Sample records for blast furnace granular

  1. An update on blast furnace granular coal injection

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)


    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  2. Blast furnace granular coal injection at Bethlehem Steel's Burns Harbor Plant

    D. Gregory Hill; Leo I.E. Makovsky; Thomas A. Sarkus; Howard G. McIlvried [Bethlehem Steel Corporation, Chesterton, IN (USA)


    The paper discusses the demonstration of the British Steel/CPC-Macawber Blast Furnace Granular Coal Injection (BFGCI) technology that was installed on the blast furnaces at Bethlehem Steel's Burns Harbor Plant in Indiana as a highly successful Clean Coal Technology project, cofunded by the U.S. Department of Energy. In the BFGCI process, granular coal (10%-30% through a 200-mesh screen) is injected into a blast furnace as a fuel supplement to decrease coke requirements, thus reducing costs. Tests run to determine the effect of process variables on furnace operations showed that granular coal works as well as pulverized coal and is easier to handle and cheaper to produce because of reduced grinding costs.

  3. A New Kind of Eco-Cement Made of Cement Kiln Dust and Granular Blast Furnace Slag


    A research project was conducted to manufacture eco-cement for sustainable development using cement kiln dust( CKD ) and granular blast furnace slag( GBFS ).In the project, the burning process and mineral compositions of CKD clinker were investigated.Dife rent mineralizers such as CaSO4 and CaF2 , sulfur and alkali content were considered.The strength of CKD and GBFS eco-cement were evaluated.The results indicate the CKD clinker can not only form ordinary cement clinker minerals such as C3 S, C2 S and C4 AF, but also form strength to the Portland cement grade 32.5 when blend proportion is properly applied.

  4. Alkaline carbonates in blast furnace process

    P. Besta


    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  5. The use of blast furnace slag

    V. Václavík


    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  6. The use of blast furnace slag

    V. Václavík; V. Dirner; T. Dvorský; J. Daxner


    The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  7. Anhydrous Taphole Mix for Blast Furnace

    Yu Lingyan


    @@ 1 Scope This standard specifies the term,definition,brand,label,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of anhydrous taphole mix for blast furnace.

  8. Kaolinite Refractory Bricks for Blast Furnaces


    @@ This standard is suitable to the fireclay bricks for blast furnace. 1 Classification, Shape and Dimension 1 According to physical and chemical indexes, the brick can be divided into two trademarks: ZGN-42 and GN-42.

  9. Information modeling system for blast furnace control

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.


    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  10. Conceptual design and simulation analysis of thermal behaviors of TGR blast furnace and oxygen blast furnace


    Extensive use of carbon based fuel is the main inducement for global warming and more extreme weather.Reducing carbon dioxide emission and enhancing energy use is a common subject in steel industry.In the integrated steel plant,decreasing carbon dioxide emission must consider energy balance in the whole iron and steel works,and secondary energy must be actively utilized.As promising blast-furnaces,top gas recovery blast furnace(TGR-BF) and oxygen blast furnace have been investigated.In this paper,conceptual TGR blast furnace and oxygen blast furnace are proposed.Base on the idea of blast furnace gas de-CO2 circulating as reducing agent and the idea of pure oxygen blast decreasing the thermal reserve zone temperature,process modeling is conducted with ASPEN Plus.It is shown that the developed model reasonably describes the energy balance and mass balance feature of the furnace,and provides basic thermodynamic condition for furnaces.The effects of changes in different operation conditions are studied by sensitivity analysis and reference data from simulation.

  11. Carbon monoxide exposure in blast furnace workers.

    Lewis, S; Mason, C; Srna, J


    This study investigated the occupational exposure to carbon monoxide (CO) of a group of blast furnace workers from an integrated steelworks, compared to a control group having no significant occupational CO exposure from other areas in the same works. The study was undertaken in 1984 at Port Kembla, New South Wales. Carboxyhaemoglobin (COHb) levels before and after an eight-hour work shift were measured in 98 male steelworkers: 52 from two CO-exposed iron blast furnaces and 46 controls from production areas in the same steelworks. The sample was stratified by smoking habits. Environmental air CO levels had been found to be consistently higher on one furnace than on the other. Absorption of CO from the working environment occurred in workers on the blast furnace with higher CO levels, regardless of smoking habits. On this blast furnace, some readings of COHb levels after a workshift in nonsmokers approached the proposed Australian occupational limit of 5 per cent COHb saturation. Overall, workers with the highest occupational exposure who smoked most heavily had the highest absorption of CO over a work shift. Biological monitoring gives an accurate measure of individual worker 'dose' of CO from all sources. Both environmental monitoring and biological monitoring need to be included as part of a program for controlling occupational CO exposure.

  12. Reduction disintegration mechanism of cold briquettes from blast furnace dust and sludge

    Leandro Rocha Lemos


    Full Text Available It is important to understand the reduction disintegration mechanism in ferriferous burden that is used in blast furnaces. The behavior of this burden in the granular zone of this metallurgical reactor is important for smooth operation. The objective of this work was to prepare cold self-reducing briquettes using blast furnace dust and sludge and binders and compare the reduction disintegration index (RDI of these agglomerates with conventional ferriferous burdens such as pellets, sinter and iron ore. In the present work, 25 different mixtures were prepared to produce briquettes in two geometries: pillow and cylindrical. The RDI value was determined for the briquettes that passed the tumbling test.

  13. Oil injection into the blast furnace

    Dongsheng Liao; Mannila, P.; Haerkki, J.


    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  14. Reduction Mechanism of Chromite Ore in Blast Furnace

    LI Yi-wei; DING Wei-zhong; LU Xiong-gang; XU Kuang-di


    The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDXA). The smelting reduction mechanism of chromite in blast furnace was primarily discussed.

  15. Blast Furnace Granulated Coal Injection System Demonstration Project public design report. Topical report



    The public design report describes the Blast Furnace Granulated Coal Injection (BFGCI) project under construction at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. The project is receiving cost-sharing from the U.S. Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. The project is the first installation in the United States for the British Steel technology using granular coal in blast furnaces. The objective is to demonstrate that granular coal is an economic and reliable fuel which can successfully be applied to large North American blast furnaces. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. To achieve the program objectives, the demonstration project is divided into the following three Phases: Phase I-Design; Phase II-Procurement & Construction; and Phase III-Operation. Preliminary design (Phase I) began in 1991 with detailed design commencing in April 1993. Construction at Burns Harbor (Phase II) began August 1993. Construction is expected to be complete in the first quarter of 1995 which will be followed by a demonstration test program (Phase III).

  16. Mathematical model and software for control of commissioning blast furnace

    Spirin, N. A.; Onorin, O. P.; Shchipanov, K. A.; Lavrov, V. V.


    Blowing-in is a starting period of blast furnace operation after construction or major repair. The current approximation methods of blowing-in burden analysis are based on blowing-in practice of previously commissioned blast furnaces. This area is theoretically underexplored; there are no common scientifically based methods for selection of the burden composition and blast parameters. The purpose of this paper is development and scientific substantiation of the methods for selection of the burden composition and blast parameters in the blast furnace during the blowing-in period. Research methods are based on physical regularities of main processes running in the blast furnace, system analysis, and application of modern principles for development and construction of mathematical models, algorithms and software designed for automated control of complex production processes in metallurgy. As consequence of the research made by the authors the following results have been achieved: 1. A set of mathematical models for analysis of burden arrangement throughout the height of the blast furnace and for selection of optimal blast and gas dynamic parameters has been developed. 2. General principles for selection of the blowing-in burden composition and blast and gas dynamic parameters have been set up. 3. The software for the engineering and process staff of the blast furnace has been developed and introduced in the industry.

  17. Anomaly detection of blast furnace condition using tuyere cameras

    Yamahira, Naoshi; Hirata, Takehide; Tsuda, Kazuro; Morikawa, Yasuyuki; Takata, Yousuke


    We present a method of anomaly detection using multivariate statistical process control(MSPC) to detect the abnormal behaviors of a blast furnace. Tuyere cameras attached circumferentially at the lower side of a blast furnace are used to monitor the inside of the furnace and this method extracts abnormal behaviors of intensities. It is confirmed that with our method, detecting timing is earlier than operators' notice. Besides, misalignment of cameras doesn't affect detecting performance, which is important property in actual use.

  18. Development of heat-transfer circuits in the blast furnace

    Spirin, N. A.; Yaroshenko, Yu G.; Lavrov, V. V.


    The development of heat-transfer circuits in the blast furnace as the technologies of blast-furnace smelting are improved are considered. It is shown that there are two zones of intense heat-transfer, and in modern conditions, when different kinds of iron ore are smelted, the use of combined blast with high parameters is a prerequisite for the stability of blastfurnace smelting operation and the smelting efficiency.

  19. Thermodynamic modeling of lead blast furnace

    TAN Peng-fu


    A thermodynamic model was developed to predict the distribution behavior of Cu,Fe,S,O,Pb,Zn,As,and the heat balance in a lead blast furnace.The modeling results are validated by the plant data of a lead smelter in Kazakhstan.The model can be used to predict any set of controllable process parameters such as feed composition,smelting temperature,degree of oxygen enrichment and volume of oxygen-enriched air.The effects of the blast air,industrial oxygen,and coke charge on the distribution of Cu,Fe,S,O,Pb,Zn,As,the heat balance,and the lead loss in slag,were presented and discussed.

  20. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin


    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  1. Durability of Alkali Activated Blast Furnace Slag

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.


    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  2. Mercury in dumped blast furnace sludge.

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim


    Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was dumped in sedimentation ponds. Sixty-five samples from seven BFS locations in Europe were investigated regarding the toxic element mercury (Hg) for the first time. The charge material of the blast furnace operations revealed Hg contents from 0.015 to 0.097mgkg(-1). In comparison, the Hg content of BFS varied between 0.006 and 20.8mgkg(-1) with a median of 1.63mgkg(-1), which indicates enrichment with Hg. For one site with a larger sample set (n=31), Hg showed a stronger correlation with the total non-calcareous carbon (C) including coke and graphite (r=0.695; n=31; p<0.001). It can be assumed that these C-rich compounds are hosting phases for Hg. The solubility of Hg was rather low and did not exceed 0.43% of total Hg. The correlation between the total Hg concentration and total amount of NH4NO3-soluble Hg was relatively poor (r=0.496; n=27; p=0.008) indicating varying hazard potentials of the different BFS. Finally, BFS is a mercury-containing waste and dumped BFS should be regarded as potentially mercury-contaminated sites.

  3. Refractory Gunning Material for Inner Lining Maintenance of Blast Furnace

    Yu Lingyan; Peng Xigao


    @@ 1 Scope This standard specifies the term and definition,classification, technical requirements, test methods,quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of refractory gunning material for inner lining maintenance of blast furnace .

  4. Removal of phosphate from aqueous solution with blast furnace slag.

    Oguz, Ensar


    Blast furnace slag was used to remove phosphate from aqueous solutions. The influence of pH, temperature, agitation rate, and blast furnace slag dosage on phosphate removal was investigated by conducting a series of batch adsorption experiments. In addition, the yield and mechanisms of phosphate removal were explained on the basis of the results of X-ray spectroscopy, measurements of zeta potential of particles, specific surface area, and images of scanning electron microscopy (SEM) of the particles before and after adsorption. The specific surface area of the blast furnace slag was 0.4m(2)g(-1). The removal of phosphate predominantly has taken place by a precipitation mechanism and weak physical interactions between the surface of adsorbent and the metallic salts of phosphate. In this study, phosphate removal in excess of 99% was obtained, and it was concluded that blast furnace slag is an efficient adsorbent for the removal of phosphate from solution.

  5. Monitoring Method for Blast Furnace Wall With Copper Staves

    CHENG Su-sen; QIAN Liang; ZHAO Hong-bo


    A monitoring method that has been designed for the first time for blast furnace wall with copper staves manufactured in China was introduced. Combining the method of "inverse problem" and the concept "non-inverse problem", the monitoring program for blast furnace wall with copper staves has been realized, which can be used to calculate online the accretion thickness and temperature of hot surface of copper staves after obtaining the values of thermocouples of copper staves. The accretion state obtained in the actual investigation has proved that the result of the program is correct. The monitoring program shows that the accretion would easily fluctuate when the accretion layer is extremely thick or thin, thereby the stable and smooth operation of the blast furnace is hindered. By maintaining appropriate accretion thickness, both long campaigns and high productivity of the blast furnace can be achieved; furthermore, it can also optimize the operation of blast furnace and maximize its production. Approximately 30-50 mm in thickness of accretion layer is maintained on the wall of Shougang blast furnace 2, which can meet the requirement for obtaining both long campaign and high productivity.

  6. Portland cement-blast furnace slag blends in oilwell cementing applications

    Mueller, D.T.; DiLullo, G.; Hibbeler, J. [and others


    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  7. The effect of blast furnace coke quality on the possibility of its use

    A. Konstanciak


    In the paper behavior of the blast-furnace coke in the high temperature was presented. Comparative analysis of the chemical composition of the blast-furnace coke and the heat treatment of it were done. Coefficients M10 and M40 with the thermo-abrasiveness for chosen cokes were compared. The influence of ash content of the coke on the blast-furnace bed permeability was defined. Usefulness of the coke to blast-furnace process was also defined.

  8. Boundary Identification for a Blast Furnace


    In this paper, the authors discuss an inverse boundary problem for the axisymmetric steady-state heat equation, which arises in monitoring the boundary corrosion for the blast-furnace. Measure temperature at some locations are used to identify the shape of the corrosion boundary.The numerical inversion is complicated and consuming since the wear-line varies during the process and the boundary in the heat problem is not fixed. The authors suggest a method that the unknown boundary can be represented by a given curve plus a small perturbation, then the equation can be solved with fixed boundary, and a lot of computing time will be saved.A method is given to solve the inverse problem by minimizing the sum of the squared residual at the measuring locations, in which the direct problems are solved by axisymmetric fundamental solution method.The numerical results are in good agreement with test model data as well as industrial data, even in severe corrosion case.

  9. Iron making technology with fuels and other materials injection in blast furnace tuyeres. Part 1. Auxiliary fuels characteristics and its influence in the blast furnace process; Tecnologia de fabricacion de arrabio con la inyeccion de combustibles y otros materiales por toberas en el horno alto. I parte. Caracteristicas de los combustibles auxiliares y su influencia en el proceso del horno alto

    Garcia, L. [Union de Empresas de Recuperacion de Materias Primas. Ciudad de La Habana (Cuba); Cores, A.; Formoso, A. [Centro Nacional de Investigaciones Metalurgicas. Madrid (Spain); Babich, A.; Yaroshevskii, S. [Universidad Estatal Tecnologica de Donetsk. Ucrania (Ukraine)


    The injection of fuels by tuyeres in the blast furnace is a used practice in most furnaces with the principal aim to reduce the coke consumption by ton of pig iron produced. The nature of these fuels is very diverse and depends on the resources of each country and of the fuel price. At this moment the coal injection (pulverized and granular) is the most extended practice, and the number of furnaces with facilities for coal injection increases continuously. (Author) 14 refs.

  10. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa


    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  11. Numerical Study of the Reduction Process in an Oxygen Blast Furnace

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng


    Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.

  12. Numerical Simulation of Fluid Flow in Blast Furnace Hearth

    ZHAO Min-ge; SUN Tian-liang; CHENG Su-sen; GAO Zheng-kai


    The liquid flow in blast furnace hearth can result in the erosion of hearth. To prolong the campaign life of blast furnace, the effects of coke bed structure, coke porosity and deepness of taphole on liquid flow in hearth were studied by κ-ε model under different conditions. The results show that with the decrease of coke porosity, the peripheral flow is enhanced. Moreover, the existence of narrow coke free zone and the deepness reduction of taphole can increase the flowability on the bottom of hearth.

  13. A Survey Study of the Blast Furnace at Kuangshan Village Using 3D Laser Scanning

    Wang, Jin; Huang, Xing; Qian, Wei


    The blast furnace from the Northern Song Dynasty at Kuangshan Village is the tallest blast furnace that remains from ancient China. Previous studies have assumed that the furnace had a closed mouth. In this paper, a three-dimensional (3D) model of the blast furnace is constructed using 3D laser scanning technology, and accurate profile data are obtained using software. It is shown that the furnace throat is smaller than had been previously thought and that the furnace mouth is of the open type. This new furnace profile constitutes a discovery in the history of iron-smelting technology.

  14. The propagation of blast pulses through dampened granular media

    Badham, Henry; Chalmers, Max; Nguyen, Thuy-Tien Ngoc; Proud, William Graham


    The propagation of stress through granular and dampened granular material has been reported previously, the addition of significant amounts of liquid in granular beds causes the mechanism of transmission of blast from one of percolation through the bed pores to one of stress transmission through the granules of the bed. It has been shown, however, that limited amounts liquid can retard propagation within blast-loaded beds by approximately an order of magnitude. This paper presents data on percolation through dampened granular beds using a shock tube as the pressure driver. The effect of particle shape and size was investigated using angular grains of quartz sand as well as smooth glass microspheres. The effect of addition of small amounts of liquids is presented.

  15. Energy balance analysis for Erdemir blast furnace number one

    M. Emre Ertem; Sabit Gurgen [Eregli Iron and Steel Works Inc., Zonguldak (Turkey). Energy Management Department


    There are two blast furnaces in Erdemir. The blast furnace No. 1, Ayse, started operations in 1965. Having been modernized three times in the years 1971, 1977, and 1986, it has been re-lined (the renewal of refractory bricks) in the year 1998. The diameter of its reservoir is 8.99 m with a working volume of 1505.0 m{sup 3}. The daily production capacity is 3000 tons amounting to 1,065,000 tons annually tons. The blast furnace No. 2, Zubeyde, started its operations in 1978. It has been modernized twice in the years 1987 and 1995 and has been re-lined in October 2000. It is of top pressure type and has oxygen injection. The diameter of its reservoir is 9.70 m with the working volume being 1707.7 m{sup 3}. The daily production capacity is 4000 tons with the annual being 1,420,000 tons. The iron production process consumes 50% of the total energy and comprises a significant portion of total costs in the integrated steel works. Iron (Fe) production is made by the reduction of hematite (Fe{sub 2}O{sub 3}) and magnetite (Fe{sub 3}O{sub 4}) with coke in the blast furnace. This can be analyzed as two separate areas, namely the furnace and stoves. The necessary carbon and high temperature required by the reduction process makes the furnaces an energy balance center. In this study, the limits of the Blast Furnace No. 1 in Erdemir have been chosen as the control volume in which the stoves have not been included. By the identification of the energy sources that move in and out of the control volume, the energy output sources have been fractioned and categorized. For the implementation of the method, also known as the balance analysis has been chosen and the model presented in the 'Japanese Steel Making Handbook' has been taken as a reference.

  16. Energy balance analysis for Erdemir blast furnace number one

    Emre Ertem, M. [Eregli Iron and Steel Works Inc., Energy Management Department, 67330 Kdz. Eregli, Zonguldak (Turkey); Guergen, Sabit [Dokuz Eyluel University, Department of Mining Engineering, 35100 Bornova, Izmir (Turkey)


    Eregli Iron and Steel Works (Erdemir) began its activities on May 15, 1965 with an annual production capacity of 450,000 tons and has made important contributions to the Turkish economy ever since. Today, with a total amount of crude steel production exceeding three million tons, it is the largest integrated iron and steel factory and the sole producer of flat steel in the country. Erdemir produces hot and cold rolled coils, zinc, tin, and chromium plated steel. There are two blast furnaces in Erdemir. The blast furnace No. 1, Ayse, started operations in 1965. Having been modernized three times in the years 1971, 1977, and 1986, it has been re-lined (the renewal of refractory bricks) in the year 1998. The diameter of its reservoir is 8.99m with a working volume of 1505.0m{sup 3}. The daily production capacity is 3000 tons amounting to 1,065,000 tons annually tons. The blast furnace No. 2, Zubeyde, started its operations in 1978. It has been modernized twice in the years 1987 and 1995 and has been re-lined in October 2000. It is of top pressure type and has oxygen injection. The diameter of its reservoir is 9.70m with the working volume being 1707.7m{sup 3}. The daily production capacity is 4000 tons with the annual being 1,420,000 tons. The iron production process consumes 50% of the total energy and comprises a significant portion of total costs in the integrated steel works. Iron (Fe) production is made by the reduction of hematite (Fe{sub 2}O{sub 3}) and magnetite (Fe{sub 3}O{sub 4}) with coke in the blast furnace. This can be analyzed as two separate areas, namely the furnace and stoves. The necessary carbon and high temperature required by the reduction process makes the furnaces an energy balance center. In this study, the limits of the Blast Furnace No. 1 in Erdemir have been chosen as the control volume in which the stoves have not been included. By the identification of the energy sources that move in and out of the control volume, the energy output

  17. Reduction of costs of iron production by changing parameters of the mixed blast-furnace wind

    J. Terpák


    Full Text Available The blast-furnace wind from hot-blast stoves is a significant factor of the blast furnace functioning. The technology was analyzed in which the hot wind from hot-blast stoves is not mixed with the cool wind to a constant wind temperature, but is blown directly into the blast furnace. However, it is necessary to compensate for the changes of the theoretical temperature of burning in blast furnace as a consequence of non-stabilized wind temperature, by changing composition of the wind. This can be done by adding different media into the wind with different results from the operational and economical viewpoints. Essentially, the following types of media are used in blast furnaces: steam, oxygen, substitution fuels, nitrogen, and waste gas.

  18. The Advancement in Intensified Smelting Technology of Baosteel Blast Furnace

    LinChengcheng; ZhangLonglai


    Baosteel always aims at becoming one of the most profitable enterprises in the world, enjoying international competence,benchmarking with the world advanced level, pursuing innovation sustainable development. Recent years, Baosteel Iron-making Department has caught the opportunity of increasing steel demand; conquering disadvantages such as changeable up-stream market, fuel and raw material's fight supplies and lower quality, etc. In our department, Major technical problems have been overcome, blast furnace intensified smelting technology improved, the cost of molten iron under control, blast fttmace long-life span control technology made breakthrough, and Baosteel's ironmaking capacity improved further.

  19. Thermal Spray Coatings for Blast Furnace Tuyere Application

    Pathak, A.; Sivakumar, G.; Prusty, D.; Shalini, J.; Dutta, M.; Joshi, S. V.


    The components in an integrated steel plant are invariably exposed to harsh working environments involving exposure to high temperatures, corrosive gases, and erosion/wear conditions. One such critical component in the blast furnace is the tuyere, which is prone to thermal damage by splashing of molten metal/slag, erosive damage by falling burden material, and corrosion from the ensuing gases. All the above, collectively or independently, accelerate tuyere failure, which presents a potential explosion hazard in a blast furnace. Recently, thermal spray coatings have emerged as an effective solution to mitigate such severe operational challenges. In the present work, five different coatings deposited using detonation spray and air plasma spray techniques were comprehensively characterized. Performance evaluation involving thermal cycling, hot corrosion, and erosion tests was also carried out. Based on the studies, a coating system was suggested for possible tuyere applications and found to yield substantial improvement in service life during actual field trials.

  20. The effect of blast furnace coke quality on the possibility of its use

    A. Konstanciak


    Full Text Available In the paper behavior of the blast-furnace coke in the high temperature was presented. Comparative analysis of the chemical composition of the blast-furnace coke and the heat treatment of it were done. Coefficients M10 and M40 with the thermo-abrasiveness for chosen cokes were compared. The influence of ash content of the coke on the blast-furnace bed permeability was defined. Usefulness of the coke to blast-furnace process was also defined.

  1. Coke Reactivity in Simulated Blast Furnace Shaft Conditions

    Haapakangas, Juho; Suopajärvi, Hannu; Iljana, Mikko; Kemppainen, Antti; Mattila, Olli; Heikkinen, Eetu-Pekka; Samuelsson, Caisa; Fabritius, Timo


    Despite the fact that H2 and H2O are always present in the gas atmosphere of a blast furnace shaft, their role in the solution-loss reactions of coke has not been thoroughly examined. This study focuses on how H2 and H2O affect the reaction behavior and whether a strong correlation can be found between reactivity in the conditions of the CRI test (Coke Reactivity Index) and various simulated blast furnace shaft gas atmospheres. Partial replacement of CO/CO2 with H2/H2O was found to significantly increase the reactivity of all seven coke grades at 1373 K (1100 °C). H2 and H2O, however, did not have a significant effect on the threshold temperature of gasification. The reactivity increasing effect was found to be temperature dependent and clearly at its highest at 1373 K (1100 °C). Mathematical models were used to calculate activation energies for the gasification, which were notably lower for H2O gasification compared to CO2 indicating the higher reactivity of H2O. The reactivity results in gas atmospheres with CO2 as the sole gasifying component did not directly correlate with reactivity results in gases also including H2O, which suggests that the widely used CRI test is not entirely accurate for estimating coke reactivity in the blast furnace.

  2. Soil Stabilisation Using Ground Granulated Blast Furnace Slag

    Ashish Kumar Pathak


    Full Text Available Stabilisation is a broad sense for the various methods employed and modifying the properties of a soil to improve its engineering performance and used for a variety of engineering works. In today‟s day soil stabilisation is the major problem for civil engineers, either for construction of road and also for increasing the strength or stability of soil and reduces the construction cost. In this thesis the soil are stabilised by ground granulated blast furnace slag (GGBS and this material is obtained from the blast furnace of cement plant, which is the byproduct of iron (from ACC plant, sindri. It is generally obtained in three shaped one is air cooled, foamed shaped and another is in granulated shaped. The use of by-product materials for stabilisation has environmental and economic benefits. Ground granulated blast furnace slag (GGBS material is used in the current work to stabilise soil (clay. The main objectives of this research were to investigate the effect of GGBS on the engineering property (optimum moisture content and maximum dry density, plastic limit, liquid limit, compaction, unconfined compressive strength, triaxial and California bearing ratio test of the soil and determine the engineering properties of the stabilised.

  3. Blast shocks in quasi-two-dimensional supersonic granular flows.

    Boudet, J F; Cassagne, J; Kellay, H


    In a thin, dilute, and fast flowing granular layer, the impact of a small sphere generates a fast growing hole devoid of matter. The growth of this hole is studied in detail, and its dynamics is found to mimic that of blast shocks in gases. This dynamics can be decomposed into two stages: a fast initial stage (the blast) and a slower growth regime whose growth velocity is given by the speed of sound in the medium used. A simple model using ingredients already invoked for the case of blast shocks in gases but including the inelastic nature of collisions between grains accounts accurately for our results. The system studied here allows for a detailed study of the full dynamics of a blast as it relaxes from a strong to a weak shock and later to an acoustic disturbance.

  4. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    Dr. Chenn Zhou


    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  5. Modelling of turbulent combustion in the blast furnace raceway

    Karvinen, R.; Maekiranta, R. [Tampere Univ. (Finland). Energy and Process Engineering


    The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.

  6. [Atmospheric pollution and chronic respiratory diseases in the blast-furnace areas of iron-works].

    Zannini, D; Valente, T; Rotunno, R; Giusto, R


    An epidemiologic research together with a study on the environmental pollution were carried out in order to evaluate the risk of chronic respiratory diseases of blast furnace workers. The environment study was performed mainly using personal samplers given to workers with different jobs. Observations on 222 work shifts have shown that the total dust concentration to which cast workmen, maintenance men and blast furnace service men were exposed, marginally exceed the TLV values. Furthermore the level of respirable dusts for blast furnace service men was found slightly excessive. The average SO2 concentration was largely below the TLV values. However this gas could be found in excess for very short periods during the work. The epidemiologic study, conducted on a cohort of blast furnace area workers against a control group cohort, indicated a moderate prevalence of pneumoconiosis and chronic bronchitis amongst blast furnaces workers. The clinic and radiological pictures do not seem to go beyond the initial stages.

  7. Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces.

    Chen, Wei-Hsin; Du, Shan-Wen; Tsai, Chien-Hsiung; Wang, Zhen-Yu


    Torrefaction and burning characteristics of bamboo, oil palm, rice husk, bagasse, and Madagascar almond were studied and compared with a high-volatile bituminous coal using a drop tube furnace to evaluate the potential of biomass consumed in blast furnaces. Torrefaction at 250 and 300°C for 1h duration was carried out. Analysis using the ash tracer method indicated that the extent of atomic carbon reduction in the biomasses was less than that of atomic hydrogen and oxygen. Torrefaction also lowered the sulfur content in bamboo and oil palm over 33%. An examination of the R-factor and burnout of the samples suggests that more volatiles were released and a higher burnout was achieved with raw and torrefied biomasses at 250°C than at 300°C; however, torrefaction at 300°C is a feasible operating condition to transform biomass into a solid fuel resembling a high-volatile bituminous coal used for blast furnaces.

  8. Acid slag injection into the blast furnace tuyere zone

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering


    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  9. A Blended Cement Containing Blast Furnace Slag and Phosphorous Slag


    Blended cement containing blast furnace slag(BFS) and phosphorous slag(PS) is a new kind of cement.The total content of blended materials could increase if two additives were used. Using the same admixtures, the properties of the blended cement with 70% additives could reach the standard of 525-grade slag cement according to GB.The strength of cement with 80% additives could reach the standard of 425-grade slag cement.The tests of strength, pore structure,hydration products,inhibiting alkali-aggregate reaction, resistance to sulfate corrosion of BFS-PSC were performed.

  10. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)


    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  11. Injection of heavy fuel oil into the blast furnace

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)


    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  12. Carbothermic Reduction of Titanium-Bearing Blast Furnace Slag

    Zhen, Yu-Lan; Zhang, Guo-Hua; Chou, Kuo-Chih


    The carbothermic reduction experiments were carried out for titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company in argon atmosphere at high temperatures. The effects of reduction temperature, isothermal treatment time and carbon content on the formation of TiC were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD pattern results showed that MgAl2O4 phase disappeared and the main phase of the reduced sample was TiC when the reduction temperature was higher than 1,773 K. The SEM pictures showed that the reduction rate of the titanium-bearing blast furnace slag could be increased by enhancing the temperature and the C content (carbon ratio ≤1.0). Furthermore, it was also found that TiC had the tendency of concentrating around the iron. The effects of additives such as Fe and CaCl2 on the formation of TiC were also studied in the present study.

  13. Evaluation of Scheme Design of Blast Furnace Based on Artificial Neural Network

    TANG Hong; LI Jing-min; YAO Bi-qiang; LIAO Hong-fu; YAO Jin


    Blast furnace scheme design is very important, since it directly affects the performance, cost and configuration of the blast furnace. An evaluation approach to furnace scheme design was brought forward based on artificial neural network. Ten independent parameters which determined a scheme design were proposed. The improved threelayer BP network algorithm was used to build the evaluation model in which the 10 independent parameters were taken as input evaluation indexes and the degree to which the scheme design satisfies the requirements of the blast furnace as output. It was trained by the existing samples of the scheme design and the experts' experience, and then tested by the other samples so as to develop the evaluation model. As an example, it is found that a good scheme design of blast furnace can be chosen by using the evaluation model proposed.

  14. Practice for Extending Blast Furnace Campaign Life at Wuhan Iron and Steel Corporation

    ZHANG Shou-rong


    One of the problems encountered in 60's to 80's of 20th century in China's steel industry was short life of blast furnace shaft as well as the excessive erosion of blast furnace hearth. A series of research work was carried out in order to extend blast furnace campaign life. The concept of research and development was integrated in the construction of BF (blast furnace) No.5 at WISCO (Wuhan Iron and Steel Corporation), and in October, 1991, the BF No.5 was blown in. The blast furnace has worked smoothly for more than 15 years without any medium repair even guniting. It is expected that the campaign life of BF No.5 would be longer than 16 years with a production over 11 000 t per unit inner volume (m3). A new blast furnace with an inner volume of 3 400 m3 is under construction, and is designed with a campaign life of 20 years without any medium repair. The campaign life of blast furnaces in China has been extended in recent years.

  15. Development and Application of Al2O3 - Si3N4 Refractories Used in Blast Furnace

    LI Xianming; LI Yong; KANG Huarong; DONG Shengying; XUE Wendong; SONG Wen


    Newly developed Al2O3-Si3N4 composite refracto-ries used for blast furnace is introduced in this work.Al2O3-Si3N4 composite refractories attacked by alkali vapor and blast Jhrnace slag was investigated. High per-formance Al2O3 -Si3N4 composite refractories was pro-duced and used at both 2 560 m3 blast furnaces of Tan-gsteel and No. 5 blast furnace of Shaosteel.

  16. Influence of blast furnace gas flow speed on dust deposition characteristics in butterfly valve region

    Lixin WANG


    Full Text Available The blast furnace gas contains plenty of dust, which deposits easily on the bottom of seat sealing surface of the tri-eccentric butterfly valve in the pipeline, causing stuck and damage to the valve plate, thereby affects the production of the blast furnace and brings great economic loss. To derive the influence mechanism of effects of the blast furnace gas flow speed within the pipeline on the dust deposition laws in the butterfly valve region, a 3D model of the butterfly valve and its regional flow field is built with Pro/E software. Based on FLUENT module of ANSYS Workbench, along with standard k-ε turbulence model and DPM model, simulation analysis of moving trajectories of dust particles in butterfly valve region under 3 blast furnace gas flow speeds is conducted. Results show that the deposition mass of dust particles decreases firstly, then increases with the enlargement of valve plate opening angle under the blast furnace gas flow speed of 8 m/s, while decreases with the enlargement of valve plate opening under the blast furnace gas flow speeds of 12 m/s and 16 m/s. In the case of the valve plate opening angle of 15°, the deposition rate of dust particles increases with the growing of blast furnace gas flow speed, while decreases with the growing of blast furnace gas flow speed under the cases of valve plate opening angle of 45° and 75°. The research results provide a theoretical reference for the development of automatic dust removal system in the butterfly valve region of the blast furnace gas pipeline.

  17. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)


    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  18. Influence of blast furnace gas flow speed on dust deposition characteristics in butterfly valve region

    Wang, Lixin; Wang, Bin; Fengshan HUANG


    The blast furnace gas contains plenty of dust, which deposits easily on the bottom of seat sealing surface of the tri-eccentric butterfly valve in the pipeline, causing stuck and damage to the valve plate, thereby affects the production of the blast furnace and brings great economic loss. To derive the influence mechanism of effects of the blast furnace gas flow speed within the pipeline on the dust deposition laws in the butterfly valve region, a 3D model of the butterfly valve and its regio...

  19. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    D. Baricová


    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  20. Numerical Analysis of Blast Furnace Performance Under Charging Iron-Bearing Burdens With High Reducibility

    CHU Man-sheng; GUO Xian-zhen; SHEN Feng-man; YAGI Jun-ichiro; NOGAMI Hiroshi


    The reducibility of iron-bearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluated using a multi-fluid blast furnace model. The effects of reaction rate constants and diffusion coefficients were investigated separately or simultaneously for clarifying the variations of furnace state. According to the model simulation results, in the upper zone, the indirect reduction of the burdens proceeds at a faster rate and the shaft efficiency is enhanced with the improvement under the conditions of interface reaction and intra-particle diffusion. In the lower zone, direct reduction in molten slag is restrained. As a consequence, CO utilization of top gas is enhanced and the ratio of direct reduction is decreased. It is possible to achieve higher energy efficiency of the blast furnace, and this is represented by the improvement in productivity and the decrease in consumption of reducing agent. The use of high-reducibility burdens contributes to a better performance of blast furnace. More efforts are necessary to develop and apply high-reducibility sinter and carbon composite agglomerates for practical application at a blast furnace.

  1. Numerical Simulation of Innovative Operation of Blast Furnace Based on Multi-Fluid Model

    CHU Man-sheng; YANG Xue-feng; SHEN Feng-man; YAGI Jun-ichiro; NOGAMI Hiroshi


    A multi-fluid blast furnace model was simply introduced and was used to simulate several innovative iron-making operations. The simulation results show that injecting hydrogen bearing materials, especially injecting natural gas and plastics, the hydrogen reduction is enhanced, and the furnace performance is improved simultaneously. Total heat input shows obvious decrease due to the decrease of heat consumption in direct reduction, solution loss and silicon transfer reactions. If carbon composite agglomerates are charged into the furnace, the temperature of thermal reserve zone will obviously decrease, and the reduction of iron-bearing burden materials will be retarded. However, the efficiency of blast furnace is improved just due to the decrease in heat requirements for solution loss, sinter reduction, and silicon transfer reactions, and less heat loss through top gas and furnace wall. Finally, the model is used to investigate the performance of blast furnace under the condition of top gas recycling together with plastics injection, cold oxygen blasting and carbon composite agglomerate charging. The lower furnace temperature, extremely accelerated reduction rate, drastically decreased CO2 emission and remarkably enhanced heat efficiency were obtained by using the innovative operations, and the blast furnace operation with superhigh efficiency can be realized.

  2. Optimum design and layout of the cooling apparatus for long compaignship blast furnace

    Shusen Cheng; Tianjun Yang; Qingguo Xue; Haibin Zuo; Xiaowu Gao; Weiguo Yang


    Generally, the cooler life can determine the blast furnace life. The slag-metal skull frozen on the cooler can separate the cooler from the hot gas flow in blast furnace. The key problem is how to freeze liquid slag-metal on the cooler, and the main measure is to decrease the hot surface temperature of the cooler. The computational technology of heat transfer was practically used for long campaign blast furnace design. The optimum design of the cast iron stave, copper stave, plate-stave combined system and flangestave was given by the computing results. According to the results, the optimum arrangement of different coolers (cast iron or copper stave, flange stave and plate-stave combined system) on different height of blast furnace wall can be found through all these temperature fields.

  3. Coal-oil mixture combustion program: injection into a blast furnace

    Jansto, S.G.; Mertdogan, A.; Marlin, L.A.; Beaucaire, V.D.


    A chemically stabilized coal-oil mixture (COM) was made and used as an auxiliary fuel in a blast furnace for 44 days. Approximately 485,000 gallons of COM were produced at an on-site COM plant. Composition was 47.9% coal, 47.6% No. 6 oil, 4.0% water, and 0.5% emulsifier. Average injection rates were 3.8 to 13.0 gpm during different periods of the trial. Coal handling equipment, mixing and processing equipment, pumps, piping, fuel lances, and instrumentation are discussed. The blast furnace performance during the trial is compared to a Base Period of injecting No. 6 oil. Blast furnace performance was satisfactory, with one pound of COM replacing one pound of coke or 0.8 pound of No. 6 oil. The production of COM and its usage in a blast furnace is economical and feasible.

  4. Sorption and desorption of iron-cyanide complexes in deposited blast furnace sludge.

    Rennert, Thilo; Mansfeldt, Tim


    Blast furnace sludge is a waste originating from pig iron production and contains small amounts of iron-cyanide complexes. Leaching of iron-cyanide complexes from deposited blast furnace sludge into the ground water seems to be possible in principle. We investigated the sorption of the iron-cyanide complexes ferrocyanide, [FeII(CN)6](4-), and ferricyanide, [FeIII(CN)6](3-), in 22 samples of deposited blast furnace sludge in batch experiments. Subsequently, desorption of iron-cyanide complexes was investigated using 1 M NaCl. Sorption in five samples was evaluated with Langmuir isotherms. The blast furnace sludge samples were neutral to slightly alkaline (pH 7.6-9) and consisted of X-ray amorphous compounds and crystalline Fe oxides primarily. X-ray amorphous compounds are assumed to comprise coke-bound C and amorphous Fe, Zn, and Al oxides. The experiments that were evaluated with Langmuir isotherms indicated that the extent of ferricyanide sorption was higher than that of ferrocyanide sorption. Saturation of blast furnace sludge with iron-cyanide complexes was achieved. Sorption of iron-cyanide complexes in 22 blast furnace sludge samples at one initial concentration showed that 12 samples sorbed more ferrocyanide than ferricyanide. The extent of sorption largely differed between 0.07 and 2.76 Micromol [Fe(CN)6] m(-2) and was governed by coke-bound C. Ferricyanide sorption was negatively influenced by crystalline Fe oxides additionally. Only small amounts of iron-cyanide complexes sorbed in blast furnace sludge were desorbed by 1 M NaCl (ferrocyanide, 3.2%; ferricyanide, 1.1%, given as median). This indicated strong interactions of iron-cyanide complexes in blast furnace sludge. The mobility of iron-cyanide complexes in deposited blast furnace sludge and consequently contamination of the seepage and ground water was designated as low, because (i) deposited blast furnace sludge is able to sorb iron-cyanide complexes strongly, (ii) the solubility of the iron

  5. Enriching blast furnace gas by removing carbon dioxide.

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai


    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.

  6. Blast furnace slags as sorbents of phosphate from water solutions.

    Kostura, Bruno; Kulveitová, Hana; Lesko, Juraj


    The paper is focused on the sorption of phosphorus from aqueous solutions by crystalline and amorphous blast furnace slags. Slag sorption kinetics were measured, adsorption tests were carried out and the effect of acidification on the sorption properties of slags was studied. The kinetic measurements confirmed that the sorption of phosphorus on crystalline as well as amorphous slags can be described by a model involving pseudo-second-order reactions. For all slag types, phosphorus sorption follows the Langmuir adsorption isotherm. The acid neutralizing capacities of crystalline and amorphous slags were determined. In the case of the crystalline slags, buffering intervals were found to exist during which the slag minerals dissolve in the sequence bredigite-gehlenite-diaspor. There is a high correlation (R2=0.9989) between ANC3.8 and the saturation capacities of crystalline and amorphous slags.

  7. Nuclear techniques for the inspection of blast furnaces

    Schweitzer, J. S.; Lanza, R. C.


    Carbon hearth wall failures in blast furnaces create safety risks and require a large expense to repair. To avoid failures they are replaced early, incurring costs in wasted hearth wall use. Two non-invasive measurements provide realtime analysis of wall integrity. The two major failure modes are erosion of carbon thickness and iron-filled cracks in the bricks. Measurements of backscattered gamma-ray spectra and thermal neutron decay rate can identify both phenomena. Gamma-ray spectra from a compact Linac beam primarily respond to average carbon thickness. Neutron decay time, using a pulsed neutron source, is sensitive to iron in the carbon volume. Each measurement is sensitive to the other failure made, but the combination permits each phenomenon to be resolved. These techniques can detect a high atomic number and thermal neutron absorption cross section material behind one of low atomic number and thermal neutron absorption cross section.

  8. New Type Regulating Valve Applied in Cooling System of Blast Furnace

    HE Sheng-ping; ZOU De-yu; XU Gang; LU De-chang


    A new type regulating valve with the cooling mode of constant temperature difference water supply, temperature difference self-operated regulating valve, was introduced into blast furnace cooling system to overcome shortcomings of the cooling mode of constant flow rate water supply. The results show that the temperature difference between inlet and outlet water of cooling wall can be decreased greatly and steadily, and the water supply for blast furnace cooling can be reduced considerably.

  9. Radiant Image Simulation of Pulverized Coal Combustion in Blast Furnace Raceway


    The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary for numerical simulation of combustion process, the uneven radiation parameter can be calculated. A method to examine three-dimensional temperature distribution in blast furnace raceway was put forward by radiant image processing. The numeral temperature field matching the real combustion can be obtained by proposed numeric image processing technique.

  10. Nodal wear model: corrosion in carbon blast furnace hearths

    Verdeja, L. F.


    Full Text Available Criterions developed for the Nodal Wear Model (NWM were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid.

    Se aplican los criterios del Modelo de Desgaste Nodal (MDN para la estimación de los perfiles de corrosión que podría ir adquiriendo el crisol de un homo alto durante su campaña. Atendiendo al propio diseño del crisol, a las condiciones límites de contorno, a las características del material refractario utilizado y a las condiciones de operación del horno, se consiguen simular perfiles de desgaste con "pozo central", con "forma de seta" ó de "pie de elefante". Los fundamentos del MDN se apoyan en la idea de considerar que la corrosión del refractario es función de la temperatura que el sistema pueda presentar en cada punto (nodo de la intercara refractario-fundido y de las correspondientes características físico-químicas del fluido corrosivo.

  11. Electro- or Turbo-Driven?—Analysis of Different Blast Processes of Blast Furnace

    Wenqiang Sun


    Full Text Available There has always been a dispute about the energy efficiency and energy cost of electro-driven and turbo-driven blast furnace (BF blast processes. In order to find where the problem lies, energy efficiency analysis models and energy cost analysis models of electro-driven and turbo-driven blast processes were established, and the differences between the two driving processes in terms of theoretical minimum steam consumption, energy efficiency and energy cost were studied. The results showed that the theoretical minimum steam consumption of a blast process depends on steam thermodynamic properties and is unrelated to drive mode and drive process. A certain overlapped interval between electro-driven and turbo-driven blast processes in terms of energy efficiency exists. The equation for calculating the standard coal coefficient of steam was proposed, and the relationship to judge strengths and weaknesses of the two driving modes in terms of energy efficiency and energy cost was established. Finally, two companies were selected for case study research. The results led to different conclusions because of the differences between energy media in terms of standard coal coefficient and unit price. To select the best driving mode, plant-running conditions and energy prices of the region of operation in addition to other relevant factors should all be taken into account.

  12. Quality criteria for blast-furnace injection coals

    Lherbier, L.W.Jr.; Serrano, E.J. [United States Steel Corp., Munhall, PA (United States). Research and Technology Center


    This paper reviewed the history of coal injection at United States Steel Corporation. Currently, pulverized coal (PC) is injected on 10 blast furnaces at the company's facilities at 5 different plants in the United States, Canada and Slovakia. Although low-volatile bituminous coal was used extensively at several sites in the past, all the furnaces now inject high-volatile bituminous coal. The choice of coal injection depends on cost, physical and chemical properties an intended application. Any type of coal can be used for low injection levels. As injection rates increase however, the choice of coal or coal blends depend on more complex characteristics such as combustibility, char reactivity and flow characteristics. Although low-volatile, higher rank bituminous coals usually provide higher coke replacement ratios, they can be more difficult to convey and burn. In contrast, high-volatile, lower rank coals are typically more reactive and easier to convey, but offer lower coke replacement ratios and could even contribute to furnace instability. This paper presented lessons learned with various types of injection coal. It also reviewed existing and emerging standards for choosing injection coals. The parameters that must be considered when choosing from a set of coals include moisture and hardness; carbon and hydrogen content; oxygen content; impurities; coal value; coal rank; conveying properties; reactivity; and coal type and injection rate. Coals with less ash, sulphur and alkali are usually preferred. For ironmaking, coals ranging in rank from anthracite to high-volatile bituminous coal are suitable for low to moderate injection rates. 14 refs., 7 figs.

  13. Methods for monitoring heat flow intensity in the blast furnace wall

    L'. Dorčák


    Full Text Available In this paper we present the main features of an online system for real-time monitoring of the bottom part of the blast furnace. Firstly, monitoring concerns the furnace walls and furnace bottom temperatures measurement and their visualization. Secondly, monitored are the heat flows of the furnace walls and furnace bottom. In the case of two measured temperatures, the heat flow is calculated using multi-layer implicit difference scheme and in the case of only one measured temperature, the heat flow is calculated using a method based on application of fractional-order derivatives. Thirdly, monitored is the theoretical temperature of the blast furnace combustion process in the area of tuyeres.

  14. Tuyere development as an effective measure for high PC rate operation of blast furnace

    Tagawa, T.; Kasai, A.; Nozawa, K.; Shibata, K. [Kobe Steel Ltd., Kakogawa Works, Hyogo (Japan). Ironmaking Dept.


    Kobe Steel has developed technologies to reduce coke consumption in its blast furnaces by injecting coal at a high rate. This paper described a newly developed tuyere and its contribution to improving permeability under high pulverized coal (PC) rate conditions at the blast furnaces at Kakogawa Works. Reducing the coke rate while increasing the coal injection rate results in higher ore/coke at the center region of the furnace, resulting in excessive peripheral gas and inducing gas channeling. Central coke charging (CCC) helps attain a stable gas flow inside the furnace by forming a vertical gas passage in the coke column. It enables furnace operators to directly control or enhance the central gas flow and improves gas and liquid permeability in the furnace bottom. In a conventional tuyere, the PC is introduced in or before the converged blast flow inside the tuyere where coal fines begin to decompose and interact with hot blasts. This newly developed convergent and divergent (CD) type tuyere was instrumental in safely reducing the pressure drop and its variation to a tolerable level even under ultra-high PCR conditions over 250 kg/thm. This paper described the effects of tuyere structure on raceway shapes using 3 types of tuyeres in a coke packed test furnace. It was concluded that the CD tuyere reduces pressure drop at the tuyere. An increase in PC rate offers benefits in terms of furnace stability. The CD tuyere also reduces coke deterioration in the raceway. 7 refs., 8 figs.

  15. [Study on quantificational analysis method for the non-crystalline content in blast furnace slag].

    Yan, Ding-Liu; Guo, Pei-Min; Qi, Yuan-Hong; Zhang, Chun-Xia; Wang, Hai-Feng; Dai, Xiao-Tian


    Quantificational analysis method for the non-crystalline and crystalline contents in blast furnace slag was studied by means of X-ray diffraction. The process of quantificational analysis method includes standard samples preparation, samples preparation, X-ray diffraction measurement and data treatment. The data treatment includes integration areas of non-crystalline curve and crystalline peaks in certain diffraction angle range, linear fitting and quantificational coefficient determination. The preparation methods of standard samples for X-ray diffraction of blast furnace slag were proposed, including 100% crystalline sample and 100% non-crystalline sample. The 100% crystalline sample can be obtained by heating blast furnace slag for 12 h at 1 000-1 200 degrees C, and the 100% non-crystalline sample can be obtained by quenching the molten slag with enough water. The X-ray diffraction method of quantificational analysis of non-crystalline content in blast furnace slag was proposed with the 100% non-crystalline and 100% crystalline standard samples, and the quantificational coefficient can be obtained by linear regression on the integration areas of non-crystalline curve and crystalline peaks of X-ray diffraction in the 2-theta range 20 degrees-40 degrees. This method is suitable for the blast furnace slag with the non-crystalline content over 80%. The non-crystalline and crystalline contents of original blast furnace slag are obtained by combining the X-ray diffraction results and mathematical treatment, and this method is suitable for the blast furnace slag with the non-crystalline content over 90%, whose process includes preparing the 100% crystalline standard sample by heating blast furnace slag for 12 h at 1000-1200 degrees C, samples preparation with the 0.02 interval in the 0-0.1 mass ratio range of 100% crystalline to original slag, X-ray diffraction measurement of the samples prepared and data treatment using iterative linear regression. The


    Glebova, E.S.


    Full Text Available The article suggests a method for evaluating the weight of iron obtained from a specific release from a blast furnace under parallel production in a set of furnaces. The method is based on a hybrid approach using the weighing results of mixer carrier on the scales, a system of operational control of the process of pouring iron out into the mixer and the automated system of rolling stock registration. The proposed method can improve the speed, accuracy and reliability of evaluating the weight of iron obtained from a specific release of the blast furnace.

  17. Characterization and activation of the slag of El Hadjar's blast furnaces by clinkers

    Guetteche, M.N.; Houari, H. [Constantine Univ. (France)


    The El Hadjar steel plant in Algeria produces about 430,000 tons of slag annually. This paper presents a study in which the granular slag of El Hadjar's blast furnace was characterized using a variety of analytical methods that made it possible to calculate hydraulic indices. El Hadjar slag is being promoted in the construction industry in an effort to address environmental concerns regarding the production of portland cement which is very energy intensive and which contributes to major greenhouse gas emissions into the atmosphere. The use of slag as an addition to portland cement or the manufacturing of clinker free binder would make this waste into a valuable product. Chemical analysis, x-ray diffraction, differential thermal analysis, Fourier transformer infrared spectrometry and conductimetry were used to better understand the vitreous structure of the slag and its hydraulic reactivity. Prismatic test tubes were used for the mechanical tests which involved clinkers of various grinding rates of slag. The results showed that slag is reactive and that the evolution of mechanical resistance to grinding is very sensitive. It was also shown that long term mechanical performance of the slag based ingredients are of significant interest to the cement and concrete industry. 9 refs., 9 tabs., 5 figs.

  18. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags.

    Yin, Nang-Htay; Sivry, Yann; Guyot, François; Lens, Piet N L; van Hullebusch, Eric D


    The leaching behavior of Pb and Zn from lead blast furnace (LBF) and imperial smelting furnace (ISF) slags sampled in the North of France was studied as a function of pHs and under two atmospheres (open air and nitrogen). The leaching of major elements from the slags was monitored as a function of pH (4, 5.5, 7, 8.5 and 10) under both atmospheres for different slag-water interaction times (1 day and 9 days). The leaching results were coupled with a geochemical model; Visual MINTEQ version 3.0, and a detailed morphological and mineralogical analysis was performed on the leached slags by scanning and transmission electron microscopy (SEM and TEM). Significant amounts of Ca, Fe and Zn were released under acidic conditions (pH 4) with a decrease towards the neutral to alkaline conditions (pH 7 and 10) for both LBF and ISF slags. On the other hand, Fe leachability was limited at neutral to alkaline pH for both slags. The concentrations of all elements increased gradually after 216 h compared to initial 24 h of leaching period. The presence of oxygen under open-air atmosphere not only enhanced oxidative weathering but also encouraged formation of secondary oxide and carbonate phases. Formation of carbonates and clay minerals was suggested by Visual MINTEQ which was further confirmed by SEM & TEM. The hydration and partial dissolution of hardystonite, as well as the destabilization of amorphous glassy matrix mainly contributed to the release of major elements, whereas the spinel related oxides were resistant against pH changes and atmospheres within the time frame concerned for both LBF and ISF slags. The total amount of Pb leached out at pH 7 under both atmospheres suggested that both LBF and ISF slags are prone to weathering even at neutral environmental conditions.

  19. Crystallization of Synthetic Blast Furnace Slags Pertaining to Heat Recovery

    Esfahani, Shaghayegh

    Heat recovery from blast furnace slags is often contradicted by another requirement, to generate amorphous slag for its use in cement production. As both the rate and extent of heat recovery and slag structure are determined by its cooling rate, a relation between the crystallization kinetics and the cooling conditions is highly desired. In this study, CaO-SiO2-Al2O3-MgO (CSAM) slags with different basicities were studied by Single Hot Thermocouple Technique (SHTT) during isothermal treatment and non-isothermal cooling. Their time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams were plotted and compared with each other. Furthermore, kinetic parameters such as the Avrami exponent (n), rate coefficient (K) and effective activation energy of crystallization (EA) were found by analysis of data obtained from in-situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In addition to the experimental work, a mathematical model was developed and validated that predicts the amount of crystallization during cooling. A second mathematical model that calculates temperature history of slag during its cooling was coupled with the above model, to allow studying the effect of parameters such as the slag/air ratio and granule size on the heat recovery and glass content of slag.

  20. Vanadium bioavailability in soils amended with blast furnace slag.

    Larsson, Maja A; Baken, Stijn; Smolders, Erik; Cubadda, Francesco; Gustafsson, Jon Petter


    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg(-1)) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  1. Preparation of calcium silicate absorbent from iron blast furnace slag.

    Brodnax, L F; Rochelle, G T


    Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 degrees C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.

  2. Sequential extraction of inorganic mercury in dumped blast furnace sludge.

    Földi, Corinna; Andrée, Corlin-Anna; Mansfeldt, Tim


    Blast furnace sludge (BFS) is an industrial waste with elevated mercury (Hg) contents due to the enrichment during the production process of pig iron. To investigate the potential pollution status of dumped BFS, 14 samples with total Hg contents ranging from 3.91 to 20.8 mg kg(-1) from five different locations in Europe were sequentially extracted. Extracts used included demineralized water (fraction 1, F1), 0.1 mol L(-1) CH3COOH + 0.01 mol L(-1) HCl (F2), 1 mol L(-1) KOH (F3), 7.9 mol L(-1) HNO3 (F4), and aqua regia (F5). The total recovery ranged from 72.3 to 114 %, indicating that the procedure was reliable when adapted to this industrial waste. Mercury mainly resided in the fraction of "elemental" Hg (48.5-98.8 %) rather being present as slightly soluble Hg species associated with sludge particles. Minor amounts were found as mercuric sulfide (F5; 0.725-37.3 %) and Hg in crystalline metal ores and silicates (F6; 2.21-15.1 %). The ecotoxically relevant fractions (F1 and F2) were not of significance (F1,

  3. Sulfide capacity of high alumina blast furnace slags

    Shankar, Amitabh; Görnerup, Märten; Seetharaman, S.; Lahiri, A. K.


