WorldWideScience

Sample records for black hole x-ray

  1. X-ray properties of accreting black holes

    International Nuclear Information System (INIS)

    White, N.E.

    1984-01-01

    The X-ray signatures of Cyg X-1 and IMC X-3 have been taken as templates of binary systems which include a black hole component. Cyg X-1 exhibits rapid flickering on a time scale varying from 0.001-1 sec and bimodal spectral behavior in its X-ray emissions. Similar emissions from IMC X-3 have been detected, along with an absence of X-ray eclipses. Taking three characteristics, i.e., flickering, bimodal spectra and the estimated masses of the X ray components, of assumed black hole companions for Cyg X-1 and IMC X-3, an estimate is made of the number of black holes a whole sky survey would reveal, based on data from the HEAO-1 and Einstein Observatory satellites. Cin X-1, BX 339-4 and LMC X-1 are concluded to probably be accreting black holes. Eleven other objects are identified as possible candidates, as are active galactic nuclei

  2. Can isolated single black holes produce X-ray novae?

    Science.gov (United States)

    Matsumoto, Tatsuya; Teraki, Yuto; Ioka, Kunihito

    2018-03-01

    Almost all black holes (BHs) and BH candidates in our Galaxy have been discovered as soft X-ray transients, so-called X-ray novae. X-ray novae are usually considered to arise from binary systems. Here, we propose that X-ray novae are also caused by isolated single BHs. We calculate the distribution of the accretion rate from interstellar matter to isolated BHs, and find that BHs in molecular clouds satisfy the condition of the hydrogen-ionization disc instability, which results in X-ray novae. The estimated event rate is consistent with the observed one. We also check an X-ray novae catalogue (Corral-Santana et al.) and find that 16/59 ˜ 0.27 of the observed X-ray novae are potentially powered by isolated BHs. The possible candidates include IGR J17454-2919, XTE J1908-094, and SAX J1711.6-3808. Near-infrared photometric and spectroscopic follow-ups can exclude companion stars for a BH census in our Galaxy.

  3. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0...

  4. Mass accretion rate fluctuations in black hole X-ray binaries

    NARCIS (Netherlands)

    Rapisarda, S.

    2017-01-01

    This thesis is about the first systematic and quantitative application of propagating mass accretion rate fluctuations models to black hole X-ray binaries. Black hole X-ray binaries are systems consisting of a solar mass star orbiting around a stellar mass black hole. Eventually, the black hole

  5. Measuring the black hole mass in Ultraluminous X-ray Sources with the X-ray Scaling Method

    Science.gov (United States)

    Jang, Insuk; Gliozzi, M.

    2014-01-01

    The black hole mass is a crucial parameter to shed light on the physics of accretion. While the presence of stellar mass black holes (sMBHs) in binary systems and supermassive black holes (SMBHs) in the center of galaxies is widely accepted, the very existence of intermediate mass black holes (IMBHs) is still a matter of debate. It has been suggested that this type of black holes within the mass range of MBH=10^2-10^5 Msun may reside in Ultraluminous X-ray sources (ULXs) which are very bright off nuclear X-ray sources. Recently, a new method to constrain the mass of BH systems, based solely on X-ray data, was successfully used for sMBHs and SMBHs. Since the X-ray emission is thought to be produced by the same process (Comptonization) in all accretion objects, in principle, this method can be applied to estimate the mass of black holes in ULXs. We have carried out a systemic analysis of a sample of 43 ULXs with multiple X-ray observations and applied this novel method. Our preliminary results suggest that ~70% of the sample harbor IMBHs and indicates a good agreement with those derived with different methods present in the literature.

  6. What can we learn about black-hole formation from black-hole X-ray binaries?

    OpenAIRE

    Nelemans, G.

    2004-01-01

    I discuss the effect of the formation of a black hole on a (close) binary and show some of the current constraints that the observed properties of black hole X-ray binaries put on the formation of black holes. In particular, I discuss the evidence for and against asymmetric kicks imparted on the black hole at formation and find contradicting answers, as there seems to be evidence for kicks for individual systems and from the Galactic z-distribution of black hole X-ray binaries, but not from t...

  7. What Can We Learn About Black-Hole Formation from Black-Hole X-ray Binaries?

    NARCIS (Netherlands)

    Nelemans, G.A.

    2007-01-01

    I discuss the effect of the formation of a black hole on a (close) binary and show some of the current constraints that the observed properties of black hole X-ray binaries put on the formation of black holes. In particular, I discuss the evidence for and against asymmetric kicks imparted on the

  8. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  9. The radio/X-ray domain of black hole X-ray binaries at the lowest radio luminosities

    NARCIS (Netherlands)

    Gallo, E.; Miller-Jones, J.C.A.; Russell, D.M.; Jonker, P.G.; Homan, J.; Plotkin, R.M.; Markoff, S.; Miller, B.P.; Corbel, S.; Fender, R.P.

    2014-01-01

    We report on deep, coordinated radio and X-ray observations of the black hole X-ray binary XTE J1118+480 in quiescence. The source was observed with the Karl G. Jansky Very Large Array for a total of 17.5 h at 5.3 GHz, yielding a 4.8 ± 1.4 μJy radio source at a position consistent with the binary

  10. Black hole and neutron star soft X-ray transients: a hard X-ray view of their outbursts

    International Nuclear Information System (INIS)

    Yu, W.

    2004-01-01

    The RXTE public observations of the outbursts of black hole soft X-ray transients XTE J1550-564, XTE J1859+226, 4U 1630-47, XTE J1118+480, XTE J1650-500, and the neutron star soft X-ray transients 4U 1608-52, Aquila X-1, including a variable 'persistent' neutron star low mass X-ray binary 4U 1705-44, are summarized in this paper. The hard X-ray view of those outbursts, which is quite different from that of the soft X-ray band, suggests that there are several types of outbursts which result in different hard X-ray outburst profile - the outburst profiles are energy dependent. One type is the low/hard state outbursts, the other type is the outburst showing transitions from the low/hard state to the high/soft state, or to the intermediate or to the very high state. The later has an initial low/hard state, introducing the phenomena that the hard X-ray precedes the soft X-ray in the outburst rise. Such outbursts in XTE J1550-564, Aql X-1 and 4U 1705-44 support a two-accretion-flow model which involves one Keplerian disk flow and one sub-Keplerian flow for the initial outburst rise

  11. Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars

    Science.gov (United States)

    Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.

    2018-04-01

    There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.

  12. No evidence for black hole spin powering of jets in X-ray binaries

    NARCIS (Netherlands)

    Fender, R.P.; Gallo, E.; Russell, D.

    2010-01-01

    In this paper, we consider the reported measurements of black hole spin for black hole X-ray binaries and compare them against the measurements of jet power and speed across all accretion states in these systems. We find no evidence for any correlation between the properties of the jets and the

  13. New X-ray bound on density of primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Institute of Space and Astronautical Science JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Kusenko, Alexander, E-mail: yinoue@astro.isas.jaxa.jp, E-mail: kusenko@ucla.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States)

    2017-10-01

    We set a new upper limit on the abundance of primordial black holes (PBH) based on existing X-ray data. PBH interactions with interstellar medium should result in significant fluxes of X-ray photons, which would contribute to the observed number density of compact X-ray objects in galaxies. The data constrain PBH number density in the mass range from a few M {sub ⊙} to 2× 10{sup 7} M {sub ⊙}. PBH density needed to account for the origin of black holes detected by LIGO is marginally allowed.

  14. Stellar-mass black holes and ultraluminous x-ray sources.

    Science.gov (United States)

    Fender, Rob; Belloni, Tomaso

    2012-08-03

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  15. Stellar-Mass Black Holes and Ultraluminous X-ray Sources

    Science.gov (United States)

    Fender, Rob; Belloni, Tomaso

    2012-08-01

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  16. The photon-index-time-lag correlation in black hole X-ray binaries

    Science.gov (United States)

    Reig, Pablo; Kylafis, Nikolaos D.; Papadakis, Iossif E.; Costado, María Teresa

    2018-02-01

    We have performed a timing and spectral analysis of a set of black hole binaries to study the correlation between the photon index and the time lag of the hard photons with respect to the soft ones. We provide further evidence that the timing and spectral properties in black hole X-ray binaries are coupled. In particular, we find that the average time lag increases as the X-ray emission becomes softer. Although a correlation between the hardness of the X-ray spectrum and the time (or phase) lag has been reported in the past for a handful of systems, our study confirms that this correlated behaviour is a global property of black hole X-ray binaries. We also demonstrate that the photon-index-time-lag correlation can be explained as a result of inverse Comptonization in a jet.

