content and critical threshold concentration revealed more crucial factors to long term chloride diffusion. As the GGBS replacement increased, the variation in service life has become less influential with changing parameters. Substantially, GGBS concrete at high replacement ratio enhanced the service life due to a combination of dense pore structure and enhanced chloride binding capacity.

  15. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  16. Natural pozzolan-and granulated blast furnace slag-based binary geopolymers

    Directory of Open Access Journals (Sweden)

    Robayo, R. A.

    2016-03-01

    Full Text Available This study describes the synthesis at ambient temperature (25±3 °C of binary geopolymer systems based on natural volcanic pozzolan and granulated blast furnace slag. Na2SiO3 and NaOH were used as alkaline activators. The effects of the SiO2/Al2O3, Na2O/Al2O3 ratio and the amount of slag added (from 0 to 30% on the reaction kinetics, compressive strength and microstructure of the final product were studied. To characterise the geopolymer pastes, techniques such as X-ray diffraction (XRD, infrared spectroscopy (FTIR and scanning electron microscopy (SEM were used. The results indicate the possibility of obtaining a geopolymer cement with a compressive strength of up to 48.11 MPa after 28 days of curing at ambient temperature whose characteristics are comparable to those of commercial portland cement.Este trabajo describe la síntesis a temperatura ambiente (25±3 °C de sistemas geopoliméricos de tipo binario basados en una puzolana natural de origen volcánico y escoria siderúrgica de alto horno usando activadores alcalinos basados en la combinación de Na2SiO3 y NaOH. Se estudió el efecto de la relación SiO2/Al2O3, Na2O/Al2O3 y la cantidad de escoria adicionada en niveles entre el 0 y 30% sobre la cinética de reacción, la resistencia a la compresión y la microestructura del producto final. Para la caracterización de las pastas geopoliméricas se utilizaron técnicas como difracción de rayos X (DRX, espectroscopia infrarroja (FTIR y microscopia electrónica de barrido (MEB. Los resultados conseguidos revelan la posibilidad de obtener un cementante geopolimérico con una resistencia a la compresión de hasta 48,11 MPa a los 28 días de curado a temperatura ambiente cuyas características son comparables a las de un cemento portland comercial.

  17. Composite cements containing natural pozzolan and granulated blast furnace slag

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2006-09-01

    Full Text Available For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials. The present study analyzes the effect of Portland cement additions such as physically activated natural pozzolan(up to 20% and/or granulated blast furnace slag (up to 35% on mortar flexural and compressive strength. The results show that higher strength is attained in ternary than binary cements. Initially (2 and 7 days, the highest compressive strengths are reached by mortars with up to 13% natural pozzolan and 5% slag, whereas at later ages mortars with larger proportions of additions are found to perform best.Debido a las exigencias del mercado y de la producción de cemento Portland, es cada vez más frecuente la elaboración de cementos con dos o más adiciones a partir de la molienda separada de sus constituyentes, dando origen a la formulación de los cementos a medida.Cuando el contenido de adiciones es alto, la utilización de puzolana y escoria en este tipo de cementos presenta la peculiaridad de disminuir la resistencia inicial del cemento resultante. Sin embargo, si algunas o ambas adiciones se activan, este problema puede minimizarse. En este trabajo se analiza la influencia de la incorporación al cemento Portland de puzolana natural (hasta 20% activada físicamente y/o escoria granulada de alto horno (hasta 35% sobre la resistencia a flexión y a compresión de morteros. Los resultados indican que los cementos ternarios presentan un mejor comportamiento resistente que los cementos binarios. Las máximas resistencias a compresión en las primeras edades (2 y 7 díasse alcanzan con hasta 13% de puzolana natural y 5% de

  18. Analysis of ways to control the supply of the blast, and their impact on gas-dynamic processes in the blast furnace

    Directory of Open Access Journals (Sweden)

    Віктор Петрович Кравченко

    2016-07-01

    Full Text Available The article presents the analysis of two methods of control over hot blast supply into a blast furnace with constant pressure and constant amount (consumption. The analysis of these two methods was performed with the aim of determining their influence upon changes in gas pressure in the blast furnace top. The blast furnace was considered as a unity of vessels (furnace hearth, the top and gas-dynamic resistance (a column of charge materials. A differential equation was obtained, with regard to the dynamic balance of gas flow at the inlet and outlet of the top; the equation relates the pressure and gas consumption at the top to the pressure and hot blast consumption at the inlet and outlet of the furnace and to the resistance of the column of charge materials. The column of charge materials is considered as n-th number of channels through which gas flow inside the furnace moves and which resist to the flow. By the analysis of this equation at steady state (automatic stabilization of gas pressure in the top, the conditions were obtained to be satisfied with the specified value of gas pressure in the top. This value is equal to a half of the sum of the value of hot blast pressure at the inlet into the furnace and the value of pressure inside the collector of blast furnace gas. This conclusion is verified by the operation practice of blast furnaces in Ukraine. While analyzing the second method of controlling the supply of blast supply-stabilization of consumption (amount of hot blast supplied into the furnace it has been shown that the method could be realized in condition of stabilization of the amount of blast furnace gas, going out of the furnace. As the resistance of the column of charge materials constantly changes it is necessary to change the hot blast pressure in order to ensure the constant amount of blast, supplied into the furnace. It is often connected with possible substantial pressure fluctuations of hot blast at the inlet of the

  19. Integration of Tuyere, Raceway and Shaft Models for Predicting Blast Furnace Process

    Science.gov (United States)

    Fu, Dong; Tang, Guangwu; Zhao, Yongfu; D'Alessio, John; Zhou, Chenn Q.

    2018-06-01

    A novel modeling strategy is presented for simulating the blast furnace iron making process. Such physical and chemical phenomena are taking place across a wide range of length and time scales, and three models are developed to simulate different regions of the blast furnace, i.e., the tuyere model, the raceway model and the shaft model. This paper focuses on the integration of the three models to predict the entire blast furnace process. Mapping output and input between models and an iterative scheme are developed to establish communications between models. The effects of tuyere operation and burden distribution on blast furnace fuel efficiency are investigated numerically. The integration of different models provides a way to realistically simulate the blast furnace by improving the modeling resolution on local phenomena and minimizing the model assumptions.

  20. Potential modification of hydration of alkali activated mixtures from granulated blast furnace slag and fly ash

    Czech Academy of Sciences Publication Activity Database

    Tomková, V.; Ovčačík, F.; Vlček, J.; Ovčačíková, H.; Topinková, M.; Vavro, M.; Martinec, Petr

    2012-01-01

    Roč. 56, č. 2 (2012), s. 168-176 ISSN 0862-5468 R&D Projects: GA ČR GA106/09/0588 Institutional support: RVO:68145535 Keywords : alkali-activated materials * blast furnace slag * mechanical activation * fly ash Subject RIV: DD - Geochemistry Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_02_168.pdf

  1. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung

    2017-01-01

    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  2. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    Science.gov (United States)

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım

    2012-10-15

    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements

    International Nuclear Information System (INIS)

    Camarini, G.; Djanikian, J.G.

    1994-01-01

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95 0 C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab

  4. Liquid flow in the hearth of the blast furnace

    International Nuclear Information System (INIS)

    Gauje, P.; Nicolle, R.; Steiler, J.M.; Venturini, M.J.; Libralesso, J.M.

    1992-01-01

    The hearth of a blast furnace is poorly known. Our approach to characterize the hearth involves classical methods of chemical engineering, assessing the flow conditions by means of radioactive tracer techniques. The most important feature of this study is to combine measurements on industrial blast furnaces, experiments on a small scale model and flow model. calculations. 8 refs., 16 figs

  5. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement; Efecto de la incorporacion de ceniza volante y escoria de horno alto en el comportamiento electroquimico de concretos de cemento comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-07-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  6. Blast furnace hearth lining: post mortem analysis

    International Nuclear Information System (INIS)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando

    2017-01-01

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10"6 ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  7. Blast furnace hearth lining: post mortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando, E-mail: bva@usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Neves; Elton Silva; Silva, Sidiney Nascimento [Companhia Siderugica Nacional (CSN), Rio de Janeiro, RJ (Brazil)

    2017-05-15

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10{sup 6} ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  8. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1998-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  9. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1997-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  10. Production of blast furnace coke from soft brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, G.; Wundes, H.; Schkommodau, F.; Zinke, H.-G. (VEB Gaskombinat Schwarze Pumpe (German Democratic Republic))

    1988-01-01

    Reviews experimental production and utilization of high quality brown coal coke in the GDR during 1985 and 1986. The technology of briquetting and coking brown coal dust is described; the superior parameters of produced coke quality are listed in comparison to those of regular industrial coke made from brown and black coal. Dust emission from high quality brown coal coke was suppressed by coke surface treatment with dispersion foam. About 4,200 t of this coke were employed in black coal coke substitution tests in a blast furnace. Substitution rate was 11%, blast furnace operation was positive, a substitution factor of 0.7 t black coal coke per 1 t of brown coal coke was calculated. Technology development of high quality brown coal coke production is regarded as complete; blast furnace coke utilization, however, requires further study. 8 refs.

  11. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  12. Radiometric report for a blast furnace tracing with radioactive isotopes

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, M.

    1995-01-01

    One of the methods to monitor refractory wall of blast furnace is its tracing with radioactive isotopes. The tracer isotope can be detected by two ways: the external dosimetric measurement at the armour of the blast furnace and/or the radiometric measurement of the iron sample charge by charge. Any change in radiometric situation of tracer radioisotope is recorded in a radiometric report. This paper presents an original concept of radiometric report based upon PARADOX and CORELDRAW soft kits. Their advantage are: quick and easy changes, easy recording of current radioactivity of tracer isotope, short history of changes, visual mapping of the tracer isotope and others. In this way we monitored 6 blast furnaces and more than 180 radioactive sources

  13. Methods for monitoring heat flow intensity in the blast furnace wall

    Directory of Open Access Journals (Sweden)

    L'. Dorčák

    2010-04-01

    Full Text Available In this paper we present the main features of an online system for real-time monitoring of the bottom part of the blast furnace. Firstly, monitoring concerns the furnace walls and furnace bottom temperatures measurement and their visualization. Secondly, monitored are the heat flows of the furnace walls and furnace bottom. In the case of two measured temperatures, the heat flow is calculated using multi-layer implicit difference scheme and in the case of only one measured temperature, the heat flow is calculated using a method based on application of fractional-order derivatives. Thirdly, monitored is the theoretical temperature of the blast furnace combustion process in the area of tuyeres.

  14. Cement-free Binders for Radioactive Waste Produced from Blast-furnace Slag using Vortex Layer Activation Technology

    Directory of Open Access Journals (Sweden)

    Mazov Ilya

    2017-01-01

    Full Text Available The paper addresses the issue of recycling granulated blast-furnace slag (gBFS as a source for production of cement-free binder materials for further usage in rare-earth metals production for radioactive waste disposal. The use of the vortex layer activator was provided as main technique allowing to produce high-dispersed chemically activated binders. The paper examines the effect of processing conditions on the physical-chemical and mechanical properties of the resulting BFS-based cement-free materials and gBFS-based concretes.

  15. Massive injection of coal and superoxygenated blast into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Toxopeus, H.L.; Danloy, G.; Franssen, R.; Havelange, O. [Corus, IJmuiden (Netherlands)

    2002-07-01

    The aim of the present project was to demonstrate the industrial feasibility of a massive injection of coal, {+-}270 kg/tHM, combined with a high O{sub 2} enrichment of the blast. The coke rate would thus be reduced to well below 250 kg/tHM. A reference level of 200-220 kg coal/tHM was successfully accomplished. However, the technical condition of the blast furnace hearths overruled all ambitions, the anticipated trial scheme had to be abandoned and no further trials were performed. A very short trial was aborted shortly after reaching an injection level of around 265 coal/tHM, due to excessive generation of very fine sludge originating from incomplete combustion. This forced the operators to investigate the merits of combustion more in depth. At the aimed low coke-rate detailed information about the gas distribution is of utmost importance. Therefore, in conjunction with the industrial tests, CRM designed a gas tracing method. Measurement of the transfer time between the injection point (a tuyere) and the sampling points (on an above-burden probe) would allow deduction of the radial gas distribution. CRM made the design and the start-up of an installation built by Hoogovens on blast furnace 7 of IJmuiden. Since then, repeated measurements have shown that the gas transfer time profiles are consistent with the data measured at the blast furnace top and at the wall. The modifications of the moveable armour position are reflected better and faster on the gas distribution as measured by helium tracing than on the skin flow temperatures.

  16. Use of coal-water mixtures in blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Malgarini, G; Giuli, M; Davide, A; Carlesi, C [Centro Sviluppo Materiali, Rome (Italy); Italsider, Genoa [Italy; Deltasider, Piombino [Italy

    1989-03-01

    At the present time, an ironworks blast furnace employing a pulverized coal injection (PCI) system is in operation at the Piombino Works (Italy). A wide development, within this industry, of PCI techniques is expected in the near future to limit, as much as possible, the rebuilding of coke ovens. Research activities and industrial trials aimed at maximizing the use of coal injection into blast furnaces are in course of development. This paper uses flowsheets to illustrate such a system and provides graphs to indicate the economic convenience of PCI systems as compared with systems using naphtha as an injected fuel.

  17. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    Science.gov (United States)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  18. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  19. Performance and Behaviour of Ground Granulated Blast Furnace Slag Imparted to Geopolymer Concrete Structural Elements and Analyzed with ANSYS

    Directory of Open Access Journals (Sweden)

    Maria Rajesh Antonyamaladhas

    2016-01-01

    Full Text Available This paper deals with the behaviour of geopolymer concrete using ground granulated blast furnace slag and steel fibre to compare with M40 grade cement concrete. The cast GPC specimens were placed in a hot curing chamber at 60∘C temperature for 24 hours and tested after 1, 7, 14, and 28 days of ambient curing to find the strength and durability of hardened concrete. The optimum value of compressive strength was attained at 12 Molarities. Fly ash was replaced by GGBS in GPC with different proportions such as 0% to 60% at 5% interval; the optimum strength value was obtained on 40% replacement. From the test results, the compressive, split-tensile, and flexural strength of GPC specimens were 20%, 43%, and 53% higher than those of the control specimens. Based on the optimum strength mix proportion, the structural elements were cast to investigate the stress-strain relations. The GPC beam and L-section showed 33% and 16% higher value. From the results of acid and sulphate resistance tests, it was found that the strength and weight ratio of GPC were higher than the control specimens. From the simulations, it was found that the experimental test results were approximately equal to the ANSYS.

  20. Preparation of glass-forming materials from granulated blast furnace slag

    Science.gov (United States)

    Alonso, M.; Sáinz, E.; Lopez, F. A.

    1996-10-01

    Glass precursor materials, to be used for the vitrification of hazardous wastes, have been prepared from blast furnace slag powder through a sol-gel route. The slag is initially reacted with a mixture of alcohol (ethanol or methanol) and mineral acid (HNO3 or H2SO4) to give a sol principally consisting of Si, Ca, Al, and Mg alkoxides. Gelation is carried out with variable amounts of either ammonia or water. The gelation rate can be made as fast as desired by adding excess hydrolizing agent or else by distilling the excess alcohol out of the alkoxide solution. The resulting gel is first dried at low temperature and ground. The powder thus obtained is then heat treated at several temperatures. The intermediate and final materials are characterized by thermal analysis, infrared (IR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. From the results, the operating conditions yielding a variety of glass precursors differing in their composition are established. The method, in comparison with direct vitrification of slag, presents a number of advantages: (1) the glass precursor obtained devitrifies at higher temperatures; (2) it enables the adjustment, to a certain extent, of the chemical composition of the glass precursor; and (3) it permits recovering marketable materials at different stages of the process.

  1. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    Science.gov (United States)

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  2. International blast furnace hearth and raceway symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Papers presented discussed some of the physical and chemical processes occuring in the raceway and hearths of blast furnaces. The injection of coal or fuel slurries to replace some of the coke was also covered. Fourteen papers are abstracted separately.

  3. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material.

    Science.gov (United States)

    Phummiphan, Itthikorn; Horpibulsuk, Suksun; Rachan, Runglawan; Arulrajah, Arul; Shen, Shui-Long; Chindaprasirt, Prinya

    2018-01-05

    Granulated Blast Furnace Slag (GBFS) was used as a replacement material in marginal lateritic soil (LS) while class C Fly Ash (FA) was used as a precursor for the geopolymerization process to develop a low-carbon pavement base material at ambient temperature. Unconfined Compression Strength (UCS) tests were performed to investigate the strength development of geopolymer stabilized LS/GBFS blends. Scanning Electron Microscopy and X-ray Diffraction analysis were undertaken to examine the role of the various influencing factors on UCS development. The influencing factors studied included GBFS content, Na 2 SiO 3 :NaOH ratio (NS:NH) and curing time. The 7-day soaked UCS of FA geopolymer stabilized LS/GBFS blends at various NS:NH ratios tested was found to satisfy the specifications of the Thailand national road authorities. The GBFS replacement was found to be insignificant for the improvement of the UCS of FA geopolymer stabilized LS/GBFS blends at low NS:NH ratio of 50:50. Microstructural analysis indicated the coexistence of Calcium Silicate Hydrate (CSH) and Sodium Alumino Silicate Hydrate products in FA geopolymer stabilized LS/GBFS blends. This research enables GBFS, which is traditionally considered as a waste material, to be used as a replacement and partially reactive material in FA geopolymer pavement applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hot metal temperature prediction and simulation by fuzzy logic in a blast furnace

    International Nuclear Information System (INIS)

    Romero, M. A.; Jimenez, J.; Mochon, J.; Formoso, A.; Bueno, F.; Menendez, J. L.

    2000-01-01

    This work describes the development and further validation of a model devoted to blast furnace hot metal temperature forecast, based on Fuzzy logic principles. The model employs as input variables, the control variables of an actual blast furnace: Blast volume, moisture, coal injection, oxygen addition, etc. and it yields as a result the hot metal temperature with a forecast horizon of forty minutes. As far as the variables used to develop the model have been obtained from data supplied by an actual blast furnaces sensors, it is necessary to properly analyse and handle such data. Especial attention was paid to data temporal correlation, fitting by interpolation the different sampling rates. In the training stage of the model the ANFIS (Adaptive Neuro-Fuzzy Inference System) and the Subtractive Clustering algorithms have been used. (Author) 9 refs

  5. Evaluation of refractory lining wear of Companhia Siderurgica Nacional (CSN) blast furnaces

    International Nuclear Information System (INIS)

    Santos, N.J. dos; Mello, A.H.B. de; Pereira, C.L.; Paula Sarkis, D. de; Martins Filho, D.I.; Banados Perez, H.E.; Carvalho, G.; Daltro, T.F.L.

    1984-01-01

    The blast furnace refractory linings are submitted to unfavourable conditions such as alkalis attack, temperature, top pressure, abrasion and so forth... After studies on distribution and installation of radioactive sources with low activities in the refractory lining, it was possible to develop a new technique of thickness evaluation and attendance of wearing in the furnace lining. The viability analysis, simulated laboratory tests, localization, identification, installations and periodical measurements of the radioactive sources are described, as well the results obtained on the present campaign of CSN Blast Furnaces. (Author) [pt

  6. Nodal wear model: corrosion in carbon blast furnace hearths

    International Nuclear Information System (INIS)

    Verdeja, L. F.; Gonzalez, R.; Alfonso, A.; Barbes, M. F.

    2003-01-01

    Criteria developed for the Nodal Wear Model (NWM) were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node) of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid. (Author) 31 refs

  7. Automated information system for analysis and prediction of production situations in blast furnace plant

    Science.gov (United States)

    Lavrov, V. V.; Spirin, N. A.

    2016-09-01

    Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.

  8. Microstructure, SDAS and Mechanical Properties of A356 alloy Castings Made in Sand and Granulated Blast Furnace Slag Moulds

    Directory of Open Access Journals (Sweden)

    Jinugu B. R.

    2017-03-01

    Full Text Available Investigations were carried out to ensure the granulated blast furnace (GBF slag as an alternative mould material in foundry industry by assessing the cast products structure property correlations. Sodium silicate-CO2 process was adopted for preparing the moulds. Three types of moulds were made with slag, silica sand individually and combination of these two with 10% sodium silicate and 20 seconds CO2 gassing time. A356 alloy castings were performed on these newly developed slag moulds. The cast products were investigated for its metallography and mechanical properties. Results reveal that cast products with good surface finish and without any defects were produced. Faster heat transfers in slag moulds enabled the cast products with fine and refined grain structured; and also, lower Secondary Dendrite Arm Spacing (SDAS values were observed than sand mould. Slag mould casting shows improved mechanical properties like hardness, compression, tensile and impact strength compared to sand mould castings. Two types of tensile fracture modes, namely cleavage pattern with flat surfaces representing Al−Si eutectic zone and the areas of broken Fe-rich intermetallic compounds which appear as flower-like morphology was observed in sand mould castings. In contrast, GBF slag mould castings exhibit majority in dimple fracture morphology with traces of cleavage fracture. Charpy impact fractured surfaces of sand mould castings shows both transgranular and intergranular fracture modes. Only intergranular fracture mode was noticed in both GBF slag and mixed mould castings.

  9. Blast furnace top gas and dusts; Masuunin huippukaasu ja poelyt

    Energy Technology Data Exchange (ETDEWEB)

    Lohi, T.K.; Mannila, P.; Karjalahti, T.; Haerkki, J.

    1997-12-31

    This report is related to the `Gas Phase Reactions in a Blast Furnace` project. The aim of the project is to clarify the behaviour of gas phase in a blast furnace with high oil injection rate. The effect of blast furnace operation, iron reduction reactions, the amount of oil injected, alkalis, zinc and sulfur on the formation of top gas and dusts has been examined in this work. In addition, the gas cleaning system, i.e. the dust sack, gas scrubber, venturi scrubbers and an electric filter, of the blast furnaces of Rautaruukki Oy is presented. The composition of the top gas as well as the amount and composition of the dust from the gas cleaners were investigates in the experimental part of the research. The work has been focused on the analysis of carbon, iron, zinc, sulfur and alkalis. In addition to this, possible systematic variations caused by the discharge of hot metal were investigated. The experiments were made at blast furnaces no 1 and 2 of Rautaruukki Raahe Steel. The relationship between dust quantity and composition in the dust sack and the quantity of oil injected was analyzed on the basis of collected data. On the basis of experimental results, hot metal discharge has no effect on the composition or quantity of the top gas and dust. The composition of the dust varied between different gas cleaners. The coarsest and heaviest material remains in the dust sack. The lightest material separates at the electric filter. The main components at every gas cleaner were iron (9.4 - 38.1 %) and carbon (31.5 - 63.7 %). Particles with zinc and sulfur were separated at the venturi scrubbers (Zn = 3.0 % and S = 2.2 %) and the electric filter (Zn = 3.2 % and S = 2.6 %). Particles with alkalis were separated at the end of the gas cleaning process. The amount of sodium at the venturi scrubbers and the electric filter was 1.0 % on average. The average amount of potassium was 0.5 % at the venturi scrubber and 1.4 % at the electric filter 28 refs., 31 figs.

  10. The design of system for operative planning of blast furnace production process

    Directory of Open Access Journals (Sweden)

    Malindžák Dušan

    1996-12-01

    Full Text Available A system for operative planning of blast furnace production process is described in the paper. The suggested system is based on the use of a new hierarchy of operative plans, consisting of one-month plan, (7+3 days plan, and 24-hour plan. The system allows smoothing of production process at the blast furnace plant, and at the same time satisfies all requirements of the steel plant regarding to the amount of pig iron.

  11. Modelling and prediction of pig iron variables in the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Saxen, H.; Laaksonen, M.; Waller, M. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.

    1996-12-31

    The blast furnace, where pig iron for steelmaking is produced, is an extremely complicated process, with heat and mass transfer and chemical reactions between several phases. Very few direct measurements on the internal state are available in the operation of the process. A main problem in on-line analysis and modelling is that the state of the furnace may undergo spontaneous changes, which alter the dynamic behaviour of the process. Moreover, large internal disturbances frequently occur, which affect the product quality. The work in this research project focuses on a central problem in the control of the blast furnace process, i.e., short-term prediction of pig iron variables. The problem is of considerable importance for fuel economy, product quality, and for an optimal decision making in integrated steel plants. The operation of the blast furnace aims at producing a product (hot metal) with variables maintained on a stable level (close to their setpoints) without waste of expensive fuel (metallurgical coke). The hot metal temperature and composition affect the downstream (steelmaking) processes, so fluctuations in the pig iron quality must be `corrected` in the steel plant. The goal is to develop a system which predicts the evolution of the hot metal variables (temperature, chemical composition) during the next few taps, and that can be used for decision-making in the operation of the blast furnace. Because of the complicated behaviour of the process, it is considered important to include both deterministic and stochastic components in the modelling: Mathematical models, which on the basis of measurements describe the physical state of the process, and statistical (black-box) models will be combined in the system. Moreover, different models will be applied in different domains in order to capture structural changes in the dynamics of the process SULA 2 Research Programme; 17 refs.

  12. Modelling and prediction of pig iron variables in the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Saxen, H; Laaksonen, M; Waller, M [Aabo Akademi, Turku (Finland). Heat Engineering Lab.

    1997-12-31

    The blast furnace, where pig iron for steelmaking is produced, is an extremely complicated process, with heat and mass transfer and chemical reactions between several phases. Very few direct measurements on the internal state are available in the operation of the process. A main problem in on-line analysis and modelling is that the state of the furnace may undergo spontaneous changes, which alter the dynamic behaviour of the process. Moreover, large internal disturbances frequently occur, which affect the product quality. The work in this research project focuses on a central problem in the control of the blast furnace process, i.e., short-term prediction of pig iron variables. The problem is of considerable importance for fuel economy, product quality, and for an optimal decision making in integrated steel plants. The operation of the blast furnace aims at producing a product (hot metal) with variables maintained on a stable level (close to their setpoints) without waste of expensive fuel (metallurgical coke). The hot metal temperature and composition affect the downstream (steelmaking) processes, so fluctuations in the pig iron quality must be `corrected` in the steel plant. The goal is to develop a system which predicts the evolution of the hot metal variables (temperature, chemical composition) during the next few taps, and that can be used for decision-making in the operation of the blast furnace. Because of the complicated behaviour of the process, it is considered important to include both deterministic and stochastic components in the modelling: Mathematical models, which on the basis of measurements describe the physical state of the process, and statistical (black-box) models will be combined in the system. Moreover, different models will be applied in different domains in order to capture structural changes in the dynamics of the process SULA 2 Research Programme; 17 refs.

  13. Present state of Ancit hot briquetting. Pt. 2. Blast furnace trials

    Energy Technology Data Exchange (ETDEWEB)

    Limpach, R; Hermann, W; Schmit, R; Heusbourg, J; Poos, A

    1980-09-01

    During the last years three long-time blast furnace tests have been run with Ancit formed coke as partial solid fuel. Each trial covered the charging of 8 000 tons of Ancit. Three different kinds of sinter burden were charged: hematite, rich P-ores, low-Fe Minette ores. The three blast furnaces were differentiated as well in hearth diameters as in pig iron productivity; the larger blast furnace was operated on high top pressure. The Ancit formed cokes replacing partially the slot-oven coke had different characteristics; two tests were run on Ancit of 70 ccm and one with 90 ccm unit briquette volume. According to the blast furnace burdening and driving conditions, up to 58% by weight of slot-oven coke could be replaced by formed coke. The Ancit formed cokes proved to have adequate mechanical properties, but the regular briquette shape and comparatively lower voidage of formed coke layers limited the replacement ratio versus oven coke. All tests showed that the permeability, mainly in the bosh, decreased when charging formed coke. The resulting decrease in productivity could be neutralised by increasing the high top pressure. Generally, the dry fuel rate per ton of pig iron increased somewhat; this was due to the higher volatiles content of formed cokes. On the other hand, these volatiles raised the lower calorific value of the top gas; no tar deposits were ever noticed. As a result of these trial, partial replacements of slot-oven coke by Ancit formed cokes can be recommended.

  14. Self-compacting concrete with sugarcane bagasse ash – ground blast furnace slag blended cement: fresh properties

    Science.gov (United States)

    Le, Duc-Hien; Sheen, Yeong-Nain; Ngoc-Tra Lam, My

    2018-04-01

    In this investigation, major properties in fresh state of self-compacting concrete (SCC) developed from sugarcane bagasse ash and granulated blast furnace slag as supplementary cementitious materials were examined through an experimental work. There were four mix groups (S0, BA10, BA20, and BA30) containing different cement replacing levels; and totally, 12 SCC mixtures and one control mixture were provided for the test. Fresh properties of the proposed SCC were evaluated through measurement of the density, slump, slump-flow, V-funnel test, T500 slump, Box-test, and setting time. The testing results indicated that replacing either SBA and/or BFS to OPC in SCC mixtures led to lower density, lesser flowability, and longer hardening times.

  15. A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

    2002-01-21

    This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

  16. Constructal design of a blast furnace iron-making process based on multi-objective optimization

    International Nuclear Information System (INIS)

    Liu, Xiong; Chen, Lingen; Feng, Huijun; Qin, Xiaoyong; Sun, Fengrui

    2016-01-01

    For the fixed total raw material cost and based on constructal theory and finite time thermodynamics, a BFIM (blast furnace iron-making) process is optimized by taking a complex function as optimization objective. The complex function is integrated with HM (hot metal) yield and useful energy of the BF (blast furnace). The optimal cost distribution of raw materials (namely “generalized optimal construct”) is obtained. The effects of some parameters, such as oxygen enrichment, blast temperature and pulverized coal dosage, on the optimization results are analyzed. The results show that the HM yield, useful energy and complex function are, respectively, increased by 3.13%, 2.66% and 2.90% after generalized constructal optimization. The utilization efficiencies of the BFG (blast furnace gas) and slag are 41.3% and 57.1%, respectively, which means that the utilization potentials of the BFG and slag can be further exploited. Increasing pulverized coal dosage and decreasing the agglomerate ratio can increase the complex function. The performance the BFIM process can be improved by adjusting the oxygen enrichment, blast temperature, blast dosage, pressure ratio of the Brayton cycle's air compressor and relative pressure drop of the air compressor inlet to their optimal values, respectively, which are new findings of this paper. - Highlights: • Constructal optimization of a blast furnace iron-making process is performed. • Finite time thermodynamic model of open Brayton cycle is adopted. • Weighting function is taken as optimization objective. • Optimal cost distribution of the raw materials is obtained.

  17. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder.

    Science.gov (United States)

    Zhong, Shiyun; Ni, Kun; Li, Jinmei

    2012-07-01

    A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO(4)(2-) from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO(4)(2-) releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO(4)(2-) from the mortar with 20% FGD gypsum is 9200 mg·m(-2), which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Cold experiment of slag centrifugal granulation by rotary atomizer: Effect of atomizer configuration

    International Nuclear Information System (INIS)

    Wu, Jun-Jun; Wang, Hong; Zhu, Xun; Liao, Qiang; Li, Kai

    2017-01-01

    Centrifugal granulation has recently been employed to produce small blast furnace slag particles, so as to recover the waste heat from the high-temperature molten blast furnace slag. An appropriate atomizer enables centrifugal granulation to become a better cost-effective process for particle production. Thus, increasing emphasis has been placed on influence of atomizer configuration on granulation. In present study, three groups of atomizers were specially designed and the granulation performance of each atomizer was experimentally tested during cold experiments. The influences of atomizer configuration on granulation modes and droplet characteristics were investigated visually. Two modified correlations were proposed to predict the granulating droplet size by means of data fitting. The results indicated that the rotary cup atomizers can inhibit the film formation in contrast to rotary disc atomizer. Moreover, atomizers with outer angle of 90° was capable of producing smaller droplets. The revised correlation as well as the newly-developed correlation including the influence of atomizer configurations, presented in good agreement with the experiment data. In addition, an analysis on atomizer design was conducted to provide a good insight for industrialization. It was recommended to adopt cup-like atomizer in granulation for its ability to produce fine particles with smaller atomizer size.

  19. Influence of thermal charge preparation on coke comminution under blast-furnace operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-09-01

    Reactions of coke in the blast furnace are determined mainly by the nature of the coke itself which depends on the coal properties, its preparation and the coking conditions. In the blast furnace the coke reacts with alkali and alkaline earth metals in the burden. Preheated coal charges were found to absorb far less sodium and potassium carbonates than a conventional moist charge over an equivalent period, due to the smaller pore volume available.

  20. Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace

    Science.gov (United States)

    Li, Kejiang; Zhang, Jianliang; Liu, Yanxiang; Barati, Mansoor; Liu, Zhengjian; Zhong, Jianbo; Su, Buxin; Wei, Mengfang; Wang, Guangwei; Yang, Tianjun

    2016-04-01

    Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.

  1. Control of the refractory lining wear in blast furnaces, using a radiotracer technique

    International Nuclear Information System (INIS)

    Carvalho, G.; Vieira, J.M.; Daltro, T.F.L.; Banados Perez, H.E.

    1984-01-01

    Small metal 60 Co sources, double encapsulated with quartz and alumina, were inserted (at different depths and levels) into the refractory bricks of the blast furnace walls, and the initial radioactivity emerging at each location recorded as a reference data for future measurements. The displacement of the charge inside the blast furnace originates a progressive wear of the refractory lining and after certain time, the inner sources will begin to be scaped off from the wall and then dissolved in the molten iron. By periodically monitoring the radiation level at the points where the sources were placed, it is possible to know if some of them was removed by the wearing process. This, in turn, will indicate the thickness of refractory material lost in each location making of the blast furnace, as a function of time. The practical application of this method in the Brazilian steel industry is reported. (Author) [pt

  2. Leaching of Carbothermic Reduced Titanium-bearing Blast Furnace Slag by Acid

    Institute of Scientific and Technical Information of China (English)

    ZHEN Yulan; ZHANG Guohua; CHOU Kuochih

    2016-01-01

    The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by ac-id. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 kJ/mol. Fur-thermore, the main products are TiC and SiO2 after leaching.

  3. Rheology and zeta potential of cement pastes containing calcined silt and ground granulated blast-furnace slag

    Directory of Open Access Journals (Sweden)

    Safi, B.

    2011-09-01

    Full Text Available This study aimed to analyse the re-use of dam silt as a supplementary binder for self-compacting concrete (SCC. When burnt, silt becomes more reactive because the kaolin it contains is converted into metakaolin. Portland cement, calcined or burnt silt and ground granulated blast furnace slag were used in this research. Cement pastes were prepared with blends containing two or three of these materials. The replacement ratio for burnt silt in both cases was 10 % and 20 % by cement weight and the ratio for the slag was a constant 30 % by weight of the blend. Rheological and zeta potential tests were conducted to evaluate paste electrokinetics and rheological behaviour. The findings showed that burnt silt is apt for use as an addition to cement for SCC manufacture.

    En el presente trabajo se ha analizado la posibilidad de utilizar los lodos procedentes de embalses como adición en la fabricación del hormigón autocompactante (HAC. Con la calcinación, estos materiales se vuelven más reactivos debido a la transformación en metacaolín, del caolín que forma parte de su composición. Las materias primas empleadas en esta investigación son: cemento Pórtland, lodos de embalse calcinados y escorias granuladas de horno alto. Se prepararon pastas de cemento con mezclas que contenían dos o tres de estos materiales. El porcentaje de reemplazo de los lodos calcinados osciló entre el 10 y el 20 % en peso del cemento, mientras que el de la escoria fue del 30 % en peso de la mezcla. Se llevaron a cabo ensayos reológicos y de potencial zeta para evaluar el comportamiento electrocinético y reológico de las distintas pastas. De acuerdo con los resultados obtenidos, una vez calcinados, los lodos de embalse son aprovechables como adición al cemento con destino a la preparación de HAC.

  4. Production analysis of methanol and hydrogen of a modificated blast furnace gas using nuclear energy of the high temperature reactor

    International Nuclear Information System (INIS)

    Peschel, W.

    1985-12-01

    Modern blast furnaces are operated with a coke ration of 500 kg/t pig iron. The increase of the coke ratio to 1000 kg/t pig iron raises the content of carbon monoxide and hydrogen in the blast furnace gas. On the basis of a blast furnace gas modificated in such a way, the production of methanol and hydrogen is investigated under the coupling of current and process heat from the high temperature reactor. Moreover the different variants are discussed, for which respectively a material and energetic balance as well as an estimation of the production costs is performed. Regarding the subsequent treatment of the blast furnace gas it turns out favourably in principle to operate the blast furnace with a nitrogen-free wind consisting only of oxygen and steam. The production costs show a strong dependence on the raw material costs, whose influence is shown in a nomograph. (orig.) [de

  5. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    Science.gov (United States)

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  6. Studying and improving blast furnace cast iron quality

    Directory of Open Access Journals (Sweden)

    Т. К. Balgabekov

    2014-10-01

    Full Text Available In the article there are presented the results of studies to improve the quality of blast furnace cast iron. It was established that using fire clay suspension for increasing the mould covering heat conductivity improves significantly pig iron salable condition and filtration refining method decreases iron contamination by nonmetallic inclusions by 50 – 70 %.

  7. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  8. Fundamental study on carbon composite iron ore hot briquette used as blast furnace burden

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Man-sheng; Liu, Zheng-gen; Wang, Zhao-cai [Institute of Ferrous Metallurgy, Northeastern University, Shenyang (China); Yagi, Jun-ichiro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University (Japan)

    2011-05-15

    Carbon composite iron ore hot briquette (CCB) is the product of fine iron ore and fine coal by hot briquetting process, which attracts more and more attention as a new type of ironmaking raw materials aiming to improve the operation efficiency and reduce the coke consumption of blast furnace. This paper is devoted to experimental study on metallurgical properties of CCB and numerical simulation of the BF operation with CCB charging. At first, the metallurgical properties of CCB, including cold crushing strength, RDI, RSI, reducibility, high temperature strength, and softening and dripping are experimentally tested and compared with the common burdens, which revealed that the CCB possesses the required metallurgical properties and is suitable to use as the blast furnace burden. Then, the effects of charging CCB on the dripping properties of comprehensive burdens are elucidated based on the experiments under simulated blast furnace conditions. The results showed that the maximum charging ratio of CCB in the iron burdens is 40%-50% for achieving appropriate dripping properties of the mixed burdens. Finally, a multi-fluid blast furnace model is used to simulate BF operation with CCB charging. According to model simulations, charging CCB will cause the temperature level to decreases in the furnace and the location of the cohesive zone shifts downward. On the other hand, the productivity tends to increase while coke rate and total reducing agent rate decrease, the heat efficiency improves remarkably and the operation performance of BF is effectively enhanced. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Reduction disintegration mechanism of cold briquettes from blast furnace dust and sludge

    Directory of Open Access Journals (Sweden)

    Leandro Rocha Lemos

    2015-07-01

    Full Text Available It is important to understand the reduction disintegration mechanism in ferriferous burden that is used in blast furnaces. The behavior of this burden in the granular zone of this metallurgical reactor is important for smooth operation. The objective of this work was to prepare cold self-reducing briquettes using blast furnace dust and sludge and binders and compare the reduction disintegration index (RDI of these agglomerates with conventional ferriferous burdens such as pellets, sinter and iron ore. In the present work, 25 different mixtures were prepared to produce briquettes in two geometries: pillow and cylindrical. The RDI value was determined for the briquettes that passed the tumbling test.

  10. Studies to overcome the manufacturing problems in blast furnace tap hole clay of Integrated Steel Plants: Experimental approach

    Science.gov (United States)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Integrated Steel Plants commonly uses Blast Furnace route for iron production which accounts for over 60 % of the world iron output. Blast Furnace runs for ten to twenty years without repairing hearth walls and Tap Hole (TH). Tap hole is an outlet for hot metal produced in a Blast Furnace and run from the shell of the furnace into the interior allowing access to the molten material. Tapping is the term used for drilling a hole through the tap hole which allows the molten iron and slag to flow out. In Iron making process, removal of liquid iron from furnace and sending it for steel making is known as cast house practice. For tapping liquid iron and operating the tap hole requires a special type of clay. Tap hole clay (THC) used to stop the flow of liquid iron and slag from the blast furnace. Present work deals with the study on manufacturing of THC at Visakhapatnam Steel Plant and problems related to manufacturing. Experiments were conducted to solve the identified problems and results are furnished in detail. The findings can improve the manufacturing process and improve the productivity of tap hole clay.

  11. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Tervola, K.; Haerkki, J.

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquids temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) (14 refs.)

  12. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  13. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J; Tervola, K [Oulu Univ. (Finland). Dept. of Process Engineering

    1997-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  14. Use of Cement Kiln Dust, Blast Furnace Slag and Marble Sludge in the Manufacture of Sustainable Artificial Aggregates by Means of Cold Bonding Pelletization.

    Science.gov (United States)

    Colangelo, Francesco; Cioffi, Raffaele

    2013-07-25

    In this work, three different samples of solid industrial wastes cement kiln dust (CKD), granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production.

  15. Use of Cement Kiln Dust, Blast Furnace Slag and Marble Sludge in the Manufacture of Sustainable Artificial Aggregates by Means of Cold Bonding Pelletization

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-07-01

    Full Text Available In this work, three different samples of solid industrial wastes cement kiln dust (CKD, granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production.

  16. Effects of Packed Structure and Operation Conditions on Liquid Flow Behavior in Blast Furnace Hearth

    Science.gov (United States)

    Zuo, Haibin; Hong, Jun; Zhang, Jianliang; Zheng, Jin

    The circulating flow of molten iron is an important reason that results in the erosion of blast furnace hearth. In order to prolong the campaign life of blast furnace, it is necessary to analysis the flow state of molten iron. The three-dimensional mathematical model at steady state which takes the standard k-e and porous zone model into consideration is applied to simulate the flow field under different conditions. The results showed that floating of the deadman did strengthen molten iron circulating flow. Increasing the deadman diameter will increase the erosion of hearth and bottom. Deepen the depth of the taphole and reduce the taphole diameter can reduce the circulating flow. Effect of the taphole angle from 10° to 15° is not significant. The results can be used to provide guidance for protecting the blast furnace hearth.

  17. Oxygen blast furnace and combined cycle (OBF-CC) - an efficient iron-making and power generation process

    International Nuclear Information System (INIS)

    Jianwei, Y.; Guolong, S.; Cunjiang, K.; Tianjun, Y.

    2003-01-01

    A new iron and power generating process, oxygen blast furnace and combined cycle (OBF-CC), is presented. In order to support the opinion, the features of the oxygen blast furnace and integrated coal gasification and combined cycle (IGCC) are summarized. The relation between the blasting parameters and the output gas quantity, as well as caloric value is calculated based on mass and energy balance. Analysis and calculation indicate that the OBF-CC will be an efficient iron-making and power generation process with higher energy efficiency and less pollution

  18. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Sik; Jun, Yubin; Lee, Changha, E-mail: clee@unist.ac.kr; Oh, Jae Eun, E-mail: ohjaeeun@unist.ac.kr

    2013-12-15

    The use of calcium oxide (CaO) demonstrates a superior potential for the activation of ground granulated blast furnace slag (GGBFS), and it produces a higher mechanical strength than calcium hydroxide [Ca(OH){sub 2}]. The mechanical strength differences between CaO- and Ca(OH){sub 2}-activated GGBFS binders are explored using isothermal calorimetry, powder X-ray diffraction, thermogravimetric and differential thermal analysis (TGA and DTA) as well as compressive strength testing. Calcium silicate hydrate (C–S–H), Ca(OH){sub 2} and a hydrotalcite-like phase are found as reaction products in all samples. The TGA and DTA results indicate that the use of CaO produces more C–S–H, although this is not likely to be the primary cause of higher strength development in the CaO-activated GGBFS. Rather, other factors such as porosity may govern the strength at a higher order of magnitude. Significant reduction of Ca(OH){sub 2} occurs only with the use of Ca(OH){sub 2}, followed by the formation of carbonate (CaCO{sub 3}), indicating carbonation. -- Highlights: •CaO showed a better potential for the activation of GGBFS than Ca(OH){sub 2}. •Strength test, XRD, TGA/DTA and isothermal calorimetry are used. •C-S-H, Ca(OH){sub 2}, and a hydrotalcite-like phase are found in all samples. •The use of Ca(OH){sub 2} causes some degree of carbonation.