    Sulfide capacities of high alumina blast furnace slags were experimentally determined using the gas-slag equilibration technique. Two different slag systems were considered for the current study, namely, CaO-SiO2-MgO-Al2O3 quaternary and CaO-SiO2-MgO-Al2O3-TiO2 quinary system. The liquid slag was equilibrated with the Ar-CO-CO2-SO2 gas mixture. Experiments were conducted in the temperature range of 1773 to 1873 K. The effects of temperature, basicity, and the MgO and TiO2 contents of slags on sulfide capacity were studied. As expected, sulfide capacity was found to increase with the increase in temperature and basicity. At the higher experimental temperature, titania decreases the sulfide capacity of slag. However, at the lower temperature, there was no significant effect of titania on the sulfide capacity of slag. Sulfide capacity increases with the increase in MgO content of slag if the MgO content is more than 5 pct.

  4. Vanadium bioavailability in soils amended with blast furnace slag

    Larsson, Maja A., E-mail: [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)


    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  5. Multiscale dynamic analysis of blast furnace system based on intensive signal processing.

    Chu, Yanxu; Gao, Chuanhou; Liu, Xiangguan


    In this paper, the Hilbert-Huang transform method and time delay embedding method are applied to multiscale dynamic analysis on the time series of silicon content in hot metal collected from a medium-sized blast furnace with the inner volume of 2500 m3. The results provide clear evidence of multiscale features in blast furnace ironmaking process. Ten intrinsic mode functions (IMFs) are decomposed from the silicon content time series; the presence of noninteger fractal dimension, positive finite Kolmogorov entropy, and positive finite maximum Lyapunov exponent are found in some IMF components. In addition, the coupling of subscale structures of blast furnace system is studied using the dimension of interaction dynamics and a robust algorithm for detecting interdependence. It is found that IMF(3) is the main driver in the coupling system IMF(2) and IMF(3) while for the coupling system IMF(3) and IMF(4) neither subsystem can act as the driver. All these provide a guideline for studying blast furnace ironmaking process with multiscale theory and methods, and may open way for more candidate tools to model and control blast furnace system in the future.




    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  7. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    Seaman, John


    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  8. Evaluation of effectiveness of raw materials and materials use in a blast furnace department of a steelworks

    E. Kardas


    Full Text Available The paper analyses the quality of raw materials used in the production of blast furnace pig iron. The ferruginous sinter and pellets are the basic raw materials used in the process. The paper presents the impact of those raw materials quality on the effectiveness of the blast furnace process. The process effectiveness will be specified by means of selected process parameters.

  9. Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An Industrial By Product

    Dr. B. Krishna Rao


    Full Text Available The aim of the investigation is to replace natural fine aggregatewith Air Cooled Blast Furnace Slag in OPC concrete. At present, nearly million tons of slag is being produced in the steel plants, in India. The generation of slag would be dual problem in disposal difficulty and environmental pollution. Some strategies should be used to utilize the slag effectively. Considering physical properties of metallurgical slags and a series of possibilities for their use in the field of civil constructions, this report demonstrates the possibilities of using air cooled blast furnace slag as partial replacement of sand in concrete. A total of five concrete mixes, containing 0%, 12.5%, 25%, 37.5% and 50% partial replacement of regular sand with air cooled blast furnace slag are investigated in the laboratory. These mixes were tested to determine axial compressive strength, split tensile strength, and flexural strength for 7days, 28days, 56days and 90days.

  10. esearch and Application of Burned Microporous High Alumian—Graphite(Al/C) Brick in Blast Furnace

    ZHANXiaoming; SONGMusen


    This paper inroduces the research background,technology,product property and application of burned microporous high alumina-graphite brick (Al2O3-C brick) used in blast furnace,The difference of property between Al2O3-C brick and other blast furnace refractories is discussed .The results of simulative tests show that ,Al2O3-C brick has good alkali resistance,slag resistance,thermal shock resistance,oxidation resistance,high thermal conductivity,low permeability and low solubility in molten iron,The brick with micropores of average radius less than 1μm has been successively applied to fourteen blast furnaces, the lining life of the brick is almost as long as that of Si3N4 bonded SiC brick Al2O3-C brick will be widely used in lower stack ,belly,bosh and hearth in the future.

  11. CO2 emission optimization for a blast furnace considering plastic injection

    Xiong Liu, Xiaoyong Qin, Lingen Chen, Fengrui Sun


    Full Text Available An optimization model based on mass balance and energy balance for a blast furnace process is established by using a nonlinear programming method. The model takes the minimum CO2 emission of a blast furnace as optimization objective function, and takes plastic injection or pulverized coal injection into account. The model includes sixteen optimal design variables, six linear equality constraints, one linear inequality constraint, six nonlinear equality constraints, one nonlinear inequality constraint, and thirteen upper and lower bound constraints of optimal design variables. The optimization results are obtained by using the Sequential Quadratic Programming (SQP method. Comparative analyses for the effects of plastic injection and pulverized coal injection on the CO2 emission of a blast furnace are performed.

  12. Automated information system for analysis and prediction of production situations in blast furnace plant

    Lavrov, V. V.; Spirin, N. A.


    Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.

  13. Comparison of CO2 emission between COREX and blast furnace iron-making system.

    Hu, Changqing; Han, Xiaowei; Li, Zhihong; Zhang, Chunxia


    Steel works faced increasing demand to minimize the emission of GHGs. The CO2 emissions of COREX and blast furnace iron-making system were compared. It is point out that COREX contribute little to CO2 emission reduction. Comparing to conventional blast furnace iron-making system, direct CO2 emissions of COREX is higher. Considering the credits of export gases for power generation, the total CO2 emission of COREX have advantages only when the COREX is joined with high-efficiency generating units which efficiency is greater than 45% and CO2 emission factor of the grid is higher than 0.9 kgCO2/kWh.

  14. Leaching of Carbothermic Reduced Titanium-bearing Blast Furnace Slag by Acid

    ZHEN; Yulan; ZHANG; Guohua; CHOU; Kuochih


    The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by acid. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 k J/mol. Furthermore, the main products are TiC and SiO2 after leaching.

  15. Leaching of Carbothermic Reduced Titanium-bearing Blast Furnace Slag by Acid

    ZHEN Yulan; ZHANG Guohua; CHOU Kuochih


    The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by ac-id. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 kJ/mol. Fur-thermore, the main products are TiC and SiO2 after leaching.

  16. Comparison of local stress values obtained by two measuring methods on blast furnace shell

    P. Bigoš


    Full Text Available This paper describes measuring of time behaviour specified for local stress increments on the blast furnace shell that were performed using strain gauge sensors. These results are compared with values obtained by means of the second specific measuring method. There is also presented in this paper a commentary and discussion concerning the measured time behaviour obtained from the both measuring methods. This article presents results from another of experimental analysis series concerning the blast furnace shell in one concrete metallurgical plant.

  17. Gazification of coal dust particles in the blast furnace tuyere apparatus

    Shvydky, V. S.; Yaroshenko, Yu G.; Spirin, N. A.; Lavrov, V. V.


    The mathematical statement of the problem on gasification of coal dust particles in the blast-furnace tuyere apparatus is given, which includes the motion equation of a variable mass particle, heat equation of a particle and the heat-balance equation of the blast flow. The results of calculations are obtained by using mathematical software packages (Mathcad, Maple). Relatively weak effect of the volatiles combustion process on the thermal state of the tuyere zone is shown.

  18. Practice of promoting pulverized coal injection rate at no.4 blast furnace of China Steel Corporation

    Liang, N.W.; Chang, C.T [China Steel Corp., Kaohsiung, Taiwan (China)


    In 2006, the China Steel Corporation (CSC) upgraded the injection system of its no.4 blast furnace to increase the pulverized coal (PC) rate which averaged 136 to 143 kg/thm. This paper described the scheduled shutdown of the furnace in May 2007 in order to modify it from a dilute phase injection system to a dense phase system using the technology of the Kuettner Company. Through proper burden distribution and operational parameter adjustments, the pulverized coal (PC) rate was increased to 178 kg/thm by November 2007, corresponding to a 65 t/hr injection rate with a productivity of 2.58 t/m{sup 3}/d. This paper described the challenges encountered following commissioning as well as the strategies of process control. The main differences between the existing and new injection system were that nitrogen was used to substitute compressed air as the conveying gas and the coal to gas ratio was increased from about 10 to 30 kg/kg. As a result, the transport method and the operation pressure had to be reassessed. This paper described the coal blend injection; screening facility for coal preparation; location of the distributor; and coal accumulation in the coal flow meter. The blast furnace adjustments included burden thickness control; burden distribution adjustment; improvement of raw material quality; and theoretical flame temperature adjustment. The upgrade project has proven to be very successful and has improved the competitiveness of CSC blast furnace no.4 significantly. Plans to upgrade the no.2 and no.3 blast furnaces are underway. Once completed, the operating cost and coke consumption of the blast furnaces will be reduced considerably. The modification to dense phase conveying system has shown that coal with high Hardgrove Index requires a higher driving force in the pneumatic dense phase transport and that coal mill equipped with a rotating classifier is recommended along with screens at the upstream of the feed tank. 3 refs., 6 tabs., 9 figs.

  19. Lance for injecting highly-loaded coal slurries into the blast furnace

    Illuminati, D.


    A lance is used to inject fuel oil into a blast furnace. This simple design permits conversion of coal water and coal tar slurries to a fine mist at very low flow rates. This design prevents the build-up of deposits which increases service life and steadies the flow rate.

  20. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.


    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, whi

  1. Effect of nut coke on the performance of the ironmaking blast furnace

    Song, Q.


    The blast furnace consumes a large amount of high quality metallurgy coke (size 35-80 mm) in addition to ore in the form of pellets and sinter. This coke is the coarse fraction, derived from the coke plant. The fine fraction (8 -35 mm), arise after sieving, named nut coke, can’t be directly used in

  2. Identification of a crystalline cyanide-containing compound in blast furnace sludge deposits.

    Mansfeldt, T; Dohrmann, R


    During blast furnace operation, a cyanide-containing muddy waste referred to as blast furnace sludge is generated in large amounts. In Germany it was and is still common practice to pump this sludge into surface deposits. Depending on species, cyanide has very different toxicity. To this day there is no information about the type of cyanide occurring in blast furnace sludge deposits. In order to identify the type of cyanide we investigated by means of wet chemical and powder X-ray diffraction analyses 37 samples of three blast furnace deposits. Wet chemical results indicate that both the extremely toxic free cyanide (HCN and CN ) and toxic weak metal-cyanide complexes, for example [Zn(CN)4]2-, are not present in the sludge. By powder X-ray diffraction we identified the crystalline cyanide-containing compound potassium zinc hexacyanoferrate(II) nonahydrate, K2Zn3[Fe(CN)6]2 x 9H2O, as the cyanide-bearing compound. Our study is the first that identifies potassium zinc hexacyanoferrate(II) nonahydrate in the environment. As the iron-cyanide complex [Fe(CN)6] is not acutely toxic, any direct hazard comes from cyanide occurring in the investigated wastes. Under the predominant pH milieu of the sludge (pH about 8) the solubility of potassium zinc hexacyanoferrate(II) nonahydrate is low, thus minimizing the mobility of cyanide.

  3. Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace

    Li, Kejiang; Zhang, Jianliang; Liu, Yanxiang; Barati, Mansoor; Liu, Zhengjian; Zhong, Jianbo; Su, Buxin; Wei, Mengfang; Wang, Guangwei; Yang, Tianjun


    Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.

  4. Data-driven modeling based on volterra series for multidimensional blast furnace system.

    Gao, Chuanhou; Jian, Ling; Liu, Xueyi; Chen, Jiming; Sun, Youxian


    The multidimensional blast furnace system is one of the most complex industrial systems and, as such, there are still many unsolved theoretical and experimental difficulties, such as silicon prediction and blast furnace automation. For this reason, this paper is concerned with developing data-driven models based on the Volterra series for this complex system. Three kinds of different low-order Volterra filters are designed to predict the hot metal silicon content collected from a pint-sized blast furnace, in which a sliding window technique is used to update the filter kernels timely. The predictive results indicate that the linear Volterra predictor can describe the evolvement of the studied silicon sequence effectively with the high percentage of hitting the target, very low root mean square error and satisfactory confidence level about the reliability of the future prediction. These advantages and the low computational complexity reveal that the sliding-window linear Volterra filter is full of potential for multidimensional blast furnace system. Also, the lack of the constructed Volterra models is analyzed and the possible direction of future investigation is pointed out.

  5. Development of engineered cementitious composites with limestone powder and blast furnace slag

    Zhou, J.; Qian, S.; Sierra Beltran, M.G.; Ye, G.; Van Breugel, K.; Li, V.C.


    Nowadays limestone powder and blast furnace slag (BFS) are widely used in concrete as blended materials in cement. The replacement of Portland cement by limestone powder and BFS can lower the cost and enhance the greenness of concrete, since the production of these two materials needs less energy an

  6. Analysis of changes in the chemical composition of the blast furnace coke at high temperatures

    A. Konstanciak


    Full Text Available Purpose: The main purpose of this paper was to analyze the behavior of coke in the blast furnace. The analysis of changes in chemical composition of coke due to impact of inert gas and air at different temperatures was made. The impact of the application of the thermoabrasion coefficient on the porosity of coke was also analyzed.Design/methodology/approach: By applying the Computer Thermochemical Database of the TERMO system (REAKTOR1 and REAKTOR3 three groups of substances can be distinguished. The chemical composition of blast furnace coke and the results of calculations of changes of chemical composition of coke heat treated under certain conditions were compared. The structural studies of these materials were presented.Findings: The results of the analysis of ash produced from one of Polish cokes was taken for consideration. This is not the average composition of Polish coke ashes, nevertheless it is representative of most commonly occurring chemical compositions.Practical implications: Thanks to the thermochemical calculations it is possible to predict ash composition after the treatment in a blast furnace. Those information was crucial and had an actual impact on determining the coke quality.Originality/value: Presentation of the analytical methods which, according to author, can be very useful to evaluate and identify the heat treatment for blast furnaces cokes. The research pursued represents part of a larger project carried out within the framework of Department Extraction and Recycling of Metals, Czestochowa University of Technology.

  7. Innovation based on tradition: Blast furnace slag cement for durable concrete structures in Norway?

    Polder, R.B.; Nijland, T.; De Rooij, M.; Larsen, C.K.; Pedersen, B.


    Blast furnace slag cement (BFSC) has been used to build reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. The experience is good and structures with long service lives can be obtained, as has been shown by several field studies. This is caused by

  8. Composite cements containing natural pozzolan and granulated blast furnace slag

    Irassar, E. F.


    Full Text Available For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials. The present study analyzes the effect of Portland cement additions such as physically activated natural pozzolan(up to 20% and/or granulated blast furnace slag (up to 35% on mortar flexural and compressive strength. The results show that higher strength is attained in ternary than binary cements. Initially (2 and 7 days, the highest compressive strengths are reached by mortars with up to 13% natural pozzolan and 5% slag, whereas at later ages mortars with larger proportions of additions are found to perform best.Debido a las exigencias del mercado y de la producción de cemento Portland, es cada vez más frecuente la elaboración de cementos con dos o más adiciones a partir de la molienda separada de sus constituyentes, dando origen a la formulación de los cementos a medida.Cuando el contenido de adiciones es alto, la utilización de puzolana y escoria en este tipo de cementos presenta la peculiaridad de disminuir la resistencia inicial del cemento resultante. Sin embargo, si algunas o ambas adiciones se activan, este problema puede minimizarse. En este trabajo se analiza la influencia de la incorporación al cemento Portland de puzolana natural (hasta 20% activada físicamente y/o escoria granulada de alto horno (hasta 35% sobre la resistencia a flexión y a compresión de morteros. Los resultados indican que los cementos ternarios presentan un mejor comportamiento resistente que los cementos binarios. Las máximas resistencias a compresión en las primeras edades (2 y 7 díasse alcanzan con hasta 13% de puzolana natural y 5% de

  9. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan


    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  10. Efficient Removal of Arsenic and Antimony During Blast Furnace Smelting of Lead-Containing Materials

    Dosmukhamedov, Nurlan; Kaplan, Valery


    The efficient removal of impurities, As and Sb, from recycled lead-containing materials is a key issue in the selection of the appropriate smelting technology for projects involving metal reuse. Volatilization of impurities such as As and Sb should occur as early as possible in the process, and preferably within the smelting furnace, so that they do not contaminate the industrial environment nor interfere with the operation of downstream equipment. Using of copper-zinc concentrates in the blast furnace process for recycling lead-containing materials achieves: (1) high copper extraction to matte; (2) high lead extraction to lead bullion; and (3) high zinc extraction to slag, while at the same time producing a more efficient volatilization of As and Sb. Based on both laboratory and industrial data and thermodynamic considerations, the advantages of this blast furnace process for the treatment of recycled lead-containing materials are discussed.

  11. Early shell crack detection technique using acoustic emission energy parameter blast furnaces

    Kim, Dong Hyun; Lee, Sang Bum [RECTUSON Co.,Ltd., Changwon (Korea, Republic of); Bae, Dong Myung; Yang, Bo Suk [Pukyong National University, Busan (Korea, Republic of)


    Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

  12. Study on blast furnace cooling stave for various refractory linings based on numerical modeling

    Mohanty, T. R.; Sahoo, S. K.; Moharana, M. K.


    Cooling technology for refractory lining of blast furnace is very important for the metallurgical industry, because it can substantially increase output and operation life of furnaces. A three dimensional mathematical model for the temperature field of the blast furnace stave cooler with refractory lining has been developed and analyzed. The temperature and heat dissipated by stave cooler is examined by using the finite element method. The cast steel stave is studied and computational analysis is made to know the effect of the cooling water velocity, temperature, and the lining material on the maximum temperature of the stave hot surface. The refractory lining materials, which are used in this experiment, are high alumina bricks with different stave materials (copper, aluminum and cast iron). The obtained numerical calculations are compared with that obtained from experiments performed at Rourkela Steel Plant, Odisha taking a stave in belly zone having maximum heat load shows very good agreement.

  13. Efficient Removal of Arsenic and Antimony During Blast Furnace Smelting of Lead-Containing Materials

    Dosmukhamedov, Nurlan; Kaplan, Valery


    The efficient removal of impurities, As and Sb, from recycled lead-containing materials is a key issue in the selection of the appropriate smelting technology for projects involving metal reuse. Volatilization of impurities such as As and Sb should occur as early as possible in the process, and preferably within the smelting furnace, so that they do not contaminate the industrial environment nor interfere with the operation of downstream equipment. Using of copper-zinc concentrates in the blast furnace process for recycling lead-containing materials achieves: (1) high copper extraction to matte; (2) high lead extraction to lead bullion; and (3) high zinc extraction to slag, while at the same time producing a more efficient volatilization of As and Sb. Based on both laboratory and industrial data and thermodynamic considerations, the advantages of this blast furnace process for the treatment of recycled lead-containing materials are discussed.

  14. Pulverized coal injection in blast furnaces at ArcelorMittal Tubarao (AMT)

    Klein, C.A.; Fujihara, F.K.; Defendi, G.A.; Tauffer Barros, R.J. [ArcelorMittal Tubarao, Serra (Brazil). Ironmaking Dept.


    The main factors that influence the performance of coal injected into blast furnaces include coal properties, combustion conditions and the equipment used in the plants for grinding, transportation and injection of coal. This paper focused on coal properties and the main operational control changes in the no.1 blast furnace at ArcelorMittal Tubarao. The furnace was modified from an all coke operation to a pulverized coal injection (pci) operation in order to ensure high productivity, low fuel consumption and longer service life. ArcelorMittal Tubarao has developed a coal buying model based on energy balance and the chemical analysis of ash. In the energy balance, the ratio between the heat supplied by carbon combustion and the heat consumed by the cracking of water and volatiles results in the potential rate of coke replacement by coal. 5 refs., 1 tab., 10 figs.

  15. A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace

    Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill


    This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

  16. Improvement in the utilization of blast furnace gas; Mejora en la utilizacion de gas de alto horno

    Antonilli, Ricardo [Tenaris S.A. (Argentina); Kozicki, Alejandro [Ternium Siderar S.A. (Argentina)


    In the thermoelectric power plant of Siderar reforms were implemented to maximize the use of blast furnace gas, obtaining a reduction of flaring (venting) of process gases through optimizing the use of blast furnace gas, with consequent decrease of global warming due to the reduction of flare gases directly to the atmosphere and decrease the use of alternative fuels (fuel oil, natural gas) or purchasing power and hence a Non-renewable natural resource. (author)

  17. Dewetting Process of Blast Furnace Blower%高炉鼓风机前脱湿技术


    Blast furnace dewetting blast is an important measure for energy conservation of blast furnace and it plays an important role in stabilizing production of blast furnace. The dewetting process and features of blast blower are described. The significance to popularize the process in steel enterprises is introduced briefly.%  高炉脱湿鼓风是高炉节能的重要措施,并对高炉的稳定生产具有重要作用。对高炉鼓风机前脱湿的工艺和特点进行说明,并简述其在钢铁企业推广的意义。

  18. Modelling and prediction of pig iron variables in the blast furnace

    Saxen, H.; Laaksonen, M.; Waller, M. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.


    The blast furnace, where pig iron for steelmaking is produced, is an extremely complicated process, with heat and mass transfer and chemical reactions between several phases. Very few direct measurements on the internal state are available in the operation of the process. A main problem in on-line analysis and modelling is that the state of the furnace may undergo spontaneous changes, which alter the dynamic behaviour of the process. Moreover, large internal disturbances frequently occur, which affect the product quality. The work in this research project focuses on a central problem in the control of the blast furnace process, i.e., short-term prediction of pig iron variables. The problem is of considerable importance for fuel economy, product quality, and for an optimal decision making in integrated steel plants. The operation of the blast furnace aims at producing a product (hot metal) with variables maintained on a stable level (close to their setpoints) without waste of expensive fuel (metallurgical coke). The hot metal temperature and composition affect the downstream (steelmaking) processes, so fluctuations in the pig iron quality must be `corrected` in the steel plant. The goal is to develop a system which predicts the evolution of the hot metal variables (temperature, chemical composition) during the next few taps, and that can be used for decision-making in the operation of the blast furnace. Because of the complicated behaviour of the process, it is considered important to include both deterministic and stochastic components in the modelling: Mathematical models, which on the basis of measurements describe the physical state of the process, and statistical (black-box) models will be combined in the system. Moreover, different models will be applied in different domains in order to capture structural changes in the dynamics of the process SULA 2 Research Programme; 17 refs.

  19. Chemical and mineralogical characterization of blast-furnace sludge from an abandoned landfill.

    Mansfeldt, Tim; Dohrmann, Reiner


    Blast-furnace sludge is generated during the production of pig iron and is disposed of in the environment in large surface landfills. We investigated blast-furnace sludge samples of an abandoned landfill in order to determine its chemical and mineralogical nature and to evaluate some environmental hazards that may arise from this industrial waste. The mineralogical inventory, which was quantified by Rietveld refinement of XRD analyses using the fundamental-parameter approach, revealed that blast-furnace sludge is dominated by X-ray amorphous substances (with a mean of 590 g kg(-1)) including coke and (hydr)oxides of Fe, Si, Al, Zn, and Pb. Calcite (CaCO3) (136 g kg(-1)), dolomite (Ca,Mg[CO3]2) (14 g kg(-1)), quartz (SiO2) (55 g kg(-1)), kaolinite (Al2[OH]4Si2O5) (40 g kg(-1)), graphite (C) (27 g kg(-1)), and chemically not specified layered double hydroxides (28 g kg(-1)) were identified in almost all samples. Iron is present as magnetite (Fe3O4) (34 g kg(-1)), hematite (Fe2O3) (38 g kg(-1)), wuestite (FeO) (20 g kg(-1)) and alpha-iron (Fe0) (6 g kg(-1)). Chemically, blast-furnace sludge is dominated by C (190 g kg(-1)) and Fe (158 g kg(-1)) reflecting the process of pig-iron production. On the basis of total contents, environmentally problematic metals (including As) are Zn (32.6 g kg(-1)), Pb (10.3 g kg(-1)), Cd (81 mg kg(-1)), and As (129 mg kg(-1)). As the forested landfill is used by residents for leisure activities, the exposure assessment by pathway oral uptake of blast-furnace sludge particles by humans has to be critically evaluated, particularly as significant proportions of metals are acid-soluble. However, under the prevailing slightly alkaline pH values of the sludge (pH 7.6-9.2), the solubility of the metals is very low as indicated by low pore water concentrations. Currently, groundwater monitoring should be focused mainly on F- since the F- concentrations in the pore water of blast-furnace sludge are at high level (2.65-24.1 mg of F- L(-1)).

  20. Development of New Co-gasification Technology Based on Blast Furnace

    ZHAO Yue-hong; WEN Hao; GUO Zhan-cheng; XU Zhi-hong


    A new co-gasification technology was proposed. The core of this co-gasification technology is a gasifier capable of being operated on a wide range of fuels and being reconstructed from blast furnace or shaft furnace.Based on this innovative concept, the lab-scale experiment and modeling study were carried out to demonstrate its technical validity and thermodynamic characteristics. The obtained results indicate that co-gasification process can be undertaken under ideal thermodynamic conditions where quasi-equilibrium could be reached without catalysts and Aspen Plus is a useful tool for this process development. Furthermore, potential applications of co-gasification were discussed.

  1. Productivity and performance of small scale blast furnaces; Produtividade e performance de altos fornos de pequeno porte

    Melo, Vamberto Ferreira de; Grandin, Friedrich Hans G.; Lanna, Pitagoras Gomes de; Castello Branco, Marco Antonio S.C. [Mannesmann SA, Belo Horizonte, MG (Brazil)


    This work presents some data concerning the re-start of the blast furnace number 2 of Mannesmann siderurgic company. The main characteristics concerning the operation with 100% coke fuel and the measurements adopted to increase the furnace productivity are described 2 refs., 6 figs., 5 tabs

  2. Ground granulated blast furnace slag efficiency coefficient (k value) in concrete. Applications and limits

    Sanjuan, M. A.; Pineiro, A.; Rodriguez, O.


    Recently, a k-value for ground granulated blast-furnace slag or k-value has been added to the revision of the European standard EN 206-1:2000. The proposed values during the discussions in the working groups were very different because in most of cases the compressive strength was the only characteristic considered; while only in few cases the concrete durability was taken into account when ground granulated blast-furnace slag is added directly to the mix. Advantages and disadvantages of the k-values found in the literature are discussed in this paper. The final conclusion may be summarised suggesting a logical proposal of addressing to each country the choice of the k-value in function of the concrete application, environment and placing conditions selected according to their own experience. (Author) 15 refs.

  3. Mechanism Research on Melting Loss of Coppery Tuyere Small Sleeve in Blast Furnace

    Chai, Yi-Fan; Zhang, Jian-Liang; Ning, Xiao-Jun; Wei, Guang-Yun; Chen, Yu-Ting


    The tuyere small sleeve in blast furnace works under poor conditions. The abnormal damage of it will severely affect the performance of the blast furnace, thus it should be replaced during the damping down period. So it is of great significance that we study and reduce the burnout of tuyere small sleeve. Melting loss is one case of its burnout. This paper studied the reasons of tuyere small sleeve's melting loss, through computational simulation and microscopic analysis of the melting section. The research shows that the temperature of coppery tuyere small sleeve is well distributed when there is no limescale in the lumen, and the temperature increases with the thickness of limescale. In addition, the interruption of circulating water does great harm to the tuyere small sleeve. The melting loss of tuyere small sleeve is caused by iron-slag erosion, with the occurrence of the melt metallurgical bonding and diffusion metallurgical combination.

  4. Mathematical modeling of the burden distribution in the blast furnace shaft

    Park, Jong-In; Jung, Hun-Je; Jo, Min-Kyu; Oh, Han-Sang; Han, Jeong-Whan


    Process efficiency in the blast furnace is influenced by the gas flow pattern, which is dictated by the burden profile. Therefore, it is important to control the burden distribution so as to achieve reasonable gas flow in the blast furnace operation. Additionally, the charging pattern selection is important as it affects the burden trajectory and stock profile. For analysis of the burden distribution, a new analysis model was developed by use of the spreadsheet program, Microsoft® Office Excel, based on visual basic. This model is composed of the falling burden trajectory and a stock model. The burden trajectory is determined by the burden type, batch weight, rotating velocity of the chute, tilting angle, and friction coefficient. After falling, stock lines are formed by the angle of repose, which is affected by the burden trajectory and the falling velocity. The mathematical formulas for developing this model were modified by a scaled model experiment and DEM simulation.

  5. The influence of the blast furnace slag replacement on chloride penetration in concrete

    Juan Lizarazo Marriaga


    Full Text Available  Corrosion of steel reinforcement due to chloride penetration is the greatest cause of durability problems in concrete; intense international research has been carried out to understand and avoid this. This paper summarises the results of a theoretical and experimental research programme investigating the influence of blast furnace slag on chloride-related transport properties. The relationship between the apparent chloride diffusion coefficient, electrical resistivity and compressive strength was measured. Chloride, hydroxide, sodium and potassium’s intrinsic diffusion coefficients were obtained by using a computational model and an electrical migration test. The initial hydroxide composition of the pore solution, porosity and chloride binding capacity were also determined from the model. The results showed that blast furnace slag improved chloride penetration resistance, resulting in concrete which was less vulnerable to corrosion. 

  6. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    Michael F. Riley


    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in

  7. The Iron Blast Furnace: A Study in Chemical Thermodynamics.

    Treptow, Richard S.; Jean, Luckner


    Discusses the furnace from a chemical thermodynamics perspective. Examines the enthalpy, entropy, and free energy change for each reaction of importance. These properties are interpreted on the molecular level then used to deduce the conditions necessary for each reaction to occur in its intended direction. Chemical kinetics is also discussed.…

  8. Thermodynamic and kinetic investigations of PO3-4 adsorption on blast furnace slag.

    Oguz, Ensar


    The kinetics of adsorption of PO(3-)(4) by blast furnace slag were found to be fast, reaching equilibrium in 20 min and following a pseudo-second-order rate equation. The adsorption behavior of PO(3-)(4) on blast furnace slag has been studied as a function of the solution agitation speed, pH, and temperature. Results have been analyzed by Freundlich, Langmuir, BET, and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption, 10.31 kJ mol(-1), was calculated from the D-R adsorption isotherm. The rate constants were calculated for 293, 298, 303, and 308 K using a pseudo-second-order rate equation and the activation energy (E(a)) was derived using the Arrhenius equation. Thermodynamic parameters such as DeltaH(0), DeltaS(0), and DeltaG(0) were calculated from the slope and intercept of linear plot of lnK(D) against 1/T. The DeltaH(0) and DeltaG(0) values of PO(3-)(4) adsorption on the blast furnace slag show endothermic heat of adsorption. But there is a negative free energy value, indicating that the process of PO(3-)(4) adsorption is favored at high temperatures.

  9. Pulverized coal injection on the blast furnaces at U.S. Steel Kosice, S.R.O.

    Baran, P.; McCoy, M.; Szalona, T. [United States Steel Corp., Kosice (Slovakia)


    United States Steel Corporation at Kosice built a new modern PCI facility that meets environmental criteria and provides a replacement for financially demanding metallurgical coke with a less expensive pulverized coal. The pulverized coal injection (PCI) technology was applied to blast furnaces no. 2 and 3 in 1993 and has resulted in the following improvements: production has increased an average of 400 to 500 tons/day; pig iron production economics have improved not only because of replacing the metallurgical coke with PCI, but also due to a decrease in the total fuel rate for producing 1 ton of hot metal; blast furnace gas utilization increased with ETA CO values around 48 per cent; and the blast furnace operation is more stable by regular burden descend. The most distinguished change has been in the way raw materials are charged to the furnaces. This paper outlined the coal quality requirements for PCI and presented a basic technological description of PCI preparation. The operational experience of the 2 blast furnaces were presented for the period of 2000 to 2007. Recommendations for PCI rate increase were also presented. It was concluded that using PCI technology in blast furnace no. 1 may bring the greatest economic efficiency for United Steel Corporation at Kosice. 4 refs., 2 tabs., 8 figs.

  10. Coke state determination in the blast furnace hearth using a tuyere probe

    Negro, P.; Pierret, H.; Steiler, J.M. (Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)); Lao, D.; Eymond, J.L.; Fauchoit, P. (Sollac, 59 - Dunkerque (France)); Eibes, C.; Blaise, G.; Urvoy, A.; Helleisen, M.; Giroldini, F.; Hartig, M.; Rausch, H.


    Coke samplings at blast furnace tuyeres are a powerful mean to study the behaviour of the lower part of the furnace. A tuyere probe has been installed since April 1985 on the BF 2 at Sollac Fos. This probe is 19 m long and 11 tons weight. It uses a 265 mm internal diameter pipe which samples materials until the centre of the BF. Up-to-now, 28 trials have been completed. The results obtained with this probe allow: a better understanding of the phenomena occurring in the blast furnace hearth, to establish several relationships between the internal state of the hearth and the operation conditions, to build and validate a new image of the cohesive zone and the coke state, to measure and understand the influence of coal injection on the BF operation. Since April 1991, a movable tuyere probe has been in operation within Usinor Sacilor Group. This machine is more lighter than the fixed one weighing only 5.5 tons and smaller measuring 5 m long for 1.3 m width. The probe is a 260 mm internal diameter pipe which can be introduced for 4.25 m in the furnace. In 20 months, it is more than 40 coke core borings which have been achieved on 9 different furnaces of 4 different plants. These two probes are complementary. The fixed probe is only used through one tuyere of one BF. In addition, this probe can reach the centre of the furnace and give a complete description of the materials present along the radius. The movable machine cannot reach the centre of the BF, but it authorizes the study of: some very different BF operating conditions, the influence of the feed materials qualities in a large range, the heterogeneity between several tuyeres of one BF, the effect of the BF size. This text presents our approach in coke quality research, relying upon the results of coke core borings. 6 refs., 17 figs.

  11. Coke state determination in the blast furnace hearth using a tuyere probe

    Negro, P.; Pierret, H.; Steiler, J. [and others] [Institut de Recherches de la Siderurgie Francaise (IRSID), Saint-Germain-en-Laye (France)


    Coke samplings at blast furnace tuyeres are a powerful means to study the behaviour of the lower part of the furnace. A tuyere probe has been installed since April 1985 on the BF2 at Sollac Fos. This probe is 19 m long and 11 tons in weight. It uses a 265 mm internal diameter pipe which samples materials in the centre of the BF. Up to now, 28 trials have been completed. The results obtained allow: a better understanding of the phenomena occurring in the blast furnace hearth, to establish several relationships between the internal state of the hearth and operation conditions, to build and validate a new image of the cohesive zone and the coke state, to measure and understand the influence of coal injection on the BF operation. Since April 1991, a movable tuyere probe has been in operation within Usinor Sacilor Group. This machine is lighter than the fixed one weighing only 5.5 tons and smaller measuring 5 m long for 1.3 m width. The probe is a 260 mm internal diameter pipe which can be introduced 4.25 m into the furnace. In 20 months, more than 40 coke core borings have been achieved on 9 different furnaces in 4 different plants. These two probes are complementary. The fixed probe is only used through one tuyere of one BF. In addition, this probe can reach the centre of the furnace and give a complete description of the materials present along the radius. The movable machine cannot reach the centre of the BF, but it enables the study of: some very different BF operating conditions, the influence of the feed materials qualities in a large range, the heterogeneity between several tuyeres of one BF, and the effect of the BF size. This paper presents an approach in coke quality research, relying upon the results of coke core borings.

  12. Formation of Hearth Sediment during Vanadium Titano-magnetite Smelting in Blast Furnace No.7 of Chengde Iron and Steel Company

    Xiao-jie LIU; Qing L; Shu-jun CHEN; Zhen-feng ZHANG; Shu-hui ZHANG; Yan-qin SUN


    The large quantity of sediment produced in the hearth during vanadium titano-magnetite smelting in a blast furnace (BF) affects the stability of the blast furnace operation. Testing and analysis of the sediment in the hearth of Chengde Iron and Steel Companyʹs BF No.7 revealed that it was mainly concentrated in the location below the tuyere and above the iron notch. Notably, some of the bonding material (sediment) consisted of greater than 50% pig iron, and the pig iron distributed in the slag was granu-lar. It is proposed that a large quantity of TiC and Ti(C,N) are deposited on the surface of the pig iron. These high melting point materials mix with iron drops, preventing the slag from lfowing freely, thus leading to the formation of bonding materials. In ad-dition, the viscosity and melting temperature of the slag in the tuyere areas lfuctuate greatly, and thus the properties of the slag are unstable. Moreover, the slag contains large quantities of carbon, which results in the reduction of TiO2. The resultant precipitation of Ti is followed by the formation of TiC in the slag, which also leads to an increase in the viscosity of the slag and dififculty in achieving separation of the slag-iron. In fact, all of these factors interact with each other, and as a result, sediment is formed when the operating conditions in the hearth lfuctuate.

  13. Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace

    Maria de Lourdes Ilha Gomes


    Full Text Available Pulverized Coal Injection (PCI is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

  14. Improvement of Hydraulic System Blast Furnace Clay Gun%高炉泥炮液压系统改造



    高炉泥炮是高炉生产的重点设备之一,本文介绍了高炉泥炮液压系统的构成及存在的问题。通过液压站静压导轨伸缩防护罩改造和位移传感器的定位优化,保证了高炉泥炮液压系统的正常运行,为高炉的稳定顺行创造了良好的条件。%Blast furnace mud gun was one of the key equipment of blast furnace.The paper introduced the composition of hydraulic system for blast furnace mud gun and the existing problems.Hydrostatic guide way telescopic protective cover positioning transformation and the displacement sensor was optimized through the hydraulic station to ensure the normal op-eration of the hydraulic system of blast furnace mud gun and create good conditions for the stable operation of blast furnace.

  15. Multi-fluid numerical simulation and analysis of blast furnace in oxygen blast furnace process%氧气高炉多流体数值模拟与分析

    张宗良; 孟嘉乐; 郭占成


    为研究不同氧气高炉操作流程及操作参数对高炉内部过程产生的影响,预测氧气高炉流程各参数的变化规律,基于多流体理论、冶金传输原理、冶金反应动力学与热力学理论以及计算流体力学建立了普通高炉多流体模型,并在此基础上修改边界条件及内部相关参数,建立氧气高炉多流体数学模型。通过建立的模型分别对普通高炉和气化炉氧气高炉(GF-FOBF)流程中的氧气高炉进行了模拟计算,得到两种工艺流程下高炉内温度场、浓度场和速度场等典型参数的分布情况。通过对计算结果的对比,分析了氧气高炉操作条件下炉内状态的主要特征和相对于普通高炉发生的变化,发现氧气高炉内部速度场、温度场均发生变化,特别是气相组分的均匀分布问题明显。本模型可为氧气高炉流程试验及流程开发提供参考。%To study the effects of different oxygen blast furnace operating procedures and their operating parameters on blast furnace process,and to predict the variation of each parameter of oxygen blast furnace process,a multi-fluid blast furnace model is built based on multi-fluid theory,metallurgical transport theory,metallurgical thermodynamics and kinetics,and computational fluid dynamics.By modifying its boundary conditions and internal parameters,the establishment of multi-fluid model of oxygen blast furnace is achieved.Numerical simulation of the normal blast furnace and gasification furnace-oxygen blast furnace (GF-FOBF)is carried out with this model and the fields of typical parameters,such as temperature field,are obtained.By comparing the calculation results,the main features of the furnace under oxygen blast furnace operating conditions and changes relative to the traditional blast furnace are analyzed.It can be found that the oxygen blast furnace internal velocity field and temperature field change,especially the distribution of gas

  16. Analysis on Leakage Reason of Cooling Staves Used in Blast Furnace%高炉冷却壁破损因为分析

    魏波; 童静; 陈先利


    根据安钢8号高炉破损调查的结果,对冷却壁破损的因为进行了分析,认为冷却壁破损不但与铸造质量有关,而且与高炉设计缺陷、炉况难行以及操作制度也有关系,并提出了相应技术措施.%Based on the investigation of 8# blast furnace damage in Angang, the reasons of cooling stave damage have been analyzed, resulting in that blast furnace damage was not only related to the quality of casting metals, but also had something to do with design limitation of blast furnace and the difficulties of blast furnace condition and operation system of blast furnace hence interrelated technological measures put forward.

  17. The Adhesion and Formation Mechanism of Blast Furnace Gunning Layer


    Basing on the study of the equilibrium relationship of interfacial tension among gunning particles, repaired surface and atmosphere, this test is in a position to draw a conclusion concerning the adhesion mechanism of the gunning refractory and the repaired surface, which illustrates the formation of the bottom gunning layer by moist fine gunning particles on the repaired surface. Also involved within the scope of discussion and probe are the patterns formed under this contacting effect and the formation mechanism of gunning layer. The analytic research regarding the behavior of gunning interface has ascribed the influence upon adhesion intensity to the quality of furnace gunning refractory, the state of the repaired surface and the gunning techniques.

  18. A novel model for cost performance evaluation of pulverized coal injected into blast furnace based on effective calorific value

    徐润生; 张建良; 左海滨; 李克江; 宋腾飞; 邵久刚


    The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.

  19. Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag


    We report the adsorption of phosphate and discuss the mechanisms of phosphate removal from aqueous solution by burst furnace slag (BFS) and steel furnace slag (SFS). The results show that the adsorption of phosphate on the slag was rapid and the majority of adsorption was completed in 5~10 min. The adsorption capacity of phosphate by the slag was reduced dramatically by acid treatment. The relative contribution of adsorption to the total removal of phosphate was 26%~28%. Phosphate adsorption on BFS and SFS follows the Freundlich isotherm, with the related constants ofk 6.372 and 1/n 1.739 for BFS, and ofk 1.705 and 1/n 1.718 for SFS. The pH and Ca2+ concentration were decreased with the addition of phosphate, suggesting the formation of calcium phosphate precipitation. At pH 2.93 and 6.93, phosphate was desorbed by about 36%~43% and 9%~11%, respectively.These results indicate that the P adsorption on the slag is not completely reversible and that the bond between the slag particles and adsorbed phosphate is strong. The X-ray diffraction (XRD) patterns of BFS and SFS before and after phosphate adsorption verify SFS is related to the formation of phosphate calcium precipitation and the adsorption on hydroxylated oxides. The results show that BFS and SFS removed phosphate nearly 100%, indicating they are promising adsorbents for the phosphate removal in wastewater treatment and pollution control.

  20. Blast wave attenuation by lightly destructable granular materials

    Golub, V. V.; Lu, F. K.; Medin, S. A.; Mirova, O. A.; Parshikov, A. N.; Petukhov, V. A.; Volodin, V. V.

    Terrorist bombings are a dismal reality nowadays. One of the most effective ways for protection against blast overpressure is the use of lightly compacted materials such as sand [1] and aqueous foam [2] as a protective envelope or barrier. According to [1], shock wave attenuation in a mine tunnel (one-dimensional case) behind a destroyed object is given by q_e ≈ q {1}/{1 + 4(S/q)^{1/6} bρ _{mat} /L^{1/3} }where qe — effective charge, S — exposed area of the obstacle, q — TNT equivalent (grams), L — distance between charge and obstacle, b — obstacle thickness and ρ mat — material density. This empirical equation is applicable only in a one-dimensional case but not for a less confined environment. Another way of protecting a structure against blast is to coat the surface with a sacrificial layer. In [3] full-scale experiments were carried out to investigate the behaviour of a covering of aluminum foam under the effect of a blast wave.

  1. The Whyalla No. 2 blast furnace life extension with improved productivity and quality

    Ward, R.F.; Broadbent, P.F.; Tsalapatis, J.


    The performance of the Whyalla No. 2 Blast Furnace has previously been reported, and at the time of that report it was planned that the furnace would be relined in January 1993. The actions and improvements previously reported have proved to be more beneficial than it was initially thought possible, and have since been progressed to the stage where a campaign life in excess of 15 years is now realistically targeted. This paper highlights the actions that have proved successful in exceeding 12 years of campaign life and current average productivity of 2.1 t/m[sup 3]/d I.V., fuel rate of less than 500 kg/thm and Hot Metal Silicon standard deviation less than 0.1%.

  2. Development and Application of Mullite—Composite Brick for Baths Pool of Blast Furnace

    ZHOULei; LIXian-ming; 等


    The paper deals with the development and production of mullite-composite bricks for baths pool of balst furnace,Fused corundum,synthetic mullite ,special grade bauxite and a certain amount of additives were used as raw materials to produce corundum-mullite brick and yellow-corundum brick,All of their physical and chemical properties surpass the designed values.Good results have been obtained from the applic-cation in the baths pool of No.7 blast furnace of Anshan I & S Co.(Angang).The silicon content in pig iron decreases by 0.1%-0.2% while the temperature of the hot metal increases by 20℃,The mineral composition and structure have been studied by means of XRD and SEM.

  3. Industrial Experiment on Coke Spraying With ZBS Additive in Blast Furnace

    ZHU Zi-zong; ZHANG Zhu-ming; TANG Qi-yong; YANG Xue-feng; ZHANG Kun-hua; ZHAO Xian-sheng


    In order to improve the thermal properties of coke, an industrial experiment on the coke spraying with ZBS additive solution was carried out at coking plant and No.6 blast furnace (2 000 m3) of Kunming Iron and Steel Co Ltd. The coke reaction index (CRI) of the coke spraying with ZBS additive solution decreases by 10.56%, and the coke strength after reaction (CSR) increases by 7.80% in comparison with those of the un-sprayed coke. During the experiment, the average iron output increases by 66.69 t/d, and the coke rate is reduced by 5.21 kg per ton iron, while the fluctuation of furnace temperture is small, and sulphur content in hot metal and 100% of hot metal are acceptable.

  4. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    Dr. Chenn Zhou


    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  5. Modeling of Internal State and Performance of an Ironmaking Blast Furnace: Slot vs Sector Geometries

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing


    Mathematical modeling is a cost-effective method to understand internal state and predict performance of ironmaking blast furnace (BF) for improving productivity and maintaining stability. In the past studies, both slot and sector geometries were used for BF modeling. In this paper, a mathematical model is described for simulating the complex behaviors of solid, gas and liquid multiphase flow, heat and mass transfers, and chemical reactions in a BF. Then the model is used to compare different model configurations, viz. slot and sector geometries by investigating their effects on predicted behaviors, in terms of two aspects: (i) internal state including cohesive zone, velocity, temperature, components concentration, reduction degree, gas utilization, and (ii) performance indicators including liquid output at the bottom and gas utilization rate at the furnace top. The comparisons show that on one hand, predictions of internal state of the furnace such as fluid flow and thermo-chemical phenomena using the slot and sector geometries are qualitatively comparable but quantitatively different. Both sector and slot geometries give a similar cohesive zone shape but the sector geometry gives a higher cohesive zone near the wall and faster reduction. On the other hand, the two geometries can produce similar performance indicators including gas utilization at the furnace top and liquid output at the bottom. Such a study is useful in selecting geometry for numerically examining BF operation with respect to different needs.

  6. Continual Measuring of Local Stress Values on Shell of the Blast Furnace Hearth and of Total Shell Expansion

    P. Bigoš


    Full Text Available This paper deals with installation of strain gauges on the external surface of the blast furnace shell in two rows, whereas there will be defi ned 8 measuring points in every row. The fi nal result is evaluation of data obtained during up to 45 days of the operation. In this papers are commentary and discussions to measured time behaviours. The main purpose of this measuring was investigation of impact of salamander on blast furnace shell expansion after its lay off , cooling and next starting of operation.

  7. Soot formation in a blast furnace - Prediction via a parametric study, using detailed kinetic modeling

    Nordstroem, T.; Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Group


    The objective of this work has been to investigate the soot formation in a blast furnace fired with heavy fuel oil, using detailed kinetic modelling. This work has been concentrated on parameter studies that could explain under which conditions soot is formed and how that formation could be avoided. The parameters investigated were temperature, pressure, stoichiometric ratio, pyrolysis gas composition and reactor model. The calculations were based on a reaction mechanism that consists of 100 species and 446 reactions including polyaromatic hydrocarbons (PAM) up to 7 aromatic rings SULA 2 Research Programme; 4 refs.

  8. Reactivity of brazilian coal, charcoal, imported coal and blends aiming to their injection into blast furnaces

    Janaína Gonçalves Maria da Silva Machado


    Full Text Available For about 10 years the steel industry in Brazil has used pulverized coal injection (PCI technology in the blast furnaces based on imported coals. In order to decrease the dependence on imported coals, Brazilian coal, which has limited use due to high ash content, was suggested to be mixed with imported coal and charcoal. The aim was to examine the reactivity of the samples. The charcoal use in the steel industry contributes to the CO2 emission reduction, since it represents a renewable source of energy. The reactivity of the coals, charcoal and mixtures was evaluated through simultaneous thermal analyses. Results of this study are presented and discussed.

  9. Study on the early warning mechanism for the security of blast furnace hearths

    Zhao, Hong-bo; Huo, Shou-feng; Cheng, Shu-sen


    The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In this article, based on heat transfer calculations, heat flux and erosion monitoring, the features of heat flux and erosion were analyzed and compared among different types of hearths. The primary detecting elements, mathematical models, evaluating standards, and warning methods were discussed. A novel early warning mechanism with the three-level quantificational standards was proposed for BF hearth security.

  10. Effects of Carbo-Nitridation Process of Ti-Bearing Blast Furnace Slag on Iron Content

    Shi, Z.; Zhang, X. M.; Xu, Y.

    In order to prepare corrosion-resistant refractory material, experiment chooses Ti-bearing Blast Furnace Slag as raw materials which were treated by the method of carbo-nitridation. Finally, the corrosion resistance properties of the material can be improved by this method. The carbo-nitridation process affects the iron content of the slag in the study, which have a beneficial effect on the synthesis of Ti (C. N). The results indicated that the iron content of the slag significantly increased in process of Ti (C. N) synthesis: and the iron content of slag showed an upward trend with the increase of holding time.

  11. Measures of Decreasing Blast Furnace Fuel Consumption and Improving Sinter Performance in Guofeng

    YU Yuan-hao; FENG Gen-sheng; SU Dong-xue


    To further decrease the fuel consumption of blast furnace in Tangshan Guofcng Iron and Steel Co Ltd,measures of improving the quality of sinter and pellet and the performances of raw materials were put forward through phase analysis and physical and chemical performance testing.The measures of increasing the grade of sinter,decreasing the sinter reduction degradation index at low temperature,and increasing the sinter soft melt performance at elevated temperature,as well as the reasonable process parameters of sintering were described in detail.

  12. Effect of alkaline elements on the reactivity, strength and structural properties of blast furnace cokes

    A. Bhattacharyya


    Full Text Available The present study concerns itself on the adverse effects of alkaline elements like sodium and potassium on blast furnace cokes. To achieve a deeper insight on the effects of alkaline elements on coke reactivity and strength, industrial coke samples impregnated with different alkaline species in various amounts have been tested under standard conditions to find out their Coke Reactivity Index (CRI and Coke Strength after Reaction (CSR values. Scanning electron microscopy, petrographic and Raman Spectrometric investigations demonstrate the change of structural properties. The mechanism of catalysis has been postulated.

  13. Distribution of the blast furnace gas in V and M of Brazil during the reduction of production; Distribuicao de GAF na V e M do Brasil durante a reducao de producao

    Lana, Camila Soares; Silva, Ricardo Junqueira; Soares, Lis Nunes; Valentim, Rodrigo Freitas [V e M do Brasil S.A., Belo Horizonte, MG (Brazil)


    V e M do Brasil is an integrated steel mill with the production of seamless steel pipe. The manufacture process comprises two charcoal blast furnaces that have blast furnace gas as a by-product. The use of natural gas is complementary to the blast furnace gas in the mills. The appropriate planning of these intakes during the crisis had as premise the best use of blast furnace gas and minimizing the use of natural gas. With this planning, it was possible to optimize the use of blast furnace gas reducing 8% of natural gas cost. (author)

  14. Volatilization of elemental mercury from fresh blast furnace sludge mixed with basic oxygen furnace sludge under different temperatures.

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim


    Blast furnace sludge (BFS) is a waste with elevated mercury (Hg) content due to enrichment during the production process of pig iron. To investigate the volatilization potential of Hg, fresh samples of BFS mixed with basic oxygen furnace sludge (BOFS; a residue of gas purification from steel making, processed simultaneously in the cleaning devices of BFS and hence mixed with BFS) were studied in sealed column experiments at different temperatures (15, 25, and 35 °C) for four weeks (total Hg: 0.178 mg kg(-1)). The systems were regularly flushed with ambient air (every 24 h for the first 100 h, followed by every 72 h) for 20 min at a flow rate of 0.25 ± 0.03 L min(-1) and elemental Hg vapor was trapped on gold coated sand. Volatilization was 0.276 ± 0.065 ng (x m: 0.284 ng) at 15 °C, 5.55 ± 2.83 ng (x m: 5.09 ng) at 25 °C, and 2.37 ± 0.514 ng (x m: 2.34 ng) at 35 °C. Surprisingly, Hg fluxes were lower at 35 than 25 °C. For all temperature variants, an elevated Hg flux was observed within the first 100 h followed by a decrease of volatilization thereafter. However, the background level of ambient air was not achieved at the end of the experiments indicating that BFS mixed with BOFS still possessed Hg volatilization potential.

  15. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia.

    Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F; Stelcer, Eduard; Evans, Tim


    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings.

  16. Choice of technological regimes of a blast furnace operation with injection of hot reducing gases

    Babich, A. I.


    Full Text Available Injection rate of fossil fuels is limited because of drop in the flame temperature in the raceway and problems in the deadman region and the cohesive zone. The next step for obtaining a considerable coke saving, a better operation in the deadman as an well as increase in blast furnace productivity and minimizing the environmental impact due to a decrease in carbon dioxide emmision would be injection by tuyeres of hot reducing gases (HRG which are produced by low grade coal gasification or top gas regenerating. Use of HRG in combination with high pulverized coal inyection PCI rate and oxigen enrichment in the blast could allow to keep and to increase the competitiveness of the blast furnace process. Calculations using a mathematical model show that the HRG injection in combination with pulverized coal (PC and enriching blast with oxigen can provide an increase in PC rate up to 300-400 kg/tHM and a rise in the furnace productivity by 40-50 %. Blast furnace operation with full oxigen blast (100 % of process oxigen with the exception for the hot blast is possible when HRG is injected.

    La tasa de inyección de combustibles fósiles está limitada a causa de la caída de la temperatura de llama en el raceway (cavidad frente a las toberas y a problemas en la región del "hombre muerto" y en la zona cohesiva. La inyección por tobera de gases reductores calientes (GRC, que se producen por gasificación de carbón de bajo grado o generación de gas de tragante, será la próxima etapa para lograr un considerable ahorro adicional de coque, una zona del "hombre muerto" bien definida, además de un aumento en la productividad del horno alto y para minimizar el impacto ambiental debido a una disminución de la emisión de dióxido de carbono. El uso de GRC en combinación con una tasa elevada de inyección de carbón pulverizado (ICP con viento enriquecido en oxígeno, podrá permitir mantener y aumentar la competitividad del proceso del horno

  17. Multi-Class Classification Methods of Cost-Conscious LS-SVM for Fault Diagnosis of Blast Furnace%Multi-Class Classification Methods of Cost-Conscious LS-SVM for Fault Diagnosis of Blast Furnace

    LIU Li-mei; WANG An-na; SHA Mo; ZHAO Feng-yun


    Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discrete particle swarm optimization is applied to optimize the feature selection and the LS-SVM parameters. Secondly, cost-con- scious formula is presented for fitness function and it contains in detail training time, recognition accuracy and the feature selection. The CLS-SVM algorithm is presented to increase the performance of the LS-SVM classifier. The new method can select the best fault features in much shorter time and have fewer support vectbrs and better general- ization performance in the application of fault diagnosis of the blast furnace. Thirdly, a gradual change binary tree is established for blast furnace faults diagnosis. It is a multi-class classification method based on center-of-gravity formula distance of cluster. A gradual change classification percentage ia used to select sample randomly. The proposed new metbod raises the sped of diagnosis, optimizes the classifieation scraraey and has good generalization ability for fault diagnosis of the application of blast furnace.