  17. Vacuum birefringence and the x-ray polarization from black-hole accretion disks

    Science.gov (United States)

    Caiazzo, Ilaria; Heyl, Jeremy

    2018-04-01

    In the next decade, x-ray polarimetry will open a new window on the high-energy Universe, as several missions that include an x-ray polarimeter are currently under development. Observations of the polarization of x rays coming from the accretion disks of stellar-mass and supermassive black holes are among the new polarimeters' major objectives. In this paper, we show that these observations can be affected by the quantum electrodynamic (QED) effect of vacuum birefringence: after an x-ray photon is emitted from the accretion disk, its polarization changes as the photon travels through the accretion disk's magnetosphere, as a result of the vacuum becoming birefringent in the presence of a magnetic field. We show that this effect can be important for black holes in the energy band of the upcoming polarimeters and has to be taken into account in a complete model of the x-ray polarization that we expect to detect from black-hole accretion disks, both for stellar mass and for supermassive black holes. We find that, for a chaotic magnetic field in the disk, QED can significantly decrease the linear polarization fraction of edge-on photons, depending on the spin of the hole and on the strength of the magnetic field. This effect can provide, for the first time, a direct way to probe the magnetic field strength close to the innermost stable orbit of black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  18. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+ ...

    Indian Academy of Sciences (India)

    tribpo

    features in the X ray light curve include flickering, strong quasi periodic oscillations, irregular X ray bursts, pronounced dips and rapid high low transitions both in soft and hard X ray bands (Greiner et al. 1996; Morgan et al. 1997; Yadav et al. 1999). Among the main dynamical features of the source are the emission of two.

  19. The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9

    Science.gov (United States)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.; hide

    2017-01-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  20. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+ ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. We report the spectral measurement of GRS 1915+105 in the hard X ray energy band of 20 140keV. The observations were made on. March 30th, 1997 during a quiescent phase of the source. We discuss the mechanism of emission of hard X ray photons and the evolution of the spectrum by comparing the data ...

  1. Searching for Primordial Black Holes in the Radio and X-Ray Sky.

    Science.gov (United States)

    Gaggero, Daniele; Bertone, Gianfranco; Calore, Francesca; Connors, Riley M T; Lovell, Mark; Markoff, Sera; Storm, Emma

    2017-06-16

    We model the accretion of gas onto a population of massive primordial black holes in the Milky Way and compare the predicted radio and x-ray emission with observational data. We show that, under conservative assumptions on the accretion process, the possibility that O(10)M_{⊙} primordial black holes can account for all of the dark matter in the Milky Way is excluded at 5σ by a comparison with a Very Large Array radio catalog at 1.4 GHz and at ≃40σ by a comparison with a Chandra x-ray catalog (0.5-8 keV). We argue that this method can be used to identify such a population of primordial black holes with more sensitive future radio and x-ray surveys.

  2. Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations.

    Science.gov (United States)

    Ueda, Yoshihiro

    2015-01-01

    We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find "obscured" AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions.

  3. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    Science.gov (United States)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  4. Attempt to explain black hole spin in X-ray binaries by new physics

    International Nuclear Information System (INIS)

    Bambi, Cosimo

    2015-01-01

    It is widely believed that the spin of black holes in X-ray binaries is mainly natal. A significant spin-up from accretion is not possible. If the secondary has a low mass, the black hole spin cannot change too much even if the black hole swallows the whole stellar companion. If the secondary has a high mass, its lifetime is too short to transfer the necessary amount of matter and spin the black hole up. However, while black holes formed from the collapse of a massive star with solarmetallicity are expected to have low birth spin, current spin measurements show that some black holes in X-ray binaries are rotating very rapidly. Here we show that, if these objects are not the Kerr black holes of general relativity, the accretion of a small amount of matter (∝2 M s un) can make them look like very fast-rotating Kerr black holes. Such a possibility is not in contradiction with any observation and it can explain current spin measurements in a very simple way. (orig.)

  5. Ultra-luminous X-ray sources and intermediate-mass black holes

    International Nuclear Information System (INIS)

    Cseh, David

    2012-01-01

    More than ten years ago, the discovery of Ultra-luminous X-ray sources (ULXs) has opened up an entirely new field in astrophysics. Many ideas were developed to explain the nature of these sources, like their emission mechanism, mass, and origin, without any strong conclusions. Their discovery boosted the fields of X-ray binaries, accretion physics, stellar evolution, cosmology, black hole formation and growth, due to the concept of intermediate-mass black holes (IMBHs). Since their discovery is related to the domain of X-ray astrophysics, there have been very few studies made in other wavelengths. This thesis focuses on the multiwavelength nature of Ultra-luminous X-ray sources and intermediate-mass black holes from various aspects, which help to overcome some difficulties we face today. First, I investigated the accretion signatures of a putative intermediate-mass black hole in a particular globular cluster. To this purpose, I characterized the nature of the innermost X-ray sources in the cluster. Then I calculated an upper limit on the mass of the black hole by studying possible accretion efficiencies and rates based on the dedicated X-ray and radio observations. The accreting properties of the source was described with standard spherical accretion and in the context of inefficient accretion. Secondly, I attempted to dynamically measure the mass of the black hole in a particular ULX via optical spectroscopy. I discovered that a certain emission line has a broad component that markedly shifts in wavelength. I investigated the possibility whether this line originates in the accretion disk, and thus might trace the orbital motion of the binary system. I also characterized the parameters of the binary system, such as the mass function, possible orbital separation, the size of the line-emitting region, and an upper limit on the mass of the black hole. Then I studied the environment of a number of ULXs that are associated with large-scale optical and radio nebulae. I

  6. Tidal disruption of stars by supermassive black holes: The X-ray view

    Directory of Open Access Journals (Sweden)

    Komossa S.

    2012-12-01

    Full Text Available The tidal disruption of stars by supermassive black holes produces luminous soft X-ray accretion flares in otherwise inactive galaxies. First events have been discovered in X-rays with the ROSAT observatory, and have more recently been detected with XMM-Newton, Chandra and Swift, and at other wavelengths. In X-rays, they typically appear as very soft, exceptionally luminous outbursts of radiation, which decline consistent with L ∝ t−5/3 on the timescale of months to years. They reach total amplitudes of decline up to factors 1000–6000 more than a decade after their initial high-states, and in low-state, their host galaxies are essentially X-ray inactive, optically inactive, and radio inactive. X-ray luminous tidal disruption events (TDEs represent a powerful new probe of accretion physics near the event horizon, and of relativistic effects. TDEs offer a new way of estimating black hole spin, and they are signposts of supermassive binary black holes and recoiling black holes. Once discovered in the thousands in upcoming sky surveys, their rates will probe stellar dynamics in distant galaxies, and they will uncover the – so far elusive – population of intermediate mass black holes in the universe, if they do exist. Further, the reprocessing of the flare into IR, optical and UV emission lines provides us with multiple new diagnostics of the properties of any gaseous material in the vicinity of the black hole (including the disrupted star itself and in the host galaxy. First candidate events of this kind have been reported recently.

  7. AGN X-Ray emission and black holes (Kelly+, 2008)

    DEFF Research Database (Denmark)

    Kelly, B. C.; Bechtold, J.; Trump, J. R.

    2009-01-01

    In this analysis we combine 169 RQQs from Kelly et al. (2007ApJ...665.1489K) with 149 RQQs from the main SDSS sample of Strateva et al. (2005, Cat. J/AJ/130/387) to create a sample of 318 RQQs. Out of these 318 sources, 276 (86.8%) are detected in the X-ray. (1 data file)....

  8. The effects of x-rays on star formation and black hole growth in young galaxies

    NARCIS (Netherlands)

    Spaans, Marco; Aykutalp, Aycin; Wise, John H.; Meijerink, Rowin; Umemura, M; Omukai, K

    We investigate the growth of seed black holes in young galaxies and the impact of their X-ray feedback. We have performed two simulations using the adaptive mesh refinement hydrodynamical code Enzo, for the singular collapse scenario in the presence of a UV background radiation field of 105 and 103

  9. The formation of black holes derived from X-ray binaries

    NARCIS (Netherlands)

    Repetto, S.

    2016-01-01

    This Thesis revolves around the topic of black holes (BHs) in X-ray binaries (XRBs). The trigger of this work was to understand how stellar-mass BHs form, a question which we tackled both with theoretical as well as observational studies. The formation mechanism of BHs is an unsolved problem in

  10. Probing the Accretion Geometry of Black Holes with X-Ray Polarization

    Science.gov (United States)

    Schnitman, Jeremy D.