  19. Corrosion mechanism of carbon brick in the blast furnace hearth by potassium

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Zhuang-zhuang; Deng, Yong; Fan, Xiaoyue

    2017-11-01

    Alkali plays a significant role in the formation of brittle layer of carbon brick in the blast furnace hearth. The brittle layer in a commercial blast furnace hearth was investigated. Large amounts of potassium compounds were found in the brittle layer. Subsequently, the carbon bricks which reacted with potassium in the simulation of blast furnace hearth under different contents of potassium in the brick (0.25, 0.5, 1.0 and 2.0 wt.%) during various reaction times (0.5, 1, 2 and 4 h) were experimentally studied. Finally, the formation mechanism of the brittle layer in carbon brick was clarified. The investigation results show that a large number of cracks are present in the brittle layer. The average potassium content in the brittle layer is 1 wt.%. According to the experimental results, cracks in the carbon brick can be formed by the attack of potassium. The reason for the formation of the brittle layer in the carbon brick is that the liquid potassium permeates into the carbon brick through the pores and cracks, and then reacts with SiO2 and Al2O3 in CO atmosphere. The generated potassium compounds nepheline and leucite lead to the volume expansion and the damage of the carbon brick.

  20. Evaluation of effectiveness of raw materials and materials use in a blast furnace department of a steelworks

    Directory of Open Access Journals (Sweden)

    E. Kardas

    2017-01-01

    Full Text Available The paper analyses the quality of raw materials used in the production of blast furnace pig iron. The ferruginous sinter and pellets are the basic raw materials used in the process. The paper presents the impact of those raw materials quality on the effectiveness of the blast furnace process. The process effectiveness will be specified by means of selected process parameters.

  1. Characterization of core-drilled cokes in a working blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shanning Dong; Nigel Paterson; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Dept. of Chemical Engineering

    2007-07-01

    A batch of tuyere-level core-drilled cokes, taken from a blast furnace working with coal injection has been characterized using a battery of analytical techniques. These included size exclusion chromatography (SEC), FT-Raman Spectroscopy (FT-RS) and X-ray Powder Diffraction (XRD). SEC tests on NMP-extracts of cokes taken from zones where temperatures were ca. 1500{sup o}C, showed the presence of heavy soot-like material (ca. 107-108 u apparent mass). By contrast, cokes in higher temperature zones (ca. 2000{sup o}C), only gave small amounts of extractable material with up to ca. 105 u apparent mass. The presence of soot-like material indicated the conversion-unfavoured locations at the tuyere-level. FT-Raman spectra of NMP-extracted cokes varied: the area ratios of D (at 1288-1295cm{sup -1}) to G (at ca. 1596cm{sup -1}) bands decreased as the exposure temperature increased. The random (r) fractions decreased with increasing exposure temperature, whereas, the graphitic (G) fractions increased whilst the defect (D) fraction showed a more complex variation with temperature. The latter is a likely indicator of graphitization of tuyere-level cokes in the blast furnace. The Raman spectral results were validated by XRD analyses of the demineralised and NMP-extracted cokes. Raceway coke possessed the largest crystalline dimensions and closest inter-layer spacing because it had encountered highest temperatures as well as iron catalysis. The combination of SEC and Raman spectrometry on core-drill samples has provided information relevant for maintaining stable operation in a blast-furnace operating with coal injection. 13 refs., 7 figs., 6 tabs.

  2. Volatile release and particle formation characteristics of injected pulverized coal in blast furnaces

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Tsung-Han

    2007-01-01

    Volatiles release and particle formation for two kinds of pulverized coals (a high volatile bituminous coal and a low volatile bituminous coal) in a drop tube furnace are investigated to account for the reactions of pulverized coal injected in blast furnaces. Two different sizes of feed particles are considered; one is 100-200 mesh and the other is 200-325 mesh. By evaluating the R-factor, the devolatilization extent of the larger feed particles is found to be relatively poor. However, the swelling behavior of individual or two agglomerated particles is pronounced, which is conducive to gasification of the chars in blast furnaces. In contrast, for the smaller feed particles, volatiles liberated from the coal particles can be improved in a significant way as a result of the amplified R-factor. This enhancement can facilitate the performance of gas phase combustion. Nevertheless, the residual char particles are characterized by agglomeration, implying that the reaction time of the char particles will be lengthened, thereby increasing the possibility of furnace instability. Double peak distributions in char particle size are observed in some cases. This possibly results from the interaction of the plastic state and the blowing effect at the particle surface. Considering the generation of tiny aerosols composed of soot particles and tar droplets, the results indicate that their production is highly sensitive to the volatile matter and elemental oxygen contained in the coal. Comparing the reactivity of the soot to that of the unburned char, the former is always lower than the latter. Consequently, the lower is the soot formation, the better is the blast furnace stability

  3. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  4. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    International Nuclear Information System (INIS)

    Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C.

    2017-01-01

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  5. Bioreducer use in blast furnace ironmaking in Finland:techno-economic assessment and CO₂ emission reduction potential

    OpenAIRE

    Suopajärvi, H. (Hannu)

    2015-01-01

    Abstract Most of the steel produced in the world is based on the integrated blast furnace-converter route, which is based on the use of virgin raw materials. Large amounts of fossil-based, carbon containing reductants are used in blast furnaces, which results in carbon dioxide emissions into the atmosphere. Fossil carbon dioxide emissions from steel production can be reduced by new technologies or moving from non-renewable to renewable energy sources. Biomass-based reductants could be one...

  6. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder

    International Nuclear Information System (INIS)

    Zhong Shiyun; Ni Kun; Li Jinmei

    2012-01-01

    Highlights: ► The mortar with uncalcined FGD gypsum has suitable workability. ► The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. ► The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. ► The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C–S–H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563–938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO 4 2- from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO 4 2- releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO 4 2- from the mortar with 20% FGD gypsum is 9200 mg·m −2 , which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.

  7. Preparation and Optimization of Vanadium Titanomagnetite Carbon Composite Hot Briquette: A New Type of Blast Furnace Burden

    Science.gov (United States)

    Zhao, W.; Wang, H. T.; Liu, Z. G.; Chu, M. S.; Ying, Z. W.; Tang, J.

    2017-10-01

    A new type of blast furnace burden, named VTM-CCB (vanadium titanomagnetite carbon composite hot briquette), is proposed and optimized in this paper. The preparation process of VTM-CCB includes two components, hot briquetting and heat treatment. The hot-briquetting and heat-treatment parameters are systematically optimized based on the Taguchi method and single-factor experiment. The optimized preparation parameters of VTM-CCB include a hot-briquetting temperature of 300°C, a coal particle size of coal-added ratio of 28.52%, a heat-treatment temperature of 500°C and a heat-treatment time of 3 h. The compressive strength of VTM-CCB, based on the optimized parameters, reaches 2450 N, which meets the requirement of blast furnace ironmaking. These integrated parameters provide a theoretical basis for the production and application of a blast furnace smelting VTM-CCB.

  8. Exergo-Ecological Assessment Of Auxiliary Fuel Injection Into Blast-Furnace

    Directory of Open Access Journals (Sweden)

    Stanek W.

    2015-06-01

    Full Text Available Metallurgy represents complex technological chain supplied with different kinds of primary resources. Iron metallurgy based on blast-furnace process, dominates in world steel production. Metallurgical coke is the basic fuel in this case. Its production is connected with several environmental disadvantageous impacts. One of them is the extended production chain from primary energy to final energy. The reduction of coke consumption in the process can be achieved e.g. by injection of auxiliary fuels or increasing the thermal parameters in the process. In present injection of pulverised coal dominates while recirculation of top-gas seems to be future technology. However, the latter one requires the CO2 removal that additionally extended the production chain. The evaluation of resources management in complex energy-technological systems required application of advanced method based on thermodynamics. In the paper the system exergo-ecological assessment of pulverised coal injection into blast-furnace and top-gas recirculation has been applied. As a comparative criterion the thermo-ecological cost has been proposed.

  9. Granulation of coke breeze fine for using in the sintering process

    Directory of Open Access Journals (Sweden)

    Mohamed F.M.

    2010-01-01

    Full Text Available Coke breeze is the main fuel used in the sintering process. The value of -3+1 mm. represents the most favorable particle size for coke breeze in the sintering process. About 20% of total coke fines (-0.5 mm are produced during different steps of preparation. Introducing these fines during the sintering process proves to be very harmful for different operating parameters. Thus ,this study aims at investigating the production of granules resulting from these fines using molasses as organic binder and its application in sintering of an iron ore. The results showed that the granules having the highest mechanical properties were obtained with 14.5 wt % molasses addition. The sintering experiments were performed by using coke breeze in different shapes (-3+1 mm in size, coke breeze without sieving and coke breeze granules -3+1 mm. The reduction experiments, microscopic structure and X-ray analysis for the produced sinter were carried out. The results revealed that, all sinter properties (such as shatter test, productivity of sinter machine and blast furnace, reduction time and chemical composition for produced sinter by using coke breeze with size -3+1 mm and coke breeze granules were almost the same. The iron ore sinter which was produced by using coke breeze without sieving yielded low productivity for both sinter machine and blast furnace. Furthermore, using coke breeze without sieving in sintering of an iron ore decreases the vertical velocity of sinter machine and increases the reduction time.

  10. An intervention for noise control of blast furnace in steel industry.

    Science.gov (United States)

    Golmohammadi, Rostam; Giahi, Omid; Aliabadi, Mohsen; Darvishi, Ebrahim

    2014-01-01

    Noise pollution is currently a major health risk factor for workers in industries. The aim of this study was to investigate noise pollution and implement a control intervention plan for blast furnace in a steel industry. The measurement of sound pressure level (SPL) along with frequency analysis was done with the sound-level-meter Cell-450. Personal noise exposure was performed using dosimeter TES-1345 calibrated with CEL-282. Before planning noise controls, acoustic insulation properties of the furnace control unit and workers' rest room were assessed. Control room and workers' rest room were redesigned in order to improve acoustical condition. The SPL before intervention around the Blast Furnace was 90.3 dB (L) and its dominant frequency was 4000 Hz. Besides, noise transmission loss of the control and rest rooms were 10.3 dB and 4.2 dB, respectively. After intervention, noise reduction rates in the control and rest rooms were 27.4 dB and 27.7 dB, respectively. The workers' noise dose before and after the intervention was 240% and less than 100%, respectively. Improvement the workroom acoustic conditions through noise insulation can be considered effective method for preventing workers exposure to harmful noise.

  11. Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems

    Directory of Open Access Journals (Sweden)

    Mejía, J. M.

    2013-09-01

    Full Text Available This study assesses the viability of using an agro-industrial by-product, rice husk ash (RHA from a Colombian rice company’s combustion facility, as a total replacement for the commercial sodium silicate ordinarily used in alkaliactivated binders. Fly ash (FA, granulated blast furnace slag (GBFS and binary 50FA:50GBFS blended pastes were activated with a mix of sodium hydroxide and either sodium silicate or one of two types of RHA. The pastes were characterised for strength, mineralogy and microstructure. The findings showed that the agro-industrial by-product can be used to yield alkali-activated materials with 7-day mechanical strengths on the order of 42 MPa. The study confirmed that both amorphous silica and part of the crystalline silica present in RHA participate in the alkaline activation process, providing the alkalinity is suitably adjusted.Este estudio evalúa la viabilidad de utilizar un subproducto agroindustrial, la ceniza de cascarilla de arroz (RHA proveniente de un equipo combustor de una empresa Arrocera en Colombia, como reemplazo total de la sílice aportada por el silicato de sodio comercial en sistemas cementicios activados alcalinamente. Se prepararon pastas de ceniza volante (FA, de escoria de alto horno (GBFS y un sistema binario 50FA:50GBFS, que fueron activadas por una mezcla de silicato de sodio e hidróxido de sodio, y por dos tipos de RHA. Las mezclas se caracterizaron mecánica, mineralógica y microestructuralmente. Los resultados demuestran que es posible obtener materiales activados alcalinamente con resistencias mecánicas del orden de 42 MPa, a 7 días de curado, utilizando el subproducto agroindustrial. Este estudio corrobora que tanto la sílice amorfa como parte de la sílice cristalina presente en RHA tienen la posibilidad de participar en el proceso de activación alcalina, siempre y cuando las condiciones de alcalinidad estén adecuadamente ajustadas.

  12. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  13. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J; Mannila, P; Laukkanen, J [Oulu Univ. (Finland)

    1997-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  14. Lance for injecting highly-loaded coal slurries into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, D.

    1991-10-29

    A lance is used to inject fuel oil into a blast furnace. This simple design permits conversion of coal water and coal tar slurries to a fine mist at very low flow rates. This design prevents the build-up of deposits which increases service life and steadies the flow rate.

  15. Study on blast furnace cooling stave for various refractory linings based on numerical modeling

    International Nuclear Information System (INIS)

    Mohanty, T R; Sahoo, S K; Moharana, M K

    2016-01-01

    Cooling technology for refractory lining of blast furnace is very important for the metallurgical industry, because it can substantially increase output and operation life of furnaces. A three dimensional mathematical model for the temperature field of the blast furnace stave cooler with refractory lining has been developed and analyzed. The temperature and heat dissipated by stave cooler is examined by using the finite element method. The cast steel stave is studied and computational analysis is made to know the effect of the cooling water velocity, temperature, and the lining material on the maximum temperature of the stave hot surface. The refractory lining materials, which are used in this experiment, are high alumina bricks with different stave materials (copper, aluminum and cast iron). The obtained numerical calculations are compared with that obtained from experiments performed at Rourkela Steel Plant, Odisha taking a stave in belly zone having maximum heat load shows very good agreement. (paper)

  16. Modelling of turbulent combustion in the blast furnace raceway

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R.; Maekiranta, R. [Tampere Univ. (Finland). Energy and Process Engineering

    1996-12-31

    The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.

  17. Modelling of turbulent combustion in the blast furnace raceway

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R; Maekiranta, R [Tampere Univ. (Finland). Energy and Process Engineering

    1997-12-31

    The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.

  18. Mutual Influence of Special Components in Baotou Steel Blast Furnace Slag on the Crystallization Behavior of Glass

    OpenAIRE

    Wang, Yici; Jiang, Qi; Luo, Guoping; Yu, Wenwu; Ban, Yan

    2012-01-01

    In the process of glass-ceramics prepared with Baotou steel blast furnace slag, quartz sand, and other raw materials by melting method, the mutual influence of the special components such as CaF2, REXOY, TiO2, K2O, and Na2O in the blast furnace slag on the crystallization behavior of parent glass was investigated using differential thermal analysis (DTA) and X-ray diffraction (XRD). The results show that the special components in slag can reduce the crystallization temperature and promote cry...

  19. Blast furnace sinter performance improvement; Melhoria do rendimento de sinter de alto forno

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ricardo Baeta; Ferreira, Antonio Marcos M.; Perez, Jose Antonio; Nobrega, Carlos A.; Madeira Filho, Nelson Santos; Silva, Jose Coutinho da; Sampaio, Silvio; Larcher, Marcos A.; Silva Filho, Jose Maximo da; Nogueira, Carlos Alberto; Ramalho Filho, Wilson; Costa, Jose Luiz Lage da; Silva, Mauro Correa da [Companhia Siderurgica de Tubarao (CST), Serra, ES (Brazil)

    1995-07-01

    The article discusses the following issues of methodology maid and the accomplished actions aiming at the blast furnace sinter performance improvement: performance concept; performance historical evolution; problem boarding; influence factors; interpretation of the results; actions implementation; and economic benefit.

  20. Development of engineered cementitious composites with limestone powder and blast furnace slag

    NARCIS (Netherlands)

    Zhou, J.; Qian, S.; Sierra Beltran, M.G.; Ye, G.; Van Breugel, K.; Li, V.C.

    2009-01-01

    Nowadays limestone powder and blast furnace slag (BFS) are widely used in concrete as blended materials in cement. The replacement of Portland cement by limestone powder and BFS can lower the cost and enhance the greenness of concrete, since the production of these two materials needs less energy

  1. Productivity and performance of small scale blast furnaces; Produtividade e performance de altos fornos de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Vamberto Ferreira de; Grandin, Friedrich Hans G.; Lanna, Pitagoras Gomes de; Castello Branco, Marco Antonio S.C. [Mannesmann SA, Belo Horizonte, MG (Brazil)

    1994-05-01

    This work presents some data concerning the re-start of the blast furnace number 2 of Mannesmann siderurgic company. The main characteristics concerning the operation with 100% coke fuel and the measurements adopted to increase the furnace productivity are described 2 refs., 6 figs., 5 tabs

  2. Repulsion forces of superplasticizers on ground granulated blast furnace slag in alkaline media, from AFM measurements to rheological properties

    Directory of Open Access Journals (Sweden)

    Palacios, M.

    2012-12-01

    Full Text Available The electrostatic and steric repulsion induced by different superplasticizers on ground granulated blast furnace slag in alkaline media have been studied. The superplasticizers were sulfonated naphthalene, sulfonated melamine, vinyl copolymer, and polycarboxylate- based admixtures. With these superplasticizers the slag suspensions had negative zeta potentials, ranging from -3 to -10 mV. For the first time the adsorbed layer thicknesses for superplasticizers on slag using colloidal probe atomic force microscopy has been measured. To model the interparticle force interactions an effective Hamaker constant was computed from dielectric properties measured on a dense slag sample produced by spark plasma sintering. The obtained results conclude that the dispersion mechanism for all the superplasticizers studied in the present work is mainly dominated by the steric repulsion. Results were then used in a yield stress model, YODEL, to predict the yield stress with and without the superplasticizers. Predictions of the yield stress agreed well with experimental results.

    En este trabajo se ha estudiado la repulsión electrostática y estérica inducida por diferentes aditivos superplastificantes en sistemas de escoria de horno alto en medios alcalinos. Se han estudiado aditivos superplastificantes basados en naftaleno, melamina, copolímeros vinílicos y basados en policarboxilato. Estos aditivos inducen en la escoria un potencial zeta negativo, entre -3 y -10 mV. Por primera vez, se ha determinado el grosor de la capa de aditivo adsorbido sobre la escoria mediante microscopía de fuerzas atómicas (AFM. Para modelizar las fuerzas de interacción entre partículas, se ha determinado la constante efectiva de Hamaker de la escoria a partir de las propiedades dieléctricas de una muestra de escoria obtenida mediante sinterización spark plasma sintering. Los resultados obtenidos concluyen que el mecanismo de dispersión de los superplastificantes

  3. Calcium Extraction from Blast-Furnace-Slag-Based Mortars in Sulphate Bacterial Medium

    Directory of Open Access Journals (Sweden)

    Adriana Estokova

    2018-01-01

    Full Text Available Wastewater structures, such as treatment plants or sewers can be easily affected by bio-corrosion influenced by microorganisms living in waste water. The activity of these microbes results in deterioration and can cause the reduction in structural performance of such structures. In order to improve the durability of mortar and concrete, different admixtures are being used and the best impact is observed in cement based materials combined with blast furnace slag. In this study, mortar samples with blast furnace slag were exposed to bacterial sulphate attack for 90 and 180 days. The leaching of calcium ions from the cement matrix and equivalent damaged depths of studied mortar samples were evaluated. The results showed more significant leaching of samples placed in bacterial environment, compared to the samples placed in non-bacterial environment. Similarly, the equivalent damaged depths of mortars were much higher for the bacteria-influenced samples. The slag-based cement mortars did not clearly show improved resistance in bacterial medium in terms of calcium leaching.

  4. Hot metal temperature prediction by neural networks in the blast furnace

    International Nuclear Information System (INIS)

    Cantera, C.; Jimenez, J.; Varela, I.; Formoso, A.

    2002-01-01

    Based on a simplified model, the underlying temperature criteria is proposed as a method to study the temperature trends in a blast furnace. As an application, a neural network able to forecast hot metal temperatures from 2 to 16 h in advance (with decreasing precision) has been built. This neural network has been designed to work at real time in a production plant. (Author)

  5. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements; Difratometria de raios X de pastas de cimento Portland comum e de alto-forno submetidas a cura termica

    Energy Technology Data Exchange (ETDEWEB)

    Camarini, G [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia; Djanikian, J G [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1994-12-31

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95{sup 0} C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab.

  6. Effect of nut coke on the performance of the ironmaking blast furnace

    NARCIS (Netherlands)

    Song, Q.

    2013-01-01

    The blast furnace consumes a large amount of high quality metallurgy coke (size 35-80 mm) in addition to ore in the form of pellets and sinter. This coke is the coarse fraction, derived from the coke plant. The fine fraction (8 -35 mm), arise after sieving, named nut coke, can’t be directly used in

  7. Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Ilha Gomes

    2006-03-01

    Full Text Available Pulverized Coal Injection (PCI is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

  8. Kinetics and physico-chemical properties of alkali activated blast-furnace slag/basalt pastes

    Directory of Open Access Journals (Sweden)

    H. El Didamony

    2012-12-01

    Full Text Available Granulated blast-furnace slag (GBFS is a by-product of the metallurgical industry and consists mainly of lime and calcium–magnesium aluminosilicates that defined as the glassy granular material formed by rapid cooling of molten slag with excess water resulting in an amorphous structure. Alkali-activated slag (AAS binders have taken a great interest from researchers due to its manufacturing process which has important benefits from the point of view of the lower energy requirements and lower emission of greenhouse gases with respect to the manufacturing of Portland cement. In this study, GBFS was replaced by 20, 40 and 60 wt.% of basalt activated by 6 wt.% of alkali mixture composed of 1:1 sodium hydroxide (SH and liquid sodium silicate (LSS mixed with sea water and cured in 100% relative humidity up to 90 days. The physic-chemical parameters were studied by determination of setting time, combined water content, bulk density and compressive strength. As the amount of basalt increases the setting time as well as compressive strength decreases while the bulk density increases. The compressive strength values of dried pastes are greater than those of saturated pastes. The hydrated products are identified by TGA/DTG analysis, IR spectroscopy and scanning electron microscopy (SEM.

  9. Physical, chemical, and mineralogical characteristics of blast furnace slag on durability of concrete

    Directory of Open Access Journals (Sweden)

    Yogarajah Elakneswaran

    2018-01-01

    Full Text Available A partial replacement of Portland cement (PC by ground granulated blast furnace slag (GGBFS is an effective method to improve the durability of concrete due to its lower diffusivity and higher chemical resistance compared to PC. Further, the microstructure of GGBFS blended cementitious materials controls the physicochemical properties and performance of the materials in concrete. Therefore, understanding of cement hydration and cementing behavior of GGBFS is essential to establish microstructure property relationship for predicting performance. In this study, hydration, microstructure development, and chloride ingress into GGBFS-blended cement have been investigated. Solid-phase assemblage and pore solution chemistry of hydrating PC and cement blended with GGBFS were predicted using thermodynamic model and compared with experimental data. A mathematical model integrating PC hydration, GGBFS reaction, thermodynamic equilibrium between hydration products and pore solution, ionic adsorption on C-S-H, multi-component diffusion, and microstructural changes was developed to predict chloride ingress into GGBFS blended cementitious materials. The simulation results on chloride profiles for hydrated slag cement paste, which was prepared with 50% of replacement of PC with GGBFS, were compared with experimental results. The model quantitively predicts the states of chloride such as free, adsorbed on C-S-H, and chemically bound as Friedel’s salt.

  10. The behavior of potassium in the blast furnace deduced from isotope tracers

    International Nuclear Information System (INIS)

    Barnes, I; Botha, D.W.S.; Farquharson, D.C.; Gordon, P.T.

    1978-01-01

    Two tracer tests were done with radioactive potassium (42 K) on blast furnace no. 1, Pretoria Works. Some 80% of the injected 42 K was recovered in 2 1/2 days. About 95% of both radioactive and natural potassium reported in the slag. Mean residence times of 18 and 25 hours confirmed the accumulation of potassium in the furnace. In these tests the slag basicity appeared to be an adequate indicator of furnace conditions governing the behaviour of potassium. A quantitative discontinious model with varying volume CSTR's and interflow controlled according to slag basicity - could be made to fit the results of both tests. The total amounts of K 2 O required by the model - 4 and 9 t respectively - were larger than estimates from input/output imbalance, or from mean residence time of the tracer

  11. Utilization of formed coke from HBNPC in the Dunkerque blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Scour, C; Capelani, R

    1978-01-01

    Recalls the aspects involved in the manufacture of formed coke together with the coke characteristics. Describes the features of blast-furnaces No. 1 and No. 2 at Dunkerque. The blend used for producing the ovoids is composed of 70 to 80% non-coking coal and the ovoids are carbonized at 900 C. The first stage of the tests was carried out with 25% formed coke and the second stage with 22%. The formed coke was charged separately. The results were as follows: the coke rate was comparable and the permeability identical; there was no change in the behaviour of the furnace chamber and no problems were experienced at the hearth stage. The replacement of 30% of the conventional coke by HBNPC formed coke seemed a practical proposition.

  12. Biomass as blast furnace injectant – Considering availability, pretreatment and deployment in the Swedish steel industry

    International Nuclear Information System (INIS)

    Wang, Chuan; Mellin, Pelle; Lövgren, Jonas; Nilsson, Leif; Yang, Weihong; Salman, Hassan; Hultgren, Anders; Larsson, Mikael

    2015-01-01

    Highlights: • Injection of biofuels was modeled, using real blast furnace data as reference. • For charcoal, torrefied and pelletized biomass; a replacement limit was predicted. • As expected, reduced CO 2 emissions are possible, especially when using charcoal. • We also found that substantial energy savings can be made, using any of the biofuels. • Circumstances today and biomass availability tomorrow are encouraging for deployment. - Abstract: We have investigated and modeled the injection of biomass into blast furnaces (BF), in place of pulverized coal (PC) from fossil sources. This is the easiest way to reduce CO 2 emissions, beyond efficiency-improvements. The considered biomass is either pelletized, torrefied or pyrolyzed. It gives us three cases where we have calculated the maximum replacement ratio for each. It was found that charcoal from pyrolysis can fully replace PC, while torrefied material and pelletized wood can replace 22.8% and 20.0% respectively, by weight. Our energy and mass balance model (MASMOD), with metallurgical sub-models for each zone, further indicates that (1) more Blast Furnace Gas (BFG) will be generated resulting in reduced fuel consumption in an integrated plant, (2) lower need of limestone can be expected, (3) lower amount of generated slag as well, and (4) reduced fuel consumption for heating the hot blast is anticipated. Overall, substantial energy savings are possible, which is one of the main findings in this paper. Due to the high usage of PC in Sweden, large amounts of biomass is required if full substitution by charcoal is pursued (6.19 TWh/y). But according to our study, it is likely available in the long term for the blast furnace designated M3 (located in Luleå). Finally, over a year with almost fully used production capacity (2008 used as reference), a 28.1% reduction in on-site emissions is possible by using charcoal. Torrefied material and wood pellets can reduce the emissions by 6.4% and 5.7% respectively

  13. Toward an understanding of coal combustion in blast furnace tuyere injection

    Energy Technology Data Exchange (ETDEWEB)

    John G. Mathieson; John S. Truelove; Harold Rogers [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-07-01

    The former Broken Hill Proprietary Company Limited, along with its successors BlueScope Steel and BHP Billiton, like many of their iron and steel making counterparts, has had a long history of investigating pulverised coal injection and combustion under the conditions of blast furnace tuyere injection. A succession of pilot scale hot models and combustion test rigs have been constructed and operated at the company's Newcastle Laboratories beginning with the pilot scale hot raceway model in 1981. Each successive generation of test rig has attempted to provide a closer approximation to the actual blast furnace situation with the current test rig (1998 to present) seeking to promote an 'expanding' combusting coal plume. Test rig configuration is demonstrated to have a significant effect on coal burnout at a nominal transit time of 20 ms. The development of the combustion test rigs has been supported through the co-development of a range of sampling and measuring techniques and the application of a number of numerical combustion models. This paper reviews some of the milestones along the path of these investigations, the current understandings and what the future potentially holds. It's not solved yet! 17 refs., 11 figs.

  14. Nodal wear model: corrosion in carbon blast furnace hearths

    Directory of Open Access Journals (Sweden)

    Verdeja, L. F.

    2003-06-01

    Full Text Available Criterions developed for the Nodal Wear Model (NWM were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid.

    Se aplican los criterios del Modelo de Desgaste Nodal (MDN para la estimación de los perfiles de corrosión que podría ir adquiriendo el crisol de un homo alto durante su campaña. Atendiendo al propio diseño del crisol, a las condiciones límites de contorno, a las características del material refractario utilizado y a las condiciones de operación del horno, se consiguen simular perfiles de desgaste con "pozo central", con "forma de seta" ó de "pie de elefante". Los fundamentos del MDN se apoyan en la idea de considerar que la corrosión del refractario es función de la temperatura que el sistema pueda presentar en cada punto (nodo de la intercara refractario-fundido y de las correspondientes características físico-químicas del fluido corrosivo.

  15. Forecast situation of the blast furnace cohesive zone; Situacion estimada de la zona cohesiva en el horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Cores, A.; Saiz de Ayala, J.; Mochon, J.; Ruiz-Bustinza, I.; Parra, R.

    2010-07-01

    A series of sinters are manufactured in the pilot plant, using a mineral mixture, like that blast furnace. The sinters are characterised, by chemical and granulometric analysis and by determining the softening and melting temperatures. In the blast furnace temperatures are determined by using a series of probes in the furnace which make it possible to locate the position of the isotherm of higher temperature of 950 degree centigrade, which correspond to the reserve thermic zone. A model has been developed, proposing and indirect estimation of the shape of the cohesive zone through the determination of the isotherm with the highest temperature in the thermic reserve zone. The values of the softening and melting temperatures of sinters can be used to estimate the isotherms limiting the cohesive zone in the 1300-1400 degree centigrade range. (Author)

  16. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  17. A Model to Simulate Titanium Behavior in the Iron Blast Furnace Hearth

    Science.gov (United States)

    Guo, Bao-Yu; Zulli, Paul; Maldonado, Daniel; Yu, Ai-Bing

    2010-08-01

    The erosion of hearth refractory is a major limitation to the campaign life of a blast furnace. Titanium from titania addition in the burden or tuyere injection can react with carbon and nitrogen in molten pig iron to form titanium carbonitride, giving the so-called titanium-rich scaffold or buildup on the hearth surface, to protect the hearth from subsequent erosion. In the current article, a mathematical model based on computational fluid dynamics is proposed to simulate the behavior of solid particles in the liquid iron. The model considers the fluid/solid particle flow through a packed bed, conjugated heat transfer, species transport, and thermodynamic of key chemical reactions. A region of high solid concentration is predicted at the hearth bottom surface. Regions of solid formation and dissolution can be identified, which depend on the local temperature and chemical equilibrium. The sensitivity to the key model parameters for the solid phase is analyzed. The model provides an insight into the fundamental mechanism of solid particle formation, and it may form a basic model for subsequent development to study the formation of titanium scaffold in the blast furnace hearth.

  18. Use of blast-furnace slag in making durable concrete for waste management repositories

    International Nuclear Information System (INIS)

    Feldman, R.F.; Beaudoin, J.J.; Philipose, K.E.

    1991-02-01

    Waste repositories for the belowground disposal of low-level radioactive waste rely greatly on the durability of concrete for their required 500-year service life. A research program is in progress based on laboratory testing of concretes containing either Type 1 cement or cements containing 65 and 75 percent of blast-furnace slag, each at 4 water-cement ratios. It has been established that the degradation of the concrete will depend on the rate of ingress of corrosive agents - chlorides, sulphate ions and CO 2 . The ionic profiles and the kinetics of diffusion of these ions in the concretes have been measured by Secondary Electron Microscope (SEM) and Energy Dispersive X-ray Analysis (EDXA) techniques, and the results plotted according to a mathematical model. Predictions for service life of the concrete have been made from this model. These predictions have been correlated with properties of the concrete obtained from micro-structural, thermochemical and permeability measurements. The improvements in concrete durability due to blast-furnace slag additions are illustrated and discussed

  19. Effect of recycling blast furnace flue dust as pellets on the sintering performance

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2010-01-01

    Full Text Available The Egyptian Iron and Steel Company generates a great amount of blast furnace flue dust. The recovery of metals and carbon from this flue dust becomes a very important demand due to the increase of the price of coke breeze and the decrease of the primary source of metals. At the same time, it make the environment more safe by decreasing pollution. Introducing these dust fines in the sintering process proves to be very harmful for different operating parameters. Thus, this study aims at investigating the production of pellets resulting from these fines, using molasses as organic binder and its application in sintering of iron ore. The sintering experiments were performed using flue dust as pellets as a substitute of coke breeze. The results revealed that, sintering properties such as inter strength increases with using the flue dust pellets, while productivity of both the sinter machine and sinter machine at blast furnace yard decreases. Also the vertical velocity of the sinter machine and the weight loss during the reduction of produced the sinter by hydrogen decrease.

  20. Use of blast-furnace slag in making durable concrete for waste management repositories

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, R. F.; Beaudoin, J. J. [National Research Council of Canada, Ottawa, ON (Canada); Philipose, K. E.

    1991-02-15

    Waste repositories for the belowground disposal of low-level radioactive waste rely greatly on the durability of concrete for their required 500-year service life. A research program is in progress based on laboratory testing of concretes containing either Type 1 cement or cements containing 65 and 75 percent of blast-furnace slag, each at 4 water-cement ratios. It has been established that the degradation of the concrete will depend on the rate of ingress of corrosive agents - chlorides, sulphate ions and CO{sub 2}. The ionic profiles and the kinetics of diffusion of these ions in the concretes have been measured by Secondary Electron Microscope (SEM) and Energy Dispersive X-ray Analysis (EDXA) techniques, and the results plotted according to a mathematical model. Predictions for service life of the concrete have been made from this model. These predictions have been correlated with properties of the concrete obtained from micro-structural, thermochemical and permeability measurements. The improvements in concrete durability due to blast-furnace slag additions are illustrated and discussed.

  1. Drying shrinkage of mortars with limestone filler and blast-furnace slag

    Directory of Open Access Journals (Sweden)

    Carrasco, M. F.

    2003-12-01

    Full Text Available During the 1990's the use of cements made with port land clinker and two mineral admixtures, called ternary or blended cements, has grown considerably. Nowadays, cements containing several combinations of fly ash and silica fume, blast-furnace slag and silica fume or blast-furnace slag and limestone filler are commonly used. There are numerous works on the influence of blended cements on the fresh state and mechanical properties of mortar and concrete, but the their deformations due to drying shrinkage are not so well described. Analysis of drying shrinkage is relevant because this property influences the possibility of cracking occurrence and, hence, the deterioration of mechanical and durable properties of concrete structures. This paper evaluates the influence on the drying shrinkage of mortars of variable contents of limestone filler and/or blast-furnace slag in Portland cement. Additionally, flexion strength and non evaporable water content were evaluated. Test results show that the inclusion of these mineral admixtures, Joint or separately, increments drying shrinkage of mortars at early ages. Despite this fact, mortars made with limestone filler cement are less susceptible to cracking than mortars made with cements incorporating blast-furnace slag or both admixtures.

    Durante los años 90 el uso de cementos fabricados con clínker Portland y dos adiciones suplementarias (cementos ternarios o compuestos se ha incrementado en forma considerable. En la práctica, es cada vez más común el empleo de estos cementos conteniendo combinaciones de ceniza volante y humo de sílice, escoria y humo de sílice o escoria y filler calcáreo. En la actualidad existen numerosos estudios sobre la influencia de los cementos compuestos en las características en estado fresco y las propiedades mecánicas de morteros y hormigones, pero las deformaciones que estos materiales sufren debido a la retracción por secado no son tan conocidas. El análisis de

  2. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NARCIS (Netherlands)

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.

    2013-01-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate,

  3. Choice of technological regimes of a blast furnace operation with injection of hot reducing gases

    Directory of Open Access Journals (Sweden)

    Babich, A. I.

    2002-08-01

    Full Text Available Injection rate of fossil fuels is limited because of drop in the flame temperature in the raceway and problems in the deadman region and the cohesive zone. The next step for obtaining a considerable coke saving, a better operation in the deadman as an well as increase in blast furnace productivity and minimizing the environmental impact due to a decrease in carbon dioxide emmision would be injection by tuyeres of hot reducing gases (HRG which are produced by low grade coal gasification or top gas regenerating. Use of HRG in combination with high pulverized coal inyection PCI rate and oxigen enrichment in the blast could allow to keep and to increase the competitiveness of the blast furnace process. Calculations using a mathematical model show that the HRG injection in combination with pulverized coal (PC and enriching blast with oxigen can provide an increase in PC rate up to 300-400 kg/tHM and a rise in the furnace productivity by 40-50 %. Blast furnace operation with full oxigen blast (100 % of process oxigen with the exception for the hot blast is possible when HRG is injected.

    La tasa de inyección de combustibles fósiles está limitada a causa de la caída de la temperatura de llama en el raceway (cavidad frente a las toberas y a problemas en la región del "hombre muerto" y en la zona cohesiva. La inyección por tobera de gases reductores calientes (GRC, que se producen por gasificación de carbón de bajo grado o generación de gas de tragante, será la próxima etapa para lograr un considerable ahorro adicional de coque, una zona del "hombre muerto" bien definida, además de un aumento en la productividad del horno alto y para minimizar el impacto ambiental debido a una disminución de la emisión de dióxido de carbono. El uso de GRC en combinación con una tasa elevada de inyección de carbón pulverizado (ICP con viento enriquecido en oxígeno, podrá permitir mantener y aumentar la competitividad del proceso del horno

  4. Innovation based on tradition : Blast furnace slag cement for durable concrete structures in Norway?

    NARCIS (Netherlands)

    Polder, R.B.; Nijland, T.; De Rooij, M.; Larsen, C.K.; Pedersen, B.

    2014-01-01

    Blast furnace slag cement (BFSC) has been used to build reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. The experience is good and structures with long service lives can be obtained, as has been shown by several field studies. This is caused by

  5. Properties and application of carbon composite brick for blast furnace hearth

    Directory of Open Access Journals (Sweden)

    Jiao K.X.

    2015-01-01

    Full Text Available A type of carbon composite brick was produced via the microporous technique using natural flack graphite, α-Al2O3 and high-quality bauxite chamotte (Al2O3≥87 mass% as raw materials with fine silicon powder as additive. The composition and microstructure of the obtained carbon composite were characterized using chemical analysis, XRD and SEM with EDS. The high temperature properties of thermal conductivity, oxidization and corrosion by molten slag and hot metal of the composite were analyzed. Based on these, the type of carbon composite brick worked in a blast furnace hearth for six years was further sampled at different positions. The protective layer was found and its chemical composition and microscopic morphology were investigated. It is found that the carbon composite brick combines the good properties of both the conventional carbon block and ceramic cup refractory. The protective layer near the hot face consists of two separated sublayers, i.e. the slag layer and the carbon layer. A certain amount of slag phase is contained in the carbon layer, which is caused by the reaction of coke ash with the refractory. No obvious change in the chemical composition of the protective layer along the depth of the sidewall is found. This work provides a useful guidance for the extension of the lifetime of blast furnace hearths.

  6. A Differential Scanning Calorimetry Method for Construction of Continuous Cooling Transformation Diagram of Blast Furnace Slag

    Science.gov (United States)

    Gan, Lei; Zhang, Chunxia; Shangguan, Fangqin; Li, Xiuping

    2012-06-01

    The continuous cooling crystallization of a blast furnace slag was studied by the application of the differential scanning calorimetry (DSC) method. A kinetic model describing the correlation between the evolution of the degree of crystallization with time was obtained. Bulk cooling experiments of the molten slag coupled with numerical simulation of heat transfer were conducted to validate the results of the DSC methods. The degrees of crystallization of the samples from the bulk cooling experiments were estimated by means of the X-ray diffraction (XRD) and the DSC method. It was found that the results from the DSC cooling and bulk cooling experiments are in good agreement. The continuous cooling transformation (CCT) diagram of the blast furnace slag was constructed according to crystallization kinetic model and experimental data. The obtained CCT diagram characterizes with two crystallization noses at different temperature ranges.

  7. Determination of the coke bed voidage in the blast furnace hearth

    Energy Technology Data Exchange (ETDEWEB)

    Havelange, O.; Danloy, G.; Venturini, M.J. [and others] [CRM, Liege (Belgium)

    2004-07-01

    The objectives of the research were to develop and apply techniques and model tools allowing an online evaluation of the blast furnace hearth conditions and its permeability, in order to guarantee a stable furnace operation and to control the refractory wear through early corrective actions. CRM determined the coke bed voidage in the hearth of BFB of Cockerill-Sambre by two techniques: one based on pressure measurement inside the taphole and the other based on electromotive force measurement. A mathematicalmodel was developed taking into account the movements of the deadman. ln order to continuously determine the hot metal flow rate, BFI measured the filling level in the runner at BF 2 of TKS. A statistical wear model evaluated the cross-sectional runner geometry. The data have been fed into a model to calculate the coke bed voidage on multiple taphole blast furnaces. To control the wear caused by preferential liquid flow, Corus IJmuiden developed a monitoring of temperature and heat flux information from purpose-installed duplex thermocouples. This information has been correlated over time to identify any persistent trends and used to evaluate control measures such as blocked tuyeres and process shutdowns. Industrial trials at Fos BF1 enabled IRSID to propose a picture to describe the effects of the central coke charging practice. IRSID used the Fluent code to describe the liquid flow in the hearth with regard to the deadman conditions and to simulate tracer experiments. From studies of the behaviour of the hearth skull, Corus UK proposed a method for its monitoring. The iron flow rate was measured by using strain gauges attached to the torpedo ladles, and the slag flow rate was estimated from the slag pelletiser current. Data from tuyere core drilling samples were examined to estimate the voidage in the hearth. 38 refs., 127 figs.

  8. Model of Draining of the Blast Furnace Hearth with an Impermeable Zone

    Science.gov (United States)

    Saxén, Henrik

    2015-02-01

    Due to demands of lower costs and higher productivity in the steel industry, the volume of operating blast furnaces has grown during the last decades. As the height is limited by the allowable pressure drop, the hearth diameter has grown considerably and, along with this, also draining-related problems. In this paper a mathematical model is developed for simulating the drainage in the case where an impermeable region exists in the blast furnace hearth. The model describes the quasi-stationary drainage process of a hearth with two operating tapholes, where the communication between the two pools of molten slag and iron can be controlled by parameterized expressions. The model also considers the case where the buoyancy of the liquids is sufficient for lifting the coke bed. The implications of different size of the liquid pools, communication between the pools, bed porosity, etc. are studied by simulation, and conclusions concerning their effect on the drainage behavior and evolution of the liquid levels in the hearth are drawn. The simulated liquid levels are finally demonstrated to give rise to a pressure profile acting on the hearth which agrees qualitatively with signals from strain gauges mounted in the hearth wall of an industrial ironmaking process.