  18. Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace

    Mitra, Tamoghna; Saxén, Henrik


    The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.

  19. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    Ke-xin Jiao; Jian-liang Zhang; Zheng-jian Liu; Feng Liu; Li-sheng Liang


    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face tem-perature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  20. A Model to Simulate Titanium Behavior in the Iron Blast Furnace Hearth

    Guo, Bao-Yu; Zulli, Paul; Maldonado, Daniel; Yu, Ai-Bing


    The erosion of hearth refractory is a major limitation to the campaign life of a blast furnace. Titanium from titania addition in the burden or tuyere injection can react with carbon and nitrogen in molten pig iron to form titanium carbonitride, giving the so-called titanium-rich scaffold or buildup on the hearth surface, to protect the hearth from subsequent erosion. In the current article, a mathematical model based on computational fluid dynamics is proposed to simulate the behavior of solid particles in the liquid iron. The model considers the fluid/solid particle flow through a packed bed, conjugated heat transfer, species transport, and thermodynamic of key chemical reactions. A region of high solid concentration is predicted at the hearth bottom surface. Regions of solid formation and dissolution can be identified, which depend on the local temperature and chemical equilibrium. The sensitivity to the key model parameters for the solid phase is analyzed. The model provides an insight into the fundamental mechanism of solid particle formation, and it may form a basic model for subsequent development to study the formation of titanium scaffold in the blast furnace hearth.

  1. Improved CFD Model to Predict Flow and Temperature Distributions in a Blast Furnace Hearth

    Komiyama, Keisuke M.; Guo, Bao-Yu; Zughbi, Habib; Zulli, Paul; Yu, Ai-Bing


    The campaign life of a blast furnace is limited by the erosion of hearth refractories. Flow and temperature distributions of the liquid iron have a significant influence on the erosion mechanism. In this work, an improved three-dimensional computational fluid dynamics model is developed to simulate the flow and heat transfer phenomena in the hearth of BlueScope's Port Kembla No. 5 Blast Furnace. Model improvements feature more justified input parameters in turbulence modeling, buoyancy modeling, wall boundary conditions, material properties, and modeling of the solidification of iron. The model is validated by comparing the calculated temperatures with the thermocouple data available, where agreements are established within ±3 pct. The flow distribution in the hearth is discussed for intact and eroded hearth profiles, for sitting and floating coke bed states. It is shown that natural convection affects the flow in several ways: for example, the formation of (a) stagnant zones preventing hearth bottom from eroding or (b) the downward jetting of molten liquid promoting side wall erosion, or (c) at times, a vortex-like peripheral flow, promoting the "elephant foot" type erosion. A significant influence of coke bed permeability on the macroscopic flow pattern and the refractory temperature is observed.

  2. Model of Draining of the Blast Furnace Hearth with an Impermeable Zone

    Saxén, Henrik


    Due to demands of lower costs and higher productivity in the steel industry, the volume of operating blast furnaces has grown during the last decades. As the height is limited by the allowable pressure drop, the hearth diameter has grown considerably and, along with this, also draining-related problems. In this paper a mathematical model is developed for simulating the drainage in the case where an impermeable region exists in the blast furnace hearth. The model describes the quasi-stationary drainage process of a hearth with two operating tapholes, where the communication between the two pools of molten slag and iron can be controlled by parameterized expressions. The model also considers the case where the buoyancy of the liquids is sufficient for lifting the coke bed. The implications of different size of the liquid pools, communication between the pools, bed porosity, etc. are studied by simulation, and conclusions concerning their effect on the drainage behavior and evolution of the liquid levels in the hearth are drawn. The simulated liquid levels are finally demonstrated to give rise to a pressure profile acting on the hearth which agrees qualitatively with signals from strain gauges mounted in the hearth wall of an industrial ironmaking process.

  3. Kinetics of the leaching of TiO2 from Ti-bearing blast furnace slag

    LIU Xiao-hua; GAI Guo-sheng; YANG Yu-fen; SUI Zhi-tong; LI Li; FU Jian-xia


    Ti-bearing blast furnace slag is a valuable secondary resource containing about 24 percent of TiO2. In this paper a process of leaching Ti-bearing blast furnace slag with sulfuric acid to recover TiO2, and the kinetics of that reaction, are described. Under laboratory conditions the rate is controlled by a chemical reaction. The leaching reaction is in accord with a shrinking un-reacted-core model. The apparent reaction order of the leaching reaction was 1.222 and the apparent activation energy was 87.01 kJ/mol. The model fits the observed data well until 90% of the TiO2 has be leached from the particles. The model disagrees with observations during later periods of the reaction because the solution becomes supersaturated with Ti ions, which precipitate as H2TiO4. The assumptions of constant reactant concentration and that there is no effect from the product layer on diffusion, also cause the model to deviate from the actual values.

  4. Nonfibrous mineralogical analysis of bronchoalveolar lavage fluid from blast-furnace workers.

    Corhay, J L; Bury, T; Delavignette, J P; Baharloo, F; Radermecker, M; Hereng, P; Fransolet, A M; Weber, G; Roelandts, I


    Steelworkers are exposed to many pollutants, and they are at risk for developing lung cancer. We demonstrated previously that steelworkers may be subject to an occult exposure to amphiboles in the plant environment. In the current study, we further analyzed bronchoalveolar lavage fluid of steelworkers by measuring intramacrophagic trace-metal content and nonfibrous mineral particles, using the particle-induced x-ray emission method and electron microscopy, respectively. Forty-seven blast-furnace workers and 45 healthy white-collar workers volunteered for this study. Significantly increased levels of iron, titanium, zinc, and bromine were found in the steelworkers, and levels of lead, chromium, arsenic, and strontium tended to increase in the macrophages and bronchoalveolar lavage fluid of the steelworkers. Nonfibrous particles, including illite, kaolinite, talc, chlorite, amorphous silica, quartz, iron (compounds), and titanium hydroxide, were found in both groups, but the particle number per ml bronchoalveolar lavage fluid (particularly iron hydroxides and silicates) was more pronounced in blast-furnace workers. These elements and particles may act synergistically with other occupational carcinogens and cigarette smoke, the result of which may be an increased incidence of lung cancer in the ironsteel industry.

  5. Application of Granulated Blast Furnace Slag in Cement Composites Exposed to Biogenic Acid Attack

    Kovalcikova, M.; Estokova, A.; Luptakova, A.


    The deterioration of cement-based materials used for the civil infrastructure has led to the realization that cement-based materials, such as concrete, must be improved in terms of their properties and durability. Leaching of calcium ions increases the porosity of cement- based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing corrosion of concrete. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to deterioration by aggressive chemicals. The paper is focused on the investigation of the influence of biogenic acid attack on the cement composites affected by bacteria Acidithiobacillus thiooxidans. The concrete specimens with 65 wt. % addition of antimicrobial activated granulated blast furnace slag as durability increasing factor as well as without any addition were studied. The experiments proceeded during 150 days under model laboratory conditions. The pH values and chemical composition of leachates were measured after each 30- day cycle. The calcium and silicon contents in leachates were evaluated using X - ray fluorescence method (XRF). Summarizing the results, the 65% wt. addition of antimicrobial activated granulated blast furnace slag was not confirmed to be more resistant.

  6. Sulphate removal over barium-modified blast-furnace-slag geopolymer.

    Runtti, Hanna; Luukkonen, Tero; Niskanen, Mikko; Tuomikoski, Sari; Kangas, Teija; Tynjälä, Pekka; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla


    Blast-furnace slag and metakaolin were geopolymerised, modified with barium or treated with a combination of these methods in order to obtain an efficient SO4(2-) sorbent for mine water treatment. Of prepared materials, barium-modified blast-furnace slag geopolymer (Ba-BFS-GP) exhibited the highest SO4(2-) maximum sorption capacity (up to 119mgg(-1)) and it compared also favourably to materials reported in the literature. Therefore, Ba-BFS-GP was selected for further studies and the factors affecting to the sorption efficiency were assessed. Several isotherms were applied to describe the experimental results of Ba-BFS-GP and the Sips model showed the best fit. Kinetic studies showed that the sorption process follows the pseudo-second-order kinetics. In the dynamic removal experiments with columns, total SO4(2-) removal was observed initially when treating mine effluent. The novel modification method of geopolymer material proved to be technically suitable in achieving extremely low concentrations of SO4(2-) (<2mgL(-1)) in mine effluents.

  7. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng


    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  8. Influence of sulfate on cement mixtures containing fly ash or blast-furnace slag

    Bhanumathidas, N.; Kalidas, N. [Inst. for Solid Waste Research and Ecological Balance, Visakhapatnam (India)


    The development of FaL-G, a cementitious mixture of fly ash, lime and gypsum was initiated by the desire to improve the early strength of blended portland cement. Fly ash and granulated blast-furnace slag both contain reactive alumina. The strength of some fly ash-lime mixtures, in the presence of gypsum, can be enhanced 3 to 6 times at all ages. This study showed that high-volume fly ash blended portland cements also increase in strength with the addition of gypsum or anhydrite. Ground granulated blast-furnace slag behaves in a similar manner to blended portland cement. The enhanced strength is due to the formation of calcium sulphoaluminate hydrates. This study shows that it is possible to use large volumes of fly ash and slag to conserve on cost-intensive and energy-intensive clinker. Bricks and blocks made according to FaL-G technology are replacing fired clay bricks used in masonry construction. This research is of particular interest for the conservation of agricultural soils, minerals and energy. The study also shows that it is possible to convert major industrial waste into useful construction products. 7 refs., 3 tabs., 1 fig.

  9. Effect of recycling blast furnace flue dust as pellets on the sintering performance

    El-Hussiny N.A.


    Full Text Available The Egyptian Iron and Steel Company generates a great amount of blast furnace flue dust. The recovery of metals and carbon from this flue dust becomes a very important demand due to the increase of the price of coke breeze and the decrease of the primary source of metals. At the same time, it make the environment more safe by decreasing pollution. Introducing these dust fines in the sintering process proves to be very harmful for different operating parameters. Thus, this study aims at investigating the production of pellets resulting from these fines, using molasses as organic binder and its application in sintering of iron ore. The sintering experiments were performed using flue dust as pellets as a substitute of coke breeze. The results revealed that, sintering properties such as inter strength increases with using the flue dust pellets, while productivity of both the sinter machine and sinter machine at blast furnace yard decreases. Also the vertical velocity of the sinter machine and the weight loss during the reduction of produced the sinter by hydrogen decrease.

  10. Properties and application of carbon composite brick for blast furnace hearth

    Jiao K.X.


    Full Text Available A type of carbon composite brick was produced via the microporous technique using natural flack graphite, α-Al2O3 and high-quality bauxite chamotte (Al2O3≥87 mass% as raw materials with fine silicon powder as additive. The composition and microstructure of the obtained carbon composite were characterized using chemical analysis, XRD and SEM with EDS. The high temperature properties of thermal conductivity, oxidization and corrosion by molten slag and hot metal of the composite were analyzed. Based on these, the type of carbon composite brick worked in a blast furnace hearth for six years was further sampled at different positions. The protective layer was found and its chemical composition and microscopic morphology were investigated. It is found that the carbon composite brick combines the good properties of both the conventional carbon block and ceramic cup refractory. The protective layer near the hot face consists of two separated sublayers, i.e. the slag layer and the carbon layer. A certain amount of slag phase is contained in the carbon layer, which is caused by the reaction of coke ash with the refractory. No obvious change in the chemical composition of the protective layer along the depth of the sidewall is found. This work provides a useful guidance for the extension of the lifetime of blast furnace hearths.

  11. A new concept of auxiliary fuel injection through tuyeres in blast furnaces developed by numerical simulations

    Bruno Orlando de Almeida Santos


    Full Text Available The Injection of powdered materials in blast furnaces is a great option for reducing costs, increasing productivity and satisfy the environmental norms. Thus, this paper presents a study on the use of a flame stabilization system with rotation, designed to promote greater coal injection in the combustion zone, reducing losses and increasing the efficiency of the equipment. A physical model was used to evaluate scattering of pulverized fuel and is compared with numerical results in the same scale. In the second step, a combustion model was added to the numerical simulation, using dimensions of a real blast furnace. Fields like temperature, velocity and behavior of chemical reactions were analyzed. The results showed that double lances promote better particle injection when compared with simple lance for reduced material injection. The new injection system proposed, with swirl numbers of 0.12 and 0.24, promoted a better injection of both reduced material and temperature in the raceway zone. The swirl 0.24 showed superior performance when compared to other injection systems.

  12. Evaluation of Burden Descent Model for Burden Distribution in Blast Furnace

    Ping ZHOU; Peng-yu SHI; Yan-po SONG; Kai-le TANG; Dong FU; Chenn QZHOU


    Mathematical models for burden descending process have been applied to obtain whole burden structures in blast furnace,whereas the accuracy of those burden descent models has not been sufficiently investigated.Special evaluation method based on timeline burden profiles was established to quantitatively evaluate the error between ex-perimental and modeled burden structures.Four existing burden descent models were utilized to describe the burden structure of a 1/20 scaled warm blast furnace.Input modeling conditions including initial burden profile,descending volumes in each time interval,and normalized descending velocity distribution were determined via special image pro-cessing technology.Modeled burden structures were evaluated combined with the published experimental data.It is found that all the models caught the main profile of the burden structure.Furthermore,the improved nonuniform de-scent model (Model IV)shows the highest level of precision especially when burden descends with unstable velocity distribution tendency.Meanwhile,the traditional nonuniform descent model (Model III)may also be desirable to model the burden descending process when the burden descending velocity presents a linear tendency.Finally,the uni-form descent model (Model I)might be the first option for roughly predicting burden structure.

  13. A Novel Technique for Making Cold Briquettes for Charging in Blast Furnace

    Mohanty, M. K.; Mishra, S.; Mishra, B.; Sarkar, S.; Samal, S. K.


    Different metallurgical wastes are generated during pyro processing of iron ore, which is used for making sponge iron or hot metal and for producing steel. Apart from these wastes, coke fines are generated during the coke making, and iron ore fines are generated during mining of iron ore. Although iron ore fines are used for making pellet after beneficiation still, it generates a huge quantity of iron ore waste during beneficiation with comparatively lower iron content. In the present study, briquettes are made by a stiff extrusion process from metallurgical waste like iron ore fines and coke fines with the addition of Portland cement as a binder and clay as a rheology modifier. Physical properties of the briquettes are evaluated, and reducibility of the briquettes is studied in comparison to lumpy iron ore. Phase analysis and microstructural analysis of the briquettes and lumpy iron ore are carried out after firing at different temperatures in the simulated blast furnace condition. Physical and mineralogical properties are correlated with the reducibility of the briquettes and lumpy iron ore. Briquettes made by a stiff extrusion process show a better mechanical strength fired at a different temperature to take the load of burden and better reducibility than lumpy iron ore. The briquettes after self-curing are charged to a 23 mt3 blast furnace which shows encouraging results.

  14. Failure Mechanism and Material Requirements for Coal Lance in Blast Furnace

    XIONG Wei; JIA Juan; CHEN Jia-chao; SHANG He-ming


    Pulverized coal injection(PCI) is a key technology in modern ironmaking by blast furnace(BF) and the life of injection lance has a great influence on PCI operation and on normal running of blast furnace.It is found that the main reasons for the failure of the lances are their outer surface oxidation and the inner surface erosion through monitoring some lances used in BF.The outer surface oxidation of the lances made of lCr18Ni9Ti is inevitable under high hot blast temperature condition through thermodynamics analysis.A mathematical model for calculating the temperature of common monocular coal lance had been developed according to the principles of mass and energy balance.Increasing temperature and flow velocity of the hot blast would cause a rise in the lance temperature.The influence of hot blast temperature is more obvious.The lance temperature would decline when compressed air flux increases.Conveying technology of dense phase pulverized coal is beneficial to extending lance’s life because decreasing solid-gas ratio would intensify erosion and burning loss.The anti-oxidation temperature of lance materials needs to be over 1000 ℃ for BF intensified smelting.In order to increase the resistance to oxidation of the coal lance’s outer surface,oxidation-resistant steel or Al coating stainless steel is the appropriate material for BF use.Employing the metal surface treatment technology to enhance the hardness of the coal lance’s internal surface could prolong the service life of coal lance

  15. Impulsive dispersion of a granular layer by a weak blast wave

    Rodriguez, V.; Saurel, R.; Jourdan, G.; Houas, L.


    The dispersion of particles by blast or shock waves induces the formation of coherent structures taking the shape of particle jets. In the present study, a blast wave, issued from an open shock tube, is generated at the center of a granular ring initially confined in a Hele-Shaw cell. With the present experimental setup, solid particle jet formation is clearly observed in a quasi-two-dimensional configuration. In all instances, the jets are initially generated inside the particle ring and thereafter expelled outward. Furthermore, thanks to the two-dimensional experimental configuration, a general study of the main parameters involved in these types of flows can be performed. Among them, the particle diameter, the density of the particles, the initial size of the ring, the shape of the overpressure generated and the surface friction of the Hele-Shaw cell are investigated. Empirical relationships are deduced from experimental results.

  16. Application of encapsulated lightweight aggregate impregnated with sodium monofluorophosphate as a self-healing agent in blast furnace slag mortar

    Sisomphon, K.; Copuroglu, O.; Fraaij, A.


    This paper studies the potential of using expanded clay lightweight aggregate impregnated with sodium monofluorophosphate (Na2FPO3) solution which is eventually encapsulated by a cement paste layer to produce a self-healing system in blast furnace slag cement mortars. It was found that the technique

  17. Analysis of the Rheological Behaviour of Selected Semi-Solid Slag Systems in Blast Furnace Flow Conditions

    Migas P.


    Full Text Available The rheological properties of liquid and semi-solid systems of slag and hot metal in a blast furnace are extremely important from the perspective of their dripping in the unit. The rheological nature and the values of the dynamic viscosity coefficient of liquid and semi-solid phases - slag and hot metal - determine the permeability of the zones in which those systems exist. The modelling of dripping processes and e.g. static and dynamic holding/retention of liquid in the bed, requires an accurate description of the rheological behaviour of slag and iron systems. Determining the liquid flow through the lump bed of the blast furnace is based on the assumption that liquids in the unit in the whole range of their occurrence are similar to a Newtonian ideal liquid. This study presents an analysis of the findings of high-temperature rheometric measurements of CaO-SiO2-Al2O3-MgO systems, liquid, semi-solid slags of the blast furnace type doped with TiO2 and solids in the form of TiN. The tests were performed within a temperature range of 1310-1490°C. Also measurement results for glycerol solutions with concentrations of 86% and 100% at the ambient temperature, simulating blast furnace slags with various contents of solids - PC, anthracite - are presented.

  18. The influence of blast furnace slag, fly ash and silica fume on corrosion of reinforced concrete in marine environment

    Polder, R.B.


    Chloride penetration from sea water may cause corrosion of reinforcement in concrete structures. Adding reactive inorganic materials such as blast furnace slag, fly ash or silica fume to the cement matrix improves the resistance against chloride penetration as compared to Portland cement concrete. A

  19. CFD study of ejector flow behavior in a blast furnace gas galvanizing plant

    Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio


    In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.

  20. Modelling and analysis of blast furnace performance for efficient utilization of energy

    Rasul, M.G.; Tanty, B.S.; Mohanty, B. [Central Queensland University, Rockhampton, Qld. (Australia). Faculty of Sciences, Engineering and Health


    A simple model is presented to assess thermal performance of blast furnace (BF) for efficient utilisation of energy with an integrated view to improving the productivity of the plant. The model is developed using the mass, energy and availability balance equations and is applied to an existing iron and steel industry in India. A comparison of the actual operation of the BF is made with that of the model prediction. The model provides a reasonable agreement with the real time data of the BF operation. The predicted values of BF coke rate and blast rate are 8.6% and 5.11% higher than that of the actual values, respectively. The First and Second Law efficiencies of BF operating system were found to be 77.3% and 39.13%, respectively. irreversibility of the actual operation of BF was found to be 18.9%, which included the irreversibility due to the transformation of chemical energy and promoting of reduction reactions. The main cause of the irreversibility in the process was the conversion of chemical energy of the fuel to thermal energy. The effect of the changing operating parameters on the plant productivity is also investigated. This study suggests that the plant productivity can be improved by increasing the hot air blast temperature, reducing hot metal silicon level, reducing coke ash level and increasing sinter volume in the charge. 20 refs., 7 figs., 5 tabs.

  1. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    Mohiuddin, Kazi, E-mail: [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Strezov, Vladimir; Nelson, Peter F. [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Stelcer, Eduard [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Evans, Tim [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia)


    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  2. Research on Energy Utilization and Optimization of Blast Furnace Process%高炉工艺能源利用与优化的研究



    Under the current conditions,the blast furnace fuel is mainly on coke.Reducing the coke rate of blast furnace can greatly improve the ironmaking productivity.The heat balance of the blast furnace is studied to guaranteed the thermal efficiency of the blast furnace and improve the blast furnace heat energy utilization ability.Through the analysis of all kinds of high furnace process,it can be seen that the use and optimization of the blast furnace process of energy.%在现行的工艺条件下,高炉的燃料主要以焦炭为主,降低高炉焦比能极大地提高炼铁的生产率。研究高炉的热平衡是保证高炉的热效率,提高高炉热能利用能力的重要方法。通过对各类高炉工艺的分析,可以看出高炉工艺的能源利用与优化的情况。

  3. C blast furnace smelting theory and practice with low silicon%C 高炉低硅冶炼理论和实践



    这次通过对C高炉生产指标分析,在现有条件下减少入炉焦炭灰分、从而减少SiO2入炉量、合理配备炉料结构、调整操作制度等措施,实现C高炉低硅冶炼的生产实践。%By analysis of production targets of C blast furnace , coke ash in blast furnace would be re-duced under the current conditions , thereby reducing the amount of SiO 2 in the blast furnace , making the charge struture reasonable , adjusting the operating system , so that the production practices of low silicon smelting in C blast furnace could be achieve .

  4. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag

    Song, S.; Jennings, H.M. [Northwestern Univ., Evanston, IL (United States)


    The chemical composition and pH of the pore solution extracted from six different ground granulated blast-furnace slag (GGBFS) pastes were determined. The concentrations of Si, Ca, Al, and Mg are functions of the pH of the aqueous phase, with high pH associated with the higher concentrations of Si and Al and the lower concentrations of Ca and Mg. When GGBFS is mixed with an aqueous phase with pH higher than 11.5, the reaction is activated or accelerated. The main hydration product was identified as C-S-H, and hydrotalcite, at later stages of hydration, was observed in the pastes with an aqueous phase of a high pH. The effect of pore solution on the alkali activation of GGBFS is discussed with reference to the hydration products.

  5. Effect of phase separation structure on cementitious reactivity of blast furnace slag

    LI Yu; SUN HengHu; LIU XiaoMing; CUI ZengDi


    Blast furnace slag samples with phase separation structure were prepared by re-melting and then water quenching process. By use of XRD, DTA and SEM technologies in combination with mechanical prop-erty experiment, the structure characteristics of samples were determined and their effects on cemen-titious reactivity were investigated. The results show that the samples with phase separation have better cementitious reactivity than sample with homogenous glass and sample with crystalline phases, which mainly contributes to its grass structure with coexistence of Ca-O rich phase and Si-O rich phase. Moreover, the amorphous samples possess hydrability which is affected by their formation process, since phase separation extends the range of possible Ca-rich crystalline phases.

  6. Effect of phase separation structure on cementitious reactivity of blast furnace slag


    Blast furnace slag samples with phase separation structure were prepared by re-melting and then water quenching process. By use of XRD,DTA and SEM technologies in combination with mechanical property experiment,the structure characteristics of samples were determined and their effects on cementitious reactivity were investigated. The results show that the samples with phase separation have better cementitious reactivity than sample with homogenous glass and sample with crystalline phases,which mainly contributes to its glass structure with coexistence of Ca-O rich phase and Si-O rich phase. Moreover,the amorphous samples possess hydrability which is affected by their formation process,since phase separation extends the range of possible Ca-rich crystalline phases.

  7. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)


    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  8. Characteristics of blast furnace slag leachate produced under reduced and oxidized conditions.

    Schwab, A P; Hickey, J; Hunter, J; Banks, M K


    A laboratory study was conducted to determine the environmental conditions necessary to reproduce leachates observed emerging from blast furnace slag acting as the foundation of highways in northwest Indiana. The leachates in the field are often highly alkaline with a pungent sulfur odor, a distinct green or milky-white in color, and sulfate concentrations exceeding 2,000 mg/L. Slag was equilibrated in the laboratory under both oxidized and anoxic environments and at various slag:water ratios. Constant anoxic conditions were required to produce to green colors in the slag, but high sulfate concentrations were observed only when the suspensions were fully oxidized. Leachate from the study site appears to form as a result of a series of complex chemical reactions including fluctuating oxidized and reduced conditions.

  9. Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption.

    Tsutsumi, Takuma; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Miyake, Michihiro


    Al-substituted 11Å-tobermorite was formed by alkaline hydrothermal treatment of blast furnace slag with sodium silicate added at 180°C for 2-48 h. Effects of the hydrothermal treatment time were characterized by XRD, SEM, and isothermal adsorption of N2. Sorption characteristics of the obtained samples were examined for Cs(+) and Sr(2+). The sample obtained by hydrothermal treatment for 48 h (HT-48 h) consisted of calcium silicate hydrate (C-S-H), and Al-substituted 11Å-tobermorite. The HT-48 h showed the highest performance for Cs(+) and Sr(2+) selectivity in the presence of Na(+). The interlayer Na(+) of Al-substituted 11Å-tobermorite and surface Ca(2+) played an important role in selective Cs(+) and Sr(2+).

  10. Blast furnace residues for arsenic removal from mining-contaminated groundwater.

    Carrillo-Pedroza, Fco Raúl; Soria-Aguilar, Ma de Jesús; Martínez-Luevanos, Antonia; Narvaez-García, Víctor


    In this work, blast furnace (BF) residues were well characterized and then evaluated as an adsorbent material for arsenic removal from a mining-contaminated groundwater. The adsorption process was analysed using the theories of Freundlich and Langmuir. BF residues were found to be an effective sorbent for As (V) ions. The modelling of adsorption isotherms by empirical models shows that arsenate adsorption is fitted by the Langmuir model, suggesting a monolayer adsorption of arsenic onto adsorbents. Arsenate adsorption onto BF residue is explained by the charge density surface affinity and by the formation of Fe (II) and Fe (III) corrosion products onto BF residue particles. The results indicate that BF residues represent an attractive low-cost absorbent option for the removal of arsenic in wastewater treatment.

  11. Crystallization Behavior and Growing Process of Rutile Crystals in Ti-Bearing Blast Furnace Slag

    Zhang, Wu; Zhang, Li; Li, Yuhai; Li, Xin


    The aim of the present work is to elucidate crystallization and growing process of rutile crystals in Ti-bearing blast furnace slag. The samples were taken from the liquid slag and quenched at once at elevated temperatures in order to analyze phase transaction of titanium and grain size of rutile crystals. Crystallization and growing kinetics of rutile crystals under elevated temperature conditions were calculated, and the crystallization process of rutile crystals under isothermal conditions was expressed by Avrami equation. The effects of experimental parameters, such as experimental temperatures, SiO2 addition, cooling rate, crystal seed addition and oxygen flow, were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), the optimal conditions for rutile crystals to grow up were obtained. Distribution and movement state of rutile crystals in the slag were analyzed.

  12. Chloride leaching from air pollution control residues solidified using ground granulated blast furnace slag.

    Lampris, Christos; Stegemann, Julia A; Cheeseman, Christopher R


    Ground granulated blast furnace slag (ggbs) has been used to solidify air pollution control (APC) residues obtained from a major UK energy-from-waste plant. Samples were prepared with ggbs additions between 10 and 50 wt% of total dry mass and water/solids ratios between 0.35 and 0.80. Consistence, setting time, compressive strength and leaching characteristics have been investigated. Results indicated that the highly alkaline nature of APC residues due to the presence of free lime can be used to activate ggbs hydration reactions. Increasing ggbs additions and reducing the water content resulted in increased compressive strengths, with 50 wt% ggbs samples having average 28 d strengths of 20.6 MPa. Leaching tests indicate low physical encapsulation and minimal chemical fixation of chloride in ggbs solidified APC residues. The results suggest that more than 50 wt% ggbs additions would be required to treat APC residues to meet the current waste acceptance criteria limits for chloride.

  13. Efficiency of a blast furnace slag cement for immobilizing simulated borate radioactive liquid waste.

    Guerrero, A; Goñi, S


    The efficiency of a blast furnace slag cement (Spanish CEM III/B) for immobilizing simulated radioactive borate liquid waste [containing H3BO3, NaCl, Na2SO4 and Na(OH)] has been evaluated by means of a leaching attack in de-mineralized water at the temperature of 40 degrees C over 180 days. The leaching was carried out according to the ANSI/ANS-16.1-1986 test. Moreover, changes of the matrix microstructure were characterized through porosity and pore-size distribution analysis carried out by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) and thermal analysis (TG). The results were compared with those obtained from a calcium aluminate cement matrix, previously published.


    Z.Z. Guo; T.P. Lou; L. Zhang; L.N. Zhang; Z.T. Sui


    The effects of transformation of slag composition and additive agents on the morphology, the crystal in the Ti-bearing blast furnace slags were investigated. As the morphology of perovskite is dispersed in molten slags, the crystal growth mechanism of the melting of fine dendrites and the coarsening of large grains exist throughout the solidification of molten slags. With the increase of CaO and Fe2O3 content, VF of perovskite obviously increases. However, high basicity leads to the viscosity of slag, which results in the reduction of the average equivalent diameter (AED). The experimental results showed that the presence of the additives CaF2 and MnO efficiently decreased the viscosity of the slags, and obviously improved the morphology of perovskite and promoted its growth.

  15. Processing of TiO2 from titanium-bearing blast furnace slag as titanium source

    X. Li


    Full Text Available The titanium dioxide(TiO2 was prepared by efficient decomposition of titanium- bearing blast furnace slag (TBBFS in molten salt system. The as-prepared TiO2 were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Almost complete leaching of Ti was achieved when TBBFS was carried out at 500 °C for about 3 h with NaOH/TBBFS mass ratio of 3:1 and NaOH to NaF molar ratio of 3:1. The XRD pattern showed that the containing titanium product obtained under optimal conditions was Na2TiO3. The average size of the rutile TiO2 obtained was about 1.0μm and the content was up to 99,23 %.

  16. Improvement of the Blast Furnace Viscosity Prediction Model Based on Discrete Points Data

    Guo, Hongwei; Zhu, Mengyi; Li, Xinyu; Guo, Jian; Du, Shen; Zhang, Jianliang


    Viscosity is considered to be a significant indicator of the metallurgical property of blast furnace slag. An improved model for viscosity prediction based on the Chou model was presented in this article. The updated model has optimized the selection strategy of distance algorithm and negative weights at the reference points. Therefore, the extensionality prediction disadvantage in the original model was ameliorated by this approach. The model prediction was compared with viscosity data of slags of compositions typical to BF operations obtained from a domestic steel plant. The results show that the approach can predict the viscosity with average error of 9.23 pct and mean standard deviation of 0.046 Pa s.

  17. Drying shrinkage of mortars with limestone filler and blast-furnace slag

    Carrasco, M. F.


    Full Text Available During the 1990's the use of cements made with port land clinker and two mineral admixtures, called ternary or blended cements, has grown considerably. Nowadays, cements containing several combinations of fly ash and silica fume, blast-furnace slag and silica fume or blast-furnace slag and limestone filler are commonly used. There are numerous works on the influence of blended cements on the fresh state and mechanical properties of mortar and concrete, but the their deformations due to drying shrinkage are not so well described. Analysis of drying shrinkage is relevant because this property influences the possibility of cracking occurrence and, hence, the deterioration of mechanical and durable properties of concrete structures. This paper evaluates the influence on the drying shrinkage of mortars of variable contents of limestone filler and/or blast-furnace slag in Portland cement. Additionally, flexion strength and non evaporable water content were evaluated. Test results show that the inclusion of these mineral admixtures, Joint or separately, increments drying shrinkage of mortars at early ages. Despite this fact, mortars made with limestone filler cement are less susceptible to cracking than mortars made with cements incorporating blast-furnace slag or both admixtures.

    Durante los años 90 el uso de cementos fabricados con clínker Portland y dos adiciones suplementarias (cementos ternarios o compuestos se ha incrementado en forma considerable. En la práctica, es cada vez más común el empleo de estos cementos conteniendo combinaciones de ceniza volante y humo de sílice, escoria y humo de sílice o escoria y filler calcáreo. En la actualidad existen numerosos estudios sobre la influencia de los cementos compuestos en las características en estado fresco y las propiedades mecánicas de morteros y hormigones, pero las deformaciones que estos materiales sufren debido a la retracción por secado no son tan conocidas. El análisis de

  18. 八钢A高炉长寿管理与生产实践%Longevity Management and ProductionPractice of Bagang’s A Blast Furnace

    王雪超; 何玉娟


    In this paper , the longevity management was analyzed , aiming at the furnace condition of Banging’s A furnace blast furnace in so far , and combined with the present conditions of A furnace blast , do a brief analysis was given for the measures taken on the longevity of blast furnace in the pro-duction process of the longevity management .%本文针对八钢A高炉开炉至今的炉况,进行了长寿的管理分析,并结合A高炉高炉现有条件,对高炉在生产过程中的长寿管理采取的各项措施做了简要分析。

  19. Characterization of tuyere-level core-drill coke samples from blast furnace operation

    S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering


    A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

  20. Visualisation of a mathematical model of blast furnace operation for distance learning purposes

    Babich, A.


    Full Text Available Advanced educational technologies like Virtual Laboratories are being developed and launched in order to equip customers from higher education institutions, research and industry with efficient tools, supporting their work and operating new skills-training methods. Visual Model "Blast Furnace" based on a mathematical balance model of the blast furnace process has been developed for distance learning (DL purposes. It processes entered parameters and outputs both operating and learning results. The model simulates also sinter and pellets manufacture as well as operation of hot stove. The teacher and learners can interact with each other using software interface which allows to monitor the activity of the learners, answer their questions, and analyse the learning results. The model is an ingredient of the "Virtual Lab Ironmaking".

    Se desarrollan y presentan tecnologías avanzadas de educación, como los Laboratorios Virtuales, para suministrar a los clientes de las instituciones de educación superior, investigación e industria, en apoyo de su trabajo, nuevos y eficientes métodos de operación y técnicas especiales de adiestramiento. Se ha desarrollado el Modelo Visual de "Horno Alto" basado en un modelo matemático del balance del proceso del horno alto, para fines de educación a distancia. Procesa los parámetros de entrada y salida en operación y los resultados de la enseñanza. El modelo también simula la fabricación de sinter y pelets, además de la operación de las estufas. El profesor y alumnos pueden interactuar entre sí usando un software que permite seguir la marcha de la actividad de los alumnos, responder a sus preguntas y analizar los resultados del aprendizaje. El modelo es parte del "Laboratorio Virtual de Fabricación de Arrabio".

  1. Solidification of arsenic and heavy metal containing tailings using cement and blast furnace slag.

    Kim, Jung-Wook; Jung, Myung Chae


    The objective of this study is to examine the solidification of toxic elements in tailings by the use of cement and blast furnace slag. Tailings samples were taken at an Au-Ag mine in Korea. To examine the best mixing ratio of tailings and the mixture of ordinary Portland cement (OPC) and blast furnace slag (SG) of 5:5, 6:6, 7:3, and 8:2, the 7:3 ratio of tailings and OPC+SG was adapted. In addition, the mixing ratios of water and OPC + SG were applied to 10, 20, and 30 wt%. After 7, 14, and 28 days' curing, the UCS test was undertaken. A relatively high strength of solidified material (137.2 kg cm⁻² in average of 3 samples) at 28 days' curing was found in 20 wt% of water content (WC). This study also examined the leachability of arsenic and heavy metals (Cd, Cu, Pb, and Zn) under the Korean Standard Leaching Test, and it showed that the reductions in leachabilities of As and heavy metals of solidified samples were ranged from 76 to 99%. Thus, all the solidified samples were within the guidelines for special and hazardous waste materials by the Waste Management Act in Korea. In addition, the result of freeze-thaw cycle test of the materials indicated that the durability of the materials was sufficient. In conclusion, solidification using a 7:3 mixing ratio of tailings and a 1:1 mixture of OPC + SG with 20% of WC is one of the best methods for the remediation of arsenic and heavy metals in tailings and other contaminated materials.

  2. A Simulation Study of TRT Control System of the Blast Furnace%高炉TRT控制系统模型仿真研究



    根据高炉TRT工艺和影响高炉顶压稳定的因素,以及对高炉 TRT系统的管路分析,建立高炉顶压TRT系统数学模型。应用Matlab 对静叶单独调节高炉顶压时系统的数学模型进行仿真验证,为进一步改善高炉顶压的稳定提供理论依据。%The author of this paper constructs a mathematical model of blast furnace top pressure TRT system based on the blast furnace process,the factors affecting the stability of the top pres-sure of the blast furnace and the pipeline analysis of the blast furnace TRT system.Matlab is em-ployed to carry out simulation to test the mathematical model of the adj ustment system of blast furnace top pressure with a static blade,constituting a theoretical basis for further improve the stability of the blast furnace top pressure.

  3. Effect of Na3PO4 on the Hydration Process of Alkali-Activated Blast Furnace Slag

    Lukáš Kalina


    Full Text Available In recent years, the utilization of different non-traditional cements and composites has been increasing. Alkali-activated cementitious materials, especially those based on the alkali activation of blast furnace slag, have considerable potential for utilization in the building industry. However, alkali-slag cements exhibit very rapid setting times, which are too short in some circumstances, and these materials cannot be used for some applications. Therefore, it is necessary to find a suitable retarding admixture. It was shown that the sodium phosphate additive has a strong effect on the heat evolution during alkali activation and effectively retards the hydration reaction of alkali-activated blast furnace slag. The aim of the work is the suggestion of a reaction mechanism of retardation mainly based on Raman and X‑ray photoelectron spectroscopy.

  4. Metal retention on pine bark and blast furnace slag--on-site experiment for treatment of low strength landfill leachate.

    Nehrenheim, Emma; Waara, Sylvia; Johansson Westholm, Lena


    Treatment of landfill leachate using blast furnace slag and pine bark as reactive sorbents was studied in an in situ column experiment at the Lilla Nyby landfill site in Eskilstuna, Sweden. The columns were filled with approximately 101 of each sorbent and leachate was supplied at three different flow rates during a period of 4 months. Samples of inflow and outflow were collected three times a week and were analyzed for physical and chemical parameters, including concentrations of some metals, and toxicity. It was found that pine bark removed metals more efficiently than did the blast furnace slags; that Zn was most efficiently retained in the filters and that both retention time and initial concentration played an important role in the sorption process. It was also observed that the pine bark column did not release COD. No toxicity of the untreated or the treated leachate was found with the test organisms and test responses used.


    V. I. Bolshakov


    Full Text Available Purpose. Strengthening of fine concrete contact zone by mechanical processing of all components of the concrete mix in a mixer-activator and aggregate application with rough surface. Methodology. Rotary activator PC-06, developed by Scientific and Research Institute of Construction Technology, was used as a mixer-activator to achieve this purpose. Granulated blast furnace slag, having a more developed rough surface than sand, was used as fine aggregate. This apparatus provides intensive homogeneous mixing of concrete mix components, processing of raw materials (purification of their particles from contaminants, and mechanical destruction of granulated blast furnace slag surface layers and other components of the mix. Findings. During the preparation work, experimental research of new formations composition of fine concretes, using differential thermal and x-ray phase analysis methods, and physical-mechanical properties of fine concretes in accordance with the applicable standards of Ukraine, were carried out. It is established that the phase composition of new formations of fine concretes made from activated and non-activated mixes, is not changed. Their main difference is the size of generated effects and temperature intervals of occurrence of these peaks. Thus, in fine concretes made on the basis of the activated mixes, magnitude of effects is less, indicating a higher hydration degree of its components. Besides, TG curves of concrete specimens show that weight loss of gel calcium hydrosilicate of concrete from a mechanically activated mix is 0.5...0.7 % more than of concrete from a non-activated mix, which indicates a larger number of these formations in concrete from activated mixes. In general, concretes of different composition, made from a mix, processed in the mixer-activator, have higher mechanical strength. Originality. Ideas about the influence of mechanical activation of components of fine concrete mixes with forming humidity in a

  6. Cement with silica fume and granulated blast-furnace slag: strength behavior and hydration

    Bonavetti, V. L.


    Full Text Available This paper analyses the influence of portland cement replacement by silica fume (up to 10% and/or granulated blast furnace slag (up to 70% on the hydration cement (XRD, heat of hydration, non evaporable water content and calcium hydroxide content curing under sealed conditions and their effect on the mechanical strength. The obtained results indicate that binary cements containing silica fume and ternary cements there was a significant increase of hydration rate at early age. At later ages, most of studied cements have an equivalent or greater strength that those obtained in the plain portland cement.En este trabajo se analiza la influencia de la incorporación al cemento portland de humo de sílice (hasta 10% y/o escoria granulada de alto horno (hasta 70% sobre la hidratación (DRX, calor de hidratación, contenido de agua no evaporable y de hidróxido de calcio, bajo condiciones de curado sellado y su incidencia sobre la resistencia mecánica. Los resultados obtenidos indican que en los cementos binarios con humo de sílice y en los cementos ternarios se produce un importante aumento de la velocidad de hidratación en las primeras edades, mientras que a edades más avanzadas la mayor parte del dominio estudiado alcanza o supera la resistencia obtenida por el cemento portland sin adición.

  7. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    Huang, Haoliang, E-mail: [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Ye, Guang [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University (Belgium); Damidot, Denis [Université Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France)


    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

  8. Studying the Hydration of a Retarded Suspension of Ground Granulated Blast-Furnace Slag after Reactivation

    Nick Schneider


    Full Text Available This article presents a combined use of a retarder (d-gluconic acid and an alkaline activator (sodium hydroxide in a binder system based on ground granulated blast-furnace slag. The properties of the retarder are extending the dormant hydration period and suppressing the generation of strength-giving phases. Different retarder concentrations between 0.25 and 1.00 wt.% regulate the intensity and the period of the retardation and also the characteristics of the strength development. The activator concentration of 30 and 50 wt.% regulates the overcoming of the dormant period and thereby the solution of the slag and hence the formation of the hydration products. The research objective is to produce a mineral binder system based on two separate liquid components. The highest concentration of retarder and activator generates the highest compressive strength and mass of hydration products—after 90 days of hydration a compressive strength of more than 50 N/mm2. The main phases are calcium silicate hydrate and hydrotalcite. Generally, the combination of retarder and activator shows a high potential in the performance increase of the hydration process.

  9. Formation mechanism of the protective layer in a blast furnace hearth

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng


    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  10. Formation mechanism of the protective layer in a blast furnace hearth

    Ke-xin Jiao; Jian-liang Zhang; Zheng-jian Liu; Meng Xu; Feng Liu


    A variety of techniques, such as chemical analysis, scanning electron microscopy?energy dispersive spectroscopy, and X-ray dif-fraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of ti-tanium-bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  11. Reactivation of a Retarded Suspension of Ground Granulated Blast-Furnace Slag

    Nick Schneider


    Full Text Available An effective retarded suspension of ground granulated blast-furnace slag (GGBFS needs a strong activator to reactivate the hydration. In this research study, sodium hydroxide (NaOH as an alkali activator in two different concentrations (30 and 50 wt.% was used to overcome the retardation and give the hardened GGBFS the reasonable strength. The study was carried out with a mixture of GGBFS, a solution of 1.0 wt.% d-gluconic acid (C6H12O7 as a retarder in the mixing water and a methyl cellulose as a stabilizer. The reactivation was executed after seven different periods (up to 28 days after the system was retarded. The following investigations were performed: slump test, measurement of ultrasonic (US velocity, compressive strength and gross density, thermogravimetry (TG and scanning electron microscopy (SEM. The analyses of the hardened samples were carried out seven, 28 and 90 days after the reactivation. The result of the study is an effective reactivation of a retarded suspension. In this case, the activator with 50 wt.% NaOH shows a very high performance. The setting time of the reactivated binders is much longer compared to the reference, but, in the longer term, the compressive strength and the progress of the hydration exceed the performance of the reference.

  12. Investigation of the activity level and radiological impacts of naturally occurring radionuclides in blast furnace slag.

    Uğur, F A; Turhan, S; Sahan, H; Sahan, M; Gören, E; Gezer, F; Yeğingil, Z


    The activity level and possible radiological impacts of naturally occurring radionuclides on the health of workers and members of the public, as a result of utilisation of blast furnace slag (BFS) samples as a substitute for aggregate in road construction were investigated by using a gamma-ray spectrometer and potential exposure scenarios given in Radiation Protection 122. The mean activity concentrations of the (226)Ra, (232)Th and (40)K in BFS samples were found to be 152.4, 54.9 and 183.1 Bq kg(-1), respectively. These values are compared with typical values measured in BFS samples from the European Union countries, which are 270, 70 and 240 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The values of radium equivalent activity index calculated for BFS samples were within the recommended safety limits. The highest total annual effective doses evaluated as 0.9 and 0.4 mSv y(-1) for members of the public and workers, respectively, were lower than the annual limit of 1 mSv y(-1).

  13. Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands.

    Grüneberg, B; Kern, J


    The suitability of iron-ore and blast furnace slag for subsurface flow (SSF) constructed wetlands was studied over a period of four months. Dairy farm wastewater (TP 45 mg l(-1)) was percolated through buckets planted with reed (volume 9.1 l; hydraulic load 151 m(-2) d(-1)). One group of buckets was kept under aerobic conditions and the other group under anaerobic conditions, monitored by continuous redox potential measurements. Even at high mass loading rates of 0.65 g P m(-1) d(-1) the slag provided 98% removal efficiency and showed no decrease in performance with time. However, phosphorus fractionation data indicate that the high phosphorus retention capacity under aerobic conditions is to a great extent attributable to unstable sorption onto calcium compounds (NH4Cl-P). Phosphorus sorption of both the slag (200 microg P g(-1)) and the iron-ore (140 microg P g(-1)) was promoted by predominantly anaerobic conditions due to continuous formation of amorphous ferrous hydroxides. None of the substrates had adverse affects on reed growth.

  14. Characteristics of Portland blast-furnace slag cement containing cement kiln dust and active silica

    A. Abdel Rahman


    Full Text Available This investigation dealt with the effect of active silica, silica fume (SF or rice husk ash (RHA, on the mechanical and physico-chemical characteristics of the hardened blended cement pastes made of Portland blast-furnace slag cement (PSC containing cement kiln dust (CKD cured under normal conditions. Two blends made of PSC and CKD, improved by SF and two blends made of PSC and CKD improved by RHA were investigated. Hardened blended cement pastes were prepared from each cement blend by using water/cement ratio (W/C of 0.30 by weight and hydrated for various curing ages of 1, 3, 7, 28 and 90 days at the normal curing conditions under tap water at room temperature. Each cement paste was tested for its physico-chemical and mechanical characteristics; these characteristics include: compressive strength and kinetics of hydration. The phase composition of the formed hydration products was identified using X-ray diffraction (XRD and differential thermal analysis (DTA. It was found that the partial substitution of PSC by 10% and 15% of CKD is associated with an increase in the rate of hydration and a subsequent improvement of compressive strength of hardened PSC–CKD pastes. In addition, the replacement of PSC, in PSC–CKD blends, by 5% active silica was accompanied by further improvement of the physico-mechanical characteristics of the hardened PSC–CKD pastes.

  15. Mechanisms of hydrogen sulfide removal by ground granulated blast furnace slag amended soil.

    Xie, Mengyao; Leung, Anthony Kwan; Ng, Charles Wang Wai


    Ground granulated blast furnace slag (GGBS) amended soil has been found able to remove gaseous hydrogen sulfide (H2S). However, how H2S is removed by GGBS amended soil and why GGBS amended soil can be regenerated to remove H2S are not fully understood. In this study, laboratory column tests together with chemical analysis were conducted to investigate and reveal the mechanisms of H2S removal process in GGBS amended soil. Sulfur products formed on the surface of soil particle and in pore water were quantified. The test results reveal that the reaction between H2S and GGBS amended soil was a combined process of oxidation and acid-base reaction. The principal mechanism to remove H2S in GGBS amended soil was through the formation of acid volatile sulfide (AVS), elemental sulfur and thiosulfate. Soil pH value decreased gradually during regeneration and reuse cycles. It is found that the AVS plays a significant role in H2S removal during regeneration and reuse cycles. Adding GGBS increased the production of AVS and at the same time suppressed the formation of elemental sulfur. This mechanism is found to be more prominent when the soil water content is higher, leading to increased removal capacity.

  16. Characterization of dust from blast furnace cast house de-dusting.

    Lanzerstorfer, Christof


    During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.

  17. Evaluation of blast furnace slag as basal media for eelgrass bed.

    Hizon-Fradejas, Amelia B; Nakano, Yoichi; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa


    Two types of blast furnace slag (BFS), granulated (GS) and air-cooled slag (ACS), were evaluated as basal media for eelgrass bed. Evaluation was done by comparing BFS samples with natural eelgrass sediment (NES) in terms of some physico-chemical characteristics and then, investigating growth of eelgrass both in BFS and NES. In terms of particle size, both BFS samples were within the range acceptable for growing eelgrass. However, compared with NES, low silt-clay content for ACS and lack of organic matter content for both BFS samples were found. Growth experiment showed that eelgrass can grow in both types of BFS, although growth rates in BFS samples shown by leaf elongation were slower than that in NES. The possible reasons for stunted growth in BFS were assumed to be lack of organic matter and release of some possible toxins from BFS. Reduction of sulfide content of BFS samples did not result to enhanced growth; though sulfide release was eliminated, release of Zn was greater than before treatment and concentration of that reached to alarming amounts.

  18. Iron blast furnace slag/hydrated lime sorbents for flue gas desulfurization.

    Liu, Chiung-Fang; Shih, Shin-Min


    Sorbents prepared from iron blast furnace slag (BFS) and hydrated lime (HL) through the hydration process have been studied with the aim to evaluate their reactivities toward SO2 under the conditions prevailing in dry or semidry flue gas desulfurization processes. The BFS/HL sorbents, having large surface areas and pore volumes due to the formation of products of hydration, were highly reactive toward SO2, as compared with hydrated lime alone (0.24 in Ca utilization). The sorbent reactivity increased as the slurrying temperature and time increased and as the particle size of BFS decreased; the effects of the liquid/solid ratio and the sorbent drying conditions were negligible. The structural properties and the reactivity of sorbent were markedly affected by the BFS/HL ratio; the sorbent with 30/70 ratio had the highest 1 h utilization of Ca, 0.70, and SO2 capture, 0.45 g SO2/g sorbent. The reactivity of a sorbent was related to its initial specific surface area (Sg0) and molar content of Ca (M(-1)); the 1 h utilization of Ca increased almost linearly with increasing Sg0/M. The results of this study are useful to the preparation of BFS/HL sorbents with high reactivity for use in the dry and semidry processes to remove SO2 from the flue gas.

  19. Stabilization of chloro-organics using organophilic bentonite in a cement-blast furnace slag matrix.

    Cioffi, R; Maffucci, L; Santoro, L; Glasser, F P


    The application of cement-based stabilisation/solidification treatment to organic-containing wastes is made difficult by the adverse effect of organics on cement hydration. The use of organophilic clays as pre-solidification adsorbents of the organic compounds can reduce this problem because of the high adsorption power of these clays and their compatibility with the cementitious matrix. This work presents an investigation of the effect on hydration kinetics, physico-mechanical properties and leaching behaviour of cement-based solidified waste forms containing 2-chlorophenol and 1-chloronapthalene adsorbed on organophilic bentonites. These were prepared by cation exchange with benzyldimethyloctadecylammonium chloride and trimethyloctadecylammonium chloride. The binder was a 30% pozzolanic cement, 70% granulated blast furnace slag mixture. Several binder-to-bentonite ratios and different concentrations of the organics on the bentonite were used. Kinetics of hydration were studied by measurement of chemically bound water and by means of thermal and calorimetric analyses. Microstructure and other physico-mechanical properties of the solidified forms were studied by means of mercury intrusion porosimetry, scanning electron microscopy and unconfined compressive strength measurement. Leaching was checked by two different leaching tests: one dynamic, on monolithic samples, and the other static, on powdered samples. This study indicates that the incorporation of the organic-loaded bentonite in the binder matrix causes modifications in the hardened samples by altering cement hydration. The effects of the two organic contaminants are differentiated.

  20. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust.

    Shen, Lazhen; Qiao, Yongsheng; Guo, Yong; Tan, Junru


    Blast furnace (BF) flue dust is one of pollutants emitted by iron and steel plants. The recycling of BF flue dust can not only reduce pollution but also bring social and environmental benefits. In this study, leaching technique was employed to the treatment of BF flue dust at first. A mixed solution of ferrous and ferric sulfate was obtained and used as raw material to prepare nanometer-sized black iron oxide pigment (Fe(3)O(4), magnetite) with NaOH as precipitant. The optimal technological conditions including total iron ion concentration, Fe(3+)/Fe(2+) mole ratio, precipitant concentration and reaction temperature were studied and discussed carefully. The spectral reflectance and oil absorption were used as major parameters to evaluate performance of pigment. Furthermore, Fe(3)O(4) particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Under optimized conditions obtained pigment has low average spectral reflectance (<4%), good oil absorption ( approximately 23%), high black intensity, and narrow size distribution 60-70 nm.

  1. The Mechanical Properties of Foamed Concrete containing Un-processed Blast Furnace Slag

    Awang H.


    Full Text Available For many years, supplementary cementation materials have been utilized as cement or filler replacements to heighten the properties of concrete. The objective of this paper is to demonstrate the effects of un-processed blast furnace slag (RS on the compressive, splitting tensile and flexural strengths of foam concrete over periods of 7, 14 and 28 days. The introduction of slag to the cement begins at 30% and rises to 70% of the total content. Six mixes, which include the control mix with a similar mix ratio (1:2:0.45 and a dry density of 1300 kg/m3 is generated. Taking into consideration, from the total weight of the cementation material, 1% of super- plasticizer (PS-1 is added to the mixes with slag content. Test results revealed that the most favourable (optimum replacement level of un-processed slag in foam concrete is 30%. This represents a commercial advantage as the cement requirement is reduced from 414 Kg/m3 to 290 Kg/m3. On the 28th day, the optimum mix showed higher values than the control mix by 32% for compressive strength, 46.5% for splitting tensile strength and 61% for flexural strength.

  2. Blast furnace slag can effectively remediate coastal marine sediments affected by organic enrichment.

    Asaoka, Satoshi; Yamamoto, Tamiji


    There is an urgent need to control nutrient release fluxes from organically-enriched sediments into overlying waters to alleviate the effects of eutrophication. This study aims to characterize blast furnace slag (BFS) and evaluate its remediation performance on organically-enriched sediments in terms of suppressing nutrient fluxes and reducing acid volatile sulfide. BFS was mainly composed of inorganic substances such as CaO, SiO(2), Al(2)O(3) and MgO in amorphous crystal phase. Container experiments showed that the phosphate concentration in the overlying water, its releasing flux from sediment and AVS of the sediment decreased by 17-23%, 39% and 16% compared to the control without BFS, respectively. The loss on ignition was significantly decreased by 3.6-11% compared to the control. Thus, the application of BFS to organically-enriched sediment has a suppressive role on organic matter, AVS concentration and phosphate releasing flux from sediments and therefore, is a good candidate as an effective environmental remediation agent.

  3. Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag

    Li, Yanglong; Cheng, Shusen; Wang, Zhifeng


    Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.

  4. Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag.

    Ozkan, Omer; Yüksel, Isa; Muratoğlu, Ozgür


    Coal bottom ash (CBA) and fly ash (FA) are by-products of thermal power plants. Granulated blast-furnace slag (GBFS) is developed during iron production in iron and steel plants. This research was conducted to evaluate the compressive strength property and some durability characteristics of concrete incorporating FA, CBA, and GBFS. FA is used as an effective partial cement replacement; CBA and GBFS are used as partial replacement for fine aggregate without grinding. Water absorption capacity, unit weight and compressive strengths in 7, 28, and 90-day ages were assessed experimentally. For these experiments, concrete specimens were produced in the laboratory in appropriate shapes. The samples are divided into two main categories: M1, which incorporated CBA and GBFS; and M2, which incorporated FA, CBA, and GBFS. Remarkable decreases are observed in compressive strength and water absorption capacity of the concrete; bulk density of the concrete is also decreased. It can be concluded that if the content of CBA and GBFS is limited to a reasonable amount, the small decreases in strength can be accepted for low strength concrete works.