    2011-01-01

    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  11. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    Science.gov (United States)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  12. X-Rays from Galaxies Teeming with Black Holes and Neutron Stars

    Science.gov (United States)

    Hornschemeier, Ann

    2010-01-01

    Thanks to more than forty years of investment in space-based technology capable of observing the Universe in the x-ray band (0.5 - 100 keV), we have learned quite a bit about the X-ray universe. It has become clear that most of the glow of the X-ray sky is attributed to accretion onto supermassive black holes. However, as we push ever fainter in our detection methods, we find an interesting population of very faint sources arising. These are normal "Milky-way-type" galaxies that also glow in X-rays. The X-ray emission from these galaxies arises from populations of accreting black holes and neutron stars contained in binary systems. This talk will describe our understanding of this population, including some strange regularity in the production of such accreting binary systems. The future, including new technology planned for the next 5-10 years and anticipated theoretical advancements, will also be discussed.

  13. The Cosmic History of Black Hole Accretion from Chandra X-ray Stacking

    Science.gov (United States)

    Treister, Ezequiel; Urry, C.; Schawinski, K.; Lee, N.; Natarajan, P.; Volonteri, M.; Sanders, D. B.

    2012-05-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are black holes growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. We take advantage of the rich multi-wavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Msec Chandra observations (the deepest X-ray data to date), in order to measure the amount of black hole accretion as a function of cosmic history, from z 0 to z 6. We obtain stacked rest-frame X-ray spectra for samples of galaxies binned in terms of their IR luminosity, stellar mass and other galaxy properties. We find that the AGN fraction and their typical luminosities, and thus black hole accretion rates, increase with IR luminosity and stellar mass. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We find evidence for a strong connection between significant black hole growth events and major galaxy mergers from z 0 to z 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. E.T. and K.S. gratefully acknowledges the support provided by NASA through Chandra Postdoctoral Fellowship Award Numbers PF8-90055 and PF9-00069, respectively issued by the Chandra X-ray Observatory Center. E.T. also thanks support by NASA through Chandra Award SP1-12005X Center of Excellence in Astrophysics and Associated Technologies (PFB 06). C. M. Urry acknowledges support from NSF Grants AST-0407295, AST-0449678, AST-0807570, and Yale University.

  14. QPOs from Random X-ray Bursts around Rotating Black Holes

    Science.gov (United States)

    Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon

    2009-01-01

    We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.

  15. X-ray Fe-lines from Relativistic Accretion Disks Around Neutron Stars and Black Holes

    Science.gov (United States)

    Stella, Luigi

    2013-01-01

    The Gas Scintillation Proportional Counter (GSPC) on board the European X-ray Satellite EXOSAT (1983-1986) provided detections of Fe K-alpha emission features around 6-7 keV in the X-ray spectra of accreting neutron star and black hole candidates in X-ray binaries. Surprisingly the width of these lines was found to be broader than the GSPC resolution 10% at 6 keV): it could not be explained by thermal broadening, nor blending of (unresolved) lines from different ionization stages of Fe; very large Doppler shifts and, perhaps, thermal Comptonisation provided more promising interpretations. In 1989 Nick White and I developed the first general relativistic model for the Fe-line profile that is produced by matter orbiting in an accretion disk. By fitting the GSPC Fe-line of the black hole candidate Cyg X-1 with our model we inferred an emitting line region extending to a few tens Schwarzschild radii from the black hole, where matter orbits at ~0.1-0.2 the speed of light and effects such as relativistic Doppler shifts and boosting, as well as gravitational and transverse redshifts are conspicuous. We joined forces with Andy Fabian and Martin Rees, who were working on the same interpretation, and published the results in a MNRAS paper. The relativistic disk interpretation of the broad Fe-lines gave rise to much interest on the possibility of measuring black hole mass and spin and probing the innermost regions of accretion flows and the very strong gravitational fields close to compact objects. Very broad and sometimes highly redshifted Fe-lines have been studied by now in tens of X-ray binaries and bright Active Galactic Nuclei with the CCD detectors of the Chandra and XMM/Newton X-ray telescopes; in some cases the line profile implies the presence of a fast spinning black hole. The potential of the Fe-line diagnostics remains to be largely exploited. Moreover some alternative interpretations are not yet ruled out. An X-ray instrument with a broad energy response

  16. Be/X-Ray Binaries with Black Holes in the Galaxy and in the Magellanic Clouds

    Directory of Open Access Journals (Sweden)

    Janusz Ziolkowski

    2014-12-01

    Full Text Available I will start with the statistics indicating that the objects named in the title of my talk are either non-existing or very elusive to detect (not a single such object is known against 119 known Be/neutron star X-ray binaries. After brief reviewing of the properties of Be/X-ray binaries I discuss several objects that were proposed as the long sought for candidates for Be/black hole X-ray binaries. After three unsuccessful candidates (LS I +61° 303, LS 5039 and MAXI J1836-194, a successful candidate (AGL J2241+4454/MWC 656 was finally, very recently, announced.

  17. Enigmatic X-Ray Sources Point to Possible New Black Hole Population

    Science.gov (United States)

    2004-03-01

    Mysterious, powerful X-ray sources found in nearby galaxies may represent a new class of objects, according to data from NASA's Chandra X-ray Observatory. These sources, which are not as hot as typical neutron-star or black-hole X- ray sources, could be a large new population of black holes with masses several hundred times that of the sun. "The challenge raised by the discovery of these sources is to understand how they produce so much X-ray power at temperatures of a few million degrees," said Rosanne Di Stefano from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and Tufts University in Medford, Mass. Di Stefano is lead author of a series of papers published in or submitted to The Astrophysical Journal and The Astrophysical Journal Letters. Until a few years ago, astronomers only knew of two sizes of black holes: stellar black holes, with masses about 10 times the sun, and supermassive black holes located at the centers of galaxies, with masses ranging from millions to billions times the sun. Recent evidence suggests a class of "intermediate- mass" black holes may also exist. M83 M83 Searching for quasisoft sources may be a new way to identify those X-ray sources most likely to be intermediate-mass black holes," said Albert Kong of the Center for Astrophysics (CfA) and a member of the team. The enigmatic objects found by the Chandra team are called "quasisoft" sources, because they have a temperature in the range of 1 million to 4 million degrees Celsius. On the one hand this temperature range is below the 10 million to 100 million-degree gas associated with "hard" X-ray sources, such as neutron stars or stellar-mass black holes. On the other hand the quasisoft-source temperatures are hotter than the several hundred-thousand-degree gas associated with "supersoft" X-ray sources due to white dwarfs. M51 M51 Di Stefano and her colleagues determined the temperatures of individual X-ray emitting objects in four galaxies by measuring their X-ray

  18. Searching for Intermediate Mass Black Holes in Ultraluminous X-ray Binaries

    Science.gov (United States)

    Fritze, Hannah; Wright, Simon; Kilgard, Roy

    2018-01-01

    X-ray observations of nearby galaxies provide one of the best laboratories in the universe for studying two exotic classes of object: black holes and neutron stars. These observations allow us to study the dramatic effect such objects have on their surroundings, as well as the high-energy physics involved in their emission. We conduct a volume-limited archival survey of X-ray sources in all galaxies observed with the Chandra X-ray observatory within 15 Mpc, and identify a set of ultraluminous X-ray sources for detailed spectral analysis. We perform this analysis with the aim of searching for signatures of spectral state transitions and super-Eddington accretion that could indicate the presence of an Intermediate Mass Black Hole (IMBH) binary system. Here, we identify 43 potential IMBH sources that have signatures of super-Eddington accretion. We plan to follow up this initial selection with a multiwavelength analysis of these sources, in order to place further constraints on their nature and surrounding environment.

  19. The Future of X-ray Spectroscopy of Galactic Black Hole Binaries

    International Nuclear Information System (INIS)

    Nowak, Michael A.