  9. FY 2000 Study report. Feasibility study on model project for effective utilization of sensible heat of off gas from hot stoves at blast furnaces in India; 2000 nendo Indo ni okeru koro netsufuro hai gas kennetsu yuko riyo model jigyo jisshi kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The feasibility study was conducted on a model project in India for the energy saving effect and reduction of the greenhouse gas emissions by introducing blast furnace hot stove waste heat recovery systems in steelworks. The blast furnaces studied are Blast Furnace G at Jamshedpur Steelworks of TISCO, the largest private steel maker in India, and No.7 Blast Furnace at Bhilai Steelworks of state-operated Steel Authority of India Ltd. (SAIL). The study results indicate that the annual energy-saving effects of 8,255 and 8,190 tons as heavy oil, and annual CO2 emission reduction of 25,543 and 25,342 tons are expected in the TISCO and SAIL blast furnaces, respectively, in the case of increasing blast temperature and reducing blast furnace fuel coke (increased iron production possible). The model project is applicable to both blast furnaces. There are a total of 46 blast furnaces in India in which the heat recovery systems can be introduced. The nation-wide annual energy saving and CO2 abatement would reach 126,202 tons as heavy oil and 390,501 tons, when all of these blast furnaces could be provided with the heat recovery systems. (NEDO)

  10. A Novel Technique for Making Cold Briquettes for Charging in Blast Furnace

    International Nuclear Information System (INIS)

    Mohanty, M K; Mishra, S; Sarkar, S; Samal, S K; Mishra, B

    2016-01-01

    Different metallurgical wastes are generated during pyro processing of iron ore, which is used for making sponge iron or hot metal and for producing steel. Apart from these wastes, coke fines are generated during the coke making, and iron ore fines are generated during mining of iron ore. Although iron ore fines are used for making pellet after beneficiation still, it generates a huge quantity of iron ore waste during beneficiation with comparatively lower iron content. In the present study, briquettes are made by a stiff extrusion process from metallurgical waste like iron ore fines and coke fines with the addition of Portland cement as a binder and clay as a rheology modifier. Physical properties of the briquettes are evaluated, and reducibility of the briquettes is studied in comparison to lumpy iron ore. Phase analysis and microstructural analysis of the briquettes and lumpy iron ore are carried out after firing at different temperatures in the simulated blast furnace condition. Physical and mineralogical properties are correlated with the reducibility of the briquettes and lumpy iron ore. Briquettes made by a stiff extrusion process show a better mechanical strength fired at a different temperature to take the load of burden and better reducibility than lumpy iron ore. The briquettes after self-curing are charged to a 23 mt3 blast furnace which shows encouraging results. (paper)

  11. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    Science.gov (United States)

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p steel industries.

  12. Ternary Blends of High Aluminate Cement, Fly ash and Blast-furnace slag for Sewerage Lining Mortar

    Science.gov (United States)

    Chao, L. C.; Kuo, C. P.

    2018-01-01

    High aluminate cement (HAC), fly ash (FA) and blast-furnace slag (BFS) have been treated sustainable materials for the use of cement products for wastewater infrastructure due to their capabilities of corrosion resistance. The purpose of this study is to optimize a ternary blend of above mentioned materials for a special type of mortar for sewerage lining. By the using of Taguchi method, four control parameters including water/cementitious material ratio, mix water content, fly ash content and blast-furnace slag content were considered in nine trial mix designs in this study. By evaluating target properties including (1) maximization of compressive strength, (2) maximization of electricity resistance and (3) minimization of water absorption rate, the best possible levels for each control parameter were determined and the optimal mix proportions were verified. Through the implementation of the study, a practical and completed idea for designing corrosion resistive mortar comprising HAC, FA and BSF is provided.

  13. Ergonomics Intervention in Unit Blast Furnace of a Typical Steel Company

    Directory of Open Access Journals (Sweden)

    Majid Mo'tamed-Zadeh

    2013-10-01

    Full Text Available Objective: Musculoskeletal disorders are a major part of occupational diseases in working environments. Prevention of the occurrence of these problems requires the use of ergonomic assessment techniques and intervention to improve working conditions. The purpose of this study was to investigate the prevalence of musculoskeletal disorders in workers in the blast furnace unit and the intervention to reduce the prevalence of these disorders. Materials & Methods: This study conducted on 24 people working in the furnace unit. Medical records of furnace workers were reviewed and Nordic Musculoskeletal Questionnaires (NMQ was completed. Drilling operation and oxygenation task were assessed by using Rapid Entire Body Assessment (REBA and workers were given the necessary training. Work stations of oxygenation for 24 workers were redesign and Drilling operation was mechanized. And employed workers with musculoskeletal disorders were changed. REBA and NMQ were used to reassess the intervention effects. Results: According to medical records and results of NMQ about 37.5 percent of workers had musculoskeletal disorders. REBA final score was 11 and 10 for the drilling and oxygenation tasks respectively. After redesigning the workstation, REBA final score was 5 for the oxygenation task and the drilling operation removed by mechanized. With the amendment procedures of musculoskeletal disorders was reduced 17.5 percent. Conclusion: According to REBA Score, the risk of musculoskeletal disorders was reduced by implementing amendments to the furnace unit and prevalence of musculoskeletal disorders also significantly reduced. Keyword: Ergonomic, MSDs, REBA, NMQ, Steel

  14. Greener durable concretes through geopolymerisation of blast furnace slag

    International Nuclear Information System (INIS)

    Rajamane, N P; Nataraja, M C; Jeyalakshmi, R; Nithiyanantham, S

    2015-01-01

    The eco-friendliness of concrete is quantified by parameters such as ‘embodied energy’ (EE) and ‘embodied CO 2 emission’ (ECO 2 e), besides duration of designed ‘service life’. It may be noted that ECO 2 e is also referred as carbon footprint (CF) in the literature. Geopolymer (GP) is an inorganic polymeric gel, a type of amorphous alumino-silicate product, which can be synthesised by polycondensation reactions. The concrete reported in this paper was prepared using industrial wastes in the form of blast furnace slag, fly ash as geopolymeric source materials and sodium silicate and sodium hydroxide as activators. Many mechanical properties such as compressive strength, chloride diffusion, steel corrosion, rapid chloride permeability test and rapid migration test are compared with Portland cement. (paper)

  15. Implementation of top turbine of blast furnace 3 - USIMINAS Ipatinga; Implantacao da turbina de topo do alto-forno 3 - USIMINAS Unidade Ipatinga

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Murilo Alves Tito de; Rosa, Ericson Rimen Ribeiro; Oliveira, Claudiney Freitas de [Usinas Siderurgicas de Minas Gerais S/A (USIMINAS), Ipatinga, MG (Brazil)

    2010-07-01

    The use of turbine for energy recovery from top gas from blast furnace is aligned with the strategic objectives of USIMINAS Ipatinga to increase their own power generation, reduce environmental impacts and improve operational control of pressure from the top. This study aimed to present the progress in controlling the top pressure and electric power generation using turbine drawing gas kinetic energy. Will be addressed by developing methods used to control the pressure of the top from the start of operation of Blast Furnace 3 to the present day. Will also be discussed operating procedures and expected performance. (author)

  16. Thermal treatment of simulant plutonium contaminated materials from the Sellafield site by vitrification in a blast-furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, N.C., E-mail: n.c.hyatt@sheffield.ac.uk [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Schwarz, R.R.; Bingham, P.A.; Stennett, M.C.; Corkhill, C.L.; Heath, P.G.; Hand, R.J. [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); James, M.; Pearson, A. [Sellafield Ltd., Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Morgan, S. [Sellafield Ltd., Hinton House, Risley, Warrington WA3 6GR (United Kingdom)

    2014-01-15

    Graphical abstract: Storage of 200 L drums of PCM waste at the Sellafield site, UK. Abstract: Four waste simulants, representative of Plutonium Contaminated Materials (PCMs) at the Sellafield site, were vitrified through additions of Ground Granulated Blast-furnace Slag (GGBS). Ce (as a Pu surrogate) was effectively partitioned into the slag product, enriched in an amorphous CaO–Fe{sub 2}O{sub 3}–Al{sub 2}O{sub 3}–SiO{sub 2} phase when other crystalline phases were also present. Ce L{sub 3} edge XANES data demonstrated Ce to be present as trivalent species in the slag fraction, irrespective of the waste type. Estimated volume reductions of ca. 80–95% were demonstrated, against a baseline of uncompacted 200 L PCM waste drums. The dissolution behaviour of PCM slag wasteforms was investigated at 50 °C in saturated Ca(OH){sub 2} solution under N{sub 2} atmosphere, to simulate the hyperalkaline anoxic environment of a cementitious UK Geological Disposal Facility for Intermediate Level Waste (ILW). These experiments demonstrated the performance of the slag wasteforms to be comparable to that of other vitrified ILW materials considered potentially suitable for geological disposal.

  17. 40 CFR 421.76 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... produced Lead .000 .000 Zinc .000 .000 (g) Subpart G—Hard Lead Refining Slag Granulation. PSNS Pollutant or... production Lead .000 .000 Zinc .000 .000 (b) Subpart G—Blast Furnace Wet Air Pollution Control. PSNS... pounds) of blast furnace lead bullion produced Lead .000 .000 Zinc .000 .000 (c) Subpart G—Blast Furnace...

  18. Build-up Factor Calculation for Ordinary Concrete, Baryte Concrete and Blast-furnace Slugges Concrete as γ Radiation Shielding

    International Nuclear Information System (INIS)

    Isman MT; Elisabeth Supriatni; Tochrul Binowo

    2002-01-01

    Calculation of build up factor ordinary concrete, baryte concrete and blast-furnace sludge concrete have been carried out. The calculations have been carried out by dose rate measurement of Cs 137 source before and after passing through shielding. The investigated variables were concrete type, thickness of concrete and relative possession of concrete. Concrete type variables are ordinary concrete, baryte concrete and blast sludge furnace concrete. The thickness variables were 6, 12, 18, 24, 30 and 36 cm. The relative position variables were dose to the source and close to detector. The result showed that concrete type and position did not have significant effect to build-up factor value, while the concrete thickness (r) and the attenuation coefficient (μ) were influenced to the build-up factor. The higher μr value the higher build-up factor value. (author)

  19. Hot metal temperature prediction and simulation by fuzzy logic in a blast furnace; Prediccion y simulacion, mediante logica difusa, de la temperatura de salida del arrabio en un horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M. A.; Jimenez, J.; Mochon, J.; Formoso, A.; Bueno, F. [Centro Nacional de Investigaciones Metalurgicas CENIM. Madrid (Spain); Menendez, J. L. [ACERALIA. Gijon Asturias (Spain)

    2000-07-01

    This work describes the development and further validation of a model devoted to blast furnace hot metal temperature forecast, based on Fuzzy logic principles. The model employs as input variables, the control variables of an actual blast furnace: Blast volume, moisture, coal injection, oxygen addition, etc. and it yields as a result the hot metal temperature with a forecast horizon of forty minutes. As far as the variables used to develop the model have been obtained from data supplied by an actual blast furnaces sensors, it is necessary to properly analyse and handle such data. Especial attention was paid to data temporal correlation, fitting by interpolation the different sampling rates. In the training stage of the model the ANFIS (Adaptive Neuro-Fuzzy Inference System) and the Subtractive Clustering algorithms have been used. (Author) 9 refs.

  20. Injection of natural gas in the blast furnace tuyeres three of the Usiminas, Ipatinga Plant; Injecao de gas natural nas ventaneiras do alto-forno 3 da Usiminas, Usina de Ipatinga

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Murilo Alves Tito de; Rosa, Ericson Rimen Ribeiro; Oliveira, Claudiney Freitas de; Hostt, Helton [USIMINAS, Ipatinga, MG (Brazil). Gerencia Geral de Reducao

    2011-12-21

    The reduction in production costs is a major strategic objectives of Usiminas and the use of natural gas in the Blast Furnace 3 (BF 3) contribute to achieve this goal. The use of natural gas as fuel in the BF 3 to reduce the use of metallurgical coke (main fuel) and reduces production losses during periods of maintenance in the pulverized coal injection system and improving operational control of the Blast Furnace. The work presents the deployment of the natural gas injection and the performance obtained by the BF 3 from the start of injection, with a focus on reducing consumption of metallurgical coke and stable operation of blast furnace (author)

  1. Coal char combustion under a CO{sub 2}-rich atmosphere: Implications for pulverized coal injection in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Borrego, A.G.; Casal, M.D. [Instituto Nacional del Carbon, CSIC. P.O. Box 73, 33080 Oviedo (Spain); Osorio, E.; Vilela, A.C.F. [Laboratorio de Siderurgia, DEMET/PPGEM - Universidade Federal do Rio Grande do Sul. P.O. Box 15021, 91501-970 Porto Alegre (Brazil)

    2008-11-15

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO{sub 2} concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars. Overall similar burnouts were achieved with N{sub 2} and CO{sub 2} for similar oxygen concentrations and therefore no loss in burnout should be expected as a result of enrichment in CO{sub 2} in the blast furnace gas. The advantage of increasing the amount of oxygen in a reacting atmosphere during burnout was found to be greater, the higher the rank of the coal. (author)

  2. Process integration of the new blast furnace - Project Prima. Final report; Processintegration av den nya masugnen - Projekt Prima. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Ryman, Christer; Niemi, Tommi [Metallurgical Research Inst. AB, Luleaa (Sweden); Larsson, Mikael [Luleaa Technical Univ. (Sweden); Gyllenram, Rutger [Kobolde and Partners AB, Stockholm (Sweden)

    2004-05-01

    An one-dimensional static blast furnace model consisting of a mass balance and a heat balance model with an user friendly web interface has been developed. The model can be used for process optimisation and to compare different operating modes, but can also be used as a sub model for total analysis of the production site by means of process integration. It is also possible to use the model for planning of trials at an industrial or an experimental, blast furnace. The project has been executed by MEFOS (BF model development), Kobolde and Partners AB (system development) and Luleaa University of Technology (system integration). This report contains a brief model description, discussion of possible sources of errors, and examples of optimisation calculations. The project has been active from 2001 to 2003.

  3. Nuclear techniques for the inspection of blast furnaces

    International Nuclear Information System (INIS)

    Schweitzer, J. S.; Lanza, R. C.

    1999-01-01

    Carbon hearth wall failures in blast furnaces create safety risks and require a large expense to repair. To avoid failures they are replaced early, incurring costs in wasted hearth wall use. Two non-invasive measurements provide realtime analysis of wall integrity. The two major failure modes are erosion of carbon thickness and iron-filled cracks in the bricks. Measurements of backscattered gamma-ray spectra and thermal neutron decay rate can identify both phenomena. Gamma-ray spectra from a compact Linac beam primarily respond to average carbon thickness. Neutron decay time, using a pulsed neutron source, is sensitive to iron in the carbon volume. Each measurement is sensitive to the other failure made, but the combination permits each phenomenon to be resolved. These techniques can detect a high atomic number and thermal neutron absorption cross section material behind one of low atomic number and thermal neutron absorption cross section

  4. Effects of heat treatments of coal on coke destruction under blast furnace conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-09-01

    This paper discusses results of investigations on effects of chemical reactions in a blast furnace on coke disintegration and destruction. The investigations were carried out by the VUKhIN Institute branch in Kuznetsk. Effects of silicates and carbonates of sodium, potassium and zinc on mechanical coke properties were investigated under laboratory conditions. Coke samples were placed in a reactor and were treated by vapors of metal compounds. Coke produced from a coal mixture with conventional moisture content and from preheated coal mixture was used. Coal properties are given in a table. Design of laboratory equipment used for tests is shown in 2 schemes. Heat treatments influenced coke porosity and its structural strength. Proportion of large pores accessible to sodium and potassium in coke from preheated coal was 4.5 times lower than in coke from a conventional mixture. Adsorption of sodium and potassium on coke from preheated charge was lower (from 0.22% to 0.24%) than on coke from a conventional mixture (from 2.5% to 2.9%). Adsorption of alkali metals on coke reduced its structural strength and increased coke oxidation rate by carbon dioxide. Use of heat treatments of coal for coking reduced adsorption of alkali metals on coke in a blast furnace, increased coke structural strength and reduced coke oxidation rate by carbon dioxide. (16 refs.) (In Russian)

  5. A new concept of auxiliary fuel injection through tuyeres in blast furnaces developed by numerical simulations

    Directory of Open Access Journals (Sweden)

    Bruno Orlando de Almeida Santos

    2014-04-01

    Full Text Available The Injection of powdered materials in blast furnaces is a great option for reducing costs, increasing productivity and satisfy the environmental norms. Thus, this paper presents a study on the use of a flame stabilization system with rotation, designed to promote greater coal injection in the combustion zone, reducing losses and increasing the efficiency of the equipment. A physical model was used to evaluate scattering of pulverized fuel and is compared with numerical results in the same scale. In the second step, a combustion model was added to the numerical simulation, using dimensions of a real blast furnace. Fields like temperature, velocity and behavior of chemical reactions were analyzed. The results showed that double lances promote better particle injection when compared with simple lance for reduced material injection. The new injection system proposed, with swirl numbers of 0.12 and 0.24, promoted a better injection of both reduced material and temperature in the raceway zone. The swirl 0.24 showed superior performance when compared to other injection systems.

  6. Basic survey project for Joint Implementation, etc. Blast furnace top pressure recovery turbine (TRT) project (Panzhihua Iron and Steel (Group) Company, People's Republic of China)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a feasibility study was conducted on the energy conservation at Panzhihua Iron and Steel Company in Sichuan Province, China. In this project, the pressure energy of blast furnace is to be recovered in the form of electric power by installing the blast furnace top pressure recovery turbine (TRT). In the project, the pressure-reducing valve was removed, and the dry dust collector/dry TRT were installed to make the scale of electric power production largest. A model of TRT was installed at No. 4 blast furnace and is now in operation. In this project, TRTs are to be installed at Nos. 1, 2 and 3 blast furnaces. As a result of the study, the investment totaled 5.46 billion yen. The capacity of power generation by TRT is 16,890 kW, and the generated output is 137,822 MWh/y. Moreover, the amount of energy conservation is 36,467 toe/y, and the reduction amount of greenhouse effect gas emissions is 112,830 CO2-ton/y. The term of investment recovery is 8.3 years. The effect of reduction in greenhouse effect gas emissions is 20.66 CO2-ton/y/million yen. (NEDO)

  7. Improved CFD Model to Predict Flow and Temperature Distributions in a Blast Furnace Hearth

    Science.gov (United States)

    Komiyama, Keisuke M.; Guo, Bao-Yu; Zughbi, Habib; Zulli, Paul; Yu, Ai-Bing

    2014-10-01

    The campaign life of a blast furnace is limited by the erosion of hearth refractories. Flow and temperature distributions of the liquid iron have a significant influence on the erosion mechanism. In this work, an improved three-dimensional computational fluid dynamics model is developed to simulate the flow and heat transfer phenomena in the hearth of BlueScope's Port Kembla No. 5 Blast Furnace. Model improvements feature more justified input parameters in turbulence modeling, buoyancy modeling, wall boundary conditions, material properties, and modeling of the solidification of iron. The model is validated by comparing the calculated temperatures with the thermocouple data available, where agreements are established within ±3 pct. The flow distribution in the hearth is discussed for intact and eroded hearth profiles, for sitting and floating coke bed states. It is shown that natural convection affects the flow in several ways: for example, the formation of (a) stagnant zones preventing hearth bottom from eroding or (b) the downward jetting of molten liquid promoting side wall erosion, or (c) at times, a vortex-like peripheral flow, promoting the "elephant foot" type erosion. A significant influence of coke bed permeability on the macroscopic flow pattern and the refractory temperature is observed.

  8. Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace

    Science.gov (United States)

    Mitra, Tamoghna; Saxén, Henrik

    2016-11-01

    The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.

  9. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers.

    Science.gov (United States)

    Luukkonen, Tero; Runtti, Hanna; Niskanen, Mikko; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla

    2016-01-15

    The mining industry is a major contributor of various toxic metals and metalloids to the aquatic environment. Efficient and economical water treatment methods are therefore of paramount importance. The application of natural or low-cost sorbents has attracted a great deal of interest due to the simplicity of its process and its potential effectiveness. Geopolymers represent an emerging group of sorbents. In this study, blast-furnace-slag and metakaolin geopolymers and their raw materials were tested for simultaneous removal of Ni(II), As(III) and Sb(III) from spiked mine effluent. Blast-furnace-slag geopolymer proved to be the most efficient of the studied materials: the experimental maximum sorption capacities for Ni, As and, Sb were 3.74 mg/g, 0.52 mg/g, and 0.34 mg/g, respectively. Although the capacities were relatively low due to the difficult water matrix, 90-100% removal of Ni, As, and Sb was achieved when the dose of sorbent was increased appropriately. Removal kinetics fitted well with the pseudo-second-order model. Our results indicate that geopolymer technology could offer a simple and effective way to turn blast-furnace slag to an effective sorbent with a specific utilization prospect in the mining industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Study on properties of mortar using silica fume and ground blast furnace slag. Silica fume oyobi koro slag funmatsu wo mochiita mortar no tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shiiba, H; Honda, S; Araki, A [Fukuoka University, Fukuoka (Japan). Faculty of Engineering

    1992-09-01

    The effect of silica fume and ground blast furnace slag in concrete on the content of superplasticizer, and dynamic properties of hardened mortar with such admixtures were studied experimentally. Although the dependence of a flow value on the superplasticizer was dominated by kinds of superplasticizers, blast furnace slag enhanced the flow value resulting in a high fluidity. Adsorption of superplasticizers onto admixtures was dependent on kinds of superplasticizers, and adsorption onto blast furnace slag was 1.3-2 times that onto normal Portland cement (NPC). The compressive strength of mortar increased by mixing admixtures, while the bending strength was enhanced only by mixing silica fume. Mixing mortar was lower in dynamic elastic modulus than NPC mortar at the same compressive strength, and the velocity of supersonic wave in mortar was scarcely affected by mixing. 11 refs., 14 figs., 3 tabs.

  11. Immunophenotype of leukemic blasts with small peroxidase-positive granules detected by electron microscopy.

    Science.gov (United States)

    Vainchenker, W; Villeval, J L; Tabilio, A; Matamis, H; Karianakis, G; Guichard, J; Henri, A; Vernant, J P; Rochant, H; Breton-Gorius, J

    1988-05-01

    Forty-three cases of undifferentiated leukemias by light microscopy examination were diagnosed as acute myeloblastic leukemias by ultrastructural revelation of peroxidase and were subsequently studied by immunological markers. In 41 of these cases, blasts were labeled by at least one of the antimyeloid MoAbs (My 7, My 9, and 80H5). An antimyeloperoxidase polyclonal antibody was used in 23 cases and was clearly positive in 11 of them, while cytochemistry by light microscopy was negative. These myeloblasts were frequently mixed with a minority of blasts from other lineages especially promegakaryoblasts. It is noteworthy that in 6 cases myeloid and lymphoid markers (E rosette receptor, common acute lymphoblastic leukemia antigen (cALLA), CD 9, CD 19 antigens (anti-B4 MoAb] were detected on a fraction of blast cells, suggesting a bilineage leukemia. However, in double labeling experiments, blasts with myeloperoxidase coexpressed lymphoid and myeloid markers including cALLA and CD 19 antigen. In one case, blasts had a typical non-B, non-T acute lymphoblastic leukemia phenotype (HLA-DR, CD 9, CD 19, cALLA positive) without staining by any of the antimyeloid MoAbs. However, 70% of the blasts were labeled by the antimyeloperoxidase antibody and expressed peroxidase-positive granules at ultrastructural level. In conclusion, most of the AML undiagnosed by optical cytochemistry are identified by antimyeloid antibodies. Some of these cases are also stained by some antilymphoid MoAbs. Use of antibodies against myeloperoxidase may improve the diagnosis of difficult cases of acute myeloblastic leukemia.

  12. Blast-furnace coke production in high capacity coke oven batteries from the viewpoint of domestic raw material resources

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W

    1977-05-01

    The problem is treated in a complex manner taking into account such technological improvements as: oiling, drying, charge preheating, dry quenching of coke as well as mechanical processing of coke which taken together will give blast furnace coke of the highest quality from domestic coals.

  13. The temperature of the boundary pig iron/refractory as variable to determine the corrosion mechanism of the blast furnace hearth

    International Nuclear Information System (INIS)

    Verdeja, L.F.; Alfonso, A.; Rusek, P.; Gonzalez, R.

    1998-01-01

    The wear of materials in the blast furnace could be carried out under the consideration of abrasion mechanisms or with the prevalence of the components chemistries and erosive resulting as of the circulation of flowing on the refractory. Nevertheless, although in determining situations the abrasion or the components chemistries could result the control mechanism, it is necessary to consider, that all the abrasion, erosion, chemical corrosion, adhesion and thermal waste-thermal shock they cooperate to the degradation of the refractory of blast furnace. For whatever the mechanisms that intervene in the wear of the materials, it results interesting to know the temperature boundary of the refractory with the solids, liquids or present gases in the furnace. In the report, it will be developed from specific form, the importance that has the temperature in the boundary refractory-pig iron on the wear of the materials of the hearth. The different hypothesis of transport (energy, quantity of movement and material) more adequate for the obtaining of the boundary temperatures will be discussed. (Author) 11 refs

  14. Blast furnace residues for arsenic removal from mining-contaminated groundwater.

    Science.gov (United States)

    Carrillo-Pedroza, Fco Raúl; Soria-Aguilar, Ma de Jesús; Martínez-Luevanos, Antonia; Narvaez-García, Víctor

    2014-01-01

    In this work, blast furnace (BF) residues were well characterized and then evaluated as an adsorbent material for arsenic removal from a mining-contaminated groundwater. The adsorption process was analysed using the theories of Freundlich and Langmuir. BF residues were found to be an effective sorbent for As (V) ions. The modelling of adsorption isotherms by empirical models shows that arsenate adsorption is fitted by the Langmuir model, suggesting a monolayer adsorption of arsenic onto adsorbents. Arsenate adsorption onto BF residue is explained by the charge density surface affinity and by the formation of Fe (II) and Fe (III) corrosion products onto BF residue particles. The results indicate that BF residues represent an attractive low-cost absorbent option for the removal of arsenic in wastewater treatment.

  15. CFD study of ejector flow behavior in a blast furnace gas galvanizing plant

    Science.gov (United States)

    Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio

    2015-02-01

    In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.

  16. Towards Early Age Characterisation of Eco-Concrete Containing Blast-Furnace Slag and Limestone Filler

    OpenAIRE

    Carette, Jerome

    2015-01-01

    It is estimated that concrete represents 5% of the anthropogenic CO2 emissions, mainly originating from the production of cement, the most essential component of concrete. The recent awareness to the environmental challenges facing our civilization has led the cement industry to consider substituting cement by mineral additions, by-products of existing industries. In this work, a combination of limestone filler and blast furnace slag is used to design an “eco-concrete”, defined as a concrete ...

  17. Study on the early warning mechanism for the security of blast furnace hearths

    Science.gov (United States)

    Zhao, Hong-bo; Huo, Shou-feng; Cheng, Shu-sen

    2013-04-01

    The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In this article, based on heat transfer calculations, heat flux and erosion monitoring, the features of heat flux and erosion were analyzed and compared among different types of hearths. The primary detecting elements, mathematical models, evaluating standards, and warning methods were discussed. A novel early warning mechanism with the three-level quantificational standards was proposed for BF hearth security.

  18. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process.

    Science.gov (United States)

    Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi

    2016-01-29

    To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene ( SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate

  19. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-01-01

    Full Text Available To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing

  20. The influence of blast furnace slag, fly ash and silica fume on corrosion of reinforced concrete in marine environment

    NARCIS (Netherlands)

    Polder, R.B.

    1996-01-01

    Chloride penetration from sea water may cause corrosion of reinforcement in concrete structures. Adding reactive inorganic materials such as blast furnace slag, fly ash or silica fume to the cement matrix improves the resistance against chloride penetration as compared to Portland cement concrete. A

  1. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  2. The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Hanzlíček, Tomáš

    112, Part 1, JAN 20 (2016), s. 1150-1155 ISSN 0959-6526 Institutional support: RVO:67985891 Keywords : blast-furnace slag * geopolymer * setting time * mixing method * solidification * recycling Subject RIV: DM - Solid Waste and Recycling Impact factor: 5.715, year: 2016

  3. Characterization of the permeability of the blast furnace lower part

    International Nuclear Information System (INIS)

    Negro, P.; Petit, C.; Urvoy, A.; Sert, D.; Pierret, H.

    2001-01-01

    In the context of high coal injection and high productivity operation, the coke behaviour inside the blast furnace hearth is the main parameter to control. Different and complementary investigations as radioactive and helium tracer injections, liquids and coke samplings, have been carried out at Sollac Fos BF1 using the tuyere probe to determine the hearth permeability and its evolutions as a function of the main control parameters, and to understand the hearth activity. The results of all these experiments give a very consistent picture of a heterogenous hearth with three concentric areas of various permeabilities to gas and liquids. A two concentric zones model has been built, which is in good agreement with the experimental results. It enables to evaluate the impact of the central zone on the liquids flow at the periphery. (author)

  4. Using a Mathematical Model of Counter-Current Flow in a Blast Furnace to Evaluate Reducibility of Iron-Ore-Bearing Raw Materials

    Czech Academy of Sciences Publication Activity Database

    Pustějovská, P.; Tůma, J.; Staněk, Vladimír; Křišťál, Jiří; Jursová, s.; Bilík, J.

    2015-01-01

    Roč. 86, č. 4 (2015), s. 320-328 ISSN 1611-3683 Institutional support: RVO:67985858 Keywords : blast furnace * ore burden reducibility * kinetic model Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.021, year: 2015

  5. Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar

    Directory of Open Access Journals (Sweden)

    Keum-Il Song

    2014-01-01

    Full Text Available Alkali-activated ground granulated blast-slag (AAS is the most obvious alternative material for ordinary Portland cement (OPC. However, to use it as a structural material requires the assessment and verification of its durability. The most important factor for a durability evaluation is the degree of carbonation resistance, and AAS is known to show lower performance than OPC. A series of experiments was conducted with a view to investigate the carbonation characteristics of AAS binder. As a consequence, it was found that the major hydration product of AAS was calcium silicate hydrate (CSH, with almost no portlandite, unlike the products of OPC. After carbonation, the CSH of AAS turned into amorphous silica gel which was most likely why the compressive strength of AAS became weaker after carbonation. An increase of the activator dosage leads AAS to react more quickly and produce more CSH, increasing the compaction, compressive strength, and carbonation resistance of the microstructure.

  6. Characterization of tuyere-level core-drill coke samples from blast furnace operation

    Energy Technology Data Exchange (ETDEWEB)

    S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2007-12-15

    A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

  7. PETROBRAS green petroleum coke used as partial replacement for coal injected mixtures in blast furnaces; Utilizacao do coque verde de petroleo da PETROBRAS em substituicao parcial ao carvao mineral das misturas injetadas em altos fornos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Agenor Medrado da; Medrado, Swami Botelho; Noblat, Sebastiao Jorge Xavier [Companhia Siderurgia Nacional. CSN. Gerencia Geral de Processos Siderurgicos. RJ (Brazil)], e-mails: ams@csn.com.br, swami@csn.com.br, s.noblat@csn.com.br; Carvalho Junior, Joao Andrade de [Universidade Estadual Paulista Julio de Mesquita Filho. Faculdade de Engenharia de Guaratingueta. Departamento de Energia, SP (Brazil)], e-mail: joao@feg.unesp.br

    2010-04-15

    The PETROBRAS produced green petroleum coke (GPC) is a carbon rich fuel, virtually ash-free, with low sulfur content and is a fuel suitable to replace metallurgical coke in blast furnaces. The GPC was tested in a pulverized coal injection simulator built in the Volta Redonda research center. It presented a low burning efficiency due to low volatile material content and high substitution rate by the carbon content. The industrial-scale tests were carried out in blast furnaces with up to 50% PETROBRAS GPC in the coal blends, which has never been done before in the steel industry. The injected coal/CVP mixtures produced no negative side effects in the blast furnace grinding systems, pneumatic conveying or operating process. The mixture burning process inside the blast furnace, showed a decrease in fuel consumption, with a significant reduction in metallurgical coke consumption. The industrial-scale tests of the GPC mixtures did not reach the 70% maximum for lack of the GPC feedstock, it being necessary to continue with standard coal mixtures. (author)

  8. Preparation of. beta. -spodumene glass-ceramics from blast furnace slag. Koro slag wo genryo to shita. beta. -spodumene kei kesshoka glass no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. (National Kaoshing Institute Technology, Kaoshiung (Rep. of China)); Hon, M. (National Cheng Kung University, Tainan (Rep. of China))

    1990-07-01

    Li {sub 2} O-CaO-Al {sub 2} O {sub 3} -SiO {sub 2} (LCAS) glass-ceramics were prepared from blast furnace slag by quenching in water after heating at 1,450 {degree} C for 3 hours. Blast furnace slag (40.0wt%) containing CaO, MgO, Al {sub 2} O {sub 3} and SiO {sub 2} as major components was used as a raw material, and batch compositions were modified by mixing blast furnace slag with Al {sub 2} O {sub 3}, SiO {sub 2} and Li {sub 2} CO {sub 3}, and a nucleating agent TiO {sub 2}. The A specimen with TiO {sub 2} of 7.4wt% and B specimen with 4.6wt% were prepared, and the crystallization process of the glass was examined with X-ray diffraction, electron diffraction and so forth. As a result, a major crystalline phase was {beta} -spodumene (Li {sub 2} O-Al {sub 2} O {sub 3} -4SiO {sub 2}), and the average thermal expansion coefficients of A and B were 40.1 and 47.2 {times} 10 {sup {minus} 7} / {degree} C in the temperature range from 25 to 700 {degree} C, respectively. A small amount of titanite was also observed in A as a sub-phase. 14 refs., 5 figs., 3 tabs.

  9. Interactions of Various types between Rock and Alkali-Activated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Mec Pavel

    2017-03-01

    Full Text Available Alkali-activated binders (AAB are very intensively studied materials nowadays. Because of possible usage as secondary raw materials, they can be environmentally efficient. Intensive research is focused especially on binder matrix, composition and its structure. For industrial usage, it is necessary to work with some aggregate for the preparation of mortars and concretes. Due to different structures of alkali-activated binders, the interaction with the aggregate will be different in comparison to an ordinary Portland cement binder. This paper deals with the study of interactions between several types of rocks used as aggregate and alkali-activated blast furnace slag. The research was focused especially on mechanical properties of prepared mortars.

  10. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    Science.gov (United States)

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  12. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  13. Sintering mechanism of blast furnace slag-kaolin ceramics

    International Nuclear Information System (INIS)

    Mostafa, Nasser Y.; Shaltout, Abdallah A.; Abdel-Aal, Mohamed S.; El-maghraby, A.

    2010-01-01

    A general ceramics processing scheme by cold uniaxial pressing and conventional sintering process have been used to prepare ceramics from mixtures of blast furnace slag (BFS) and kaolin (10%, 30% and 50% kaolin). The properties of the ceramics were studied by measuring linear shrinkage, bulk density, apparent porosity and mechanical properties of samples heated at temperatures from 800 o C to 1100 o C. The formed crystalline phases were characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). Slag melt formed at relatively low temperatures (800-900 o C) modified the sintering process to liquid phase sintering mechanism. Combination of BFS with 10% kaolin gave the highest mechanical properties, densification and shrinkage at relatively low firing temperatures. The crystalline phases were identified as gehlenite (Ca 2 Al 2 SiO 7 ) in both BFS and BFS with 10% kaolin samples. Anorthite (CaAl 2 Si 2 O 8 ) phase increased with increasing kaolin contents. In the case of kaolin-rich mixtures (30% and 50% kaolin), increased expansion took place during firing at temperatures in the range 800-1000 o C. This effect could be attributed to the entrapment of released gases.

  14. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep0078monu@gmail.com [Department of Physics, Punjabi University, Patiala (India); Singh, Sukhpal, E-mail: sukhpal-78@rediffmail.com [Department of Basic and Applied Sciences, Punjabi University, Patiala (India)

    2016-05-06

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present in Bi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely {sup 241}Am and {sup 137}Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  15. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    Science.gov (United States)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present inBi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely 241Am and 137Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  16. Preparation of Grinding Aid Using Waste Acid Residue from Plasticizer Plant

    Science.gov (United States)

    Li, Lingxiao; Feng, Yanchao; Liu, Manchao; Zhao, Fengqing

    2017-09-01

    The grinding aid for granulated blast-furnace slag were prepared from waste acid residue from plasticizer plant through neutralization, de-methanol and granulation process. In this process, sulfuric acid was transformed into gypsum which has much contribution for grinding effect by combined use with the glycerol and poly glycerin in the waste. Fly ash was used for granulation for the composite grinding aid. Methanol can be recycled in the process. The result showed that the suitable addition of grinding aid is 0.03 % of granulated blast-furnace slag (mass). In this case, the specific surface area is 14% higher than that of the blank. Compared with the common grinding aids, it has excellent performance and low cost.

  17. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    International Nuclear Information System (INIS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-01-01

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present in Bi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely "2"4"1Am and "1"3"7Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  18. Soot formation in a blast furnace - Prediction via a parametric study, using detailed kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, T.; Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Group

    1996-12-31

    The objective of this work has been to investigate the soot formation in a blast furnace fired with heavy fuel oil, using detailed kinetic modelling. This work has been concentrated on parameter studies that could explain under which conditions soot is formed and how that formation could be avoided. The parameters investigated were temperature, pressure, stoichiometric ratio, pyrolysis gas composition and reactor model. The calculations were based on a reaction mechanism that consists of 100 species and 446 reactions including polyaromatic hydrocarbons (PAM) up to 7 aromatic rings SULA 2 Research Programme; 4 refs.

  19. Soot formation in a blast furnace - Prediction via a parametric study, using detailed kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, T; Kilpinen, P; Hupa, M [Aabo Akademi, Turku (Finland). Combustion Chemistry Group

    1997-12-31

    The objective of this work has been to investigate the soot formation in a blast furnace fired with heavy fuel oil, using detailed kinetic modelling. This work has been concentrated on parameter studies that could explain under which conditions soot is formed and how that formation could be avoided. The parameters investigated were temperature, pressure, stoichiometric ratio, pyrolysis gas composition and reactor model. The calculations were based on a reaction mechanism that consists of 100 species and 446 reactions including polyaromatic hydrocarbons (PAM) up to 7 aromatic rings SULA 2 Research Programme; 4 refs.

  20. Numerical Investigation of Novel Oxygen Blast Furnace Ironmaking Processes

    Science.gov (United States)

    Li, Zhaoyang; Kuang, Shibo; Yu, Aibing; Gao, Jianjun; Qi, Yuanhong; Yan, Dingliu; Li, Yuntao; Mao, Xiaoming

    2018-04-01

    Oxygen blast furnace (OBF) ironmaking process has the potential to realize "zero carbon footprint" production, but suffers from the "thermal shortage" problem. This paper presents three novel OBF processes, featured by belly injection of reformed coke oven gas, burden hot-charge operation, and their combination, respectively. These processes were studied by a multifluid process model. The applicability of the model was confirmed by comparing the numerical results against the measured key performance indicators of an experimental OBF operated with or without injection of reformed coke oven gas. Then, these different OBF processes together with a pure OBF were numerically examined in aspects of in-furnace states and global performance, assuming that the burden quality can be maintained during the hot-charge operation. The numerical results show that under the present conditions, belly injection and hot charge, as auxiliary measures, are useful for reducing the fuel rate and increasing the productivity for OBFs but in different manners. Hot charge should be more suitable for OBFs of different sizes because it improves the thermochemical states throughout the dry zone rather than within a narrow region in the case of belly injection. The simultaneous application of belly injection and hot charge leads to the best process performance, at the same time, lowering down hot-charge temperature to achieve the same carbon consumption and hot metal temperature as that achieved when applying the hot charge alone. This feature will be practically beneficial in the application of hot-charge operation. In addition, a systematic study of hot-charge temperature reveals that optimal hot-charge temperatures can be identified according to the utilization efficiency of the sensible heat of hot burden.

  1. Effect of mineral admixtures on kinetic property and compressive strength of self Compacting Concrete

    Science.gov (United States)

    Jagalur Mahalingasharma, Srishaila; Prakash, Parasivamurthy; Vishwanath, K. N.; Jawali, Veena

    2017-06-01

    This paper presents experimental investigations made on the influence of chemical, physical, morphological and mineralogical properties of mineral admixtures such as fly ash, ground granulate blast furnace slag, metakaoline and micro silica used as a replacement of cement in self compacting concrete on workability and compressive strength. Nineteen concrete mixes were cast by replacing with cement by fly ash or ground granulated blast furnace slag as binary blend at 30%, 40%, 50% and with addition of micro silica and metakaoline at 10% as a ternary blend with fly ash, ground granulated blast furnace slag and obtained results were compare with control mix. Water powder ratio 0.3 and super plasticizer dosage 1% of cementitious material was kept constant for all the mixes. The self compacting concrete tested for slump flow, V-funnel, L-Box, J-Ring, T50, and compressive strength on concrete cube were determined at age of 3, 7, 28, 56, 90 days.

  2. Chloride transport testing of blast furnace slag cement for durable concrete structures in Norway : From 2 days to one year age

    NARCIS (Netherlands)

    Polder, R.B.; de Rooij, M.R.; Larsen, CK; Pedersen, B; Beushausen, H.

    2016-01-01

    Blast furnace slag cement (BFSC) has been used in reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. Experience is good and long service lives can be obtained. In Norway experience with BFSC is scarce. In The Netherlands, a high resistance against

  3. Chloride transport testing of blast furnace slag cement for durable concrete structires in Norway: From 2 days to one year age

    NARCIS (Netherlands)

    Polder, R.B.; Rooij, M.R. de; Larsen, C.K.; Pedersen, B.

    2016-01-01

    Blast furnace slag cement (BFSC) has been used in reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. Experience is good and long service lives can be obtained. In Norway experience with BFSC is scarce. In The Netherlands, a high resistance against

  4. Laboratory experiments on materials for radioactive labelling of blast furnace hearth

    International Nuclear Information System (INIS)

    Staicu, L.; Lucaciu, A.; Bascoveanu, I.; Plapceanu, C.

    1994-01-01

    Currently, the monitoring of refractory lining wear of hearth blast furnace uses for labelling of locations inside brick-work only two radionuclides 110m Ag and 60 Co. Consequently a great zone of hearth being unlabelled escapes to monitoring, leading to possible dangerous perforations. For augmentation of labelled hearth surface we have initiated research on 133 Ba, 134 Ce, 152+154 Eu, 204 Cl, and 65 Zn. It is known that it is not recommendable to use for labelling these elements in pure state because these are very reactive i.e. they are unstable, except for thallium. Moreover, at hearth and crucible temperatures they are volatile. Therefore, a major aspect that we took into consideration is the radioisotope chemical form which is used for radioactive labelling. In Ba or Eu case, oxides can be used being more stable but in Cs and Tl case, oxides are not useful; it is more suitable to employ simple or double silicates. Samples containing a mixture of pig iron, slag and silicates of the hearth furnace labelling elements have been prepared. After separation the samples were crushed and analysed by activation analysis. The obtained gamma spectra have shown the presence of Ba, Cs, and Eu separately in the slag sample into which they have been melt. (author) 2 tabs., 8 refs

  5. Visualisation of a mathematical model of blast furnace operation for distance learning purposes

    Directory of Open Access Journals (Sweden)

    Babich, A.

    2005-12-01

    Full Text Available Advanced educational technologies like Virtual Laboratories are being developed and launched in order to equip customers from higher education institutions, research and industry with efficient tools, supporting their work and operating new skills-training methods. Visual Model "Blast Furnace" based on a mathematical balance model of the blast furnace process has been developed for distance learning (DL purposes. It processes entered parameters and outputs both operating and learning results. The model simulates also sinter and pellets manufacture as well as operation of hot stove. The teacher and learners can interact with each other using software interface which allows to monitor the activity of the learners, answer their questions, and analyse the learning results. The model is an ingredient of the "Virtual Lab Ironmaking".

    Se desarrollan y presentan tecnologías avanzadas de educación, como los Laboratorios Virtuales, para suministrar a los clientes de las instituciones de educación superior, investigación e industria, en apoyo de su trabajo, nuevos y eficientes métodos de operación y técnicas especiales de adiestramiento. Se ha desarrollado el Modelo Visual de "Horno Alto" basado en un modelo matemático del balance del proceso del horno alto, para fines de educación a distancia. Procesa los parámetros de entrada y salida en operación y los resultados de la enseñanza. El modelo también simula la fabricación de sinter y pelets, además de la operación de las estufas. El profesor y alumnos pueden interactuar entre sí usando un software que permite seguir la marcha de la actividad de los alumnos, responder a sus preguntas y analizar los resultados del aprendizaje. El modelo es parte del "Laboratorio Virtual de Fabricación de Arrabio".

  6. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) to Blast Furnaces

    International Nuclear Information System (INIS)

    Zhou, Chenn

    2008-01-01

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process

  7. Influence of thermal charge preparation on coke comminution under blast-furnace operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-01-01

    An investigation is described for the study of structural breakdown of coke by thermochemical action of alkali and alkaline-earth metal vapors under blast furnace operating conditions. Bench-scale test facilities are described in which a pair of coke samples are exposed to the metal vapors then subjected to gasification. Structural strength tests were performed before and after each experiment. Coke samples were obtained in either moist or thermally prepared condition. The value of thermal charge preparation (heat treatment of the coal at 150/sup 0/C in a fluidized bed) was established, since it shifts the pore size distribution to the smaller size, thereby retarding adsorption of the metal vapors. 16 references, 4 figures, 2 tables.