  5. Ultra low and negative expansion glass–ceramic materials produced from pyrophyllite and blast furnace slag

    S Mandal; S Chakrabarti; S Ghatak; S K Das


    Ultra low and negative expansion glass–ceramic materials have been obtained from pyrophyllite and blast furnace slag. The batch composition was modified with the addition of lithium carbonate, hydrated alumina, boric acid and nucleating agent (titania). The batch was melted at 1400°C followed by casting in the form of bars and annealed at 510°C for 4 h. The annealed specimens were subjected to heat treatment at predetermined temperatures selected from DTA study of the parent glass. Thermal expansion measurement and X-ray diffraction analysis revealed that the specimen nucleated at 545°C for 4 h and crystallized at 720°C for 2 h which resulted in negative coefficient of thermal expansion [(–) 9 to (–) 2 × 10$^{-7}/{}^\\circ $C] over the temperature range (30–600°C) due to the formation of -eucryptite while other heating schedule showed the formation of spodumene and lithium aluminium silicates. The samples showed excellent flexural strength value and varied in the range 120–200 MPa depending upon the phases present.

  6. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.


    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  7. Estimation of minimum detectable concentration of chlorine in the blast furnace slag cement concrete

    Naqvi, A.A., E-mail: [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)


    The Prompt Gamma Neutron Activation Analysis technique was used to measure the concentration of chloride in the blast furnace slag (BFS) cement concrete to assess the possibility of reinforcement corrosion. The experimental setup was optimized using Monte Carlo calculations. The BFS concrete specimens containing 0.8-3.5 wt.% chloride were prepared and the concentration of chlorine was evaluated by determining the yield of 6.11, 6.62, 7.41, 7.79 and 8.58 MeV gamma-rays. The Minimum Detectable Concentration (MDC) of chlorine in the BFS cement concrete was estimated. The best value of MDC limit of chlorine in the BFS cement concrete was found to be 0.034 {+-} 0.011 and 0.038 {+-} 0.012 wt.% for 6.11 and 6.62 MeV prompt gamma-rays. Within the statistical uncertainty the lower bound of the measured MDC of chlorine in the BFS cement concrete meets the maximum permissible limit of 0.03 wt.% of chloride set by the American Concrete Institute.

  8. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C., E-mail:


    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.

  9. Effect of Crushed Air-cooled Blast Furnace Slag on Mechanical Properties of Concrete

    WANG Aiguo; DENG Min; SUN Daosheng; LI Bing; TANG Mingshu


    Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angularity number (AN) and index of aggregate particle shape and texture (IAPST).The effect of mix aggregates containing SCR on compressive strength and splitting tensile strength of concrete was investigated.Fracture characteristics of concrete,interfacial structure between aggregates and matrix were analyzed.The experimental results show that porous and rough SCR increases contact area with matrix in concrete,concave holes and micro-pores on the surface of SCR are filled by mortar and hydrated cement paste,which may increase interlocking and mechanical bond between aggregate and matrix in concrete.SCR can be used to produce a high-strength concrete with better mechanical properties than corresponding concrete made with LCR.The increase of AN and IAPST of aggregate may enhance mechanical properties of concrete.

  10. Firing blast furnace gas without support fuel in steel mill boilers

    Hou, S.S.; Chen, C.H.; Chang, C.Y.; Wu, C.W.; Ou, J.J.; Lin, T.H. [National Cheng Kung University, Tainan (Taiwan). Dept. of Mechanical Engineering


    In this study, the combustion characteristics of firing blast furnace gas (BFG) individually or in combination with coke oven gas (COG) were investigated theoretically and experimentally. The theoretical results showed that at the same heat release rate under the operating conditions of stoichiometry, firing BFG individually had a greater amount of fuel gas volume flow rate, a smaller amount of air volume flow rate, and a lower adiabatic flame temperature than firing BFG with support fuel without preheating. Meanwhile, the volume flow rate of flue gas for the former was greater than the latter. The experimental results obtained from a co-firing of BFG and COG fueled-boiler in a steel company showed that whether at a higher or lower boiler load, with gradually decreasing the amount of COG supply, flame instability (lift-off and blow-out) did not occur and the rate of CO emission was very low. In addition, a decrease in the amount of COG supply brought about a great benefit to the reductions of both CO{sub 2} and NOx emissions.

  11. A Binder of Phosphogypsum-Ground Granulated Blast Furnace Slag-Ordinary Portland Cement

    HUANG Yun; LIN Zongshou


    A new hydraulic cementitious binder was developed by mainly utilizing industrial byproducts phosphogypsum (PG) and ground granulated blast furnace slag (GGBFS) with small addition of ordinary portland cement (OPC). The hydration process and microstructure were studied by X-ray diffraction (XRD)and scanning electronic microscopy (SEM). OPC hydrated first at early age to form primarily C-S-H gel, ettringite and calcium hydroxide (CH). GGBFS activated by CH and sulfate ions hydrated continuously at later age, producing more and more hydration products, C-S-H gel and ettringite. Thus the paste developed a denser microstructure and its strength increased. The 28 d compressive strength of the mixture of 50% PG, 46% GGBFS and 4% OPC exceeded 45 MPa. The setting time was faster and 3 d and 7 d strength were higher when the proportion of OPC increased. But the 28 d strength decreased when OPC exceeded 4% due to large amount of ettringite formed at late hydration age which damaged the microstructure.

  12. Development of Semi—Graphite Carbon—Silicon Carbide Brick and Its Application in Slag Forming Zone of Large—sized Blast Furnace

    HAOYun-zhong; CHENQian-wan


    Based on the damage mechanism of the lining at the slag forming zone of the blast furnace and the charactieristics of various refractory ma-terials,the methods to increase the service life of the lining at the slag forming zone have been found:(1) to improve the capacity of the blast furnace brick lining subjet to heat impact;(2) to reduce the working side temperature of the brick lining.On this basis,the semi-graphitized ,high temperature electrically calcined anthracite and silicon carbide etc ,were used as the main raw materials,Through a lot of experiments the proper raw material mix and grain size compo-sition were determined,In addition ,a suitable amount of additives and binders was added.After high pressur forming,high temperature firing and grinding ,the semi-graphitic carbon-silicon carbide bricks with close dimension tler-ances and ideal physical and chemical properties have been made.They have been applied in some blast furnaces,such as No.11(2580 m3) and No.6(1050 m3) blast furnaces Anshan Iron and Steel Company,and the problem of short service life at slag forming zone of blast furnace has been solved.

  13. 宣钢高炉合理炉料结构熔滴试验%Rational burden structure by droplet test in Xuansteel blast furnace


    对宣钢12种含钛高炉炉料的化学成分及熔滴性能测试结果进行综合分析,给出宣钢2号高炉(2500 m3)、3号高炉(2000 m3)、4号高炉(1800 m3)不同原料条件下最佳的炉料结构,并对3组炉料结构进行比较.分析认为,2号高炉熔滴性能最好的炉料结构为4号方案,S值最小为322 kPa·℃,3号高炉熔滴性能最好的炉料结构为5号方案,S值最小为786 kPa·℃,4号高炉熔滴性能最好的炉料结构为11号方案,S值最小为790 kPa·℃;3号、4号高炉使用的炉料碱度与2号高炉相比较高,这是造成3号、4号高炉炉料最大压差(Δpmax)值高的主要原因;2号高炉使用炉料的含铁品位较高,大于57%,且渣中的MgO质量分数较低,因此炉料在软熔滴落带渣量相对较少,渣的流动性较好,熔滴性能优于3号、4号高炉.%Experiments were carried out in the lab to analyze the chemical compositions of 12 kinds of titanium-contain-ing blast furnace burden and their droplet comprehensive performance of Xuan Steel in order to determine the best bur-den structure of Xuan Steel No.2 blast furnace (2500 m3), No.3 blast furnace (2000 m3) and No.4 blast furnace (1800 m3) under different conditions of raw materials, and the three groups of burden structure were compared. The re-sult showed that the best burden droplet performance was No.4 scheme for No.2 blast furnace and its S value was 322 kPa·℃. The best burden droplet performance was No.5 scheme for No.3 blast furnace and its S value was 786 kPa ·℃ and the best burden droplet performance was No.11 scheme for No.4 blast furnace and its S value was 790 kPa·℃. Compared with the No.2 blast furnace, the alkalinity of charge into the No.3 and No.4 blast furnace was higher which was the main reason for a higher maximum differential pressure(Δpmax)for No.3 and No.4 blast furnace. With high iron content in the charge and lower mass percent of MgO in the slag, the slag amount was relatively reduced in co

  14. Study on the Slag after Blast Furnace to KR of Chuanwei Steel Works%川威KR脱硫前渣研究

    袁勇; 何运顺; 肖建华; 容水


    This paper studies the characteristics of hot metal and blast furnace slag of Chuanwei steel works and compares the deferent components of slag after blast furnace and right before KR desulfurization process.The changing characteristics and the changing reasons of the slag components from the blast furnace to KR process of Chuanwei steel works are analyzed.%通过对川威高炉铁水和高炉下渣的特性研究,比较铁水带渣和KR脱硫前渣的组成不同,分析从高炉下渣到川威KR前渣各组分的变化特征以及KR前渣各组分发生变化的原因。

  15. Study of Online Detection Blast Furnace Temperature Sensor Based on Lining Thickness%基于炉衬厚度的高炉炉温在线检测传感器

    王月明; 孙采鹰; 董大明; 贾华


    This paper described the background of the blast furnace temperature online measurement applications and analyzed the study progress of existing blast furnace temperature measurements, then proposed two blast furnace temperature online meas-urement sensor models based on the thickness of lining, which provided a new solution for the blast furnace temperature measure-ments.The sensor model of blast furnace temperature online detection enriched blast furnace expert system database, correctly ad-justed control parameters of blast furnace, maintained blast furnace temperature in the best condition, ensured anterograde smooth working of blast furnace conditions, and increased the life of the blast furnace.%介绍了高炉测温的应用背景,分析现有高炉炉温测量研究情况,提出了两种基于炉衬厚度的高炉炉温在线检测传感器模型,为高炉炉内温度测量提供一种新的解决方案。基于炉衬厚度的高炉炉温在线检测传感器模型能够充实和丰富高炉专家系统数据库规则制定中的参数,可以指导高炉工长及时正确地调节高炉控制参数,把炉温保持在最佳状态,保证炉况平稳顺行,以延长高炉寿命。

  16. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana


    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel.

  17. Development of Self—flowing Al2O3—SiC—C Castable and Its Application to Troughs of Large Blast Furnaces

    LIWenzhong; CHENGBenjun; 等


    The developed self-flowing Al2O3-SiC-C castable for troughs of blast furnace(BF) can self-flow under its own gravity,leveling,degassing,compacting and setting without vibration by aplication of external energy,The self-flwoing castable with high strength,improved thermal shock resistance and good resistance to molten slag and hot metal,has been used to troughs of large blast furnace,resulting in molten iron throughput of more than 100000 tons.

  18. Maintenance Practice of Hearth at No. 4 Blast Furnace in Tang shan Iron & Steel group%唐钢4号高炉炉缸维护实践

    刘士朝; 吕庆; 赵军


    The longevity of blast furnace is the goal of iron making technology at home and abroad. As the founda-tion,The hearth of a blast furnace has a decisive influence on the longevity of blast furnace. On account of the hearth bottom of No. 4 blast furnace in Tangshan Iron and Steel,the producing situation has been elaborated and the reasons for hearth erosion have been analyzed. According to the reasons of erosion in the bottom of blast furnace,the thesis has proposed some measures to the maintenance of blast furnace. ,offering technological support to the main-tenance of the blast furnace bottom and longevity of the furnace.%高炉长寿一直是国内外炼铁技术发展所追求的目标。高炉炉缸是一座高炉的基础,炉缸对高炉寿命有着决定性的影响。针对唐钢4号高炉炉缸炉底情况,阐述了唐钢4号高炉生产现状,并分析了炉缸侵蚀原因。根据炉缸炉底侵蚀的原因,提出了炉缸维护的措施。为高炉炉底炉缸维护和延长高炉长寿提供技术支持。

  19. A Novel Conversion of Ti-Bearing Blast-Furnace Slag into Water Splitting Photocatalyst with Visible-Light-Response

    Lü, Huihong; Li, Ning; Wu, Xingrong; Li, Liaosha; Gao, Zhifang; Shen, Xingmei


    A novel visible-light-response photocatalyst was prepared through the heat treatment of Ti-bearing blast-furnace slag with sodium nitrate and subsequently leaching processes in which most of the SiO2, Al2O3, and MgO in Ti-slag (TS) have been separated. The photocatalytic activity of the TTS was studied by observing the evolution of H2 under the UV-Vis and visible light. Compared with the TS and commercial perovskite CaTiO3, the sample prepared exhibited an exclusive visible-light-response activity and enhanced H2 evolution.

  20. 高炉鼓风机的改造实践%Transformation of Blast Furnace Blower

    陈庆凯; 赵健


    Transforming method of blast furnace blower is introduced,and main structural dimension after transformation is given. Comparison is carried out on each target before & after transformation. The obtaind economic benefits is described.%介绍了为提高流量的高炉鼓风机改造方案,给出了改造后的主要结构尺寸。对改造前后的各项指标做了对比,说明了取得的经济效益。

  1. Basicity for blast furnace-type slag containing B2O3 and high MgO

    黄振奇; 蔡亚旻; 朱文非; 杨祖磐


    There is quite abundant resource of ludwigite ore in Liaoning Province of China. Content of MgO in the slag of pyrometallurgical separation of boron from iron is much higher than that in the ordinary slags. Through the equilibrium partition ratio of sulfur LS between the metal and the slag in an atmosphere of CO-N2, the acidic coefficients for B2O3 and the basic coefficients for MgO were estimated. The basic formulae were given for the blast furnace-type slag containing B2O3 and high MgO.

  2. Influence of Gas Composition on the Resisting Ability of Gunning Material for Blast Furnace to Carbon Monoxide Corrosion

    YANG Lihong; LIU Liu; GUO Yanling; CAO Feng; MENG Qingmin; LONG Shigang


    This paper describes the resisting ability of gunning material for blast furnace to carbon monoxide corrosion under the mixed gas condition through inletting hydrogen into pure CO.A standard for testing the resisting ability of refractory to Co corrosion with mixed gas instead of pure CO has also been discussed. The results show:the addition of hydrogen accelerates the CO corrosion on gunning material;the same results has been reached with the CO,200 hours to test the resisting ability of refractory to carbon monoxide corrosion.

  3. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    Kumar, Sandeep; Singh, Sukhpal


    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  4. Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications

    Ortega, J. M.


    Full Text Available Special foundations, most prominently micropiles and soil anchors, are frequently used in construction today. In Spain, the grout for these special technical applications is generally prepared with portland cement, although the codes and standards in place stipulate only the minimum compressive strength required, with no mention of cement type. Those texts also establish a range of acceptable water:cement ratios. In the present study, durability and compressive strength in cement grout prepared with blast furnace slag cement at different w/c ratios are characterised and compared to the findings for a reference portland cement grout. The results show that slag grout exhibits greater durability than the portland cement material and complies with the compressive strength requirements laid down in the respective codes.Actualmente es muy frecuente el empleo de cimentaciones especiales, entre las que destacan los micropilotes y los anclajes. En España, las lechadas de cemento para estos trabajos geotécnicos especiales se preparan habitualmente con cemento Portland, aunque las diferentes normativas al respecto no restringen el tipo de cemento a emplear, siempre que se alcance una determinada resistencia a compresión. Respecto a la dosificación de las lechadas, la normativa permite emplear diferentes relaciones agua/cemento dentro de un determinado rango. En vista de ello, en este trabajo se han caracterizado las propiedades de durabilidad y resistencia a compresión de lechadas de cemento preparadas con un cemento con escoria de alto horno y con diferentes relaciones a/c, tomando como referencia de comportamiento lechadas de cemento Portland. El uso de un cemento con escoria conlleva una mejora en la durabilidad de las lechadas, cumpliendo los requisitos de resistencia a compresión establecidos por la normativa.

  5. Charcoal injection in blast furnaces (Bio-PCI: CO2 reduction potential and economic prospects

    Cristobal Feliciano-Bruzual


    Full Text Available The steel industry is under pressure to reduce its CO2 emissions, which arise from the use of coal. In the long-term, the injection of pulverized particles of charcoal from biomass through blast furnace tuyeres, in this case called Bio-PCI, is an attractive method from both an environmental and metallurgical viewpoint. The potential of Bio-PCI has been assessed in terms of its CO2 abatement potential and economic viewpoint. A cost objective function has been used to measure the impact of biochar substitution in highly fuel-efficient BF among the top nine hot metal producers; estimations are based on the relevant cost determinants of ironmaking. This contribution aims to shed light on two strategic questions: Under what conditions is the implementation of Bio-PCI economically attractive? Additionally, where is such a techno-economic innovation likely to be taken up the earliest? The results indicate the potential for an 18–40% mitigation of CO2. Findings from the economic assessment show that biochar cannot compete with fossil coal on price alone; therefore, a lower cost of biochar or the introduction of carbon taxes will be necessary to increase the competitiveness of Bio-PCI. Based on the current prices of raw materials, electricity and carbon taxes, biochar should be between 130.1 and 236.4 USD/t and carbon taxes should be between 47.1 and 198.7 USD/t CO2 to facilitate the substitution of Bio-PCI in the examined countries. In regard to implementation, Brazil, followed by India, China and the USA appeared to be in a better position to deploy Bio-PCI.

  6. Characteristics and settling behaviour of particles from blast furnace flue gas washing.

    Kiventerä, Jenni; Leiviskä, Tiina; Keski-Ruismäki, Kirsi; Tanskanen, Juha


    A lot of particles from iron-making are removed with blast furnace off-gas and routed to the gas cleaning system. As water is used for cleaning the gas, the produced wash water contains a large amount of particles such as valuable Fe and C. However, the presence of zinc prevents recycling. In addition, the high amount of calcium results in uncontrolled scaling. Therefore, the properties of the wash water from scrubber and sludge, from the Finnish metal industry (SSAB Raahe), were evaluated in this study. Size fractionation of wash water revealed that Fe, Zn, Al, Mn, V, Cr and Cd appeared mainly in the larger fractions (>1.2 μm) and Na, Mg, Si, Ni, K, Cu and As appeared mainly in the smaller fractions (<1.2 μm) or in dissolved form. Calcium was found both in the larger fractions and dissolved (∼60 mg/L). Most of the particles in wash water were included in the 1.2-10 μm particle size and were settled effectively. However, a clear benefit was observed when using a chemical to enhance particle settling. In comparison to 2.5 h of settling without chemical, the turbidity was further decreased by about 94%, iron 85% and zinc 50%. Coagulation-flocculation experiments indicated that both low and high molecular weight cationic polymers could provide excellent purification results in terms of turbidity. Calcium should be removed by other methods. The particles in sludge were mostly in the 2-4 μm or 10-20 μm fractions. Further sludge settling resulted in high solids removal.

  7. [Emission characteristics of PM2.5 from blast furnace iron making].

    Fan, Zhen-zhen; Zhao, Ya-li; Zhao, Hao-ning; Liang, Xing-yin; Sun, Jing-wen; Wang, Bao-gui; Wang, Ya-jun


    Electrical low pressure impactor (ELPI) was used to online analyze the PM2.5 particle size and mass concentration distribution in the trapping field and ore tank of blast furnace iron-making plant. Results showed that the grain number concentration of PM2.5 in trapping field after dust removal was in the range of 10(5)-10(6)cm-3 , and the particle size was mainly below 0. 1 μm. While the grain number concentration of the PM2.5 in ore tank after dust removal was in the range of 10(4)-10(5) cm-3, the particle size was mainly below 1.0 μm, and the mass concentration distribution showed a single peak. The micro-morphology of PM2.5 monomer was mainly divided into two categories, spherical particles and irregular aggregates. Chemical composition analysis indicated that the concentrations of water soluble SO(2-)(4) , K+ , Ca2+ were higher than other ions in PM2.5, with the percentage of 10. 32% -28.55% , 10. 36% -12. 15% , 3.97% -15. 4% , respectively. The major elements was Fe, Si, Al, with 16. 8% -31. 62% , 2. 24% -8.76% , 1.24% -5. 89% of total mass, respectively; organic carbon and elementary carbon were 2. 7% -4. 6% and 0. 8% -1. 3% , respectively. The emission factors of PM2.5 in trapping field and in ore tank after dust removal were ranged from 0.045 to 0.085 kg t(-1) and 0.042 to 0.071 kg t-1, respectively.

  8. Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application.

    Asuman Korkusuz, E; Beklioğlu, Meryem; Demirer, Göksel N


    Research was conducted at Middle East Technical University (METU), Ankara, Turkey in 2000 to determine whether a reed bed filled with an economical Turkish fill media that has high phosphorus (P) sorption capacity, could be implemented and operated successfully under field conditions. In batch-scale P-sorption experiments, the P-sorption capacity of the blast furnace granulated slag (BFGS) of KARDEMIR Iron and Steel Ltd., Co., Turkey, was found to be higher compared to other candidate filter materials due to its higher Ca content and porous structure. In this regard, a vertical subsurface flow constructed wetland (CW) (30 m(2)), planted with Phragmites australis was implemented at METU to treat primarily treated domestic wastewater, at a hydraulic rate of 100 mm d(-1), intermittently. The layers of the filtration media constituted of sand, BFGS, and gravel. According to the first year monitoring study, average influent and effluent total phosphorus (TP) concentrations were 6.61+/-1.78 mg L(-1) and 3.18+/-1.82 mg L(-1); respectively. After 12 months, slag samples were taken from the reed bed and P-extraction experiments were performed to elucidate the dominant P-retention mechanisms. Main pools for P-retention were the loosely-bounded and Ca-bounded P due to the material's basic conditions (average pH>7.7) and higher Ca content. This study indicated the potential use of the slag reed bed with higher P-removal capacity for secondary and tertiary treatment under the field conditions. However, the P-sorption isotherms obtained under the laboratory conditions could not be used favorably to determine the longevity of the reed bed in terms of P-retention.

  9. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Shuhua LIU


    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI:

  10. The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete

    Murat Kurt; Türkay Kotan; Muhammed Said Gül; Rüstem Gül; Abdulkadir Cüneyt Aydin


    This paper presents the results of an experimental study of the effects of blast furnace slag, different water/(cement+mineral additive) ratios and pumice aggregates on some physical and mechanical properties of self-compacting lightweight aggregate concrete. In this study, pumice was used as lightweight aggregate. Several properties of self-compacting pumice aggregate lightweight concretes, such as unit weight, flow diameter, T50 time, flow diameter after an hour, V-funnel time, and L-box tests, 7, 28, 90 and 180-day compressive strength, 28-day splitting tensile strength, dry unit weight, water absorption, thermal conductivity and ultrasonic pulse velocity tests, were conducted. For this purpose, 18 series of concrete samples were prepared in two groups. In the first group, pumice aggregate at 100% replacement of natural aggregate was used in the production of self-compacting lightweight aggregate concrete with constant w/(c+m) ratios as 0.35, 0.40, and 0.45 by weight. Furthermore, as a second group, pumice aggregate was used as a replacement of natural aggregate, at the levels of 0, 20, 40, 60, 80, and 100% by volume. Flow diameters, T50 times, paste volumes, 28-day compressive strengths, dry unit weights, thermal conductivities and ultrasonic pulse velocity of self-compacting lightweight aggregate concrete were obtained over the range of 600–770 mm, 3–9 s, 435–540 l/m3, 10.6–65.0 MPa, 845–2278 kg/m3, 0.363–1.694 W/mK and 2617–4770 m/s respectively, which satisfies not only the strength requirement of semistructural lightweight concrete but also the flowing ability requirements and thermal conductivity requirements of self-compacting lightweight aggregate concrete.

  11. Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum

    Bazaldúa-Medellín, M. E.


    Full Text Available The hydration, strength development and composition of hydration products of supersulphated cements were characterized from the first 48 hours up to 360 days. Two compositions of 80% Blast furnace slag, 10–15% Fluorgypsum and 10–5% Portland cement were cured in dry and wet conditions. The main hydration products were ettringite and C-S-H since the first hours and up to 360 days as evidenced by X-ray diffraction, thermal analysis and electron microscopy. The strength was favored by higher fluorgypsum contents and lower Portland cement contents. These cements generated heats of hydration of 40–57 KJ/Kg after 28 hours, which are lower than portland cement.Se realizó la caracterización de la hidratación, desarrollo de resistencia y la composición de los productos de hidratación de los cementos supersulfatados durante las primeras 48 horas y hasta 360 días. Se estudiaron dos composiciones de 80% de Escoria de alto horno, 10–15% de Fluoryeso y 10–5% de Cemento portland, se curaron en condiciones secas y húmedas. Los principales productos de hidratación fueron etringita y C-S-H desde las primeras horas y hasta 360 días, como se evidenció por difracción de rayos X, análisis térmico y microscopía electrónica de barrido. La resistencia se favoreció con mayor contenido de fluoryeso y bajos contenidos de cemento portland. Estos cementos generaron calores de hidratación de 40–57 KJ/Kg después de 28 horas, los cuales resultan más bajos que los generados por el cemento portland.

  12. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide.

    Asaoka, Satoshi; Okamura, Hideo; Kim, Kyunghoi; Hatanaka, Yuzuru; Nakamoto, Kenji; Hino, Kazutoshi; Oikawa, Takahito; Hayakawa, Shinjiro; Okuda, Tetsuji


    Reducing hydrogen sulfide concentration in eutrophic marine sediments is crucial to maintaining healthy aquatic ecosystems. Managing fly ash, 750 million tons of which is generated annually throughout the world, is another serious environmental problem. In this study, we develop an approach that addresses both these issues by mixing coal fly ash from coal-fired power plants with blast furnace cement to remediate eutrophic sediments. The purpose of this study is to optimize the mixing ratio of coal fly ash and blast furnace cement to improve the rate of hydrogen sulfide removal based on scientific evidence obtained by removal experiments and XAFS, XRD, BET, and SEM images. In the case of 10 mg-S L(-1) of hydrogen sulfide, the highest removal rate of hydrogen sulfide was observed for 87 wt% of coal fly ash due to decreased competition of adsorption between sulfide and hydroxyl ions. Whereas regarding 100 mg-S L(-1), the hydrogen sulfide removal rate was the highest for 95 wt% of coal fly ash. However, for both concentrations, the removal rate obtained by 87 wt% and 95 wt% were statistically insignificant. The crushing strength of the mixture was over 1.2 N mm(-2) when the coal fly ash mixing ratio was less than 95 wt%. Consequently, the mixing ratio of coal fly ash was optimized at 87 wt% in terms of achieving both high hydrogen sulfide removal rate and sufficient crushing strength.

  13. An approach for phosphate removal with quartz sand, ceramsite, blast furnace slag and steel slag as seed crystal.

    Qiu, Liping; Wang, Guangwei; Zhang, Shoubin; Yang, Zhongxi; Li, Yanbo


    The phosphate removal abilities and crystallization performance of quartz sand, ceramsite, blast furnace slag and steel slag were investigated. The residual phosphate concentrations in the reaction solutions were not changed by addition of the ceramsite, quartz sand and blast furnace slag. The steel slag could provide alkalinity and Ca(2+) to the reaction solution due to its hydration activity, and performed a better phosphate removal performance than the other three. Under the conditions of Ca/P 2.0, pH 8.5 and 10 mg P/L, the phosphate crystallization occurred during 12 h. The quartz sand and ceramsite did not improve the phosphate crystallization, but steel slag was an effective seed crystal. The phosphate concentration decreased drastically after 12 h after addition of steel slag, and near complete removal was achieved after 48 h. The XRD analysis showed that the main crystallization products were hydroxyapatite (HAP) and the crystallinity increased with the reaction time. Phosphate was successfully recovered from low phosphate concentration wastewater using steel slag as seed material.

  14. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Jovanović Filip P.


    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  15. 高顶压技术在莱钢1000m3高炉的应用%Application of High Top Pressure Technology in Laigang 1000 m3 Blast Furnace



    高压操作是强化高炉冶炼的一项重要措施,利于高炉炉况稳定顺行、提高煤气利用率,莱钢1000 m3高炉通过加强原料管理、增加鼓风动能、加强炉前管理等措施提高炉顶压力,取得了显著的经济效益。%High pressure operation is an important measure to strengthen the blast furnace smelting of blast furnace, can be conducive to the stable operation and the exploitation rate of gas.By improving raw material management, increasing the en-ergy of blast furnace, strengthening management measures to strengthen blast furnace top pressure, remarkable economic benefits has been achieved for Laigang 1000 m3 furnace.

  16. Influence Factors of Gas Distribution in Blast Furnace Hearth%炉缸煤气流分布的影响因素

    陈川; 程树森


    高炉大型化是炼铁发展的趋势,随着高炉炉缸直径的不断变大,中心不活跃区域越来越大,如何引导煤气到达炉缸中心已成为炼铁工作者关注的焦点。为了解决上述难题,通过建立炉缸煤气流动三维模型,应用CFX数值模拟软件计算煤气流速,分别研究了炉缸直径、焦炭粒径、空隙度以及鼓风动能对炉缸煤气流分布的影响。结果表明:即使炉缸内焦炭粒径及空隙度分布均匀,边缘煤气流速依然大于中心煤气流速,并且炉缸直径越大,中心煤气流越弱。炉缸内焦炭粒径和空隙度分布影响煤气流分布,提高炉缸中心焦炭粒径和空隙度有利于引导煤气到达炉缸中心。同时,为了保障高炉稳定顺行,鼓风参数必须和炉缸透气性协调一致,不能过于依靠提高鼓风动能吹透中心。%Blast furnace enlargement is the trend of ironmaking development.As the diameter of blast furnace hearth increasing,the inactive region in the centre of blast furnace hearth becomes larger.It is a focus of attention how to guide the gas into the centre for BF operators.Three-dimensional model of blast furnace hearth was established.The gas velocity was calculated by CFX numerical simulation software.The influence of hearth diameter,coke diameter,stock column voidage and kinetic energy of tuyeres on the gas flow distribution in blast furnace hearth was investigated using this model.The results show that when the coke diameter and voidage distribute uniformly,the gas velocity in the periphery is still higher than the center.As the diameter of blast furnace hearth increasing,the center will become much inactive.The coke diameter and stock column voidage play an important part on improving the permeability of blast furnace hearth.The kinetic energy of tuyeres is related with the coke diameter and stock column in blast furnace hearth.In order to guarantee the stability of blast furnace,the blast parameters must be set

  17. Hot metal temperature prediction by neural networks in the blast furnace; Prediccion mediante redes neuronales de la temperatura de arrabio de un horno alto. Temperatura subyacente de arrabio

    Cantera, C.; Jimenez, J.; Varela, I.; Formoso, A.


    Based on a simplified model, the underlying temperature criteria is proposed as a method to study the temperature trends in a blast furnace. As an application, a neural network able to forecast hot metal temperatures from 2 to 16 h in advance (with decreasing precision) has been built. This neural network has been designed to work at real time in a production plant. (Author)

  18. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.

    Nehrenheim, E; Gustafsson, J P


    Storm water and landfill leachate can both contain significant amounts of toxic metals such as Zn, Cu, Pb, Cr and Ni. Pine bark and blast furnace slag are both residual waste products that have shown a large potential for metal removal from contaminated water. There are however many variables that must be optimized in order to achieve efficient metal retention. One of these variables is the time of which the solution is in contact with each unit of filter material. Metal sorption was studied in two laboratory experiments to improve the knowledge of the effects of contact time. The results showed that pine bark was generally more efficient than blast furnace slag when the metal concentrations were relatively small, whereas blast furnace slag sorbed most metals to a larger extent at increased metal loads. In addition, sorption to blast furnace slag was found to be faster than metal binding to pine bark. A pseudo-second-order kinetic model was able to describe the data well within 1000 s of reaction time.

  19. The interaction of pH, pore solution composition and solid phase composition of carbonated blast furnace slag cement paste activated with aqueous sodium monofluorophosphate

    Kempl, J.; Copuroglu, O.


    Blast Furnace Slag (BFS) is a waste product of industrial steel production and a common additive in the cement industry in Northern European countries. However, cementitious materials made from slag-rich cement, particularly CEM III /B, are very susceptible to carbonation. Recent investigations have

  20. Numerical Investigation of the Inner Profiles of Ironmaking Blast Furnaces: Effect of Throat-to-Belly Diameter Ratio

    Li, Zhaoyang; Kuang, Shibo; Yan, Dingliu; Qi, Yuanhong; Yu, Aibing


    The inner profile of iron making blast furnace (BF) is of significant importance to reactor performance. However, its determination lacks any sound theoretical and empirical base. This paper presents a numerical study of the multiphase flow and thermochemical behaviors inside BFs with different inner profiles by a multi-fluid process model. The validity of the model is first confirmed by various applications. It is then used to study the effect of throat-to-belly diameter ratio ( R D) with respect to productivity, burden distribution pattern, and softening-melting temperature of ferrous materials. The results show that when R D increases, the fuel rate increases at relatively low productivities; however, it initially decreases to a minimum and then increases at relatively high productivities. This performance against R D to some degree varies with either burden distribution pattern or softening-melting temperature of ferrous materials. Optimum R D can be identified with relatively small coke rate and minimum fluctuations of global performance and in-furnace states. The analysis of the in-furnace states reveals that the flow and thermochemical behaviors above the cohesive zone are drastically deteriorated with increasing productivity for BFs with relatively small R D , leading to different variation trends of fuel rate.

  1. Alkaline-sulphate activation processes of a Spanish blast furnace slag

    Fernández Jiménez, A.


    Full Text Available Alkaline-sulphate activation processes of a Spanish granulated blast furnace slag (Avilés, Ensidesa have been studied. Activator solutions used were: deionized water (as reference solution, Ca(OH2 (3,5∙10-3N, NaOH (1N, Na2CO3 (2N, CaSO4∙2H2O (3,0∙10-3N at 25ºC. The influence of the nature of alkaline or sulphate solution cation on slag activation process was verified. Sodium solutions decrease the induction period while calcium solutions increase it. Slag reaction degree was also determined, likewise the nature of the different reaction products formed as a function of the activator solution nature.

    Se han estudiado los procesos de activación alcalinosulfáticos de una escoria granulada de alto horno española (Avilés, Ensidesa. Las disoluciones activantes utilizadas fueron: H2O desionizada (como disolución de referencia, Ca(OH2 (3,5∙10-3N, NaOH (1N, Na2CO3 (2N, CaSO4∙2H2O (3,0∙10-3N a 25ºC. Se ha comprobado la influencia de la naturaleza del catión de la disolución alcalina o sulfática sobre el proceso de activación de la escoria. Las disoluciones sódicas disminuyen el período de inducción, mientras que las disoluciones cálcicas lo incrementan. También se determinó el grado de reacción de la escoria, así como la naturaleza de los distintos productos de reacción formados, en función de la naturaleza de la disolución activante.

  2. Characteristics and propierties of oil-well cements additioned with blast furnace slag

    Sánchez, R.


    Full Text Available The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% of the cement by weight with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activating solution partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. 29Si and 27Al MAS NMR and BSE/EDX studies, in turn, showed that the C-S-H gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios.

    En el presente trabajo se ha estudiado la activación alcalina de cementos Pórtland con incorporación de escoria de horno alto (20% y 30% con respecto al peso de cemento para su posible aplicación en la construcción de pozos petrolíferos. Los estudios de hidratación realizados indican que en mezclas cemento/escoria, la disolución activadora de silicato sódico inhibe parcialmente la disolución de las fases silicato del cemento Pórtland originando un retraso de su hidratación así como la menor precipitación de productos de reacción. Dicha parcial inhibición de los procesos reactivos en las mezclas cemento/escoria originan resistencias mecánicas significativamente inferiores a las pastas de cemento Portland hidratadas con agua. Finalmente, los estudios de 29Si y 27Al RMN MAS y BSE/EDX indican que el gel C-S-H formado en pastas de mezcla cemento/escoria activadas alcalinamente presenta Al en posiciones tetraédricas y bajas relaciones Ca/Si.

  3. Mechanical behaviour of alkali-activated blast furnace slag-activated metakaolin blended pastes. Statistical study

    Higuera, I.


    Full Text Available The study and development of alternative, more ecoefficient binders than portland cement are attracting a good deal of scientific and technological interest. Binders obtained from the chemical interaction between calcium silico-aluminous materials and highly alkaline solutions are one of several types of such possible cements. The present paper discusses the mechanical behaviour and mineralogical composition of blended pastes made from NaOH-activated vitreous blast furnace slag and metakaolin. The aim of the study was to determine how parameters such as the slag/metakaolin ratio, activating solution concentration and curing temperature affect strength development in these binders. A statistical study was conducted to establish the impact of each variable and model strength behaviour in these alkaline cements. The conclusion drawn is that activator concentration and the slag/metakaolin ratio are both determinant parameters.

    El estudio y desarrollo de cementos alternativos y más eco-eficientes que el cemento Portland es un tema de gran impacto a nivel científico y tecnológico. Entre esos posibles cementos se encuentran los cementos alcalinos que son materiales conglomerantes obtenidos por la interacción química de materiales silico-aluminosos cálcicos y disoluciones fuertemente alcalinas. En el presente trabajo se estudia el comportamiento mecánico y la composición mineralógica de mezclas de escoria vítrea de horno alto y metacaolín activadas alcalinamente con disoluciones de NaOH. El objetivo de este estudio es conocer cómo afectan parámetros tales como la relación escoria/metacaolín, la concentración de la disolución activadora y la temperatura de curado, al desarrollo resistente de las mezclas. A través del estudio estadístico realizado se ha podido establecer la influencia de cada variable y modelizar el comportamiento resistente de estos cementos alcalinos. Se concluye que la concentración del activador y la relaci

  4. Natural pozzolan-and granulated blast furnace slag-based binary geopolymers

    Robayo, R. A.


    Full Text Available This study describes the synthesis at ambient temperature (25±3 °C of binary geopolymer systems based on natural volcanic pozzolan and granulated blast furnace slag. Na2SiO3 and NaOH were used as alkaline activators. The effects of the SiO2/Al2O3, Na2O/Al2O3 ratio and the amount of slag added (from 0 to 30% on the reaction kinetics, compressive strength and microstructure of the final product were studied. To characterise the geopolymer pastes, techniques such as X-ray diffraction (XRD, infrared spectroscopy (FTIR and scanning electron microscopy (SEM were used. The results indicate the possibility of obtaining a geopolymer cement with a compressive strength of up to 48.11 MPa after 28 days of curing at ambient temperature whose characteristics are comparable to those of commercial portland cement.Este trabajo describe la síntesis a temperatura ambiente (25±3 °C de sistemas geopoliméricos de tipo binario basados en una puzolana natural de origen volcánico y escoria siderúrgica de alto horno usando activadores alcalinos basados en la combinación de Na2SiO3 y NaOH. Se estudió el efecto de la relación SiO2/Al2O3, Na2O/Al2O3 y la cantidad de escoria adicionada en niveles entre el 0 y 30% sobre la cinética de reacción, la resistencia a la compresión y la microestructura del producto final. Para la caracterización de las pastas geopoliméricas se utilizaron técnicas como difracción de rayos X (DRX, espectroscopia infrarroja (FTIR y microscopia electrónica de barrido (MEB. Los resultados conseguidos revelan la posibilidad de obtener un cementante geopolimérico con una resistencia a la compresión de hasta 48,11 MPa a los 28 días de curado a temperatura ambiente cuyas características son comparables a las de un cemento portland comercial.

  5. BIO-PCI, Charcoal injection in Blast Furnaces: State of the art and economic perspectives

    Feliciano-Bruzual, C.


    Full Text Available The injection of grinded particles of charcoal through the tuyeres in Blast Furnaces, here coined Bio-PCI, presents as an attractive and plausible alternative to significantly reduce the CO2 emissions generated during hot metal production. In this contribution a summary of the technological fundaments, benefits and limitations of the incorporation of Bio-PCI is presented. Additionally the principal economic challenges of renewables fuel in ironmaking are exposed, with especial interest in the main productions costs of charcoal making. In this sense, a strategic question arises: can the residual biomass drive the emergence of Bio-PCI?, our analysis leads to conclude that the use of residual biomass (e.g. agricultural and forestry residues may significantly reduce the production cost in 120-180 USD/t in comparison to primary woods sources, this naturally increment the economical attractiveness of Bio-PCI substitution.La inyección de carbón vegetal por toberas en Altos Hornos, aqui denominada Bio-PCI, se presenta como una forma atractiva y realista de reducir significativamente las emisiones de CO2 generadas durante la producción de arrabio. En esta contribución se presenta un resumen de los fundamentos tecnológicos, los beneficios y las limitaciones de la incorporación de la tecnología del Bio-PCI. Adicionalmente se exponen los retos económicos que enfrentan los combustibles renovables a los fósiles, con especial interés en los principales costos de producción del carbón vegetal. En este sentido se plantea una pregunta estratégica: ¿puede la biomasa residual impulsar el desarrollo de la Bio-PCI?. Nuestro análisis conlleva a concluir que la utilización de biomasa residual (residuos forestales y agrícolas puede reducir sensiblemente el costo del carbón vegetal entre 120-180 USD/t en comparación con biomasa primaria, incrementando su competitividad frente al carbón mineral.

  6. Injection of natural gas in the blast furnace tuyeres three of the Usiminas, Ipatinga Plant; Injecao de gas natural nas ventaneiras do alto-forno 3 da Usiminas, Usina de Ipatinga

    Souza, Murilo Alves Tito de; Rosa, Ericson Rimen Ribeiro; Oliveira, Claudiney Freitas de; Hostt, Helton [USIMINAS, Ipatinga, MG (Brazil). Gerencia Geral de Reducao


    The reduction in production costs is a major strategic objectives of Usiminas and the use of natural gas in the Blast Furnace 3 (BF 3) contribute to achieve this goal. The use of natural gas as fuel in the BF 3 to reduce the use of metallurgical coke (main fuel) and reduces production losses during periods of maintenance in the pulverized coal injection system and improving operational control of the Blast Furnace. The work presents the deployment of the natural gas injection and the performance obtained by the BF 3 from the start of injection, with a focus on reducing consumption of metallurgical coke and stable operation of blast furnace (author)

  7. Practice of Optimal Operation of Energy Medium Pipe Network in Blast Furnace Area%宣钢高炉区域能源介质管网优化运行的实践


    The shortcomings in the energy medium pipe network of blast furnace of Xuanhua Iron & Steel Co are described in detail. The energy medium pipe network is recon-structed, which has achieved better energy saving effect of blast furnace and ensured efficient and stable operation of blast furnace.%  主要针对高炉能源介质管网存在的不足进行详细的阐述,并进行了完善与改造,使高炉节能收到了较好的效果并保证了高炉的高效稳定运行。

  8. Applications of Technology of Compound Lining of Semi—gr aphitized Self—baking Carbon Block Ceramic Brickwork in Large—sized Blast Furnaces

    HAOYung-zhong; CHENQian-wan


    Based on the analyses of the lining technologies of the hot press formed carbon brick iu U.S.A., of the ce-ramic cup in France and of the creative self-baking car-bon brick in China,the technology of semi-graphitized car-bon block-ceramic brickwork has been studied and developed ,and has successfully ben used in No.7 blast furnace (2580m3) at Anshan Irom and Steel Company and in No.3 blast furnace (1200m3) at Taiyuan Iron and Steel Company,This paper puts fourward a feasible scheme for realization of long service lives of the bootms and the hearths of large-sized blast furaces in China.

  9. 应用有限差分法模拟高炉炉缸侵蚀%Numerical simulation of blast furnace hearth erosion based on finite difference method

    渐令; 张建松; 宋允全; 赵敏


    The existing finite element method and boundary element method simulating the blast furnace hearth erosion involve constructing mesh by hand, and the computation is complex when dealing with free surface. By solving the Possion differential equations, the body-fitted coordinates is introduced to transform the hearth irregular border into calculative plane. According to condition of the thermal electric couples in hearth of No.7 blast furnace at Handan Iron & Steel Co. Ltd, the numerical simulation of blast furnace hearth is given through solving the heat conduction equations in calculative plane. The model has been used in No.7 blast furnace at Handan Iron & Steel Co. Ltd and it can track the erosion state of blast furnace hearth dynamically.%现有有限元、边界元方法模拟高炉炉缸侵蚀状况需要对炉缸进行网格划分的前处理,对于自由变动边界问题,这类模型计算十分复杂.应用基于适体坐标的有限差分方法模拟高炉炉缸侵蚀状况:通过求解Possion微分方程建立适体坐标系,将炉缸的不规则边界变换到规则的计算平面上,利用有限差分方法在计算平面上离散并数值求解热传导方程,给出高炉炉缸等温线的数值模拟.该方法计算简单,运行时间短,适合在线实时监测,邯钢7号高炉在线运行表明模型可以动态地跟踪炉缸侵蚀状况.

  10. 废塑料入炉喷吹的数值模拟研究%Numerical simulation of waste plastic injection in blast furnace

    董树; 史岩彬; 耿啸


    基于高炉喷吹混合燃料的方法,探究废塑料作为燃料在高炉内的作用。以某2536 m3高炉为研究对象,将喷入的煤粉及塑料作为粉相,分析混合燃料的水分、灰分、挥发分和固定碳等化学指标,采用高炉高温区热平衡分析法,计算高炉单一喷吹和混合喷吹条件下的焦比,对高炉内喷吹过程进行模拟研究。计算机模拟结果表明,将煤粉与废塑料混合喷吹降低了高炉焦比,提高了煤的利用率。%Based on the method of blast furnace injection the mixing fuel , the effect of waste plastics as fuel in blast furnace injection was explored .The 2536 m3 blast furnace as an example , considering the pulverized coals and plastics as powder phase , moisture, ash, volatile and fixed carbon etc .The high temperature zone of blast furnace heat balance analysis method was used to calculate the coke ratio of single injection and mixing injection , and the process of blast furnace injection was studied .Com-puter simulation results show that the mixture injection of pulverized coal and waste plastic reduce coke ratio and improve the utilization rate of coal .

  11. Development of reducing CO_2 emission technologies of blast furnace ironmaking%降低高炉炼铁碳排放技术的发展

    曾先喜; 郭豪


    Based on blast furnace operating conditions,the reducting agent consumption for an "ideal" blast furnace was calculated by Rist Operating Line model.Considering the calculation results and the potential of reducing CO2 emission in China,it is proposed that decreasing blast furnace fuel ratio is the main measure to reduce CO2 emission.In integrated iron and steel enterprises,there are many ways to reduce the fuel consumption of blast furnace,however,the energy balance of the whole enterprise should be considered.In this sense,some new technologies,such as Oxygen BF,top gas circulation,plastic injection and using prereduction burden,etc.may be adopted to reduce the CO2 emission of blast furnace ironmaking with high efficiency and good environment.%以生产高炉为基础,通过Rist操作线模型计算了"理想"高炉的还原剂消耗。针对"理想"高炉的计算和我国目前高炉碳排放潜能的分析,提出了在我国现有条件下,降低高炉燃料比是减排高炉碳排放的主要措施,然而考虑到整个钢铁厂的能量平衡,应该选择最佳的方法减少CO2排放量。氧气高炉、炉顶煤气循环、高炉喷吹废旧塑料以及使用预还原炉料都可以依靠流程的系统优化不同程度地减少CO2排放量,并保持系统的高效环保。

  12. Long campaign technology of blast furnace hearth and bottom%高炉炉缸炉底长寿技术

    任嵬; 董丽; 李鹏; 丛培源; 马骁一; 王英武; 雷明


    对高炉炉缸和炉底的侵蚀机制、合理的炉缸结构、炉缸和炉底内衬结构及其耐火材料进行了较为全面的介绍,同时建议在高炉生产过程中采取一系列措施来提高炉缸、炉底的寿命:拥有合理的死铁层深度、炉缸高度和铁口深度的炉缸结构,可为高炉高效长寿和生产的稳定顺行奠定良好基础;根据高炉顺行情况和炉缸、炉底侵蚀状态控制好生铁成分,并采取有效措施减少碱金属等有害元素在炉内的富集及对炉缸、炉底的侵蚀;在线进行压浆能有效消除炉缸砖衬间的缝隙,提高炉缸冷却系统的冷却效果,减缓炉缸砖衬的侵蚀;加含钛物料护炉可以使侵蚀严重的炉底、炉缸转危为安,显著提高高炉寿命.%The corrosion mechanism,lining structure and refractories of blast furnace hearth and bottom,and the optimal hearth structure were overall presented. Measures to prolong the campaign of blast furnace hearth and bottom were given:( 1 )optimizing the salamander depth,hearth depth and taphole depth to get a stable and efficient production process,as well as long campaign:(2)controlling the pig iron composition and reducing the accumulation of harmful matters such as alkali metals and their corrosion to hearth and bottom according to running situation of blast furnace and corrosion of hearth and bottom: (3) on-line mudjacking to fill the gaps among bricks,enhancing the efficiency of cooling system and reducing the corrosion to refractories lining: (4)feeding titanium-containing materials to protect the severely corroded parts.

  13. 攀钢干热高炉煤气直送利用技术的探索与应用%The Exploration and Application of the Technology of Direct Supply of Hot Blast Furnace Gas

    吕勇; 李苹


    Through analysis of the present situation and performance of utilization of blast furnace gas, the potential utilization value of blast furnace gas was clarified. The tech-nology of direct delivery and utilization of dry hot blast furnace gas was implemented, which has lowered the coke rate of blast furnace and increased gas utilization efficiency.%通过对高炉煤气利用现状及性能分析,明确高炉煤气潜在利用价值,实施了干热高炉煤气直送利用技术,降低了高炉焦比,提高了煤气利用效率.

  14. Oxygen and coke oven gas (COG) consumption optimization at hot stove of Usiminas blast furnace 3; Otimizacao do consumo de oxigenio e GCO nos regeneradores do alto forno 3 da Usiminas

    Cervino, Marco Antonio; Bastos, Moises Hofer [Usiminas, Ipatinga, MG (Brazil)


    This paper presents the model developed for determination of the correlation between oxygen and coke oven gas (COG) consumption in the hot stove at Usiminas blast furnace 3, the applicability and results obtained. (author)

  15. Model of Hot Metal Silicon Content in Blast Furnace Based on Principal Component Analysis Application and Partial Least Square

    SHI Lin; LI Zhi-ling; YU Tao; LI Jiang-peng


    In blast furnace (BF) iron-making process, the hot metal silicon content was usually used to measure the quality of hot metal and to reflect the thermal state of BF. Principal component analysis (PCA) and partial least- square (PLS) regression methods were used to predict the hot metal silicon content. Under the conditions of BF rela- tively stable situation, PCA and PLS regression models of hot metal silicon content utilizing data from Baotou Steel No. 6 BF were established, which provided the accuracy of 88.4% and 89.2%. PLS model used less variables and time than principal component analysis model, and it was simple to calculate. It is shown that the model gives good results and is helpful for practical production.

  16. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.


    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.

  17. The radiation stability of ground granulated blast furnace slag/ordinary Portland cement grouts containing organic admixtures

    Palmer, J.D.; Fairhall, G.A. [British Nuclear Fuels, Sellafield (United Kingdom)


    At the British Nuclear Fuels (BNFL) Sellafield reprocessing plant in the United Kingdom, cement grouts based on ground granulated blast-furnace slag (BFS) and ordinary Portland cement (OPC) are used extensively for immobilizing radioactive wastes. These grouts have excluded organic admixtures in order to reduce process complexity and uncertainties, regarding the performance of organic admixtures with BFS/OPC grouts, particularly under irradiation. This study has investigated the effects of sulfonated melamine formaldehyde and naphthalene condensates on grout properties. The results show grout settlement and strengths increase on addition of additives, with the additives remaining largely in the pore solution. Under irradiation the additives breakdown liberating hydrogen and carbon dioxide. Strength and product dimensions are unaffected by irradiation.

  18. Dynamic Regional Viscosity Prediction Model of Blast Furnace Slag Based on the Partial Least-Squares Regression

    Guo, Hongwei; Zhu, Mengyi; Yan, Bingji; Deng, Shichan; Li, Xinyu; Liu, Feng


    Viscosity is considered to be a significant indicator of the metallurgical property of blast furnace (BF) slag. A model for viscosity prediction based on the partial least-squares regression of varietal quantity reference points is presented in this article. The present model proposes a dynamic regional algorithm for reference point selection. The study applied the partial least-squares regression to establish the dynamic regional viscosity prediction model on the basis of limited discrete points data. Then an actual prediction was carried out with a large amount of viscosity data of real and synthesized BF slags that was obtained from a certain steel plant in China. The results show that this advanced method turns out to be satisfactory in the viscosity prediction of BF slags with a low averaging error and mean value deviation.

  19. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    Song, Ha-Won; Saraswathy, Velu


    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  20. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag.

    Chartier, D; Muzeau, B; Stefan, L; Sanchez-Canet, J; Monguillon, C


    Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  1. [Evaluation of the migration of contaminants from building materials produced on the base of blast-furnace slags].

    Pugin, K G; Vaysman, Ya I


    There is experimentally established the change of the migratory activity of pollutants from building materials produced from blast furnace slag throughout their life cycle in the form of a nonlinear wave-like nature as there are appeared newly opened surfaces of a contact with aggressive waters in the process of gradual crushing of materials as a result of destructive mechanical effects on him and corrosive waters with varying pH values. There are established regularities of the migration activity ofpollutants (on the example of heavy metals) as directly dependent on the newly opening surface of the contact of the material with water having a various pH value. There is shown an expediency of introduction of alterations in the procedure for sanitary hygienic assessment of building materials with the addition of industrial waste (Methodical Instructions 2.1.674-97), allowing to take into account the migration of contaminants from them throughout the life cycle.

  2. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young


    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  3. Dynamic Regional Viscosity Prediction Model of Blast Furnace Slag Based on the Partial Least-Squares Regression

    Guo, Hongwei; Zhu, Mengyi; Yan, Bingji; Deng, Shichan; Li, Xinyu; Liu, Feng


    Viscosity is considered to be a significant indicator of the metallurgical property of blast furnace (BF) slag. A model for viscosity prediction based on the partial least-squares regression of varietal quantity reference points is presented in this article. The present model proposes a dynamic regional algorithm for reference point selection. The study applied the partial least-squares regression to establish the dynamic regional viscosity prediction model on the basis of limited discrete points data. Then an actual prediction was carried out with a large amount of viscosity data of real and synthesized BF slags that was obtained from a certain steel plant in China. The results show that this advanced method turns out to be satisfactory in the viscosity prediction of BF slags with a low averaging error and mean value deviation.

  4. Influence of Carbonation on Fatigue of Concrete with High Volume of Ground Granulated Blast-furnace Slag

    YOU Lushen; JIANG Linhua; CHU Hongqiang


    The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonation depth and compressive strength was analyzed and an equation between carbonation depth and compressive strength was put forward. Meanwhile, fatigue S-N curves of various carbonation depths were fitted, and the influence of carbonation on fatigue life and strength was studied. Carbonation has a dual effect on the fatigue behavior of GGBS-concrete. A fatigue equation based on the depth of carbonation was established. Also, the probabilistic distribution of fatigue life of carbonated concrete at a given stress level was modeled by the two-parameter Weibull distribution.

  5. Physical Properties of Crushed Air-cooled Blast Furnace Slag and Numerical Representation of Its Morphology Characteristics

    WANG Aiguo; DENG Min; SUN Daosheng; LI Bing; TANG Mingshu


    Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated.The shape,angularity,surface texture and internal pore structure of aggregate particles for different size and gradation were numerically represented by sphericity (ψ) and shape index (SI),angularity number (AN),index of aggregate particle shape and texture (IAPST),porosity and pore size,respectively.The results show that SCR is a porous and rough aggregate.Apparent density,void,water absorption and smashing index of SCR are obviously higher than those of LCR with the same gradation,respectively.However,bulk density of SCR is lower than that of LCR with the same gradation.SI,AN,IAPST and porosity of SCR are obviously higher than those of LCR with the same gradation,respectively.The smaller particle size of SCR,the larger of its AN,IAPST and porosity.