    2004-01-01

    There are four major X-ray satellites currently in operation (RXTE, Chandra, XMM-Newton, INTEGRAL), with two more shortly to follow (Astro E II, Swift), and several very ambitious observatories in various stages of planning (Constellation-X, MAXIM, XEUS). This very rich period of X-ray observation is leading to great advances in our understanding of the accretion flow onto the black hole, although we are quickly learning (or perhaps better put, remembering) exactly how complicated this flow can be. This review was meant to assess future prospects for X-ray spectroscopy of black hole binaries; however, I first look backward to the observations and theories that helped us arrive at our current 'paradigm'. I then discuss current and near-future spectroscopic studies, which increasingly (and very fruitfully) treat X-ray spectroscopy as part of a larger, intimately connected picture along with radio, optical, and gamma-ray spectroscopy. Equally importantly, and in large part thanks to the success of RXTE, there is now a strong realization that spectral-temporal correlations, even across wavelength bands, are crucial to our understanding of the physics of these systems. Going forward, we are well-poised to continue to advance our knowledge via X-ray spectroscopy, both with existing satellites that have a long lifetime ahead of them (Chandra, XMM-Newton, INTEGRAL), and with the next generation of instruments. If there is any 'hole' in this bright future, it is the potential loss of RXTE, with no designated follow-up mission. Studies of multi-wavelength spectral-temporal correlations will become more difficult due to the loss of two important attributes of RXTE: its fast timing capabilities and its extremely flexible scheduling which has made many of these studies possible

  20. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Natalia; Rocha, Cassio A. da; Van, Kenny X.; Nandez, Jose L. A., E-mail: nata.ivanova@ualberta.ca [Department of Physics, University of Alberta, Edmonton, AB T6G 2E7 (Canada)

    2017-07-10

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 10{sup 5} stars pc{sup −3}, the formation rates are about one binary per Gyr per 50–100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50–200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  1. Evidence for a massive stellar black hole in x ray Nova Muscae

    Science.gov (United States)

    Chen, Wan; Gehrels, Neil; Cheng, F. H.

    1992-01-01

    We present evidence that the X-ray Nova Muscae system contains a massive, greater than 10 M solarmass, black hole. A recently measured photometric binary mass function gives the black hole mass for this system as a function of orbital inclination angle. From the spectral redshift and width of the positron annihilation gamma-ray line observed by GRANAT/SIGMA, we find the accretion disk inclination angle to be 22 deg plus or minus 18 deg. Assuming the accretion disk lies in the orbital plane of the system, the black hole mass is found to have a lower limit of 14 M solar mass although statistics are poor. This is supported by spectral modeling of combined optical/UV/x-ray/gamma-ray data and by a new Nova Muscae distance limit we derive of greater than 3 kpc. The large mass for this black hole and the high binary mass ratio it implies (greater than 20) raise a serious challenge to theoretical models of the formation and evolution of massive binaries. The gamma-ray line technique introduced here can give tight constraints on orbital parameters when high-sensitivity line measurements are made by such missions as GRO.

  2. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    Science.gov (United States)

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  3. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    Science.gov (United States)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  4. Are Spectral and Timing Correlations Similar in Different Spectral States in Black Hole X-Ray Binaries?

    NARCIS (Netherlands)

    Kalamkar, M.; Reynolds, M.T.; van der Klis, M.; Altamirano, D.; Miller, J.M.

    2015-01-01

    We study the outbursts of the black hole X-ray binaries MAXI J1659-152, SWIFT J1753.5-0127, and GX 339-4 with the Swift X-ray Telescope (XRT). The bandpass of the XRT has access to emission from both components of the accretion flow: the accretion disk and the corona/hot flow. This allows a

  5. Following the 2008 outburst decay of the black hole candidate H 1743-322 in X-ray and radio

    NARCIS (Netherlands)

    Jonker, P.G.; Miller-Jones, J.; Homan, J.; Gallo, E.; Rupen, M.; Tomsick, J.; Fender, R.P.; Kaaret, P.; Steeghs, D.T.H.; Torres, M.A.P.; Wijnands, R.; Markoff, S.; Lewin, W.H.G.

    2010-01-01

    In this paper, we report on radio (Very Large Array and Austrialian Telescope Compact Array) and X-ray (RXTE, Chandra and Swift) observations of the outburst decay of the transient black hole candidate H 1743-322 in early 2008. We find that the X-ray light curve followed an exponential decay,

  6. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  7. X-ray Detectability of Accreting Isolated Black Holes in Our Galaxy

    Science.gov (United States)

    Tsuna, Daichi; Kawanaka, Norita; Totani, Tomonori

    2018-03-01

    Detectability of isolated black holes (IBHs) without a companion star but emitting X-rays by accretion from dense interstellar medium (ISM) or molecular cloud gas is investigated. We calculate orbits of IBHs in the Galaxy to derive a realistic spatial distribution of IBHs, for various mean values of kick velocity at their birth υavg. X-ray luminosities of these IBHs are then calculated considering various phases of ISM and molecular clouds, for a wide range of the accretion efficiency λ (a ratio of the actual accretion rate to the Bondi rate) that is rather uncertain. It is found that detectable IBHs mostly reside near the Galactic Centre (GC), and hence taking the Galactic structure into account is essential. In the hard X-ray band, where identification of IBHs from other contaminating X-ray sources may be easier, the expected number of IBHs detectable by the past survey by NuSTAR towards GC is at most order unity. However, 30-100 IBHs may be detected by the future survey by FORCE with an optimistic parameter set of υavg = 50 km s-1 and λ = 0.1, implying that it may be possible to detect IBHs or constrain the model parameters.

  8. X-rays from Quiescent Black Holes: Accretion or Jet Powered?

    Science.gov (United States)

    Cui, W.; Yuan, F.

    2005-12-01

    Most black hole candidates (BHCs) are transient X-ray sources -- they are extremely faint in quiescent but, once in a long while, becomes the brightest X-ray sources in the sky during an outburst. The evolution of a BHC throughout an outburst is often empirically characterized by a set of discrete states, such as the well-known low/hard and high/soft states. Though crude, the approach has been very useful in revealing qualitative differences among various stages of the evolution and thus the underlying physical processes involved. In comparison, the quiescent state is the least understood observationally, due to the lack of high-quality data. It is tempting to view it as a simple extension of the low/hard state in the direction of low mass accretion rates, given that the X-ray spectrum of BHCs in the later state is well described by the inverse-Compton scattering of soft photons by energetic electrons in hot accretion flows or some sort of hot coronae. Here, we argue that this is probably not the case, based on results from an investigation of the roles of accretion and jets in producing the observed radiation from radio to X-ray wavelengths. This work was supported in part by NASA Grants NAG5-9998 and NNG05GF91G and the One-Hundred Talent Program of China.

  9. Quasisoft X-Ray Sources: White Dwarfs? Neutron Stars? Black Holes?

    Science.gov (United States)

    Di Stefano, Rosanne

    Two of the most exciting areas of current research in astrophysics are black holes and Type Ia supernovae. We propose archival work that has the potential to shed light on both areas. The focus of our research is a newly-established class of x-ray sources called Quasisoft X-ray Sources (QSSs). Although they comprise a significant fraction of the x- ray sources in galaxies of all types, including M31, it has proved difficult to identify members of this class in the Milky Way or Magellanic Clouds. We have developed methods to find these sources, and have begun to meet with success in the application of our methods. The three-year project we propose will allow us to identify QSSs. We will then use the full range of archived data to determine which QSS candidates are highly luminous, and which are members of less luminous classes, such as quiescent low-mass x-ray binaries (qLMXBs), or even isolated neutron stars. Many will be nearby x-ray active stars, or else distant AGN, whose discovery will also be of interest to a range of researchers. In the end, we will have a subset of intriguing physical systems, some of which may be accreting black holes and some of which may be unusual states of neutron stars or even of nuclear-burning white dwarfs. The systems identified through this ADAP program will be targets of future observing programs, from space and from the ground. The information we derive from NASA archived data will provide insight into important astrophysical questions. Do intermediate-mass black holes (IMBHs) exist? It has only been during the past 15 years or so that accreting compact objects that were considered as black hole candidates have been promoted to black holes. This achievement required years of observations of candidates in the Milky Way and Magellanic Clouds. The discovery of ultraluminous X- ray source in external galaxies suggests that there are black holes with masses larger than the 10-30 solar masses typical of the known black holes. To

  10. Non-Quiescent X-ray Emission from Neutron Stars and Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Tournear, Derek M

    2003-08-18

    X-ray astronomy began with the detection of the persistent source Scorpius X-1. Shortly afterwards, sources were detected that were variable. Centaurus X-2, was determined to be an X-ray transient, having a quiescent state, and a state that was much brighter. As X-ray astronomy progressed, classifications of transient sources developed. One class of sources, believed to be neutron stars, undergo extreme luminosity transitions lasting a few seconds. These outbursts are believed to be thermonuclear explosions occurring on the surface of neutron stars (type I X-ray bursts). Other sources undergo luminosity changes that cannot be explained by thermonuclear burning and last for days to months. These sources are soft X-ray transients (SXTs) and are believed to be the result of instabilities in the accretion of matter onto either a neutron star or black hole. Type I X-ray bursts provide a tool for probing the surfaces of neutron stars. Requiring a surface for the burning has led authors to use the presence of X-ray bursts to rule out the existence of a black hole (where an event horizon exists not a surface) for systems which exhibit type I X-ray bursts. Distinguishing between neutron stars and black holes has been a problem for decades. Narayan and Heyl have developed a theoretical framework to convert suitable upper limits on type I X-ray bursts from accreting black hole candidates (BHCs) into evidence for an event horizon. We survey 2101.2 ks of data from the USA X-ray timing experiment and 5142 ks of data from the Rossi X-ray Timing Explorer (RXTE) experiment to obtain the first formal constraint of this type. 1122 ks of neutron star data yield a population averaged mean burst rate of 1.7 {+-} 0.4 x 10{sup -5} bursts s{sup -1}, while 6081 ks of BHC data yield a 95% confidence level upper limit of 4.9 x 10{sup -7} bursts s{sup -1}. Applying the framework of Narayan and Heyl we calculate regions of luminosity where the neutron stars are expected to burst and the BHCs