  8. Study of the reduction mechanism of ironsands with addition of blast furnace bag dust

    Science.gov (United States)

    Xing, Xiangdong; Chen, Yunfei; Liu, Yiran

    2018-02-01

    To improve the reduction properties of ironsands carbon-containing briquettes, the behavior of ironsand during reduction by the addition of blast furnace bag dust (BFBD) is studied using a high temperature resistance furnace, X-ray diffraction (XRD) analysis and scanning electron microscopy. Additionally, the reduction mechanism is discussed in this study. The results showed that the reduction level and compressive strength of ironsand carbon-containing briquettes could be promoted by increasing the proportion of BFBD. When the addition rate of BFBD was 31.25%, the metallization rate and compressive strength increased from 82.1% and 21.5 N/a to 91.4% and 172.5 N/a, respectively. Metallic iron reduced from BFBD particles favored the carbon gasification reaction, which enhanced the internal CO concentration, and then promoted the FeTiO3 reduction to Fe in ironsand. Meanwhile, a large amount of the liquid phase generated during the reduction process also favored Fe2+ diffusion, spread of iron joined crystals and the growth of crystals, which resulted in the improvement of the compressive strength of the ironsand carbon-containing briquettes.

  9. Applicability of Carbonated Electric Arc Furnace Slag to Mortar

    International Nuclear Information System (INIS)

    Yokoyama, S; Izaki, M; Arisawa, R; Hisyamudin, M N N; Murakami, K; Maegawa, A

    2012-01-01

    Authors have been studying the absorption of CO 2 in the steelmaking slag. In this study, an application of the electric arc furnace slag after the carbonation to admixture of mortar was investigated with the JIS (A6206-1997) method for ground granulated blast-furnace slag for concrete. The percent flows for the test mortar were smaller than that for the standard mortar. The percent flow of the carbonated slag whose average particle size of more than approximately 4 μm increased with an increase in the average size of the particles. Because the compressive strengths of the test mortar cured for 91 days were almost the same as those cured 28 days, the slag after the carbonation was thought not to have self-hardening property for a medium and long term. The compressive strength for the test mortar was almost unchanged within a range of approximately 2 to 7 μm of the average particle size, and it in this range was highest. The activity indexes for the test mortar prepared with the slag after the carbonation ranged from approximately 40 to 60%.

  10. Characteristics and properties of oil-well cements auditioned with blast furnace slag

    International Nuclear Information System (INIS)

    Sanchez, R.; Palacios, M.; Puertas, F.

    2011-01-01

    The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% by cement weight) with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activator partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. 2 9Si and 2 7Al MAS NMR and BSE/EDX studies, in turn, showed that the CSH gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios. (Author) 29 refs.

  11. Feasibility and economic analysis of solid desiccant wheel used for dehumidification and preheating in blast furnace: A case study of steel plant, Nanjing, China

    International Nuclear Information System (INIS)

    Guan, Yipeng; Zhang, Yufeng; Sheng, Ying; Kong, Xiangrui; Du, Song

    2015-01-01

    To overcome the shortcomings of huge energy consumption from conventional dehumidification using lithium bromide adsorption refrigerating (LBARD) system, a novel desiccant wheel dehumidification and preheating (DWDP) system using two-stage desiccant wheel for blast furnace is brought forward. The DWDP system was designed for dehumidification and preheating in blast furnace of steel plant. It takes waste heat in the slag flushing water as desiccant regeneration and preheating energy. To validate the feasibility of the new DWDP system, experimental studies were conducted based on a steel plant in Nanjing, China. The experiment was designed to use DWDP system in humid outdoor climates e.g. summer seasons. The experimental results indicate that the moisture removal capacity of DWDP system can reach 8.7 g/kg which will lead to the improvement of steel production by 0.9% and the coal is saved of about 2100 tons per year. With the DWDP system, the energy consumed by cooling tower of slag flushing water can decrease 7.3%. All of these energy saved equates to 10.3 million CNY annually. A comparison of initial investment and operating cost between DWDP system and LBRAD system was then carried out. The results show that the initial investment and operating cost of DWDP system is 37% and 57% of present LBARD system, and the payback period is shortened 66%. - Highlights: • A novel two-stage desiccant wheel dehumidification system for blast furnace is proposed. • Average moisture removal of 8.7 g/kg is achieved and dehumidification efficiency is 47%. • Outlet humidity ratio is less than 10 g/kg that satisfies the requirement of blast air. • Waste heat in slag flushing water is utilized and 61.4 million kJ is saved annually. • The investment and operating cost is 37% and 57% of former dehumidification system

  12. 40 CFR 421.75 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... produced Lead .000 .000 Zinc .000 .000 (c) Subpart G—Blast Furnace Slag Granulation. PSES Pollutant or... blast furance lead bullion produced Lead .000 .000 Zinc .000 .000 (d) Subpart G—Dross Reverberatory Slag... (pounds per billion pounds) of slag, speiss, or matte granulated Lead 1,612.000 748.400 Zinc 5,872.000 2...

  13. Iron making technology with fuels and other materials injection in blast furnace tuyeres. Part 1. Auxiliary fuels characteristics and its influence in the blast furnace process; Tecnologia de fabricacion de arrabio con la inyeccion de combustibles y otros materiales por toberas en el horno alto. I parte. Caracteristicas de los combustibles auxiliares y su influencia en el proceso del horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L. [Union de Empresas de Recuperacion de Materias Primas. Ciudad de La Habana (Cuba); Cores, A.; Formoso, A. [Centro Nacional de Investigaciones Metalurgicas. Madrid (Spain); Babich, A.; Yaroshevskii, S. [Universidad Estatal Tecnologica de Donetsk. Ucrania (Ukraine)

    1998-06-01

    The injection of fuels by tuyeres in the blast furnace is a used practice in most furnaces with the principal aim to reduce the coke consumption by ton of pig iron produced. The nature of these fuels is very diverse and depends on the resources of each country and of the fuel price. At this moment the coal injection (pulverized and granular) is the most extended practice, and the number of furnaces with facilities for coal injection increases continuously. (Author) 14 refs.

  14. Study on the durability of concrete using granulated blast furnace slag as fine aggregate

    Science.gov (United States)

    Shi, Dongsheng; Liu, Qiang; Xue, Xinxin; He, Peiyuan

    2018-03-01

    In order to assessing the durability of concrete using granulated blastfurnace slag (GBS) as fine aggregate and compare it with natural river sand concrete, three different size of specimen were produced by using the same mix proportion with 3 different water cement ratios and 3 replacement ratios, and using it to measure the three aspects on the durability of concrete including freeze-thaw performance, dry-shrinkage performance and anti-chloride-permeability performance. In this paper. The test results show that using GBS as fine aggregate can slightly improve anti-chloride-permeability performance and dry-shrinkage performance of concrete in the condition of low water cement ratio, on the other hand, using GBS or natural river sand as fine aggregate has almost similar durability of concrete.

  15. Preparation of perovskite type titanium-bearing blast furnace slag photocatalyst doped with sulphate and investigation on reduction Cr(VI) using UV-vis light

    International Nuclear Information System (INIS)

    Lei, X.F.; Xue, X.X.

    2008-01-01

    Perovskite type titanium-bearing blast furnace slag (TBBFS) and sulphate-modified titanium-bearing blast furnace slag (SO 4 2- /TBBFS) photocatalysts were prepared by the high-energy ball milling method at different calcination temperature. The photocatalysts were characterized by XRD, FTIR, UV-vis diffuse reflectance spectra and SEM measurements. The photocatalytic activities of the different catalysts were evaluated by the photocatalytic reduction of Cr(VI) under UV-vis light irradiation. For the photocatalytic reduction of Cr(VI), the photocatalytic activities of TBBFS catalysts were found to be strongly dependent of the calcination temperature and TBBFS calcined at 700 deg. C showed a higher photocatalytic activity compared to other TBBFS catalysts. In contrast, sulphation of TBBFS improved the photocatalytic activities of SO 4 2- /TBBFS catalysts. At low calcination temperature, the photocatalytic activities of SO 4 2- /TBBFS catalysts were markedly higher than TBBFS prepared under high calcination temperature, suggesting that the presence of surface SO 4 2- favored the photocatalytic reduction of Cr(VI)

  16. Incorporating Cs and Sr into blast furnace slag inorganic polymers and their effect on matrix properties

    Science.gov (United States)

    Vandevenne, Niels; Iacobescu, Remus Ion; Pontikes, Yiannis; Carleer, Robert; Thijssen, Elsy; Gijbels, Katrijn; Schreurs, Sonja; Schroeyers, Wouter

    2018-05-01

    Minimizing harmful effects to the environment in waste-management practices requires continuous innovation. This is especially important in the field of radioactive waste management. Alternatives to the commonly used ordinary Portland cement matrices are being increasingly studied for improved immobilisation purposes. The development of inorganic polymers (IP) from industrial residues has been successfully studied for the immobilisation of caesium (Cs+) and strontium (Sr2+). However, knowledge of the effect of these introduced elements on the IP-matrix is scarce, especially considering that studied effects are dependent on the IP-precursor characteristics and the form in which the Cs+ and Sr2+ are introduced. In this study, IPs containing varying amounts of CsNO3 and Sr(NO3)2 were developed to study the effect of the introduced elements on the IP-characteristics. IP-samples were developed from ground granulated blast furnace slag (GGBFS) and 6 M NaOH activating solution. Cs+ and Sr2+ were added to account for 0.5, 1 and 2 wt% of the total IP-mass. Throughout the entire study, Cs+-addition showed no significant effects on the studied parameters. Calorimetric results showed that Sr2+ severely affects reaction kinetics, consuming hydroxide ions necessary for the alkali activation reaction. Sr2+-addition also caused a severe decrease in compressive strength, increased calcium leaching, and decreased sodium and hydroxide leaching. Micro-chemical analyses showed that Cs+ is almost fully incorporated in the formed IP-matrix, while Sr2+ mainly precipitates as Sr(OH)2 in concentrated regions throughout the IP-structure. The findings presented in this paper give insights on the effect of contaminant elements on the immobilising matrix.

  17. Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B. [BlueScope Steel Research Laboratories, Port Kembla, NSW (Australia)

    2009-03-15

    A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

  18. Performance testing of blast furnace slag for immobilization of technetium in grout

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Spence, R.D.; Evans-Brown, B.S.; Morgan, I.L.; Shoemaker, J.L.; Bostick, W.D.

    1988-01-01

    This paper presents preliminary results of a grout development effort to identify grout formulas that can satisfactorily sequester 99 Tc contained in an existing Portsmouth Gaseous Diffusion Plant waste. Technetium is of particular concern to the US Nuclear Regulatory Commission (NRC) because of its mobility and biological activity. The mobility of technetium results in large part from the movement of the pertechnate anion [prevalent in low-level radioactive waste (LLW)] through soil and geologic strata with little or no interaction with the surrounding matrix. Ground blast furnace slag has been shown to improve the leach resistance of cement-based waste forms, particularly in regard to technetium. This improved performance has been attributed to fewer and smaller pores in the solidified slags (versus a neat cement paste) and to the reduction of the pertechnate ion to a less soluble form. 9 refs., 2 tabs

  19. Use of plastics in blast furnace processes: A contribution to ecologically and economically acceptable recycling of plastic waste; Kunststoffverwertung im Hochofen - ein Beitrag zum oekologischen und oekonomischen Recycling von Altkunststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Janz, J [Stahlwerke Bremen GmbH (Germany)

    1997-12-31

    The use of plastics in blast furnace processes has a number of advantages. For one thing, existing facilities can be used with only slight reconstruction measures. Next, the blast furnace process does not necessarily require plastics and therefore is independent of the available plastics volume. Further, it has a high utilisation potential. For example, the Bremen blast furnace No. II has only 8 nozzles out of 32 which are suited for plastics, but it can utilize 70,000 t/a, which is more than 13 percent of the total plastics volume collected by DSD. Indepenent eco-balances have shown that there is no better technology on the market at the moment. (orig) [Deutsch] Mit der Kunststoffverwertung im Hochofen steht ein Verfahren zur Verfuegung, das sich gleich in mehrfacher Hinsicht vor der Konkurrenz auszeichnet. Im Gegensatz zu anderen Verwertungen wird eine bereits vorhandene Anlage genutzt, an der lediglich zusatzeinrichtungen benoetigt werden. Gleichzeitig wird abfallpolitische Flexibilitaet dadurch erreicht, dass der Hochofen nicht auf das Reduktionsmittel Kunststoff angewiesen ist. Von wesentlicher Bedeutung ist auch die hohe Verwertungskapazitaet eines Hochofens. Unabhaengige Oekobilanzen und eigene Messungen haben zweifelsfrei gezeigt, dass ein besseres Verfahren zur Zeit nicht auf dem Markt ist. (orig)

  20. Use of plastics in blast furnace processes: A contribution to ecologically and economically acceptable recycling of plastic waste; Kunststoffverwertung im Hochofen - ein Beitrag zum oekologischen und oekonomischen Recycling von Altkunststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Janz, J. [Stahlwerke Bremen GmbH (Germany)

    1996-12-31

    The use of plastics in blast furnace processes has a number of advantages. For one thing, existing facilities can be used with only slight reconstruction measures. Next, the blast furnace process does not necessarily require plastics and therefore is independent of the available plastics volume. Further, it has a high utilisation potential. For example, the Bremen blast furnace No. II has only 8 nozzles out of 32 which are suited for plastics, but it can utilize 70,000 t/a, which is more than 13 percent of the total plastics volume collected by DSD. Indepenent eco-balances have shown that there is no better technology on the market at the moment. (orig) [Deutsch] Mit der Kunststoffverwertung im Hochofen steht ein Verfahren zur Verfuegung, das sich gleich in mehrfacher Hinsicht vor der Konkurrenz auszeichnet. Im Gegensatz zu anderen Verwertungen wird eine bereits vorhandene Anlage genutzt, an der lediglich zusatzeinrichtungen benoetigt werden. Gleichzeitig wird abfallpolitische Flexibilitaet dadurch erreicht, dass der Hochofen nicht auf das Reduktionsmittel Kunststoff angewiesen ist. Von wesentlicher Bedeutung ist auch die hohe Verwertungskapazitaet eines Hochofens. Unabhaengige Oekobilanzen und eigene Messungen haben zweifelsfrei gezeigt, dass ein besseres Verfahren zur Zeit nicht auf dem Markt ist. (orig)

  1. CFD modelling and analysis of pulverized coal injection in blast furnace: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yansong; Yu, Aibing [Laboratory for Simulation and Modelling of Particulate Systems, School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Zulli, Paul [BlueScope Steel Research (BSR), P.O. Box 202, Port Kembla, NSW 2505 (Australia)

    2011-05-15

    In order to understand the complicated phenomena of pulverized coal injection (PCI) process in blast furnace (BF), several mathematical models have been developed by the UNSW and BSR cooperation. These models are featuring from coal combustion in a pilot-scale test rig, to coal combustion in a real BF, and then to coal/coke combustion in a real BF, respectively. This paper reviews these PCI models in aspects of model developments and model applicability. The model development is firstly discussed in terms of model formulation, their new features and geometry/regions considered. The model applicability is then discussed in terms of main findings followed by the model evaluation on their advantages and limitations. It is indicated that the three PCI models are all able to describe PCI operation qualitatively. The model of coal/coke combustion in a real BF is more reliable for simulating in-furnace phenomena of PCI operation qualitatively and quantitatively. Such model gives a more reliable burnout prediction over the raceway surface, which could better represent the amount of unburnt char entering the coke bed. These models are useful for understanding the flow-thermo-chemical behaviours and then optimising the PCI operation in practice. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    OpenAIRE

    Jovanović Filip P.; Berić Ivana M.; Jovanović Petar M.; Jovanović Aca D.

    2016-01-01

    This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reductio...

  3. A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel

    Directory of Open Access Journals (Sweden)

    Jose Adilson de Castro

    2017-07-01

    Full Text Available We present a numerical simulation procedure for analyzing hydrogen, oxygen and carbon dioxide gases injections mixed with pulverized coals within the tuyeres of blast furnaces. Effective use of H2 rich gas is highly attractive into the steelmaking blast furnace, considering the possibility of increasing the productivity and decreasing the specific emissions of carbon dioxide becoming the process less intensive in carbon utilization. However, the mixed gas and coal injection is a complex technology since significant changes on the inner temperature and gas flow patterns are expected, beyond to their effects on the chemical reactions and heat exchanges. Focusing on the evaluation of inner furnace status under such complex operation a comprehensive mathematical model has been developed using the multi interaction multiple phase theory. The BF, considered as a multiphase reactor, treats the lump solids (sinter, small coke, pellets, granular coke and iron ores, gas, liquids metal and slag and pulverized coal phases. The governing conservation equations are formulated for momentum, mass, chemical species and energy and simultaneously discretized using the numerical method of finite volumes. We verified the model with a reference operational condition using pulverized coal of 215 kg per ton of hot metal (kg thm−1. Thus, combined injections of varying concentrations of gaseous fuels with H2, O2 and CO2 are simulated with 220 kg thm−1 and 250 kg thm−1 coals injection. Theoretical analysis showed that stable operations conditions could be achieved with productivity increase of 60%. Finally, we demonstrated that the net carbon utilization per ton of hot metal decreased 12%.

  4. Fiscal 1999 technical survey report. Model project implementation feasibility study in India on effective utilization of blast furnace gas pressure energy; 1999 nendo Indo ni okeru koro gas atsuryoku energy yuko riyo model jigyo jisshi kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    From the viewpoint of energy utilization stated above, blast furnace top pressure recovery turbine (TRT) unit installability was studied at Bhilai Steel Works of Steel Authority of India, Ltd., Bokaro Steel Works of Steel Authority of India, Ltd., and Visakhapatnum Steel Works of Rashtriya Ispat Nigem. The energy consumption rate at an Indian steelmaking plant is 8Gcal/t-steel, which is larger than 5-6Gcal/t-steel of Japan and therefore needs improvement. Out of the blast furnaces in India, 26 are larger than 1,000m{sup 3}, and two of them are provided with a TRT device of now-defunct Soviet Union manufacture. The blast furnaces were examined for pressure at the top, amount of gas at the top, amount of dust, and safeness in operation. The No. 2 blast furnace of the Borkaro plant was selected for the project, and studies were made for a wet type TRT device. Improvements to be achieved by TRT device installation were calculated to be a TRT output of 5,900kW, power output of 49,100MWh/year, saved crude oil amount of 12,990toe/year, and CO2 reduction of 40,200 tons-CO2/year. (NEDO)

  5. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: maja.larsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: stijn.baken@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: francesco.cubadda@iss.it [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: jon-petter.gustafsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  6. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  7. The Balance of Titanium and Vanadium in the Blast Furnace with the Use of Sinter Containing a Titanium-Vanadium-Magnetite Concentrate

    Directory of Open Access Journals (Sweden)

    Budzik, R.

    2007-01-01

    Full Text Available The investigation concerned the use of sinter containing a titanium-vanadium-magnetite concentrate for the production of pig iron. Sinter containing 0,46 to 0,51 % TiO2 and 0,056 to 0,060 % vanadium was used for pig iron production in the blast furnace. Introducing 200 kg of this concentrate to the1 Mg sinter mix did not cause any deterioration of sinter quality.

  8. The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2011-09-01

    Full Text Available In this work, strength assessments and percentage of water absorption of high performance self compacting concrete containing different amounts of ground granulated blast furnace slag and CuO nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early age of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt. (% at later ages. CuO nanoparticles with the average particle size of 15 nm were partially added to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. CuO nanoparticle as a partial replacement of cement up to 3.0 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased the CuO nanoparticles' content more than 3.0 wt. (%, causes the reduced the split tensile strength because of the decreased crystalline Ca(OH2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. More rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that CuO nanoparticles could improve mechanical and physical properties of the concrete specimens.

  9. Cascade reactor: granule fabrication processes

    International Nuclear Information System (INIS)

    Erlandson, O.D.; Winkler, E.O.; Maya, I.; Pitts, J.H.

    1985-01-01

    A key feature of Cascade is the granular blanket. Of the many blanket material options open to Cascade, fabrication of Li 2 O granules was felt to offer the greatest challenge. The authors explored available methods for initial Li 2 O granule fabrication. They identified three cost-effective processes for fabricating Li 2 O granules: the VSM drop-melt furnace process, which is based on melting and spheroidizing irregularly shaped Li 2 O feed granules; the LiOH process, which spheroidizes liquefied LiOH and uses GA Technologies' sphere-forming procedures; and the Li 2 CO 3 sol-gel process, used for making spherical fuel particles for the high-temperature gas-cooled reactor (HTGR). Each process is described below

  10. Research on the Technology of Producing Building Stone by Using Blast Furnace Slag

    Science.gov (United States)

    Yan, Bingji; Zhang, Jianliang; Guo, Hongwei; Shi, Zhiwen; Liu, Feng

    During production of a large quantity of steel, slag is produced at the same time. This paper chooses blast furnace slag (BFS) as the main material for the research. The purpose of the research is to explore its optimal physicochemical properties and the use of BFS in building stone field. The paper elaborates the experimentation process of producing glass-ceramics and presents the results. The results show that SiO2 content in BFS and amount of Cr2O3 and Fe2O3 added as nucleating agents have certain effect on the properties of glass-ceramics. The results also show that the exothermic peak temperature of base glass is the lowest when adding 20% SiO2 to the BFS, and 2% Cr2O3 and 3% Fe2O3 as nucleating agents, which makes easy crystallization and optimal properties of the glass-ceramics.

  11. Solid-fluid characteristics at the blast furnace hearth according to the nodal wear model (NWM)

    International Nuclear Information System (INIS)

    Martin, R.; Barbes, M. A.; Barbes, M. F.; Marinas, E.; Ayala, N.; Mochon, J.; Verdeja, L. F.; Garcia, F.

    2009-01-01

    The coke porosity is one of the most important variables that can affect the pig iron production and the lining corrosion. Up to now, the existing bibliography about lining corrosion always connects a deeper wear to an increase in the fluid flow (pig iron) at the blast furnace hearth. However, there is no evidence of any deterministic model that could link, from the theoretical point of view, the following variables: lining corrosion, porosity of dead coke and flow of pig iron at the hearth. Besides justifying the lining corrosion profiles, the Nodal Wear Model (NWM) can be an effective instrument to interpret the coke porosity and the pig iron speed rates that are generated inside the hearth. (Author) 23 refs

  12. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    International Nuclear Information System (INIS)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na + form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic. - Highlights: • Solidification of cationic resins in the Na + -form is investigated. • Portland and blast furnace slag cements are compared. • Deleterious expansion is observed with Portland cement only. • Resin swelling is due to a decrease in the osmotic pressure of the pore solution. • The consolidation rate of the matrix is a key parameter to prevent damage.

  13. EFFECT OF CaO/SiO₂ AND HEAT TREATMENT ON THE MICROSTRUCTURE OF GLASS-CERAMICS FROM BLAST FURNACE SLAG

    OpenAIRE

    Chunshai Xie; Yongliang Gui; Song Chunyan; Hu Binsheng

    2016-01-01

    Glass-ceramics, with molten blast furnace (BF) slag as the major raw material, were prepared successfully by the melting method. The effect of the CaO/SiO₂ ratio in the molten BF slag and heat treatment on the viscosity and microstructure of glass-ceramics produced from BF slag were traced using the melt property tester, DSC, XRD and SEM. The results showed that increasing the CaO/SiO₂ ratio of BF slag caused a decrease not only in the viscosity of the BF slag at high temperature but also in ...

  14. Coal Combustion Behavior in New Ironmaking Process of Top Gas Recycling Oxygen Blast Furnace

    Science.gov (United States)

    Zhou, Zhenfeng; Xue, Qingguo; Tang, Huiqing; Wang, Guang; Wang, Jingsong

    2017-10-01

    The top gas recycling oxygen blast furnace (TGR-OBF) is a new ironmaking process which can significantly reduce the coke ratio and emissions of carbon dioxide. To better understand the coal combustion characteristics in the TGR-OBF, a three dimensional model was developed to simulate the lance-blowpipe-tuyere-raceway of a TGR-OBF. The combustion characteristics of pulverized coal in TGR-OBF were investigated. Furthermore, the effects of oxygen concentration and temperature were also analyzed. The simulation results show that the coal burnout increased by 16.23% compared to that of the TBF. The oxygen content has an obvious effect on the burnout. At 70% oxygen content, the coal burnout is only 21.64%, with a decrease of 50.14% compared to that of TBF. Moreover, the effect of oxygen temperature is also very obvious.

  15. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wang, Kun; Qin, Qin; Hou, Limin; Yao, Xin; Wu, Tianwei

    2015-01-01

    Highlights: • An integrated system of coal gasification with slag waste heat recovery was proposed. • The goal of BF slag heat saving and emission reduction was achieved by this system. • The optimal parameters were obtained and the waste heat recovery rate reached 83.08%. • About 6.64 kmol/min syngas was produced when using one ton BF slag to provide energy. - Abstract: This article presented a model for the system of coal gasification with steam and blast furnace slag waste heat recovery by using the ASPEN Plus as the simulating and modeling tool. Constrained by mass and energy balance for the entire system, the model included the gasifier used to product syngas at the chemical equilibrium based on the Gibbs free energy minimization approach and the boiler used to recover the heat of the blast furnace slag (BF slag) and syngas. Two parameters of temperature and steam to coal ratio (S/C) were considered to account for their impacts on the Datong coal (DT coal) gasification process. The carbon gasification efficiency (CE), cold gasification efficiency (CGE), syngas product efficiency (PE) and the heating value of syngas produced by 1 kg pulverized coal (HV) were adopted as the indicators to examine the gasification performance. The optimal operating temperature and S/C were 800 °C and 1.5, respectively. At this condition, CE reached above 90% and the maximum values of the CGE, PE and HV were all obtained. Under the optimal operating conditions, 1000 kg/min BF slag, about 40.41 kg/min DT pulverized coal and 77.94 kg/min steam were fed into the gasifier and approximate 6.64 kmol/min syngas could be generated. Overall, the coal was converted to clean syngas by gasification reaction and the BF slag waste heat was also recovered effectively (reached up to 83.08%) in this system, achieving the objective of energy saving and emission reduction

  16. Blast furnace dust and phosphorous slag, new materials for use in road engineering

    Science.gov (United States)

    Ochoa Díaz, R.

    2017-12-01

    This article proposes an alternative to the use of phosphorus slag and blast furnace dust, by-products of the steel industry, due to the negative environmental impact caused by its accumulation. Taking into account the above, the pertinence of the use of these by-products in asphalt mixtures for the construction of roads is studied. In this way, the origin and its properties are presented, as well as their physical and chemical characteristics. Once the tests have been carried out, it is determined that these by-products have adequate characteristics for their use since they do not present toxicity problems. Following this, the design of the mixtures is carried out to determine the mechanical and dynamic properties and thus determine the proportion to be replaced with the conventional materials. Taking into account the results it is concluded that its use is feasible since the mixture with these by-products presents acceptable resilient modulus parameters and improvement in some verification parameters.

  17. Business diversification in blast furnace steel makers. Koro kakusha no takakuka no jokyo

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    Scenarios are presented for the current business diversification and future business developments by the three Japanese blast furnace steel makers (Kawasaki Steel, Kobe Steel and Shin Nippon Steel). The conceptions for their advancement into the 2lst century are more or less similar. The business diversification commenced for Kawasaki Steel in 1985, Kobe Steel in 1989 and Shin Nippon Steel in 1987, all taking a pattern of tree-like development into related businesses starting from the basic industry. Their new businesses may be summarized generically as: electronics industry (LSI, silicon, electronic devices, information and communication); new material related business (ferrite, ceramics, metal powder, metal foils); chemical business (plastics, etc.); engineerings (architecture, urban andregional developments, etc.); and service business (system network development, lease business, real estate, leisure business, etc.). Endeavors are made also on full-scale entity into tertiary industries, and amenity field. M A and joint venture businesses are attempted in wide scale and positive manners also in overseas countries. 6 fige., 4 tads.

  18. Oxygen and coke oven gas (COG) consumption optimization at hot stove of Usiminas blast furnace 3; Otimizacao do consumo de oxigenio e GCO nos regeneradores do alto forno 3 da Usiminas

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Marco Antonio; Bastos, Moises Hofer [Usiminas, Ipatinga, MG (Brazil)

    2001-07-01

    This paper presents the model developed for determination of the correlation between oxygen and coke oven gas (COG) consumption in the hot stove at Usiminas blast furnace 3, the applicability and results obtained. (author)

  19. Energy saving in the pig iron production in the blast furnace no. 5; Ahorro de energia en la produccion de arrabio en el alto horno No. 5

    Energy Technology Data Exchange (ETDEWEB)

    Gil Diaz, Ricardo A; J Quiroz, Francisco; Rodriguez, Rita Patricia; Banuelos Garza, Yolanda [Altos Hornos de Mexico, S. A., Coahuila (Mexico)

    1994-12-31

    Altos Hornos de Mexico (AHMSA) is an iron and steel industry integrated to Grupo Acereros del Norte in Monclova, in the Coahuila state. With an a installed capacity of 3.1 millions of tons per annum o liquid steel. In its installations, AHMSA has the highest capacity blast furnace installed in Mexico, blast furnace No. 5, that has a useful volume of 2,163 cubic meters, designed to produce 4,800 tons of pig iron per day. The basic goal to achieve in the operations involved in the production of steel through the pig iron production in the blast furnace, is the hot metal production at the lowest attainable cost within the quality requirements specified by the steel makers. The most important criterion for the recognition of the attained success is the fuel consumption per ton of pig iron produced, with coke as the main fuel fed to the blast furnace and therefore of the greatest impact on the final product cost. AHMSA contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently it is pending the shortage of coke for productions higher than 2.6 MMT of liquid iron. In response to this, and faced to the true need of diminishing the production costs in the process of making pig iron, new practices have been implemented in the use of complementary fuels to partially substitute the metallurgical coke as an energy source for the blast furnace process. The use of natural gas, fuel oil and the gradual increase of the temperature of hot blow, have strongly impacted the metallurgical coke consumption, lowering it considerably and diminishing the costs per ton of pig iron in blast furnace No. 5. Another important issue, is the utilization of coke fines resulting form the sieving of the same, directly fed to the furnace load. This practice reduced the coke consumption, and most of all, the output of our coking plants was increased on being utilized at the maximum coke production

  20. Energy saving in the pig iron production in the blast furnace no. 5; Ahorro de energia en la produccion de arrabio en el alto horno No. 5

    Energy Technology Data Exchange (ETDEWEB)

    Gil Diaz, Ricardo A.; J Quiroz, Francisco; Rodriguez, Rita Patricia; Banuelos Garza, Yolanda [Altos Hornos de Mexico, S. A., Coahuila (Mexico)

    1993-12-31

    Altos Hornos de Mexico (AHMSA) is an iron and steel industry integrated to Grupo Acereros del Norte in Monclova, in the Coahuila state. With an a installed capacity of 3.1 millions of tons per annum o liquid steel. In its installations, AHMSA has the highest capacity blast furnace installed in Mexico, blast furnace No. 5, that has a useful volume of 2,163 cubic meters, designed to produce 4,800 tons of pig iron per day. The basic goal to achieve in the operations involved in the production of steel through the pig iron production in the blast furnace, is the hot metal production at the lowest attainable cost within the quality requirements specified by the steel makers. The most important criterion for the recognition of the attained success is the fuel consumption per ton of pig iron produced, with coke as the main fuel fed to the blast furnace and therefore of the greatest impact on the final product cost. AHMSA contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently it is pending the shortage of coke for productions higher than 2.6 MMT of liquid iron. In response to this, and faced to the true need of diminishing the production costs in the process of making pig iron, new practices have been implemented in the use of complementary fuels to partially substitute the metallurgical coke as an energy source for the blast furnace process. The use of natural gas, fuel oil and the gradual increase of the temperature of hot blow, have strongly impacted the metallurgical coke consumption, lowering it considerably and diminishing the costs per ton of pig iron in blast furnace No. 5. Another important issue, is the utilization of coke fines resulting form the sieving of the same, directly fed to the furnace load. This practice reduced the coke consumption, and most of all, the output of our coking plants was increased on being utilized at the maximum coke production

  1. Solidification of ion exchange resins saturated with Na{sup +} ions: Comparison of matrices based on Portland and blast furnace slag cement

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, E. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Cau dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Gauffinet, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université de Bourgogne, Dijon, France, 9 Av Alain Savary, BP 47870, 21078 Dijon cedex (France); Chartier, D. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Stefan, L. [AREVA, Back End Business Group, Dismantling & Services, 1 Place Jean Millier, 92084 Paris La Défense (France); Le Bescop, P. [CEA, DEN, DPC, SECR, F-91192 Gif-sur-Yvette (France)

    2017-01-15

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na{sup +} form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic. - Highlights: • Solidification of cationic resins in the Na{sup +}-form is investigated. • Portland and blast furnace slag cements are compared. • Deleterious expansion is observed with Portland cement only. • Resin swelling is due to a decrease in the osmotic pressure of the pore solution. • The consolidation rate of the matrix is a key parameter to prevent damage.

  2. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete

    International Nuclear Information System (INIS)

    Khan, M.S.H.; Castel, Arnaud; Akbarnezhad, A.; Foster, Stephen J.; Smith, Marc

    2016-01-01

    This paper evaluates the performance of steel furnace slag (SFS) coarse aggregate in blended slag and low calcium fly ash geopolymer concrete (GPC). The geopolymer binder is composed of 90% of low calcium fly ash and 10% of ground granulated blast furnace slag (GGBFS). Mechanical and physical properties, shrinkage, and detailed microstructure analysis were carried out. The results showed that geopolymer concrete with SFS aggregate offered higher compressive strength, surface resistivity and pulse velocity than that of GPC with traditional aggregate. The shrinkage results showed no expansion or swelling due to delayed calcium oxide (CaO) hydration after 320 days. No traditional porous interfacial transition zone (ITZ) was detected using scanning electron microscopy, indicating a better bond between SFS aggregate and geopolymer matrix. Energy dispersive spectroscopy results further revealed calcium (Ca) diffusion at the vicinity of ITZ. Raman spectroscopy results showed no new crystalline phase formed due to Ca diffusion. X-ray fluorescence result showed Mg diffusion from SFS aggregate towards geopolymer matrix. The incorporation of Ca and Mg into the geopolymer structure and better bond between SFS aggregate and geopolymer matrix are the most likely reasons for the higher compressive strength observed in GPC with SFS aggregate.

  3. Results of tuyere coke sampling with regard to application of appropriate coke strength after reaction (CSR for a blast furnace

    Directory of Open Access Journals (Sweden)

    Shiau J-S.

    2017-01-01

    Full Text Available Raising pulverized coal injection (PCI will decrease coke rate, but increase the residence time of coke and abrasion in the blast furnace (BF. Thus, insufficient coke strength will generate more coke fines in the lower BF and result in lower permeability and production of hot metal (HM. For understanding the behavior of coke at various HM productivities, a tuyere coke sampler was used to collect the coke samples for measuring the coke strength. Firstly, the difference of sampled coke under the conditions of various HM productivities was explored. Secondly, the BF operating conditions and causes of generating more coke fines was correlated by testing the coke reaction rate after reaction. Finally, according to the above analysis results, the relative regression equations had been obtained for sampling coke properties, BF operation conditions and BF permeability. Furthermore, the coke strength after reaction (CSR quantitative target and its online system at various blast conditions were set to provide some reference for coke and HM production.

  4. Formation mechanism of the protective layer in a blast furnace hearth

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng

    2015-10-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  5. Estimation of minimum detectable concentration of chlorine in the blast furnace slag cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.s [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-01-01

    The Prompt Gamma Neutron Activation Analysis technique was used to measure the concentration of chloride in the blast furnace slag (BFS) cement concrete to assess the possibility of reinforcement corrosion. The experimental setup was optimized using Monte Carlo calculations. The BFS concrete specimens containing 0.8-3.5 wt.% chloride were prepared and the concentration of chlorine was evaluated by determining the yield of 6.11, 6.62, 7.41, 7.79 and 8.58 MeV gamma-rays. The Minimum Detectable Concentration (MDC) of chlorine in the BFS cement concrete was estimated. The best value of MDC limit of chlorine in the BFS cement concrete was found to be 0.034 {+-} 0.011 and 0.038 {+-} 0.012 wt.% for 6.11 and 6.62 MeV prompt gamma-rays. Within the statistical uncertainty the lower bound of the measured MDC of chlorine in the BFS cement concrete meets the maximum permissible limit of 0.03 wt.% of chloride set by the American Concrete Institute.

  6. The determination of Fe, Mn and Ca in sintered iron and blast-furnace slag by X-ray fluorescent analyses of energy and wave dispersion-comparison of results

    International Nuclear Information System (INIS)

    Dworak, B.; Gajek, Sz.

    1980-01-01

    The results of sintered iron and of blast-furnace slag examination obtained by X-ray fluorescent analyses of energy and of wave dispersion are compared. They show that the methods are comparable for such elements as Ca and Fe, whereas for Mn (in sinter) the X-ray fluorescent analysis of wave dispersion is less precise. (author)

  7. The injection of ultrahigh rates of reducing gas into a modern blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Buergler, T.; Skoeld, B.E. [Voestalpine, Linz (Austria)

    2007-07-01

    The pilot plant for gas injection consists of a screw compressor unit to supply two blast furnaces with reduction gas. Almost all of the reducing gas will react in the raceway; only a small part will combust inside the tuyere. Comparing different injection systems in the case with two lances, the gas will react faster than for the one lance system where the gas is more trapped inside a beam. During the project the melting rate of the furnace was increased by more than 30 %. Injecting reducing gas compensates increased raceway adiabatic flame temperature, RAFT by higher oxygen enrichment rates. The operation results showed that a lower RAFT and low-quality raw material result in increased consumption of reducing agents. 1 kg coke oven gas, COG substitutes 0.81 kg oil and 1.03 kg coke. Sulfur input was reduced by 40 % in comparison with heavy fuel oil operation. The top-gas calorific value is increased up to 30 %. This reduces the consumption of natural gas used to control a constant calorific value in the gas network. A high hydrogen content up to 12 % is no problem for the gas consumers. Tests with simultaneous COG/BOF gas injection have shown that a decrease in the oil rate can be compensated. The replacement of a carbon-rich resultant such as coke and oil in the BF process with a carbon-lean resultant such as COG leads to an absolute reduction in the CO{sub 2} emissions of the BF process and the power plant of approximately 184.000 t/a for both BFs or 102 kg/tHM. 3 refs., 98 figs., 16 tabs., 1 annex.

  8. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  9. The Use of Blast Furnace Slag for Removal of Phosphorus from Wastewater in Sweden—A Review

    Directory of Open Access Journals (Sweden)

    Lena Johansson Westholm

    2010-10-01

    Full Text Available Research on Phosphorus (P removal capacity by blast furnace slags (BFS has been undertaken in Sweden for the last decade. Both laboratory experiments and field trials have been carried out. While laboratory investigations revealed that BFS has a high P-sorption capacity (95–100%, P removal in field trials was much lower, ranging from 40 to 53%. In addition, a number of problems have been observed in BFS field testing including clogging, sulfuric odor and environmental (regulatory concerns about possible leaching of heavy metals from the slag. In spite of these problems, and questioning by the environmental regulatory authorities, research continues to provide evidence that BFS can be regarded as a suitable filter media, and attempts have also been undertaken in order to further improve the P-removal capacity of this adsorbing material.

  10. GGBS

    Indian Academy of Sciences (India)

    Shahab Samad

    with blended cement using ground granulated blast furnace slag. (GGBS) under various curing ... The mechanical properties of blended concrete for various levels of cement replacement ...... A self learning manual – mastering different fields ...

  11. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    106. Behaviour of high-strength concrete incorporating ground granulated blast furnace slag at high-temperature. Comportement à haute température du béton à haute résistance à base de laitier granulé de haut fourneau. Imene Saadi*1 & Abdelaziz Benmarce2. 1Laboratoire Matériaux Géométraux et Environnement, ...

  12. The Mechanical Properties of Foamed Concrete containing Un-processed Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Awang H.

    2014-01-01

    Full Text Available For many years, supplementary cementation materials have been utilized as cement or filler replacements to heighten the properties of concrete. The objective of this paper is to demonstrate the effects of un-processed blast furnace slag (RS on the compressive, splitting tensile and flexural strengths of foam concrete over periods of 7, 14 and 28 days. The introduction of slag to the cement begins at 30% and rises to 70% of the total content. Six mixes, which include the control mix with a similar mix ratio (1:2:0.45 and a dry density of 1300 kg/m3 is generated. Taking into consideration, from the total weight of the cementation material, 1% of super- plasticizer (PS-1 is added to the mixes with slag content. Test results revealed that the most favourable (optimum replacement level of un-processed slag in foam concrete is 30%. This represents a commercial advantage as the cement requirement is reduced from 414 Kg/m3 to 290 Kg/m3. On the 28th day, the optimum mix showed higher values than the control mix by 32% for compressive strength, 46.5% for splitting tensile strength and 61% for flexural strength.

  13. Modelling of Coke Layer Collapse during Ore Charging in Ironmaking Blast Furnace by DEM

    Science.gov (United States)

    Narita, Yoichi; Mio, Hiroshi; Orimoto, Takashi; Nomura, Seiji

    2017-06-01

    A technical issue in an ironmaking blast furnace operation is to realize the optimum layer thickness and the radial distribution of burden (ore and coke) to enhance its efficiency and productivity. When ore particles are charged onto the already-embedded coke layer, the coke layer-collapse phenomenon occurs. The coke layer-collapse phenomenon has a significant effect on the distribution of ore and coke layer thickness in the radial direction. In this paper, the mechanical properties of coke packed bed under ore charging were investigated by the impact-loading test and the large-scale direct shear test. Experimental results show that the coke particle is broken by the impact force of ore charging, and the particle breakage leads to weaken of coke-layer strength. The expression of contact force for coke in Discrete Element Method (DEM) was modified based on the measured data, and it followed by the 1/3-scaled experiment on coke's collapse phenomena. Comparing a simulation by modified model to the 1/3-scaled experiment, they agreed well in the burden distribution.

  14. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  15. Hot metal temperature prediction by neural networks in the blast furnace; Prediccion mediante redes neuronales de la temperatura de arrabio de un horno alto. Temperatura subyacente de arrabio

    Energy Technology Data Exchange (ETDEWEB)

    Cantera, C.; Jimenez, J.; Varela, I.; Formoso, A.

    2002-07-01

    Based on a simplified model, the underlying temperature criteria is proposed as a method to study the temperature trends in a blast furnace. As an application, a neural network able to forecast hot metal temperatures from 2 to 16 h in advance (with decreasing precision) has been built. This neural network has been designed to work at real time in a production plant. (Author)

  16. Influence of palm oil fuel ash on fresh and mechanical properties of ...

    Indian Academy of Sciences (India)

    percentage of cement, with several supplementary cementitious materials (SCM) such as silica fume, ground granulated blast-furnace slag, fly ash and rice husk ash ..... Safiuddin M, West J and Soudki K 2011b Flowing ability of the mortars ...

  17. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Mohiuddin, Kazi, E-mail: kazi.mohiuddin@students.mq.edu.au [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Strezov, Vladimir; Nelson, Peter F. [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Stelcer, Eduard [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Evans, Tim [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia)

    2014-07-01

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  18. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    International Nuclear Information System (INIS)

    Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F.; Stelcer, Eduard; Evans, Tim

    2014-01-01

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  19. Nigerian Journal of Technology - Vol 37, No 1 (2018)

    African Journals Online (AJOL)

    ... concrete amended with ground granulated blast-furnace slag · EMAIL FREE FULL ... Effect of paint-bake like treatment on mechanical properties of Mg-Zn-Ca alloy ... Effects of zinc powder addition to Villa Gloss and Silka Lux marine enamel ...