    Full Text Available The prepared alkali-activated binders (AAB and composites using suitable latent hydraulic raw materials represent an alternative to materials based on Portland cements. This paper deals with ways how to influence the functional parameters of AAB by setting up mixtures of granulated blast furnace slag (GBFS and fly ash with selected chemical compositions. In this way the course of hydration process is modified and the phase composition of products of alkali activation is changed as well as their final properties. The amorphous character of the hydration products makes evaluation of the phase composition of hardened AAB difficult and significantly limits the number of experimental techniques suitable to characterise their phase composition. It was observed that measuring the pH of water extracts obtained from the alkali-activated mixtures can give supplementary information about the process of hardening of alkali-activated mixtures of GBFS and fly ash.

  7. Discussion on the cooling water of blast furnace hearth%高炉炉缸冷却水的探讨

    许俊; 邹忠平; 胡显波


    根据炉缸的传热特点,推导了炉缸传热体系的计算公式,利用公式计算结果,分析了炉缸冷却水对延长高炉寿命的作用,重点是冷却水量、冷却水温对炉缸传热的影响规律。洒水冷却的炉壳温度比自然冷却的炉壳温度有显著降低,说明冷却水对维护炉缸安全生产具有重要的作用;在炉缸传热体系中,当水速大于2m/s时,增大冷却水量对炉内传出热量的影响是有限的;降低冷却水温度,增大冷却效果的作用有限。%Based on the characteristics of heat transfer of blast furnace hearth, a formula for analyzing the heat transfer system of the hearth is deducted. Using the calculation results the effect of cooling water on blast furnace life, focused on the influence of water volume and water temperature on the hearth heat transfer system are analyzed. The shell temperature for water-spray cooling is markedly lower than that of natural cooling, that means the cooling water is very important for the hearth safety. When the water velocity is over 2 m/s, the influence of increasing water volume to heat transfer is limited. In addition, lowering the water temperature has limited effect of hearth cooling.

  8. Guidelines to span the third operational cycle of the blast furnace number one of the Companhia Siderurgica Paulista (COSIPA), a steel company of Sao Paulo State, Brazil; Procedimentos para prolongar a terceira campanha do alto forno numero 1 da Companhia Siderurgica Paulista (COSIPA)

    Pantaleao, Amauri; Peixoto, Clarimar; Goes, Jeferson Jose Pinto; Carvalho, Jose Carlos de; Vasconcelos, Luiz Carlos Torres; Vivian, Roy Vieira [Companhia Siderurgica Paulista (COSIPA), SP (Brazil)


    This paper shows the principal measures -like guidelines- in order to increase the life span of blast furnaces, against creep deformation, de-coking cycles and furnace shutdowns. (author) 4 refs., 11 figs., 11 tabs.

  9. Applying an expert system to the silicon control in the blast furnace. Aplicacion de un sistema experto al control del silicio en el alto horno

    Tosenovsky, J.


    This article shows the possibilities of applying the fuzzy sets in simulating the activity of the operator at a blast furnace and indicates, consequently, the possible concepts in compiling and expert system. By the application of the fuzzy set theory (FS) in the expert system presented, the author tries to solve the common reasons for the failure of conventional models of regulating activity of the operator, i.e. the inaccurate input information and the problem of how to formulate the experience of the operator mathematically. The theory proposed is exemplified by regulating a blast furnace by change in the amount of blown steam, V. The observed parameter is SI while the expressions of the operator, e.g. ''low content of SI'', ''high amount of V'', etc., are used. In the conclusion, the results of the regulation by computer and the operator are compared. (Author)

  10. MnOx-CeO2 catalysts supported by Ti-Bearing Blast Furnace Slag for selective catalytic reduction of NO with NH3 at low temperature.

    Xu, Yifan; Liu, Rong; Ye, Fei; Jia, Feng; Ji, Lingchen


    A series of MnOx-CeO2 catalysts supported by Ti-bearing blast furnace slag were prepared by wet impregnation and used for low-temperature selective catalytic reduction (SCR) of NO with NH3. The slag-based catalyst exhibited high deNOx activity and wide effective temperature range. Under the condition of NO=500ppm, NH3=500ppm, O2:7-8vol% and total flow rate=1600 ml/min, the Mn-Ce/Slag catalyst exhibited a NO conversion higher than 95% in the range of 180-260 °C. The activity of Mn/Slag catalysts was greatly enhanced with the addition of CeO2. The results indicated that Ti-bearing blast furnace slag had suitable phase composition as good support of SCR catalyst.

  11. A Novel Conversion Process for Waste Slag: The Preparation of Aluminosilicate Glass with Evaluation of the Dielectric Properties from Blast Furnace Slag

    Li, Sheng; Huang, Sanxi; Liu, Hongting; Wu, Fengnian; Chang, Ziyuan; Yue, Yunlong


    In this paper, aluminosilicate glass was prepared from blast furnace slag and quartz sand. Fourier transform infrared, differential scanning calorimetry and density measurements were carried out to investigate the effects of SiO2 on the aluminosilicate glass network rigidity. The results indicate that glass structure would be enhanced if more SiO2 was introduced into the glass system. Meanwhile, both the glass transition temperature ( T g) and the glass crystallization temperature ( T c) increase slightly; the increase in density of the glass being further evidence of the enhancement in glass network rigidity. Dielectric measurements show that the dielectric constant and dielectric loss decrease with more SiO2. The properties of the prepared aluminosilicate glasses are comparable to those of E glass, indicating that blast furnace slags are suitable for producing aluminosilicate glass with low dielectric constant and dielectric loss.

  12. Reseach on the Protective Device of Air Distributing in Blast Furnace Blower System%高炉拨风保护装置的研究



      本文针对杭钢高炉供风的实际情况,研究并开发了防灌渣自动拨风保护装置系统,该系统基本能满足高炉对生产运行安全的需求。%  In this paper ,according to the Hangzhou Iron&Steel Group Compny blast furnace air supply, research and development of a system, the system is carried out to achieve automatical y dial wind and prevent tuyere slag irrigation .The system can meet the basic demand for the safe operation of the production of blast furnace.

  13. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Hwang-Hee Kim


    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  14. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers.

    Luukkonen, Tero; Runtti, Hanna; Niskanen, Mikko; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla


    The mining industry is a major contributor of various toxic metals and metalloids to the aquatic environment. Efficient and economical water treatment methods are therefore of paramount importance. The application of natural or low-cost sorbents has attracted a great deal of interest due to the simplicity of its process and its potential effectiveness. Geopolymers represent an emerging group of sorbents. In this study, blast-furnace-slag and metakaolin geopolymers and their raw materials were tested for simultaneous removal of Ni(II), As(III) and Sb(III) from spiked mine effluent. Blast-furnace-slag geopolymer proved to be the most efficient of the studied materials: the experimental maximum sorption capacities for Ni, As and, Sb were 3.74 mg/g, 0.52 mg/g, and 0.34 mg/g, respectively. Although the capacities were relatively low due to the difficult water matrix, 90-100% removal of Ni, As, and Sb was achieved when the dose of sorbent was increased appropriately. Removal kinetics fitted well with the pseudo-second-order model. Our results indicate that geopolymer technology could offer a simple and effective way to turn blast-furnace slag to an effective sorbent with a specific utilization prospect in the mining industry.

  15. 高炉渣处理技术的现状及发展趋势%Present Situation and Development Tendency of Blast Furnace Slag Treatment

    冯会玲; 孙宸; 贾利军


    The current domestic and overseas situation of the blast furnace slag treatment technology is elaborated. The water quenching slag treatment technology is known as having problems such as the large consumption of the fresh water, the low utilization of sensible heat, and the pollutant emission of sulfur dioxide, hydrogen sulfide, et al. It is proposed that the blast furnace slag dry granulation technology is expected to solve the problems such as the slag granulation and the heat recovery at the same time. It is the development tendency of ihe blast furnace slag treatment graft.%阐述了当前国内外高炉渣处理技术使用现状,认为水淬法渣处理技术存在新水消耗大、炉渣显热利用率低和二氧化硫、硫化氢等污染物排放的问题,提出开发高炉渣干式粒化技术有望同时解决其渣粒化及热量回收的问题,是高炉渣处理工艺的发展趋势.

  16. Operation of the blast furnace gas distribution in V and M of Brazil; Operacao do sistema de distribuicao de GAF na V e M do Brasil

    Soares, Lis Nunes; Silva, Ricardo Junqueira; Lana, Camila Soares; Valentim, Rodrigo Freitas; Lupp, Adilson Geraldo [V e M do BRASIL S.A., Belo Horizonte, MG (Brazil)


    V and M do Brasil is an integrated steel mill with the production of seamless steel pipe. The manufacture process comprises two charcoal blast furnaces which an average generation of blast furnace gas (BFG) of 120.000 Nm{sup 3}/h. Due to the presence of carbon monoxide in its composition it is considered as a fuel and used in 14 equipment of heating process in Barreiro mill. It is a considerable heating source corresponding to 60% of the total thermal energy used in these equipment where the natural gas (NG) is used to fulfill the energetic needs. The operation of the BFG distribution among the consumers happens in an instantaneous way according to the blast furnace generation and consumers demand recognizing a complexity in this process. The optimization in BFG consumption assures a reduction in the NG consumption and consequently in the emission of greenhouse gases to the atmosphere. The objective of this paper is to elucidate the optimization of the byproduct consumption considering a new approach of the distribution operation of this fuel among the consumers without cost including the operational process awareness by the operation people, patterning the operation and planning. (author)

  17. Blast furnace line shape measurement fusion and compensation algorithm based on radar%基于雷达的高炉料线形状融合测量与补偿算法

    苗亮亮; 陈先中; 白真龙; 黄月琴; 侯庆文; 尹怡欣


    不采用传统接触力模型自下而上的高炉料面形状计算方法,而是根据土坡力学颗粒物质堆积理论,提出了新的基于堆积法的高炉料线形状融合计算方法,直接对料面形状进行计算.围绕高炉多环布料的炉料堆积特点,结合炉顶六点阵列雷达,获得了料面形状计算的边界条件,弥补了传统料型计算靠十字测温加机械探尺的经验估算.新方法通过高炉布料规律及炉料颗粒的物理堆积插值方法,采用贝叶斯数据融合方法和分段三次Hermite插值,结合布料体积约束条件,完成了理论计算与测量修正的结合.实测结果表明:料面形状融合法比传统单独的料面估算法,测量精度提高4.8%,料面分辨率提高27.2%,使布料控制可以更加精准和有针对性.%A fusion measuring method proposed in this paper by using the soil mechanical granular accumulation theory is a new concept for computing the burden line shape in blast furnaces. This method offers a powerful solution to compute the burden line shape directly in comparison with the traditional way in which the contact force model is adopted to compute the burden line shape in blast fur-naces from the bottom up. With the multiloop distributing accumulation property of blast furnaces and the advantage of 6-point array ra-dar on the top, the boundary conditions of the burden line shape can be easily calculated. Under the boundary conditions, the esti-mated values gotten by cross temperature and mechanical sounding rods can be compensated. Taking into consideration the distributing discipline of blast furnaces and the particle accumulation method, this method adopts Bayes data fusion and sectional triple Hermite in-terpolation under the boundary conditions to finish the combination of theoretical calculation and measurement correction. Measurement results indicate that compared with the traditional method, the measurement accuracy rises by 4.8% and

  18. Hot metal temperature prediction and simulation by fuzzy logic in a blast furnace; Prediccion y simulacion, mediante logica difusa, de la temperatura de salida del arrabio en un horno alto

    Romero, M. A.; Jimenez, J.; Mochon, J.; Formoso, A.; Bueno, F. [Centro Nacional de Investigaciones Metalurgicas CENIM. Madrid (Spain); Menendez, J. L. [ACERALIA. Gijon Asturias (Spain)


    This work describes the development and further validation of a model devoted to blast furnace hot metal temperature forecast, based on Fuzzy logic principles. The model employs as input variables, the control variables of an actual blast furnace: Blast volume, moisture, coal injection, oxygen addition, etc. and it yields as a result the hot metal temperature with a forecast horizon of forty minutes. As far as the variables used to develop the model have been obtained from data supplied by an actual blast furnaces sensors, it is necessary to properly analyse and handle such data. Especial attention was paid to data temporal correlation, fitting by interpolation the different sampling rates. In the training stage of the model the ANFIS (Adaptive Neuro-Fuzzy Inference System) and the Subtractive Clustering algorithms have been used. (Author) 9 refs.

  19. Reason and control of blast furnace hearth corrosion%高炉炉缸破损的原因与控制

    孙金铎; 黄晓煜; 杜续恩


    近年来,中国高炉长寿技术取得了长足的进步,部分高炉寿命达到国际先进水平,但同时也出现数十座高炉发生炉缸事故或异常侵蚀破损。高炉长寿技术是一项综合技术,高炉要实现长寿除需要保障炉衬、炉体材质和建筑施工质量外,科学合理的设计是关键,高炉生产操作监控维护是基础。基于对多座高炉长寿技术应用状况和高炉炉缸的破损调查,从设计、操作等多方面对炉缸破损原因进行分析,并提出了长寿炉缸设计的优化原则和实现炉缸长寿的生产操作、监测、维护及管理的控制对策。%In recent years,the campaign life of China blast furnaces has made a great progress,and some of them have reached international level. However,dozens of blast furnace hearth accident or abnormal corrosion occurred. Blast fur-nace longevity is a comprehensive technology. To realize blast furnace longevity scientific and reasonable design is the key,meanwhile monitoring and maintenance is the basis. According to the investigation on longevity technology applica-tion and hearth corrosion of many blast furnaces,the hearth corrosion reasons are analyzed in terms of design,operation, etc. On this basis,some optimization principle and measures on operation,monitoring,maintenance,are put forward to realize hearth longevity.

  20. Energy Saving Research of the Blast Furnace Dewetting Blast and the Choice of Dehumidification Ways%高炉脱湿鼓风节能研究及除湿方法的选取

    邓文龙; 卿山; 王华; 刘文光; 周庆华; 何峰; 龚贵君


    对高炉鼓风除湿进行了节能分析,通过高炉系统的热平衡原理得出了理论燃烧温度,继而得出了鼓风除湿能降低焦煤消耗与提高产量的结论.通过研究得出了最佳除湿剂为LiCl及其最佳除湿浓度为40%,并对除湿剂的除湿原理进行了介绍与说明.%This paper analyses the energy saving effect of the blast furnace blast and dehumidification. Through heat balance principle of the blast furnace system to reach the theoretical combustion temperature, then draw the conclusion that the blast dehumidification can reduce the consumption of coking coal and increase the output. Through the research, this paper obtains the best dehumidizer is LiCl and its optimal concentration is 40%, and the dehumidification principle is introduced.

  1. Shrinkage and Cracking Sensitivity of Cement Mortar Containing Fly Ash, Granulated Blast-furnace Slag and Silica Fume


    A laboratory study was undertaken to investigate drying shrinkage and cracking sensitivity subjected to restrained shrinkage of mortar containing fly ash (FA), granulated blast-furnace slag (GBFS) and silica fume (SF). Six mortar mixtures including control Portland cement (PC) and FA,GBFS and SF mortar mixtures were prepared. FA replaced the cement on mass basis at the replacement ratios of 20% and 35%, GBFS replaced the cement at the replacement ratios of 40%, SF replaced the cement at the replacement ratios of 8% and the blended mixtures with 20% FA, 20% GBFS and 8% SF. Water-cementitious materials ratio and sand-cementitious materials ratio were 0.4 and 2.0 for all mixtures, respectively. The mixtures were cured at 65% relative humidity and 20℃. The drying shrinkage value, initial cracking time and cracking width of the mortar samples were measured. The results show that all the mortar mixture containing FA exhibited the decrease of drying shrinkage.Moreover, initial cracking time was markedly delayed, and the crack width of the initial crack was reduced. However, the incorporations of various ratios of GBFS and SF led to an increase of drying shrinkage, initial cracking time and cracking width as compared to control mixture.

  2. On the Comprehensive Utilization of Blast Furnace Slag%浅析高炉矿渣的综合利用

    张国忠; 李广军; 司有宝; 郑秀梅; 冯砚; 刘继梅


    Blast furnace slag is the solid waste produced in the steelmaking process, and it has a high value in use. It is mainly used in building construction, in which the slag cement, slag concrete, slag and refractory brick road, railway projects are more common. But now, the study of slag is not deep enough, so this paper proposes to increase research efforts, so that it can be better used in more areas.%高炉矿渣是炼钢过程中产生的固体废弃物,具有很高的利用价值。主要应用于建筑工程中,其中在矿渣水泥、矿渣混凝土、矿渣耐火砖及道路、铁道工程中比较常见。但目前,对矿渣的研究不够深入,建议加大研究力度,使其能更好的应用于更多领域。

  3. Influence of B2O3 and Basicity on Viscosity and Structure of Medium Titanium Bearing Blast Furnace Slag

    Lingtao Bian


    Full Text Available The effects of B2O3 and basicity (CaO/SiO2 on the viscous behavior and structure of medium titanium bearing blast furnace slag (MTBBFS were investigated. High temperature viscosimeter was applied to measure the viscosities of CaO-SiO2-MgO-TiO2-Al2O3-B2O3 slag system and X-ray diffraction (XRD, NBO/T ratio, and structure parameter Q were employed to analyze its network structure. The results showed that the viscosity decreased and break point temperature increased with increasing basicity to 1.20. However B2O3 addition gave rise to a decrease in slag viscosity and break point temperature inspite of basicity. The more B2O3 content leads to the more pronounced variation, especially for the slag with larger basicity. The conventional NBO/T formula was revised to predict the structure variation of relatively complicated medium Ti bearing slag based on the work of Yanhong Gao and other researchers. The increase of B2O3 content in slag made parameter Q turn from Q2 to Q1, suggesting that network structure became simpler. It was also noticed that the addition of B2O3 could suppress the formation of perovskite.

  4. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım


    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement.

  5. Analysis on the Oversize Blast Furnace Desulfurization and a Sulfide Capacity Prediction Model Based on Congregated Electron Phase

    Zhenyang, Wang; Jianliang, Zhang; Gang, An; Zhengjian, Liu; Zhengming, Cheng; Junjie, Huang; Jingwei, Zhang


    Through analyzed and regressed the actual productive desulfurization data from the oversize blast furnace (5500 m3) in north China, the relationship between the sulfur distribution parameters and the slag composition in actual production situation was investigated. As the slag and hot metal phases have their own balance sulfur content or sulfur partial pressure in gas phase, respectively, the non-equilibrium of sulfur among gas, slag, and metal phases leads to the transmission and distribution of sulfur. Combined with sulfur transmission reactions between gas, slag and metal phases, C/CO pairs equilibrium, and Wagner model, the measured sulfide capacity can be acquired using sulfur distribution ratio, sulfur activity coefficient, and oxygen activity in hot metal. Based on the theory of congregated electron phase, a new sulfide capacity prediction model (CEPM) has been developed, which has a good liner relationship with the measured sulfide capacity. Thus, using the burden structure for BF, the ironmaking slag composition can be obtained simply and can be used to reliably predict the ironmaking slag desulfurization ability a few hours later after charging under a certain temperature by CEPM.

  6. Preparation of a new sorbent with hydrated lime and blast furnace slag for phosphorus removal from aqueous solution.

    Gong, Guozhuo; Ye, Shufeng; Tian, Yajun; Wang, Qi; Ni, Jiandi; Chen, Yunfa


    The removal of dissolvable inorganic phosphate (H(2)PO(4)(-)) by sorbents prepared from hydrated lime (HL) and blast furnace slag (BFS) was fundamentally studied by an orthogonal experiment design. Based on statistic analysis, it is revealed that the weight ratio of BFS/HL is the most significant variable, and an optimized preparation condition is figured out. With the increase of HL content, the adsorption capacity increases, suggesting that the HL plays the important role in the removal process in the gross. However, in the lower HL content, it is interesting that the adsorption capacity of as-prepared sorbents exceed the sum of the capacities of the same ratio of BFS and HL. The further analysis indicate the excess capacities linearly depend on the specific surface area of sorbents, suggesting that the removal of H(2)PO(4)(-) is closely related with the microstructure of sorbents in the lower HL content, according to the characterization with SEM, XRD and pore analysis. Additionally, an adsorption model and kinetic are discussed in this paper.

  7. Investigative monitoring within the European Water Framework Directive: a coastal blast furnace slag disposal, as an example.

    Borja, Angel; Tueros, Itziar; Belzunce, Ma Jesús; Galparsoro, Ibon; Garmendia, Joxe Mikel; Revilla, Marta; Solaun, Oihana; Valencia, Victoriano


    The European Water Framework Directive (WFD) establishes a framework for the protection of estuarine and coastal waters, with the most important objective being to achieve 'good ecological status' for all waters, by 2015. Hence, Member States are establishing programmes for the monitoring of water quality status, through the assessment of ecological and chemical elements. These monitoring programmes can be of three types: surveillance monitoring; operational monitoring (both undertaken on a routine basis); and investigative monitoring (carried out where the reason of any exceedance for ecological and chemical status is unknown). Until now, nothing has been developed in relation to investigative monitoring and no clear guidance exists for this type of monitoring, as it must be tackled on a 'case-by-case' basis. Consequently, the present study uses slag disposal from a blast furnace, into a coastal area, as a case-study in the implementation of investigative monitoring, according to the WFD. In order to investigate the potential threat of such slags, this contribution includes: a geophysical study, to determine the extent of the disposal area; sediment analysis; a chemical metal analysis; and an ecotoxicological study (including a Microtox test and an amphipod bioassay). The results show that metal concentrations are several times above the background concentration. However, only one of the stations showed toxicity after acute toxicological tests, with the benthic communities being in a good status. The approaches used here show that contaminants are not bioavailable and that no management actions are required with the slags.

  8. Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag

    Lu Liu; Mei-long Hu; Chen-guang Bai; Xue-weiLü; Yu-zhou Xu; Qing-yu Deng


    The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace (BF) slag was studied using confocal scanning laser microscopy (CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the ortho-rhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attrib-uted to the deficiency of O2-,when Ti2O3 was involved in the formation of perovskite.

  9. Exergoeconomic analysis of the power generation system using blast furnace and coke oven gas in a Brazilian steel mill

    M. Modesto; S.A. Nebra [Federal University of ABC, Santo Andre (Brazil). Center of Engineering


    The rational use of energy has become a priority for all industries in Brazil, mainly after the energy rationing in 2001. Methodologies to quantify and improve the performance of plants that consume and generate electricity and thermal energy are being used to reach this goal. Exergoeconomic analysis provides a complete diagnosis of a plant, both in exergetic and in monetary values. This study shows the methodology used to assess the power generation system of the Companhia Siderurgica Tubarao (CST). The current system is based on a regenerative Rankine cycle using two gases from steel production - blast furnace gas (BFG) and coke oven gas (COG) - to generate electric power and occasionally steam for the process. Use of the Theory of Exergetic Cost allowed determination of monetary and exergetic costs. Moreover, indicators such as cost variation, relative cost variation, and exergoeconomic factors were calculated to determine the influence of each component in the make-up of plant costs and to find the best way of decreasing generation costs of energy and process steam.

  10. Properties of Concrete Incorporating Bed Ash from Circulating Fluidized Bed Combustion and Ground Granulates Blast-furnace Slag

    CHENG An; HSU Hui-Mi; CHAO Sao-Jeng


    The properties of concrete incorporating circulating fluidized bed combustion (CFBC) bed ash and ground granulates blast-furnace slag (GGBS) were studied. Compressive strength,drying shrinkage, mercury intrusion porosimetry (MIP), scanning electronic microscopy (SEM), and X-ray diffraction (XRD) of concrete samples containing CFBC bed ash and GGBS were used. This work used initial surface absorption test (ISAT) and rapid chloride penetration test (RCPT) on concrete to measure the absorption and the ability of concrete to resist chloride ion characteristics for different concrete samples containing CFBC bed ash and GGBS. Open circuit potential (OCP), direct current polarization resistance were obtained to evaluate rebar corrosion. The CFBC bed ash was X-ray amorphous and consist of SiO2, A12O3 and CaO compounds. As the replacement of CFBC for sand increases, the rate of initial surface absorption (ISA) increases but compressive strength decreases.When the content of CFBC bed ash replacement for sand maintains constant, the replacement of GGBS for cement increases, compressive strength increases but the rate of ISA decreases. Chloride and corrosion resistance of rebar significantly improve by utilizing a proper amount of CFBC bed ash and GGBS in concrete.

  11. Production practice of the coal injection with addition of carbon powder on Tangsteel blast furnace%唐钢高炉喷吹煤粉配加碳粉的生产实践

    王少宁; 司新国; 黄亚玲; 胡金波; 高华


    对唐钢高炉喷吹煤粉中配加碳粉进行生产实践研究,研究表明喷吹煤粉中配加5%碳粉能够满足高炉喷吹条件,并且使混煤成本降低6.2元/t。根据高炉日常生产数据的比较分析,喷吹碳粉以后高炉能够稳定顺行,未对高炉日常生产造成不良的影响。%The production practice of the coal injection with addition of carbon powder on Tangsteel blast furnace was researched, the research indicated that coal injection with addition of 5% of the car-bon powder can meet the injection in the blast furnace conditions, and lower the mixed coal cost 6. 2 yuan/t. According to the daily production data of comparative analysis of blast furnace, carbon powder injection after the blast furnace can stabilize anterograde, without adverse effects on the daily produc-tion of blast furnace.

  12. Numerical simulation for the lower shaft and the hearth bottom of blast furnace

    Susen Cheng; Tianjun Yang; Qingguo Xue; Haibin Zuo; Xiaowu Gao; Weiguo Yang


    One of the methods forming the shell is to appropriately design the cooling staves and hearth without overheating duringthe campaign life of the furnace. The three-dimensional steady mathematical models for calculating the temperature distribution inthe coolers and two-dimensional unsteady mathematical models with phase-change latent heat for calculating the temperature dis-tribution of the hearth bottom were established. The calculation results show that the formation of the slag-metal protection shell canbe achieved by optimizing the design parameters of the coolers. Increasing the heat conductivity of the carbon brick can move theisothermal line of 1150℃ upward outside the hearth bottom.

  13. Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar

    Keum-Il Song


    Full Text Available Alkali-activated ground granulated blast-slag (AAS is the most obvious alternative material for ordinary Portland cement (OPC. However, to use it as a structural material requires the assessment and verification of its durability. The most important factor for a durability evaluation is the degree of carbonation resistance, and AAS is known to show lower performance than OPC. A series of experiments was conducted with a view to investigate the carbonation characteristics of AAS binder. As a consequence, it was found that the major hydration product of AAS was calcium silicate hydrate (CSH, with almost no portlandite, unlike the products of OPC. After carbonation, the CSH of AAS turned into amorphous silica gel which was most likely why the compressive strength of AAS became weaker after carbonation. An increase of the activator dosage leads AAS to react more quickly and produce more CSH, increasing the compaction, compressive strength, and carbonation resistance of the microstructure.

  14. Rational cooling water system for a large blast furnace hearth%大型高炉合理炉缸冷却制度

    宁晓钧; 左海滨; 张建良; 杨天钧


    Since the temperature distribution and erosion of blast furnace hearth are directly affected by cooling system,a rational cooling water system is the assurance for long campaign life of large blast furnace.Combined with a 4 000m3 blast furnace,physical and mathematical models of temperature fields of blast furnace hearth and bottom were built according to heat transfer theory.Two different hearth cooling systems,namely "low water capacity and large temperature difference" and "large water capacity and small temperature difference",are both investigated by modeling and numerical simulation.Effects of different cooling systems on hearth temperature field,hearth erosion and blast furnace life are also analyzed.The results indicate that during the initial period with thicker brick lining,effects of different cooling systems on blast furnace temperature distribution are nearly the same.As the brick lining gradually becomes thinner,different cooling systems have much different effects on temperature distribution.When the brick lining is eroded to a certain level,even the best cooling system is of no use,but "large water capacity and small temperature difference" and enhanced cooling measures will slow down the erosion and prolong the campaign life.%合理的炉缸冷却制度是保证大型高炉长寿的基础,不同冷却制度对高炉炉缸的温度分布和侵蚀状况具有直接影响.结合某4000 m3级高炉,根据传热学理论建立了高炉炉缸、炉底温度场物理模型和数学模型,通过数值模拟对"大水量、小温差"和"小水量、大温差"这两种不同炉缸冷却制度进行了研究,分析了不同冷却制度对炉缸温度场、炉缸侵蚀状况及高炉寿命的影响.结果表明,在炉役初期砖衬较厚时,不同冷却制度对炉内温度分布的影响区别不大;随着砖衬的不断减薄,不同冷却制度对炉内温度分布的影响逐渐明显;当砖衬侵蚀到一定程度后,再好的冷却

  15. 高炉炉缸碳砖砌筑方法研究与应用%Research and Application of Carbon Brick Masonry Method for Blast Furnace Hearth

    付强; 李光平; 辛建


    高炉寿命直接影响到企业生产。本文结合生产经验,从炉缸的侵蚀机理着手,对影响炉缸寿命的关键环节进行重点把关,注重施工细节,确保高规格的施工质量。%Blast furnace life directly affected production .Based on the production experience and the hearth erosion mecha-nism, the key factors affecting life of furnace hearth was checked , much attention was paid to the details of construction to ensure the construction quality of high specification .

  16. Reconstruction design of medium pressure boiler fueling the blast furnace gas instead of coal powder%中压煤粉炉改燃高炉煤气改造设计



    为了节能和环保,钢铁企业自备电厂实施锅炉改造,将燃煤锅炉改燃高炉煤气.减少了高炉煤气放散,取得了锅炉效率高达88%的效果.%In order to energy conservation and environmental protection, steel - owned enterprises in the implementation of boiler plant have changed coal - fired boiler into a blast furnace gas - fired boiler. The blast furnace gas radiation was reduced, and the boiler efficiency was as high as 88%.

  17. Strength, leachability and microstructure characterisation of Na2SiO3-activated ground granulated blast-furnace slag solidified MSWI fly ash.

    Zhang, Dajie; Liu, Wenshi; Hou, Haobo; He, Xinghua


    The chemical composition and the leachability of heavy metals in municipal solid waste incinerator (MSWI) fly ash were measured and analysed. For the leachability of unstabilized MSWI fly ash it was found that the concentrations of Pb and Cr exceeded the leaching toxicity standard. Cementitious solidification of the MSWI fly ash by Na2SiO3-activated ground granulated blast-furnace slag (NS) was investigated. Results show that all solidified MSWI fly ash can meet the landfill standards after 28 days of curing. The heavy metals were immobilized within the hydration products such as C-S-H gel and ettringite through physical encapsulation, substitution, precipitation or adsorption mechanisms.

  18. 酒钢高炉风口破损治理实践%Troubleshooting of Tuyere Damage in JISCO Blast Furnace

    刘玉香; 刘发旭; 杨玉成


    The cause of the tuyere damage of JISCO blast furnace is analyzed in the paper, and by the measures of impro-ving the molten slag iron physical heat, controlling the alkalis load and coal ration, the tuyere damage is effectively con-trolled.%对酒钢高炉风口破损原因进行了分析,通过采取提高渣铁水物理热、控制碱负荷、控制煤比等措施,风口破损得到了有效治理。

  19. 高炉换向溜槽传动装置改进%Improvement of Drive System of Reversing Flap Chute on Blast Furnace



    Analyze the reasons that result in the frequent damages of bearings on the drives of the reversing flat chute in the bell-less charging system of blast furnace and put forward the improvement solution which has achieved desired results.%介绍了高炉并罐式无料钟炉顶上料系统中换向溜槽传动装置轴承频繁损坏的原因及改进方案,改进后取得了预期的效果。

  20. Effect of Al2O3 Addition on the Precipitated Phase Transformation in Ti-Bearing Blast Furnace Slags

    Li, Zhongmin; Li, Jinfu; Sun, Yongqi; Seetharaman, Seshadri; Liu, Lili; Wang, Xidong; Zhang, Zuotai


    The present paper aims to provide a fundamental understanding on phase change of Ti-enriched crystalline phase induced by Al2O3 addition in Ti-bearing blast furnace slags with different basicities using Single Hot Thermocouple Technique and X-ray Diffraction. The results showed that an increase in the Al2O3 content led to phase change from rutile or perovskite to Mg3Al4Ti8O25 and prompted crystallization of the slags with basicity of 0.60 and 0.75, whereas only CaTiO3 was precipitated at a basicity of 0.95. Both thermodynamic and kinetic analyses were conducted to study the slag crystallization, which would throw light on phase change and enhanced crystallization. To further reveal the relationship with Al2O3 addition on slag structure and crystallization, Fourier transform infrared spectroscopy and magic angle spinning-nuclear magnetic resonance were adopted, with AlO4 tetrahedra and AlO6 octahedra observed in the slag. For slags with the basicity of 0.60 and 0.75, AlO6 octahedron, which was suggested to induce the phase change from TiO2 or CaTiO3 to Mg3Al4Ti8O25, was detected at high Al2O3 content. On the other hand, in slags with the basicity of 0.95, abundant Ca2+ may be connected to TiO6 octahedra, resulting in CaTiO3 formation.

  1. Novel blast furnace operation process involving charging with low-titanium vanadium-titanium magnetite carbon composite hot briquette

    Zhao, Wei; Chu, Man-sheng; Wang, Hong-tao; Liu, Zheng-gen; Tang, Ya-ting


    An innovative process of blast furnace (BF) operation involving charging with low-titanium vanadium-titanium magnetite carbon composite hot briquette (LVTM-CCB) was proposed for utilizing LVTM and conserving energy. In this study, the effect of LVTM-CCB charging ratio on the softening, melting, and dripping behaviors of the mixed burden was explored systemically, and the migration of valuable elements V and Cr was extensively investigated. The results show that with increasing LVTM-CCB charging ratio, the softening interval T 40 - T 4 increases from 146.1°C to 266.1°C, and the melting interval T D - T S first decreases from 137.2°C to 129.5°C and then increases from 129.5°C to 133.2°C. Moreover, the cohesive zone becomes narrower and then wider, and its location shifts slightly downward. In addition, the recovery ratios of V and Cr in dripped iron first increase and then decrease, reaching maximum values of 14.552% and 28.163%, respectively, when the charging ratio is 25%. A proper LVTM-CCB charging ratio would improve the softening-melting behavior of the mixed burden; however, Ti(C,N) would be generated rapidly in slag when the charging ratio exceeds 25%, which is not favorable for BF operation. When considering the comprehensive softening-melting behavior of the mixed burden and the recovery ratios of V and Cr, the recommended LVTM-CCB charging ratio is 20%.

  2. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder.

    Zhong, Shiyun; Ni, Kun; Li, Jinmei


    A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO(4)(2-) from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO(4)(2-) releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO(4)(2-) from the mortar with 20% FGD gypsum is 9200 mg·m(-2), which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.

  3. Effect of TiO2 Content on the Crystallization Behavior of Titanium-Bearing Blast Furnace Slag

    Hu, Meilong; Wei, Ruirui; Yin, Fangqing; Liu, Lu; Deng, Qingyu


    The content of TiO2 has an important influence on both the basic structure and the crystallization behavior of titanium-bearing blast furnace (BF) slag. The results of thermodynamic calculations show that, when the mass content of TiO2 is smaller than 25%, CaTiO3 increases as the content of TiO2 increases. However, when the TiO2 content is more than 25%, the CaTiO3 content decreases and TiO2 gradually increases. The results of a confocal laser scanning microscopy (CLSM) experiment show that, when the TiO2 mass content is 10%, Ca2MgSi2O7 and Ca2Al2SiO7 are the main crystallized phases resulting from the molten slag. Furthermore, when the TiO2 mass content is 20%, CaMgSi2O6, Ca(Ti,Mg,Al)(Si,Al)2O7 and dendrite CaTiO3 are the crystallized phases, while when the TiO2 mass content increases to 30%, CaTiO3 is the sole phase. The discrepancy between the CLSM results and the thermodynamic calculations occurs mainly due to the high melting point of the titanium-bearing BF slag. During the cooling process for the molten slag, CaTiO3 is crystallized first, due to its high crystallization temperature. Furthermore, the molten slag is solidified in its entirety before the other phases crystallize.

  4. 冶金焦的本质特性与现代高炉冶炼的对应关系%Relationship between essential characteristic of metallurgical coke and modern blast furnace smelting



    On the basis of scientific analysis for the current quality of Ansteel coke,the influences of coke strength, thermal state performance,chemical composition,particle size and quality fluctuation on blast furnace smelting were studied. Through sampling the coke in the blast furnace tuyere and further validation with experiment,the blast furnace operation practice could be guided well,at the same time good results were achieved. The study made the blast furnace operator and coking plant personnel in Ansteel access to knowledge related to coke quality,the influence of coke quality on blast furnace smelting,and the coke quality evaluation methods and so on,especially the use of"tuyere sampling"for which it needs to know the change rule of coke in the furnace hearth working condition. The study provides a power-ful technical support for the blast furnace operation,at the same time provides the basis for coking plant about how to implement low cost to meet the requirements of the blast furnace operation coke.%在对鞍钢焦炭质量现状进行科学分析的基础上,研究了焦炭强度、热态性能、化学组成、粒度及质量波动等对高炉冶炼的影响规律,并通过对高炉风口焦炭的实际取样与研究加以验证,指导高炉操作实践;同时,系统地掌握焦炭质量、焦炭质量对高炉冶炼的影响、焦炭质量的评价方法等;尤其是利用“风口取样”,掌握焦炭在炉内的变化规律和炉缸工作状况,为高炉操作提供技术支持,同时为焦化厂低成本生产出符合高炉运行要求的焦炭提供了依据。

  5. Interaction between upper and lower operational furnace profiles and its influence for blast furnace in TISCO%太钢高炉上下部操作炉型相互作用及其影响



    通过太钢2座4350 m³高炉生产、操作炉型监控和维护的实践,认识到高炉上下部操作炉型之间有密切的相互作用关系,其对炉缸寿命有一定的影响。高炉上部的操作炉型受到炉腹煤气量、炉身部位耐火材料的选择以及炉身冷却水流向的影响。适当的炉腹煤气量、减少冷却板与砖衬间可能形成的窜气通道、冷却水横向分段、分区冷却有助于形成合理的上部操作炉型。炉身操作炉型与渣皮厚度具有相互作用关系,风口以上操作炉型对炉缸炉底的侵蚀和结厚也存在相互作用关系。通过维持炉芯死焦堆透气透液性、高炉炉身硬质压入以及钒钛矿护炉等措施,维持合理的上、下部操作炉型,改善了炉况顺行和操作指标,同时减缓炉缸侧壁的侵蚀。%Based on production, operational furnace profiles monitoring and maintenance of two blast furnaces (BFs) with volume of 4 350 m³ in TISCO, it was found that there was the interaction between upper and lower operational furnace profiles. What’s more, it had an influence on hearth life. The upper operational furnace profile was affected by bosh gas volume, shaft refractory selection and flow direction of shaft cooling water. It was helpful to formed reasonable upper fur-nace profile by appropriate bosh gas volume, decreased gas channel between cooling plates and lining bricks and division-al cooling of horizontal shaft cooling water. There was the interaction between shaft middle operational furnace profile and thickness of skull. The operational furnace profile above tuyere also had the interaction with erosion and accretion of hearth bottom. In order to improve and maintain reasonable operational furnace profiles, the breathability and permeability of deadman should be maintained. The hard extruding repairing and furnace protection of schreyerite could also be uti-lized. Therefore, The operation indicators of furnace condition

  6. Blast furnace slag of a ferrosilicon firm in aswan governorate, Upper Egypt, as an adsorbent for the removal of merocyanine dye from its aqueous solution.

    Taha, Gharib Mahmoud; Mosaed, Taghreed Mahmoud


    The adsorption potential of the blast furnace slag of a ferrosilicon firm in Aswan Governorate, Egypt, to decolorize aqueous solutions of 3-methyl-1-phenylpyrazol-5-one 4[2] merocyanine dye (1) was investigated at room temperature. The influence of the solution pH, the quantity of adsorbent, the initial concentration of 1, and the applied contact time were studied with the batch technique. The maximum percentage of removal of 1 was observed at pH 4. The adsorption data were better fitted by the Freundlich than by the Langmuir adsorption isotherm model, confirming the formation of monolayers of 1 on the adsorbent surface. Kinetic rate constants and the transient behavior at different initial concentrations of 1 were determined with both the Lagergren pseudo-first-order and the Ho and McKay pseudo-second-order kinetic models. The calculated kinetic parameters revealed that the adsorption of 1 on blast furnace slag followed a second-order chemisorption process.

  7. Applicability of a dense-medium cyclone and Vorsyl separator for upgrading non-coking coal fines for use as a blast furnace injection fuel

    A.K. Majumder; H. Shah; S. Choubey; J.P. Barnwal; A.K. Kundu; P.S. Dhillon [Advanced Materials and Processes Research Institute, Bhopal (India)


    Replacement of metallurgical coke by high injection rates of thermal coal into the blast furnace is an important technology as it reduces the cost of hot metals significantly. However, one of the main problems that prevents the use of thermal coals is their high mineral-matter contents. Although, the ash content of coals to be injected in a blast furnace should be as low as possible, a maximum of 16% ash is acceptable. A non-coking coal sample from Chhattisgarh area, India, having a feed ash content of around 27% was collected for beneficiation studies to a grade acceptable for the injection purposes. A series of experiments were conducted in a 76-mm diameter dense-medium cyclone (DMC) and a Vorsyl separator (VS). It is observed that a clean coal having around 16% ash can be produced using both the cyclones if the variables are properly optimized. Further, it is observed that at the same ash level the yield of clean coal was 5%-6% more in VS than in DMC. It has also been demonstrated that at the same ash level, the magnetite medium stability in a VS was better than a DMC. 4 refs.

  8. Energy saving in the pig iron production in the blast furnace no. 5; Ahorro de energia en la produccion de arrabio en el alto horno No. 5

    Gil Diaz, Ricardo A.; J Quiroz, Francisco; Rodriguez, Rita Patricia; Banuelos Garza, Yolanda [Altos Hornos de Mexico, S. A., Coahuila (Mexico)


    Altos Hornos de Mexico (AHMSA) is an iron and steel industry integrated to Grupo Acereros del Norte in Monclova, in the Coahuila state. With an a installed capacity of 3.1 millions of tons per annum o liquid steel. In its installations, AHMSA has the highest capacity blast furnace installed in Mexico, blast furnace No. 5, that has a useful volume of 2,163 cubic meters, designed to produce 4,800 tons of pig iron per day. The basic goal to achieve in the operations involved in the production of steel through the pig iron production in the blast furnace, is the hot metal production at the lowest attainable cost within the quality requirements specified by the steel makers. The most important criterion for the recognition of the attained success is the fuel consumption per ton of pig iron produced, with coke as the main fuel fed to the blast furnace and therefore of the greatest impact on the final product cost. AHMSA contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently it is pending the shortage of coke for productions higher than 2.6 MMT of liquid iron. In response to this, and faced to the true need of diminishing the production costs in the process of making pig iron, new practices have been implemented in the use of complementary fuels to partially substitute the metallurgical coke as an energy source for the blast furnace process. The use of natural gas, fuel oil and the gradual increase of the temperature of hot blow, have strongly impacted the metallurgical coke consumption, lowering it considerably and diminishing the costs per ton of pig iron in blast furnace No. 5. Another important issue, is the utilization of coke fines resulting form the sieving of the same, directly fed to the furnace load. This practice reduced the coke consumption, and most of all, the output of our coking plants was increased on being utilized at the maximum coke production

  9. Energy saving in the pig iron production in the blast furnace no. 5; Ahorro de energia en la produccion de arrabio en el alto horno No. 5

    Gil Diaz, Ricardo A.; J Quiroz, Francisco; Rodriguez, Rita Patricia; Banuelos Garza, Yolanda [Altos Hornos de Mexico, S. A., Coahuila (Mexico)


    Altos Hornos de Mexico (AHMSA) is an iron and steel industry integrated to Grupo Acereros del Norte in Monclova, in the Coahuila state. With an a installed capacity of 3.1 millions of tons per annum o liquid steel. In its installations, AHMSA has the highest capacity blast furnace installed in Mexico, blast furnace No. 5, that has a useful volume of 2,163 cubic meters, designed to produce 4,800 tons of pig iron per day. The basic goal to achieve in the operations involved in the production of steel through the pig iron production in the blast furnace, is the hot metal production at the lowest attainable cost within the quality requirements specified by the steel makers. The most important criterion for the recognition of the attained success is the fuel consumption per ton of pig iron produced, with coke as the main fuel fed to the blast furnace and therefore of the greatest impact on the final product cost. AHMSA contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently it is pending the shortage of coke for productions higher than 2.6 MMT of liquid iron. In response to this, and faced to the true need of diminishing the production costs in the process of making pig iron, new practices have been implemented in the use of complementary fuels to partially substitute the metallurgical coke as an energy source for the blast furnace process. The use of natural gas, fuel oil and the gradual increase of the temperature of hot blow, have strongly impacted the metallurgical coke consumption, lowering it considerably and diminishing the costs per ton of pig iron in blast furnace No. 5. Another important issue, is the utilization of coke fines resulting form the sieving of the same, directly fed to the furnace load. This practice reduced the coke consumption, and most of all, the output of our coking plants was increased on being utilized at the maximum coke production

  10. Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems

    Mejía, J. M.


    Full Text Available This study assesses the viability of using an agro-industrial by-product, rice husk ash (RHA from a Colombian rice company’s combustion facility, as a total replacement for the commercial sodium silicate ordinarily used in alkaliactivated binders. Fly ash (FA, granulated blast furnace slag (GBFS and binary 50FA:50GBFS blended pastes were activated with a mix of sodium hydroxide and either sodium silicate or one of two types of RHA. The pastes were characterised for strength, mineralogy and microstructure. The findings showed that the agro-industrial by-product can be used to yield alkali-activated materials with 7-day mechanical strengths on the order of 42 MPa. The study confirmed that both amorphous silica and part of the crystalline silica present in RHA participate in the alkaline activation process, providing the alkalinity is suitably adjusted.Este estudio evalúa la viabilidad de utilizar un subproducto agroindustrial, la ceniza de cascarilla de arroz (RHA proveniente de un equipo combustor de una empresa Arrocera en Colombia, como reemplazo total de la sílice aportada por el silicato de sodio comercial en sistemas cementicios activados alcalinamente. Se prepararon pastas de ceniza volante (FA, de escoria de alto horno (GBFS y un sistema binario 50FA:50GBFS, que fueron activadas por una mezcla de silicato de sodio e hidróxido de sodio, y por dos tipos de RHA. Las mezclas se caracterizaron mecánica, mineralógica y microestructuralmente. Los resultados demuestran que es posible obtener materiales activados alcalinamente con resistencias mecánicas del orden de 42 MPa, a 7 días de curado, utilizando el subproducto agroindustrial. Este estudio corrobora que tanto la sílice amorfa como parte de la sílice cristalina presente en RHA tienen la posibilidad de participar en el proceso de activación alcalina, siempre y cuando las condiciones de alcalinidad estén adecuadamente ajustadas.

  11. The Environmental Impact and Cost Analysis of Concrete Mixing Blast Furnace Slag Containing Titanium Gypsum and Sludge in South Korea

    Tae Hyoung Kim


    Full Text Available This study assessed the environmental effects and cost of the Industrial Waste addictive Blast Furnace Slag (W-BFS using Life Cycle Assessment (LCA and compared it to general BFS. The environmental impacts of W-BFS were as follows: 1.12 × 10−1 kg-CO2 eq/kg, 3.18 × 10−5 kg-Ethylene eq/kg, 4.79 × 10−4 kg-SO2 eq/kg, 7.15 × 10−4 kg-PO43− eq/kg, 7.15 × 10−4 kg-CFC11 eq/kg and 3.94 × 10−3 kg-Antimony eq/kg. Among the environmental impact category, GWP and AP were 9.28 × 10−2 kg-CO2 eq/kg and 3.33 × 10−4 kg-SO2 eq/kg at a raw material stage, accounting for 80% and 70% of total environmental impact respectively. In EP, POCP and ADP, in addition, raw material stage accounted for a great portion in total environmental impact because of “W” among input materials. In ODP, however, compared to the environmental impact of raw materials, oil, which was used in transporting BFS to the W-BFS manufacturing factory, was more influential. In terms of GWP, POCP and ODP, W-BFS was higher than general BFS. In terms of AP, EP and ADP, in contrast, the former was lower than the latter. In terms of cost, W-BFS (41.7 US$/ton was lower than general BFS by about 17% because of the use of waste additives comprised of industrial wastes instead of natural gypsum ,which has been commonly used in general BFS. In terms of GWP and POCP, the W-BFS mixed (30% concrete was lower than plain concrete by 25%. In terms of AP and EP, the former was lower than the latter by 30%. In terms of ADP, furthermore, W-BFS mixed (30% concrete was lower than plain concrete by 11%. In aggregate-related ODP, however, almost no change was found. In terms of cost, when W-BFS was added by 10% and 30%, it was able to reduce cost by 3% and 7% respectively, compared to plain concrete. Compared to BFS-mixed concrete as well, cost could be saved by 1% additionally because W-BFS (US$41.7/ton is lower than common cement (US$100.3/ton by about 60% in terms of production costs.

  12. Repulsion forces of superplasticizers on ground granulated blast furnace slag in alkaline media, from AFM measurements to rheological properties

    Palacios, M.


    Full Text Available The electrostatic and steric repulsion induced by different superplasticizers on ground granulated blast furnace slag in alkaline media have been studied. The superplasticizers were sulfonated naphthalene, sulfonated melamine, vinyl copolymer, and polycarboxylate- based admixtures. With these superplasticizers the slag suspensions had negative zeta potentials, ranging from -3 to -10 mV. For the first time the adsorbed layer thicknesses for superplasticizers on slag using colloidal probe atomic force microscopy has been measured. To model the interparticle force interactions an effective Hamaker constant was computed from dielectric properties measured on a dense slag sample produced by spark plasma sintering. The obtained results conclude that the dispersion mechanism for all the superplasticizers studied in the present work is mainly dominated by the steric repulsion. Results were then used in a yield stress model, YODEL, to predict the yield stress with and without the superplasticizers. Predictions of the yield stress agreed well with experimental results.

    En este trabajo se ha estudiado la repulsión electrostática y estérica inducida por diferentes aditivos superplastificantes en sistemas de escoria de horno alto en medios alcalinos. Se han estudiado aditivos superplastificantes basados en naftaleno, melamina, copolímeros vinílicos y basados en policarboxilato. Estos aditivos inducen en la escoria un potencial zeta negativo, entre -3 y -10 mV. Por primera vez, se ha determinado el grosor de la capa de aditivo adsorbido sobre la escoria mediante microscopía de fuerzas atómicas (AFM. Para modelizar las fuerzas de interacción entre partículas, se ha determinado la constante efectiva de Hamaker de la escoria a partir de las propiedades dieléctricas de una muestra de escoria obtenida mediante sinterización spark plasma sintering. Los resultados obtenidos concluyen que el mecanismo de dispersión de los superplastificantes

  13. Rheology and zeta potential of cement pastes containing calcined silt and ground granulated blast-furnace slag

    Safi, B.


    Full Text Available This study aimed to analyse the re-use of dam silt as a supplementary binder for self-compacting concrete (SCC. When burnt, silt becomes more reactive because the kaolin it contains is converted into metakaolin. Portland cement, calcined or burnt silt and ground granulated blast furnace slag were used in this research. Cement pastes were prepared with blends containing two or three of these materials. The replacement ratio for burnt silt in both cases was 10 % and 20 % by cement weight and the ratio for the slag was a constant 30 % by weight of the blend. Rheological and zeta potential tests were conducted to evaluate paste electrokinetics and rheological behaviour. The findings showed that burnt silt is apt for use as an addition to cement for SCC manufacture.

    En el presente trabajo se ha analizado la posibilidad de utilizar los lodos procedentes de embalses como adición en la fabricación del hormigón autocompactante (HAC. Con la calcinación, estos materiales se vuelven más reactivos debido a la transformación en metacaolín, del caolín que forma parte de su composición. Las materias primas empleadas en esta investigación son: cemento Pórtland, lodos de embalse calcinados y escorias granuladas de horno alto. Se prepararon pastas de cemento con mezclas que contenían dos o tres de estos materiales. El porcentaje de reemplazo de los lodos calcinados osciló entre el 10 y el 20 % en peso del cemento, mientras que el de la escoria fue del 30 % en peso de la mezcla. Se llevaron a cabo ensayos reológicos y de potencial zeta para evaluar el comportamiento electrocinético y reológico de las distintas pastas. De acuerdo con los resultados obtenidos, una vez calcinados, los lodos de embalse son aprovechables como adición al cemento con destino a la preparación de HAC.

  14. Characteristics study on application of blast- furnace gas and converter gas in regenerative heating furnace%高、转炉煤气应用于蓄热式轧钢加热炉的特性研究

    宋中华; 丁翠娇; 欧阳德刚; 陈超


    研究了高炉煤气和转炉煤气的燃烧温度变化规律及应用特点.通过理论计算,分析了炉气成分及燃气种类对炉气发射率和炉内传热过程的影响规律.进行了蓄热式加热炉在蓄热过程中的热量平衡计算,得到了空、煤气在不同预热温度下烟气利用率的变化规律,并进一步分析了烟气利用率对加热炉产生的影响.此外,对比分析了使用两种煤气时对设备投资及现场空间布置的影响.%The combustion temperature change rule and the applied characteristics of blast furnace gas and converter gas were analyzed. Through calculation, the effect of furnace gas composition and gas type on the exhaust gas emission rate and the heat transfer process in the furnace of the influence law was analyzed. The heat balance in storing process of regenerative was calculated. The variation trend of flue gas utilization ratio in deferent preheating temperature was obtained and the effects of flue gas utilization ratio on heating process were further investigated. In addition, the effects of two gases on the e-quipment investment and space layout were analyzed.

  15. Characteristics and properties of oil-well cements auditioned with blast furnace slag; Cementos petroleros con adicion de escoria de horno alto. Caracteristicas y propiedades

    Sanchez, R.; Palacios, M.; Puertas, F.


    The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% by cement weight) with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activator partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. {sup 2}9Si and {sup 2}7Al MAS NMR and BSE/EDX studies, in turn, showed that the CSH gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios. (Author) 29 refs.

  16. Operation of blast furnace gas (BFG) gas holder with ld gas (LDG); Operacao do gasometro de gas de alto forno com gas de aciaria

    Sampaio, William Genelhu; Valentino, Waldir Smith [Usinas Siderurgicas de Minas Gerais S/A (USIMINAS), Ipatinga, MG (Brazil)


    The Intendente Camara plant, one of USIMINAS steel works, located in Ipatinga - MG, operates its network of process gases with two Coke-Oven Gas (COG) oil-seal gas holders, one Blast Furnace Gas (BFG) oil-seal gas holder and a LD gas (LDG) telescope type gas holder. During the repair of LDG gas holder, this gas would be completely burned in the flares for a period of five months. Due to this loss, the cost of additional fuel and interventions in the production rhythm of the Hot Strip Mill, its biggest consumer, would be high. This paper presents the philosophy and pillars that mitigated these losses, highlighting how it was possible to operate the BFG gas holder with LDG, the achieved economy and lessons learned from the process. (author)

  17. The Influence of Allocation on the Carbon Footprint of Electricity Production from Waste Gas, a Case Study for Blast Furnace Gas

    Joeri Van Mierlo


    Full Text Available Producing electricity from waste gas is an after treatment for waste gas while recovering the energy content. This paper addresses the methodology to calculate the effect that waste gas energy recovery has on lowering the impact of climate change. Greenhouse gases are emitted while burning the waste gas. However, a thorough study should include the production of the feedstock as well as the production of the infrastructure. A framework is developed to calculate the environmental impact of electricity production from waste gas with a life cycle approach. The present paper has a twofold purpose: to assess the climate change impact of generating electricity with blast furnace gas (BFG as a waste gas from the steel industry; and to establish a sensitivity assessment of the environmental implications of different allocation rules.