  11. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    Science.gov (United States)

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  12. DISCOVERY OF X-RAY EMISSION FROM THE FIRST Be/BLACK HOLE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Munar-Adrover, P.; Paredes, J. M.; Ribó, M. [Departament d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona (Spain); Iwasawa, K. [ICREA, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona (Spain); Zabalza, V. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Casares, J. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain)

    2014-05-10

    MWC 656 (=HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with XMM-Newton, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a blackbody plus a power law, with k{sub B}T=0.07{sub −0.03}{sup +0.04} keV and a photon index Γ = 1.0 ± 0.8, respectively. The non-thermal component dominates above ≅0.8 keV. The obtained total flux is F(0.3-5.5 keV)=(4.6{sub −1.1}{sup +1.3})×10{sup −14} erg cm{sup –2} s{sup –1}. At a distance of 2.6 ± 0.6 kpc the total flux translates into a luminosity L {sub X} = (3.7 ± 1.7) × 10{sup 31} erg s{sup –1}. Considering the estimated range of BH masses to be 3.8-6.9 M {sub ☉}, this luminosity represents (6.7 ± 4.4) × 10{sup –8} L {sub Edd}, which is typical of stellar-mass BHs in quiescence. We discuss the origin of the two spectral components: the thermal component is associated with the hot wind of the Be star, whereas the power-law component is associated with emission from the vicinity of the BH. We also find that the position of MWC 656 in the radio versus X-ray luminosity diagram may be consistent with the radio/X-ray correlation observed in BH low-mass X-ray binaries. This suggests that this correlation might also be valid for BH high-mass X-ray binaries (HMXBs) with X-ray luminosities down to ∼10{sup –8} L {sub Edd}. MWC 656 will allow the accretion processes and the accretion/ejection coupling at very low luminosities for BH HMXBs to be studied.

  13. High-Frequency X-ray Variability Detection in A Black Hole Transient with USA.

    Energy Technology Data Exchange (ETDEWEB)

    Shabad, Gayane

    2000-10-16

    Studies of high-frequency variability (above {approx}100 Hz) in X-ray binaries provide a unique opportunity to explore the fundamental physics of spacetime and matter, since the orbital timescale on the order of several milliseconds is a timescale of the motion of matter through the region located in close proximity to a compact stellar object. The detection of weak high-frequency signals in X-ray binaries depends on how well we understand the level of Poisson noise due to the photon counting statistics, i.e. how well we can understand and model the detector deadtime and other instrumental systematic effects. We describe the preflight timing calibration work performed on the Unconventional Stellar Aspect (USA) X-ray detector to study deadtime and timing issues. We developed a Monte Carlo deadtime model and deadtime correction methods for the USA experiment. The instrumental noise power spectrum can be estimated within {approx}0.1% accuracy in the case when no energy-dependent instrumental effect is present. We also developed correction techniques to account for an energy-dependent instrumental effect. The developed methods were successfully tested on USA Cas A and Cygnus X-1 data. This work allowed us to make a detection of a weak signal in a black hole candidate (BHC) transient.

  14. Multi-time-scale X-ray reverberation mapping of accreting black holes

    Science.gov (United States)

    Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel

    2018-04-01

    Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.

  15. X-Ray Jet Emission from the Black Hole X-Ray Binary XTE J1550-564 with Chandra in 2000

    OpenAIRE

    Tomsick, J.A.; Corbel, S.; Fender, R.P.; Miller, J.M.; Orosz, J.A.; Tzioumis, T.; Wijnands, R.A.D.; Kaaret, P.

    2003-01-01

    We have discovered an X-ray jet due to material ejected from the black hole X-ray transient XTE J1550-564. The discovery was first reported by Corbel et al. (Science, 298, 196 and astro-ph/0210224), and here, we present an analysis of the three Chandra observations made between 2000 June and 2000 September. For these observations, a source is present that moves in an eastward direction away from the point source associated with the compact object. The separation between the new source and the...

  16. Tracing the accretion history of supermassive Black Holes through X-ray variability

    Science.gov (United States)

    Paolillo, M.; Papadakis, I.

    2017-10-01

    Using the 7Ms observations of the Chandra Deep Field South spanning more than 15 years, we study the variability properties of high-redshift AGNs. We show that distant supermassive Black Holes behave similarly to nearby sources, possessing a red noise PDS with a possible break at high frequencies. We test different models to describe the X-ray variability showing that the observations favour a dependence of the variability on both BH mass and accretion rate. Using this result we trace for the AGN accretion history up to z˜ 3 finding that it is consistent with values obtained by different tracers, suggesting an almost constant Eddington rate with a tentative slight increase at 2

  17. Positive or negative? The impact of X-ray feedback on the formation of direct collapse black hole seeds

    Science.gov (United States)

    Regan, John A.; Johansson, Peter H.; Wise, John H.

    2016-09-01

    A nearby source of Lyman-Werner (LW) photons is thought to be a central component in dissociating H2 and allowing for the formation of a direct collapse black hole seed. Nearby sources are also expected to produce copious amounts of hydrogen ionizing photons and X-ray photons. We study here the feedback effects of the X-ray photons by including a spectrum due to high-mass X-ray binaries on top of a galaxy with a stellar spectrum. We explicitly trace photon packages emerging from the nearby source and track the radiative and chemical effects of the multifrequency source (Ephoton = 0.76 eV → 7500 eV). We find that X-rays have a strongly negative feedback effect, compared to a stellar only source, when the radiative source is placed at a separation greater than ≳ 1 kpc. The X-rays heat the low and medium density gas in the envelope surrounding the collapsing halo suppressing the mass inflow. The result is a smaller enclosed mass compared to the stellar only case. However, for separations of ≲ 1 kpc, the feedback effects of the X-rays becomes somewhat neutral. The enhanced LW intensity at close separations dissociates more H2 and this gas is heated due to stellar photons alone, the addition of X-rays is then not significant. This distance dependence of X-ray feedback suggests that a Goldilocks zone exists close to a forming galaxy where X-ray photons have a much smaller negative feedback effect and ideal conditions exist for creating massive black hole seeds.

  18. From X-ray binaries to quasars black holes on all mass scales black holes on all mass scales

    CERN Document Server

    Ho, L C; Maccarone, T J

    2005-01-01

    This volume brings together contributions from many of the world's leading authorities on black hole accretion. The papers within represent part of a new movement to make use of the relative advantages of studying stellar mass and supermassive black holes and to bring together the knowledge gained from the two approaches. The topics discussed here run the gamut of the state of the art in black hole observational and theoretical work-variability, spectroscopy, disk-jet connections, and multi-wavelength campaigns on black holes are all covered. Reprinted from ASTROPHYSICS AND SPACE SCIENCE, 300:1-3 (2005)

  19. Swift X-Ray Telescope Study of the Black Hole Binary MAXI J1659-152: Variability from a Two Component Accretion Flow

    NARCIS (Netherlands)

    Kalamkar, M.; van der Klis, M.; Heil, L.; Homan, J.