  20. Characterisation of Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mobasher, Neda; Bernal, Susan A.; Hussain, Oday H. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Apperley, David C. [Solid-State NMR Group, Department of Chemistry, Durham University, Durham DH1 3LE (United Kingdom); Kinoshita, Hajime [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2014-12-15

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO{sub 4} and BaCO{sub 3}, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH){sub 2} and Na{sub 2}SO{sub 4} act as alkaline activators and control the reaction of the slag in addition to forming insoluble BaSO{sub 4}, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH){sub 2} is added. An increased content of Ba(OH){sub 2} promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes.

  1. Development and application of an environmentally friendly ductile alkali-activated composite

    NARCIS (Netherlands)

    Nedeljkovic, M.; Lukovic, M.; van Breugel, K.; Hordijk, D.A.; Ye, G.

    2018-01-01

    This paper presents a development of a ductile alkali-activated fly ash (FA) and ground granulated blast furnace slag (GBFS) based composite as an environmentally friendly material for structural concrete application. For this purpose, polyvinyl alcohol (PVA) fibres and sand aggregate were

  2. Compacting of fly dusts from cupola and electric arc furnace

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-01-01

    Full Text Available Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with diff erent addition of water glass, bentonite and cement. Quality of briquettes was tested by compression – strength test and by break down test in green state, after drying and afterstoring (1 month.

  3. Processing and utilization of metallurgical slag

    Directory of Open Access Journals (Sweden)

    Alena Pribulová

    2016-06-01

    Full Text Available Metallurgy and foundry industry create a huge amount of slags that are by-products in production of pig iron, steel and cast iron. Slag is produced in a very large amount in pyrometallurgical processes, and is a huge source of waste if not properly recycled and utilized. With rapid growth of industrialization, land available for land-filling of large quantity of metallurgical slag is being reduced all over the world and disposal cost is becoming increasingly higher. Metallurgical slag from different metallurgical processes treated and utilized in different ways based on different slag characteristics. The most economic and efficient option for reducing metallurgical waste is through recycling, which is a significant contribution to saving natural resources and reducing CO2 emissions. Characteristic of slags as well as its treatment and utilization are given in the paper. Slag from pig iron and steel production is used most frequently in building industry. From experiments using blast furnace slag and granulated blast furnace slag as gravel, and water glass as binder it can be concluded that that the best results – the best values of compression strength and tensile strength were reached by using of 18% of water glass as a solidification activating agent. According to cubic compression strength, mixture from 50% blast furnace gravel, 50% granulated blast furnace slag and 18% water glass falls into C35/45 class of concrete. Such concrete also fulfils strength requirements for road concrete, moreover, it even exceeds them considerably and, therefore, it can find an application in construction of road communications or in production of concrete slabs.

  4. NaA zeolite derived from blast furnace slag: its application for ammonium removal.

    Science.gov (United States)

    Guo, Hongwei; Tang, Lizhen; Yan, Bingji; Wan, Kang; Li, Peng

    2017-09-01

    In this paper, high value added NaA zeolite material was prepared from blast furnace (BF) slag by hydrothermal method and its adsorption behavior on the removal of ammonium ion was investigated. It was found out that the synthetic NaA cubic zeolite with smaller crystal size obtained at nSiO 2 /nAl 2 O 3 = 2 and nH 2 O/nNaOH = 20 showed better adsorption performance. The kinetics of the adsorption of ammonium ion by synthesized NaA zeolite was fitted by the pseudo-second-order kinetic model. The intra-particle diffusion modeling reveals that two mixed rate-controlling mechanisms were involved in the adsorption process. The relatively high value of activation energy of 92.3 kJ·mol -1 indicates a high impact of temperature on the adsorption rate, and the nature of ammonium adsorption is chemical reaction rather than physisorption. Based on the thermodynamics calculations, the adsorption of ammonium was found to be an endothermic, spontaneous process. The adsorption isothermal analysis showed that the Langmuir model could be well fitted and a maximum adsorption capacity of 83.3 mg·g -1 of NH 4 + was obtained. Thus, it was demonstrated that by forming low cost NaA zeolite and using it for environmental remediation, the synchronous minimization of BF slag and ammonia nitrogen contamination could be achieved.

  5. Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag

    Science.gov (United States)

    Wang, Zhong-Jie; Ni, Wen; Li, Ke-Qing; Huang, Xiao-Yan; Zhu, Li-Ping

    2011-08-01

    The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag (NS) and blast furnace slag (BFS) with a small amount of quartz sand was investigated. A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process. The results show that the iron-rich system has much lower melting temperature, glass transition temperature ( T g), and glass crystallization temperature ( T c), which can result in a further energy-saving process. The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C. The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample. The crystallization process can be completed in a few minutes. A distinct boundary between the crystallized part and the non-crystallized part exists during the process. In the non-crystallized part showing a black colour, some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to T c. In the crystallized part showing a khaki colour, a compact structure is formed by augite crystals.

  6. Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag

    Science.gov (United States)

    Li, Yanglong; Cheng, Shusen; Wang, Zhifeng

    2016-10-01

    Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.

  7. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system

    NARCIS (Netherlands)

    Zhang, S.; Keulen, A.; Arbi, K.; Ye, G.

    2017-01-01

    The feasibility of a waste glass powder residue (GP) from glass recycling as partial mineral precursor to produce alkali-activated materials is investigated. GP served as powder coal fly ash (PCFA) replacement within a reference system composed of 50% PCFA and 50% ground granulated blast furnace

  8. SITUATIONAL CONTROL OF HOT BLAST STOVES GROUP BASED ON DECISION TREE

    Directory of Open Access Journals (Sweden)

    E. I. Kobysh

    2016-09-01

    Full Text Available In this paper was developed the control system of group of hot blast stoves, which operates on the basis of the packing heating control subsystem and subsystem of forecasting of modes duration in the hot blast stoves APCS of iron smelting in a blast furnace. With the use of multi-criteria optimization methods, implemented the adjustment of control system conduct, which takes into account the current production situation that has arisen in the course of the heating packing of each hot blast stove group. Developed a situation recognition algorithm and the choice of scenarios of control based on a decision tree.

  9. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    of tests were carried out on concrete incorporating Ground Granulated Blast Furnace Slag (GGBFS) of “Mittal ... mechanical properties by using the existing materials on the local market and HSC ..... general shape of the curves whether at 28 days ... Figure.7. Residual compressive strength as a function of temperature.

  10. Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas

    Energy Technology Data Exchange (ETDEWEB)

    V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

  11. The Influence of Allocation on the Carbon Footprint of Electricity Production from Waste Gas, a Case Study for Blast Furnace Gas

    Directory of Open Access Journals (Sweden)

    Joeri Van Mierlo

    2013-03-01

    Full Text Available Producing electricity from waste gas is an after treatment for waste gas while recovering the energy content. This paper addresses the methodology to calculate the effect that waste gas energy recovery has on lowering the impact of climate change. Greenhouse gases are emitted while burning the waste gas. However, a thorough study should include the production of the feedstock as well as the production of the infrastructure. A framework is developed to calculate the environmental impact of electricity production from waste gas with a life cycle approach. The present paper has a twofold purpose: to assess the climate change impact of generating electricity with blast furnace gas (BFG as a waste gas from the steel industry; and to establish a sensitivity assessment of the environmental implications of different allocation rules.

  12. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    International Nuclear Information System (INIS)

    Huang, Haoliang; Ye, Guang; Damidot, Denis

    2014-01-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH) 2 solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO 4 2− ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. - Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation

  13. Influence of relative humidity on tensile and compressive creep of ...

    African Journals Online (AJOL)

    This paper presents an experimental study on the influence of ambient relative humidity on tensile creep of plain concrete amended with Ground Granulated Blast - furnace Slag and compares it with its influence on compressive creep. Tensile and compressive creep tests were carried out on concrete specimens of 34.49 ...

  14. Characteristics and settling behaviour of particles from blast furnace flue gas washing.

    Science.gov (United States)

    Kiventerä, Jenni; Leiviskä, Tiina; Keski-Ruismäki, Kirsi; Tanskanen, Juha

    2016-05-01

    A lot of particles from iron-making are removed with blast furnace off-gas and routed to the gas cleaning system. As water is used for cleaning the gas, the produced wash water contains a large amount of particles such as valuable Fe and C. However, the presence of zinc prevents recycling. In addition, the high amount of calcium results in uncontrolled scaling. Therefore, the properties of the wash water from scrubber and sludge, from the Finnish metal industry (SSAB Raahe), were evaluated in this study. Size fractionation of wash water revealed that Fe, Zn, Al, Mn, V, Cr and Cd appeared mainly in the larger fractions (>1.2 μm) and Na, Mg, Si, Ni, K, Cu and As appeared mainly in the smaller fractions (<1.2 μm) or in dissolved form. Calcium was found both in the larger fractions and dissolved (∼60 mg/L). Most of the particles in wash water were included in the 1.2-10 μm particle size and were settled effectively. However, a clear benefit was observed when using a chemical to enhance particle settling. In comparison to 2.5 h of settling without chemical, the turbidity was further decreased by about 94%, iron 85% and zinc 50%. Coagulation-flocculation experiments indicated that both low and high molecular weight cationic polymers could provide excellent purification results in terms of turbidity. Calcium should be removed by other methods. The particles in sludge were mostly in the 2-4 μm or 10-20 μm fractions. Further sludge settling resulted in high solids removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. FY 1999 report on the plan to implement the model project for effective utilization of blast furnace gas pressure energy and the potential survey of the spread in India; 1999 nendo Indo ni okeru koro gas atsuryoku energy yuko riyo model jigyo jisshi keikaku oyobi fukyu kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As to the implementation of 'the model project for effective utilization of blast furnace gas pressure energy' and the possibility of spreading the said technology, survey/study were conducted, and the results were reported. The enterprise implementing the model project, Steel Authority of India Limited (SAIL), has been investing a total of 300 billion yen in modernizing facility/equipment after the liberalization in 1992, which is a cause of a large amount of deficit. About SAIL' cash flow, it is expected that SAIL will go into the black after tax in and after 2002. Local financial institutions are careful in investing in the iron/steel industry, but they have no problems in their own financing ability. In the evaluation of economical efficiency on the commercial basis, it is difficult to implement this model if using power prices, customs duties and borrowing rates in India as conditions. However, when preferential measures such as the exemption from taxation and help to borrowing rates are taken for energy conservation facility/equipment and the cost reduction is realized by technical cooperation, etc., it will be possible to recover the investment in 5 years. As to the possibility of spreading this model, the blast furnace with a capacity of 1000{sup 3} or more is targeted, and the number of the targeted blast furnace is 23. (NEDO)

  16. Pretreatment of Tc-Containing Waste and Its Effect on Tc-99 Leaching From Grouts

    International Nuclear Information System (INIS)

    Aloy, Albert; Kovarskaya, Elena N.; Harbour, John R.; Langton, Christine A.; Holtzscheiter, E. William

    2007-01-01

    A salt solution (doped with Tc-99), that simulates the salt waste stream to be processed at the Saltstone Production Facility, was immobilized in grout waste forms with and without (1) ground granulated blast furnace slag and (2) pretreatment with iron salts. The degree of immobilization of Tc-99 was measured through monolithic and crushed grout leaching tests. Although Fe (+2) was shown to be effective in reducing Tc-99 to the +4 state, the strong reducing nature of the blast furnace slag present in the grout formulation dominated the reduction of Tc-99 in the cured grouts. An effective diffusion coefficient of 4.75 x 10 -12 (Leach Index of 11.4) was measured using the ANSI/ANS-16.1 protocol. The leaching results show that, even in the presence of a concentrated salt solution, blast furnace slag can effectively reduce pertechnetate to the immobile +4 oxidation state. The measured diffusivity was introduced into a flow and transport model (PORFLOW) to calculate the release of Tc-99 from a Saltstone Vault as a function of hydraulic conductivity of the matrix. (authors)

  17. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    Science.gov (United States)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.

  18. A Novel Online Sequential Extreme Learning Machine for Gas Utilization Ratio Prediction in Blast Furnaces

    Directory of Open Access Journals (Sweden)

    Yanjiao Li

    2017-08-01

    Full Text Available Gas utilization ratio (GUR is an important indicator used to measure the operating status and energy consumption of blast furnaces (BFs. In this paper, we present a soft-sensor approach, i.e., a novel online sequential extreme learning machine (OS-ELM named DU-OS-ELM, to establish a data-driven model for GUR prediction. In DU-OS-ELM, firstly, the old collected data are discarded gradually and the newly acquired data are given more attention through a novel dynamic forgetting factor (DFF, depending on the estimation errors to enhance the dynamic tracking ability. Furthermore, we develop an updated selection strategy (USS to judge whether the model needs to be updated with the newly coming data, so that the proposed approach is more in line with the actual production situation. Then, the convergence analysis of the proposed DU-OS-ELM is presented to ensure the estimation of output weight converge to the true value with the new data arriving. Meanwhile, the proposed DU-OS-ELM is applied to build a soft-sensor model to predict GUR. Experimental results demonstrate that the proposed DU-OS-ELM obtains better generalization performance and higher prediction accuracy compared with a number of existing related approaches using the real production data from a BF and the created GUR prediction model can provide an effective guidance for further optimization operation.

  19. A Novel Online Sequential Extreme Learning Machine for Gas Utilization Ratio Prediction in Blast Furnaces.

    Science.gov (United States)

    Li, Yanjiao; Zhang, Sen; Yin, Yixin; Xiao, Wendong; Zhang, Jie

    2017-08-10

    Gas utilization ratio (GUR) is an important indicator used to measure the operating status and energy consumption of blast furnaces (BFs). In this paper, we present a soft-sensor approach, i.e., a novel online sequential extreme learning machine (OS-ELM) named DU-OS-ELM, to establish a data-driven model for GUR prediction. In DU-OS-ELM, firstly, the old collected data are discarded gradually and the newly acquired data are given more attention through a novel dynamic forgetting factor (DFF), depending on the estimation errors to enhance the dynamic tracking ability. Furthermore, we develop an updated selection strategy (USS) to judge whether the model needs to be updated with the newly coming data, so that the proposed approach is more in line with the actual production situation. Then, the convergence analysis of the proposed DU-OS-ELM is presented to ensure the estimation of output weight converge to the true value with the new data arriving. Meanwhile, the proposed DU-OS-ELM is applied to build a soft-sensor model to predict GUR. Experimental results demonstrate that the proposed DU-OS-ELM obtains better generalization performance and higher prediction accuracy compared with a number of existing related approaches using the real production data from a BF and the created GUR prediction model can provide an effective guidance for further optimization operation.

  20. [Molecular authentication of Jinyinhua formula granule by using allele-specific PCR].

    Science.gov (United States)

    Jiang, Chao; Tu, Li-Chan; Yuan, Yuan; Huang, Lu-Qi; Gao, Wei; Jin, Yan

    2017-07-01

    Traditional authentication method is hard to identify herb's authenticity of traditional Chinese medicine(TCM) formula granules because they have lost all their morphological characteristics. In this study, a new allele-specific PCR method was established for identifying the authentication of Jinyinhua formula granule (made from Lonicerae Japonicae Flos) based on an SNP site in trnL-trnF fragment. Genomic DNA was successfully extracted from Lonicerae Japonicae Flos and its formula granules by using an improved spin column method and then PCR was performed with the designed primer. Approximately 110 bp specific bands was obtained only in the authentic Lonicerae Japonicae Flos and its formula granules, while no bands were found in fake mixed products. In addition, the PCR product sequence was proved from Lonicerae Japonicae Flos trnL-trnF sequence by using BLAST method. Therefore, DNA molecular authentication method could make up the limitations of character identification method and microscopic identification, and quickly identify herb's authenticity of TCM formula granules, with enormous potential for market supervision and quality control. Copyright© by the Chinese Pharmaceutical Association.

  1. The production of pig iron from crushing plant waste using hot blast cupola

    Directory of Open Access Journals (Sweden)

    Kusno Isnugroho

    2018-03-01

    Full Text Available A production of pig iron has been conducted from crushing plant waste. The process of preparing pig iron was using hot blast cupola (HBC furnace which was injected with charcoal powder to improve temperature process and reduction zone in the furnace. The process was started by washing process and magnetic separation of raw material as an effort to improve iron content degree from crushing plant waste. The next process was preparing the composite pellet with the particle size of −80 + 100 mesh and with the composition of 80% iron ore, 15% wood charcoal, and 5% bentonite. The result of pellet size was 2.5–4.0 mm. The experiment was continued to reduce pellet composite in the HBC furnace. The pig iron produced from this process contained of 93.62%Fe, 3.5%C, 1.55%Si, 0.87%Mn, 0.05%P, and 0.087%S.With this result, the pig iron produced already fulfill the metallurgical specification to be used in smelting industry. Keywords: Pig iron, Pellet, Injection, Charcoal, Hot blast cupola

  2. Generating electricity and heat from lean gas. Dual fuel engine generates electricity and process heat from cupola furnace gas; Strom und Waerme aus Schwachgas gewinnen. Zuendstrahlmotor erzeugt Strom und Prozesswaerme aus Kupolofengas

    Energy Technology Data Exchange (ETDEWEB)

    Hirn, Gerhard

    2012-07-01

    White-hot molten iron flows into the launder. The blast of heat released provides visitors with an impressive demonstration of the amount of energy flowing in foundries. Large volumes of carbon (coke) are used for the melting process in the cupola furnace, whereby a combustible process gas is formed as a by-product. This so-called cupola furnace gas has a low heating value and has previously been completely combusted for generating the hot blast in the cupola furnace's recuperator. However, in this process only around 35 % of the contained energy is used thermally. Now it is possible to utilise the remaining 65 % of the chemically bound energy that was previously not used in most foundries: a modified biogas combined heat and power plant runs with cupola furnace gas (CFG) from the melting furnace. (orig.)

  3. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  4. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Xiao Zhao

    2015-01-01

    Full Text Available Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM and slag-foamed mortar (SFM, 50% cement was replaced by slag weight. Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  5. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    OpenAIRE

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-01

    Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). ...

  6. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.

    Science.gov (United States)

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-30

    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  7. Effect of γ-irradiation on the electrical conductivity of some soda lime silicate glass containing blast furnace slag

    International Nuclear Information System (INIS)

    Elalaily, N.A.; Khalil, Magda M.I.; Ahmed, L.S.

    2007-01-01

    The effect of electric field strength on conduction in soda lime silicate glass doped with blast furnace slag with different concentration was studied and the value of jump distance was calculated. The structure and the mixed anion effect in the conductivity have been examined by measuring the electrical conductivity of glass samples at temperature ranging between 20 and 250 deg. C. The results showed that the electrical conductivity of the examined glasses are divided into three ranges depending on the temperature range. The first is from room temperature to about 49.5 deg. C, the second is at a temperature range of 60.3-104 deg. C where the glass shows a decrease in its conductivity with the increase in temperature. This was followed by another increase in the electrical conductivity with the increase in temperature. The results also showed that the glass becomes more insulating as the slag content increased. The effect of irradiation was also studied by exposing glass samples to two different irradiation doses. It can be noticed that irradiation causes an increase in the electrical conductivity, especially at high temperature. The results were discussed and correlated according to the molecular structure of the prepared glass

  8. Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth

    Science.gov (United States)

    Liu, Yan-xiang; Zhang, Jian-liang; Wang, Zhi-yu; Jiao, Ke-xin; Zhang, Guo-hua; Chou, Kuo-chih

    2017-02-01

    To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content. The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%, whereas it increases when the FeO content exceeds 10wt%. Meanwhile, the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%. Moreover, slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer, iron-rich layer, and coke layer. TiO2 in the slag is reduced by carbon, and the generated Ti diffuses into iron.

  9. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    Science.gov (United States)

    Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling

    2016-05-01

    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  10. Characteristics and properties of oil-well cements auditioned with blast furnace slag; Cementos petroleros con adicion de escoria de horno alto. Caracteristicas y propiedades

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Palacios, M.; Puertas, F.

    2011-07-01

    The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% by cement weight) with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activator partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. {sup 2}9Si and {sup 2}7Al MAS NMR and BSE/EDX studies, in turn, showed that the CSH gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios. (Author) 29 refs.

  11. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent.

    Science.gov (United States)

    Georgakopoulos, Evangelos; Santos, Rafael M; Chiang, Yi Wai; Manovic, Vasilije

    2017-02-21

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni 2+ , as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications.

  12. 40 CFR 421.72 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... sinter production Lead 594.000 270.000 Zinc 525.000 219.600 Total suspended solids 14,760.000 7,020.000 p... .000 .000 Zinc .000 .000 Total suspended solids .000 .000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Subpart G—Blast Furnace Slag Granulation. BPT Effluent Limitations Pollutant or...

  13. Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum

    Directory of Open Access Journals (Sweden)

    Bazaldúa-Medellín, M. E.

    2015-03-01

    Full Text Available The hydration, strength development and composition of hydration products of supersulphated cements were characterized from the first 48 hours up to 360 days. Two compositions of 80% Blast furnace slag, 10–15% Fluorgypsum and 10–5% Portland cement were cured in dry and wet conditions. The main hydration products were ettringite and C-S-H since the first hours and up to 360 days as evidenced by X-ray diffraction, thermal analysis and electron microscopy. The strength was favored by higher fluorgypsum contents and lower Portland cement contents. These cements generated heats of hydration of 40–57 KJ/Kg after 28 hours, which are lower than portland cement.Se realizó la caracterización de la hidratación, desarrollo de resistencia y la composición de los productos de hidratación de los cementos supersulfatados durante las primeras 48 horas y hasta 360 días. Se estudiaron dos composiciones de 80% de Escoria de alto horno, 10–15% de Fluoryeso y 10–5% de Cemento portland, se curaron en condiciones secas y húmedas. Los principales productos de hidratación fueron etringita y C-S-H desde las primeras horas y hasta 360 días, como se evidenció por difracción de rayos X, análisis térmico y microscopía electrónica de barrido. La resistencia se favoreció con mayor contenido de fluoryeso y bajos contenidos de cemento portland. Estos cementos generaron calores de hidratación de 40–57 KJ/Kg después de 28 horas, los cuales resultan más bajos que los generados por el cemento portland.

  14. 3D Model Studies on the Effect of Bed and Powder Type Upon Radial Static Pressure and Powder Distribution in Metallurgical Shaft Furnaces

    Directory of Open Access Journals (Sweden)

    Panic B.

    2017-09-01

    Full Text Available The flow of gases in metallurgical shaft furnaces has a decisive influence on the course and process efficiency. Radial changes in porosity of the bed cause uneven flow of gas along the radius of the reactor, which sometimes is deliberate and intentional. However, holdup of solid particles in descending packed beds of metallurgical shaft furnaces can lead to unintentional changes in porosity of the bed along the radial reactor. Unintentional changes in porosity often disrupt the flow of gas causing poor performance of the furnace. Such disruptions of flow may occur in the blast furnace due to high level of powder content in gas caused by large amount of coal dust/powder insufflated as fuel substitute. The paper describes the model test results of radial distribution of static pressure and powder hold up within metallurgical reactor. The measurements were carried out with the use of 3D physical model of two-phase flow gas-powder in the moving (descending packed bed. Sinter or blast furnace pellets were used as packed bed while carbon powder or iron powder were used as the powder. Wide diversity within both static pressure distribution and powder distribution along the radius of the reactor were observed once the change in the type of powder occurred.

  15. Characteristics and propierties of oil-well cements additioned with blast furnace slag

    Directory of Open Access Journals (Sweden)

    Sánchez, R.

    2011-06-01

    Full Text Available The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% of the cement by weight with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activating solution partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. 29Si and 27Al MAS NMR and BSE/EDX studies, in turn, showed that the C-S-H gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios.

    En el presente trabajo se ha estudiado la activación alcalina de cementos Pórtland con incorporación de escoria de horno alto (20% y 30% con respecto al peso de cemento para su posible aplicación en la construcción de pozos petrolíferos. Los estudios de hidratación realizados indican que en mezclas cemento/escoria, la disolución activadora de silicato sódico inhibe parcialmente la disolución de las fases silicato del cemento Pórtland originando un retraso de su hidratación así como la menor precipitación de productos de reacción. Dicha parcial inhibición de los procesos reactivos en las mezclas cemento/escoria originan resistencias mecánicas significativamente inferiores a las pastas de cemento Portland hidratadas con agua. Finalmente, los estudios de 29Si y 27Al RMN MAS y BSE/EDX indican que el gel C-S-H formado en pastas de mezcla cemento/escoria activadas alcalinamente presenta Al en posiciones tetraédricas y bajas relaciones Ca/Si.

  16. A pilot plant study for CO{sub 2} capture by aqueous ammonia applied to blast furnace gas in iron and steel making process

    Energy Technology Data Exchange (ETDEWEB)

    Young Kim, J.; Han, K.; Dong Chun, H. [CO2 Project, Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

    2009-07-01

    This presentation reported on a study in which carbon dioxide (CO{sub 2}) was captured from a demonstration iron and steel plant using low concentration aqueous ammonia as the absorbent chemical. The pilot plant was designed to process 50 Nm{sup 3}/h of blast furnace gas (BFG). The feed gas contained more than 20 per cent CO{sub 2} at 35 to 60 degrees C. Test runs revealed that the absorption efficiency of CO{sub 2} exceeded 80 per cent with a CO{sub 2} purity of more than 90 per cent in the product stream. The process parameters are currently being studied along with the various salts needed to prevent salt precipitation. It was determined that the use of waste heat recovery technology in the iron and steel-making process can render ammonia-based CO{sub 2} capture technology more economically feasible for the reduction of CO{sub 2}.

  17. Charcoal injection in blast furnaces (Bio-PCI: CO2 reduction potential and economic prospects

    Directory of Open Access Journals (Sweden)

    Cristobal Feliciano-Bruzual

    2014-07-01

    Full Text Available The steel industry is under pressure to reduce its CO2 emissions, which arise from the use of coal. In the long-term, the injection of pulverized particles of charcoal from biomass through blast furnace tuyeres, in this case called Bio-PCI, is an attractive method from both an environmental and metallurgical viewpoint. The potential of Bio-PCI has been assessed in terms of its CO2 abatement potential and economic viewpoint. A cost objective function has been used to measure the impact of biochar substitution in highly fuel-efficient BF among the top nine hot metal producers; estimations are based on the relevant cost determinants of ironmaking. This contribution aims to shed light on two strategic questions: Under what conditions is the implementation of Bio-PCI economically attractive? Additionally, where is such a techno-economic innovation likely to be taken up the earliest? The results indicate the potential for an 18–40% mitigation of CO2. Findings from the economic assessment show that biochar cannot compete with fossil coal on price alone; therefore, a lower cost of biochar or the introduction of carbon taxes will be necessary to increase the competitiveness of Bio-PCI. Based on the current prices of raw materials, electricity and carbon taxes, biochar should be between 130.1 and 236.4 USD/t and carbon taxes should be between 47.1 and 198.7 USD/t CO2 to facilitate the substitution of Bio-PCI in the examined countries. In regard to implementation, Brazil, followed by India, China and the USA appeared to be in a better position to deploy Bio-PCI.

  18. EFFECT OF CaO/SiO₂ AND HEAT TREATMENT ON THE MICROSTRUCTURE OF GLASS-CERAMICS FROM BLAST FURNACE SLAG

    Directory of Open Access Journals (Sweden)

    Chunshai Xie

    2016-05-01

    Full Text Available Glass-ceramics, with molten blast furnace (BF slag as the major raw material, were prepared successfully by the melting method. The effect of the CaO/SiO₂ ratio in the molten BF slag and heat treatment on the viscosity and microstructure of glass-ceramics produced from BF slag were traced using the melt property tester, DSC, XRD and SEM. The results showed that increasing the CaO/SiO₂ ratio of BF slag caused a decrease not only in the viscosity of the BF slag at high temperature but also in the nucleation and crystallization temperature for the preparation of glass-ceramics. The content of akermanite-gehlenite increased as the CaO/SiO₂ ratio increased from 0.30 to 0.63. With increasing nucleation and crystallization temperature, the crystalline phases remain unchanged, but the crystal shape changes from granular to flaky. The optimum CaO/SiO₂ ratio was found to be 0.44, resulting in diopside as the main crystalline phase, augite as the secondary crystalline phase and a small mount of akermanite-gehlenite after appropriate heat treatment i.e. nucleation at 775°C and crystallization at 920°C.

  19. Data-Driven Robust RVFLNs Modeling of a Blast Furnace Iron-Making Process Using Cauchy Distribution Weighted M-Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping; Lv, Youbin; Wang, Hong; Chai, Tianyou

    2017-09-01

    Optimal operation of a practical blast furnace (BF) ironmaking process depends largely on a good measurement of molten iron quality (MIQ) indices. However, measuring the MIQ online is not feasible using the available techniques. In this paper, a novel data-driven robust modeling is proposed for online estimation of MIQ using improved random vector functional-link networks (RVFLNs). Since the output weights of traditional RVFLNs are obtained by the least squares approach, a robustness problem may occur when the training dataset is contaminated with outliers. This affects the modeling accuracy of RVFLNs. To solve this problem, a Cauchy distribution weighted M-estimation based robust RFVLNs is proposed. Since the weights of different outlier data are properly determined by the Cauchy distribution, their corresponding contribution on modeling can be properly distinguished. Thus robust and better modeling results can be achieved. Moreover, given that the BF is a complex nonlinear system with numerous coupling variables, the data-driven canonical correlation analysis is employed to identify the most influential components from multitudinous factors that affect the MIQ indices to reduce the model dimension. Finally, experiments using industrial data and comparative studies have demonstrated that the obtained model produces a better modeling and estimating accuracy and stronger robustness than other modeling methods.

  20. Influence of rubber granulate in the coal blend on important process parameters of the coking plant

    Energy Technology Data Exchange (ETDEWEB)

    A. Winter; K. Pilz; A. Gahleitner; G. Woisetschlaeger; Monika Friedl [Voestalpine Stahl GmbH (Germany)

    2004-07-01

    The talk is outlined in a series of 14 slides/overheads. It discusses the use of scrapped tires in coking plant and traces the amount of zinc present in every product of the coking plant, blast furnaces and sintering plant - coke, coke breeze, sinter and waste water produced.

  1. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    Science.gov (United States)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  2. Development and start up of a co-injection system of coal tar/natural gas in blast furnace no. 4; Desarrollo y puesta en operacion de un sistema de co-inyeccion de alquitran/gas natural en el alto horno no. 4

    Energy Technology Data Exchange (ETDEWEB)

    Falcon Rodriguez, Manuel I; Mata Esparza, Hector Rolando; Arevalo Ballesteros, Gerardo [Altos Hornos de Mexico S. A., Coahuila (Mexico)

    1994-12-31

    The crisis has attracted the world`s attention on the need for energy conservation and the development in a greater extent the utilization of carbon base fuels and other energy sources (nuclear energy). Being a blast furnace, not only an energy consumer but also an energy producer, the greatest contribution to the pig iron cost is the energy needed to melt and reduce to metallic state the iron ores, this energy is mainly derived from coke. The dependence on coal via the coking plant to produce first fusion iron is incremented day after day as a result of the high levels of production. Altos Hornos de Mexico (AHMSA), contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently the shortage of coke for productions higher than 2.6 MMT of pig iron is pending. The injection of fuels into a blast furnace through its nozzles is a technology used for the diminishing the coke consumption of coke, its use implies a change in the philosophy of the blast furnace operation, and is currently employed in most of the blast furnaces of the world. AHMSA taking advantage of coal tar production (approx. 130 tons/day) in its coking plants decided the design and put into operation a co-injection system of coal tar and natural gas. The activities tending to carry out this project were initiated on April 1993, performing all of them with its own resources, completing them on July 18, 1993, day on which the injection of coal tar/natural gas in blast furnace No. 4 in a stable form. To date (October 1993), the coal tar injection has been increased up to 36 kg/ton of pig iron. During the injection periods, the presence of operational, mechanical and instrumentation problems have not been an obstacle for the evolution on the injection, fulfilling its function of substituting coke in a replacing relationship of 1:1, i.e. 1 kg of coal tar per each kg of coke, without affecting the product quality

  3. Development and start up of a co-injection system of coal tar/natural gas in blast furnace no. 4; Desarrollo y puesta en operacion de un sistema de co-inyeccion de alquitran/gas natural en el alto horno no. 4

    Energy Technology Data Exchange (ETDEWEB)

    Falcon Rodriguez, Manuel I.; Mata Esparza, Hector Rolando; Arevalo Ballesteros, Gerardo [Altos Hornos de Mexico S. A., Coahuila (Mexico)

    1993-12-31

    The crisis has attracted the world`s attention on the need for energy conservation and the development in a greater extent the utilization of carbon base fuels and other energy sources (nuclear energy). Being a blast furnace, not only an energy consumer but also an energy producer, the greatest contribution to the pig iron cost is the energy needed to melt and reduce to metallic state the iron ores, this energy is mainly derived from coke. The dependence on coal via the coking plant to produce first fusion iron is incremented day after day as a result of the high levels of production. Altos Hornos de Mexico (AHMSA), contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently the shortage of coke for productions higher than 2.6 MMT of pig iron is pending. The injection of fuels into a blast furnace through its nozzles is a technology used for the diminishing the coke consumption of coke, its use implies a change in the philosophy of the blast furnace operation, and is currently employed in most of the blast furnaces of the world. AHMSA taking advantage of coal tar production (approx. 130 tons/day) in its coking plants decided the design and put into operation a co-injection system of coal tar and natural gas. The activities tending to carry out this project were initiated on April 1993, performing all of them with its own resources, completing them on July 18, 1993, day on which the injection of coal tar/natural gas in blast furnace No. 4 in a stable form. To date (October 1993), the coal tar injection has been increased up to 36 kg/ton of pig iron. During the injection periods, the presence of operational, mechanical and instrumentation problems have not been an obstacle for the evolution on the injection, fulfilling its function of substituting coke in a replacing relationship of 1:1, i.e. 1 kg of coal tar per each kg of coke, without affecting the product quality

  4. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete

    International Nuclear Information System (INIS)

    Akcaoezoglu, Semiha; Atis, Cengiz Duran; Akcaoezoglu, Kubilay

    2010-01-01

    In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.

  5. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete.

    Science.gov (United States)

    Akçaözoğlu, Semiha; Atiş, Cengiz Duran; Akçaözoğlu, Kubilay

    2010-02-01

    In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependent on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.

  6. Bioceramic inlays do not improve mechanical incorporation of grit-blasted titanium stems in the proximal sheep femur.

    Science.gov (United States)

    Keränen, Pauli; Koort, Jyri; Itälä, Ari; Ylänen, Heimo; Dalstra, Michel; Hupa, Mikko; Kommonen, Bertel; Aro, Hannu T

    2010-03-15

    The aim of the present study was to determine, if bioactive glass (BG) surface inlays improve osseointegration of titanium implants in the proximal femur of adult sheep. In simulation of uncemented primary stems (nine animals), only the proximal part of the implants was grit-blasted and three surface slots of the grit-blasted region were filled with sintered BG microspheres. Primary stems were implanted using press-fit technique. In revision stem simulation (eight animals), grit-blasting was extended over the whole implant and seven perforating holes of the stem were filled by sintered BG granules. Revision stems were implanted with a mixture of autogenous bone graft and BG granules. Comparison with solid partially or fully grit-blasted control stems implanted in the contralateral femurs was performed in the primary and revision stem experiments at 12 and 25 weeks, respectively. Implant incorporation was evaluated by torsional failure testing and histomorphometry. Only one-third of the primary stems anchored mechanically to bone. The revision stems incorporated better and the BG inlays of the revision stems showed ingrowth of new bone. However, there were no significant differences in the torsional failure loads between the stems with BG inlays and the control stems. In conclusion, surface BG inlays gave no measurable advantage in mechanical incorporation of grit-blasted titanium implants. Overall, the proximal sheep femur, characterized by minimal amount of cancellous bone and the presence of adipocytic bone marrow, seemed to present compromised bone healing conditions. (c) 2009 Wiley Periodicals, Inc.

  7. DC graphite arc furnace, a simple system to reduce mixed waste volume

    Energy Technology Data Exchange (ETDEWEB)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J. [and others

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.

  8. DC graphite arc furnace, a simple system to reduce mixed waste volume

    International Nuclear Information System (INIS)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-01-01

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials

  9. Suchá směs pro přípravu zálivkové směsi do instalačního vrtu měřící sondy a zálivková směs

    OpenAIRE

    Vavro, M. (Martin); Staš, L. (Lubomír); Souček, K. (Kamil); Waclawik, P. (Petr); Kukutsch, R. (Radovan)

    2016-01-01

    The essence of submitted technical solution is the composition of the fine-grained dry mix mortar based on cement, granulated blast furnace slag, well-graded sand, and suitable powder admixtures. After mixing with water and other admixtures, the flowable fresh grouting mortar that expand to sufficiently counteract the plastic shrinkage normally associated with cement grouts. This grouting mortar is suitable for filling of boreholes intended for rock mass stress measurements in coal seams.

  10. The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag

    International Nuclear Information System (INIS)

    Luo, Siyi; Feng, Yu

    2016-01-01

    Blast furnace (BF) slag, a byproduct of steelmaking industry, contains a large amount of sensible heat and is composed of some metal oxides, which exhibits preferable catalytic performance in improving tar cracking and C_nH_m reforming. This paper presents a heat recovery system from the heat of BF slag, which generates hydrogen-rich gas via the endothermic reactions of sludge pyrolysis. The effects of various parameters including the slag temperature, the mass ratio of slag to sludge (B/S), particle size and feed moisture on product yields and gas characteristics were evaluated separately. It was found that the pyrolysis products distribution was significantly influenced by the BF slag temperature. The differences resulting from varying B/S practically disappear as higher temperature heat carrier is approached. The optimum feed moisture was in favour of sludge pyrolysis by getting char and tar participate in gasification reactions, improving gas yield and quality. BF slag as catalyst can greatly increase H_2 and CO contents of gas by improving tar degradation and reforming of biogas (CO_2 and CH_4). Decreasing the slag particles size was helpful to sludge primary pyrolysis to produce more light gases, less char and condensate, while its effects on gas compositions was not evident. - Highlights: • The sensible heat of molten slag was recovered and converted into combustible gas. • A novel rotary pyrolysis reactor using BF slag as heat carrier was presented. • The moisture in sludge was used as the gasification medium and hydrogen source.

  11. BIO-PCI, Charcoal injection in Blast Furnaces: State of the art and economic perspectives

    Directory of Open Access Journals (Sweden)

    Feliciano-Bruzual, C.

    2013-12-01

    Full Text Available The injection of grinded particles of charcoal through the tuyeres in Blast Furnaces, here coined Bio-PCI, presents as an attractive and plausible alternative to significantly reduce the CO2 emissions generated during hot metal production. In this contribution a summary of the technological fundaments, benefits and limitations of the incorporation of Bio-PCI is presented. Additionally the principal economic challenges of renewables fuel in ironmaking are exposed, with especial interest in the main productions costs of charcoal making. In this sense, a strategic question arises: can the residual biomass drive the emergence of Bio-PCI?, our analysis leads to conclude that the use of residual biomass (e.g. agricultural and forestry residues may significantly reduce the production cost in 120-180 USD/t in comparison to primary woods sources, this naturally increment the economical attractiveness of Bio-PCI substitution.La inyección de carbón vegetal por toberas en Altos Hornos, aqui denominada Bio-PCI, se presenta como una forma atractiva y realista de reducir significativamente las emisiones de CO2 generadas durante la producción de arrabio. En esta contribución se presenta un resumen de los fundamentos tecnológicos, los beneficios y las limitaciones de la incorporación de la tecnología del Bio-PCI. Adicionalmente se exponen los retos económicos que enfrentan los combustibles renovables a los fósiles, con especial interés en los principales costos de producción del carbón vegetal. En este sentido se plantea una pregunta estratégica: ¿puede la biomasa residual impulsar el desarrollo de la Bio-PCI?. Nuestro análisis conlleva a concluir que la utilización de biomasa residual (residuos forestales y agrícolas puede reducir sensiblemente el costo del carbón vegetal entre 120-180 USD/t en comparación con biomasa primaria, incrementando su competitividad frente al carbón mineral.

  12. Effect of Slag Content and Hardening Accelerator Dosage on the Physico Mechanical Properties of Cement and Concrete

    International Nuclear Information System (INIS)

    Derabla, R.; Mokrani, I.; Benmalek, M.L.

    2011-01-01

    Our contribution consists at the study of the effect of (0 %, 0.2 % and 0.34 %) dosage of an hardening accelerating plasticizer (Plastocrete 160, produced by Sika Aldjazair) on the properties of normal mortar and concretes prepared with portland cement artificial of Hadjar Soud cement factory (Skikda - Algeria) with addition of (10 % and 20 %) of granulated blast furnace slag finely crushed of the El Hadjar blast furnace (Annaba - Algeria). The tests are focused to the physical and mechanical characteristics of elaborated materials to knowing: setting time, porosity, water absorption capacity and the test of compressive strength at 2, 7 and 28 days. The results obtained show clearly the reliability of the additive used to accelerate the hardening and to obtain high strengths at early age, which increase by increasing of the additive dosage. For the slag, its low hydraulic capacity does not make it profitable than at the long term (beyond 28 days). (author)

  13. Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

    Science.gov (United States)

    Li, Shangshu; Zou, Xingli; Zheng, Kai; Lu, Xionggang; Chen, Chaoyi; Li, Xin; Xu, Qian; Zhou, Zhongfu

    2018-04-01

    Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.

  14. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    Pribulová A.

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process. Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting +5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5% bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  15. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    A. Pribulová

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process.Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting+5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5%bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  16. The incorporation of low and medium level radioactive wastes (solids and liquids) in cement

    International Nuclear Information System (INIS)

    Palmer, J.D.; Smith, D.L.

    1985-07-01

    Experimentation has shown that high temperatures generated during the setting of ordinary Portland cement/simulant waste mixes can be significantly reduced by the use of a blend of ground granulated blast furnace slag and ordinary Portland cement. Trials on simulated waste showed that blended cement gave improved stability and a reduction in leach rates, and confirmed that the cement-based process can be used for the immobilisation of most types of low and medium level waste. (U.K.)

  17. The effects of large scale processing on caesium leaching from cemented simulant sodium nitrate waste

    International Nuclear Information System (INIS)

    Lee, D.J.; Brown, D.J.

    1982-01-01

    The effects of large scale processing on the properties of cemented simulant sodium nitrate waste have been investigated. Leach tests have been performed on full-size drums, cores and laboratory samples of cement formulations containing Ordinary Portland Cement (OPC), Sulphate Resisting Portland Cement (SRPC) and a blended cement (90% ground granulated blast furnace slag/10% OPC). In addition, development of the cement hydration exotherms with time and the temperature distribution in 220 dm 3 samples have been followed. (author)

  18. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Ivan, E-mail: ivan.mikhailov@misis.ru [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation); Komarov, Sergey [Tohoku University, 6-6-02 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8576 (Japan); Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation)

    2017-01-05

    Highlights: • nZVI is used as Fenton-like reagent for activation of Zn leaching from the BFS. • nZVI has positive effect on kinetics of Zn leaching though with some loss of efficiency. • A complex ultrasonic-assisted method for BFS recycling is proposed. - Abstract: Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1 g/l addition of nZVI and 0.05 M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5 min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15 min treatment with 0.1 M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated).

  19. Data-Driven Nonlinear Subspace Modeling for Prediction and Control of Molten Iron Quality Indices in Blast Furnace Ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping; Song, Heda; Wang, Hong; Chai, Tianyou

    2017-09-01

    Blast furnace (BF) in ironmaking is a nonlinear dynamic process with complicated physical-chemical reactions, where multi-phase and multi-field coupling and large time delay occur during its operation. In BF operation, the molten iron temperature (MIT) as well as Si, P and S contents of molten iron are the most essential molten iron quality (MIQ) indices, whose measurement, modeling and control have always been important issues in metallurgic engineering and automation field. This paper develops a novel data-driven nonlinear state space modeling for the prediction and control of multivariate MIQ indices by integrating hybrid modeling and control techniques. First, to improve modeling efficiency, a data-driven hybrid method combining canonical correlation analysis and correlation analysis is proposed to identify the most influential controllable variables as the modeling inputs from multitudinous factors would affect the MIQ indices. Then, a Hammerstein model for the prediction of MIQ indices is established using the LS-SVM based nonlinear subspace identification method. Such a model is further simplified by using piecewise cubic Hermite interpolating polynomial method to fit the complex nonlinear kernel function. Compared to the original Hammerstein model, this simplified model can not only significantly reduce the computational complexity, but also has almost the same reliability and accuracy for a stable prediction of MIQ indices. Last, in order to verify the practicability of the developed model, it is applied in designing a genetic algorithm based nonlinear predictive controller for multivariate MIQ indices by directly taking the established model as a predictor. Industrial experiments show the advantages and effectiveness of the proposed approach.