  18. A pilot plant study for CO{sub 2} capture by aqueous ammonia applied to blast furnace gas in iron and steel making process

    Young Kim, J.; Han, K.; Dong Chun, H. [CO2 Project, Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)


    This presentation reported on a study in which carbon dioxide (CO{sub 2}) was captured from a demonstration iron and steel plant using low concentration aqueous ammonia as the absorbent chemical. The pilot plant was designed to process 50 Nm{sup 3}/h of blast furnace gas (BFG). The feed gas contained more than 20 per cent CO{sub 2} at 35 to 60 degrees C. Test runs revealed that the absorption efficiency of CO{sub 2} exceeded 80 per cent with a CO{sub 2} purity of more than 90 per cent in the product stream. The process parameters are currently being studied along with the various salts needed to prevent salt precipitation. It was determined that the use of waste heat recovery technology in the iron and steel-making process can render ammonia-based CO{sub 2} capture technology more economically feasible for the reduction of CO{sub 2}.

  19. Study on Fixed-modes of Liner Plates of Blast Furnace Distribution Chutes%高炉布料溜槽衬板固定方式探讨

    兰大伟; 孟翠娥


    The fixed lining plate modes problems about the blast furnace distributing chute plate are ana-lyzed by simulation , the several fixed modes of chute lining board are proposed , and advantages and disadvantages of several methods and applicability are introduced and compared , which can provide reference for production .%对高炉布料溜槽采用压板固定衬板方式存在的问题做模拟分析,提出几种溜槽衬板固定方式,并介绍比较了几种方式优缺点及适用场合,可为现场生产提供借鉴。

  20. Influence of the activator concentration on the kinetics of the alkaline activation process of a blast furnace slag

    Fernández-Jiménez, A.


    Full Text Available The influence of activator solution concentration on hydration kinetics of an alkaline activated blast furnace slag has been studied. The alkaline activator used was a mix of waterglass (Na2SiO3∙nH2O and NaOH solution (of variable concentration. Final activator concentrations were 3,4 and 5 % Na2O wt. with respect to the slag total weight. Degree of reaction (α was determined from hydration heat values obtained through isothermal conduction calorimetry. From the results obtained it is deduced that a treshold value of 4 % Na2O wt. exists. For those concentrations and at test temperatures (except for 25ºC and 3 % Na2O wt., the mechanism controlling hydration reaction for a values higher than 0.5, is a diffusion process. This process is described by .Jander equation [D3=(1-(1-α1/32=(k/r2t=0,0426(t/t0,5]. The activation energy obtained for that process is of approximately 50-58 Kj/mol.

    Se ha estudiado la influencia de la concentración de la disolución activante en la cinética de hidratación de una escoria granulada de alto horno, activada alcalinamente a distintas temperaturas. El activador alcalino utilizado fue una mezcla de water glass (Na2SiO3∙nH2O con una disolución de NaOH (de concentración variable. Las concentraciones finales del activador alcalino fueron: 3, 4 y 5 % en peso de Na2O respecto a la masa total de escoria. El grado de reacción (α se determinó a partir de valores de calor de hidratación obtenidos por calorimetría de conducción isotérmica. De los resultados obtenidos se deduce que existe un valor umbral de concentraciones en torno al 4 % en peso de Na2O. También para dichas concentraciones y a las temperaturas de ensayo (excepto a 25ºC con un 3 % en peso de Na2O, el mecanismo que controla la reacción de hidrataci

  1. 利用高炉冲渣水余热直接供暖的应用%Application of Direct Heating of Blast Furnace Waste Water

    徐小刚; 杨世辉



  2. 高炉渣改性作为矿渣棉原料的试验%Experimental Research of Slag Wool Producing With Blast Furnace Slag

    郭强; 袁守谦; 刘军; 李海潮


    研究了不同酸度条件下,随着高炉熔渣中主要成分的变化,其黏度和表面张力对高炉渣作为矿渣棉原料的影响,并对其影响机制进行了探讨。结果表明,Al2O3和SiO2增加时,黏度增加,表面张力也随之加大,利于制取较长的矿渣棉纤维。%In this paper,the effect of viscosity and surface tension of furnace slag as slag wool material is studied in different acidity coefficient,with changing of the blast furnace slag in the main component.The influence mechanism had also been discussed.The results show that the slag viscosity decreases with the increase of Al2O3 content,at the same time,surface tension decreases too which benefits to make longer slag wool fibers.

  3. The Operation Adjustment and Thermal Test of Hot Blast Furnace%热风炉的运行调节与实验研究

    刘元恩; 赵记彦; 徐国良; 戴宏伟


    In this paper, the ignition start - up and operation adjustment of the hot blast furnace is studied. Both the thermal test and pollutant discharge test are carried out. The tests indicate that heat supply of the furnace is 4.52 MW,exceeds 7.6% to the rated one,and the heat efficiency is 77.07%. Besides,pollutant discharge is also consonant with relative national standards.%本文研究了热风炉的点火启动和运行调整方法.进行了热风炉的热工试验和污染物排放试验.实验结果表明,热风炉的供热量为4.52 MW,超出了额定热量7.6%,热风炉热效率为77.07%.污染物排放符合国家有关标准.

  4. Multi-zone constrained mathematical model of oxygen blast furnaces%氧气高炉多区域约束性数学模型

    郭培民; 高建军; 赵沛


    An oxygen blast furnace was divided into the three zones of hot zone, solid charging zone and gas heating zone. Physical constraints and chemical constraints of each zone were analyzed in detail. Based on material balances and energy balances, a multizone constrained mathematical model was established for oxygen blast furnaces. Theoretical analysis and calculation results show that the multi-zone constrained mathematical model can make up for deficiencies in the whole furnace heat balance and reflect the heat value in use of different zones. The solid charging zone is constrained by indirect reduction and heat balances. With the increase of metallization rate, the need of cycle gas is increased in the solid charging zone. When the metallization rate is very high, the hot zone and solid charging zone meet the thermal equilibrium conditions; although the calculated fuel ratio is low, the gas volume in the gas heating zone can not achieve balance.%将氧气高炉分为高温区、固体炉料区和煤气加热区三个区域,并分析了各区域的物理约束和化学约束条件.在物料平衡和能量平衡的基础上,建立了氧气高炉多区域约束性数学模型.理论分析和计算结果表明:多区域约束性数学模型可以弥补全炉热平衡的不足,反映热量在不同区域的利用价值;固体炉料区受间接还原反应和热平衡的约束,随着金属化率的升高,需要循环煤气量逐渐增大;当金属化率很高时,在高温区和固体炉料区满足热平衡条件下,虽然计算得到的燃料比很低,但煤气加热区煤气量不能实现平衡.

  5. Improving coke thermal property and ensuring the blast furnace to operate stably%通过提升焦炭热态性能确保高炉稳定顺行

    任培兵; 任雁; 刘玉


    In this paper,the coke thermal property is expounded,and the impacts of alkali metal,al-kali-earth metal,zinc,lead and chloride on the coke thermal property are analyzed.Furthermore,some measurements are proposed like improving the coke thermal property and standardizing the operation of blast furnace,which will be instructive for the blast furnace to operate stably and trouble-freely.%阐述了焦炭的热态性能,分析了碱金属、碱土金属、锌、铅、氯化物对焦炭热态性能的影响。提出了提升焦炭热态性能、规范高炉操作等措施,对高炉稳定顺行具有一定的指导意义。

  6. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement; Efecto de la incorporacion de ceniza volante y escoria de horno alto en el comportamiento electroquimico de concretos de cemento comercial

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.


    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  7. Automatically Charging Blast Furnace by SIEMENS S7-400PLC Via Pointer Programming%西门子S7-400PLC指针编程实现高炉自动装料

    宁戎; 洪志祥


    介绍了当前比较通用的一种有料车高炉的自动装料方式,并详细解释了如何通过西门子S7-400PLC指针编程的形式,使用一个关联的数据区,一个动态的巡检字,三套并联的程序结构,实现高炉自动装料的方法。%This paper introduces a common kind of blast furnace with skip car that can automatic charging, and explain how to use the SIEMENS S7-400PLC with pointer program-ming, using a relational data area, a dynamic inspection of words, three sets of parallel pro-gram structure,to achieve automatic charging of blast furnace automatically.

  8. Practices of Energy Conservation of the Waste Heat Recovery Device in Baosteel N(o)4 Blast Furnace%宝钢4号高炉余热回收系统节能实践

    朱勇军; 杨俊; 王训富; 李有庆


    To lower energy consumption,the heat energy was recovered by using separate-type heat pipe heat exchanger from the waste heat of hot blast stove in Baosteel N04 Blast fumace.It played an important role in raising the blast air temperature,saving energy and decreasing emission since the waste heat recovery device for hot blast stove of Baosteel N04 blast furnace Was put into operation more than 5 years ago.The effect of the waste heat recovery of Baosteel No4 blast furnace on the blast air temperature and energy consumption Was quantified.The effect of the waste heat recovery device before and after remoulding WaS analyzed and the failure reason of the waste heat recovery Was discussed and improvement measures were proposed.%为了节能降耗,宝钢4号高炉热风炉余热采用分离热管式换热器回收热能.宝钢4号高炉热风炉余热回收装置投入运行5年多来,对提高高炉风温、节能减排起到重要作用.量化了宝钢4号高炉余热回收对高炉风温和高炉能耗的影响,对余热回收改造前后的效果进行了分析,同时对余热回收失效原因和改进措施进行了探讨.

  9. Charging behavior in a bell-less blast furnace based on 3D discrete element method%基于三维离散元法的无钟高炉装料行为

    张建良; 邱家用; 国宏伟; 刘征建; 孙辉; 王广伟; 高征铠


    利用三维离散元法建立了无钟高炉布料模型,分析了料罐、旋转溜槽中的颗粒流动行为以及颗粒离开溜槽后的下落轨迹和料堆形成,可视化再现了装料过程。结果发现:炉料在流动过程中始终存在粒度偏析,料罐排料流为漏斗流,小颗粒由于偏析而倾向于后期排出;溜槽倾角对颗粒流动行为和料堆形成影响较大;溜槽内颗粒流由于溜槽旋转而向侧上部偏离和翻动,小颗粒因靠近壁面而位于料流内侧,大颗粒因聚集在溜槽上部而处在料流外侧,炉料颗粒偏析、偏转翻动和速度分布影响下落轨迹;在炉料下落到料面的堆积过程中,大颗粒易于向炉喉中心和边缘偏析,小颗粒因位于料流内侧和渗透作用而分布在堆尖下方且偏向中心侧。结合激光网格炉内测量技术料流轨迹测量结果,验证了模型的适用性。%A bell-less blast furnace charging model was established by using 3D discrete element method. The flow behavior of particles in the hopper and rotating chute, the falling trajectory and heaping process of particles discharged from the rotating chute were modeled and analyzed by using this model. Consequently, the charging process was reproduced visually. It is found that size segregation is always prevalent throughout the flow process of particles. The discharging flow from the hopper is funnel flow, and small particles tend to be discharged in the later stage due to size segregation. It is proved that the influence of chute inclination angle on the particle behavior and heaping process is very significance. The granular flow in the chute deviates upward to one side and tumbles attributing to rotation. Small particles close to the chute wall surface move to the inside of the stream, while large ones staying at the upper part of the chute flow move to the outside. The falling tra jectory of particles is affected by particle size segregation

  10. Application of BPRT Coaxial Unit in Pressure Energy Recovery of Blast Furnace%BPRT同轴机组在高炉压力能量回收中的应用


    The characteristics and process of the BPRT coaxial unit are introduced. Us-ing the BPRT coaxial unit in pressure energy recovery of blast furnace can recover energy effectively.%  介绍了BPRT同轴机组的特点及工艺流程,在高炉压力能量回收中采用BPRT同轴机组形式,可达到更有效的能量回收目的。

  11. 利用相变材料回收高炉冲渣水余热的经济性分析%Economic Analysis of Using Phase Change Material Recovery Waste Heat from Waste Water of Blast Furnace Slag

    肖松; 郑东升; 吴淑英


    According to the features of the waste water, the economic analysis of using phase change material recovery waste heat from waste water of blast furnace slag was studied.%根据高炉冲渣水余热的特点,对利用相变材料回收高炉冲渣水余热的经济性进行了分析.

  12. Phase Equilibrium Studies of CaO-SiO2-MgO-Al2O3 System with Binary Basicity of 1.5 Related to Blast Furnace Slag

    Kou, Mingyin; Wu, Shengli; Ma, Xiaodong; Wang, Laixin; Chen, Mao; Cai, Qingwu; Zhao, Baojun


    Slags play an important role in blast furnace operation, and their compositions are based on the CaO-SiO2-MgO-Al2O3 quaternary system in many steel companies. The binary basicity (CaO/SiO2 weight ratio) of blast furnace slags, especially primary slag and bosh slag, can be as high as 1.5 or higher. Phase equilibria and liquidus temperatures in the CaO-SiO2-MgO-Al2O3 system with binary basicity of 1.50 are experimentally determined for temperatures in the range 1723 K to 1823 K (1450 °C to 1550 °C). High temperature equilibration, quenching, and electron probe X-ray microanalysis techniques have been used in the present study. The isotherms are obtained in the primary phase fields of Ca2SiO4, melilite, spinel, periclase, and merwinite related to blast furnace slags. Effects of Al2O3, MgO, and binary basicity on liquidus temperatures have been discussed. In addition, extensive solid solutions have been measured for different primary phases and will be used for development and optimization of the thermodynamic database.

  13. Use of plastics in blast furnace processes: A contribution to ecologically and economically acceptable recycling of plastic waste; Kunststoffverwertung im Hochofen - ein Beitrag zum oekologischen und oekonomischen Recycling von Altkunststoffen

    Janz, J. [Stahlwerke Bremen GmbH (Germany)


    The use of plastics in blast furnace processes has a number of advantages. For one thing, existing facilities can be used with only slight reconstruction measures. Next, the blast furnace process does not necessarily require plastics and therefore is independent of the available plastics volume. Further, it has a high utilisation potential. For example, the Bremen blast furnace No. II has only 8 nozzles out of 32 which are suited for plastics, but it can utilize 70,000 t/a, which is more than 13 percent of the total plastics volume collected by DSD. Indepenent eco-balances have shown that there is no better technology on the market at the moment. (orig) [Deutsch] Mit der Kunststoffverwertung im Hochofen steht ein Verfahren zur Verfuegung, das sich gleich in mehrfacher Hinsicht vor der Konkurrenz auszeichnet. Im Gegensatz zu anderen Verwertungen wird eine bereits vorhandene Anlage genutzt, an der lediglich zusatzeinrichtungen benoetigt werden. Gleichzeitig wird abfallpolitische Flexibilitaet dadurch erreicht, dass der Hochofen nicht auf das Reduktionsmittel Kunststoff angewiesen ist. Von wesentlicher Bedeutung ist auch die hohe Verwertungskapazitaet eines Hochofens. Unabhaengige Oekobilanzen und eigene Messungen haben zweifelsfrei gezeigt, dass ein besseres Verfahren zur Zeit nicht auf dem Markt ist. (orig)

  14. 高炉喷吹废塑料的先进技术%Establishment of Advanced Recycling Technology for Waste Plastics in Blast Furnace



    废塑料循环利用技术对于全球环境保护和社会发展都是一个非常重要的课题。JFE制钢公司为了将废塑料作为高炉的还原剂,通过热模燃烧实验;研究了废塑料的燃烧气化率。经过研究,为了改善粗粒废塑料的燃烧性,开发了同时喷吹煤粉或/和天然气的技术,为了提高废塑料的燃烧和气化率及炉内透气性,JFE开发出将废塑料与碳酸钙(CaC03)复合造粒技术。另外,JFE还研究了废塑料精细粉碎技术。此技术已经应用在实际生产中。%The establishment of technology for recycling waste plastics is a highly important issue for global environmental conservation and the society. JFE Steel has pursued the effective use of waste plastics as a reducing agent for injection into blast furnaces, and conducted hot model experiments to study the combustion and gasification behaviour of waste plastics. On the basis of this basic investigation, advanced technologies that can further improve the combustion and gasification efficiency of waste plastics even with low strength has been developed; i.e. in order to improve combustibility of fine waste plastics, technology for simultaneous injection of such plastics with pulverized coal and/or natural gas has been developed. For improved the strength of plastics, technology for combined agglomeration of waste plastics with CaC03 has been developed. In addition, technology for fine crushing of waste plastics has been studied on the basis of new ideas, and this technology has been applied in actual plant operation. These technologies have been successfully applied in actual blast furnaces, contributing to lowering the reducing agent rate.

  15. Experimental Study on Optimum Mix Ratio of Blast-Furnace Slag and Fly Ash for Clayey Soil Improvement%高炉矿渣粉煤灰联合处理黏性土最佳配合比试验

    李伟; 赵燕; 刘玉珂


    目的 研究高炉矿渣、粉煤灰与黏性土混合土材料的力学特性,提出混合料的最佳配合比,为高炉矿渣、粉煤灰在软土地基处理中的应用提供理论依据.方法 利用应变控制式三轴剪切渗透试验仪,对不同配合比的高炉矿渣、粉煤灰、黏性土的试件进行不同龄期和围压下的不排水、不固结三轴压缩试验.结果 混合料的主应力差、割线弹性模量随着配合比的增加出现了先增大后减小的抛物线规律.当高炉矿渣和粉煤灰配合比含量在2:8~3:7时,主应力差和割线弹性模量达到最大值.结论高炉矿渣和粉煤灰联合对黏性土进行处理,可有效地提高地基承载力,降低基础沉降量.%Through the research of the mechanical properties of the blast furnace slag,fly ash and clay mixed soil material,we can find out the optimum mix ratio. And it will provide a theoretical basis for applying the blast furnace slag,fly ash on soft ground. The method is to do the unconsolidated-undrained triaxial compression test on the samples which have different mix proportion of blast furnace slag,fly ash and clay mixed soil material with different age and different confining pressure by using strain controlled triaxial shear penetration tester. With the increase in the ratio,the principal stress difference and secant modulus of elasticity of mixture appeared the Parabolic law which first increased and then decreased. When the content of blast furnace slag and fly ash is between 2:8 and 3:7, the principal stress difference and secant elastic modulus reached a maximum. The processing of clayey soil by blast furnace slag and fly ash can effectively improve the bearing capacity foundation and reduce the foundation settlement.

  16. Study on taphole clay with high strength and enviroment-friendly and its application in large blast furnace%大型高炉高强度环保炮泥的研制及应用

    徐国涛; 李淑忠; 熊亚非; 李怀远; 邓棠; 张洪雷


    对大型高炉高强度环保炮泥的组成、性能、结构进行了研究.研制的炮泥在炼铁厂4座高炉得到了应用,在3 800 m3高炉连续使用4个月,日出铁次数11~13次,铁水流速7.5 t/min,吨铁炮泥消耗降到0.49 kg;为高炉快速达产、减少铁水散喷创造了条件;该炮泥容易开孔,铁口通道稳定,抗渣铁侵蚀,没有黑色、黄色的毒害烟雾,利于现场工作环境的改善.%The composition, structure and properties of taphole clay with high strength and enviroment-friendly used for large blast furnace are investigated in this paper. The taphole clay has been applied at four blast furnaces of the Ironmaking Plant of WISCO,of which the taphole clay was continuously applied for four months at a new BF with 3 800 m3. On this furnace, the daily tapping time was 11-13, the flow rate of hot metal was 7. 5 t/min and the consumption of taphole clay decreased to 0. 49 kg/t, which was helpful for the new blast furnace to reach its designed production quickly. The taphole clay is good in anti-corrosion properties of slag and hot metal and easy to be opened, and no poisonous smoke in tapping process. As a result, the operational surrounding of casthouse can be improved.

  17. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    Huan Shi; Ke-qin Feng; Hai-bo Wang; Chang-hong Chen; Hong-ling Zhou


    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the aver-age pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  18. 4# blast furnace hearth side wall temperature rise analysis and control%4#高炉炉缸侧壁温度升高浅析及控制

    杨勇; 刘福成; 郎增瑞; 徐洪明


    Ling steel 4# blast furnace hearth side wal temperature causes and control measures were analyzed and summarized. Where there is air gap, hearth refractory iron in the shal ow, iron mouth does not work properly, work is not active, hearth zinc and other harmful metals on the hearth lining erosion in side wal temperature increased the main reason. By increasing the cooling intensity and the hearth hearth grouting measures such as hearth wal temperature has been ef ectively control ed, to achieve safe operation.%对凌钢4#高炉炉缸侧壁温度升高原因及控制措施进行了分析、总结。炉缸处耐材存在气隙、铁口浅、铁口工作不正常、炉缸工作不活跃、锌等有害金属对炉缸砖衬侵蚀是导致侧壁温度升高的主要原因。通过采取提高炉缸区域的冷却强度、炉缸灌浆等措施炉缸侧壁温度得到有效控制,实现安全运行。

  19. Effects of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag

    Zhang, Li; Zhang, Wu; Zhang, Ju-hua; Li, Guang-qiang


    The influences of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag were investigated. After oxidation, most of the Ti component in the slag was enriched into the perovskite phase, which served as the Ti-rich phase during the crystallization process. The phase transformation, occurrence state, and the interface of the Ti component were observed to be affected by the addition of different types of agents. During the oxidation process, titanaugite and Ti-rich diopside phases gradually transformed into non-Ti phases (anorthite: CaMgSi2O6 and CaAl2Si2O8) in the form of dendrites or columns, which were observed to be distributed at the surface of the perovskite phase. Several more cracks appeared along the grain boundaries of the perovskite phase after the addition of P2O5, facilitating the liberation of the perovskite phase. Composite additives combining both an acid and a base, such as CaO + CaF2 or P2O5 + CaF2, were used. We observed that the disadvantages of using single additives were successfully overcome.

  20. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge.

    Mikhailov, Ivan; Komarov, Sergey; Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis


    Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1g/l addition of nZVI and 0.05M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15min treatment with 0.1M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated).

  1. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling


    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  2. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide.

    Li, Jinchunzi; Chen, Zhonglin; Shen, Jimin; Wang, Binyuan; Fan, Leitao


    A bench scale study was performed to assess the effectiveness of the solidification of chromite ore processing residue (COPR) by blast furnace slag and calcium hydroxide, and investigate the enhancement effect of pre-reduction using zero-valent iron (ZVI) on the solidification treatment. The degree of Cr immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as the solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method (Chinese standard HJ/T299-2007). Strength tests and semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The experimental results showed that the performance of pre-reduction/solidification (S/S) was superior to that of solidification alone. After pre-reduction, all of the S/S treated COPR samples met the TCLP limit for total Cr (5 mg L(-1)), whereas the samples with a COPR content below 40% met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg L(-1)). At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  3. [Solidification/Stabilization of Chromite Ore Processing Residue (COPR) Using Zero-Valent Iron and Lime-Activated Ground Granulated Blast Furnace Slag].

    Chen, Zhong-lin; Li, Jin-chunzi; Wang, Bin-yuan; Fan, Lei-tao; Shen, Ji-min


    The solidification/stabilization (S/S) of chromite ore processing residue (COPR) was performed using zero-valent iron (ZVI) and lime-activated ground granulated blast furnace slag (GGBFS). The degree of Cr immobilization was evaluated using the leaching procedure, mineral composition analysis and morphology analysis. Semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The results showed that after reduction, all of the S/S treated COPR samples met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg x L(-1)), the compressive strength of all the S/S samples could meet the compressive strength standard (15 MPa) for producing clay bricks, and Cr existed as the specie that bound to Fe/Mn oxides in the S/S samples. At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  4. Improvement of ground granulated blast furnace slag on stabilization/solidification of simulated mercury-doped wastes in chemically bonded phosphate ceramics.

    Liu, Zhongzhe; Qian, Guangren; Zhou, Jizhi; Li, Chuanhua; Xu, Yunfeng; Qin, Zhe


    This paper investigated the effectiveness of (ground granulated blast furnace slag) GGBFS-added chemically bonded phosphate ceramic (CBPC) matrix on the stabilization/solidification (S/S) of mercury chloride and simulated mercury-bearing light bulbs (SMLB). The results showed that the maximal compressive strength was achieved when 15% and 10% ground GGBFS was added for HgCl(2)-doped and SMLB-doped CBPC matrices, respectively. The S/S performances of GGBFS-added matrices were significantly better than non-additive matrices. As pore size was reduced, the leaching concentration of Hg(2+) from GGBFS-added CBPC matrix could be reduced from 697 microg/L to about 3 microg/L when treating HgCl(2). Meanwhile, the main hydrating product of GGBFS-added matrices was still MgKPO(4).6H(2)O. The improvement of S/S effectiveness was mainly due to physical filling of fine GGBFS particles and microencapsulation of chemical cementing gel.

  5. Proceedings of the 36. McMaster University symposium on iron and steel making : the challenges of coal injection in today's blast furnaces

    Irons, G.A. (ed.) [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering, Steel Research Centre; Donaldson, B. (comp.) [ArcelorMittal Dofasco, Hamilton, ON (Canada); Ricketts, J. (comp.) [ArcelorMittal Steel USA, Chicago, IL (United States); Hutchinson, S.; Entwistle, J. (comps.) [US Steel Canada, Hamilton, ON (Canada)


    The Steel Research Centre (SRC) at McMaster University develops exploitable technologies that benefit the steel industry. There are 3 components to the SRC's mission, notably to conduct research leading to commercially relevant new approaches to ironmaking, steelmaking process control, waste processing, steel product design and metal forming technologies; provide training of highly qualified personnel as a the means of transferring new technology to the steel industry; and provide continuing education for steel industry engineers. This conference was attended by the world's major steel producers, as well as suppliers and engineering consultants to the industry. The conference was a discussion-oriented forum in which manufacturers and technical personnel discussed major aspects of blast furnace ironmaking, such as energy balance; current operations and optimization; opportunities to use excess energy; utilities management; purchased energy; and derivative gases. The symposium featured 14 presentations, of which 9 have been catalogued separately for inclusion in this database. The discussions following each presentation were also included in the proceedings. refs., tabs., figs.

  6. Properties of self-bonded silicon carbide brick for blast furnace%高炉用新型自结合碳化硅砖性能研究

    李付; 吕春江; 李杰; 王建栋; 吴吉光; 黄志刚


    The alkali resistance, slag resistance, thermal shock resistance, etc. Of new-type self-bonded silicon carbide bricks were studied by XRD,SEM,and other technical means,and were compared with those of Si,N4 bonded silicon carbide bricks. The results show that the new-type self-bonded silicon carbide bricks present high thermal conductivity,good slag resistance,thermal shock resistance,and mechanical properties, and are of great prospect as inner lining in blast furnace.%借助XRD、SEM等技术,对新型自结合碳化硅砖的抗碱性、抗渣性和抗热震性等高炉耐火材料的关键使用性能进行了研究,并与Si3 N4结合碳化硅高炉砖进行了对比.结果表明:这种新型自结合碳化硅砖热导率高,力学性能好,抗碱性、抗渣性和抗热震性优良,预计用作高炉内衬具有良好的应用前景.

  7. Preparation of Slag Wool by Integrated Waste-Heat Recovery and Resource Recycling of Molten Blast Furnace Slags: From Fundamental to Industrial Application

    Dawei Zhao


    Full Text Available The present paper investigated the process of the slag wool fabrication using high temperature blast furnace (BF slag modified by coal ash (CA. The liquidus temperature and viscosity of the slag system with different mass ratios of BF slag and CA were measured through an inner cylinder rotation method. The approximate mass ratio used to fabricate the slag wool was therefore determined and slag wool was then successfully prepared with a high-speed air injection method in the laboratory. The effect of mBF/m ratio, slag temperature for injection and air pressure on the preparation of slag wool was systematically investigated. The mechanical and thermal properties were also studied to confirm the long-term working conditions of the slag wool. An industry-scale slag wool production application was established. The energy consumption and the pollutant generation, were analyzed and compared with the traditional production method, which indicated a 70% reduction in energy consumption and a 90% pollution emission decrease.

  8. 高炉出铁场除尘方案研究%Study on Dust Removal Scenario of Iron Tapping Field of Blast Furnace

    陶锋勇; 石峻


    The iron tapping ifeld of blast furnace workshop of a certain iron and steel work generates a great lot smoke and dusts with high concentration in its production course, causing serious pol ution of atmospheric environment and circumjacent environment and at the same time harming the employee’ health. In accordance with the analysis of technology system of dust removal and ventilation status in the whole iron tapping ifeld and the actual application, the paper sums up the dust removal program of the system that adapts to the ifeld.%某钢铁企业高炉炼铁车间的出铁场在生产过程中产生大量高浓度的烟尘,对厂区的大气环境及周边的环境造成严重污染,同时直接危害了职工的身体健康。通过对整个出铁场除尘工艺系统及通风状况的分析及实际应用情况,总结出了适合该场合的系统除尘方案。

  9. 煤粉添加高炉除尘灰混合燃烧特性及动力学研究%Combustion Characteristics and Kinetics of Blast Furnace Dust and Coal Blends

    常健; 苏步新; 张建良; 胡正文; 孔德文; 王广伟


    Combustion characteristics and kinetic parameters of blast furnace dust and coal blends using non-isothermal combustion method were studied by thermo-gravimetric balance. The combustion characteristic parameters of samples in different ratios, such as ignition temperature, peak temperature at the maximum weight loss rate, burnout temperature and the maximum combustion rate, were studied by thermo-gravimetric analysis, and the kinetic parameters such as activation energy Ea and frequency factor A were also investigated. The experimental results showed that Ea and A both decreased with increasing of blast furnace dust content in the blend, and the "kinetic compensation effect" existed in the two parameters. Ea decreased in the first and second stages of combustion of blast fumace dust and coal blends, but the influential degree changed largely for different coals. The calculation results of Ea showed that the blast furnace dust could improve the ignition property of coal, moreover there existed a synergistic effect in the combustion of blast furnace dust and coal blends, with the best property of 5% blending.%利用热重分析天平,采用非等温燃烧方法对除尘灰与2种煤粉的混合试样的燃烧特性及其反应动力学参数进行了实验研究.考察了不同配比的混合试样的着火温度、燃烧速率最大时温度、燃尽温度和最大燃烧速率等燃烧特征参数,计算了反应的动力学参数活化能Ea和指前因子A.结果表明,两参数均随混煤中除尘灰比例的增加而降低,存在“动力学补偿效应”.煤中掺入除尘灰后,试样燃烧的第一和第二阶段的Ea均呈现下降规律,但对不同煤粉影响效果程度有较大差别.Ea的计算表明,除尘灰的存在有助于改善煤的着火性能,对煤的燃烧有催化促进作用,且5%为最佳掺混比例.

  10. SKS炼铅鼓风炉的能量分析和(火用)分析%Energy and Exergy Analysis of the Blast Furnace in SKS Lead Smelting System

    蒋爱华; 梅炽; 时章明; 余煌; 姜信杰; 朱小军


    为挖掘SKS炼铅系统的鼓风炉(SKS鼓风炉)的节能潜力,在现场测试数据的基础上,采用能量分析法和(火用)分析法分别对SKS鼓风炉的能量收支、(火用)量收支分布状况进行了衡算和分析.结果表明:SKS鼓风炉的热效率和(火用)效率分别为47.55%和38.88%.采取减少排烟损失、利用冷却水带走的能量、采用高铅渣直接还原新工艺等措施可以提高炉子的热效率和(火用)效率;仅利用鼓风炉冷却水带走的能量就可以使炉子的热效率提高到71.34%,(火用)效率提高到43.01%.SKS鼓风炉的(火用)输出总量要远小于(火用)输入总量,内部不可逆(火用)损失占总输入(火用)的41.85%.SKS鼓风炉总(火用)量收入为总能量收入的1.61倍,这说明SKS鼓风炉的能量和(火用)量衡算已经没有太大的相关性,(火用)分析更能够反映出系统的物质、能量消耗的本质,而且SKS鼓风炉的(火用)分析要比能量分析更简单.%In order to exploit the potential of energy-saving of blast furnaces in SKS lead smelting systems (hereinafter referred to as SKS blast furnace )?the income and expense distribution of energy and exergy were calculated and analyzed by adopting the energy and exergy analysis approach. The results indicated that the thermal efficiency and the exergy efficiency of the SKS blast furnace is 47.55% and 38.88 %, respectively. The efficiencies can be improved by reducing the loss of discharged gas,making use of the energy of cooling water,directly reducing the high lead slag with new techniques, and so on. The thermal efficiency and the exergy efficiency of the SKS blast furnace can reach 71.34% and 43.01 %? Respectively?by only utilizing the energy of cooling water. The total output of the exergy leaving the SKS blast furnace is much smaller than the total input, and the internal irreversible exergy loss accounts for 41.85% of the total input of exergy. The exergy income of the SKS blast

  11. 高炉炉缸炉底温度场和应力场模拟分析%Simulation and analysis of temperature field and stress field in hearth and bottom of blast furnace

    郑玉峰; 汪琦; 车玉满


    For the further study of causes of erosion of BF hearth in the production process, on the basis of ther-modynamics and mechanics of materials, two-dimensional heat transfer model of blast furnace of an enterprise is established. The workbench software solved in the beginning and the end of the blast furnace hearth bottom' s temperature field distribution and the temperature field and sidewall carbon brick to obtain its radial thermal stress distribution and stress field coupling. Results showed that the"ceramic cup+microporous carbon brick"blast furnace type compound hearth bottom structure design is reasonable, the dead iron layer of thermal stress for a long time leads to the formation of the sidewall carbon brick and the collapse angle, then the collapse an-gle accelerate the ring, which is one of the main reasons for the hearth damage.%为进一步研究高炉炉缸炉底在生产过程中的侵蚀成因,对某企业2 580 m3高炉建立二维传热模型,运用软件求解得到该高炉开炉初期和炉役末期的炉缸炉底温度场分布;对侧壁碳砖进行温度场求解并与应力场耦合得到其径向热应力分布.结果表明,该企业高炉"陶瓷杯+微孔炭砖"型复合炉缸炉底结构设计合理,死铁层的长期热应力作用导致侧壁炭砖发生崩角并加速形成环裂,是炉缸破损的主要原因之一.

  12. Development and application of hearth-bottom erosion and accretion model of blast furnace%炉缸侵蚀结厚监测模型的研发与应用



    介绍了基于遗传算法的炉缸侵蚀结厚模型的研发概况和主要模型功能,并结合某4 000 m3和5 000 m3大型高炉长期在线运行数据,着重对模型计算和侵蚀结厚监测模拟效果进行了验证.当炉底中心温度不断升高时,炉底侵蚀加剧,剩余厚度减小;当温度不断降低时,炉缸中心区域渣铁流动性差,炉底易形成导热系数较低的粘结物.模型计算结果与实际的温度变化趋势及炉缸活跃性表现相一致.%In this paper,the development of hearth-bottom erosion and accretion mathematic model of blast furnace based on genetic algorithm and its functions are introduced.Combined with long-term on-line calculation data of 4 000 m3 and 5 000 m3 large blast furnaces,the erosion and accretion simulation results are verified with model calculations.When bottom center temperature continuously increased,bottom erosion process would continuously take place and the bottom thickness would be reduced.When the bottom center temperature continuously decreases,the liquidity of hot metal and molten slag in hearth center would become poor,and it is easy to form lower thermal conductivity bonding material in bottom area.In a word,the results of model calculation and simulation are consistent with actual temperature change trend and performance of blast furnace hearth.

  13. Influence of MgO on mineral structure and metallurgical properties of blast furnace slag with medium titanium%MgO对中钛型高炉渣矿相结构及冶金性能的影响

    邓美乐; 韩秀丽; 刘磊; 张玓; 李运刚


    The mineral structure of blast furnace slag containing medium titanium with different mass percent of MgO (7%-16%) was studied by means of polarization microscope.The results show that the texture of the slag was porphyritic. the mineral compositions are mainly the rich titanium diopside and melilite,followed by spinel,perovskite,titanau-gite,and finally a little of metallic iron,titanium nitride,titanium carbide and their solid solution. As the mass percent of MgO increased,the content of the perovskite and the rich titanium diopside reduced first and then increased,the con-tents of the titanaugite increased gradually and the contents of the melilite increased first and then decreased. When the mass percent of MgO reached 14%,The first phase of the high-melting spinel appeared,which resulted in higher vos-cosity and melting temperature of blast furnace slag,and the liquidity of blast furnace slag also became worse. The above results have a vital guiding significance on improving the liquidity of blast furnace slag with medium titanium.%采用偏光显微镜对不同MgO质量分数(7%~16%)条件下中钛型高炉渣的矿相结构进行研究。结果表明,炉渣显微结构为斑状结构、似斑状结构;矿物组成主要为巴依石、黄长石,其次为尖晶石、钙钛矿、钛辉石,少量的金属铁、氮化钛、碳化钛及其固溶体;随着MgO质量分数的增加,炉渣中钙钛矿及巴依石质量分数先降低后升高,钛辉石质量分数逐渐升高,而黄长石质量分数先升高后降低;当MgO质量分数达到14%时,出现了第一期尖晶石这种高熔点化合物,会导致炉渣的黏度和熔化温度升高,炉渣的流动性变坏。该研究成果对改善中钛型高炉渣的流动性能具有重要指导意义。

  14. Design and Application of Spray Evaporative Cooling System for Blast Furnace Gas%高炉煤气喷雾蒸发冷却系统设计应用



    The application of spray evaporative cooling technology in metallurgical enter-prises to cool blast furnace gas is described, related process principles, process features are introduces and practical technical solutions are also provided.%叙述了利用喷雾蒸发冷却技术对钢铁企业中高炉煤气进行降温的工程应用。介绍了相关的工作原理、工艺流程、工艺特点,给出了实际的技术方案。

  15. 1750m3高炉煤气除尘改造及TRT发电技术的应用%De-dusting System Improvement and TRT Technology Application on the 1750m3 Blast Furnaces

    曹海刚; 许强


    介绍了济钢2座1750m3高炉煤气湿法改干法涂尘及TRT发电的主体设备、主要技术参数及取得的经济效益。%On the two 1750m3 blast furnaces of Jinan Iron and Steel Co., the wet BFG de-ducting system is replaced with the dry de-dusting system and the TRT generation unit is installed. These equipment and their technical data and economic benefits are presented.

  16. Kinetics analysis of sinter-reduction base on oxygen blast furnace%基于氧气高炉的烧结矿还原动力学分析

    薛庆国; 蓝荣宗; 王静松; 韩毅华; 王琳涛


    The reduction experiment of sinter has been taken in oxygen blast furnace atmosphere by thermal balance weight loss method.The changes of reduction RI and reduction rate RI′ have been examined,and then kinetics analysis of sinter reduction have been carried on.Results show the reduction of sinter is significantly improving in oxygen blast furnace atmosphere and the reduction RI measures up to 98.2% when the sinter is reducing at 900 ℃.With the reduction temperature increasing,the reduction rate of sinter speeds up significantly,and the end time of reduction is shorten from 117 min at 900 ℃ to 63min at 1 100 ℃.When sinter is reducing in oxygen blast furnace atmosphere,the reductive reaction is mainly controlled by the interface chemical reaction in the beginning,and then turn to hybrid controlled by both interface chemical reaction and internal diffusion about 20 min later.The apparent activation energy of reaction that sinter reducing in oxygen blast furnace atmosphere at 900 ~ 1 100 ℃ is 38.30 kJ/mol.%采用热天平减重法在氧气高炉气氛下进行烧结矿的还原实验,考察还原度RI和还原速率RI′的变化情况,并进行烧结矿还原动力学分析。结果表明:在氧气高炉气氛900℃下还原时,烧结矿的还原度RI高达98.2%;还原终了时间随还原温度的提高而缩短,由900℃时的117min缩短到1 100℃时的63min;氧气高炉气氛下,烧结矿还原的开始阶段由界面化学反应控速,还原约20min后转变为由界面化学反应和内扩散混合控速;氧气高炉气氛900~1100℃时,烧结矿还原反应开始阶段的表观活化能为38.30kJ/mol。

  17. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag

    Kim, Min Sik; Jun, Yubin; Lee, Changha, E-mail:; Oh, Jae Eun, E-mail:


    The use of calcium oxide (CaO) demonstrates a superior potential for the activation of ground granulated blast furnace slag (GGBFS), and it produces a higher mechanical strength than calcium hydroxide [Ca(OH){sub 2}]. The mechanical strength differences between CaO- and Ca(OH){sub 2}-activated GGBFS binders are explored using isothermal calorimetry, powder X-ray diffraction, thermogravimetric and differential thermal analysis (TGA and DTA) as well as compressive strength testing. Calcium silicate hydrate (C–S–H), Ca(OH){sub 2} and a hydrotalcite-like phase are found as reaction products in all samples. The TGA and DTA results indicate that the use of CaO produces more C–S–H, although this is not likely to be the primary cause of higher strength development in the CaO-activated GGBFS. Rather, other factors such as porosity may govern the strength at a higher order of magnitude. Significant reduction of Ca(OH){sub 2} occurs only with the use of Ca(OH){sub 2}, followed by the formation of carbonate (CaCO{sub 3}), indicating carbonation. -- Highlights: •CaO showed a better potential for the activation of GGBFS than Ca(OH){sub 2}. •Strength test, XRD, TGA/DTA and isothermal calorimetry are used. •C-S-H, Ca(OH){sub 2}, and a hydrotalcite-like phase are found in all samples. •The use of Ca(OH){sub 2} causes some degree of carbonation.

  18. Speciation of Zn in blast furnace sludge from former sedimentation ponds using synchrotron X-ray diffraction, fluorescence, and absorption spectroscopy.

    Kretzschmar, Ruben; Mansfeldt, Tim; Mandaliev, Petar N; Barmettler, Kurt; Marcus, Matthew A; Voegelin, Andreas


    Blast furnace sludge (BFS), an industrial waste generated in pig iron production, typically contains high contents of iron and various trace metals of environmental concern, including Zn, Pb, and Cd. The chemical speciation of these metals in BFS is largely unknown. Here, we used a combination of synchrotron X-ray diffraction, micro-X-ray fluorescence, and X-ray absorption spectroscopy at the Zn K-edge for solid-phase Zn speciation in 12 BFS samples collected on a former BFS sedimentation pond site. Additionally, one fresh BFS was analyzed for comparison. We identified five major types of Zn species in the BFS, which occurred in variable amounts: (1) Zn in the octahedral sheets of phyllosilicates, (2) Zn sulfide minerals (ZnS, sphalerite, or wurtzite), (3) Zn in a KZn-ferrocyanide phase (K(2)Zn(3)[Fe(CN)(6)](2)·9H(2)O), (4) hydrozincite (Zn(5)(OH)(6)(CO(3))(2)), and (5) tetrahedrally coordinated adsorbed Zn. The minerals franklinite (ZnFe(2)O(4)) and smithsonite (ZnCO(3)) were not detected, and zincite (ZnO) was detected only in traces. The contents of ZnS were positively correlated with the total S contents of the BFS. Similarly, the abundance of the KZn-ferrocyanide phase was closely correlated with the total CN contents, with the stoichiometry suggesting this as the main cyanide phase. This study provides the first quantitative Zn speciation in BFS deposits, which is of great relevance for environmental risk assessment, the development of new methods for recovering Zn and Fe from BFS, and potential applications of BFS as sorbent materials in wastewater treatment.

  19. 高炉煤气锅炉热效率计算方法%Calculation methods of heat efficiency for blast furnace gas boilers

    叶亚兰; 司风琪; 徐治皋


    对于高炉煤气锅炉,由于其特有的燃料性质以及由此带来的锅炉尾部受热面的不同设置方式,使得其锅炉效热率的计算和修正有别于传统方法。在 GB 10184—1988《电站锅炉性能试验规程》的基础上,结合高炉煤气的特性和锅炉尾部受热面的设置特点,分析得到了适用于高炉煤气锅炉的热效率计算和修正方法,并以某钢铁厂220 t/h 全烧高炉煤气锅炉为研究对象进行实例分析,其结果可为该类锅炉的效率测试和计算提供参考。%The method for calculating and correcting thermal efficiency of blast furnace gas (BFG)boilers is differ-ent from the conventional way,for the special properties of BFG and the resulting boiler heating surface with differ-ent settings.On the basis of GB1 01 84—1 988 Performance test code ofutility boiler,the calculation and correction model for thermal efficiency of BFG boilers was put forward,according to the properties of BFG and the settings characteristics of the boiler tail heating surface.Taking a 220 t/h boiler burning pure BFG in an iron and steel com-pany as the research object,the proposed model was applied for case study.The results can provide references for thermal efficiency test and calculation for BFG boilers.

  20. 高炉布料溜槽WC浸润焊接衬板的研制%Research on Manufacture of WC Infiltration Welding Chute Liner in Blast Furnace



    高炉炉顶布料溜槽长期受到硬度较高、速度较大的冶炼料流的冲刷,磨损严重,属于耗损件.为提高溜槽衬板的使用寿命,采用WC作为耐磨层的基体,用锰白铜作为钎料,通过浸润焊接方式,在衬板基材上钎焊上一层硬质合金.实际使用表明,与堆焊硬质合金相比,焊接质量更好,不易开裂和脱落,可以延长设备使用寿命1年以上,具有较好的经济价值.%The spreading iron material chute on the blast furnace enduringly was scoured by higher hardness and higher speed's melting material flow, and the wear mass loss is serious, so the chute is easily damaged parts. To improve the life of the chute liner, WC is used as a wear-resistant layer matrix, BMn3-12 is used as filler, by infiltration welding, the brazing layer formed on the liner's base metal. Compared with the surfacing alloy, the infiltration welding quality is better, the welded joint is not easy to crack and fall off, the useful life of the equipment can be extended more than 1 year, with better economic value.

  1. Waste and dust utilisation in shaft furnaces

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)


    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  2. Characterisation of Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    Mobasher, Neda; Bernal, Susan A.; Hussain, Oday H. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Apperley, David C. [Solid-State NMR Group, Department of Chemistry, Durham University, Durham DH1 3LE (United Kingdom); Kinoshita, Hajime [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)


    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO{sub 4} and BaCO{sub 3}, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH){sub 2} and Na{sub 2}SO{sub 4} act as alkaline activators and control the reaction of the slag in addition to forming insoluble BaSO{sub 4}, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH){sub 2} is added. An increased content of Ba(OH){sub 2} promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes.

  3. 高炉熔渣余热回收技术发展过程及趋势%Development Process and Trend of the Waste Heat Recovery Technique of the Molten Blast Furnace Slag

    齐渊洪; 干磊; 王海风; 张春霞; 严定鎏


    The development process and characteristic of the blast furnace slag waste heat recovery technique were analyzed from the end of nineteen seventies.The low exergy efficiency is the main limiting factor of commercial operation.The development trend of the blast furnace slag waste heat recovery technique is to improve the recovery efficiency,to optimize the utilization of waste heat and to develop the high value-added slag products.%系统分析了从20世纪70年代末以来高炉熔渣余热回收技术的发展历程及各个时期的特点,通过分析可知,目前高炉熔渣余热回收的效率很低,限制了其商业化运行。提高余热回收效率,优化余热利用方式,开发高附加值的炉渣副产品已成为熔渣余热回收技术发展的趋势。

  4. 高炉冲渣余热回收的试验研究与利用分析%Experimental Investigation of Waste Heat Recovery of Blast Furnace Slag Water and Utilization


    The current situation and problems in waste heat utilization of blast furnace slag water are overviewed. In terms of the characteristics of waste heat of the blast furnace slag water, a detailed determination and theoretical analysis and calculation of energy has been made. The small scale tests have been conducted. The comparison of the theoretical calculation and test results indicates that the waste heat recovery of the slag water is feasi-ble. The first-hand test data lay the foundation for the waste heat recovery of the slag water and recovery of low quality steam in later stage.%  概述了目前高炉冲渣水余热利用的现状和存在的问题。根据高炉冲渣水余热的特点,进行了详细的能源诊断和理论分析计算,并进行了小规模的试验研究。通过理论计算和试验研究的对比,验证了高炉冲渣余热回收的可行性,获得了第一手的试验数据,为后期高炉冲渣余热回收和低品质蒸汽的回收奠定了基础。

  5. 高炉矿渣基充填胶凝材料的制备与应用%Preparation and Application Performance of Cementation Material Based on Blast Furnace Slag

    赵鹏凯; 赵亮; 景娇燕


    以高炉矿渣为主要原料,用石灰作激活剂,硬石膏、氯化钙作早强剂,通过试验制备一种高炉矿渣基胶凝材料。以铁尾矿、粉煤灰和河砂为骨料,用所制备的胶凝材料和普硅水泥作胶结料进行不同浓度砂浆的应用性能试验。试验表明:相同条件下,试验制备的高炉矿渣基胶凝材料能完全代替水泥用于矿山生产,并具有生产成本低,节能降耗的优点。%In this paper, one new cementation material has been prepared using the blast-furnace slag (BFS) as the main material, lime as activator, anhydrite and calcium chloride as early strength agent, and iron tailings, fly ash and sand as aggregate. The application performance of new material and ordinary Portland cement has been compared using them as binder in mortars with different concentration. The result showed that under the same conditions, the prepared blast-furnace slag cementation material can completely replace cement in mine backfilling, and has the advantages of low cost, saving energy and reducing consumption.

  6. Design philosophy and countermeasures for long campaign life of blast furnace hearth%高炉炉缸长寿设计理念及长寿对策

    邹忠平; 项钟庸; 欧阳标; 王亮


    Based on modelling calculation, investigation and comparison analysis, the subject of long campaign life of blast furnace hearth is studied in this paper. It is pointed out that reasonable cooling intensity, setting up effective heat transfer system, forming skull on the heat face of hearth wall as soon as possible, are key points for long hearth campaign life. The design of the depth of sump, hearth cooling equipment, cooling water system, refractory configuration, are also discussed. On this basis, the concept of long hearth campaign life is suggested in this paper, that is, high water velocity and high cooling intensity in microcosmic view, low water quantity in macrocosmic view,combined with reasonable stave structure design and hearth refractory configuration,establishing reasonable heat transfer system for hearth wall, making the skull formation in front of the wall as soon as possible. In short, long hearth campaign life can be realized by forming steady skull on the hearth wall.%通过模型计算、调查和对比分析,就高炉炉缸的长寿问题进行了系统的研究,提出合理冷却强度、建立有效的传热体系、使炉缸尽快形成稳定的渣铁凝固层是炉缸长寿的关键.通过对死铁层深度、炉缸冷却设备、炉缸冷却水系统设计及耐材配置进行研究与分析,提出了微观高水速、高冷却强度,宏观低水量,配合合理的冷却壁结构设计和炉缸耐材配置,建立合理的炉缸传热体系,使炉墙热面尽快形成稳定的渣铁凝固层,靠稳定的渣铁凝固层使炉缸实现长寿的设计理念.

  7. Measuring system of radial burden surface with mechanical swing radar in a blast furnace%沿高炉料面径向的机械摆动雷达料形测量系统

    魏纪东; 马金芳; 万雷; 贾国利; 陈先中


    高炉内部复杂恶劣的环境使得料面信息难以直接检测,针对高温粉尘振动强气流冲击的特殊限制,研制了新的基于机械往复摆动的工业雷达高炉料面测量系统,提出了适应于高炉料面回波检测的拟恒虚警门限检测方法,结合能量中心法及3次样条插值,得出了一种计算高炉料面径向料形曲线的有效算法,综合3D成像技术,实现了沿高炉料面径向料形的实时测量与可视化。围绕某钢铁公司2650 m3高炉的典型应用,首次实现了工业雷达测量、数据传输、成像算法、料形分类的完整系统架构。该系统可以在高炉恶劣环境下测量任意截面的料面分布情况,为布料优化控制、高效煤气利用和节能减排提供数据支撑。%Harsh environment in blast furnace poses a huge challenge for direct measurement of burden surface. Under special restrictions of high temperature,dust and strong vibration of air impact,a novel measuring system of burden sur-face in blast furnace which can be used to real-time measuring is developed based on mechanical reciprocating swing ra-dar. This study presented a detection method of quasi constant false alarm threshold which is suitable for the echo detec-tion of burden surface. An effective algorithm to calculate the radial shape curve of burden surface is concluded,in combi-nation with the energy center of gravity method and cubic spline interpolation. The real-time measuring and visualization of the radial shape curve of burden surface is achieved by 3D imaging technology. Aiming at the typical applications of a 2 650 m3 blast furnace in an Iron and steel company for the first time,this system achieved a rounded system architecture of industrial radar measuring,data transfer,imaging algorithm and material shape classification .The system makes it pos-sible to measure the furnace burden distribution of any section under harsh environment in blast furnace. It provides

  8. 二维高炉区域BFC网格生成技术及其Matlab实现%Study on BFC grid generation of blast furnace mathematical model and its realization in Matlab

    刘然; 张欣媛; 郄亚娜; 吕庆; 赵世伟


    Simulating the process of blast furnace ironmaking through mathematical models is an effective way of new technology research and development.As an important pre-treatment process,numerical grid generation process technology is a prerequisite for the simulation of the blast furnace.Grid quality has an important impact on the blast furnace model simulation accuracy,efficiency and convergence.Therefore, the establishment of high-quality grid is very important for solving the mathematical model of blast furnace.A new method for grids-generation of balst furnace mathematical model based on body-fitted coordinate (BFC)is studied,including division of solution region,conversion and discretisation of elliptic equation and the concrete steps of the grid generation in MATLAB.In the process of BFC grid generation, using Poisson equation with source phase as the transformation equation can make the orthogonality and density of the grid to get better controlled.Treating the boundary of the deadman as boundary condition can simplify the solving process of the mathematical model.The principles of the algorithm are simple and easy to program, as well as, the efficiency of generating grids is higher and the grids can satisfy the requirements of the mathematical model.%利用数学模型对高炉冶炼过程进行模拟是高炉炼铁新工艺研发的有效方法,网格生成技术是数值模拟过程中重要的前处理过程,是高炉模拟计算的先决条件。生成网格的质量对高炉模型模拟的精度、效率以及收敛性具有重要影响,因此,建立优质的网格对高炉数学模型的求解具有重要意义。文中提出了一种适用于高炉数学模型的适体坐标系(BFC )网格的生成方法,从求解区域的划分、椭圆型方程的转换、椭圆型方程的离散及BFC网格生成步骤等方面进行了研究,并把死料区的边界作为BFC网格计算的边界条件,使数学模型的求解过程得以简化。采

  9. 攀钢含钛高炉渣湿法提钛工艺%Hydrometallurgical process for recovering titanium from titanium-bearing blast furnace slag in Panzhihua Steel Plant

    王浩然; 张延玲; 安卓卿; 赵世强


    酸浸法提钛工艺可以获得较高TiO2含量的产物,但是该工艺所产生的酸浸液存在难回收的问题。采用碱浸法可以避免酸浸液回收的问题,但是该工艺流程比较复杂,钠盐的回收成本较高。酸碱法在理论上可以将含钛高炉渣转化为富钛料,然而该工艺流程相对复杂,工业应用还需要不断深入研究与完善。针对采用湿法工艺从攀钢含钛高炉渣中提钛的各项技术,从技术、经济、环保等方面进行对比分析,指出需要将湿法工艺与火法工艺联合,同时将一些外场冶金技术引入到含钛高炉渣的提钛分离过程中,从而有望高效、综合利用攀钢含钛高炉渣。%High purity TiO2-containing product is prepared by acid leaching method. However, the pickle liquor recycling remains a difficult problem, which can be avoided by using the alkaline leaching method, but this process is complex and the recovering cost of sodium salt is a bit high. The acid-alkali method can change the Ti-bearing blast-furnace slag into rich-titanium material theoretically, while this process is complex too, which needs further study and perfection. A variety of pyrometallurgy technologies to recover titanium from ti-tanium bearing blast furnace slag are comprehensively reviewed and a comparative analysis is made from as-pect of technological, economic and environmental protection. It is pointed out that efficient and comprehen-sive utilization of titanium bearing blast furnace slag requires combining pyrometallurgy with hydro metallur-gical process, as well as some external field metallurgy technology.