    2015-01-01

    We present an energy dependent X-ray variability study of the 2010 outburst of the black hole X-ray binary MAXI J1659-152 with the Swift X-ray Telescope (XRT). The broadband noise components and the quasi-periodic oscillations (QPO) observed in the power spectra show a strong and varied energy

  20. Songlines from Direct Collapse Seed Black Holes: Effects of X-Rays on Black Hole Growth and Stellar Populations

    NARCIS (Netherlands)

    Aykutalp, Aycin; Wise, John H.; Spaans, Marco; Meijerink, Rowin

    2014-01-01

    In the last decade, the growth of supermassive black holes (SMBHs) has been intricately linked to galaxy formation and evolution and is a key ingredient in the assembly of galaxies. To investigate the origin of SMBHs, we perform cosmological simulations that target the direct collapse black hole

  1. Binary black hole merger rates inferred from luminosity function of ultra-luminous X-ray sources

    Science.gov (United States)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.; Isobe, Naoki

    2016-10-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected direct signals of gravitational waves (GWs) from GW150914. The event was a merger of binary black holes whose masses are 36^{+5}_{-4} M_{{⊙}} and 29^{+4}_{-4} M_{{⊙}}. Such binary systems are expected to be directly evolved from stellar binary systems or formed by dynamical interactions of black holes in dense stellar environments. Here we derive the binary black hole merger rate based on the nearby ultra-luminous X-ray source (ULX) luminosity function (LF) under the assumption that binary black holes evolve through X-ray emitting phases. We obtain the binary black hole merger rate as 5.8(tULX/0.1 Myr)- 1λ- 0.6exp ( - 0.30λ) Gpc- 3 yr- 1, where tULX is the typical duration of the ULX phase and λ is the Eddington ratio in luminosity. This is coincident with the event rate inferred from the detection of GW150914 as well as the predictions based on binary population synthesis models. Although we are currently unable to constrain the Eddington ratio of ULXs in luminosity due to the uncertainties of our models and measured binary black hole merger event rates, further X-ray and GW data will allow us to narrow down the range of the Eddington ratios of ULXs. We also find the cumulative merger rate for the mass range of 5 M⊙ ≤ MBH ≤ 100 M⊙ inferred from the ULX LF is consistent with that estimated by the aLIGO collaboration considering various astrophysical conditions such as the mass function of black holes.

  2. Low-mass X-ray binaries from black-hole retaining globular clusters

    Science.gov (United States)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-03-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH-binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  3. Propagating mass accretion rate fluctuations in black hole X-ray binaries: quantitative tests

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-10-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of Black Hole X-ray Binaries (BHBs). However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and QPO. Because of propagation, the emission from different regions of the disc/hot flow geometry is correlated. In our study we applied the model PROPFLUC on different BHBs (including XTE J1550-564 and Cygnus X-1) in different spectral states, fitting jointly the power spectra in two energy bands and the cross-spectrum between these two bands. This represents the first study to utilize quantitive fitting of a physical model simultaneously to observed power and cross-spectra. For the case of XTE J1550-564, which displays a strong QPO, we found quantitative and qualitative discrepancies between model predictions and data, whereas we find a good fit for the Cygnus X-1 data, which does not display a QPO. We conclude that the discrepancies are generic to the propagating fluctuations paradigm, and may be related to the mechanism originating the QPO.

  4. Testing the Kerr Black Hole Hypothesis Using X-Ray Reflection Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo; Nampalliwar, Sourabh [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China); Cárdenas-Avendaño, Alejandro [Programa de Matemática, Fundación Universitaria Konrad Lorenz, 110231 Bogotá (Colombia); Dauser, Thomas [Remeis Observatory and ECAP, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany); García, Javier A., E-mail: bambi@fudan.edu.cn [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-06-20

    We present the first X-ray reflection model for testing the assumption that the metric of astrophysical black holes is described by the Kerr solution. We employ the formalism of the transfer function proposed by Cunningham. The calculations of the reflection spectrum of a thin accretion disk are split into two parts: the calculation of the transfer function and the calculation of the local spectrum at any emission point in the disk. The transfer function only depends on the background metric and takes into account all the relativistic effects (gravitational redshift, Doppler boosting, and light bending). Our code computes the transfer function for a spacetime described by the Johannsen metric and can easily be extended to any stationary, axisymmetric, and asymptotically flat spacetime. Transfer functions and single line shapes in the Kerr metric are compared to those calculated from existing codes to check that we reach the necessary accuracy. We also simulate some observations with NuSTAR and LAD/eXTP and fit the data with our new model to show the potential capabilities of current and future observations to constrain possible deviations from the Kerr metric.

  5. Correlated fast X-ray and optical variability in the black-hole candidate XTE J1118+480.

    Science.gov (United States)

    Kanbach, G; Straubmeier, C; Spruit, H C; Belloni, T

    2001-11-08

    Black holes become visible when they accrete gas, a common source of which is a close stellar companion. The standard theory for this process (invoking a 'thin accretion disk') does not explain some spectacular phenomena associated with these systems, such as their X-ray variability and relativistic outflows, indicating some lack of understanding of the actual physical conditions. Simultaneous observations at multiple wavelengths can provide strong constraints on these conditions. Here we report simultaneous high-time-resolution X-ray and optical observations of the transient source XTE J1118+480, which show a strong but puzzling correlation between the emissions. The optical emission rises suddenly following an increase in the X-ray output, but with a dip 2-5 seconds in advance of the X-rays. This result is not easy to understand within the simplest model of the optical emission, where the light comes from reprocessed X-rays. It is probably more consistent with an earlier suggestion that the optical light is cyclosynchrotron emission that originates in a region about 20,000 km from the black hole. We propose that the time dependence is evidence for a relatively slow (<0.1c), magnetically controlled outflow.

  6. Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni

    Science.gov (United States)

    Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.

    2017-08-01

    In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.

  7. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    Science.gov (United States)

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  8. What is special about Cygnus X-1 - Black holes in theory and observation: X-ray observations

    Science.gov (United States)

    Boldt, E.; Holt, S.; Rothschild, R.; Serlemitsos, P.

    1975-01-01

    Of the eight X-ray sources now known which may be associated with binary stellar systems, Cygnus X-1 is the most likely candidate for being a black hole. The X-ray evidence from several experiments is reviewed, with special emphasis on those characteristics which appear to distinguish Cygnus X-1 from other compact X-ray emitting objects. Data are examined within the context of a model in which millisecond bursts (Rothschild et al., 1974) are superposed on shot-noise fluctuations (Terrell, 1972) arising from 'events' of durations on the order of a second. Possible spectral-temporal correlations are investigated which indicate new measurements that need to be made in future experiments.

  9. How realistic UV spectra and X-rays suppress the abundance of direct collapse black holes

    NARCIS (Netherlands)

    Latif, M. A.; Bovino, S.; Grassi, T.; Schleicher, D. R. G.; Spaans, M.

    Observations of high-redshift quasars at z > 6 indicate that they harbour supermassive black holes (SMBHs) of a billion solar masses. The direct collapse scenario has emerged as the most plausible way to assemble SMBHs. The nurseries for the direct collapse black holes are massive primordial haloes

  10. Revelations of X-ray spectral analysis of the enigmatic black hole binary GRS 1915+105

    Science.gov (United States)

    Peris, Charith; Remillard, Ronald A.; Steiner, James; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-01-01

    Of the black hole binaries discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner radius; remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion (80%) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical black hole binaries. When

  11. X-Ray Observations of the Black Hole Transient 4U 1630-47 during 2 Years of X-Ray Activity

    Science.gov (United States)

    Tomsick, John A.; Corbel, Stéphane; Goldwurm, Andrea; Kaaret, Philip

    2005-09-01

    The black hole candidate (BHC) X-ray transient 4U 1630-47 continuously produced strong X-ray emission for more than 2 years during its 2002-2004 outburst, which is one of the brightest and longest outbursts ever seen from this source. We use more than 300 observations made with the Rossi X-Ray Timing Explorer (RXTE) to study the source throughout the outburst, along with hard X-ray images from the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), which are critical for interpreting the RXTE data in this crowded field. The source exhibits extreme behaviors, which can be interpreted as an indication that the system luminosity approaches the Eddington limit. For 15 observations, fitting the spectral continuum with a disk-blackbody plus power-law model results in measured inner disk temperatures between 2.7 and 3.8 keV, and such temperatures are only rivaled by the brightest BHC systems, such as GRS 1915+105 and XTE J1550-564. If the high temperatures are caused by the dominance of electron scattering opacity in the inner regions of the accretion disk, it is theoretically required that the source luminosity be considerably higher than 20% of the Eddington limit. We detect a variety of high-amplitude variability, including hard 10-100 s flares, which peak at levels as much as 2-3 times higher than nonflare levels. This flaring occurs at the highest disk luminosities in a regime in which the source deviates from the Ldisk~T4in relationship that is seen at lower luminosities, possibly suggesting that we are seeing transitions between a Shakura & Sunyaev disk and a ``slim'' disk, which is predicted to occur at very high mass accretion rates. The X-ray properties in 2002-2004 are significantly different from those seen during the 1998 outburst, which is the only outburst with detected radio jet emission. Our results support the ``jet line'' concept recently advanced by Fender and coworkers. Our study allows for a test of the quantitative McClintock & Remillard