  20. Capability of GGBS concrete exposed to sea water

    International Nuclear Information System (INIS)

    Salihuddin Radin Sumadi; Rosli Hamir; Abu Bakar Mohamad Diah

    1999-01-01

    This paper reported studies the penetration of chloride into ground granulated blast furnace slag (GGBS) concrete with exposure on marine environment. Test were conducted on ordinary portland cement (OPC) concrete and 60% (by weight) of OPC replaced GGBS (S-60). The specimens immersed in sea water were tested for chloride penetration. The results show that higher replacement level of GGBS in concrete significantly reduce the chloride content in concrete. The results also show that chloride concentration decreases with increasing depth into concrete. (author)

  1. Fiscal 1999 report on result of the model project for waste heat recovery in hot blast stove; 1999 nendo netsufuro hainetsu kaishu model jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purpose of curtailing energy consumption of the steel industry, a heavy energy consuming industry in China, a model project was carried out for waste heat recovery in a hot blast stove, with the fiscal 1999 results reported. In the process of this project, a heat exchanger for recovering heat is installed in the exhaust gas flue of a hot blast stove in ironworks, with sensible heat recovered through a heating medium. The heat exchanger for recovering heat and the preheating heat exchanger, which was installed in the main pipe for blast furnace gas and for combustion air, were connected by pressure piping, with the blast furnace gas and the combustion air preheated. In addition, a heating medium circulating pump for transporting the heating medium is installed, as are an expansion tank for absorbing expansion/contraction due to change in temperature, a heating medium storage tank for accepting the entire heating medium in the system for the maintenance of the equipment, and heating medium feeding pump, for example. This year, on the basis of the 'Agreement Annex', basic designs and detailed designs were performed for each equipment in the waste heat recovering equipment for the hot blast stove. Further, procurement and manufacturing were implemented for various component parts and devices of the waste heat recovering equipment. (NEDO)

  2. Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling

    Science.gov (United States)

    Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song

    2017-10-01

    Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.

  3. Mechanical behaviour of alkali-activated blast furnace slag-activated metakaolin blended pastes. Statistical study

    Directory of Open Access Journals (Sweden)

    Higuera, I.

    2012-06-01

    Full Text Available The study and development of alternative, more ecoefficient binders than portland cement are attracting a good deal of scientific and technological interest. Binders obtained from the chemical interaction between calcium silico-aluminous materials and highly alkaline solutions are one of several types of such possible cements. The present paper discusses the mechanical behaviour and mineralogical composition of blended pastes made from NaOH-activated vitreous blast furnace slag and metakaolin. The aim of the study was to determine how parameters such as the slag/metakaolin ratio, activating solution concentration and curing temperature affect strength development in these binders. A statistical study was conducted to establish the impact of each variable and model strength behaviour in these alkaline cements. The conclusion drawn is that activator concentration and the slag/metakaolin ratio are both determinant parameters.

    El estudio y desarrollo de cementos alternativos y más eco-eficientes que el cemento Portland es un tema de gran impacto a nivel científico y tecnológico. Entre esos posibles cementos se encuentran los cementos alcalinos que son materiales conglomerantes obtenidos por la interacción química de materiales silico-aluminosos cálcicos y disoluciones fuertemente alcalinas. En el presente trabajo se estudia el comportamiento mecánico y la composición mineralógica de mezclas de escoria vítrea de horno alto y metacaolín activadas alcalinamente con disoluciones de NaOH. El objetivo de este estudio es conocer cómo afectan parámetros tales como la relación escoria/metacaolín, la concentración de la disolución activadora y la temperatura de curado, al desarrollo resistente de las mezclas. A través del estudio estadístico realizado se ha podido establecer la influencia de cada variable y modelizar el comportamiento resistente de estos cementos alcalinos. Se concluye que la concentración del activador y la relaci

  4. Reprocessing of metallurgical slag into materials for the building industry

    International Nuclear Information System (INIS)

    Pioro, L.S.; Pioro, I.L.

    2004-01-01

    Several methods of reprocessing metallurgical (blast furnace) slag into materials for the building industry, based on melting aggregates with submerged combustion, were developed and tested. The first method involves melting hot slag with some additives directly in a slag ladle with a submerged gas-air burner, with the objective of producing stabilized slag or glass-ceramic. The second method involves direct draining of melted slag from a ladle into the slag receiver, with subsequent control of the slag draining into the converter where special charging materials are added to the melt, with the objective of producing glass-ceramic. A third method involves melting cold slag with some additives inside a melting converter with submerged gas-air burners, with the objective of producing glass-ceramic fillers for use in road construction. Specific to the melting process is the use of a gas-air mixture with direct combustion inside the melt. This feature provides melt bubbling to help achieve maximum heat transfer from combustion products to the melt, improve mixing (and therefore homogeneity of the melt), and increases the rate of chemical reactions. The experimental data for different aspects of the proposed methods are presented. The reprocessed blast-furnace slag in the form of granules can be used as fillers for concretes, asphalts, and as additives in the production of cement, bricks and other building materials. As well, reprocessed blast-furnace slag can be poured into forms for the production of glass-ceramic tiles

  5. The influence of chemical composition and fineness on the performance of alkali activated cements obtained from blast furnace slags

    International Nuclear Information System (INIS)

    Langaro, Eloise Aparecida; Matoski, Adalberto; Luz, Caroline Angulski da; Buth, Islas Stein; Moraes, Maryah Costa de; Pereira Filho, Jose Ilo

    2017-01-01

    New binders are being developed for concrete in order to reduce the environmental impact mainly related to CO_2 emissions. Alkali -activated cements (CATs) are obtained from lime-aluminosilicate materials and an alkali activator and can reduce by 80% the emission of CO_2 compared to Portland Cement (PC). Papers have also shown physical and mechanical properties similar or higher than those presented by the PC, however, the activation of raw material is complex. Recent papers have also have showed a strong influence of the characteristics of raw material on the performance of CAT, however, little mentioned in the literature.. Therefore, this paper aimed to analyze the influence of characteristics of blast furnace slag (fineness and chemical composition) on the behavior of activated alkali cements. For this purpose, two slags were used, A and B, which were submitted to different milling times; and activated using 5% of NaOH. Mortars and pastes were prepared for compressive strength testing (7 and 28 days), measurements of heat of hydration and investigation of microstructure (XRD and DSC) were made. The results showed that the mortar made with slag A reached a very good mechanical performance, close to 48MPa at 28 days, and higher formation of CSH, in opposite of slag B. The probable hypothesis of this study is that the system formed in CAT made with slag A (containing more Al_2O_3) could provide CSH with a greater incorporation of Al and a lower crystallinity, increasing the mechanical strength. (author)

  6. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein

    2011-06-01

    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  7. Material properties of the F82H melted in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Kano, Sho; Abe, Hiroaki [Institute for Materials Research, Tohoku university, Sendai, Miyagi (Japan)

    2015-10-15

    Highlights: • We studied material properties of reduced activation ferritic/martensitic steel. • We melted F82H using a 20 tons electric arc furnace for the first time. • Mass effect likely affected material properties. • MX (M: Metal, C: Carbon and/or Nitrogen) precipitates mainly formed on grain and sub grain boundaries. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel. It is necessary to develop the manufacturing technology for fabricating such large-scale steel with appropriate mechanical properties. In this work, we focused fundamental mechanical properties and microstructures of F82H-BA12 heat which was melted using a 20 tons electric arc furnace followed by electroslag remelting process. Its raw material of iron was blast furnace iron, because the production volume of electrolytic iron which has been used in former heats, is limited. After melting and forging, this F82H-BA12 heat was heat-treated in four different conditions to consider their fluctuations and to optimize them, and tensile and Charpy impact tests were then performed. The result of these mechanical properties were comparable to those of former F82H heats less than 5 tons which were melted applying vacuum induction melting.

  8. EVALUATION OF THE THIXOTROPY OF OIL-WELL CEMENTS USED FOR CEMENTING LOST CIRCULATION ZONES: EFFECT OF PLASTER AND BLAST FURNACE SLAG

    Directory of Open Access Journals (Sweden)

    T. Bouziani

    2015-08-01

    Full Text Available Cementing of oil and gas wells can be a very delicate operation. Among the concerns of service companies, during this operation are the nature and conditions of the formations in well. This is the case of cementing operations in southern Algeria, specifically on the fields of In-Amen, where the formations in lost zones are naturally weak and highly permeable. In these areas, drilling fluids (muds and cements pumped will be, completely or partially lost, what we call "lost circulation". Thixotropic cements are useful to overcome lost circulation problems. They are characterized by a special rheological behavior, allowing it to plug lost zones when they are pumped.Our work aims to assess the thixotropy of cements perapred with two types of cement (class G Asland cement and CEM I 42.5 portland cement with the plaster, using a viscometer with coaxial cylinder (couette type. Moreover, the effect of blast furnace slag (LHF on the properties and thixotropic mixtures prepared was also studied. The results show that portland cement (available locally can produce mixes with higher and more stable thixotropy than the class G cement (from importation, which is a practical and economical for cementing job operations in wells with loss zones. The results also show that the effect of LHF is positive, since in addition to his contribution to long term performances, especially the durability of hardened concrete, it improves the thixotropy of cement made of plaster.

  9. Autoclave-hardening slag-alkali binder with high water content

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Kozyrin, N.A.; Melikhova, N.I.; Narkevich, N.K.; Ryabov, G.G.

    1987-01-01

    The results of investigations into properties of slag-alkali binder, that may be used for concretes of reactor radiation and thermal shieldings, are presented. These concretes have increased chemical stability and mechanical strength, high content of chemically bound water (approximately 14%), that is not lost under heating up to 550 deg C. Dumping and granulated slags of blast-furnace process, sodium-bicarbonate-alkali fusion cake formed at burning of adipic acid residues, technical sodium hydroxide and sodium liquid glass are used as raw material for slag-alkali binder

  10. Melting of fuel element racks and their recycling as granulate

    International Nuclear Information System (INIS)

    Quade, U.; Kluth, T.; Kreh, R.

    1998-01-01

    In order to increase the storage capacity for spent fuel elements in the Spanish NPPs of Almaraz and Asco, the existing racks were replaced by compact one in 1991/1993. The 28 racks from Almaraz NPP were cut on site, packed in 200-I-drums and taken to intermediate storage. For the remaining 28 racks of Asco NPP, ENRESA preferred the melting alternative. To demonstrate the recycling path melting in Germany, a test campaign with six racks was performed in 1997. As a result of this test melt, the limits for Carla melting plant were modified to 200 Bq/g total, α, β, γ 100 Bq/g nuclear fuels, max. 3g/100 kg 2,000 Bq/g total Fe55, H 3 , C-14 and Ni63. After the test melt campaign, the German authorities licensed the import and treatment of the remaining 22 racks on the condition that the waste resulting from the melting process as well as the granules produced were taken back to Spain. The shipment from Asco via France to Germany has been carried out in F 20-ft-IPII containers in accordance with ADR. Size reduction to chargeable dimensions was carried out by a plasma burner and hydraulic shears. For melting, a 3.2 Mg medium frequency induction furnace, operated in a separate housing, was used. For granules production outside this housing, the liquid iron was cast into a 5Mg ladle and then, through a water jet, into the granulating basin. The total mass of 287,659 Kg of 28 fuel elements racks and components of the storage basin yielded 297,914 kg of iron granulate. Secondary waste from melting amounted to 9,920 kg, corresponding to 3.45% of the input mass. The granulating process produced 6,589 kg, corresponding to 2.28% of the total mass to be melted. Radiological analysis of samples taken from the melt and different waste components confirmed the main nuclides Co60, Cs134 and Cs137. Fe55 was highly overestimated by the preliminary analysis. (Author) 2 refs

  11. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  12. The effect of harmeful elements in production of iron in relation to input and output material balance

    Directory of Open Access Journals (Sweden)

    P. Besta

    2012-07-01

    Full Text Available The main objectives of blast-furnace operators include maximum production of pig iron of required chemical composition at minimal cost. This can be ensured only in case of quality raw material basis and trouble-free operation of blast-furnace. Both parameters are influenced by the concentration of undesirable elements. The negative elements contained in the blast-furnace raw materials cause many technological problems in the sintering as well as in the blast-furnace process. These are mainly heavy metals and alkaline carbonates. The article deals with the analysis of material balance of zinc and selected alkaline carbonates contents in the input raw materials and output products of the blast-furnace.

  13. FY 1999 report on the fundamental investigation for promotion of Joint Implementation. Blast furnace top pressure recovery turbine (TRT) project for China's Panzhihua Iron and Steel (Group) Company; 1999 nendo Chugoku Panzhihua kotetsu (shudan) koji koro rochoatsu hatsuden setsubi (TRT) project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Feasibility study is conducted for introduction of a top pressure recovery turbine (TRT) in China's Panzhihua Iron and Steel (Group) Company, Sichuan Province, for the potential project to simultaneously contribute to abatement of the greenhouse effect gases and to sustainable economic development of the counterpart country. This project considers to adopt the TRTs in 3 blast furnaces (No.1 to 3) of the 4 furnaces in service at the works, producing 2,500,000 t/y of crude steel, where the No.4 furnace is already provided with the model system and not considered in this project. According to the feasibility study results, the total fund required is 5.46 billion yen (Japan-made facilities: 4.172 billion yen, and China-made facilities: 1.288 billion yen), energy-saving effect is 36,467 t/y as crude, greenhouse effect gas emission abatement effect: 112,830 t/y as CO2, and pay-off period is 8.3 years. This plan considers to adopt almost the same facilities as those for the model project on a commercial basis. The taxes will be applied to the Japan-made facilities at a rate of 30% or more, although they were free for the model project, which should squeeze the investment effects. For the TRT project to be realized, low-interest fund is essential, and environmental yen loans will be necessary. (NEDO)

  14. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  15. [The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?].

    Science.gov (United States)

    Royère, C

    1999-03-01

    The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.

  16. Mechanism of the formation of hollow spherical granules using a high shear granulator.

    Science.gov (United States)

    Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-05-30

    Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Deposition of 60Co and 137Cs adsorbed on zeolite in matrices on the blast furnace slag

    International Nuclear Information System (INIS)

    Foeldesova, M.; Lukac, P.; Dillinger, P.

    1995-01-01

    The experimental data (leaching tests and compressive strength measurements) are presented for case the radionuclides from model water solution and radioactive waste water were uptake on natural and chemically modified granular zeolitic tuffite which show improved sorption ability and were subsequently incorporated into cement casts on blast furnace slags (BSF) basis. The all experiment were carried out with zeolite tuffite from Nizny Hrabovec, Slovak Republic. The natural zeolite was treated by the NaOH solution. The blends of individual components were casted into rectangular prism moulds (1 x 1 x 3 cm). The cast consisted invariably of 90% of BSF, 10% of fine zeolite and solution of water glass and to this basic mixture were added either 10 or 20% granular active, or non active zeolite during the mix formation, in excess to content of previous solid components. The water/cement ratio varied in interval 0.32-0.40. Model solutions labelled by cesium-137 or cobalt-60 have been used for sorption experiment and real waste water concentrate from NPP Jaslovske Bohunice as well. The real water consisted of cesium-134, cesium-137, cobalt-60, in borate and nitrate form. The radioactivity of dry cement casts was measured in 4π geometry. The leaching experiments were performed in three solutions: water (W), 0.03 M HCl (A) and 0.04 M NaOH (B). The mechanical properties of sample with non active granular zeolites and their corrosion characteristics as reflected by the bulk density changes. The experiments showed that leaching of radionuclides, which were sorbed from solution and radioactive waste water, in water and bases solution were negligible. Changes of radioactivity of casts, prepared from model solution, in acid solution, which were less than 5%. The mechanical strength of prepared composites is favourable and shows good compatibility of zeolitic additives with a basic matrix. Leaching experiments and mechanical strength are hopeful and show good retention of observed

  18. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation

    DEFF Research Database (Denmark)

    Kumar, Ashish; Alakarjula, Maija; Vanhoorne, Valérie

    2016-01-01

    Twin-screw granulation is a promising wet granulation technique for the continuous manufacturing of pharmaceutical solid dosage forms. A twin screw granulator displays a short residence time. Thus, the solid-liquid mixing must be achieved quickly by appropriate arrangement of transport and kneading...

  19. Calculation of driling and blasting parameters in blasting performance

    OpenAIRE

    Dambov, Risto; Karanakova Stefanovska, Radmila; Dambov, Ilija

    2015-01-01

    In all mining technology drilling and blasting parameters and works are one of the main production processes at each mine. The parameters of drilling and blasting and explosives consumption per ton of blasting mass are define economic indicators of any blasting no matter for what purpose and where mining is performed. The calculation of rock blasting should always have in mind that the methodology of calculation of all drilling and blasting parameters in blasting performance are performed for...

  20. Electrical conductivity of the screening residuals of coke production in context of ferrochromium production in a submerged arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Rousu, Arto; Mattila, Olli [Lab. of Process Metallurgy, Univ. of Oulu (Finland)

    2009-11-15

    Coke is used as a reducing agent in the production of ferrochromium in a submerged arc furnace (SAF). Its good electrical conductivity compared to other input materials makes it a dominant current conductivity substance in the burden. The resistance of the coke has to be high enough to ensure the proper functionality of the furnace. Used cokes for submerged arc furnace production are relatively small in size compared to e.g. blast furnace (BF) cokes. A common practice is to use screening residual coke, which is too small for the BF, in SAF. The goal of this study was to show differences in the electrical properties of screening residual cokes compared to coke formed in different parts of the coke battery, in dependence of particle size. The resistances of different cokes were measured and XRD measurements were performed to define the crystallographic structure of the selected cokes. The results indicate that small coke particles have higher overall resistance, which is due to their internal properties. This small weakly carbonized coke is formed in the middle of the coking battery and is subject to changes in varying coking practices. Continuous quality control of screening residual coke is needed to use it in the SAF. (orig.)

  1. Experimental study on steam gasification of coal using molten blast furnace slag as heat carrier for producing hydrogen-enriched syngas

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wu, Tianwei; Yang, Fan; Qin, Qin

    2016-01-01

    Highlights: • New method for producing HRG by gasification using BFS as heat carrier was proposed. • The continuous experiment of steam gasification in molten BFS was conducted. • The hydrogen-enriched syngas was produced by this method. • The molten BFS waste heat was utilized effectively by steam gasification. • This method could be widely used in steam gasification of different types of coal. - Abstract: The new method for producing hydrogen-enriched syngas (HRG) by steam gasification of coal using molten blast furnace slag (BFS) as heat carrier was established. In order to achieve the HRG production, a gasification system using this method was proposed and constructed. The carbon gasification efficiency (CE), hydrogen yield (YH_2) and cold gasification efficiency (CGE) in the molten slag reactor were measured, and the effects of temperature, S/C (steam to coal) ratio and coal type on the reaction performance were accessed. The results indicated that the preferred temperature was 1350 °C, which ensured the miscibility of coal–steam–slag, the diffusion of reactant in molten BFS as well as recovering waste heat. The optimal S/C ratio was 1.5–2.0 for producing HRG. Under these conditions, the hydrogen fraction was higher than 63% and the gas yield reached to 1.89 Nm"3/kg. The CE and CGE were higher than 96% and 102%, respectively. The YH_2 also reached to 1.20 Nm"3/kg. Meanwhile, different types of coal were successfully gasified in molten BFS reactor for producing HRG. The proposed method enhanced the gasification efficiency of different types of coal, recovered the BFS waste heat effectively, and had important guidance for industrial manufacture.

  2. Characterization and modeling of major constituent equilibrium chemistry of a blended cement mortar

    International Nuclear Information System (INIS)

    Arnold, J.; Kosson, D. S.; Brown, K. G.; Garrabrants, A. C.; Meeussen, J. C. L.; Van Der Sloot, H. A.

    2013-01-01

    Cementitious materials containing ground granulated iron blast furnace slag and coal combustion fly ash as admixtures are being used extensively for nuclear waste containment applications. Whereas the solid phases of ordinary Portland cement (OPC) have been studied in great detail, the chemistry of cement, fly ash and slag blends has received relatively less study. Given that OPC is generally more reactive than slag and fly ash, the mineralogy of OPC provides a logical starting point for describing the major constituent chemistry of blended cement mortars. To this end, a blended cement mortar containing Portland cement, granulated blast furnace slag, fly ash and quartz sand was modeled using a set of solid phases known to form in hydrated OPC with the geochemical speciation solver LeachXS/ORCHESTRA. Comparison of modeling results to the experimentally determined pH-dependent batch leaching concentrations (USEPA Method 1313) indicates that major constituent concentrations are described reasonably well with the Portland cement mineral set; however, modeled and measured aluminum concentrations differ greatly. Scanning electron microscopic analysis of the mortar reveals the presence of Al-rich phyllosilicate minerals heretofore unreported in similar cementitious blends: kaolinite and potassic phyllosilicates similar in composition to illite and muscovite. Whereas the potassic phyllosilicates are present in the quartz sand aggregate, the formation of kaolinite appears to be authigenic. The inclusion of kaolinite in speciation modeling provides a substantially improved description of the release of Al and therefore, suggests that the behavior of phyllosilicate phases may be important for predicting long-term physico-chemical behavior of such systems. (authors)

  3. Granule size control and targeting in pulsed spray fluid bed granulation.

    Science.gov (United States)

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  4. Feasibility study on energy conservation and environmental improvement at Pakistan Steel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Feasibility study on energy conservation and environmental improvement was carried out with the aim of considering the realization of the CDM (clean development mechanism) project for reduction of global warming gas emissions and contributing to the environmental improvement and economic growth in Pakistan. In the study, projects on the following were studied: coke oven coal moisture control (CMC), sinter cooler waste heat recovery, blast furnace hot stove waste heat recovery, blast furnace pulverized coal injection (PCI), blast furnace top pressure recovery turbine (TRT), hot strip mill reheating furnace regenerative type burner, coke oven environmental improvement, and blast furnace cast house dust collection. As a result of the study, the implementation of the following three projects was regarded as promising in terms of energy conservation and economical effects: blast furnace pulverized coal injection, blast furnace top pressure recovery turbine and hot strip mill reheating furnace regenerative type burner. Further, the reduction in poisonous gas by the coke oven environmental improvement project was made a top priority. In Pakistan, the price of energy is kept low, and therefore, effects of energy conservation projects are not very much expected. However, the PCI project has an effect of substitution of low-priced domestic coal for imported coal. (NEDO)

  5. Metallurgy of mercury in Almaden: from aludel furnaces until Pacific furnaces

    International Nuclear Information System (INIS)

    Tejero-Manzanares, J.; Garrido Saenz, I.; Mata Cabrera, F.; Rubio Mesas, M. L.

    2014-01-01

    This paper shows the different types of furnaces for roasting cinnabar, used in the metallurgy of quicksilver over the centuries of exploitation of the Almaden Mines (Spain). Some of these techniques are part of our industrial heritage. They have contributed to name UNESCO World Heritage Site the vast technological legacy of these mines recently. This research contributes to close the long way of metallurgical activity from aludel furnaces until Pacif furnaces, first and lasted technology to produce on an industrial scale. It is delved into the most relevant aspects having to do with the type, evolution and number of furnaces existing on each of the periods. (Author)

  6. Regularities of formation of granules at granulation of powdered materials in drum devices

    International Nuclear Information System (INIS)

    Kelbaliyev, G.I; Samedli, V.M.

    2008-01-01

    Full text:Granulation of powdered materials in the presence of binding agent is widely used in the most multi-tankage productions of chemical, food, pharmaceutical, metallurgical and agrarian technology. Granulation of powdered materials with participation of liquid phase is carried out in screw, disk, plase-shaped and drum devices and also in devices with mixers. In all cases a formation and growth of granules takes place owing to wetting of separate particles of powder leading to agglomeration and coagulation of particles in their contact with each other. It is apparent that in early stage of granule formation a growth and formation of granules takes place owing to adherence of small particles and agglomerates to larger granules. The content of liquid phase owing to which are appeared adhesive, capillary and surface forces, keeping particles on surface of granule exerts an essential influence on process of granule formation. Besides composition of mixture, its moisture and physical-chemical properties of initial components a mixing frequency degree of filling and angle of inclination of the device, ratio of liquid and hard phases which defines finally qualitative characteristics of the process exert an essential influence on formation of granules as a result of agglomeration of particles of powder. Powder lamination on granule surface is as consequence of its consolidation whereas as a result of consolidation and compression, a binding agent containing in pores squeezed out to a surface, which increases a possibility and probability of further sticking of dry particles of powder. In all cases the further growth and completeness of form of granule is determined by distribution of concentration of binding agent in volume of granule, i.e. moisture content or moisture of granule surface

  7. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    Science.gov (United States)

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule.

  8. Advanced steel reheat furnace

    Energy Technology Data Exchange (ETDEWEB)

    Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  9. THE STUDY OF THE KINETIC OF NATURAL ZEOLITE GRANULES GROWTH AT DIFFERENT WAYS OF GRANULATION

    Directory of Open Access Journals (Sweden)

    Rybachuk VD

    2016-12-01

    Full Text Available Introduction. Active substances and excipients used in the manufacture of medicines in tablet form, in most cases, have poor technological properties. This fact determines the need for prior granulation of mass before compression. Granulators of various sizes and designs, running on different modes, made the formation, growth and consolidation of the powder particles that lead to obtain pellets of different shapes and sizes. From the literature it is known that granulation leads to two forms of granules: isodiametric and nonisodiametric. The first group of particles forms has globular shape with a smooth surface and the proportion in which the length, thickness and height are about the same. They are usually made by fluidized bed granulation, spray drying, pelletizing and granulation in dragee pan. Granules of nonisodiametric form in which length is several times the width and height are made mostly by extrusion and compacting. The geometrical parameters of obtained granules are affected by the properties of raw materials, the granulation modes, type and amount of added humidifier and so on. The shape and size of granules, from a technological point of view, are the key factors that contribute, except organoleptic characteristics of the product, its technological properties such as particle size distribution, bulk volume, the ability of the material to shrinkage, porosity, fluidity, mechanical strength and so on. Properly selected for specific conditions granulation method is able to provide the finished product with the specified technological parameters depending on the needs. The aim of this work was to study the effect of granulation method and its conditions on the kinetics of growth of the natural zeolite granules and some quality characteristics of obtained granules. Material & methods. As objects of study served the natural zeolite pellets produced using 3%, 5%, 7% and 10% potato starch paste and solution of polyvinylpyrrolidone (PVP

  10. Distribution of binder in granules produced by means of twin screw granulation

    DEFF Research Database (Denmark)

    Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen

    2014-01-01

    According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding...

  11. Comparison of a burning mass ceramics coating in laboratory furnace and instrustrial furnace

    International Nuclear Information System (INIS)

    Soares, R.A.L.; Castro, J.R. de S.

    2012-01-01

    This work intends to analyze the differences obtained in the technological properties of a ceramic coating after firing in two distinct environments, laboratory furnace and industrial furnace. For this, was characterized a ceramic mass used in the production of porous coating. The analyzes were performed chemical, mineralogical and thermal mass in that. The specimens were obtained by compacting and burned in the maximum temperature of 1140 deg C in two furnaces, laboratory and industrial. The technological tests were performed linear shrinkage, water absorption, bulk density and mechanical strength. The microstructure was evaluated by ray-X diffraction and scanning electron microscopy. The results showed that both furnaces provided significant differences in analyzed specimens, such as increased strength and low water absorption in the fired samples in a laboratory furnace, for example. (author)

  12. The paradox of high shear granulation : the formation of non-homogeneous granules

    NARCIS (Netherlands)

    Dries, Kaspar van den

    2004-01-01

    Wet granulation is a process used for the particle size enlargement of primary powders. The mixing of a liquid with the powder glues the primary particles together, which results in the formation of the granules. The mixing action can be performed in many ways, like tumbling (drum granulation),

  13. Deposition of {sup 60}Co and {sup 137}Cs adsorbed on zeolite in matrices on the blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Foeldesova, M; Lukac, P; Dillinger, P [Slovak Technical Univ., Bratislava (Slovakia)

    1996-12-31

    The experimental data (leaching tests and compressive strength measurements) are presented for case the radionuclides from model water solution and radioactive waste water were uptake on natural and chemically modified granular zeolitic tuffite which show improved sorption ability and were subsequently incorporated into cement casts on blast furnace slags (BSF) basis. The all experiment were carried out with zeolite tuffite from Nizny Hrabovec, Slovak Republic. The natural zeolite was treated by the NaOH solution. The blends of individual components were casted into rectangular prism moulds (1x1x3 cm). The cast consisted invariably of 90% of BSF, 10% of fine zeolite and solution of water glass and to this basic mixture were added either 10 or 20% granular active, or non active zeolite during the mix formation, in excess to content of previous solid components. The water/cement ratio varied in interval 0.32-0.40. Model solutions labelled by cesium-137 or cobalt-60 have been used for sorption experiment and real waste water concentrate from NPP Jaslovske Bohunice as well. The real water consisted of cesium-134, cesium-137, cobalt-60, in borate and nitrate form. The radioactivity of dry cement casts was measured in 4{pi} geometry. The leaching experiments were performed in three solutions: water (W), 0.03 M HCl (A) and 0.04 M NaOH (B). The mechanical properties of sample with non active granular zeolites and their corrosion characteristics as reflected by the bulk density changes. The experiments showed that leaching of radionuclides, which were sorbed from solution and radioactive waste water, in water and bases solution were negligible. Changes of radioactivity of casts, prepared from model solution, in acid solution, which were less than 5%. The mechanical strength of prepared composites is favourable and shows good compatibility of zeolitic additives with a basic matrix. Leaching experiments and mechanical strength are hopeful and show good retention of observed

  14. Brain injuries from blast.

    Science.gov (United States)

    Bass, Cameron R; Panzer, Matthew B; Rafaels, Karen A; Wood, Garrett; Shridharani, Jay; Capehart, Bruce

    2012-01-01

    Traumatic brain injury (TBI) from blast produces a number of conundrums. This review focuses on five fundamental questions including: (1) What are the physical correlates for blast TBI in humans? (2) Why is there limited evidence of traditional pulmonary injury from blast in current military field epidemiology? (3) What are the primary blast brain injury mechanisms in humans? (4) If TBI can present with clinical symptoms similar to those of Post-Traumatic Stress Disorder (PTSD), how do we clinically differentiate blast TBI from PTSD and other psychiatric conditions? (5) How do we scale experimental animal models to human response? The preponderance of the evidence from a combination of clinical practice and experimental models suggests that blast TBI from direct blast exposure occurs on the modern battlefield. Progress has been made in establishing injury risk functions in terms of blast overpressure time histories, and there is strong experimental evidence in animal models that mild brain injuries occur at blast intensities that are similar to the pulmonary injury threshold. Enhanced thoracic protection from ballistic protective body armor likely plays a role in the occurrence of blast TBI by preventing lung injuries at blast intensities that could cause TBI. Principal areas of uncertainty include the need for a more comprehensive injury assessment for mild blast injuries in humans, an improved understanding of blast TBI pathophysiology of blast TBI in animal models and humans, the relationship between clinical manifestations of PTSD and mild TBI from blunt or blast trauma including possible synergistic effects, and scaling between animals models and human exposure to blasts in wartime and terrorist attacks. Experimental methodologies, including location of the animal model relative to the shock or blast source, should be carefully designed to provide a realistic blast experiment with conditions comparable to blasts on humans. If traditional blast scaling is

  15. Energetic analysis versus exergetic analysis of charcoal blast furnace of V and M do Brazil; Analise energetica versus analise exergetica do alto forno a carvao vegetal da V and M do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Lis Nunes; Silva, Ricardo Junqueira [V e M do BRASIL S.A., Belo Horizonte, MG (Brazil); Franca, Geraldo Augusto Campolina; Lemos, Ricardo Jose Fernandes [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2011-12-21

    The energetic analysis is the traditional method of quantification of the energy used in an operation involving physical and chemical processes and transference and/or conversion of energy. Generally used through energetic balance that is based on the first law of thermodynamics to evaluate the energetic efficiency. This balance is used to determine and reduce the loss of energy. Although an energy balance does not provide information about the energy degradation or resources during a process and do not quantify the potential or quality of the energy fluxes and material that flow in a system and come out as products and losses. The exergetic analysis goes beyond the limitations of the first law of thermodynamics. The concept of exergy is based in the second law of thermodynamics. The objective of this paper is to compare the more suitable analysis method aiming the identification of the energy economy potentials and consequently the reduction in the emissions of the greenhouse gases, through the balance of mass, energy and exergy of the blast furnace 1 of V and M do Brazil. (author)

  16. The life cycle of platelet granules.

    Science.gov (United States)

    Sharda, Anish; Flaumenhaft, Robert

    2018-01-01

    Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.

  17. CrocoBLAST: Running BLAST efficiently in the age of next-generation sequencing.

    Science.gov (United States)

    Tristão Ramos, Ravi José; de Azevedo Martins, Allan Cézar; da Silva Delgado, Gabrielle; Ionescu, Crina-Maria; Ürményi, Turán Peter; Silva, Rosane; Koca, Jaroslav

    2017-11-15

    CrocoBLAST is a tool for dramatically speeding up BLAST+ execution on any computer. Alignments that would take days or weeks with NCBI BLAST+ can be run overnight with CrocoBLAST. Additionally, CrocoBLAST provides features critical for NGS data analysis, including: results identical to those of BLAST+; compatibility with any BLAST+ version; real-time information regarding calculation progress and remaining run time; access to partial alignment results; queueing, pausing, and resuming BLAST+ calculations without information loss. CrocoBLAST is freely available online, with ample documentation (webchem.ncbr.muni.cz/Platform/App/CrocoBLAST). No installation or user registration is required. CrocoBLAST is implemented in C, while the graphical user interface is implemented in Java. CrocoBLAST is supported under Linux and Windows, and can be run under Mac OS X in a Linux virtual machine. jkoca@ceitec.cz. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    Science.gov (United States)

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  19. Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidising A. thiooxidans bacteria

    Science.gov (United States)

    Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.

    2017-10-01

    Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.

  20. The effect of using different sources of dry materials on waste-form grout properties

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; McDaniel, E.W.

    1992-01-01

    A reference grout formulation had been developed for a liquid low-level radioactive waste using the following dry materials: ground limestone, ground granulated blast furnace slag, fly ash, and cement. The effect of varying the sources of these dry materials are tested. Two limestones, two fly ashes, two cements, and eight slags were tested. Varying the source of dry materials significantly affected the grout properties, but only the 28-d free-standing liquid varied outside of the preferred range. A statistical technique, Tukey's paired comparison, can be used to ascertain whether a given combination of dry materials resulted in grout properties significantly different from those of other combinations of dry materials

  1. Diamond drilling for nuclear waste QC

    International Nuclear Information System (INIS)

    Jennings, Martin.

    1990-01-01

    Specialised diamond core drilling equipment could soon have a role to play in the safe disposal of intermediate level radioactive waste (ILW). Equipment to core and extract samples for quality checking from cement-filled steel waste drums by techniques compatible with eventual remote-handling operations in a 'hot-cell' is being developed. All coring tests carried out to date have been on simulant waste: 200 litre drums containing mixtures of Ordinary Portland Cement, Ground Granulated Blast Furnace Slag and Pulverised Fuel Ash. No radioactive materials have yet been used for the coring trials. The coring equipment and the diamond coring bits are described. (author)

  2. Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Osintsev, V V; Khidiyatov, A M

    1981-01-01

    The purpose of the invention is to improve the operating efficiency of the furnace device containing prefurnaces connected to the main combustion chamber. For this purpose in the proposed furnace device is equipped with prefurnaces with burners, rectangular vertical chamber of combustion is equipped with central hearth projection. As indicated by studies, the hearth projection of the indicated projections promotes the development of transverse streams which guarantee effective mixing of the combustion products in the upper part of the combustion chamber 3. This reduces the nonuniformity of temperature at the outlet from the latter, decreases the probability of slagging and hot spots on the heating surface.

  3. Coke, char and organic waste behaviour in the blast furnace with high injection rate

    Directory of Open Access Journals (Sweden)

    Gudenau, H. W.

    2003-10-01

    Full Text Available Blast furnace operation with low coke rate, high amount of auxiliary hydrocarbons and use of nut coke causes a change in coke quality requirements. In particular, not burned in the raceway residues of injected substances (char and ash can influence the coke behaviour. Therefore combustion efficiency of various organic wastes with and without pulverized coal injection (PCI and coal char has been investigated under the raceway simulation conditions. Mixing of various substances improves their combustion efficiency. Study on coke gasification by carbon dioxide in the presence of char showed that with the increase of char concentration, coke strength reduction becomes smaller. The reactivity of char with CO2 is higher than that of coke. Therefore char is consumed preferentially. In presence of injected char, total pore volume in coke and its wear resistance were increased. Coke reactivity and microstructure in the presence of various kinds of ash has been studied. Many ash spheres were observed on the surface of coke matrix and its size was dependent on ash properties.

    La operación del horno alto con una tasa baja de coque, una cantidad elevada de hidrocarburos auxiliares y el empleo de coque calibrado, origina un cambio en las necesidades de calidad del coque. En particular, pueden influir en el comportamiento del coque los residuos inquemados en el raceway (cavidad enfrente a las toberas del horno de las sustancias que se inyectan (char y cenizas. El char es el residuo de carbón que se origina después que el carbón libera sus sustancias volátiles. Por tanto, se ha investigado la eficiencia de la combustión de varios residuos orgánicos con y sin inyección de carbón pulverizado (ICP y char, bajo las condiciones de simulación del raceway. La mezcla de varias sustancias mejora la eficiencia a la combustión. El estudio de la gasificación del coque por el dióxido de carbono en la

  4. Primary blast survival and injury risk assessment for repeated blast exposures.

    Science.gov (United States)

    Panzer, Matthew B; Bass, Cameron R Dale; Rafaels, Karin A; Shridharani, Jay; Capehart, Bruce P

    2012-02-01

    The widespread use of explosives by modern insurgents and terrorists has increased the potential frequency of blast exposure in soldiers and civilians. This growing threat highlights the importance of understanding and evaluating blast injury risk and the increase of injury risk from exposure to repeated blast effects. Data from more than 3,250 large animal experiments were collected from studies focusing on the effects of blast exposure. The current study uses 2,349 experiments from the data collection for analysis of the primary blast injury and survival risk for both long- and short-duration blasts, including the effects from repeated exposures. A piecewise linear logistic regression was performed on the data to develop survival and injury risk assessment curves. New injury risk assessment curves uniting long- and short-duration blasts were developed for incident and reflected pressure measures and were used to evaluate the risk of injury based on blast over pressure, positive-phase duration, and the number of repeated exposures. The risk assessments were derived for three levels of injury severity: nonauditory, pulmonary, and fatality. The analysis showed a marked initial decrease in injury tolerance with each subsequent blast exposure. This effect decreases with increasing number of blast exposures. The new injury risk functions showed good agreement with the existing experimental data and provided a simplified model for primary blast injury risk. This model can be used to predict blast injury or fatality risk for single exposure and repeated exposure cases and has application in modern combat scenarios or in setting occupational health limits. .Copyright © 2012 by Lippincott Williams & Wilkins

  5. Performance Evaluation and Field Application of Porous Vegetation Concrete Made with By-Product Materials for Ecological Restoration Projects

    OpenAIRE

    Hwang-Hee Kim; Chan-Gi Park

    2016-01-01

    The purpose of this study was to evaluate the performance of porous vegetation concrete block made from blast furnace slag cement containing industrial by-products such as blast furnace slag aggregate and powder. The blocks were tested for void ratio, compressive strength and freeze-thaw resistance to determine the optimal mixing ratio for the porous vegetation block. An economic analysis of the mixing ratio showed that the economic efficiency increased when blast furnace slag aggregate and c...

  6. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  7. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-07-07

    This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.

  8. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment

  9. Determination of kinetic constants from tests of reducibility and their application for modelling in metallurgy

    International Nuclear Information System (INIS)

    Pustejovska, P.; Silvie, B.

    2013-01-01

    The paper analyses details for renewal of the research in blast furnace process within Research Centre ENET at VSB - Technical University of Ostrava. A newly established laboratory for reducibility testing is an impuls to overcome the former limits and renew a research in its coherence after years. The paper deals with the possibilities of optimization of blast furnace operation. In the introduction, it sums up different approaches how to model blast furnace operation. It discusses the variety of optimal operation for different kinds of iron making technologies. It evaluates reduction course and reducing gas consumption in the stack of reduction aggregate. In the experimental, it creates kinetics model of blast furnace operating using Matlab mathematical library. It determines kinetic and heat limits of carbon consumption for different process conditions. (author)

  10. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  11. Fiscal 1998 research report on the feasibility study on energy conservation of Zaporozhye steelworks; Zaporozhye seitetsusho sho energy 1998 nendo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the Japan-Russia joint project, this report summarizes the feasibility study results on improvement of waste heat recovery at blast furnace hot stoves (recovery of sensible heat of exhaust gas by water or other heat media, and use of preheating combustion air and fuel gas), improvement of the thermal efficiency of slabbing soaking furnaces (optimization of burner combustion by improving control of an air fuel ratio, and heat patterns in heating), and other operational improvement for Zaporozhye steelworks, Ukraine (2,370,000t/y in crude steel production). As the field survey result, various other energy-saving issues were found in addition to the above 2 themes. 9 projects thus were identified in blast furnace, steel making, rolling and energy fields as follows: improvement of combustion control at hot stoves, waste heat recovery equipment for hot stoves, blast furnace top pressure recovery turbine (TRT) power generation equipment, blast furnace top gas recovery equipment, changeover from an open hearth furnace to a basic oxygen furnace, adoption of continuous casting, improvement of slab yield in slabbing, shortening of a track time, drop of insertion temperature in direct hot charge rolling, and the gas turbine cogeneration plant. (NEDO)

  12. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  13. Morphological study of the solar granulation. Pt. 2

    International Nuclear Information System (INIS)

    Kawaguchi, I.

    1980-01-01

    A time sequence of granulation images of 46 min long has allowed us to make a detailed study of the evolution of granules in an area of approximately 17 x 17 on the solar surface; It is found that the granules evolve by repeated fragmentation into smaller granules or merging with adjacent ones and that there are few granules which appear in the intergranular lanes as new granules (Table III). The statistical nature of granules is as follows: (1) A family of granules is defined as a group of granules produced from a single granule by fragmentation or merging. The lifetime is estimated for single granules and for families of granules. The lifetime shows a close correlation with the maximum size of a single granule or with that of the largest granule belonging to a family (Figures 5 and 7). (2) The smaller the size, the more probably a granule will disappear without further fragmentation or merging. The granule whose size is larger than 2 will certainly split or merge as the next evolutional step (Table IV.). (orig.)

  14. Water in blast holes can improve blasting efficiency and cut costs

    Energy Technology Data Exchange (ETDEWEB)

    O' Regan, G.

    1983-08-01

    Water in blast holes has been a traditional problem faced by blasting engineers and foremen in surface mining. Presently accepted techniques for blasting in water-filled holes include the use of more expensive water-gel explosives which are denser than water, dewatering of holes by pumping, and blowing out the water with a small charge before loading the main ANFO charge column. These methods involve considerable expense and delay to the normal charge-loading procedure. The author describes a method of using the water in blast holes to improve blasting efficiency and reduce the consumption of explosive.

  15. Pig iron production in the countries of European Community

    International Nuclear Information System (INIS)

    Garcia, L.; Cores, A.; Formoso, A.; Babich, A.