  10. 高炉煤气循环水除垢防垢可行性分析%Feasibility Analysis of Descaling and Antiscale of Blast furnace Gas Circulating Water


      针对本钢燃气厂高炉煤气洗涤塔循环水的水质调查情况,详细分析了循环水管道结垢的原因及结垢带来的危害,并制定出循环水管道除垢防垢的具体措施。%In the light of water quality investigation state of washing tower circulating water of blast furnace gas of Benxi Steel’s gas plant, the causes of scaling of circulating wa-ter pipeline and harm of scaling are analyzed in detail. The specific measures for descaling and antiscale of circulating water pipeline are worked out.

  11. Study on Performance Improvement About Intake of Blast Furnace Blower Pipe Additional Honeycomb Screen%入口管段增设整流栅对高炉鼓风机性能的优化

    梁高林; 刘振全; 杜彦蓉; 冯勇


    It was introduced blast furnace blower on type S entrance section , by increasing the gate , to sort out the fan flow field at the entrance , and the fan operation parameters were added after the rectification and in-situ measurement and calculation , the additional gate performance improvement of fan played a very positive role .%介绍了一种通过在高炉风机的S型入口段,增加整流栅,对风机入口流场进行梳理的方法,并对增设整流珊后的风机运行参数进行了现场测量与计算,得出了整流栅的增设对风机的性能的优化起到了很大的积极作用。

  12. Comparison of Energy Consumption and Environmental Impact of Replacement of Coal with Straw Injection into Blast Furnace%秸秆替代煤高炉喷吹的能源消耗及环境影响比较

    熊玮; 王国强; 周绍轩


    Comparison of energy consumption and environmental impact was made when coal was substituted partially by straw injecting into blast furnace. Considering the effect of basicity load on normal blast furnace operation, the maximum proportion of straw in mixture was about 10%. Energy consumption of straw injection was higher, and coal consumption had doubled or more, and oil consumption increased almost 4 times. In comparison with coal, discharge amount of pollutants was larger, and it was about 7times especially in the process of grinding straw. The discharge amount of pollutants including CO2, CO and blast furnace slag was about the same in the process of injection. CO2 emission would reduce 23 kg producing a ton of hot metal because biomass straw is carbon-neutral. Based on pollution discharge fee and market price of international CO2 emission indicator, environmental cost was reduced by 2.23 yuan producing a ton of hot met al. For a blast furnace of 2 500 m3 inner volume, the amount of CO2 emission could reduce 56 300 tons, and total environmental cost reduced by 5.5 million yuan per year.%以秸秆替代部分煤进行高炉喷吹,对收集、运输、破碎和喷吹等过程进行了能源消耗和环境影响的差异性比较.考虑到碱负、荷对高炉顺行的影响,秸秆在煤中的混人比最大应在10%左右.秸秆喷吹的能耗较高,与煤相比,原煤消耗量增加了1倍以上,原油消耗量增加了4倍左右.从秸秆的收集到破碎,污染物排放量都比煤高,尤其在破碎过程,各种污染物的排放量是煤的7倍左右.在高炉喷吹利用过程中,秸秆与煤的CO2、CO和高炉渣的排放量相差不大.由于秸秆生物质的碳循环特点,冶炼1t铁水可减少CO2排放量23 kg.根据我国排污费标准和国际CO2排放指标交易市场价,用秸秆替代煤喷吹,生产1t铁水可降低环境成本2.23元.对于一座2 500 m3高炉,每年可减排CO25.63万t,总环境成本可以降低550万元.

  13. Development and application of simulation system for blast furnace burden layer profile%高炉料层形状仿真系统的开发及应用

    黄永东; 李清忠


    高炉布料的层状结构很难进行直观观测。通过分析高炉布料规律,找出炉料落点位置,确定料面基本形状,并进行变形和修正,就可以计算出料层形状结构数据,从而达到高炉布料料层形状仿真的效果。该系统的实时在线运行具有重要意义,有助于高炉操作人员了解高炉炉内料面情况,指导高炉操作人员制定高炉布料方式,使炉内料面得以合理分布,改善冶炼状况,保证高炉稳定顺行。%It is very difficult to observe BF burden layer structure directly. However,the structure da-ta can be calculated via analyzing the burden distribution rule and finding out the burden falling point to determine the burden profile,followed by necessary transmutation and modification to get simulated BF burden layer structure. Real-time online operation of the simulation system is significant in learn-ing status of burden profile inside the blast furnace and guiding rational distribution of the burden for the purpose of improving the smelting condition and ensuring stable and smooth production of blast furnace.

  14. Hearth Erosion Situation Analysis for the 1 750 m3 Blast Furnace in Jinan Steel%济钢1750 m3高炉炉缸侵蚀情况分析

    张小伟; 张熙玮


    通过对生产条件及炉缸结构相同的济钢1#、3#1750 m3高炉炉缸侵蚀情况进行调查,发现1#高炉炉缸呈浅锅底—象脚状侵蚀,扒炉实测表明,炉缸、炉底交接处侵蚀最为严重,炭砖残存厚度最薄处仅为300 mm;3#高炉铁口附近炭砖出现不同程度裂纹,侵蚀严重处炭砖残存厚度600 mm。建议考虑炭砖的微孔度,使用高可靠性热电偶,降低炉底冷却水流量,增加炉缸冷却水流量等,以提高高炉寿命。%The hearth erosion of Jinan Steel’s No.1 and No.3 1 750 m3 BF have been investigated, although they have the same production conditions and hearth structure. It is found that the No.1 blast furnace hearth pale pot is like the foot-shaped erosion, griddle test shows junction of hearth and bottom are the most serious erosion position, the remaining thickness of the thinnest carbon brick is only 300 mm. The carbon bricks near the iron mouth of the No.3 BF have cracked to some extent, the remaining carbon brick thickness of severe erosion is 600 mm. To improve and prolong the life of the blast furnace, it is suggested that to apply the porous carbon bricks and high reliability thermocouples, reduce the cooling water flow for bottom, increase the cooling water flow of the hearth etc.

  15. Fuzzy Control System for Hearth Pressure of Blast Furnace Gas Fired Boiler%全燃烧高炉煤气锅炉炉膛负压模糊控制系统


      燃高炉煤气锅炉在燃料燃烧和运行方式上与传统的燃煤锅炉区别很大,使得燃煤锅炉控制方法不适用于燃高炉煤气锅炉。为提高炉膛负压控制精度,引入了模糊控制策略对炉膛负压进行控制。采用炉压偏差及偏差变化率作为模糊控制器的输入变量,仿真研究表明,经模糊控制器控制的炉膛负压稳定性较采用 PID控制方法有显著提高,更适合于炉膛压力的控制。%There is a great difference between blast furnace gas fired boiler and coal fired boiler in the fuel combustion process and the method of operation ,so the control model for coal fired boiler can not be applicable for blast furnace gas fired boiler .To increase the control accuracy of negative pressure in hearth ,a fuzzy control strategy was applied to the negative pressure control ,which used the deviation and deviation variance ratio of combustion chamber draft as the input variables of fuzzy controller .The results of simulation indicate that the stability of negative pressure in boiler is greatly improved by fuzzy PID control compared with traditional PID control ,so it can meet the control requirement of boiler negative pressure .

  16. 高炉冷却系统热负荷在线监测系统%The on-line measurement of heat charge in a blast furnace cooling system

    安世奇; 王建国; 江杰; 崔大福


    本文详细地叙述了系统的组成、工作原理和功能。温度、流量检测采用自行设计的采集装置,成本低,安装简便,可靠性高,满足了测量要求。采用该监测系统可实时地监测高炉冷却系统的水温差、流量及热负荷,为高炉安全生产提供依据。%This paper gives a full and clear description of the configuration of a monitoring system,its working principle and functions.the temperature and water flow at each measuring point are taken by self-made sampling devices,which are low in cost,simple in installation and high in reliability.All this makes it possible for the system to meet the demand of the measurement.The measuring system can in real-time monitor the water temperature difference,flow and heat charge of a blast furnance cooling system,and therefore provide the blast furnace with basic data for its safety production.

  17. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)


    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  18. Granular Computing


    The basic ideas and principles of granular computing (GrC) have been studied explicitly or implicitly in many fields in isolation. With the recent renewed and fast growing interest, it is time to extract the commonality from a diversity of fields and to study systematically and formally the domain independent principles of granular computing in a unified model. A framework of granular computing can be established by applying its own principles. We examine such a framework from two perspectives,granular computing as structured thinking and structured problem solving. From the philosophical perspective or the conceptual level,granular computing focuses on structured thinking based on multiple levels of granularity. The implementation of such a philosophy in the application level deals with structured problem solving.

  19. 消除“白色污染”的最佳途径 —高炉喷吹废塑料的现状及其必然趋势%The optimal means of eliminating white pollution — the current status and trend of injecting waste plastics into the blast furnace

    龙世刚; 郭艳玲; 孟庆民; 曹枫


    通过对国外高炉喷吹废塑料实践及现状的调研,分析了目前国内国际研究的进展,并在一定的实验研究基础上,提出我国高炉喷吹废塑料的可行性和迫切性;高炉喷吹废塑料的技术既为废塑料的综合利用和治理“白色污染”开辟了一条很好的途径,也为冶金企业节约能源提供了一种新的手段。%Describes the investigation and research of injecting waste plastics into the blast furnace outside, and analyzed development of researching inside and outside. Based on the experimental study, the feasibility and urgency of injecting waste plastics into the blast furnace is put forward. The technology of injecting waste plastics into the Blast Furnace is not only a good way to solve the problem of white pollution, but also a new means of energy conservation in enterprise of metallurgy.

  20. Simulation of Burden Trajectory in a Bell-less Top Blast Furnace%无料钟炉顶高炉中炉料流动轨迹的模拟

    邱家用; 高征铠; 张建良; 国宏伟; 王春龙; 孔德文


    An equation of motion trajectory of blast furnace burden can be established by analyzing the movement and the acting force conditions of burden in a bell-less top blast furnace. Consequently, the previous model can be improved. The accuracy of simulation model has been proven by the experimental data of a domestic 3 200 m3 blast furnace charging before blowing in. The results indicate that the calculated values coincide with measured data of the radius of impact point of burden preferably. Along the chute length, the Coriolis force per unit mass increasing continuously. When the chute inclination angle is 41°, the Coriolis force per unit mass of coke approximately is 2.2~5.5 m/s2 while that of ore is about 2.1~4.6 m/s2, which accounts for 22%~56% and 21%~47% of acceleration of gravity respectively. When the flow velocity of gas is 0 m/s, the gas drag coefficient at coke is 1.83~1.88 while that at ore is 3.32~3.40,and the resistance acting on unit mass of burden is about 2.4~4.9 m/s2, which accounts for 1/4~1/2 of gravity per unit mass.%结合炉料在无料钟炉顶高炉中的实际运动情况,对炉料颗粒的运动和受力进行分析,建立了料流轨迹运动方程,改进了前人提出的模型,并利用实际高炉开炉装料实测数据对模型进行验证.结果表明,该模型计算的落点半径与实际测量数据较接近;沿溜槽长度方向单位质量炉料所受的科氏力小断增大,在溜槽倾角41°条件下,单位质量的焦炭所受科氏力约为2.2~5.5 m/s2,矿石约为2.1~4.6 m/s2,分别约占重力加速度的22%~56%和21%~47%;当煤气流速为0时,气体曳力系数焦炭为1.83~1.88,矿石为3.32~3.40,单位质量炉料所受阻力为2.4~4.9 m/s2,约占单位质量炉料所受重力的1/4~1/2.

  1. 高炉冷却壁非稳态传热热态实验分析%Thermal Trial Analysis on Unsteady Heat Transfer for Blast Furnace Cooling Stave

    焦克新; 张建良; 左海滨; 沈猛; 铁金艳; 李峰光


    冷却壁安全工作是保证高炉长寿的基础。通过设计并建造冷却壁热态实验炉,研究了高炉铸铁冷却壁热面无渣皮和有渣皮时的非稳态传热过程,考察了不同炉气温度条件下冷却壁热电偶温度的变化规律。回归得到了炉气在升温阶段、稳定阶段、降温阶段时冷却壁热电偶温度随时间的变化关系式。计算得出了冷却壁热面在有无渣皮条件下的平均热流强度,回归得出了炉气平均对流换热系数随炉温的变化关系。结果表明,冷却壁热面在有渣皮时热电偶温度的变化速率显著低于无渣皮时的变化速率,冷却壁破损的主要原因是冷却壁温度的反复变化和渣皮的频繁脱落而产生的热应力。%BF campaign is of great significance for efficient, sustainable development of iron and steel enterprises. Smooth operation and the service life of the cooling stave is one of the fundamental factors affecting the life of a blast fur-nace, and therefore subject to focus on the stave efficient longevity research. Through design and construction of hot test furnace for cooling stave, unsteady state heat transfer of blast furnace cooling stave was studied under condition of with or without slag crust and changing rules of thermocouple temperature under different furnace temperatures were also ana-lyzed. Changing rules of thermocouple temperature at heating stage, steady stage and cooling stage were obtained by re-gression method. Average heat flux intensity without slag crust was calculated and through regression method convective heat transfer coefficient was obtained. It was concluded that the changing rate of thermocouple temperature which embed-ded in the cooling stave under condition of with slag crust is significantly lower than without slag crust. The damage of cooling stave is mainly due to thermal stress produced by repeatedly change of temperature and frequently production and separation of slag crust

  2. Multi-model control of blast furnace burden surface based on observed data of radars%基于雷达观测数据的高炉料面多模型控制

    刘德馨; 李晓理; 丁大伟; 陈先中


    The operation of blast furnace is directly affected by the charging distribution. Productivity can be boosted considerably if good charging distribution strategy is adopted. At the same time, great economic benefits will be brought about. In our method, a large amount of burden surface data from radars are classified by using fuzzy c-means clustering, and the multiple models set of burden surface is built. When the expected burden surface is given, multiple control strategies are designed based on multiple burden surfaces of the model set, and multiple charge distribution are obtained. In every charging distribution period, the real time burden surface data will be matched with the model set by fuzzy recognition, and the corresponding charge distribution matrices will be selected for charge distribution until the expected burden surface is produced. Feedback mechanism is formed from the observed data of radars, and closed-loop control is realized. The proposed control strategy is applied to a 2500 m3 blast furnace in an Iron and Steel Plant; the control effect has been improved greatly, and the energy conservation and consumption reduction are realized.%炉料在高炉内部的布局直接影响着高炉的运行,好的布料策略能极大地提高生产力,并带来巨大的经济效益.本文利用模糊c均值聚类算法对大量雷达扫描得到的料面数据进行分类,建立多模型料面模型集;设定期望料面,并根据料面模型集中的多种料面,设计多种布料控制策略,求出相应的布料矩阵.每一个布料周期,采用模糊识别的方法把获得的实时料面数据与模型集相匹配,进而采取相应的布料矩阵进行布料,直至达到期望料面.由于雷达扫描数据的存在,形成了反馈机制,使得高炉布料能够实现闭环控制.本控制策略在某钢铁厂2500 m3高炉上得到实施,取得很好的控制效果,达到节能降耗的要求.

  3. 在役高炉炉缸状态的辨析、诊断与维护%Discrimination,diagnosis and maintenance for blast furnace hearth in service state

    姜华; 蔡九菊


    As the physical properties and configuration of the hearth-wall lining are different from original design, some conventional erosion management methods for blast furnace in service will lose their effectiveness,even more cause the hearth-wall penetration-cross accident.From the view of heat transfer,the penetration-cross is the ex-treme state after the thermal balance system is broken in the hearth-wall.On the basis of heat transfer theory and the investigation results of the used hearth-wall structure,a discrimination and diagnosis method has been put for-ward for the error damage state of hearth-wall in service from the view of multiple thermal resistance.By this,the hearth-wall state can be judged accurately,which can provide the decision basis for future management measures and lay the foundations for the safe use and extending the campaign of blast furnace.%在役高炉炉缸砖衬,由于其不同于原始设计的物性和特殊的结构形态,致使一些传统侵蚀管理模式失效,极端情况引发炉缸烧穿事故。从传热学角度看,炉缸烧穿现象是炉缸侧壁传热体系热平衡被打破后反复累积的极端表现形态。基于传热学理论和用后炉缸砖衬结构调查结果,从炉缸砖衬综合热阻视角,提出对在役高炉炉缸砖衬侵蚀状态的辨析和诊断方法,由此可准确判定在役炉缸的砖衬结构状态,为后续采取适当的维护措施提供决策依据,为高炉安全使用和延长寿命奠定基础。

  4. 火焰原子吸收光谱法测定高炉尘中铟%Determination of trace indium in blast furnace dust by flame atomic absorption spectrometry

    吕佳; 王光明; 李辽沙


    After the sample was dissolved with mixed acid, excessive sodium hydroxide was added to dissolve indium hydroxide for separation and enrichment of trace indium in blast furnace dust. Then, the content of indium in sample was determined by flame atomic absorption spectrometry. Consequently, a simple determination method of trace indium in complex system was established. The influence factors on the dissolution and determination results were investigated including the dosages of acid, various alkaline liquors and the dosage of alkali. Moreover, the interference of coexisting ions was studied. Finally, the optimal experimental conditions were obtained. The results showed that sodium hydroxide could effectively dissolve trace indium hydroxide. Meanwhile, the ions of iron and magnesium were precipitated, removing most interference elements in blast furnace dust. The relative standard deviation (RSD) of this method was less than 4. 2 %, and the recoveries were 98 %-103 %.%采用混合酸溶样,过量氢氧化钠溶解氢氧化铟分离富集高炉尘中痕量铟,火焰原子吸收光谱法测定样品中铟含量,建立了一种测定复杂体系中痕量铟的简便方法.对实验过程中的酸用量、不同碱液及碱用量对溶解及测定结果的影响、共存离子的干扰等情况进行了考察,确定了最佳实验条件.实验结果表明,氢氧化钠能够有效的溶解痕量氢氧化铟,同时沉淀了铁、镁等离子,去除了高炉尘中大部分的干扰元素.方法相对标准偏差小于4.2%,回收率在98%~103%之间.

  5. 高炉渣铁排放在线监测系统的开发与应用%Development and application about on-line monitoring system of hot metal drainage of blast furnace

    黄培正; 董亚峰; 侯全师; 沙永志


    To achieve the detection of the hot metal and slag flow,three parameters must be detected which includes the metal flow velocity,the tap hole diameter and the mass increase rate of the hot metal ladle. According to physicochemical property of the high temperature liquid metal and slag,it is difficult to achieve accurate direct measurement. A non-con-tact measuring method for hot metal and slag flow is proposed after research and field trip. Based on the Doppler effect, the metal and slag drainage rate of Shougang Jingtang 5 500 m³ blast furnace was measured on-line,and at the same time video camera monitors the section of tapping hole,and the change of tap hole diameter was recorded and observed in real time. Combining the mass increase rate of hot metal in the weighing system of iron ladle,analyzing and calculating the metal and slag drainage rate and slag ratio of blast furnace,verifying the reliability of detection system in contrast with the actual theoretical value.%要实现渣铁流量的检测,必须分别对渣铁流速、流股直径变化和铁水罐增重速率3个参数进行监测,由于高温液态渣铁理化特性,对其直接准确测量是非常困难的,经过研究和生产现场实地考察,提出一种非接触式测量渣铁流量的方法。依据多普勒效应在线测量首钢京唐5500 m³高炉出铁时渣铁排放的速率,并同步视屏摄像仪监测铁口截面,利用图像处理技术,实时观测记录铁口直径的变化,结合铁水罐称重系统中的铁水增重速率,分析计算高炉出渣出铁速率及高炉渣比,对比实际理论值验证了监测系统的可靠性。

  6. 攀钢高炉渣综合利用产业化研究进展及前景分析%Progress and Prospect of Industrialization of Comprehensive Utilization of Pangang Blast Furnace Slag (High Titanium Content)



    Years of research on the comprehensive utilization of Pangang blast furnace slag (BF slag) is reviewed,and the progress in laboratorial and industrial technologies for titanium tetrachloride production by “high-temperature carbonization and low-temperature chlorination” from high titanium content BF slag.At present,the 10kt/a titanium tetrachloride production line employing “high-temperature carbonization and low-temperature chlorination” technology is capable of continuous production.In stability tests and trial production,the average carbonation rate of dioxide titanium in blast furnace slag was 88.20% in the high-temperature carbonization pilot line,the average chlorination rate of carbide titanium in carbonization slag was 85.35% in the low-temperature chlorination line,and the total recovery rate of titanium in BF slag in these two lines reached 75.45%.The test result shows that the process with significant economic and social benefits is feasible in technology,indicating an optimistic prospect in industrialization.%回顾了攀钢高炉渣综合利用多年来的攻关工作,介绍了高钛型高炉渣“高温碳化—低温氯化”制取四氯化钛工艺的实验室和产业化技术研究进展情况.目前,采用“高温碳化—低温氯化”工艺建成的10 kt/a四氯化钛生产线已具备连续生产的能力,其中,高温碳化中试线稳定试验和试生产期间高炉渣中二氧化钛的平均碳化率为88.20%,低温氯化中试线碳化渣中碳化钛的平均氯化率为85.35%,“高温碳化—低温氯化”全流程工艺高炉渣提钛总回收率达到75.45%.试验结果表明,该工艺技术可行,经济和社会效益显著,具有良好的产业化前景.


    朱文睿; 雷丽萍; 曾攀


    为研究溜槽对高炉无料钟布料偏析的影响,采用离散元方法模拟了无料钟卸料过程,得到了溜槽上颗粒的速度分布,布料结果的径向、周向粒度分布,并分析了溜槽内表面的键槽、截面形状和倾角对粒度偏析的影响规律,结果表明:(1)溜槽上的键槽会引起布料结果周向偏析;(2)溜槽方形截面较圆形截面更有利于精确的径向布料;(3)不同溜槽倾角下,径向偏析不同,结果为高炉布料工艺的设计及炉料分布的精确控制提供科学依据.%In order to study the influence of the chute on the particle size segregation during the discharging process of a bell-less top blast furnace,this paper uses the discrete element method (DEM) to simulate the discharging process,and obtain the velocity field of particles on the chute and the particle size distribution in both radial and circumferential directions.In addition,the influences of the key slots on the inner surface of the chute,the section area shape and the tilting angle of the chute on the particle size segregation are analyzed.It is shown that (1) the keyslots on the inner surface of the chute cause a circumferential particle size segregation; (2) a square section area is better than a circle one for it facilitates an accurate radial particle distribution; (3) the tilting angle of the chute influences the radial particle size segregation.This study provides a theoretical basis for the design of blast furnace discharging process and the control of the burden distribution.

  8. Energetic analysis versus exergetic analysis of charcoal blast furnace of V and M do Brazil; Analise energetica versus analise exergetica do alto forno a carvao vegetal da V and M do Brasil

    Soares, Lis Nunes; Silva, Ricardo Junqueira [V e M do BRASIL S.A., Belo Horizonte, MG (Brazil); Franca, Geraldo Augusto Campolina; Lemos, Ricardo Jose Fernandes [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)


    The energetic analysis is the traditional method of quantification of the energy used in an operation involving physical and chemical processes and transference and/or conversion of energy. Generally used through energetic balance that is based on the first law of thermodynamics to evaluate the energetic efficiency. This balance is used to determine and reduce the loss of energy. Although an energy balance does not provide information about the energy degradation or resources during a process and do not quantify the potential or quality of the energy fluxes and material that flow in a system and come out as products and losses. The exergetic analysis goes beyond the limitations of the first law of thermodynamics. The concept of exergy is based in the second law of thermodynamics. The objective of this paper is to compare the more suitable analysis method aiming the identification of the energy economy potentials and consequently the reduction in the emissions of the greenhouse gases, through the balance of mass, energy and exergy of the blast furnace 1 of V and M do Brazil. (author)

  9. PB-M网桥在高炉水冲渣传动监控系统中的应用%Application of the PB-M Bridge in Blast Furnace Slag Granulation Drive Monitoring and Contorl System

    田海; 赵德琦; 任清娟


    简述了基于在高炉水冲渣传动监控系统的工艺背景下,Profibus-Modbus网桥在控制系统中使支持Profibus协议的设备与支持Modbus RTU协议的设备之间进行通讯协议转换的作用,使得支持不同通讯协议的设备之间能够进行数据传递,并且给出了设计方法.应用证明PB-M总线桥在控制系统中的稳定可靠,作为协议转换,总线桥很适合工业控制现场使用.%This article gives a brief introduction based on the technology background of the blast furnace slag granulation drive monitoring and control system. Profibus-Modbus bridge which supports the Profibus protocol equipment and support Modbus RTU protocol for communication between devices in protocol conversion function in the control system,allowing the support of different communication protocols to pass data between devices and gives the design idea. The practical application proved that PB-M bridge was a reliable and stable equipment,which was very suitable to be used in the industrial controlling field as the protocol transition bus bridge.

  10. 吸收式热泵回收高炉软水低温余热供热探讨%Low-temperature waste heat recovery of blast furnace using absorption heat pump for heating

    周春丽; 王治国


    Characteristic of closed loop soft water cooling system of blast furnace was introduced .Ab-sorption heat pump was used to recover low -temperature waste heat recovery of soft water out of BF . The technology is feasible with considerable economic benefits , social benefits and environmental bene-fits.Meet the heating demand of iron and steel enterprises in north area with less steam consumption as well as to supply civil heating nearby with extra capacity .%分析了高炉软水密闭循环冷却系统特点,采用吸收式热泵技术回收高炉软水低温余热用于采暖。技术上可行,经济、社会效益和环境效益显著。既满足北方钢铁企业自身采暖需求,又缓解北方钢铁企业冬季蒸汽紧张的局面,富裕热量还可外供附近市政采暖。

  11. Research & Application on Thermal Test and Reliable Longlife Principle for Hot Blast Valve of Blast Furnace%高炉炼铁系统热风阀热态实验及长寿机理



    The longlife micro-water and energy-saving hot blast valve is a new product with features nf longlife, reliability, saving water, and energy. The on-line thermal test of such a hot blast valve is mainly introduced in the paper. The test installation and test conditions, the data acquisition system, the experimental data and so on are all explained. The experiment data provides the data support for studying the working condition, the actual performance and other aspects of this hot blast valve. Finally, it also provides the reliable basis for optimizing the valve structure.%长寿微水节能热风阀是一种长寿、可靠、节水、节能的新型产品.文中主要介绍了长寿微水节能热风阀的现场实时在线热态测试实验,对实验装置、测试工况、数据采集系统、实验数据分析等进行了阐述.该实验所采集的数据为目前生产的长寿微水节能热风阀的工作状况、实际性能等各方面的研究提供了数据支撑,并对热风阀的结构优化设计提供了依据.

  12. 铅鼓风炉中铜、硫、砷和锑对银分布的影响%Effect of copper, sulfur, arsenic and antimony on silver distribution in phases of lead blast furnace



    An experimental study was carried out to estimate the effect of the lead impurities on the silver distribution in the phases formed in the lead blast furnace. Samples of sinter with different contents of Cu, S, As and Sb were equilibrated under reducing atmosphere (p(CO)/p(CO2)=2.45) at 1573 K in a tube furnace and slowly cooled. The samples were characterized by scanning electron microscopy and microanalysis (SEM-EDS). There were five immiscible phases:slag (CaO, FeO and SiO2), matte (S, Cu and Fe), speiss (As, Fe and Cu), Cu-Sb phase and lead bullion (Pb, Ag, Sb, Cu, etc). The results showed that Cu and Sb promote silver losses during the process since they form a liquid solution with higher silver solubility than liquid bullion. Sulfur and arsenic react with copper to form the matte and speiss phases, respectively. The effect of S and As is to reduce the amount of Cu-Sb alloy and then the silver losses from the bullion.%研究铅鼓风炉中杂质对银分布的影响。将含有不同Cu、S、As和Sb含量的铅烧结块在管式炉中于1573 K下进行烧结,然后随炉冷却。烧结气氛为还原性的CO+CO2气体(p(CO)/p(CO2)=2.45)。采用SEM-EDS对所得样品进行表征。结果表明:烧结样品中含有5种不互溶的相,即炉渣(CaO,FeO,SiO2)、冰铜(S, Cu,Fe)、硬渣(As, Fe,Cu)、Cu-Sb相和铅块。银在Cu与Sb形成的熔体中的溶解度比在液态铅中的高。S与Cu形成冰铜, As与Cu形成硬渣。S和As能减少Cu-Sb合金的生成量,从而降低铅块中银的损失。


    雷雪飞; 薛向欣


    The paper reports on the feasibility of removing Cr(Ⅵ) from aqueous solution using a sulfate-modified titanium-bearing blast furnace slag (STBBFS) as an adsorbent. The components and microstructures of the calcined STBBFS adsorbent were examined by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction and scanning elec-tronic microscopy. The adsorption efficiency for Cr(Ⅵ) by the STBBFS adsorbents was investigated at different pH values, initial mass concentrations of STBBFS and adsorption temperatures of aqueous solution. The adsorption data followed the Langmuir modelrather than the Freundlich model, and the adsorption equilibrium was described by the Langmuir isotherm model with a maximum adsorption capacity of 8.25 mg/g of Cr(Ⅵ) ions onto the STBBFS adsorbents at pH=1.5. A pseudo-second-order kinetic model showed good firing to the experimental results at different initial concentrations and adsorption temperatures. The thermodynamic parameters, such as enthalpy change (△H°), free energy change (△G°) and entropy change (△S°) were analyzed. The thermodynamics of Cr(Ⅵ) ions onto the STBBFS adsorbents indicates the spontaneous and endothermic nature of the adsorption process. XPS and FTIR analysis show that in the process the of Cr(Ⅵ) is reduced to Cr(Ⅲ) after the adsorption of Cr(Ⅵ).%由高能低温煅烧制备了硫酸盐修饰的含钛高炉渣(sulfate-modified titanium-bearing blast furnace slag,STBBFS)吸附剂.用X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)、Fourier转换红外光谱(Fourier transform infrared spectroscopy,FTIR)、X射线衍射和扫描电镜对吸附剂的成分、物相以及表面结构进行了表征.研究了STBBFS的初始质量浓度、溶液pH值、温度对溶液中Cr(Ⅵ)吸附过程的影响.结果表明:Cr(Ⅵ)在STBBFS吸附剂表面上的吸附遵循Langmuir吸附等温线模型;最大吸附容量在pH=1.5时最大,为8.25mg/g.不同吸

  14. Risk and Benefit Calculation of Bao Steel Blast Furnace Slag Water Waste Heat Recovery EMC Project%宝钢高炉冲渣水余热利用合同能源管理项目风险及效益计算



    对宝钢高炉冲渣水余热利用合同能源管理项目进引资金风险评估和效益计算,确立项目可行性,为项目的实施提供必要的依据.%The article introduces investment risk assessment and benefit calculation of Bao Steel blast furnace slag water waste heat recovery EMC project. It establishes feasibility of project and provides basic support for project implementation.

  15. 基于料面温度场的高炉煤气流分布识别方法%A Recognition Method for Gas Flow Distribution Based on Temperature Field of Burden Surface in Blast Furnace

    吴敏; 王昌军; 安剑奇; 何勇


    针对高炉内部环境复杂、煤气流分布实时检测困难的问题,提出了一种基于料面温度场的高炉煤气流分布的识别方法.首先,充分利用高炉生产过程检测信息建立料面温度场.其次,对高炉中心和边缘煤气流发展水平进行提取,采用模糊C均值聚类方法对高炉煤气流分布模式进行识别.实验表明:该方法能有效反映高炉煤气流分布状态,有利于指导高炉的料面操作.%Considering the complex inner environment of blast furnace (BF) and difficulty in measuring the real-time gas flow distribution of BF, a recognition method for the gas flow distribution of BF is proposed based on the temperature field of burden surface.Firstly, the measuring information of BF process is fully utilized to establish the temperature field of burden surface.Secondly, the gas flow developing level in the central and peripheral regions of BF is extracted in order to employ fuzzy C-means clustering to recognize distribution pattern of gas flow.The experiments show that the method proposed can achieve the distribution status of the gas flow accurately, so that it provides an efficient way to guide burden operation.

  16. 基于多源信息可信度的高炉料面温度检测方法%Temperature Detection Method of Blast Furnace Burden Surface Based on the Reliability of Multi-source Information

    安剑奇; 吴敏; 何勇; 曹卫华


    针对高炉料面温度难以准确检测的问题,提出一种基于多源信息可信度的高炉料面温度在线检测方法.根据高炉3种异类检测信息的各自特点分别估计料面温度,采用可信度理论通过融合单一信息的估计值计算高炉料面温度.在某钢铁企业2 200m3高炉应用结果表明,所提出的方法能够准确地检测高炉料面温度,为复杂冶金过程状态检测提供了新的解决思路.%Focusing on the difficulty of precisely detecting blast furnace(BF) burden surface temperature,a novel temperature detection method of BF burden surface based on the reliability of multi-source information was proposed.Firstly,the burden surface temperature is estimated respectively according to the individual features of three kinds of singular heterogeneous information;then the BF burden surface temperature is calculated by fusing the results estimated by the three kinds of singular information based on reliability theory.The application on a 2 200 m3 B F in some steel enterprise shows the method proposed can realize the real-time and precise detection of burden surface temperature,which eventually provides an effective solution for the status monitoring of complicated metallurgy process.

  17. 基于多点雷达和最小二乘法估计高炉料面形状%Estimating the burden surface profile of a blast furnace based on multi-radar measurement and least squares approximations

    祝乔; 程汉卿; 尹怡欣; 陈先中


    Burden distribution in a blast furnace was estimated based on least squares approximations and multi-radar data. First- ly, a three-segment curve, which includes two straight lines and a quadratic curve, was used to describe the burden distribution. Sec- ondly, based on the burden distribution principles, some constraint equations were obtained to estimate parameters in the three-segment curve, which makes the burden surface profile more reasonable. Then, the burden distribution was estimated by using least squares ap- proximations and multi-radar data, and a real-timely display of the burden surface profile could be achieved. A numerical example with real multi-radar data obtained from a steel plant shows the effectiveness of the estimate method.%利用多点雷达数据,使用最小二乘法对高炉的料面形状进行估计.首先,采用三段曲线描述料面形状,其中包括两段直线一段二次曲线.其次,利用炉料分布规律对三段曲线的具体参数进行约束,使得料面形状的估计更为合理.然后,利用多点雷达数据和最小二乘法估计料面形状,实现料面的实时动态显示.利用某钢厂的实际雷达测量数据,证实了该方法的有效性.

  18. Recovering valuable elements from flue slime of blast furnace by combining process of mineral and metallurgy%选冶联合技术提取高炉瓦斯泥中有价元素研究

    张晋霞; 邹玄; 张晓亮; 牛福生


    After analyzing the properties ,chemical composition of the flue slime from the blast furnace in Tangshan Iron & Steel Company ,the paper proposed the suggestion of recovering valuable elements from flue slime by combining process of mineral and metallurgy .The laboratory test results showed that the iron concentrate with the iron grade 53 .25% and recovery of 51 .05% by tabling gravity separation as well as the carbon concentrate with fixed carbon content of 74 .21% and recovery of 66 .39% by once rough separation and two times cleaning separation were obtained .The addition of sulfuric acid to the final flotation tailings , the leaching rate of zinc is 97 .85% .When the dosage of sodium sulfide is 200kg/t ,the recovery of zinc concentrate can reach to 86 .36% .%在对高炉瓦斯泥性质、矿物成分分析的基础上,采用选冶联合技术对其有价元素进行了提取研究。试验研究表明,瓦斯泥原料经摇床分选后,获得了铁品位为53.25%,回收率为51.05%的铁精矿;摇床尾矿经浮选柱一次粗选两次精选工艺流程,得到碳品位为74.21%、作业回收率为66.39%的碳精矿;最终尾矿采用硫酸进行浸锌试验,锌的浸出率可达97.85%,向浸出液中加入硫化钠用量为200kg/t时,Zn回收率达到86.36%。

  19. 基于遗传算法的无钟高炉布料工艺优化%Optimization of burden distribution process for blast furnace with bell-less top based on genetic algorithm


    Energy conservation and emission reduction are urgent needed in modern iron making production,and the optimization of the burden distribution in the blast furnace not only ensures the stable production but also improves the resource utilization and reduces the pollution emission. Based on the structure of the furnace top charging system and the feature of the burden distribution process,a parameter was proposed to evaluate the accuracy of the burden surface formed in the furnace throat,a genetic algorithm was designed for ring charging to search for the optimum distribution of chute rotations globally. Then the effects of different important parameters including the number of chute inclination positions and the chute rotation speed on burden distribution were analyzed using the optimization algorithm. Results show that the combinatorial optimization model was able to design the burden distribution matrix effectively,and the ac-curacy of burden distribution enhanced as the chute inclination positions and the chute rotations increased and the burden volume decreased. The ring charging with infinitely many chute inclination positions had the similar ability of burden surface construction with the spiral charging,and the number of chute rotations and the burden volume which were limit-ed by multiple factors were needed to be set reasonably.%面对现代炼铁生产节能减排的迫切需求,优化无钟高炉布料是保证高炉稳产顺行、提高资源利用率和减少污染排放的有效途径.结合无钟炉顶的设备结构与布料工艺特点,提出了使用料面形状误差评价布料操作的准确性,设计了针对多环布料操作优化的遗传算法,并应用该优化算法分析了溜槽倾角档位数量以及布料总周数等参数对无钟布料工艺的影响.结果表明:基于遗传算法的组合优化模型能够有效制定布料矩阵,溜槽倾角档位数量和布料总周数的增多以及单次布料体积的减少有利于实现

  20. Hazard and Prevention of Gas Gap in Hearth Wall of Blast Furnace%高炉炉缸气隙的危害及防治

    邹忠平; 郭宪臻


    从炉缸问题调查着手,通过大量理论计算指出了炉缸气隙的危害,并结合现场调查、施工和生产实践,分析了炉缸产生气隙的各种因素,最终提出了从设计、施工到高炉操作的这些炉缸长寿链上各关键环节系统防止炉缸气隙的有效措施,为高炉炉缸实现无气隙化操作、实现炉缸长寿提供了全面的解决方案。研究指出夹壳式冷却方式、热水烘炉、防止炉缸漏水是减小炉缸气隙最有效的措施。%Gas gap was the biggest threat to BF hearth long campaign life. Through academic calculations and field investigations, the influencing factors to cause gas gap in hearth area was analyzed. As the results, the effective measures involving design, construction and operation were proposed to avoid gas gap for long campaign life of BF hearth, and the solutions were provided to achieve non-gas gap operation and long hearth life. Jacket cooling, using hot water during furnace drying process and leak prevention were found to be the most effective measures of gas gap prevention.

  1. High temperature solar furnace: current applications and future potential

    Bjorndalen, N. [Dalhousie Univ., Faculty of Engineering, Halifax, NS (Canada)


    The high temperature solar furnace can offer great opportunities for the production of many types of products worldwide, but recent advances in this technology have been limited to metal reduction. The production of semiconductors, which are utilized to a great extent in the electronic industry, is a viable option for this technology that has been overlooked. Especially where sand and sunlight are plentiful (countries that surround the equator), silicon chips produced with a solar furnace can have great economical value. This paper describes current and potential solar furnace technologies. The components of the solar furnace are described, as well as metal reduction processes including zinc and aluminum production. The viability of silicon chip production is also examined. The possibilities for other product development using an extremely (up to 10,000 deg C) high temperature solar furnace are also discussed. Economically, the benefits of solar furnaces are great, with only high initial start-up costs and little operation costs. Metal reduction processes can also be enhanced with high temperature solar furnaces in that plugging problems are eliminated. By replacing conventional furnaces, such as blast and electric arc furnaces, with a high temperature solar furnace, CO{sub 2} emissions and energy consumption can be greatly reduced, which will bring in added dividends to the society. (Author)

  2. Reduction of oxygen consumption in the V and M do Brazil's blast furnace 2 through the improvement of the heat exchangers; Reducao do consumo de oxigenio em um alto-forno a partir do aumento da eficiencia energetica dos trocadores de calor

    Assuncao, Charles Sostenes [V e M do Brasil S.A., Belo Horizonte, MG (Brazil)


    This work concerns the performance improvement study of the V and M do Brazil's Glendon heat exchangers. The objective is to reduce the consumption of the oxygen used to enrich the blown air in the Blast Furnace 2 through the improvement of the heat exchanger's energetic efficiency. A CFD (Computer Fluids Dynamics) model was developed in order to simulate the thermodynamic behavior of the fluids inside the heat exchangers. Some geometric alterations were simulated in the model, which objective was to change the parallel flow of the combustion gases to a cross flow. The simulation showed a potential of energetic efficiency improvement of 15,25%, which would mean an increase of 115 deg C in the outlet air temperature. The simulated alterations were implemented in one of three heat exchangers and the actual temperature increase was 135 deg C. After the implementation of the alterations in the others heat exchangers, the expected reduction of the oxygen consumption in the Blast Furnace 2 is about 4.400.000 Nm{sup 3} per year. (author)

  3. Synthesis of Foliar Fertilizer from Titanium-Bearing Blast Furnace Slag and Cultivation Experiment of Sweet Corn%由含钛高炉渣制备叶面肥及甜玉米栽培实验研究

    张悦; 薛向欣


    The foliar fertilizer was synthesized with the titanium-bearing blast furnace slag, potassium bisulfate,citric acid,urea and magnesium oxide as raw materials by melting and chelating methods.The field cultivation experiments of sweet corns were carried out in order to evaluate the effects of the foliar fertilizer on the growth,yield,characters and the SPAD value of nitrogen,magnesium,sugar and heavy metal in grains.The results showed that the foliar fertilizer contained nutritional elements such as nitrogen, sulfur, potassium, iron, titanium and magnesium.The application of the foliar fertilizer shortened the growing period of the sweet corn by 2 days,and also made the yield,plant heights,diameters of the stem and ears,grain number per panicle,weight of single spike,and the number of efficient panicles per plant,together with the SPAD value of chlorophyll in leaves,nitrogen and magnesium in grains significantly increase. However,there was no difference in the mass fraction of sugar,titanium,vanadium and chromium in the sweet corn.In addition,mass fractions of the heavy metal elements like vanadium and chromium in the sweet corn were below the maximum residue limit set by National Standards of China.%以含钛高炉渣、硫酸氢钾、柠檬酸、尿素和氧化镁为原料,采用熔融和螯合法制备叶面肥,并通过大田栽培实验研究了该叶面肥对甜玉米生长状况、产量、性状及籽粒的氮、镁、糖和重金属质量分数的影响。结果表明,该叶面肥含有植物营养元素氮、硫、钾、镁、铁和钛;该叶面肥的施用使甜玉米生育期缩短2d;产量、株高、茎粗、穗粗、穗粒数、单穗重、单株有效穗数、叶片中叶绿素的 SPAD 值、籽粒中氮和镁的质量分数明显增加,籽粒中糖、钛、钒和铬的质量分数无明显变化,且重金属元素钒和铬的质量分数符合国家标准。

  4. Desempenho de telhas de escória de alto forno e fibras vegetais em protótipos de galpões Performance of tiles composed of blast furnace slag and vegetable fiber in prototype barns

    Maristela N. da Conceição


    Full Text Available Busca-se, em todo o mundo, a substituição do cimento amianto por alternativas seguras para o ambiente e para a saúde do trabalhador, além de econômicas, razão por que o uso de fibras vegetais como aglomerado em países tropicais onde estes resíduos são abundantes, tem-se mostrado bastante viável. No presente experimento foram comparadas telhas de cimento amianto pintadas com tinta reflexiva, telhas cerâmicas e telhas compostas de uma matriz à base de cimento Portland CPII 32Z (ABNT NBR-5735, escória de alto-forno (EAF e sílica ativa, reforçadas com fibras de polpa celulósica de sisal (Agave sisalana. Utilizaram-se protótipos de galpões avícolas nos quais o calor produzido pelas aves foi simulado por lâmpadas incandescentes. Para caracterização do ambiente térmico lançou-se mão dos índices de conforto: ITU (índice de temperatura e umidade, ITGU (índice de temperatura de globo e umidade, CTR (carga térmica radiante e entalpia (H em que os resultados demonstraram que as telhas compostas apresentaram comportamento térmico semelhante ao das telhas cerâmicas, podendo ser utilizadas em substituição às telhas de cimento amianto.The substitution of cement asbestos by safer and equally economical alternatives has being searched for throughout the world. The usage of vegetal staple fiber as agglomerate in tropical countries where these residues are abundant has shown it self to be viable. In this study, roofing tiles fabricated with cement base Portland CPII 32Z (ABNT NBR-5735, blast furnace slag (EAF, active silica reinforced with cellulose pulp staple fibers of sisal (Agave sisalana were compared with cement asbestos roofing tiles with white paint and ceramic roofing tiles. Prototypes of poultry facilities were used and lamps simulated the heat produced by the birds. Indices ITU, ITGU, CTR and entalpy (H were employed for the characterization of the thermal atmospheric comfort and the results showed that the alternative

  5. 添加剂对改性含钛高炉渣氯化过程的影响%Effect of Additives on Chlorination of Modified Titania-Containing Blast Furnace Slag

    付念新; 娄太平; 都兴红; 隋智通


    To solve the easy sticking of the particles in the chlorination of modified titania-containing blast furnace slag,the mechanism of preventing the sticking by additives was studied by XRD and thermodynamics analysis.Meanwhile,the effects of temperature,excessive carbon content,gas flow rate(N2+Cl2) and chlorine partial pressure on the chlorination behavior were investigated.The results showed that the prior reaction of phosphoric acid as an additive with CaO occurs to form Ca3(PO4)2 with a high-melting point,and the latter reacts with CaCl2 to give Ca5(PO4)3Cl.Thereby the sticking of the particles caused by the aggregation of low-melting point calcium and magnesium chlorides is avoided.The best chlorination results are obtained at 850~900 ℃ with the excessive carbon content of 15%,the flow rate of 400 mL/min and the chlorine partial pressure of 40 kPa,and the chlorination ratio reaches 90.8%~93.5% in 60 min.%针对高钙镁改性含钛高炉渣氯化过程物料易粘结问题,通过热力学分析及X射线衍射检测研究了添加剂防止粘结的作用机制,并考察了温度、配碳量、气体(N2+Cl2)流量和氯气分压对氯化行为的影响.结果表明:氯化过程中添加剂磷酸优先与CaO作用生成高熔点的Ca3(PO4)2以及后者与CaCl2反应生成Ca5(PO4)3Cl,避免了低熔点钙镁氯化物富集而造成的物料粘结.当反应条件为温度850~900℃、配碳过量15%、气体流量400 mL/min和氯气分压40 kPa,得到最佳的氯化结果,60 min内氯化率可达到90.8%~93.5%.

  6. Combined prediction model of blast furnace gas generation in steel industry%钢铁企业高炉煤气受入量的组合预测模型

    严亚; 张牧; 田慧欣


    针对钢铁企业中高炉煤气( BFG)受入量难以有效预测的问题,提出了一种基于数据滤波的组合预测模型。首先,采用经验模态分解( EMD)法将原始训练数据分解为相互独立的固有模态函数,根据各模态函数自相关函数的特点滤去噪声分量,采用滤波后的重构序列作为训练样本;然后,采用组合的支持向量机( SVM)模型对受入量进行预测,并利用遗传算法( GA)对支持向量机的参数进行优化;最后,利用现场实际数据验证该模型的预测精度,并与传统预测方法相比较,三组预测的平均绝对百分误差分别为3.22'、4.43'和5.23'。结果表明该方法对高炉煤气受入量的预测具有较高精度,为煤气管网的平衡调度提供了决策支持。%Concerning the prediction problem on Blast Furnace Gas ( BFG) genegration in steel industry, a combined prediction model based on data-filtering was proposed in this paper. Firstly, an empirical mode decomposition approach was employed to decompose the original training data into a group of independent intrinsic mode functions, the noise components were de-noised by the characteristics of the autocorrelation functions, and the training samples were reconstructed using the filtered sequence. Then a combined Support Vector Machine ( SVM) model was proposed to predict the BFG generation, and genetic algorithm was used to optimize the parameters of SVM. Finally the prediction accuracy of the model was validated using the actual data, which is compared with the traditional predicting methods. The mean absolute percentage error of the three groups were 3. 22' , 4. 43' and 5. 23' . The results show that the proposed method keeps high prediction precision on the prediction of BFG generation, which provides decision support for the gas resources scheduling.

  7. 高炉鼓风脱湿系统的冷能分析及有效利用%Analysis and Effective Use of Cooling Energy in Blast Furnace Blower Dehumidifying System

    杨东伟; 郁鸿凌; 管晨希; 肖博钧


    针对冷凝脱湿的特性,利用能效分析法、物料平衡法和热力平衡法建立了高炉鼓风系统冷能利用的分析模型.对某钢厂的高炉鼓风冷却脱湿系统的实际数据进行整理归纳并利用该模型进行计算分析,结果表明:该钢厂高炉鼓风脱湿系统的冷能利用不充分.为提高冷能利用,盛夏月份每日产生的22.56 T/h、10℃冷凝水量,经处理可以回收利用到单台冷冻机的冷凝器,降低冷凝器侧循环冷却水温度1℃,增强了冷凝器换热效果和制冷系统制冷量352 kW,提高了高炉鼓风脱湿系统的冷能效用.%According to the characters of condensing dehumidification, the energy efficiency method,material balance method and heat balance method were used to build an analytical model about the cascade use of cooling energy in blast furnace (BF) blower system. The actual data, which were collected from a steel-works, were settled and then analyzed by means of the analytical model. The results show that the cooling energy in the steel-works' BF blower dehumidifying system is not fully used. For better use,the condensed water,with a production rate of 22.56 tons an hour at 10 ℃ in July and August, can be used in the condenser of one refrigerator after water treatment, and lower the cooling water temperature by 1 ℃. Meanwhile, it can enhance heat transferring and increase the cooling energy of refrigerating system by 352 kW.

  8. 无钟炉顶溜槽内颗粒的三维运动%Three-Dimensional Movement of Particle in the Chute for Blast Furnace With Bell-Less Top

    滕召杰; 程树森; 杜鹏宇


    颗粒在高炉内的运动包括溜槽内运动及空区运动。炉料在空区的运动过程由溜槽末端的速度决定。因此,正确描述颗粒在溜槽内的运动对高炉精准布料十分重要。描述溜槽内颗粒运动的数学模型已有不少,但已有的数学模型是描述颗粒在溜槽内沿直线运动的一维模型。通过对实际高炉布料过程料流轨迹的监测发现,颗粒在溜槽内的运动并非一维运动,而是三维运动。笔者通过对颗粒在溜槽内的受力分析,建立颗粒运动的三维数学模型,准确计算炉料颗粒的落点,分析空区的料流宽度,分析溜槽长度,溜槽转速以及溜槽倾动距对颗粒三维运动的影响。计算结果与实测数据相吻合。%The movement of particles included such two processes as on the chute and in the free zone,and burden trajectory in the free zone was decided by the velocity at the chute tip.So it was very important to accurately describe the movement in the chute for exactly control of burden distribution.There were some mathematical models about the movement of particles,but most of mathematical models were on the basic of one-dimensional.Through monitoring of the burden trajectory on actual blast furnace,it was found that the movement of the particle wasn't a line but a 3-D model.Through analyzing the force focus on a particle,a 3-D mathematical model was set up to calculate the impact point,to analyze the width of burden flow and research the effect of chute length,rotating velocity and titled holding on 3-D movement.It is found that the calculated result coincides well with the measured result.

  9. Using SPL (Spent Pot-Lining) as an Alternative Fuel in Metallurgical Furnaces

    Gao, Lei; Mostaghel, Sina; Ray, Shamik; Chattopadyay, Kinnor


    Replacing coke (coal) in a metallurgical furnace with other alternative fuels is beneficial for process economics and environmental friendliness. Coal injection is a common practice in blast furnace ironmaking, and spent pot-lining (SPL) was conceptualized as an alternative to coal. SPL is a resourceful waste from primary Aluminum production, with high carbon value. Equilibrium thermodynamics was used to calculate the energy content of SPL, and the compositional changes during SPL combustion. In order to capture the kinetics and mass transfer aspects, a blast furnace tuyere region CFD model was developed. The results of SPL combustion were compared with standard PCI coals, which are commonly used in blast furnaces. The CFD model was validated with experimental results for standard high volatile coals.

  10. Heat treatment furnace

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T


    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  11. Waste heat recovery of blast furnace slag and utilization for production of hydrogen from biomass transformation%高炉渣余热回收协同转化生物质制氢

    童力; 胡松涛; 罗思义


    Blast furnace (BF) slag, one of main byproducts in steelmaking industry, is of high sensible heat and contains some metal oxides, which both can be utilized and is very beneficial to catalytic converse of tar and low carbon hydrocarbons for production of hydrogen-rich gas. Based on this idea, to realize heat recovery of BF slag and utilization for biomass catalytic gasification to generate hydrogen-rich gas, a heat recovery and catalytic conversion system was proposed in this paper. The liquid-solid transition state particles are firstly made by centrifugal granulation from liquid BF slag and then taken them as heat carrier for biomass gasification in a moving-bed reactor, and due to catalysis of multi-metal oxide the selectivity of production hydrogen is improved. Ultimately, the low-grade waste heat of liquid BF slag is translated into the high grade hydrogen energy. To examine main factors influencing gas composition and product distribution, gasification experiments are conducted. The results show that BF slag shows a good catalytic activity for tar cracking and methane reforming. With increase of BF temperature and decreases of particle size the tar content in gasification product decreases and the quality of hydrogen-rich gas improves. At the optimum conditions:BF slag particle size below 2 mm as heat carrier and catalyst, the gas yield can reached 1.65 m3·kg-1, hydrogen content 53.22%and tar content only 2.52%.%高炉渣是钢铁生产过程的主要副产品,是一种多元金属熔体,具有大量显热并能促进焦油及甲烷等低分子碳氢化合物的催化转化。鉴于此本文提出通过干法离心粒化技术将液态炉渣制备成液-固过渡态的高温炉渣颗粒,作为生物质气化热载体,利用炉渣中多种金属矿物对大分子的解构、断键和分解的催化作用,提高气化反应的选择性,实现对炉渣显热的回收和转换,将低品位的液态炉渣余热转换成高品位的氢能。通过

  12. 有害元素对高炉炉缸侧壁碳砖的侵蚀%Erosion of carbon bricks at the hearth sidewall by harmful elements in a blast furnace

    祁成林; 张建良; 林重春; 尹坚; 常健; 卢伟佳


    Seven samples of a blast furnace at representative positions were analyzed by scanning electron microscopy ( SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and atomic absorption spectrometry to study the erosion of carbon bricks at the BF hearth sidewall by harmful elements and the mechanism of pulverizing fracture. The results show that the erosion mechanism of carbon bricks at different parts of the hearth is different. In the first layer the erosion is mainly caused by the catalytic effects of harmful elements in the carbon loss reaction and the generation of leucite; in the upper area, penetration of K into brick work joints leading to a quality change of carbon bricks plays the leading role; in the tuyere, Zn is the main cause of erosion; but in the taphole the content of K is larger, with enrichment of Pb. It is also found that a harmful element has different effects at different parts of the hearth. In the upper area, the erosion mechanism is mainly the catalytic effect of K in the erosion reaction, but in lower part is the penetration of K into carbon bricks leading to a quality change of carbon bricks; Zn significantly crystallizes on carbon bricks in the tuyere,however in the hearth bottom Zn attaches to carbon bricks without obvious crystallization.%对湘钢2号高炉炉缸七个有代表部位的样品进行扫描电镜、能量色散谱、X射线衍射和原子吸收光谱分析,研究有害元素对高炉炉缸侧壁碳砖的侵蚀以及粉化断裂机理.结果表明,高炉炉缸不同部位的碳砖侵蚀机理不同.第一层以有害元素在碳素熔损反应中的催化作用及生成白榴石为主;上部碳砖侵蚀以K渗透到砖缝中,改变砖质为主;风口以Zn侵蚀为主;铁口K含量较多,另有Pb富集.同种有害元素在不同部位侵蚀碳砖的机理有所不同.K元素在最上部以催化作用为主,在下部以渗透到碳砖内部使碳砖改性为主;Zn在风口碳砖有明显的结晶,在炉缸

  13. Numerical Simulation of Combustion Characteristics of a 300 MW Blast Furnace Gas/Pulverized Coal Combined Combustion Boiler%300MW煤粉/高炉煤气混燃锅炉燃烧特性数值模拟

    王春波; 魏建国; 盛金贵; 李艳奇


    Blast furnace gas(BFG) produced from steel mill is a low heat value fuel,which combined with pulverized coal to combust in boiler is one of effective ways.However,the combustion characteristics would be changed greatly when compared with only pulverized coal combustion.For example,superheaters and reheaters are easy to excess rated temperatures and carbon content in fly ash will become higher,etc.All these problems lead to its limited application today.Take a 300MW BFG/pulverized coal boiler for example,the combustion characteristics were simulated by means of two mixture fractions way.The pure coal condition and three BFG ratio: 10%,20% and 30% conditions were investigated.It shows the temperature level in boiler is lowered obviously when BFG was mixed into boiler.For example,the maximal temperature is lowered about 81K when BFG ratio is 10% for a boiler section.Also,the temperature becomes lower with the BFG ratio.When BFG was mixed into boiler the flue gases volume would be increased.So,the actual stay time for pulverized coal in boiler will be shortened and it is more difficulty for coal to combust completely.Aslo,it is helpfully for control NO emission when BFG was mixed into boiler.%钢厂高炉煤气是一种低热值燃料,它和煤粉在炉内掺烧是其一种有效的利用途径。但煤粉掺烧高炉煤气后燃烧特性与纯煤粉燃烧有很大不同,掺烧过程中易发生过/再热器超温、飞灰含碳量过高等问题,导致其在大型锅炉上的应用很少。针对某钢厂300MW四角切圆煤粉/高炉煤气混燃锅炉,使用二混合分数法对其燃烧特性进行数值模拟。对比研究了纯燃煤工况和高炉煤气掺烧量分别为10%、20%、30%的工况,发现掺烧高炉煤气时炉内温度水平有明显下降(如,掺烧10%高炉煤气时截面最高温度降低81K),且随着掺烧量的增加而加剧,但下降的趋势变缓。掺烧高炉煤气后产生烟气量增多,炉膛出口烟速有明显增加,

  14. Natural gas for melting in foundries. Pt. 1. Gas cupola furnace. Naturgas til smelteprocesser i stoeberier. Del 1. Gasfyret kupolovn

    Strande, K.