  12. X-Ray Timing and Spectral Observations of Galactic Black Hole Candidate XTE J1550--564 During Outburst

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Kaice T

    2002-12-11

    Soft X-ray transients (SXTs), a sub-class of low-mass X-ray binaries (LMXBs), provide a unique opportunity to test General Relativity and to probe fundamental physics under conditions terrestrially unattainable. SXT outbursts are of great interest because they allow the study of LMXBs under a wide range of accretion rates. The majority of known SXTs contain black holes, therefore SXT outbursts are key to understanding accretion physics around black holes and in active galactic nuclei, which are thought to contain supermassive, M {approx} 10{sup 6} - 10{sup 10} M{circle_dot}, where M{circle_dot} is one solar mass, central compact objects. These compact objects are most likely black holes, which exhibit, on a much larger scale, accretion physics similar to that around black holes in SXTs. In this work, the timing and spectral properties of the SXT and microquasar XTE J1550-564 during outburst are studied. Observations made by the Unconventional Stellar Aspect (USA) Experiment on board the Advanced Research and Global Observation Satellite (ARGOS) are emphasized. USA data show a low-frequency quasi-periodic oscillation (LFQPO) with a centroid frequency that tends to increase with increasing USA flux and a fractional rms amplitude which is correlated with the USA hardness ratio (4-16 keV/1-4 keV). Several high-frequency quasi-periodic oscillations (HFQPOs) were detected by the Rossi X-ray Timing Explorer (RXTE), during periods where the LFQPO is seen to be weakening or not detectable at all. The evolution of the USA hardness ratio with time and source flux is examined. The hardness-intensity diagram shows counterclockwise cyclical evolution and possibly indicates the presence of two independent accretion flows: a geometrically thin, optically thick accretion disk and a hot sub-Keplerian flow.

  13. High- and Low-Frequency Quasi-periodic Oscillations in the X-Ray Light Curves of the Black Hole Transient H1743-322

    NARCIS (Netherlands)

    Homan, J.; Miller, J.M.; Wijnands, R.A.D.; van der Klis, M.; Belloni, T.; Steeghs, D.; Lewin, W.H.G.

    2005-01-01

    We present a variability study of the black hole candidate and X-ray transient H1743-322 during its 2003-2004 outburst. We analyzed five Rossi X-Ray Timing Explorer observations that were performed as part of a multiwavelength campaign, as well as six observations from the early rise of the

  14. High-energy observations of the state transition of the X-ray nova and black hole candidate XTE J1720-318

    DEFF Research Database (Denmark)

    Bel, M.C.; Rodriguez, J.; Sizun, P.

    2004-01-01

    We report the results of extensive high-energy observations of the X-ray transient and black hole candidate XTE J1720-318 performed with INTEGRAL, XMM-Newton and RXTE. The source, which underwent an X-ray outburst in 2003 January, was observed in February in a spectral state dominated by a soft c...

  15. Swift X-Ray Telescope Timing Observations of the Black Hole Binary SWIFT J1753.5-0127: Disk-diluted Fluctuations in the Outburst Peak

    NARCIS (Netherlands)

    Kalamkar, M.; van der Klis, M.; Uttley, P.; Altamirano, D.; Wijnands, R.

    2013-01-01

    After a careful analysis of the instrumental effects on the Poisson noise to demonstrate the feasibility of detailed stochastic variability studies with the Swift X-Ray Telescope (XRT), we analyze the variability of the black hole X-ray binary SWIFT J1753.5-0127 in all XRT observations during

  16. Chandra's Cosmos: Dark Matter, Black Holes, and Other Wonders Revealed by NASA's Premier X-ray Observatory

    Science.gov (United States)

    Tucker, Wallace H.

    2017-03-01

    On July 23, 1999, the Chandra X-Ray Observatory, the most powerful X-ray telescope ever built, was launched aboard the space shuttle Columbia. Since then, Chandra has given us a view of the universe that is largely hidden from telescopes sensitive only to visible light. In Chandra's Cosmos, the Smithsonian Astrophysical Observatory's Chandra science spokesperson Wallace H. Tucker uses a series of short, connected stories to describe the telescope's exploration of the hot, high-energy face of the universe. The book is organized in three parts: "The Big," covering the cosmic web, dark energy, dark matter, and massive clusters of galaxies; "The Bad," exploring neutron stars, stellar black holes, and supermassive black holes; and "The Beautiful," discussing stars, exoplanets, and life. Chandra has imaged the spectacular, glowing remains of exploded stars and taken spectra showing the dispersal of their elements. Chandra has observed the region around the supermassive black hole in the center of our Milky Way and traced the separation of dark matter from normal matter in the collision of galaxies, contributing to both dark matter and dark energy studies. Tucker explores the implications of these observations in an entertaining, informative narrative aimed at space buffs and general readers alike.

  17. X-ray-ing the Low Luminosity Supermassive Black Hole Accretion: the Crucial Role of Public Serendipitous Catalogs.

    Science.gov (United States)

    Constantin, Anca; Green, Paul; Haggard, Daryl

    2018-01-01

    For most of the nearby active galaxies, a mix of processes including emission from star-forming regions, other ionization sources (shocks, turbulence, etc.), nuclear obscuration, as well as host galaxy starlight obfuscate the true nature of their dominant ionization mechanism. X-ray emission is one of the most reliable primary signatures of accretion activity, and with the advent of the public catalogs, it became one of the most effective diagnostics as well. Working with large and significantly less biased samples that only serendipitous X-ray catalogs are able to provide, we were able to: 1) provide the most accurate estimates of the AGN fraction as a function of a diverse set of parameters; 2) confirm with X-rays a sequence from star-forming to active to passive galaxies that matches trends in both optical host galaxy characteristics and in the large scale environment; 3) discover intriguing similarities between accretion onto supermassive and stellar size black holes, with direct consequences for the physical significance of the Gamma-L/Ledd relation for AGN of both type I and II in the local universe. This presentation will summarize these exciting results, and will also report on novel extended efforts to decipher the link between the water megamaser emission and galactic nuclear activity, which are made possible only by the availability of the large sample statistics of carefully curated X-ray measurements uniquely offered by the combined Chandra and XMM catalogs.

  18. The evolution of the X-ray phase lags during the outbursts of the black hole candidate GX 339-4

    NARCIS (Netherlands)

    Altamirano, Diego; Méndez, Mariano

    2015-01-01

    Owing to the frequency and reproducibility of its outbursts, the black hole candidate GX 339-4 has become the standard against which the outbursts of other black hole candidate are matched up. Here we present the first systematic study of the evolution of the X-ray lags of the broad-band variability

  19. Studying Dark Energy, Black Holes and Cosmic Feedback at X-ray Wavelengths: NASA's Constellation-X Mission

    Science.gov (United States)

    Hornschemeier, A.

    2005-01-01

    Among the most important topics in modern astrophysics are the nature of the dark energy equation of state, the formation and evolution of supermassive black holes in concert with galaxy bulges, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. For instance, theoretical models predict that the majority (98%) of the energy and metal content in starburst superwinds exists in the hot million-degree gas. The Constellation-X observatory is being developed to perform spatially resolved high-resolution X-ray spectroscopy so that we may directly measure the absolute element abundances and velocities of this hot gas. This talk focuses on the driving science behind this mission, which is one of two flagship missions in NASA's Beyond Einstein program. A general overview of the observatory's capabilities and basic technology will also be given.

  20. Black hole accretion rings revealed by future X-ray spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Sochora, Vjačeslav; Karas, Vladimír; Svoboda, Jiří; Dovčiak, Michal

    2011-01-01

    Roč. 418, č. 1 (2011), s. 276-283 ISSN 0035-8711 R&D Projects: GA ČR GA205/07/0052; GA MŠk ME09036 Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole s * accretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.900, year: 2011

  1. High-energy observations of the state transition of the X-ray nova and black hole candidate XTE J1720-318

    DEFF Research Database (Denmark)

    Bel, M.C.; Rodriguez, J.; Sizun, P.

    2004-01-01

    We report the results of extensive high-energy observations of the X-ray transient and black hole candidate XTE J1720-318 performed with INTEGRAL, XMM-Newton and RXTE. The source, which underwent an X-ray outburst in 2003 January, was observed in February in a spectral state dominated by a soft......, typical of a black-hole binary in the so-called High/Soft State. We then followed the evolution of the source outburst over several months using the INTEGRAL Galactic Centre survey observations. The source became active again at the end of March: it showed a clear transition towards a much harder state...... of the black hole X-ray novae class which populate our galactic bulge and we discuss its properties in the frame of the spectral models used for transient black hole binaries....