    1997-01-01

    The incessant increase of the competitivity of the metallurgical industry implies the necessity of the optimization of the resources and raw materials used. This affects in the same way the iron making in blast furnace and its principal fuel, metallurgical coke. It is from here the importance of the development of the techniques which facilitate improvements in the operation parameters in the blast furnace. This article is dedicated to the latest developments applicated on blast furnace process in the countries of European Community. (Author) 24 refs

  16. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation.

    Science.gov (United States)

    Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.

  17. The use of computer blast simulations to improve blast quality

    International Nuclear Information System (INIS)

    Favreau, R.F.; Kuzyk, G.W.; Babulic, P.J.; Tienkamp, N.J.

    1989-01-01

    Atomic Energy of Canada Limited is constructing an Underground Research Laboratory (URL) as part of a comprehensive program to evaluate the concept of nuclear fuel waste disposal deep in crystalline rock formations. Careful blasting methods have been used to minimize damage to the excavation surfaces. Good wall quality is desirable in any excavation. In excavations required for nuclear waste disposal, the objective will be to minimize blast-induced fractures which may complicate the sealing requirements necessary to control subsequent movement of groundwater around a sealed disposal vault. The construction of the URL has provided an opportunity for the development of controlled blasting methods, especially for drilling accuracy and optimization of explosive loads in the perimeter and cushion holes. The work has been assisted by the use of blast simulations with the mathematical model Blaspa. This paper reviews the results of a recent project to develop a controlled method of full-face blasting, and compares the observed field results with the results of a blast simulator called Blaspa. Good agreement is found between the two, and the Blaspa results indicate quantitatively how the blasting may induce damage in the final excavation surface. In particular, the rock in the final wall may be stressed more severely by the cushion holes than by the perimeter holes. Bootleg of the rock between the perimeter and cushion rows occurs when the burst-out velocity imparted to it by the explosive loads in the perimeter holes is inadequate. In practice, these findings indicate that quantitative rock stress and rock burst-out velocity criteria can be established to minimize wall damage and bootleg. Thus, blast simulations become an efficient way to design controlled blasting and to optimize quality of the excavation surface

  18. Comparative study on strength properties of cement mortar by partial replacement of cement with ceramic powder and silica fume

    Science.gov (United States)

    Himabindu, Ch.; Geethasri, Ch.; Hari, N.

    2018-05-01

    Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.

  19. Early age shrinkage pattern of concrete on replacement of fine aggregate with industrial by-product

    Directory of Open Access Journals (Sweden)

    R.K. Mishra

    2016-10-01

    Full Text Available This is an experimental work carried out to investigate early age shrinkage pattern of concrete, prepared, on 50% replacement of industrial by-product (like pond ash and granulated blast furnace slag as fine aggregate using OPC, PPC and PSC as a binder. This is to observe the effect of pond ash and slag as they are having some cementitious properties and effect of cement type is also discussed. All the mixes were prepared keeping in view of pumpable concrete without any super plasticizers. Higher shrinkage value indicates the presence of more bleed water or internal moisture. It is concluded that slag is the best option for fine aggregate replacement for concrete making and durable structure.

  20. The effect of using different sources of dry materials on waste-form grout properties

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; McDaniel, E.W.

    1992-01-01

    A reference grout formulation had been developed for a liquid low-level radioactive waste using the following dry materials: ground limestone, ground granulated blast furnace slag, fly ash, and cement. The effect of varying the sources of these dry materials was tested. Two limestones, two fly ashes, two cements, and eight slags were tested. Varying the source of dry materials significantly affected the grout properties, but only the 28-d free-standing liquid varied outside of the preferred range. A statistical technique, Tukey's paired comparison, can be used to ascertain whether a given combination of dry materials resulted in grout properties significantly different from those of other combinations of dry materials. (author)

  1. High performance concrete with blended cement

    International Nuclear Information System (INIS)

    Biswas, P.P.; Saraswati, S.; Basu, P.C.

    2012-01-01

    Principal objectives of the proposed project are two folds. Firstly, to develop the HPC mix suitable to NPP structures with blended cement, and secondly to study its durability necessary for desired long-term performance. Three grades of concrete to b considered in the proposed projects are M35, M50 and M60 with two types of blended cements, i.e. Portland slag cement (PSC) and Portland pozzolana cement (PPC). Three types of mineral admixtures - silica fume, fly ash and ground granulated blast furnace slag will be used. Concrete mixes with OPc and without any mineral admixture will be considered as reference case. Durability study of these mixes will be carried out

  2. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant

  3. Breakage and drying behaviour of granules in a continuous fluid bed dryer: Influence of process parameters and wet granule transfer.

    Science.gov (United States)

    De Leersnyder, F; Vanhoorne, V; Bekaert, H; Vercruysse, J; Ghijs, M; Bostijn, N; Verstraeten, M; Cappuyns, P; Van Assche, I; Vander Heyden, Y; Ziemons, E; Remon, J P; Nopens, I; Vervaet, C; De Beer, T

    2018-03-30

    Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator

  4. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  5. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  6. Twin screw wet granulation: Binder delivery.

    Science.gov (United States)

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration. Copyright © 2015. Published by Elsevier B.V.

  7. APPLICATION OF GRANULATION TECHNOLOGY IN VARIOUS INDUSTRIES

    Directory of Open Access Journals (Sweden)

    B. V. YEGOROV

    2017-10-01

    Full Text Available Science and practice proved the high efficiency of granulated mixed fodders. This article presents an overview of granulation technologies for various industries. This article discusses the application of granulation technologies in various industries. The processes of granulation are mass technological processes currently used in a wide range of industries: feed industry, food industry, pharmaceutical industry, fertilizer production, polyethylene, metal production, mining, etc. A wide range of different materials are granulated, including chemicals, iron ore, mixed fodder, and much more. Granulation is a process of pressing or shaping a material in the form of granulesGranulation is widely used in the production of pigments, dyes, synthetic detergents, catalysts, plastics, soot, chemical reagents, etc. The use of granular raw materials in the metallurgical industry helps not only to mechanize processes, but also to increase their intensity by increasing the contact surface of interacting media. Granular fertilizers retain their properties for a long time. In the mining industry, granulation processes are used at the stage of preparation and enrichment of raw materials and release of the finished product.  Particular attention is paid to the feed industry. Granulation allows to ensure stable homogeneity, to improve sanitary and hygienic parameters, to increase nutritional value, to increase the storage period, improve the physical properties. However, despite all the advantages, the existing granulation production lines have a relatively high productivity and, at the same time, a high energy intensity. In this regard, this article proposes a technology for improving the granulation of mixed fodders. According to a preliminary literary review, It should be concluded that improving the technology of the granulation process for feed production is a topical issue in the feed industry today. The development of technology for improving the

  8. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

    Science.gov (United States)

    Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2014-04-01

    Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All

  9. Comparison of Some Blast Vibration Predictors for Blasting in Underground Drifts and Some Observations

    Science.gov (United States)

    Bhagwat, Vaibhab Pramod; Dey, Kaushik

    2016-04-01

    Drilling and blasting are the most economical excavation techniques in underground drifts driven through hard rock formation. Burn cut is the most popular drill pattern, used in this case, to achieve longer advance per blast round. The ground vibration generated due to the propagation of blast waves on the detonation of explosive during blasting is the principal cause for structural and rock damage. Thus, ground vibration is a point of concern for the blasting engineers. The ground vibration from a blast is measured using a seismograph placed at the blast monitoring station. The measured vibrations, in terms of peak particle velocity, are related to the maximum charge detonated at one instant and the distance of seismograph from the blast point. The ground vibrations from a number of blast rounds of varying charge/delay and distances are monitored. A number of scaling factors of these dependencies (viz. Distance and maximum charge/delay) have been proposed by different researchers, namely, square root, cube root, CMRI, Langefors and Kihlstrom, Ghosh-Daemon, Indian standard etc. Scaling factors of desired type are computed for all the measured blast rounds. Regression analysis is carried out between the scaling factors and peak particle velocities to establish the coefficients of the vibration predictor equation. Then, the developed predictor equation is used for designing the blast henceforth. Director General of Mine Safety, India, specified that ground vibrations from eight to ten blast rounds of varying charge/delay and distances should be monitored to develop a predictor equation; however, there is no guideline about the type of scaling factor to be used. Further to this, from the statistical point of view, a regression analysis on a small sample population cannot be accepted without the testing of hypothesis. To show the importance of the above, in this paper, seven scaling factors are considered for blast data set of a hard-rock underground drift using burn

  10. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules

    DEFF Research Database (Denmark)

    Bacher, Charlotte; Olsen, P.M.; Bertelsen, P.

    2008-01-01

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10...... size fractions between 0 and 2000 µm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate......, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential....

  11. Refractory of Furnaces to Reduce Environmental Impact

    International Nuclear Information System (INIS)

    Hanzawa, Shigeru

    2011-01-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO 2 produced from this high energy load. To improve this situation, R and D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO 2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  12. Refractory of Furnaces to Reduce Environmental Impact

    Science.gov (United States)

    Hanzawa, Shigeru

    2011-10-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  13. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  14. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    Hopewell Furnace, located approximately 50 miles northwest of Philadelphia, was a cold-blast, charcoal iron furnace that operated for 113 years (1771 to 1883). The purpose of this study by the U.S. Geological Survey, in cooperation with the National Park Service, was to determine the distribution of trace metals released to the environment from an historical iron smelter at Hopewell Furnace National Historic Site (NHS). Hopewell Furnace used iron ore from local mines that contained abundant magnetite and accessory sulfide minerals enriched in arsenic, cobalt, copper, and other metals. Ore, slag, cast iron furnace products, soil, groundwater, stream base flow, streambed sediment, and benthic macroinvertebrates were sampled for this study. Soil samples analyzed in the laboratory had concentrations of trace metals low enough to meet Pennsylvania Department of Environmental Protection standards for non-residential use. Groundwater samples from the supply well met U.S. Environmental Protection Agency drinking-water regulations. Concentrations of metals in surface-water base flow at the five stream sampling sites were below continuous concentration criteria for protection of aquatic organisms. Concentrations of metals in sediment at the five stream sites were below probable effects level guidelines for protection of aquatic organisms except for copper at site HF-3. Arsenic, copper, lead, zinc, and possibly cobalt were incorporated into the cast iron produced by Hopewell Furnace. Manganese was concentrated in slag along with iron, nickel, and zinc. The soil near the furnace has elevated concentrations of chromium, copper, iron, lead, and zinc compared to background soil concentrations. Concentrations of toxic elements were not present at concentrations of concern in water, soil, or stream sediments, despite being elevated in ore, slag, and cast iron furnace products. The base-flow surface-water samples indicated good overall quality. The five sampled sites generally had

  15. Membranes replace irradiated blast cells as growth requirement for leukemic blast progenitors in suspension culture

    International Nuclear Information System (INIS)

    Nara, N.; McCulloch, E.A.

    1985-01-01

    The blast cells of acute myeloblastic leukemia (AML) may be considered as a renewal population, maintained by blast stem cells capable of both self-renewal and the generation of progeny with reduced or absent proliferative potential. This growth requires that two conditions be met: first, the cultures must contain growth factors in media conditioned either by phytohemagglutinin (PHA)-stimulated mononuclear leukocytes (PHA-LCM), or by cells of the continuous bladder carcinoma line HTB9 (HTB9-CM). Second, the cell density must be maintained at 10(6) blasts/ml; this may be achieved by adding irradiated cells to smaller numbers of intact blasts. The authors are concerned with the mechanism of the feeding function. They present evidence that (a) cell-cell contact is required. (b) Blasts are heterogeneous in respect to their capacity to support growth. (c) Fractions containing membranes from blast cells will substitute for intact cells in promoting the generation of new blast progenitors in culture. (d) This membrane function may be specific for AML blasts, since membranes from blasts of lymphoblastic leukemia or normal marrow cells were inactive

  16. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  17. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  18. A review on granules initiation and development inside UASB Reactor and the main factors affecting granules formation process

    Energy Technology Data Exchange (ETDEWEB)

    Habeeb, S.A.; Latiff, Ab Aziz Bin Abdul; Daud, Zawawi Bin; Ahmad, Zulkifli Bin [Civil and Environmental Engineering, University Tun Hussein Onn Malaysia (Malaysia)

    2011-07-01

    Decades of investigations and explorations in the field of anaerobic wastewater treatment have resulted in significant indications about the role importance of sludge granules in biodegradation anaerobic process. It is believed that the development of anaerobic granules is reflecting an important role on the performance of reactor. An overview on the concept of up-flow anaerobic sludge bed (UASB) reactor operation as well as the main parts that reactor consists of is briefly explained in this paper, whereas the major theories of anaerobic granules formation are listed by related researchers. The correlations and compositions of such sludge granule have been specifically explained. It is believed that the extracellular polymer (ECP) is totally responsible of bacterial cell correlations and the formation of bacterial communities in the form of granules. In addition, the dependable factors for the performance of anaerobic granules formation process e.g. temperature, organic loading rate, pH, and alkalinity, nutrients, and cations and heavy metals have been discussed in this paper. Strong evidences proved that the process of gas production in the form of biogas is related to the methanogens activities, which are practically found in the core of granules. The aim of this review is to explore and assess the mechanisms of granules initiation and development inside UASB reactor.

  19. Design and Development of Tilting Rotary Furnace

    Science.gov (United States)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  20. Blast-Induced Acceleration in a Shock Tube: Distinguishing Primary and Tertiary Blast Injury

    Science.gov (United States)

    2016-10-01

    injury conditions (blast and acceleration vs acceleration alone) undergo neurobehavioral and histopathological assessments to comprehensively... reversal . To facilitate mid-air blasts, a release mechanism was devised. Balls were attached to the bail of the mechanism. The blast wave would cause

  1. Sealed rotary hearth furnace with central bearing support

    Science.gov (United States)

    Docherty, James P.; Johnson, Beverly E.; Beri, Joseph

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  2. A Study on the Properties of Carbon Black Mortar Using Granulated Blast Furnace Slag and Polymer.

    Science.gov (United States)

    Jang, Hong-Seok; Jeon, Ui-Hyeon; So, Seung-Young

    2015-11-01

    White Portland Cement (WPC) and inorganic pigment have been used in colored concrete, but there are some physical problems such as increases in efflorescence, and poor workability and low economics. The aim of this study was to investigate the effects of GBFS and polymer (methyl cellulose) on the physical properties of carbon black mortar. For this purpose, a flow test, compressive strength test and color evaluation and was carried out on cement mortar mixed with polymer by changing the proportion of cement and ratio of GBFS. The results show that the addition of polymer influences significantly the color value efficiency in colored mortar. This is due to the reduction of overall amount of micro pore. This polymer films prevent the transport of soluble calcium towards the surface, and decreases efflorescence. And the flow of colored mortar was increased in proportion to the addition rate of the GBFS. In addition the strength of colored mortars with GBFS at the long-term aged (after 28 days) was higher than that of the general WPC mortar, although its strength was developed slowly at the early ages.

  3. POTENTIAL MODIFICATION OF HYDRATION OF ALKALI ACTIVATED MIXTURES FROM GRANULATED BLAST FURNACE SLAG AND FLY ASH

    Directory of Open Access Journals (Sweden)

    VÁCLAVA TOMKOVÁ

    2012-07-01

    Full Text Available Alkali activated binders (AAB and composites from suitable latent hydraulic raw materials represent an alternative to materials based on Portland cements. The paper deals with possibilities to influence functional parameters of AAB by setting the mixtures of GBFS and fly ash to the selected chemical composition or by fly ash reactivity change effected by milling. In this way course of hydration process is modified, the alkali activation products phase composition is changed as well as their final characteristic. The amorphous character of the hydration products limits the evaluation of the composition during the massing phase. Part of the study is the search for possibilities of identifying the differences in composition and properties of specially drafted mixtures of original raw materials after their alkali activation.

  4. Factors Involved in Sludge Granulation under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jalal Shayegan

    2011-03-01

    Full Text Available This paper investigates the effects of factors involved in sludge anaerobic granulation. Granulated sludge formation is the main parameter contributing to the success of UASB reactors. Anaerobic granulation leads to reduced reactor size, space requirement, and investment costs. Operation costs are also greatly reduced due to lack of aeration. An important parameter affecting process performance is the size of sludge granules; the factors involved in granule size will be investigated. Some of the important parameters of anaerobic sludge granulation are: existence of growth cores as inert particles or granulated sludge, process operational conditions (Sludge Loading Rate and Organic Loading Rate, Loading rate increase and …, and environment conditions (nutrients, temperature, pH, combination and ….

  5. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  6. Study of transfer of minor elements during ironmaking by neutron activation analysis

    International Nuclear Information System (INIS)

    Ene, A.; Pantelica, A.

    2010-01-01

    In this work instrumental neutron activation analysis (INAA) was applied to investigate a total of 30 samples of metallurgical raw materials (sinter, pellets, coke) and related finished products (pig iron. slag, blast-furnace flue dust) sampled from the same blast furnace discharge in the iron-making process in the Integrated Iron and Steel Works of Galati (Romania). The transfer efficiencies of minor elements As, Cu, K, Na, V and W from raw materials - iron-bearing components (sinter, pellets) and coke - to pig iron and their losses in slag and flue dust have been determined and a discussion of the behaviour of each element during the blast furnace process was done. (orig.)

  7. NOBLAST and JAMBLAST: New Options for BLAST and a Java Application Manager for BLAST results.

    Science.gov (United States)

    Lagnel, Jacques; Tsigenopoulos, Costas S; Iliopoulos, Ioannis

    2009-03-15

    NOBLAST (New Options for BLAST) is an open source program that provides a new user-friendly tabular output format for various NCBI BLAST programs (Blastn, Blastp, Blastx, Tblastn, Tblastx, Mega BLAST and Psi BLAST) without any use of a parser and provides E-value correction in case of use of segmented BLAST database. JAMBLAST using the NOBLAST output allows the user to manage, view and filter the BLAST hits using a number of selection criteria. A distribution package of NOBLAST and JAMBLAST including detailed installation procedure is freely available from http://sourceforge.net/projects/JAMBLAST/ and http://sourceforge.net/projects/NOBLAST. Supplementary data are available at Bioinformatics online.

  8. The Specification of Cement Powders for Waste Encapsulation Processes at Sellafield site

    International Nuclear Information System (INIS)

    Angus, M.; Borwick, J.; Cann, G.; Hayes, M.; McLuckie, B.; Jowsey, J.

    2012-01-01

    Requirements are described for Portland Cement (CEM I), Ground Granulated Blast-furnace Slag (GGBS) and Fly Ash (FA) powders used for the encapsulation of Intermediate Level Radioactive Waste (ILW) in UK, with particular reference to Sellafield site encapsulation processes. Differences between the powders used by the UK nuclear industry and the equivalent British and European cement standards are explained. Research over the last 20 years to respond to changes in the performance of these powders is summarised and options for dealing with potential future changes are discussed. These include the use of special blends of GGBS to achieve the desired flow properties or alternatively poly-carboxylate super-plasticizers to produce grouts with consistent performance using cement powders with a wide range of composition. (authors)

  9. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures.

    Science.gov (United States)

    Yim, Hong Jae; Kim, Jae Hong; Kwon, Seung Hee

    2016-03-02

    When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50.

  10. Towards more sustainable construction–application of superabsorbent polymers in cementitious matrices with reduced carbon footprint

    Directory of Open Access Journals (Sweden)

    Klemm Agnieszka J.

    2018-01-01

    Full Text Available Construction industry is constantly searching for sustainable innovations to mitigate negative environmental impacts. Ground granulated blast-furnace slag (GGBS is a well-known supplementary cementitious material which contributes to reduction of energy and CO2 emissions from cement industry. However, its use in cementitious systems leads to materials with high cracking susceptibility due to their greater autogenous shrinkage triggered by self-desiccation processes. This problem is even more pronounced when concrete is exposed to severe dry-hot weather conditions, such as in North Africa. In order to mitigate this negative effect of cracking, internal curing agents in the form of Superabsorbent polymers (SAP can be successfully used. This approach leads to more durable cement based materials and in turn more sustainable constructions.

  11. Manufacturing of Fire Resistance Geopolymer: A Review

    Directory of Open Access Journals (Sweden)

    Aziz Ikmal Hakem

    2016-01-01

    Full Text Available Protection against fire using inorganic polymer is a new application of engineering technology. Even though, there are varieties of fire-protection materials, there is always a need for the development of new materials with improved thermophysical properties and low cost. Geopolymer composites materials are promising from this point of view. Granulated blast furnace slag, boiler ash and fly ash have been used as the prime materials for forming geopolymers composites. Geopolymers have been studied due to its unique properties such as a good fire resistance. Geopolymer offers an innovative for application associated with the high thermal application. This paper summarizes on the potential of alkaliactivated materials over the past decades along with outlines of the manufacturing of geopolymer composites for fire resistance application.

  12. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures

    Directory of Open Access Journals (Sweden)

    Hong Jae Yim

    2016-03-01

    Full Text Available When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50.

  13. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  14. AUTOMATION OF GLASS TEMPERING FURNACE BY USING PLC

    Directory of Open Access Journals (Sweden)

    Abdullah BÜYÜKYILDIZ

    2007-02-01

    Full Text Available In this study, a furnace which is used for observation of environments under high temperature, and also used for manufacturing of glasses which are resisted to high temperature has been designed and implemented. Automation of this system has been done by using PLC. Operating parameters of furnace such as materials entering, the furnace, the local temperature control of furnace, cooling control and materials outing have been sensed with Hall Effect Sensor. Furthermore, the observation of parameters of furnace on screen has been provided with SCADA software. Obtained products have been shown the system works successfully.

  15. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    Science.gov (United States)

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  16. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material ...

  17. Divide and Conquer (DC BLAST: fast and easy BLAST execution within HPC environments

    Directory of Open Access Journals (Sweden)

    Won Cheol Yim

    2017-06-01

    Full Text Available Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI Basic Local Alignment Search Tool (BLAST and BLAST+ suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible and used due to the increasing availability of high-performance computing (HPC systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1 to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. This freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.

  18. INFLUENCE OF THE MODERN SYSTEMS OF THE BLAST STEEL-FURNACE ELECTRICAL PARAMETERS CONTROL ON CAPACITY AND TECHNICAL AND ECONOMICAL INDICES OF MELTING

    Directory of Open Access Journals (Sweden)

    D. N. Andrianov

    2006-01-01

    Full Text Available The reduction of time under the current, electric energy rate, electrodes rate at working of arc steel-furnace with new transformer of capacity 95 MBA and with regulating system SIMELT-AC-NEC are noted.

  19. Modeling and Simulation of Claus Unit Reaction Furnace

    Directory of Open Access Journals (Sweden)

    Maryam Pahlavan

    2016-01-01

    Full Text Available Reaction furnace is the most important part of the Claus sulfur recovery unit and its performance has a significant impact on the process efficiency. Too many reactions happen in the furnace and their kinetics and mechanisms are not completely understood; therefore, modeling reaction furnace is difficult and several works have been carried out on in this regard so far. Equilibrium models are commonly used to simulate the furnace, but the related literature states that the outlet of furnace is not in equilibrium and the furnace reactions are controlled by kinetic laws; therefore, in this study, the reaction furnace is simulated by a kinetic model. The predicted outlet temperature and concentrations by this model are compared with experimental data published in the literature and the data obtained by PROMAX V2.0 simulator. The results show that the accuracy of the proposed kinetic model and PROMAX simulator is almost similar, but the kinetic model used in this paper has two importance abilities. Firstly, it is a distributed model and can be used to obtain the temperature and concentration profiles along the furnace. Secondly, it is a dynamic model and can be used for analyzing the transient behavior and designing the control system.

  20. Joint Effects of Granule Size and Degree of Substitution on Octenylsuccinated Sweet Potato Starch Granules As Pickering Emulsion Stabilizers.

    Science.gov (United States)

    Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua

    2018-05-02

    The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.

  1. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  2. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [Verein Deutscher Eisenhuettenleute (VDEh), Duesseldorf (Germany, F.R.)

    1979-10-01

    Presented in two parts, this paper is intended to provide an outline of the theoretical fundamentals for the design of rotating-hearth furnaces for heating round stock and deals with the characteristic design features of such furnaces.

  3. An analysis of the heap construction by long hole blasting for in-situ leaching of blasted ore

    International Nuclear Information System (INIS)

    Yang Shijiao

    1999-01-01

    The author establishes specific requirements for heap construction by blasting on the basis of the mechanism for in situ leaching of blasted ore, analyses the feasibility of heap construction by long hole blasting, selection of the blast plan and the relevant technological problems, and gives a case of heap construction by long hole blasting in Renhua uranium mine

  4. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  5. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1993-07-20

    A method is described for effecting improved heat transfer with in an industrial furnace having a cylindrical furnace section, a door at one end of the furnace section, an end plate at the opposite end of the section a circular fan plate concentrically positioned within the furnace section to define a cylindrical fan chamber between the plate and the end section with a fan there between and a heat treat chamber between the plate and the door, the fan plate defining a non-orificing annular space extending between the interior of the cylindrical furnace section and the outer edge of the plate, the plate having a centrally located under-pressure opening extending there through and a plurality of circumferentially spaced tubular heating elements extending through the annular space into the heat treating chamber, the method comprising the steps of: (a) heating the heating elements to a temperature which is hotter that the temperature of the work within the heat treating chamber; (b) rotating the fan at a speed sufficient to form a portion of the furnace atmosphere as a wind mass swirling about the fan chamber; (c) propagating the wind mass through the annular space into the heat treating chamber as a swirling wind mass in the form of an annulus, the wind mass impinging the heating elements to establish heat transfer contact therewith while the mass retains its annulus shape until contacting the door and without any significant movement of the wind mass into the center of the heat treating chamber; (d) drawing the wind mass through the under-pressure zone after the wind mass comes into heat transfer contact with the work in the heat treating chamber; and (e) thereafter heating the work by radiation from the beating elements at high furnace temperatures in excess of about 1,600 F.

  6. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  7. Rock fragmentation control in opencast blasting

    Directory of Open Access Journals (Sweden)

    P.K. Singh

    2016-04-01

    Full Text Available The blasting operation plays a pivotal role in the overall economics of opencast mines. The blasting sub-system affects all the other associated sub-systems, i.e. loading, transport, crushing and milling operations. Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole, varying initiation practice in blast design and its effect on explosive energy release characteristic. This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India. The mines use draglines and shovel–dumper combination for removal of overburden. Despite its pivotal role in controlling the overall economics of a mining operation, the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance. Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance. Ninety one blasts were conducted with varying blast designs and charging patterns, and their impacts on the rock fragmentation were documented. A high-speed camera was deployed to record the detonation sequences of the blasts. The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.

  8. Carbon Dioxide Emission Evaluation of Porous Vegetation Concrete Blocks for Ecological Restoration Projects

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2017-02-01

    Full Text Available The purpose of this study is to determine the mix proportions that can minimize CO2 emissions while satisfying the target performance of porous vegetation concrete. The target performance of porous vegetation concrete was selected as compressive strength (>15 MPa and void ratio (>25%. This study considered the use of reinforcing fiber and styrene butadiene (SB latex to improve the strength of porous vegetation concrete, as well as the use of blast furnace slag aggregate to improve the CO2 emissions-reducing effect, and analyzed and evaluated the influence of fiber reinforcing, SB latex, and blast furnace slag aggregate on the compressive strength and CO2 emissions of porous vegetation concrete. The CO2 emissions of the raw materials were highest for cement, followed by aggregate, SB latex, and fiber. Blast furnace slag aggregate showed a 30% or more CO2 emissions-reducing effect versus crushed aggregate, and blast furnace slag cement showed a 78% CO2 emissions-reducing effect versus Portland cement. The CO2 emissions analyses for each raw material showed that the CO2 emissions during transportation were highest for the aggregate. Regarding CO2 emissions in each production stage, the materials stage produced the highest CO2 emissions, while the proportion of CO2 emissions in the transportation stage for each raw material, excluding fiber, were below 3% of total emissions. Use of blast furnace slag aggregate in porous vegetation concrete produced CO2 emissions-reducing effects, but decreased its compressive strength. Use of latex in porous vegetation concrete improved its compressive strength, but also increased CO2 emissions. Thus, it is appropriate to use latex in porous vegetation concrete to improve its strength and void ratio, and to use a blast furnace slag aggregate replacement ratio of 40% or less.

  9. Autophagy meets fused in sarcoma-positive stress granules.

    Science.gov (United States)

    Matus, Soledad; Bosco, Daryl A; Hetz, Claudio

    2014-12-01

    Mutations in fused in sarcoma and/or translocated in liposarcoma (FUS, TLS or FUS) are linked to familial cases of amyotrophic lateral sclerosis (ALS). Mutant FUS selectively accumulates into discrete cytosolic structures known as stress granules under various stress conditions. In addition, mutant FUS expression can alter the dynamics and morphology of stress granules. Although the link between mutant FUS and stress granules is well established, the mechanisms modulating stress granule formation and disassembly in the context of ALS are poorly understood. In this issue of Neurobiology of Aging, Ryu et al. uncover the impact of autophagy on the potential toxicity of mutant FUS-positive stress granules. The authors provide evidence indicating that enhanced autophagy activity reduces the number of stress granules, which in the case of cells containing mutant FUS-positive stress granules, is neuroprotective. Overall, this study identifies an intersection between the proteostasis network and alterations in RNA metabolism in ALS through the dynamic assembly and disassembly of stress granules. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Environmental Impact and Cost Analysis of Concrete Mixing Blast Furnace Slag Containing Titanium Gypsum and Sludge in South Korea

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-05-01

    Full Text Available This study assessed the environmental effects and cost of the Industrial Waste addictive Blast Furnace Slag (W-BFS using Life Cycle Assessment (LCA and compared it to general BFS. The environmental impacts of W-BFS were as follows: 1.12 × 10−1 kg-CO2 eq/kg, 3.18 × 10−5 kg-Ethylene eq/kg, 4.79 × 10−4 kg-SO2 eq/kg, 7.15 × 10−4 kg-PO43− eq/kg, 7.15 × 10−4 kg-CFC11 eq/kg and 3.94 × 10−3 kg-Antimony eq/kg. Among the environmental impact category, GWP and AP were 9.28 × 10−2 kg-CO2 eq/kg and 3.33 × 10−4 kg-SO2 eq/kg at a raw material stage, accounting for 80% and 70% of total environmental impact respectively. In EP, POCP and ADP, in addition, raw material stage accounted for a great portion in total environmental impact because of “W” among input materials. In ODP, however, compared to the environmental impact of raw materials, oil, which was used in transporting BFS to the W-BFS manufacturing factory, was more influential. In terms of GWP, POCP and ODP, W-BFS was higher than general BFS. In terms of AP, EP and ADP, in contrast, the former was lower than the latter. In terms of cost, W-BFS (41.7 US$/ton was lower than general BFS by about 17% because of the use of waste additives comprised of industrial wastes instead of natural gypsum ,which has been commonly used in general BFS. In terms of GWP and POCP, the W-BFS mixed (30% concrete was lower than plain concrete by 25%. In terms of AP and EP, the former was lower than the latter by 30%. In terms of ADP, furthermore, W-BFS mixed (30% concrete was lower than plain concrete by 11%. In aggregate-related ODP, however, almost no change was found. In terms of cost, when W-BFS was added by 10% and 30%, it was able to reduce cost by 3% and 7% respectively, compared to plain concrete. Compared to BFS-mixed concrete as well, cost could be saved by 1% additionally because W-BFS (US$41.7/ton is lower than common cement (US$100.3/ton by about 60% in terms of production costs.

  11. Study of light scattering by a granulated coated sphere - a model of granulated blood cells

    NARCIS (Netherlands)

    Yurkin, M.A.; de Kanter, D.; Hoekstra, A.G.

    2008-01-01

    We performed extensive simulations of light scattering by granulated coated sphere model using the discrete dipole approximation and varying model parameters in the ranges of sizes and refractive indices of granulated blood cells. We compared these results with predictions of Maxwell-Garnett

  12. Study on Damage Mechanism of Ductile Cast Iron Cooling Stave

    Science.gov (United States)

    Wang, Cui; Zhang, Jianliang; Zuo, Haibin; Dai, Bing

    The damage mechanism of ductile cast iron cooling stave applied to No.4 blast furnace of Guofeng steel was analyzed through damage investigation in details, the damage causes: high-temperature gas flow erosion, wear of burden, high-temperature ablation, carburizing damage, improper operation on blast furnace, etc. were given out both in macroscopic and microscopic views. It can be obtained from metallographic diagrams that the diameter of graphite nodules increases, the number per unit area reduces, and roundness declines, successively, from cold to hot surface, which are not conducive to stave longevity. In summary, the material for staves manufacture should be better in comprehensive mechanical properties to prolong the service life, thus making blast furnace long campaign.

  13. Basic survey project for joint implementation and CDM. Comprehensive investigation into introduction of blast furnace gas-firing combined cycle power plant and energy balance review at Krivorozhsky State Integrated Steel and Ironworks 'Krivorozhstal' Steel Works

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Investigations and discussions were given on electric power generation facilities at the Krivorozhstal Steel Works in Ukraine with an aim of reducing the emission of global warming gases by means of the energy saving and petroleum substituting energy technologies. The discussions were made on the combined cycle power plant (CCPP) project that utilizes as fuel the blast-furnace gas being discharged into atmosphere. The project calls for starting the construction in fiscal 2003, and entering commercial operation in fiscal 2005. The total investment amount would be 160.65 million US dollars. In a case of producing steel and iron of 7,000 tons annually, profit would be obtained at 11.24%, which will make the project realization possible if low-interest finance can be obtained from Japan. The amount of carbon dioxide discharged from operating the facilities for eight years from 2005 to 2012 is estimated to be reduced by about 6.8 million tons. In addition, the project would contribute to enhancement in productivity of the factory by reducing the labor force. Furthermore, effect of reducing emission of sulfur dioxide can be expected. (NEDO)

  14. Mass Balance Modeling for Electric Arc Furnace and Ladle Furnace System in Steelmaking Facility in Turkey

    Institute of Scientific and Technical Information of China (English)

    (I)smail Ekmek(c)i; Ya(s)ar Yetisken; (U)nal (C)amdali

    2007-01-01

    In the electric arc furnace (EAF) steel production processes, scrap steel is principally used as a raw material instead of iron ore. In the steelmaking process with EAF, scrap is first melted in the furnace and then the desired chemical composition of the steel can be obtained in a special furnace such as ladle furnace (LF). This kind of furnace process is used for the secondary refining of alloy steel. LF furnace offers strong heating fluxes and enables precise temperature control, thereby allowing for the addition of desired amounts of various alloying elements. It also provides outstanding desulfurization at high-temperature treatment by reducing molten steel fluxes and removing deoxidation products. Elemental analysis with mass balance modeling is important to know the precise amount of required alloys for the LF input with respect to scrap composition. In present study, chemical reactions with mass conservation law in EAF and LF were modeled altogether as a whole system and chemical compositions of the final steel alloy output can be obtained precisely according to different scrap compositions, alloying elements ratios, and other input amounts. Besides, it was found that the mass efficiency for iron element in the system is 95.93%. These efficiencies are calculated for all input elements as 8.45% for C, 30.31% for Si, 46.36% for Mn, 30.64% for P, 41.96% for S, and 69.79% for Cr, etc. These efficiencies provide valuable ideas about the amount of the input materials that are vanished or combusted for 100 kg of each of the input materials in the EAF and LF system.

  15. The biology and dynamics of mammalian cortical granules

    Directory of Open Access Journals (Sweden)

    Liu Min

    2011-11-01

    Full Text Available Abstract Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.

  16. Medical image of the week: granulation tissue

    Directory of Open Access Journals (Sweden)

    Ganesh A

    2014-03-01

    Full Text Available A 57 year old woman presented with a tickling sensation in the back of throat and intermittent bleeding from the healing stoma one month after decannulation of her tracheostomy tube. On bronchoscopy a granuloma with surrounding granulation tissue was present in the subglottic space (Figure 1. Argon plasma coagulation (APC was performed to cauterize the granulation tissue (Figure 2. Formation of granulation tissue after tracheostomy is a common complication which can result in tracheal stenosis. APC and electrocautery using flexible bronchoscopy has been shown to safely and effectively remove the granulation tissue.

  17. 21 CFR 520.905b - Fenbendazole granules.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Fenbendazole granules. 520.905b Section 520.905b... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905b Fenbendazole granules. (a) Specifications. Each gram of granules contains 222 milligrams (mg) fenbendazole. (b) Sponsor. See...

  18. Alternative fuels for multiple-hearth furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Bracket, B D; Lawson, T U

    1980-04-01

    Results are described of a feasibility study on the use of refuse-derived fuel, shredded paper, wood waste, coal, and waste oil in multiple-hearth furnaces at the Lower Molonglo Water Quality Control Centre in Australia. An assessment of waste fuel availability and characteristics is given, and a summary is made of the technical and economic aspects of using these alternative fuels and of minimizing furnace fuel requirements by reducing sludge moisture. The recommended method of reducing fuel oil consumption in the furnace is shown to be sludge drying, using process exhaust heat in a rotary dryer.

  19. Human Injury Criteria for Underwater Blasts.

    Directory of Open Access Journals (Sweden)

    Rachel M Lance

    Full Text Available Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study.

  20. Blasting agents and initiation systems

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2000-01-01

    Although blasting differs between and within each industry, as a whole, the mines and quarries are making a shift from a purely ammonium nitrate/fuel oil (ANFO) mixture to a blend of emulsion and ANFO on a straight emulsion. Non-electric (shock tube) initiation systems have provided a viable alternative to the electric detonator (blasting cap). Explosives manufacturers are seeing their roles changes to being blasting contractors or consultants rather than just suppliers. The article discusses these trends and gives examples of typical blasting techniques and amounts of blasting agent used at large USA surface coal mines. Electric caps are still used in blasting underground coal. The Ensign Bickford Co. (EBCo) is developing electronic detonators and has been field testing an electronic initiator, the DIGIDET detonator, for the last four years. When commercially available, electronic detonators will be accurate but will come with a hefty price tag. 2 photos.

  1. Increased accuracy of starch granule type quantification using mixture distributions

    OpenAIRE

    Tanaka, Emi; Ral, Jean-Phillippe F.; Li, Sean; Gaire, Raj; Cavanagh, Colin R.; Cullis, Brian R.; Whan, Alex

    2017-01-01

    Background The proportion of granule types in wheat starch is an important characteristic that can affect its functionality. It is widely accepted that granule types are either large, disc-shaped A-type granules or small, spherical B-type granules. Additionally, there are some reports of the tiny C-type granules. The differences between these granule types are due to its carbohydrate composition and crystallinity which is highly, but not perfectly, correlated with the granule size. A majority...

  2. Scientific Council on problems on new processes in the coking industry. [Effect on coke consumption of moisture, sulfur and ash; substitution possibility

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, B.S.

    1981-07-01

    This paper presents a report on the Coking Section of the Scientific Council held on November 20, 1980 in Moscow. The following problems were discussed: indexes characterizing blast furnace coke (for furnaces with a volume of 5580 M/sup 3/); replacing metallurgical coke with other types of fuels; use of brown coal; liners of coke ovens. Papers delivered during the session are summarized. Reducing moisture content in blast furnace coke permits its consumption to be reduced by 2%. Reducing sulfur content in blast furnace coke by 0.1% permits its consumption to be reduced from 10 to 15 kg for 1 t of pig iron. Increase in ash content of coke by 1% causes coke consumption increase ranging from 1.5 to 2.0%. About 10 Mmt of coke class with grains above 25 mm in USSR is used for purposes other than blast furnaces. Possibilities of substituting coke with lean coal are evaluated (particularly from Kuzbass). A method for briquetting a mixture of black and brown coal is proposed. Briquets are a suitable fuel in metallurgy. A new type of liner, which consists of at least 92% silicon dioxide, is described. Physical and mechanical properties of the liners are discussed.

  3. FY 2000 report on the basic survey to promote Joint Implementation, etc. Environmental improvement and energy conservation measures in Pakistan Steel, a state-run enterprise in Pakistan; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Pakistan koku kokuei Pakistan Steel ni okeru kankyo kaizen sho energy taisaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the state-run plant of Pakistan Steel in Pakistan, an investigational study was conducted on energy conservation and reduction in greenhouse effect gas emission. In the project, energy conservation technology on the following was tried to be introduced: coke oven coal moisture control (CMC) equipment, sintering cooler waste heat recovery equipment, blast furnace hot stove waste heat recovery equipment, blast furnace pulverized coal injection (PCI) equipment, blast furnace top pressure recovery turbine (TRT) equipment, and hot strip mill heating furnace regenerative type burner equipment. Further, in the project on environmental improvement, studies were made on coke oven environmental improvement and blast furnace cast house dust collection. The results of the study indicated that economical effects of the energy conservation project were considered as low because the unit price of energy of Pakistan Steel is low. However, substitution of the low-priced domestic coal for the imported coal has a good effect, and energy conservation in the TRT power generation and by the regenerative type burner produces a highly economical effect. Therefore, Pakistan Steel also agrees to positively promote the project. Moreover, concerning the environmental improvement project, it was considered that the necessity of the project is high in the relation of the coke oven aimed at reducing emissions of toxic substances. (NEDO)

  4. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T; Jaeaeskelaeinen, K; Oeini, J; Koskiahde, A; Jokiniemi, J; Pyykkoenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  5. Influence of the activator concentration on the kinetics of the alkaline activation process of a blast furnace slag

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    1997-06-01

    Full Text Available The influence of activator solution concentration on hydration kinetics of an alkaline activated blast furnace slag has been studied. The alkaline activator used was a mix of waterglass (Na2SiO3∙nH2O and NaOH solution (of variable concentration. Final activator concentrations were 3,4 and 5 % Na2O wt. with respect to the slag total weight. Degree of reaction (α was determined from hydration heat values obtained through isothermal conduction calorimetry. From the results obtained it is deduced that a treshold value of 4 % Na2O wt. exists. For those concentrations and at test temperatures (except for 25ºC and 3 % Na2O wt., the mechanism controlling hydration reaction for a values higher than 0.5, is a diffusion process. This process is described by .Jander equation [D3=(1-(1-α1/32=(k/r2t=0,0426(t/t0,5]. The activation energy obtained for that process is of approximately 50-58 Kj/mol.

    Se ha estudiado la influencia de la concentración de la disolución activante en la cinética de hidratación de una escoria granulada de alto horno, activada alcalinamente a distintas temperaturas. El activador alcalino utilizado fue una mezcla de water glass (Na2SiO3∙nH2O con una disolución de NaOH (de concentración variable. Las concentraciones finales del activador alcalino fueron: 3, 4 y 5 % en peso de Na2O respecto a la masa total de escoria. El grado de reacción (α se determinó a partir de valores de calor de hidratación obtenidos por calorimetría de conducción isotérmica. De los resultados obtenidos se deduce que existe un valor umbral de concentraciones en torno al 4 % en peso de Na2O. También para dichas concentraciones y a las temperaturas de ensayo (excepto a 25ºC con un 3 % en peso de Na2O, el mecanismo que controla la reacción de hidrataci

  6. Low-cost blast wave generator for studies of hearing loss and brain injury: blast wave effects in closed spaces.

    Science.gov (United States)

    Newman, Andrew J; Hayes, Sarah H; Rao, Abhiram S; Allman, Brian L; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C; Salvi, Richard

    2015-03-15

    Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198dB SPL (159.3kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188dB peak SPL (50.4kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Dynamics and control of a gas-fired furnace

    NARCIS (Netherlands)

    Roffel, B.; Rijnsdorp, J.E.