    Because of the relatively large amounts of nautral gas from the Danish North Sea a collection and analysis of information has been carried out in order to assess the possibilities of using natural gas for smelting of cast iron. Especially the English coke-less cupola furnace is analysed. Though it has some obvious environmental and metallurgical advantages calculations of operating cost show that the gas cupola furnace is not a convincing alternative to the smelting plants already in existence. Also the use of gas in the cupola furnace is assessed. Results have been obtained that has lead to installation of several gas/coke furnaces. But the development of the divided blast concept has made the cold-blast cupola furnace nearly as efficient as the gas/coke cupula furnace. EFP-85. 17 refs.

  15. Material Systems for Blast-Energy Dissipation

    James Schondel; Henry S. Chu


    Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

  16. Energy conservation in cupolas and annealing furnaces

    Takeno, S.; Kumagaya, M.; Azuma, T.


    Successive reductions in the amount of coke and fuel oil used in cupolas and annealing furnaces are reported. In the cupolas, 2% oxygen enrichment resulted in a 0.9% drop in coke ratio and a 13.3% increase in output of pig iron. Coke ratios of 9.3-9.5% were obtained by tuyere blow-in of inexpensive carbon materials instead of expensive coke, by the use of formed coke, and by employing a dehumidified blast. In the case of the fuel oil-fired annealing furnaces, fuel oil consumption rates were reduced by treating two charges per heat instead of one. Energy consumption was successively reduced by 25-71% by 1) adopting a ceramic fibre heat-insulating material, 2) changing to low-oxygen combustion by increasing the number of burners, 3) lengthening the time during which the furnace high-temperature zone is maintained, 4) raising the combustion chamber load by using ceramic fibres in the furnace casing. 3 references.

  17. Reactivity to CO{sub 2} of chars prepared in O{sub 2}/N{sub 2} and O{sub 2}/CO{sub 2} mixtures for pulverized coal injection (PCI) in blast furnace in relation to char petrographic characteristics

    Pohlmann, Juliana G.; Osorio, Eduardo; Vilela, Antonio C.F. [Iron and Steelmaking Laboratory, UFRGS, Porto Alegre (Brazil); Borrego, Angeles G. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)


    Pulverized coal injection (PCI) is employed in blast furnace tuyeres in order to increase the injection rate without increasing the amount of unburned char inside the stack. When coal is injected with air in the region of tuyeres, the resolidified char will burn in an atmosphere with progressively lower oxygen content and higher CO{sub 2} concentration. In this study, an experimental approach comprising refiring has been followed to separate the combustion process into two distinct devolatilization and combustion steps. A drop tube furnace (DTF) operating at 1300 C in an atmosphere with low oxygen concentration was used to simulate devolatilization and then the char was refired into DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in both typical combustion and oxy-combustion atmospheres. The fuels tested comprised a petroleum coke and coals ranging in rank from high to low volatile bituminous, currently used for PCI injection. Specific surface areas, reactivity to CO{sub 2} and char petrography have been used to chars characterization. The morphology and appearance of the chars generated under oxy-fuel (O{sub 2}/CO{sub 2}) and conventional combustion (O{sub 2}/N{sub 2}) conditions with similar amount of oxygen were similar for each parent coal. Vitrinite-rich particles generated cenospheres with anisotropic optical texture increasing in size with increasing coal rank, whereas inertinite yielded a variety of morphologies and optical textures. The apparent reactivity to CO{sub 2} measured at high temperature (1000 C) tended to increase with burnout reflecting the operation under a regime controlled by internal diffusion in which surface area also increased. This may have a significant effect in the reactivity to CO{sub 2} of the chars inside the stack of the blast furnace

  18. Development and start up of a co-injection system of coal tar/natural gas in blast furnace no. 4; Desarrollo y puesta en operacion de un sistema de co-inyeccion de alquitran/gas natural en el alto horno no. 4

    Falcon Rodriguez, Manuel I.; Mata Esparza, Hector Rolando; Arevalo Ballesteros, Gerardo [Altos Hornos de Mexico S. A., Coahuila (Mexico)


    The crisis has attracted the world`s attention on the need for energy conservation and the development in a greater extent the utilization of carbon base fuels and other energy sources (nuclear energy). Being a blast furnace, not only an energy consumer but also an energy producer, the greatest contribution to the pig iron cost is the energy needed to melt and reduce to metallic state the iron ores, this energy is mainly derived from coke. The dependence on coal via the coking plant to produce first fusion iron is incremented day after day as a result of the high levels of production. Altos Hornos de Mexico (AHMSA), contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently the shortage of coke for productions higher than 2.6 MMT of pig iron is pending. The injection of fuels into a blast furnace through its nozzles is a technology used for the diminishing the coke consumption of coke, its use implies a change in the philosophy of the blast furnace operation, and is currently employed in most of the blast furnaces of the world. AHMSA taking advantage of coal tar production (approx. 130 tons/day) in its coking plants decided the design and put into operation a co-injection system of coal tar and natural gas. The activities tending to carry out this project were initiated on April 1993, performing all of them with its own resources, completing them on July 18, 1993, day on which the injection of coal tar/natural gas in blast furnace No. 4 in a stable form. To date (October 1993), the coal tar injection has been increased up to 36 kg/ton of pig iron. During the injection periods, the presence of operational, mechanical and instrumentation problems have not been an obstacle for the evolution on the injection, fulfilling its function of substituting coke in a replacing relationship of 1:1, i.e. 1 kg of coal tar per each kg of coke, without affecting the product quality

  19. Development and start up of a co-injection system of coal tar/natural gas in blast furnace no. 4; Desarrollo y puesta en operacion de un sistema de co-inyeccion de alquitran/gas natural en el alto horno no. 4

    Falcon Rodriguez, Manuel I.; Mata Esparza, Hector Rolando; Arevalo Ballesteros, Gerardo [Altos Hornos de Mexico S. A., Coahuila (Mexico)


    The crisis has attracted the world`s attention on the need for energy conservation and the development in a greater extent the utilization of carbon base fuels and other energy sources (nuclear energy). Being a blast furnace, not only an energy consumer but also an energy producer, the greatest contribution to the pig iron cost is the energy needed to melt and reduce to metallic state the iron ores, this energy is mainly derived from coke. The dependence on coal via the coking plant to produce first fusion iron is incremented day after day as a result of the high levels of production. Altos Hornos de Mexico (AHMSA), contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently the shortage of coke for productions higher than 2.6 MMT of pig iron is pending. The injection of fuels into a blast furnace through its nozzles is a technology used for the diminishing the coke consumption of coke, its use implies a change in the philosophy of the blast furnace operation, and is currently employed in most of the blast furnaces of the world. AHMSA taking advantage of coal tar production (approx. 130 tons/day) in its coking plants decided the design and put into operation a co-injection system of coal tar and natural gas. The activities tending to carry out this project were initiated on April 1993, performing all of them with its own resources, completing them on July 18, 1993, day on which the injection of coal tar/natural gas in blast furnace No. 4 in a stable form. To date (October 1993), the coal tar injection has been increased up to 36 kg/ton of pig iron. During the injection periods, the presence of operational, mechanical and instrumentation problems have not been an obstacle for the evolution on the injection, fulfilling its function of substituting coke in a replacing relationship of 1:1, i.e. 1 kg of coal tar per each kg of coke, without affecting the product quality

  20. Waste and dust utilisation in shaft furnaces

    Senk, D.


    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  1. Avaliação das possibilidades de escórias de siderurgia como corretivos da acidez do solo Evaluation of blast furnace slags as correctives for soil acidity

    Antônio Carlos Pimentel Wutke


    .This paper presents preliminary results obtained in a greenhouse test in which blast furnace slags and other lime materials were compared as soil correctives. Comparisons were made between dolomitic limestone, calcitic limestone, oyster-shell lime, slag from iron production and slag from steel production by the Martin-Siemens basic procedure. These materials were compared at two different rates. General application of NPK fertilizers was made and the control treatment received no lime. The soybean variety Abura (Glycine max (L. Merril was utilized as an indicator plant; four plants were grown in each pot. Final grain production was measured and soil samples were collected, from the pots, in order to check the pH and exchangeable acidity (H+ + Al+3. The results obtained showed that under the conditions of the test, the dolomitic limestone, the calcitic limestone and the oyster-shell lime were all equally efficient in their corrective effect. The slag from steel production showed an intermediary effect, while the slag from iron prodution appeared to be the least efficient. The grain yield from these treatments did not presente any statistically significant difference. The actual grinding of the materials used in the experiment seemed satisfactory. A finer grinding is not deemed necessary unless it is required by the legislation covering the commerce of soil correctives.

  2. Kinetics of Nitrogen Diffusion in Granular Manganese

    ZHANG Jin-zhu; XU Chu-shao; ZHAO Yue-ping


    The kinetics and the influence of time on granular manganese nitriding were studied by means of a vacuum resistance furnace, X-ray diffraction technique, and LECO TC-436 oxygen/nitrogen determinator. The longer the nitriding time, the more the nitrogen pickup. Except for a trace of oxide MnO that developed, the metal manganese could thoroughly be nitrided to form Mn4N and a little ζ-phase (the stoichiometric components as Mn2N) with the nitriding time lasting. A kinetic model is developed to reveal the nitriding situation and agrees well with the experimental results.


    Victor Bridi Telles


    Full Text Available The steel production through Electric Arc Furnaces (EAF generates approximately 15% to 20% of Electric Arc Furnace Dust (EAFD. This waste is considered dangerous due to the presence of metals as lead and cadmium that leach in contact with water. Because of this, the EAFD recycling becomes an alternative to diminish the costs with landfills and environmental harms caused by the waste. The iron ore sintering is a process that reuses most part of powders generated by the steelmaking. However the EAFD is not reused in this process because it contains zinc. The zinc is highly detrimental inside blast furnaces causing heavy crusts and affecting the thermodynamic equilibrium of the process. Therefore, this work studies the EAFD reuse in the iron ore sintering process to produce iron ore sinter with zinc contents between the limits established for blast furnaces.

  4. 紫外-可见光催化活性的硫酸铵改性含钛高炉渣光催化剂的制备%Preparation of UV-visible light responsive photocatalyst from titania-bearing blast furnace slag modified with (NH4)2SO4

    雷雪飞; 薛向欣; 杨合


    Sulfate-modified titanium dioxide-bearing blast furnace slag (STBBFS) photocatalysts were prepared by the high energy ball milling method with (NH4)2SO4 and titanium dioxide-bearing blast furnace slag (TBBFS) as raw materials.X-ray photoelectron spectroscopy(XPS),X-ray diffraction (XRD),scanning electron microscopy (SEM),thermogravimetric analysis (TGA),UV-visible diffuse reflectance absorption spectra (UV-Vis),adsorption experiment and photocatalytic degradation measurement were conducted to characterize the structure,surface status,light absorption capacity,adsorption capacity and photocatalytic activity of the obtained photocatalysts.The adsorption equilibrium was described by the Langmuir isotherm model with a maximum adsorption capacity of 8.25 mg/g of Cr(Ⅵ) ions onto the STBBFS photocatalysts.As a result,sulfation of TBBFS improved the photocatalytic activities of STBBFSx photocatalysts.At a low calcination temperature,the photocatalytic activity of STBBFS300 photocatalyst was markedly higher compared with TBBFSx prepared at high calcination temperature,indicating that the photocatalytic activity of STBBFSx photocatalyst was determined by the balanced result between adsorption capacity and perovskite content.%以含钛高炉渣和硫酸铵为原料,利用高能球磨法制备硫酸盐掺杂的含钛高炉渣(STBBFS)光催化剂.利用X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见吸收光谱(UV-Vis)、热重(TGA)分析以及暗态吸附Cr(Ⅵ)废水、光催化还原Cr(Ⅵ)废水实验对STBBFS催化剂的物相、表面结构、光吸收能力、吸附容量以及光催化活性进行表征.结果表明:Cr(Ⅵ)在STBBFS催化剂表面上的吸附遵循Langmuir吸附等温线模型;掺杂硫酸盐后,STBBFS催化剂的吸附容量增大为8.25 mg/g;在300℃煅烧后,STBBFS催化剂由于存在较高的钙钛矿含量、吸附容量及表面酸性,从而具有较高的光催化活性.

  5. On Granular Knowledge Structures

    Zeng, Yi


    Knowledge plays a central role in human and artificial intelligence. One of the key characteristics of knowledge is its structured organization. Knowledge can be and should be presented in multiple levels and multiple views to meet people's needs in different levels of granularities and from different perspectives. In this paper, we stand on the view point of granular computing and provide our understanding on multi-level and multi-view of knowledge through granular knowledge structures (GKS). Representation of granular knowledge structures, operations for building granular knowledge structures and how to use them are investigated. As an illustration, we provide some examples through results from an analysis of proceeding papers. Results show that granular knowledge structures could help users get better understanding of the knowledge source from set theoretical, logical and visual point of views. One may consider using them to meet specific needs or solve certain kinds of problems.

  6. Calculations in furnace technology

    Davies, Clive; Hopkins, DW; Owen, WS


    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  7. Investigation on the Potentials of Cupola Furnace Slag in Concrete

    Stephen Adeyemi Alabi


    Full Text Available The compressive strength of the concrete designed using blast cupola furnace slag and granulated cupola slag as a coarse aggregate and partial replacement for cement was investigated. A series of experimental studies were conducted involve concrete production in two stages. The first stage comprised of normal aggregate concrete (NAC produced with normal aggregates and 100% ordinary Portland cement (OPC. Meanwhile, the second stage involved production of concrete comprising of cupola furnace slag an aggregates with 100% ordinary Portland cement (OPC and subsequently with 2%, 4%, 6%, 8% and 10% cementitious replacement with granulated cupola furnace slag that had been grounded and milled to less than 75 µm diameter. The outcomes of compressive strength test conducted on the slag aggregate concrete (SAC with and without granulated slag cementitious replacement were satisfactory compared to normal aggregate concretes (NAC.

  8. Compacting of fly dusts from cupola and electric arc furnace

    D. Baricová


    Full Text Available Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with diff erent addition of water glass, bentonite and cement. Quality of briquettes was tested by compression – strength test and by break down test in green state, after drying and afterstoring (1 month.

  9. ENERGY STAR Certified Furnaces

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Furnaces that are effective as of February 1,...

  10. Cordierite Bricks for Ceramic Burner of Hot Blast Stove YB/T 4128-2005

    Zhang Xiaohui; Chai Junlan


    @@ 1 Scope This standard specifies the classification,brand,technical requirements,shape and dimension,test method,quality appraisal procedure,packing,marking,transportation,storage and quality certificate of cordierite bricks for ceramic burner of blast furnace and hot blast stove.

  11. Zinc-lead blast furnace—the key developments

    Temple, Derek


    Because of his close association with the zinc-lead blast furnace process, the author has chosen to draw on this source to examine some key metallurgical advances. In addition to discussing the importance of some of these developments in the context of the zinc-lead blast furnace, comment is made on the more general role of the blast furnace technique in nonferrous extractive metallurgy. Naturally, the lead splash condenser system, without which the zinc-lead blast furnace would never have operated, occupies first place. The development of lead cooling launders is considered after discussion of the adoption of top air additions to minimize the reoxidation of zinc vapor in its passage from the furnace charge to the condenser. Without these two improvements on the original concept large capacity plants could not have been built. In addition, the development of the updraft technique of zinc-lead sinter production is examined; without this operating costs would have been excessive and expansion of the process would have ceased.

  12. Congenital granular cell epulis.

    Conrad, Rachel; Perez, Mia C N


    Congenital granular cell epulis is a rarely reported lesion of unknown histogenesis with a strong predilection for the maxillary alveolar ridge of newborn girls. Microscopically, it demonstrates nests of polygonal cells with granular cytoplasm, a prominent capillary network, and attenuated overlying squamous epithelium. The lesion lacks immunoreactivity for S-100, laminin, chromogranin, and most other markers except neuron-specific enolase and vimentin. Through careful observation of its unique clinical, histopathologic, and immunohistochemical features, this lesion can be distinguished from the more common adult granular cell tumor as well as other differential diagnoses.

  13. Granular gas dynamics

    Brilliantov, Nikolai


    While there is not yet any general theory for granular materials, significant progress has been achieved for dilute systems, also called granular gases. The contributions in this book address both the kinetic approach one using the Boltzmann equation for dissipative gases as well as the less established hydrodynamic description. The last part of the book is devoted to driven granular gases and their analogy with molecular fluids. Care has been taken so as to present the material in a pedagogical and self-contained way and this volume will thus be particularly useful to nonspecialists and newcomers to the field.

  14. Influence of operation parameters on flash smelting furnace based on CFD

    Xinfeng Li; Shiheng Peng; Xiangli Han; Chi Mei; Tianyuan Xiao


    The influence of three important operation parameters in Jinlong flash smelting furnace, including the distributing blast speed, the oxygen enrichment rate of process air and the ratio of central oxygen to overall oxygen (Oc/Oo), has been investigated using a virtual simulation system on copper flash smelting furnace. The core of this virtual simulation system is a numerical simulation of CFD (computational fluid dynamics), and this system incorporates coupling momentum transport, heat transport, mass transport,reaction kinetics between gas and particles and chemical reactions between gas and gas. A set of numerical predicted data were obtained. The CFD simulation shows that there is a sensitive zone of the distributing blast speed, and the dust content ascends when the speed exceeds 180 m-s-1. Increasing the oxygen concentration of processing air benefits the efficient production of the flash smelting furnace.

  15. Experimental study of monodisperse granular flow through an inclined rotating chute

    Shirsath, S.S.; Padding, J.T.; Deen, N.G.; Clercx, H.J.H.; Kuipers, J.A.M.


    In blast furnaces, particles like coke, sinter and pellets enter from a hopper and are distributed on the burden surface by a rotating chute. Such particulate flows suffer occasionally from particle segregation during transportation caused by differences in density or size. To get a more fundamental

  16. Preparation of dechlorination agent for HCl removal from blast furnace top gas with slaked lime and sada%以熟石灰和纯碱为活性成分制备高炉炉顶煤气脱氯剂

    张波; 胡宾生; 贵永亮; 刘晓光; 胡桂渊


    A dechlorination agent for HCl removal from blast furnace top gas was prepared with slaked lime and soda. Effects of the mass ratio of slaked lime to soda,average particle size of soda,binders and pore-making agents on the dechlorination performance and mechanical strength of dechlorition agent were investigated. An optimum process condition was obtained. It was found that,the double-component dechlorition agent with both slaked lime and soda not only can overcome the negative effect of CO2 from the blast furnace top gas,but also can keep the strength of the agent after reaction;The finer average particle size of soda is the better;Bentonite not only can enhance mechanical strength of the dechlorination agent,but also can improve dispersity of the active component. The HCl penetration capacity of the dechlorination agent prepared under the optimum process conditions is 17. 08% after dechlorinating for 19. 02 h when it is at 150 ℃,the space velocity is 1 000 h-1 ,the entrance volume fraction of HCl is 0. 1%. Meanwhile the average radial crushing strength is above 60 N/cm.%用熟石灰和纯碱为活性成分制备高炉炉顶煤气脱氯剂;考察了熟石灰与纯碱的质量比、纯碱的平均粒度、黏结剂、造孔剂对脱氯剂脱氯性能和机械强度的影响,并得到最佳工艺条件.研究表明:熟石灰和纯碱双组分脱氯剂既克服了高炉煤气中CO2气体对脱氯剂性能的不利影响,又保证了脱氯反应后脱氯剂的机械强度;纯碱的粒度越小越好;膨润土不仅可以提高脱氯剂的机械强度,还可以改善活性组分的分散性.最佳工艺条件下制得的脱氯剂在温度为150℃、空速为1000 h-1和进口HCl的体积分数为0.1%条件下19.02 h后的穿透氯容量达到17.08%,同时径向抗压碎强度均值保持在60 N/cm以上.

  17. Effect of Dosage of Fly Ash and Blast Furnace Slag on Performance of Concrete Prepared with Poorly Graded Sand%粉煤灰矿渣掺量对劣级配砂配制混凝土性能的影响

    李茂红; 张雨杰; 陈航; 赵菊梅


    为生产优质的劣级配砂配制混凝土,通过调节粉煤灰矿渣掺量配制了6组劣级配砂配制混凝土,用Andreasen方程评价砂石堆积效应,并测试混凝土坍落度和抗压强度,研究粉煤灰矿渣掺量差异对劣级配砂配制混凝土工作性和抗压强度的影响。研究结果发现,劣级配砂与石混合仍可获得较紧密堆积,复掺40%粉煤灰、矿渣的混凝土及单掺30%粉煤灰的混凝土工作性满足泵送要求;各组混凝土56 d抗压强度均满足强度等级要求,且随粉煤灰含量增加混凝土抗压强度减小。可推断矿渣粉煤灰掺量对虽为劣级配砂配制但具有较紧密堆积混凝土工作性和抗压强度的影响,与对正常级配砂配制混凝土工作性和抗压强度的影响一致。%In order to fabricate high quality concrete using poorly graded sand,six groups of concrete with poor sand gradation were prepared with different dosages of fly ash (FA)and blast furnace slag (BFS). The sand and stone compactness of the concrete was evaluated using the Andreasen equation, and the slump and compressive strength of the concrete were tested to study the effect of the dosage of fly ash and blast furnace slag on the workability and compressive strength of the concrete prepared with poor sand gradation. The results showed that the poorly graded sand and crushed stones had an adequately dense packing;both the concrete groups with 40% FA +BFS replacement and 30% FA replacement satisfied the pumping requirement;the concrete compressive strength in each group at 56 d satisfied the requirement of the strength grade,and decreased with the increasing of the dosage of fly ash. Therefore,the effect of the FA and BFS dosage on the workability and compressive strength of the concrete with poor sand gradation and dense packing is similar to that on the concrete with normal sand gradation.

  18. Fuzzy Synthesis Evaluation Method for Position State of Blast Furnace Cohesive Zone Based on Entropy Weight Extension Theory%基于熵权-可拓理论的高炉软熔带位置状态模糊综合评判方法

    杨贵军; 蒋朝辉; 桂卫华; 阳春华; 谢永芳


    针对高炉(Blast furnace, BF)软熔带位置状态影响因素复杂多样且具有层次性和模糊性的特点,提出了基于熵权–可拓理论的高炉软熔带位置状态两级模糊综合评判的新方法。首先,在对高炉生产过程参数进行整理、分类的基础上,采用可拓理论和熵权法确定第一级评判的隶属矩阵和模糊权向量,进行一级模糊评判。其次,以一级评判结果矩阵构成第二级评判的隶属矩阵,并结合层次分析法(Analytic hierarchy process, AHP)确定的第二级模糊权向量,进行二级模糊评判。利用物元的可拓性定性分析和可拓集合论的关联函数定量计算相结合的方法,实现对高炉软熔带位置状态的两级模糊综合评判。最后,以某钢铁厂2650 m3高炉为实例对其软熔带位置状态进行综合评判,所得结果与现场实际情况吻合良好。%As the position state of blast furnace (BF) cohesive zone is influenced by various complex factors, which have hierarchical and fuzzy characteristics, a two-stage fuzzy synthesis evaluation method based on entropy weight extension theory is proposed. Using the extension theory and entropy weight method, the membership matrixes and fuzzy weight vectors of the first-stage are determined for the first-stage fuzzy evaluation, which is based on the work of organizing and classifying the process data of BF. Then, after determining the second-stage fuzzy weight vector by utilizing the analytic hierarchy process (AHP), the membership matrix of the second-stage fuzzy evaluation is generated on the basis of the result matrixes of the first-stage fuzzy evaluation. Thus, the two-stage fuzzy evaluation of the position state of BF cohesive zone can be carried out with not only qualitative analysis with extension of matter-element but also quantitative calculation with correlation function of extension set theory. A case study of a 2 650 m3 steel plant is carried out to verify the proposed method

  19. Numerical analysis of flow behavior in tuyere and raceway of oxygen blast furnace with new type of oxy-coal burner%氧气高炉新型氧煤燃烧器设计参数对风口区流场影响数值模拟

    张超; 张建良; 孙辉; 刘征建


    氧气高炉通过向风口回旋区喷吹煤粉以及脱除CO2的循环高炉煤气,可有效降低CO2排放。运用CFD商业软件,建立风口回旋区三维模型,针对氧气高炉所设计的新型燃烧器中氧煤枪数量及其与直吹管所呈角度和空间物理位置对风口回旋区流场的影响进行数值模拟。研究结果表明:采用单支氧煤枪操作,当其位于直吹管上部时,煤气流速度随喷吹角度由7°~15°变化时逐渐减小,且夹角为9°较为适宜,当其位于下部时,随着夹角越大,对风口回旋区深度增加越有利;采用双氧煤枪操作,当其在直吹管上下、左右分布时,夹角分别为11°和13°较合理;当单支氧煤枪位于直吹管上方且夹角为9°、距离d为75 mm时能较好地促进风口回旋区深度增加并保持足够的鼓风动能。%Oxygen blast furnace can effectively reduce CO2emissions by two means, pulverized coal injection and recycling of CO2-removed blast furnace gas. To study the velocity fieldamongthe tuyere and raceway region, a three-dimensional modelwasbuildupusing the commercial CFD software. The factors these numerical simulations mainly focus on the number of oxygen-coal lances, the angle and distance between the blowpipe and oxy-coal lances. Numerical results show that increasing angle between the blowpipe and oxy-coal lance from 7° to 15° results in lower velocity when the oxy-coal lanceisset above the blowpipe,the appropriate angle is 9°. When the lance is located below the blowpipe, the bigger the angle is, the deeper the raceway will be.Inaddition, when theoxy-coal burner has two lances, the lances are set at two sides of the blowpipe, i.e. vertical and horizontal distribution around the blowpipe, and the reasonable angles are 11° and 13°.Besides,the suitable distance between the blowpipe and oxy-coal lance is 75mm when the oxy-coal lanceisset above the blowpipe.

  20. Granular computing: perspectives and challenges.

    Yao, JingTao; Vasilakos, Athanasios V; Pedrycz, Witold


    Granular computing, as a new and rapidly growing paradigm of information processing, has attracted many researchers and practitioners. Granular computing is an umbrella term to cover any theories, methodologies, techniques, and tools that make use of information granules in complex problem solving. The aim of this paper is to review foundations and schools of research and to elaborate on current developments in granular computing research. We first review some basic notions of granular computing. Classification and descriptions of various schools of research in granular computing are given. We also present and identify some research directions in granular computing.

  1. 高铝中钛高炉渣脱硫的动力学机制%Desulphurization Dynamics Mechanism of Blast Furnace Slag With Medium Titanium and High Alumina Content

    张淑会; 穆红旺; 孙艳芹; 吕庆


    以现场高炉渣化学成分为基准,利用纯化学试剂制备试验渣样,研究了高铝中钛型高炉渣脱硫的动力学过程,确定了其脱硫的动力学参数。结果表明,当反应温度一定时,铁水中硫含量w([S])随脱硫反应时间的延长而降低。试验条件下,高铝中钛渣脱硫过程属于二级反应,其限制性环节是硫在熔渣中的扩散。熔渣中硫的传质系数βS随着温度的升高而增大,硫在熔渣中的扩散活化能ED为127.03kJ/mol。%On the basis of the compositions of blast furnace(BF) slag at field,the desulphurization dynamics process was researched for BF slag with medium titanium and high alumina content,which was fabricated from pure chemical agents.The dynamics parameters of desulphurization were obtained.Results show that the sulfur content in liquid iron(w([S])) decreases with the elongation of desulphurization reaction time when the temperature is constant.Under the experimental conditions,the desulphurization process of BF slag with medium titanium and high alumina content belongs to second-order reaction,the restricted step of which is sulfur diffusion in the fused slag.The mass transfer coefficient(βS) rises with increasing the reaction,and the diffusion activation energy(ED) of sulfur element in fused slag is 127.03 kJ/mol.

  2. Shaken Granular Lasers

    Folli, Viola; Leuzzi, Luca; Conti, Claudio


    Granular materials have been studied for decades, also driven by industrial and technological applications. These very simple systems, composed by agglomerations of mesoscopic particles, are characterized, in specific regimes, by a large number of metastable states and an extreme sensitivity (e.g., in sound transmission) on the arrangement of grains; they are not substantially affected by thermal phenomena, but can be controlled by mechanical solicitations. Laser emission from shaken granular matter is so far unexplored; here we provide experimental evidence that it can be affected and controlled by the status of motion of the granular, we also find that competitive random lasers can be observed. We hence demonstrate the potentialities of gravity affected moving disordered materials for optical applications, and open the road to a variety of novel interdisciplinary investigations, involving modern statistical mechanics and disordered photonics.

  3. Rough-Granular Computing

    Andrzej Skowron


    Solving complex problems by multi-agent systems in distributed environments requires new approximate reasoning methods based on new computing paradigms. One such recently emerging computing paradigm is Granular Computing(GC). We discuss the Rough-Granular Computing(RGC) approach to modeling of computations in complex adaptive systems and multiagent systems as well as for approximate reasoning about the behavior of such systems. The RGC methods have been successfully applied for solving complex problems in areas such as identification of objects or behavioral patterns by autonomous systems, web mining, and sensor fusion.

  4. Impact of granular drops

    Marston, J. O.


    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  5. Failure of granular assemblies

    Welker, Philipp


    This work investigates granular assemblies subjected to increasing external forces in the quasi-static limit. In this limit, the system’s evolution depends on static properties of the system, but is independent of the particles’ inertia. At the failure, which occurs at a certain value of the external forces, the particles’ motions increase quickly. In this thesis, the properties of granular systems during the weakening process and at the failure are investigated with the Discrete Element Meth...

  6. The Synergistic Principle of Energy/mass Transfer and High Temperature Thermochemical Reaction Under Full Oxygen Blast Furnace Condition%全氧条件下高炉高温热化学反应与能质传递协同原理

    张欣欣; 薛庆国; 郭占成; 王静松; 李俊


    行为进行数值模拟研究;用单颗粒焦炭溶损实验装置,分别对H2O、CO2以及两者的混合气氛中的焦炭的溶损行为及其交互作用进行了研究。通过利用仿真模拟系统建立了氧气高炉的数学模型对氧气高炉的内部运行状况进行了深入研究,分别采用粘性流方法和离散元方法对炉料下降运动进行数值模拟研究;建立了高炉风口回旋区的二维数学模型,对氧气高炉中气体的流动、煤粉颗粒的运动、气体的传热(气体间的传热和气体与颗粒间的传热等)、颗粒的传热(颗粒之间的传热及与气体间的传热等)、燃烧(煤粉和焦炭的燃烧)等过程进行了深入研究;通过建立一维和二维的气固换热与反应动力模型,对氧气高炉内部的温度分布、压力分布以及不同相之间的换热情况进行了深入了解。%At present,traditional blast furnace with coke as main energy has been almost perfect in production efficiency and energy utilization, and it is difficult to realize the more energy saving and emission reduction by its technical progress in the traditional blast furnace. Oxygen blast furnace (OBF), as a new iron-making process, has the outstanding advantages in carbon saving and low CO2 emission.Due to the operations of pure oxygen instead of the hot blast and recycling most of the top gas after CO2 removal, the content of CO and H2in OBF increases significantly, which may also lead to the metallurgical performances of burden change. In order to promote the industrial application of OBF iron-making process, the systematic study of OBF ironmaking process was carried out. A comprehensive mathematical model of OBF was established. Many preliminary designs of OBF were simulated with the comprehensive mathematical model. The comprehensive evaluation of several different OBF process and traditional blast furnace has been made respectively. Through the evaluation, the most suitable

  7. Cupola Furnace Computer Process Model

    Seymour Katz


    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  8. 真空碳热还原酸浸含钛高炉渣制备 TiC 分析%Preparation of TiC by carbothermal reduction in vacuum and acid leaching process using titanium bearing blast furnace slag

    胡蒙均; 尹方庆; 魏瑞瑞; 邓青宇; 扈玫珑


    含钛高炉渣中含有20%~30%的 TiO2,是一种附加值较高的二次资源,但在综合利用过程中存在氧化物还原难度大,硅钛难分离,二次污染严重等问题。基于热力学理论基础,采用真空碳热还原联合酸浸工艺处理含钛高炉渣制备 TiC。结果表明:真空有助于钛氧化物彻底还原,可实现渣中硅钛彻底分离,减少酸耗量,降低二次污染。真空碳热还原联合酸浸工艺处理含钛高炉渣(TiO2含量23%左右)制备 TiC 的最佳条件为:炉渣粒度200目,还原温度1673 K,渣碳质量比100∶38。%Titanium bearing blast furnace slag with 20%-30% titanium dioxide is a valuable second resource.The main problems to utilize the resource are the reduction of the titanium oxides,the separation of titanium and silicon and the second pollution.The main aim of the research is to prepare TiC by the united process of carbothermal reduction in vacuum and acid leaching based on the thermodynamics calculation.The results show that decreasing pressure of the system is helpful for the reduction of the titanium oxides.Titanium and silicon in slag can be separated completely.The second pollution decreases due to evaporation of Mg and SiO produced in vacuum condition.The optimum conditions for the united process to prepare TiC are slag size of 200 mesh,temperature of 1 673 K,and the mass ratio of slag to reductant of 100∶38.

  9. Generating electricity and heat from lean gas. Dual fuel engine generates electricity and process heat from cupola furnace gas; Strom und Waerme aus Schwachgas gewinnen. Zuendstrahlmotor erzeugt Strom und Prozesswaerme aus Kupolofengas

    Hirn, Gerhard


    White-hot molten iron flows into the launder. The blast of heat released provides visitors with an impressive demonstration of the amount of energy flowing in foundries. Large volumes of carbon (coke) are used for the melting process in the cupola furnace, whereby a combustible process gas is formed as a by-product. This so-called cupola furnace gas has a low heating value and has previously been completely combusted for generating the hot blast in the cupola furnace's recuperator. However, in this process only around 35 % of the contained energy is used thermally. Now it is possible to utilise the remaining 65 % of the chemically bound energy that was previously not used in most foundries: a modified biogas combined heat and power plant runs with cupola furnace gas (CFG) from the melting furnace. (orig.)

  10. The rise of granular computing

    YAO Yi-yu


    This paper has two purposes. One is to present a critical examination of the rise of granular computing and the other is to suggest a triarchic theory of granular computing. By examining the reasons, justifications, and motivations for the rise of granular computing, we may be able to fully appreciate its scope, goal and potential values. The results enable us to formulate a triarchic theory in the light of research results from many disciplines. The three components of the theory are labeled as the philosophy, the methodology, and the computation. The integration of the three offers a unified view of gran-ular computing as a way of structured thinking, a method of structured problem solving, and a paradigm of structured infor-mation processing, focusing on hierarchical granular structures. The triarchic theory is an important effort in synthesizing the various theories and models of granular computing.

  11. Three Perspectives of Granular Computing

    Yiyu(Y.Y.) Yao


    As an emerging field of study, granular computing has received much attention. Many models, frameorks, methods and techniques have been proposed and studied. It is perhaps the time to seek for a general and unified view so that fundamental issues can be examined and clarified. This paper examines granular computing from three perspectives. By viewing granular computing as a way of structured thinking,we focus on its philosophical foundations in modeling human perception of the reality. By viewing granular computing as a method of structured problem solving, we examine its theoretical and methodological foundations in solving a wide range of real-world problems. By viewing granular computing as a paradigm of information processing,we turn our attention to its more concrete techniques. The three perspectives together offer a holistic view of granular computing.

  12. Type-2 fuzzy granular models

    Sanchez, Mauricio A; Castro, Juan R


    In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.

  13. Mathematical models of granular matter

    Mariano, Paolo; Giovine, Pasquale


    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  14. Blast Waves

    Needham, Charles E


    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  15. Valorization of electric arc furnace primary steelmaking slags for cement applications.

    Kim, Hyung-Seok; Kim, Kee-Seok; Jung, Sung Suk; Hwang, Jin Ill; Choi, Jae-Seok; Sohn, Il


    To produce supplementary cementitious materials from electric arc furnace (EAF) slags, FeO was reduced using a two-stage reduction process that included an Al-dross reduction reaction followed by direct carbon reduction. A decrease in FeO was observed on tapping after the first-stage reduction, and further reduction with a stirred carbon rod in the second-stage reduction resulted in final FeO content below 5wt%, which is compatible with cement clinker applications. The reduced electric arc furnace slags (REAFS) mixed with cement at a unit ratio exhibited physical properties comparable to those of commercialized ground granulated blast furnace slags (GGBFS). Confocal laser scanning microscopy (CLSM) was used to obtain fundamental information on the cooling characteristics and conditions required to obtain amorphous REAFS. REAFS can be applied in cement mixtures to achieve the hydraulic properties needed for commercial use.

  16. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    Kehagia, Fotini


    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.



  18. Granular flows : fluidization and anisotropy

    Wortel, Gerrit Herman


    This work discusses the flow of granular materials (e.g. sand). Even though a single particle is a simple object, the collective behavior of billions of particles can be very complex. In a surprisingly large amount of cases, it is not exactly known how a granular material behaves, and this while the

  19. Bulldozing of granular material

    Sauret, A; Caulfield, C P; McElwaine, J N


    We investigate the bulldozing motion of a granular sandpile driven forwards by a vertical plate. The problem is set up in the laboratory by emplacing the pile on a table rotating underneath a stationary plate; the continual circulation of the bulldozed material allows the dynamics to be explored over relatively long times, and the variation of the velocity with radius permits one to explore the dependence on bulldozing speed within a single experiment. We measure the time-dependent surface shape of the dune for a range of rotation rates, initial volumes and radial positions, for four granular materials, ranging from glass spheres to irregularly shaped sand. The evolution of the dune can be separated into two phases: a rapid initial adjustment to a state of quasi-steady avalanching perpendicular to the blade, followed by a much slower phase of lateral spreading and radial migration. The quasi-steady avalanching sets up a well-defined perpendicular profile with a nearly constant slope. This profile can be scale...

  20. Caracterização mecânica de misturas solo-escória de alto-forno granulada moída para aplicações em estradas florestais Mechanical characterization of soil and granulated blast furnace slag mixtures for forest road applications

    Rodrigo Zorzal Velten


    Full Text Available O presente artigo objetivou avaliar a resistência mecânica de misturas solo-escória de alto-forno granulada moída e ativada com cal hidratada, para aplicações como camada de pavimentos de estradas florestais. O solo analisado é um residual jovem de gnaisse da Zona da Mata Norte de Minas Gerais, de textura areno-silto-argilosa, classificado como A-2-4 (0 pelo Sistema TRB e como NS' pela Metodologia MCT. A escória de alto-forno granulada moída empregada foi fornecida pela companhia brasileira Valemassa Indústria e Comércio de Argamassa Ltda. Utilizou-se uma cal hidratada comercial como agente ativador das reações de hidratação da escória. Trabalhou-se com teores de escória de 5, 10 e 15%, em relação à massa de solo seco, e de cal hidratada de 5, 10 e 20%, em relação à massa seca de escória. O estudo englobou a realização de ensaios de caracterização química da escória e de caracterização geotécnica do solo, bem como ensaios de compactação e de compressão não-confinada das misturas na energia de compactação do Proctor intermediário, considerando-se os períodos de cura em câmara úmida de 1, 7 e 28 dias. Os resultados indicaram ganhos significativos de resistência mecânica das misturas com relação ao solo, observando-se aumentos expressivos na resistência mecânica, com aumentos nos teores de escória, cal e período de cura.This paper addresses the evaluation of the mechanical strength of mixtures of a soil and a granulated blast furnace slag activated with hydrated lime for forest road engineering applications. The tested soil is a young residual gneiss soil classified as A-2-4 (0 by the TRB System and as NS' by the MCT Methodology. The slag was supplied by the Brazilian company Valemassa Indústria e Comércio de Argamassa Ltda. A commercial hydrated lime was used to activate slag hydration reactions. The laboratory testing program encompassed the following: geotechnical soil characterization

  1. Análise fluido-dinâmica do escoamento em ensaio de permeabilidade ao ar de argamassas preparadas com cimento Portland de alto-forno Fluid-dynamic analysis of the flow in air permeability measurement of mortars prepared with blast-slag furnace Portland cement

    V. M. Pereira


    . These studies not only have evaluated the permeability of porous media, but also to analyze the behavior of the fluid during the flow. Being about to the cement based materials, the measuring of the permeability becomes basic so that the durability of these can be estimate, therefore is the permeability that controls the rate of ingression and movement of deleterious agents inside these materials. Thus, diverse methodologies and mathematical equations have been used to foresee the permeability of cementitious materials, however, some discrepancies and nonsense in the results have been found. Amongst the used methodologies to measure the permeability of porous media, one meets developed it by Thenoz, which it has demonstrated good results in cement based materials. Thus, this work aims at, by means of assay of permeability to air, carried through in accordance with the methodology of Thenoz, to evaluate the fluid-dynamic behavior of air during the assay of permeability in mortars. For this, mortars prepared with two types of Portland cement of blast furnace (CP IIE-32 and CP III - 32, two relations water/cement (0.5 and 0.6 and ages of 14 and 28 days were used. By means of the gotten results it was possible to observe that during the draining the compressibility of air can be ignored, the regimen of draining can be considered as to plate, demonstrating that the methodology proposal for Thenoz and used mathematical equations can result in coefficients of trustworthy air permeability, therefore phenomena and considerations that could influence in this type of flow can be neglected, in accordance with what it is considered by literature.

  2. Effect of TiO2 and CaF2 on the Microstructure and High-Temperature Viscosity of Parent Glass from Blast Furnace Slag%TiO2和CaF2对高炉渣基础玻璃微观结构和高温粘度的影响

    谢春帅; 贵永亮; 王亚文; 宋春燕; 胡宾生


    以高炉渣为主要原料,添加适当的SiO2、Al2O3、MgO、ZnO、K2CO3、Na2CO3、TiO2、CaF2等化学试剂作为辅助材料,采用熔融法制备了高炉渣基础玻璃。通过拉曼光谱和熔体物性测定仪分析了TiO2和CaF2对高炉渣基础玻璃微观结构和高温粘度的影响。结果显示随着TiO2含量的增加,Si4+逐步被Ti4+取代,使非桥氧数目增加,拉曼峰向低波数移动。CaF2中的F-取代硅氧四面体中的O2-,硅氧四面体断裂,使拉曼峰降低。TiO2和CaF2均能降低基础玻璃高温粘度,有利于基础玻璃的熔制,同时增加了基础玻璃对热的不稳定性,有利于基础玻璃的形核析晶形成微晶玻璃。%Parent glass was prepared successfully by the method of melting, using blast furnace slag as main source of raw materials, and SiO2, Al2O3, MgO, ZnO, K2CO3, Na2CO3, TiO2 and CaF2 as auxiliary materials. The microstructure and high-temperature viscosity of parent glass were investigated by the Raman spectra and high-temperature melt properties tester. The results showed that with the increase of TiO2 content in parent glass more Si4+was replaced by Ti4+, which led to an increased amount of non-bridging oxygen and the movement of the Raman peaks to lower wave number. F-tended to occupy the place of O2-in parent glass with the increasing of CaF2 content. As a result, silicon oxygen tetrahedron fractured and the intensity of the Raman spectra lowered. The presence of TiO2 and CaF2 was beneifcial for the homogeneity of parent glass due to the decreasing of the viscosity of liquid glass, but it also increased the thermal instability of parent glass, which was helpful for nucleation and crystallization of glass ceramics.

  3. Distribution of lead and silver under lead blast furnace conditions

    Pérez, M.


    Full Text Available Two experimental studies of metal solubility in slags were carried out at 1473 K (1200 °C. In the first one the solubility of lead in the PbO-ZnO-CaO-SiO2-“Fe2O3” slag system under a reducing atmosphere (PCO/PCO2 = 2.45 was studied. In the second part, slags of the CaO-SiO2-“Fe2O3” system were equilibrated with Pb - 1.3 mass % Ag alloys under an inert atmosphere. In both cases the CaO/SiO2 mass ratio was from 1.0 to 1.6 and Fe/SiO2 mass ratio was 1.1 and 1.7. The lead solubility in the slags of both experimental parts diminishes with increasing the slag basicity (CaO/SiO2 and diminishing the Fe/SiO2 ratio. Lead oxide is the only compound that can be reduced under the reducing atmosphere and at the temperature at the tuyeres level, 1473 K. Silver solubility in slags decreases with increasing both CaO/SiO2 and Fe/SiO2 ratios in the slags of the CaO-SiO2-“Fe2O3” system.

    Se realizaron dos estudios experimentales de solubilidad de metal en escorias a 1.473 K (1.200 °C. En el primero se estudió la solubilidad de plomo en el sistema PbO-ZnO-CaO-SiO2-“Fe2O3” bajo una atmósfera reductora (PCO/PCO2 = 2,45. En la segunda parte, escorias del sistema CaO-SiO2-“Fe2O3” fueron equilibradas con aleaciones Pb - 1,3 % Ag en atmósfera inerte. En ambos casos la relación CaO/SiO2 fue variada de 1.0 a 1.6 y la relación Fe/SiO2 fue de 1,1 y 1,7. La solubilidad de plomo en las escorias de ambas etapas experimentales disminuye con el incremento de la basicidad (CaO/SiO2 y la disminución de la relación Fe/SiO2. El óxido de plomo es el único compuesto que puede ser reducido bajo la atmósfera reductora y a la temperatura en el nivel de las toberas del horno alto, 1.473 K. La solubilidad de la plata en la escoria decrece con el aumento de las relaciones CaO/SiO2 y Fe/SiO2 en las escorias del sistema CaO-SiO2-“Fe2O3”.

  4. Using a Time Granularity Table for Gradual Granular Data Aggregation

    Iftikhar, Nadeem; Pedersen, Torben Bach


    The majority of today’s systems increasingly require sophisticated data management as they need to store and to query large amounts of data for analysis and reporting purposes. In order to keep more “detailed” data available for longer periods, “old” data has to be reduced gradually to save space...... is 6 months old aggregate to 2 minutes level from 1 minute level and so on. The proposed solution introduces a time granularity based data structure, namely a relational time granularity table that enables long term storage of old data by maintaining it at different levels of granularity and effective...

  5. Design of a Centrifugal Blower for a 400kg Rotary Furnace.

    Sani Malami Suleiman


    Full Text Available Poor performance of a rotary furnace cannot be unconnected to failure in the design of the blower among others, This paper discuss the design of a centrifugal blower for a rotary furnace which will give the required manometric efficiency that will aid adequate combustion as required. The blower was designed to convert ‘driver’ energy to kinetic energy in the fluid by accelerating it to the outer rim of the revolving device known as the impeller. The impeller, driven by the blower shaft adds the velocity component to the fluid by centrifugally casting the fluid away from the impeller vane tips. The amount of energy given to the fluid corresponds to the velocity at the edge or vane tip of the impeller. Significance: Centrifugal blowers are applicable in furnaces such as Rotary and cupola furnace, the efficiency of these furnaces depend on the blast rate and air delivery from a well design blower. This paper will guide to achieve this aims.

  6. Installation and Trial Run of the Furnace


    In order to meet the demand of neutron experiment in the future, the neutron lab equips with extreme temperature furnace (Fig. 1), the furnace is designed and produced by the professional producer-Scientific

  7. High Efficiency Solar Furnace Core Project

    National Aeronautics and Space Administration — It is proposed to develop a high efficiency solar furnace core that greatly lessens the heat losses from the furnace core, either greatly reducing the amount of...

  8. Advanced Granular System Modeling Project

    National Aeronautics and Space Administration — Spaceports of the future will utilize new granular materials in unique applications including insulation for cryogenic tanks and Lunar regolith processing for usable...

  9. Mathematical model of layered metallurgical furnaces and units

    Shvydkiy, V. S.; Spirin, N. A.; Lavrov, V. V.


    The basic approaches to mathematical modeling of the layered steel furnaces and units are considered. It is noted that the particular importance have the knowledge about the mechanisms and physical nature of processes of the charge column movement and the gas flow in the moving layer, as well as regularities of development of heat- and mass-transfer in them. The statement and mathematical description of the problem solution targeting the potential gas flow in the layered unit of an arbitrary profile are presented. On the basis of the proposed mathematical model the software implementation of information-modeling system of BF gas dynamics is carried out. The results of the computer modeling of BF non-isothermal gas dynamics with regard to the cohesion zone, gas dynamics of the combustion zone and calculation of hot-blast stoves are provided

  10. Electrostatic Levitation Furnace for the ISS

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko


    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  11. Localizing energy in granular materials

    Przedborski, Michelle A; Sen, Surajit


    A device for absorbing and storing short duration impulses in an initially uncompressed one-dimensional granular chain is presented. Simply stated, short regions of sufficiently soft grains are embedded in a hard granular chain. These grains exhibit long-lived standing waves of predictable frequencies regardless of the timing of the arrival of solitary waves from the larger matrix. We explore the origins, symmetry, and energy content of the soft region and its intrinsic modes.

  12. Blast Technologies


    rollover  VAT: Vertical forces and floor deformation  HIP : Head protection systems Payoff: MABS  State-of-the-art unique piece of test equipment...13 14 15 16 17 Energy Absorbing Seats w/ Restraints Blast Mats and other Interior Treatments Data Recorders and Sensors Methods and Standards... treatments .  Airbag or comparable technologies such as bolsters.  Sensors that can detect and deploy/trigger interior treatments within the timeframe of a

  13. Granular Superconductors and Gravity

    Noever, David; Koczor, Ron


    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  14. Simulations of Granular Media

    Herrmann, H. J.; Müller, M.

    For the last ten years there has been an enormous progress in the simulation of granular media like sand or powders. These simulations consist in simulating trajectories of each particle individually. Essentially one has to solve the Newton's equations including the effects of Coulomb friction and the physics occuring at a collision. But the details of the trajectories are not important for the collective behaviour. Therefore simplifications are introduced on the smallest scales. I will introduce various methods like molecular dynamics that are used to simulate large amounts of particles (over 109). Some of these medhods are based on the exploitation of parallelisation and metacomputing. Other approaches are more stochastic (DSMC Direct Simulation Monte Carlo) which simplify the calculation of collisions, positions and collision times. Very successful has been also the use of cellular automata which have been able to predict details such as the logarithmic tale of sand heaps. I will also discuss numerical techniques used for the surrounding fluid. This can be water in the case of sedimentation or air when one studies the formation of dunes in the desert. The calculation of velocity and pressure field of the fluid are done using multigrid techniques on parallel computers. We will compare the performance of the various techniques and show some benchmarks on the dependence on the size of the system, the density of particles and the number of processors used.

  15. Calculation of driling and blasting parameters in blasting performance

    Dambov, Risto; Karanakova Stefanovska, Radmila; Dambov, Ilija


    In all mining technology drilling and blasting parameters and works are one of the main production processes at each mine. The parameters of drilling and blasting and explosives consumption per ton of blasting mass are define economic indicators of any blasting no matter for what purpose and where mining is performed. The calculation of rock blasting should always have in mind that the methodology of calculation of all drilling and blasting parameters in blasting performance are performed for...

  16. Silo Collapse under Granular Discharge

    Gutiérrez, G.; Colonnello, C.; Boltenhagen, P.; Darias, J. R.; Peralta-Fabi, R.; Brau, F.; Clément, E.


    We investigate, at a laboratory scale, the collapse of cylindrical shells of radius R and thickness t induced by a granular discharge. We measure the critical filling height for which the structure fails upon discharge. We observe that the silos sustain filling heights significantly above an estimation obtained by coupling standard shell-buckling and granular stress distribution theories. Two effects contribute to stabilize the structure: (i) below the critical filling height, a dynamical stabilization due to granular wall friction prevents the localized shell-buckling modes to grow irreversibly; (ii) above the critical filling height, collapse occurs before the downward sliding motion of the whole granular column sets in, such that only a partial friction mobilization is at play. However, we notice also that the critical filling height is reduced as the grain size d increases. The importance of grain size contribution is controlled by the ratio d /√{R t }. We rationalize these antagonist effects with a novel fluid-structure theory both accounting for the actual status of granular friction at the wall and the inherent shell imperfections mediated by the grains. This theory yields new scaling predictions which are compared with the experimental results.

  17. Environmental Benefits Assessment of Blast Furnace Slag Recycling for Green Building Materials Based on LCA%高炉渣资源化生产绿色建材的环境效益评估——基于生命周期的视角

    宋小龙; 杨建新; 刘晶茹


    Blast furnace (BF) slag from iron smelting process, has great recycling potential for producing green building materials. It can be used as cement or concrete admixture in the form of slag powder which is produced in the processing of water quenching and granulating. The recycling processes of BF slag were focused in this study. Based on life cycle inventory ( LCI) analysis and GaBi 4 software, resources consumption and greenhouse gas (CHG) emissions of slag portland cement and commercial concrete production processes using BF slag were analysed in a building materials factory, and then environmental benefits from the recycling of BF slag were assessed in terms of energy saving, reduction of raw material consumption and mitigation of GHG emissions. Compared with ordinary portland cement, slag portland cement can save energy 1 911 MJ/t (decreased by 26% ), reduce raw material consumption 1 158 kg/t (decreased by 27%) and mitigate GHG emissions 236 kg/t (decreased by 26%). Meanwhile, those results for slag portland cement were 352 MJ/t (decreased by 6% ), 278 kg/t (decreased by 8% ) and 47 kg/t (decreased by 7% ), respectively, in contrast to composite portland cement. Likewise, commercial concrete (with slag powder) can save energy 97 MJ/m3(decreased by 5% ) , reduce raw material consumption 7 kg/m (decreased by 0. 3% ) and mitigate GHG emissions 12 kg/m ( decreased by 5% ), compared with common commercial concrete (without slag powder). The results showed that the recycling of BF slag for slag portland cement and commercial concrete have obvious positive environmental benefits.%高炉渣是钢铁厂高炉炼铁产生的矿渣,具有较高的资源化价值,可用于生产多种绿色建材产品.熔融高炉渣经水急冷后形成的粒化高炉矿渣,粉磨成矿渣微粉可作为水泥混合材和混凝土掺台料.以高炉渣资源化过程为研究对象,采用生命周期清单分析方法,并基于GaBi 4软件平台,对我国某建材企业综合利用高

  18. Instability in Shocked Granular Gases

    Sirmas, Nick; Radulescu, Matei


    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  19. Instability in shocked granular gases

    Sirmas, Nick; Falle, Sam; Radulescu, Matei


    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  20. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    A. Pribulová


    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process.Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting+5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5%bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.