    1974-01-01

    A non-linear model has been developed for a gas-fired furnace in which oil is heated. The model is applicable from minimum to maximum heat load of the furnace. The dynamics of the model have been compared to experimental results, which were obtained for a pilot-scale furnace. They are in good

  8. Treatment of hyper-granulated limb wounds in horses

    Directory of Open Access Journals (Sweden)

    O. A. Bader

    2011-01-01

    Full Text Available This study was performed to investigate the different methods of treating hyper granulation tissue on experimentally induced wounds in equine limbs. Wounds were induced by removal of a skin patch and subcutaneous tissue for about 5-7 cm width and 6-8 cm in length from the dorsal and lateral aspect of the fore and hind limbs below the carpal and tarsal joints. The wounds were left open without treatment and the animals were trained 2-2.5 hours every day for about 3-5 weeks until hyper granulation tissue was developed. The schedule for the treatment of hyper granulation was divided into five groups each contained eight wounds of hyper granulation tissue; each main group was divided into two subgroups. The subgroups of first, second, third, fourth and fifth groups were treated by the following schedules: bandage alone; copper sulphate ointment 10%; silver nitrate ointment 2%; red mercury ointment 11%; and laser therapy (at a total dose of 9.72 Joule / cm2 respectively. While the second subgroups were treated by surgical resection of the hyper granulation tissue, followed by the same treatments applied on the first subgroup. The bandage for all experimental groups was changed every 48 hours until healing was occurred. The clinical and histological observation of the first group revealed that the healing take long period comparing with other groups. The mean of wound healing were 65 days in non surgical removal of hyper granulation tissue subgroup, while 57 days in surgical removed of hyper granulation tissue subgroup. The results of the second, third, fourth groups revealed that the caustic material especially red mercury has a role in healing processes through depressing the hyper granulation tissue. The mean of wound healing of the second group was 42.25 days in non surgical removal of hyper granulation tissue subgroup while 37.25 days in surgically removed hyper granulation tissue subgroup. In the third group the mean of wound healing was 45

  9. Holden gas-fired furnace baseline data. Revision 1

    International Nuclear Information System (INIS)

    Weatherspoon, K.A.

    1996-11-01

    The Holden gas-fired furnace is used in the enriched uranium recovery process to dry and combust small batches of combustibles. The ash is further processed. The furnace operates by allowing a short natural gas flame to burn over the face of a wall of porous fire brick on two sides of the furnace. Each firing wall uses two main burners and a pilot burner to heat the porous fire brick to a luminous glow. Regulators and orifice valves are used to provide a minimum gas pressure of 4 in. water column at a rate of approximately 1,450 scf/h to the burners. The gas flow rate was calculated by determining the gas flow appropriate for the instrumentation in the gas line. Observed flame length and vendor literature were used to calculate pilot burner gas consumption. Air for combustion, purging, and cooling is supplied by a single blower. Rough calculations of the air-flow distribution in piping entering the furnace show that air flow to the burners approximately agrees with the calculated natural gas flow. A simple on/off control loop is used to maintain a temperature of 1,000 F in the furnace chamber. Hoods and glove boxes provide contamination control during furnace loading and unloading and ash handling. Fan EF-120 exhausts the hoods, glove boxes, and furnace through filters to Stack 33. A review of the furnace safety shows that safety is ensured by design, interlocks, procedure, and a safety system. Recommendations for safety improvements include installation of both a timed ignition system and a combustible-gas monitor near the furnace. Contamination control in the area could be improved by redesigning the loading hood face and replacing worn gaskets throughout the system. 33 refs., 16 figs

  10. Fragment Size Distribution of Blasted Rock Mass

    Science.gov (United States)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  11. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    International Nuclear Information System (INIS)

    Baconnais, S.; Delavoie, F.; Zahm, J.M.; Milliot, M.; Terryn, C.; Castillon, N.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E.; Balossier, G.

    2005-01-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na + absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na + , Mg 2+ , P, S and Cl - ) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR inh -172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF

  12. DYNAMIC TIME HISTORY ANALYSIS OF BLAST RESISTANT DOOR USING BLAST LOAD MODELED AS IMPACT LOAD

    Directory of Open Access Journals (Sweden)

    Y. A. Pranata

    2012-06-01

    Full Text Available A blast resistant single door was designed to withstand a 0.91 bar blast pressure and 44 ms blast duration. The analysis was done using Dynamic Time History Analysis using Blast Load modeled as Impact Load for given duration. The material properties used have been modified to accommodate dynamic effects. The analysis was done using dynamic finite element method (fem for time of the blast duration, and the maximum/minimum internal forces and displacement were taken from the time history output, in order to know the behavior under blast load and estimate the safety margin of the door. Results obtained from this research indicated that the maximum z-displacement is 1.709 mm, while in the term of serviceability, the permitted is 25 mm. The maximum reaction force is 73,960 N, while the maximum anchor capacity is 82,069 N. On blast condition, the maximum frame stress is 71.71 MPa, the maximum hinge shear stress is 45.28 MPa. While on rebound condition, the maximum frame stress is 172.11 MPa, the maximum hinge shear stress is 29.46 MPa. The maximum door edge rotation is 0.44 degree, which is not exceed the permitted boundary (1.2 degree. Keywords: Dynamic time history, blast resistant door, single door, finite element method.

  13. Furnace for treating bituminous material

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1922-04-28

    A furnace with saw-teeth-like profiled hearth, which by means of a kind of shaking slide executes a backward and forward motion, for carrying out the process according to Patent 422,391. It is characterized in that the stroke of the hearth moving in the furnace is smaller than the length of the profile tooth and the height of the feed is held less than the tooth height.

  14. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure.

    Science.gov (United States)

    LaSarge, Candi L; Santos, Victor R; Danzer, Steve C

    2015-03-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Burden control by artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Saxen, H.; Nikus, M. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.

    1998-07-01

    The burden distribution plays an important role for the fuel economy of the blast furnace. By an appropriate burden distribution, the operation of the furnace is smooth and the gas is utilized well, the burden descends steadily and the wear of the lining is minimal. Since it is very difficult to obtain reliable information about the burden distribution in operating blast furnaces, this research project developed methods for interpretation of burden and gas distribution in the shaft mainly based on temperature measurements from above-burden probes.

  16. NCBI BLAST+ integrated into Galaxy.

    Science.gov (United States)

    Cock, Peter J A; Chilton, John M; Grüning, Björn; Johnson, James E; Soranzo, Nicola

    2015-01-01

    The NCBI BLAST suite has become ubiquitous in modern molecular biology and is used for small tasks such as checking capillary sequencing results of single PCR products, genome annotation or even larger scale pan-genome analyses. For early adopters of the Galaxy web-based biomedical data analysis platform, integrating BLAST into Galaxy was a natural step for sequence comparison workflows. The command line NCBI BLAST+ tool suite was wrapped for use within Galaxy. Appropriate datatypes were defined as needed. The integration of the BLAST+ tool suite into Galaxy has the goal of making common BLAST tasks easy and advanced tasks possible. This project is an informal international collaborative effort, and is deployed and used on Galaxy servers worldwide. Several examples of applications are described here.

  17. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    1999-01-01

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  18. Nitrogen oxide emissions from a kraft recovery furnace

    International Nuclear Information System (INIS)

    Prouty, A.L.; Stuart, R.C.; Caron, A.L.

    1993-01-01

    Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation

  19. Method of operating a centrifugal plasma arc furnace

    International Nuclear Information System (INIS)

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe 3 O 4 . Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe 2 O 3 . Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs

  20. Sponge iron in steel's future

    Energy Technology Data Exchange (ETDEWEB)

    Rose, S

    1977-01-01

    This article includes a description of the Lurgi direct reduction process as modified by Stelco, which uses sub-bituminous coal or lignite as reductant in a rotary kiln. The findings of a published economic comparison of the process with blast furnace reduction is criticized, and alternative figures are suggested on the capital cost of a blast furnace or rotary kiln.

  1. High-Temperatures Rheometric Analysis Of Selected Heterogeneous Slag Systems

    Directory of Open Access Journals (Sweden)

    Migas P.

    2015-06-01

    Full Text Available It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the dipping zone. The presence of solid components (particles in the melts determines the rheological character of the entire system. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of mathematical modeling of liquid phase flows in a dripping zone of the blast furnace, allowing e.g to indentify the unstable parts of a metallurgical aggregate.

  2. Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA

    International Nuclear Information System (INIS)

    Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    The Hopewell Furnace National Historic Site in southeastern Pennsylvania, which features an Fe smelter that was operational in the 18th and 19th centuries, is dominated by three slag piles. Pile 1 slag, from the Hopewell Furnace, and pile 2 slag, likely from the nearby Cornwall Furnace, were both produced in cold-blast charcoal-fired smelters. In contrast, pile 3 slag was produced in an anthracite furnace. Ore samples from the nearby Jones and Hopewell mines that fed the smelter are mainly magnetite-rich with some sulfides (pyrite, chalcopyrite, sphalerite) and accessory silicates (quartz, garnet, feldspar, and clay minerals). Slag piles 1 and 2 are similar mineralogically containing predominantly skeletal and dendritic aluminian diopside and augite, skeletal forsteritic olivine, glass, rounded blebs of metallic Fe, and exotic quartz. Olivine is a major phase in all samples from pile 2, whereas it occurs in only a few samples from pile 1. Samples of the 2 O 3 (8.5–16.2 wt.%), CaO (8.2–26.2 wt.%), MgO (4.2–24.7 wt.%), and SiO 2 (36.4–59.8 wt.%), constituting between 81% and 97% of the mass of the samples. Piles 1 and 2 are chemically similar; pile 1 slag overall contains the highest Fe 2 O 3 , K 2 O and MnO, and the lowest MgO concentrations. Pile 3 slag is high in Al 2 O 3 , CaO and S, and low in Fe 2 O 3 , K 2 O and SiO 2 compared to the other piles. In general, piles 1 and 2 are chemically similar to each other, whereas pile 3 is distinct – a conclusion that reflects their mineralogy. The similarities and differences among piles in terms of mineralogy and major element chemistry result from the different smelting conditions under which the slag formed and include the fuel source, the composition of the ore and flux, the type of blast (cold versus hot), which affects the furnace temperature, and other beneficiation methods. The three distinct slag piles at Hopewell are enriched in numerous trace elements, such as As (up to 12 mg/kg), Cd (up to 0.4 mg

  3. Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA

    Science.gov (United States)

    Piatak, Nadine; Seal, Robert

    2012-01-01

    The Hopewell Furnace National Historic Site in southeastern Pennsylvania, which features an Fe smelter that was operational in the 18th and 19th centuries, is dominated by three slag piles. Pile 1 slag, from the Hopewell Furnace, and pile 2 slag, likely from the nearby Cornwall Furnace, were both produced in cold-blast charcoal-fired smelters. In contrast, pile 3 slag was produced in an anthracite furnace. Ore samples from the nearby Jones and Hopewell mines that fed the smelter are mainly magnetite-rich with some sulfides (pyrite, chalcopyrite, sphalerite) and accessory silicates (quartz, garnet, feldspar, and clay minerals). Slag piles 1 and 2 are similar mineralogically containing predominantly skeletal and dendritic aluminian diopside and augite, skeletal forsteritic olivine, glass, rounded blebs of metallic Fe, and exotic quartz. Olivine is a major phase in all samples from pile 2, whereas it occurs in only a few samples from pile 1. Samples of the bearing aluminian diopside, dendritic or fine-grained subhedral melilite, glass, euhedral spinel, metallic Fe, alabandite–oldhamite solid solution, as well as a sparse Ti carbonitride phase. The bulk chemistry of the slag is dominated by Al2O3 (8.5–16.2 wt.%), CaO (8.2–26.2 wt.%), MgO (4.2–24.7 wt.%), and SiO2 (36.4–59.8 wt.%), constituting between 81% and 97% of the mass of the samples. Piles 1 and 2 are chemically similar; pile 1 slag overall contains the highest Fe2O3, K2O and MnO, and the lowest MgO concentrations. Pile 3 slag is high in Al2O3, CaO and S, and low in Fe2O3, K2O and SiO2 compared to the other piles. In general, piles 1 and 2 are chemically similar to each other, whereas pile 3 is distinct – a conclusion that reflects their mineralogy. The similarities and differences among piles in terms of mineralogy and major element chemistry result from the different smelting conditions under which the slag formed and include the fuel source, the composition of the ore and flux, the type of

  4. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  5. A Survey of Sludge Granulation Theories Under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jalal Shayegan

    2011-01-01

    Full Text Available This paper surveys the different theories developed on anaerobic sludge granulation. The theories are generally categorized as physical, microbial, and thermodynamic approaches. In the physical approach to the granulation process, granulation is described by such physical conditions of the reactor as upflow velocity of gas and liquid streams, suspended solids in the effluent flow, and excess sludge removal. Microbial theories are based on the properties of specific organisms and on granule properties (granule structure and its microbiology. The thermodynamic approach studies such factors as hydrophobia, electrophoretic mobility, effective energy in granule adhesion process, and effect of proton transferring activities on bacterial membrane surfaces.

  6. PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yu Daren; Xie Zongxia; Hu Qinghua [Harbin Institute of Technology, Harbin 150001 (China); Yang Shuhong; Zhang Jun; Wang Jingxiu, E-mail: caddiexie@hotmail.com, E-mail: zjun@ourstar.bao.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2011-12-10

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in the five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I

  7. Engineering properties of inorganic polymer concretes (IPCs)

    International Nuclear Information System (INIS)

    Sofi, M.; Deventer, J.S.J. van; Mendis, P.A.; Lukey, G.C.

    2007-01-01

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures

  8. Blast-induced traumatic brain injury: a new trend of blast injury research.

    Science.gov (United States)

    Zhao, Yan; Wang, Zheng-Guo

    2015-01-01

    Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  9. Impact of fill-level in twin-screw granulation on critical quality attributes of granules and tablets.

    Science.gov (United States)

    Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2017-06-01

    In a previous study a change of the fill-level in the barrel exerted a huge influence on the twin-screw granulation (TSG) process of a high drug loaded, simplified formulation. The present work investigated this influence systematically. The specific feed load (SFL) indicating the mass per revolution as surrogate parameter for the fill-level was applied and the correlation to the real volumetric fill level of an extruder could be demonstrated by a newly developed method. A design of experiments was conducted to examine the combined influence of SFL and screw speed on the process and on critical quality attributes of granules and tablets. The same formulation was granulated at constant liquid level with the same screw configuration and led to distinctively different results by only changing the fill-level and the screw speed. The power consumption of the extruder increased at higher SFLs with hardly any influence of screw speed. At low SFL the median residence time was mainly fill-level dependent and at higher SFL mainly screw speed dependent. Optimal values for the product characteristics were found at medium values for the SFL. Granule size distributions shifted from mono-modal and narrow shape to broader and even bimodal distributions of larger median granule sizes, when exceeding or falling below a certain fill-level. Deviating from the optimum fill-level, tensile strength of tablets decreased by about 25% and disintegration times of tablets increased for more than one third. At low fill-levels, material accumulation in front of the kneading zone was detected by pressure measurements and was assumed to be responsible for the unfavored product performance. At high fill-levels, granule consolidation due to higher propensity of contact with the result of higher material temperature was accounted for inferior product performance. The fill-level was found to be an important factor in assessment and development of twin-screw granulation processes as it impacted

  10. Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of Helicobacter pylori eradication.

    Science.gov (United States)

    Aoki, Hajime; Iwao, Yasunori; Mizoguchi, Midori; Noguchi, Shuji; Itai, Shigeru

    2015-05-01

    In an effort to develop a new gastro-retentive drug delivery system (GRDDS) without a large amount of additives, 75% clarithromycin (CAM) loaded fine granules were prepared with three different hydrophobic binders by high-shear melt granulation and their properties were evaluated. Granules containing the higher hydrophobic binder showed sustained drug release and were able to float over 24h. The synchrotron X-ray CT measurement indicated that both the high hydrophobicity of the binder and the void space inside the granules might be involved in their buoyancy. In an in vivo experiment, the floating granules more effectively eradicated Helicobacter pylori than a CAM suspension by remaining in the stomach for a longer period. In short, CAM highly-loaded gastro-floating fine granules can enhance the eradication efficiency of H. pylori compared with CAM alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Blast management

    OpenAIRE

    Shouraki, Mohammad Kargar; Naserkheil, Ali Asghar

    2011-01-01

    Blast Management (BM) is composed of the combination of human resources management (HRM) principles and concepts and various methods of quality management (QM) with a financial approach. BM is made up of three aspects: hard, soft and concept and BLAST means an explosive shift in organization's mindset and thought and rapid action against it. The first aspect, hard, includes a set of managerial toots and philosophies to improve the quality and productivity with a financial approach.

  12. Increased accuracy of starch granule type quantification using mixture distributions.

    Science.gov (United States)

    Tanaka, Emi; Ral, Jean-Phillippe F; Li, Sean; Gaire, Raj; Cavanagh, Colin R; Cullis, Brian R; Whan, Alex

    2017-01-01

    The proportion of granule types in wheat starch is an important characteristic that can affect its functionality. It is widely accepted that granule types are either large, disc-shaped A-type granules or small, spherical B-type granules. Additionally, there are some reports of the tiny C-type granules. The differences between these granule types are due to its carbohydrate composition and crystallinity which is highly, but not perfectly, correlated with the granule size. A majority of the studies that have considered granule types analyse them based on a size threshold rather than chemical composition. This is understandable due to the expense of separating starch into different types. While the use of a size threshold to classify granule type is a low-cost measure, this results in misclassification. We present an alternative, statistical method to quantify the proportion of granule types by a fit of the mixture distribution, along with an R package, a web based app and a video tutorial for how to use the web app to enable its straightforward application. Our results show that the reliability of the genotypic effects increase approximately 60% using the proportions of the A-type and B-type granule estimated by the mixture distribution over the standard size-threshold measure. Although there was a marginal drop in reliability for C-type granules. The latter is likely due to the low observed genetic variance for C-type granules. The determination of the proportion of granule types from size-distribution is better achieved by using the mixing probabilities from the fit of the mixture distribution rather than using a size-threshold.

  13. The life cycle of platelet granules [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Anish Sharda

    2018-02-01

    Full Text Available Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types—dense granules, α-granules, and lysosomes—although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans-Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.

  14. Distinguishing Realistic Military Blasts from Firecrackers in Mitigation Studies of Blast Induced Traumatic Brain Injury

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2011-01-21

    In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cm from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff implies

  15. Effects of H2O/Na2O molar ratio on the strength of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash based concrete

    International Nuclear Information System (INIS)

    Yusuf, Moruf Olalekan; Megat Johari, Megat Azmi; Ahmad, Zainal Arifin; Maslehuddin, Mohammed

    2014-01-01

    Highlights: • Effects of H 2 O/Na 2 O on GBFS-POFA alkaline activated concrete are investigated. • High H 2 O/Na 2 O contents enhance dissolutions/workability at the expense of strength. • Lower H 2 O/Na 2 O molar ratios aid compressive strength of the products. • Increase in H 2 O/Na 2 O favours the reactivity of Ca and the products molecular bonds. • Low H 2 O/Na 2 O positively affects the microstructural density of the products. - Abstract: Effects of H 2 O/Na 2 O molar ratios (MRs) on the developed alkaline activated pozzolanic solid wastes (PMs)-ultrafine palm oil fuel ash (UPOFA) and ground blast furnace slag (GBFS)-were studied by using the constant mass of combined activators (10 M NaOH aq + Na 2 SiO 3aq of silica-modulus (Ms = SiO 2 /Na 2 O) of 3.3).The free water content (FWC) expressed as FWC/(PMs) varied from 0.02 to 0.1 by mass while the total H 2 O/Na 2 O MRs ranged from 18.9 to 23.1 The findings revealed that increase in H 2 O/Na 2 O MRs negatively affects the strength but positively impact the mixture workability (consistency). The microstructural morphology examination using Scanning Electron Microscope coupled with Energy dispersive spectroscopy (SEM + EDS) reveals the contribution of H 2 O/Na 2 O MRs to the product nature, compactness, and the reactivity of Ca 2+ and Al 3+ while Fourier transform infra-red (FTIR) spectroscopy indicates that H 2 O/Na 2 O ratios contributed to the product amorphousity and carbonation process but sparingly affected its formed polymerized structural units (SiQ n (mAl), n = 2 and 3)

  16. Mathematical model of melt flow channel granulator

    Directory of Open Access Journals (Sweden)

    A. A. Kiselev

    2016-01-01

    Full Text Available Granulation of carbohydrate-vitamin-mineral supplements based on molasses is performed at a high humidity (26 %, so for a stable operation of granulator it is necessary to reveal its melt flow pattern. To describe melt non-isothermal flow in the granulator a mathematical model with following initial equations: continuity equation, motion equation and rheological equation – was developed. The following assumptions were adopted: the melt flow in the granulator is a steady laminar flow; inertial and gravity forces can be ignored; melt is an incompressible fluid; velocity gradient in the flow direction is much smaller than in the transverse direction; the pressure gradient over the cross section of the channel is constant; the flow is hydrodynamically fully developed; effects impact on the channel inlet and outlet may be neglected. Due to the assumptions adopted, it can be considered that in this granulator only velocity components in the x-direction are significant and all the members of the equation with the components and their derivatives with respect to the coordinates y and z can be neglected. The resulting solutions were obtained: the equation for the mean velocity, the equation for determining the volume flow, the formula for calculating of mean time of the melt being in the granulator, the equation for determining the shear stress, the equation for determining the shear rate and the equation for determining the pressure loss. The results of calculations of the equations obtained are in complete agreement with the experimental data; deviation range is 16–19 %. The findings about the melt movement pattern in granulator allowed developing a methodology for calculating a rational design of the granulator molding unit.

  17. FastBLAST: homology relationships for millions of proteins.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    Full Text Available BACKGROUND: All-versus-all BLAST, which searches for homologous pairs of sequences in a database of proteins, is used to identify potential orthologs, to find new protein families, and to provide rapid access to these homology relationships. As DNA sequencing accelerates and data sets grow, all-versus-all BLAST has become computationally demanding. METHODOLOGY/PRINCIPAL FINDINGS: We present FastBLAST, a heuristic replacement for all-versus-all BLAST that relies on alignments of proteins to known families, obtained from tools such as PSI-BLAST and HMMer. FastBLAST avoids most of the work of all-versus-all BLAST by taking advantage of these alignments and by clustering similar sequences. FastBLAST runs in two stages: the first stage identifies additional families and aligns them, and the second stage quickly identifies the homologs of a query sequence, based on the alignments of the families, before generating pairwise alignments. On 6.53 million proteins from the non-redundant Genbank database ("NR", FastBLAST identifies new families 25 times faster than all-versus-all BLAST. Once the first stage is completed, FastBLAST identifies homologs for the average query in less than 5 seconds (8.6 times faster than BLAST and gives nearly identical results. For hits above 70 bits, FastBLAST identifies 98% of the top 3,250 hits per query. CONCLUSIONS/SIGNIFICANCE: FastBLAST enables research groups that do not have supercomputers to analyze large protein sequence data sets. FastBLAST is open source software and is available at http://microbesonline.org/fastblast.

  18. Nonreutilizaton of adrenal chromaffin granule membranes following secretion

    International Nuclear Information System (INIS)

    Nobiletti, J.B.

    1985-01-01

    The intracellular postexocytotic fate of the adrenal chromaffin granule membrane (reutilization vs. nonreutilization) was addressed through two experimental approaches. First, ( 3 H) leucine pulse-chase labeling experiments were conducted in two systems - the isolated retrograde perfused cat adrenal gland and cultured bovine adrenal chromaffin cells to compare chromaffin granule soluble dopamine-B-hydroxylase (DBH) turnover (marker for granule soluble content turnover) to that of membrane-bound DBH (marker for granule membrane turnover). Experiments in cat adrenal glands showed that at all chase periods the granule distribution of radiolabeled DBH was in agreement with the DBH activity distribution (73% membrane-bound/27% soluble) - a result consistent with parallel turnover of soluble and membrane-bound DBH. Experiments in cultured bovine cells showed that labeled soluble and membrane-bound DBH had parallel turnover patterns and at all chase period, the distribution of radiolabeled DBH between the soluble contents and membranes was similar to the DBH activity distribution (50% soluble/50% membrane-bound). The above experiments showed that the soluble contents and membranes turnover in parallel and are consistent with nonreutilization of chromaffin granule membranes following exocytosis. Isolated retrograde perfused bovine adrenal glands were subjected to repetitive acetylcholine stimulation to induce exocytosis and then the dense and less-dense chromaffin granule fractions were isolated. Since both approaches gave results consistent with membrane nonreutilization, the authors conclude that once a chromaffin granule is involved in exocytosis, its membrane is not reutilized for the further synthesis, storage, and secretion of catecholamines

  19. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation.

    Science.gov (United States)

    Grote, Simon; Kleinebudde, Peter

    2018-05-29

    The influence of particle morphology and size of alpha-lactose monohydrate on dry granules and tablets was studied. Four different morphologies were investigated: Two grades of primary crystals, which differed in their particle size and structure (compact crystals vs. agglomerates). The materials were roll compacted at different specific compaction forces and changes in the particle size distribution and the specific surface area were measured. Afterwards, two fractions of granules were pressed to tablets and the tensile strength was compared to that from tablets compressed from the raw materials. The specific surface area was increased induced by roll compaction/dry granulation for all materials. At increased specific compaction forces, the materials showed sufficient size enlargement. The morphology of lactose determined the strength of direct compressed tablets. In contrast, the strength of granule tablets was leveled by the previous compression step during roll compaction/dry granulation. Thus, the tensile strength of tablets compressed directly from the powder mixtures determined whether materials exhibited a loss in tabletability after roll compaction/dry granulation or not. The granule size had only a slight influence on the strength of produced tablets. In some cases, the fraction of smaller granules showed a higher tensile strength compared to the larger fraction.

  20. The use of computer blast simulations to improve blast quality

    International Nuclear Information System (INIS)

    Favreau, R.F.; Kuzzyk, G.W.; Babulic, P.J.; Morin, R.A.; Tienkamp, N.J.

    1987-01-01

    An underground research laboratory (URL) has been constructed as part of a comprehensive program to evaluate the concept of nuclear fuel waste disposal in deep crystalline rock formations. Careful blasting methods have been used to minimize damage to the excavation surfaces. This paper reviews the results of the program to develop controlled blasting for the full-face method, comparing the field observed results achieved with the simulated theoretical results. The simulated results indicate how the blasting may damage the excavation surface. Results suggest that the rock around the final wall is stressed more severely by the cushion holes than by the perimeter holes and that bootleg of the rock between the perimeter and cushion rows occurs when the burst-out velocity imparted to it by the explosive loads in the perimeter holes is inadequate

  1. 30 CFR 780.13 - Operation plan: Blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: Blasting. 780.13 Section 780.13... SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.13 Operation plan: Blasting. (a) Blasting plan. Each application shall contain a blasting plan for the proposed...

  2. New developments on transition radiation detectors using superconducting granules

    International Nuclear Information System (INIS)

    Yuan, L.C.L.

    1977-01-01

    By raising slightly either the temperature or the magnetic field to above that of the critical temperature or the critical magnetic field, the type I superconducting granules would still remain in the superconducting state which becomes a metastable state and is called the superheated superconducting state. If a relativistic charged particle incident on such a granule which is located in a colloidal suspension has imported to it an energy that is above the threshold energy (for state flipping) of the granule then it would flip to the normal state. The threshold energy of a granule is a function of the square of its radius, whereas the energy loss of a charged particle due to ionization is linearly proportional to the radius. The size of the granule can be pre-determined to be such that its threshold energy is slightly above the ionization loss of a relativistic charged particle. Then the traversal of the charged particle through such a granule would not affect the superconducting state of the granule unless a transition x-ray radiation is emitted at the surface of the granule by the traversing particle and the x-ray transition radiation is immediately absorbed either in total or partially by the metallic granule causing it to flip to the normal state. The total intensity of the x-ray transition radiation is linearly proportional to the Lorentz factor γ of the traversing particle, and the number of granules flipped would also be a measure of γ. Three methods for detecting the flipping of granules from the superconducting state to the normal state are described. They include the frequency measuring method, the SQUID method, and the pulse method with low noise amplifier system

  3. BPM Motors in Residential Gas Furnaces: What are the Savings?

    OpenAIRE

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This p...

  4. Control blasting of reinforced concrete

    International Nuclear Information System (INIS)

    Nagase, Tetsuo

    1981-01-01

    With the need of decommissioning nuclear power plants, it is urgently required to establish its methods and standards. In Shimizu Construction Co., Ltd., experimental feasibility studies have been made on explosive demolition method i.e. the controlled blasting for the massive concrete structures peculiar to nuclear power plants, considering low radiation exposure, safety and high efficiency. As such, four techniques of line drilling, cushion blasting, pre-splitting and guide hole blasting, respectively, are described with photographs. Assuming the selective demolition of activated concrete structures, the series of experiments showed the good results of clear-cut surfaces and the effect of blasting was confined properly. Moreover, the scattering of debris in blasting was able to be entirely prevented by the use of rubber belts. The generation of gas and dust was also little due to the small amount of the charge used. (J.P.N.)

  5. Disintegration of aerobic granules induced by trans-2-decenoic acid.

    Science.gov (United States)

    Cai, Pei-Jie; Xiao, Xiang; He, Yan-Rong; Li, Wen-Wei; Yu, Lei; Yu, Han-Qing

    2013-01-01

    One current major hurdle to practical implementation of aerobic granule technology is the frequent occurrence of granule disintegration during long-term operation. However, the mechanism behind this is largely unclear today. Here, 2-decenoic acid, which has been previously demonstrated to be released by Pseudomonas aeruginosa and disperse biofilms, was found to also induce the disintegration of aerobic granules. A comparison of the solution compositions from samples of only trans-2-decenoic acid, only aerobic granules, and granules added with trans-2-decenoic acid shows that bacteria and extracellular polymeric substances (EPS) were stripped from granule surface upon trans-2-decenoic acid dosing. Due to the possible toxicity of trans-2-decenoic acid at a saturation concentration, the disintegrated granules and the milky suspension in the disintegration test showed a significantly lower oxygen uptake rate than the un-integrated granules. This work suggests that trans-2-decenoic acid released by microbes might play a critical role in regulating the disintegration of aerobic granules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Wenbin Gu

    2017-01-01

    Full Text Available Lighthouses are the most important hydraulic structures that should be protected during underwater drilling blasting. Thus, the effect of blasting vibration on lighthouse should be studied. On the basis of the dimensional analysis, we deduced a revised formula for water depth based on Sodev’s empirical formula and established the linear fitting model. During the underwater reef project in the main channel of Shipu Harbor in the Ningbo–Zhoushan Port, the blasting vibration data of the lighthouse near the underwater blasting area were monitored. The undetermined coefficient, resolvable coefficient, and F value of the two formulas were then obtained. The comparison of the data obtained from the two formulas showed that they can effectively predict the blasting vibration on the lighthouse. The correction formula that considers water depth can obviously reduce prediction errors and accurately predict blasting vibration.

  7. Granulation of Cu-Al-Fe-Ni Bronze

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2014-08-01

    Full Text Available With the increase in wall thickness of the casting of iron-nickel-aluminium-bronze, by the reduction of the cooling rate the size of κII phase precipitates increases. This process, in the case of complex aluminium bronzes with additions of Cr, Mo and W is increased. Crystallization of big κII phase, during slow cooling of the casting, reduces the concentration of additives introduced to the bronze matrix and hardness. Undertaken research to develop technology of thick-walled products (g> 6 mm of complex aluminium bronzes. Particular attention was paid to the metallurgy of granules. As a result, a large cooling speed of the alloy, and also high-speed solidification casting a light weight of the granules allows: to avoid micro-and macrosegregation, decreasing the particle size, increase the dispersion of phases in multiphase alloys. Depending on the size granules as possible is to provide finished products with a wall thickness greater than 6 mm by infiltration of liquid alloy of granules (composites. Preliminary studies was conducted using drip method granulate of CuAl10Fe5Ni5 bronze melted in a INDUTHERM-VC 500 D Vacuum Pressure Casting Machine. This bronze is a starting alloy for the preparation of the complex aluminium bronzes with additions of Cr, Mo, W and C or Si. Optimizations of granulation process was carried out. As the process control parameters taken a casting temperature t (°C and the path h (mm of free-fall of the metal droplets in the surrounding atmosphere before it is intensively cooled in a container of water. The granulate was subjected to a sieve analysis. For the objective function was assume maximize of the product of Um*n, the percentage weight “Um” and the quantity of granules ‘n’ in the mesh fraction. The maximum value of the ratio obtained for mesh fraction a sieve with a mesh aperture of 6.3 mm. In the intensively cooled granule of bronze was identified microstructure composed of phases: β and fine bainite

  8. Consideration on local blast vibration control by delay blasting; Danpatsu happa ni yoru kyokuchiteki shindo seigyo ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Mogi, Gento; Adachi, Tsuyoshi; Yamatomi, Jiro [The University of Tokyo School of Engineering Department of Geosystem Engineering, Tokyo (Japan); Hoshino, Tatsuya [Mitsui Mining and Smelting Corp., Tokyo (Japan)

    1999-10-31

    In this research, local blast vibration control based on the theory of superposition of waves was investigated. Firstly, the influence of delay time errors of conventional electric detonators upon the level of local blast vibration was examined. Secondly, for a further effective local blast vibration control, a new delay blasting design concept 'combined delay blasting' that postulates the use of electronic detonators, which virtually have no delay time errors, is proposed. For a delay blasting with uniform detonation time intervals, an optimum time interval to minimize the local PPV (Peak Particle Velocity) is obtained based on the relationship between the PPV and the time interval, which is derived by superposing identical vibration time histories of each single hole shot. However, due to the scattering of the actual delay time caused by errors, PPV of a production blast seldom coincides with the estimated one. Since the expected value and the variance of PPV mainly depend on sensitivity of PPV around the nominal delay time, it is proposed that not only the optimum but also several sub-optimum candidates of delay time should be examined taking error into consideration. Concerning the 'combined delay blasting', its concept and some simulation results are presented. The estimated reduction effect of blast vibration of a delay blast based on this concept was quite favorable, indicating a possibility for further effective local blast vibration control. (author)

  9. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Science.gov (United States)

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. High-shear granulation as a manufacturing method for cocrystal granules

    DEFF Research Database (Denmark)

    Rehder, Sönke; Christensen, Niels Peter Aae; Rantanen, Jukka

    2013-01-01

    and the respective excipients). The drug release was slightly decreased by cocrystal formation, most likely due to the lower solubility of the cocrystal. In the presence of calcium hydrogenphosphate however, no influence of cocrystal formation on either compactability or on drug release were observed, compared...... with the reference tablets. It was concluded that high-shear wet granulation is a valuable, however complex, manufacturing method for cocrystals. Cocrystal formation may influence compactability and drug release and thus affect drug performance and should be investigated during pre-formulation.......Cocrystal formation allows the tailoring of physicochemical as well as of mechanical properties of an API. However, there is a lack of large-scale manufacturing methods of cocrystals. Therefore, the objective of this work was to examine the suitability of high-shear wet granulation...

  11. Programmable temperature regulator of VAO-1 furnace

    International Nuclear Information System (INIS)

    Zahalka, F.

    1979-01-01

    A programmable temperature controller is described for a furnace for high-level waste processing. Furnace temperature is controlled by a program compiled from a combination of 3 parts with different linear increments or decrements of time dependent temperature and 2 parts with isothermal control for over a preset period. The equipment consists essentially of a programming unit, a programmed digital-to-analog converter and a power unit. The design is described in detail and its specifications are given. The maximum operating temperature of 1500 degC may be reached in the furnace charge section. (B.S.)

  12. A new compact fixed-point blackbody furnace

    International Nuclear Information System (INIS)

    Hiraka, K.; Oikawa, H.; Shimizu, T.; Kadoya, S.; Kobayashi, T.; Yamada, Y.; Ishii, J.

    2013-01-01

    More and more NMIs are realizing their primary scale themselves with fixed-point blackbodies as their reference standard. However, commercially available fixed-point blackbody furnaces of sufficient quality are not always easy to obtain. CHINO Corp. and NMIJ, AIST jointly developed a new compact fixed-point blackbody furnace. The new furnace has such features as 1) improved temperature uniformity when compared to previous products, enabling better plateau quality, 2) adoption of the hybrid fixed-point cell structure with internal insulation to improve robustness and thereby to extend lifetime, 3) easily ejectable and replaceable heater unit and fixed-point cell design, leading to reduced maintenance cost, 4) interchangeability among multiple fixed points from In to Cu points. The replaceable cell feature facilitates long term maintenance of the scale through management of a group of fixed-point cells of the same type. The compact furnace is easily transportable and therefore can also function as a traveling standard for disseminating the radiation temperature scale, and for maintaining the scale at the secondary level and industrial calibration laboratories. It is expected that the furnace will play a key role of the traveling standard in the anticipated APMP supplementary comparison of the radiation thermometry scale

  13. Coating of waste containing ceramic granules

    International Nuclear Information System (INIS)

    Neumann, W.; Kofler, O.

    1979-01-01

    Simulated high-level waste granules produced by fluidized-bed calcination were overcoated by chemical vapor deposition (CVD) with pyrocarbon and nickel in laboratory-scale experiments. Successful development enables pyrocrbon deposition at temperatures of 600 to 800 0 K. The coated granules have excellent properties for long-term waste storage

  14. Ironmaking Process Alternative Screening Study, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood Greene, . .

    2005-01-06

    Iron in the United States is largely produced from iron ore mined in the United States or imported from Canada or South America. The iron ore is typically smelted in Blast Furnaces that use primarily iron ore, iron concentrate pellets metallurgical coke, limestone and lime as the raw materials. Under current operating scenarios, the iron produced from these Blast Furnaces is relatively inexpensive as compared to current alternative iron sources, e.g. direct iron reduction, imported pig iron, etc. The primary problem the Blast Furnace Ironmaking approach is that many of these Blast furnaces are relatively small, as compared to the newer, larger Blast Furnaces; thus are relatively costly and inefficient to operate. An additional problem is also that supplies of high-grade metallurgical grade coke are becoming increasingly in short supply and costs are also increasing. In part this is due to the short supply and costs of high-grade metallurgical coals, but also this is due to the increasing necessity for environmental controls for coke production. After year 2003 new regulations for coke product environmental requirement will likely be promulgated. It is likely that this also will either increase the cost of high-quality coke production or will reduce the available domestic U.S. supply. Therefore, iron production in the United States utilizing the current, predominant Blast Furnace process will be more costly and would likely be curtailed due to a coke shortage. Therefore, there is a significant need to develop or extend the economic viability of Alternate Ironmaking Processes to at least partially replace current and declining blast furnace iron sources and to provide incentives for new capacity expansion. The primary conclusions of this comparative Study of Alternative Ironmaking Process scenarios are: (1) The processes with the best combined economics (CAPEX and OPEX impacts in the I.R.R. calculation) can be grouped into those Fine Ore based processes with no scrap

  15. Downstream processing from melt granulation towards tablets: In-depth analysis of a continuous twin-screw melt granulation process using polymeric binders.

    Science.gov (United States)

    Grymonpré, W; Verstraete, G; Vanhoorne, V; Remon, J P; De Beer, T; Vervaet, C

    2018-03-01

    The concept of twin-screw melt granulation (TSMG) has steadily (re)-gained interest in pharmaceutical formulation development as an intermediate step during tablet manufacturing. However, to be considered as a viable processing option for solid oral dosage forms there is a need to understand all critical sources of variability which could affect this granulation technique. The purpose of this study was to provide an in-depth analysis of the continuous TSMG process in order to expose the critical process parameters (CPP) and elucidate the impact of process and formulation parameters on the critical quality attributes (CQA) of granules and tablets during continuous TSMG. A first part of the study dealt with the screening of various amorphous polymers as binder for producing high-dosed melt granules of two model drug (i.e. acetaminophen and hydrochlorothiazide). The second part of this study described a quality-by-design (QbD) approach for melt granulation of hydrochlorothiazide in order to thoroughly evaluate TSMG, milling and tableting stage of the continuous TSMG line. Using amorphous polymeric binders resulted in melt granules with high milling efficiency due to their brittle behaviour without producing excessive amounts of fines, providing high granule yields with low friability. Therefore, it makes them extremely suitable for further downstream processing. One of the most important CPP during TSMG with polymeric binders was the granulation-torque, which - in case of polymers with high T g - increased during longer granulation runs to critical levels endangering the continuous process flow. However, by optimizing both screw speed and throughput or changing to polymeric binders with lower T g it was possible to significantly reduce this risk. This research paper highlighted that TSMG must be considered as a viable option during formulation development of solid oral dosage forms based on the robustness of the CQA of both melt granules and tablets. Copyright © 2017

  16. Electric melting furnace for waste solidification

    International Nuclear Information System (INIS)

    Masaki, Toshio.

    1990-01-01

    To avoid electric troubles or reduction of waste processing performance even when platinum group elements are contained in wastes to be applied with glass solidification. For this purpose, a side electrode is disposed to the side wall of a melting vessel and a central electrode serving as a counter electrode is disposed about at the center inside the melting vessel. With such a constitution, if conductive materials are deposited at the bottom of the furnace or the bottom of the melting vessel, heating currents flow selectively between the side electrode and the central electrode. Accordingly, no electric currents flow through the conductive deposits thereby enabling to prevent abnormal heating in the bottom of the furnace. Further, heat generated by electric supply between the side electrode and the central electrode is supplied efficiently to raw material on the surface of the molten glass liquid to improve the processing performance. Further, disposition of the bottom electrode at the bottom of the furnace enables current supply between the central electrode and the bottom electrode to facilitate the temperature control for the molten glass in the furnace than in the conventional structure. (I.S.)

  17. BLEVE blast by expansion-controlled evaporation

    NARCIS (Netherlands)

    Berg, A.C. van den; Voort, M.M. van der; Weerheijm, J.; Versloot, N.H.A.

    2006-01-01

    This report presents a new method to calculate the blast effects originating from an exploding vessel of liquefied gas. Adequate blast calculation requires full knowledge of the blast source characteristics, that is, the release and subsequent evaporation rate of the flashing liquid. Because the

  18. Sequestration of highly expressed mRNAs in cytoplasmic granules, P-bodies, and stress granules enhances cell viability.

    Directory of Open Access Journals (Sweden)

    Anna Lavut

    Full Text Available Transcriptome analyses indicate that a core 10%-15% of the yeast genome is modulated by a variety of different stresses. However, not all the induced genes undergo translation, and null mutants of many induced genes do not show elevated sensitivity to the particular stress. Elucidation of the RNA lifecycle reveals accumulation of non-translating mRNAs in cytoplasmic granules, P-bodies, and stress granules for future regulation. P-bodies contain enzymes for mRNA degradation; under stress conditions mRNAs may be transferred to stress granules for storage and return to translation. Protein degradation by the ubiquitin-proteasome system is elevated by stress; and here we analyzed the steady state levels, decay, and subcellular localization of the mRNA of the gene encoding the F-box protein, UFO1, that is induced by stress. Using the MS2L mRNA reporter system UFO1 mRNA was observed in granules that colocalized with P-bodies and stress granules. These P-bodies stored diverse mRNAs. Granules of two mRNAs transported prior to translation, ASH1-MS2L and OXA1-MS2L, docked with P-bodies. HSP12 mRNA that gave rise to highly elevated protein levels was not observed in granules under these stress conditions. ecd3, pat1 double mutants that are defective in P-body formation were sensitive to mRNAs expressed ectopically from strong promoters. These highly expressed mRNAs showed elevated translation compared with wild-type cells, and the viability of the mutants was strongly reduced. ecd3, pat1 mutants also exhibited increased sensitivity to different stresses. Our interpretation is that sequestration of highly expressed mRNAs in P-bodies is essential for viability. Storage of mRNAs for future regulation may contribute to the discrepancy between the steady state levels of many stress-induced mRNAs and their proteins. Sorting of mRNAs for future translation or decay by individual cells could generate potentially different phenotypes in a genetically identical

  19. Hilar mossy cell circuitry controlling dentate granule cell excitability

    Directory of Open Access Journals (Sweden)

    Seiichiro eJinde

    2013-02-01

    Full Text Available Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability – the dormant basket cell and the irritable mossy cell hypotheses. The dormant basket cell hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The irritable mossy cell hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.

  20. Detection and Analysis of the Quality of Ibuprofen Granules

    Science.gov (United States)

    Yu-bin, Ji; Xin, LI; Guo-song, Xin; Qin-bing, Xue

    2017-12-01

    The Ibuprofen Granules comprehensive quality testing to ensure that it is in accordance with the provisions of Chinese pharmacopoeia. With reference of Chinese pharmacopoeia, the Ibuprofen Granules is tested by UV, HPLC, in terms of grain size checking, volume deviation, weight loss on drying detection, dissolution rate detection, and quality evaluation. Results indicated that Ibuprofen Granules conform to the standards. The Ibuprofen Granules are qualified and should be permitted to be marketed.