  2. Detection of X-ray spectral state transitions in mini-outbursts of black hole transient GRS 1739-278

    Science.gov (United States)

    Yan, Zhen; Yu, Wenfei

    2017-10-01

    We report the detection of the state transitions and hysteresis effect in the two mini-outbursts of the black hole (BH) transient GRS 1739-278 following its 2014 major outburst. The X-ray spectral evolutions in these two mini-outbursts are similar to the major outburst in spite of their peak luminosities and the outburst durations are one order of magnitude lower. We found L_hard{-to-soft} and Lpeak,soft of the mini-outbursts also follow the correlation previously found in other X-ray binaries. L_hard{-to-soft} of the mini-outbursts is still higher than that of the persistent BH binary Cyg X-1, which supports that there is a link between the maximum luminosity a source can reach in the hard state and the corresponding non-stationary accretion represented by substantial rate of change in the mass accretion rate during flares/outbursts. The detected luminosity range of these two mini-outbursts is roughly in 3.5 × 10-5 to 0.015 (D/7.5 kpc)2(M/8M⊙) LEdd. The X-ray spectra of other BH transients at such low luminosities are usually dominated by a power-law component, and an anti-correlation is observed between the photon index and the X-ray luminosity below 1 per cent LEdd. So, the detection of X-ray spectral state transitions indicates that the accretion flow evolution in these two mini-outbursts of GRS 1739-278 are different from other BH systems at such low-luminosity regime.

  3. Flows of X-ray gas reveal the disruption of a star by a massive black hole.

    Science.gov (United States)

    Miller, Jon M; Kaastra, Jelle S; Miller, M Coleman; Reynolds, Mark T; Brown, Gregory; Cenko, S Bradley; Drake, Jeremy J; Gezari, Suvi; Guillochon, James; Gultekin, Kayhan; Irwin, Jimmy; Levan, Andrew; Maitra, Dipankar; Maksym, W Peter; Mushotzky, Richard; O'Brien, Paul; Paerels, Frits; de Plaa, Jelle; Ramirez-Ruiz, Enrico; Strohmayer, Tod; Tanvir, Nial

    2015-10-22

    Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.

  4. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    Science.gov (United States)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  5. How to Find if Your Black Hole is Rapidly Rotating: Searching for the Ergosphere with X-ray Timing

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.

    2009-05-01

    It has been suggested mainly from X-ray spectroscopic observations (e.g. thermal disk emission and Fe emission line) that at least a number of active galactic nuclei (AGNs) and Galactic black hole (BH) systems host rapidly-rotating (Kerr) BHs. In this presentation we show that random X-ray flares in the ergosphere around a fast-rotating BH can in principle produce a coherent signal due to its inevitable frame-dragging (light echo model) regardless of their exact positions. We discuss autocorrelation and power spectra based on our model light curve and show that this coherence leads to a high frequency quasi-periodic oscillation (QPO) that only depends on the BH mass (not flux or spectral state); e.g. kHz for stellar-mass BHs while mHz for AGNs. The QPOs predicted in this model therefore would be present, if exists, among the (Poisson) white noise frequency band. While with current X-ray detectors this type of QPO could be present well below the noise, future missions like IXO and Astro-H should be capable of reducing the noise (or increase statistics) to a sufficient level where the QPOs would actually stand out. This QPO should be viewed as a new class of QPO inherent to curved spacetime geometry of a fast rotating of BHs (frame-dragging) described by Einstein's general relativity.

  6. BLACK HOLE POWERED NEBULAE AND A CASE STUDY OF THE ULTRALUMINOUS X-RAY SOURCE IC 342 X-1

    International Nuclear Information System (INIS)

    Cseh, Dávid; Corbel, Stéphane; Kaaret, Philip; Lang, Cornelia; Grisé, Fabien; Paragi, Zsolt; Tzioumis, Anastasios; Tudose, Valeriu; Feng Hua

    2012-01-01

    We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebula of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 × 10 52 erg. The minimum energy needed to supply the associated radio nebula is 9.2 × 10 50 erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M BH ≤ (1.0 ± 0.3) × 10 3 M ☉ . Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.

  7. Light-bending Scenario for Accreting Black Holes in X-ray Polarimetry

    Czech Academy of Sciences Publication Activity Database

    Dovčiak, Michal; Muleri, F.; Goosmann, René; Karas, Vladimír; Matt, G.

    2011-01-01

    Roč. 731, č. 1 (2011), 75/1-75/15 ISSN 0004-637X R&D Projects: GA MŠk(CZ) LC06014; GA ČR GA205/07/0052 Grant - others:ESA(XE) ESA-PECS project No.98040 Institutional research plan: CEZ:AV0Z10030501 Keywords : polarization * relativistic processes * X-rays: binaries * X-rays: galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.024, year: 2011

  8. A Stellar-mass Black Hole in the Ultra-luminous X-ray Source M82 X-1

    Science.gov (United States)

    Okajima, Takashi; Ebisawa, Ken; Kawaguchi, Toshihiro

    2007-01-01

    We have analyzed the archival XMM-Newton data of the archetypal Ultra-Luminous X-ray Source (ULX) M82 X-1 with an LO5 ksec exposure when the source was in the steady state. Thanks to the high photon statistics from the large effective area and long exposure, we were able to discriminate different X-ray continuum spectral models. Neither the standard accretion disk model (where the radial dependency of the disk effective temperature is T(r) proportional to r(sup -3/4)) nor a power-law model gives a satisfactory fit. In fact, observed curvature of the M82 X-1 spectrum was just between those of the two models. When the exponent of the radial dependence (p in T(r) proportional to r(sup -P)) of the disk temperature is allowed to be free, we obtained p = 0.61 (sup +0.03)(sub -0.02). Such a reduction of p from the standard value 3/4 under extremely high mass accretion rates is predicted from the accretion disk theory as a consequence of the radial energy advection. Thus, the accretion disk in M82 X-1 is considered to be in the Slim disk state, where an optically thick Advection Dominant Accretion Flow (ADAF) is taking place. We have applied a theoretical slim disk spectral model to M82 X-1, and estimated the black hole mass approximately equal to 19 - 32 solar mass. We conclude that M82 X-1 is a stellar black hole which has been produced through evolution of an extremely massive star, shining at a several times the super-Eddington luminosity.

  9. Evidence for quiescent synchrotron emission in the black hole X-ray transient Swift J1357.2–0933

    Directory of Open Access Journals (Sweden)

    Shahbaz T.

    2013-12-01

    Full Text Available We present high time-resolution optical and infrared observations of the edge-on black hole X-ray transient Swift J1357.2-0933. Our data taken in 2012 shows the system to be at its pre-outburst magnitude and so the system is in quiescence. In contrast to other X-ray transients, the quiescent light curves of Swift J1357.2-0933 do not show the secondary star’s ellipsoidal modulation. The optical and infrared light curves is dominated by variability with an optical fractional rms of about 20 per cent, much larger than what is observed in other systems. The quiescent ultraviolet to mid-IR spectral energy distribution in quiescence is dominated by a nonthermal component with a power–law index of −1.4, (the broad-band rms SED has a similar index which arises from optically thin synchrotron emission from a jet; the lack of a peak in the spectral energy distribution rules out advection-dominated models (based on [19].

  10. STUDIES OF THE ORIGIN OF HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS OF MASS-ACCRETING BLACK HOLES IN X-RAY BINARIES WITH NEXT-GENERATION X-RAY TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric, E-mail: b.beheshtipour@wustl.edu [Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, One Brookings Drive, CB 1105, St. Louis, MO 63130 (United States)

    2016-08-01

    Observations with RXTE ( Rossi X-ray Timing Explorer ) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT ( Large Observatory for X-ray Timing ) and polarization signatures with space-borne X-ray polarimeters such as IXPE ( Imaging X-ray Polarimetry Explorer ), PolSTAR ( Polarization Spectroscopic Telescope Array ), PRAXyS ( Polarimetry of Relativistic X-ray Sources ), or XIPE ( X-ray Imaging Polarimetry Explorer ). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT -type mission.

  11. The Effects of High Density on the X-ray Spectrum Reflected from Accretion Discs Around Black Holes

    Science.gov (United States)

    Garcia, Javier A.; Fabian, Andrew C.; Kallman, Timothy R.; Dauser, Thomas; Parker, Micahel L.; McClintock, Jeffrey E.; Steiner, James F.; Wilms, Jorn

    2016-01-01

    Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter (xi), which is the ratio of the incident flux to the gas density. The density is typically fixed at n(sub e) = 10(exp 15) per cu cm. Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for n(sub e) approximately greater than 10(exp 17) per cu cm that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies 2 approximately less than keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available.

  12. Thermal disc emission from a rotating black hole: X-ray polarization signatures

    Czech Academy of Sciences Publication Activity Database

    Dovčiak, Michal; Muleri, F.; Goosmann, René; Karas, Vladimír; Matt, G.

    2008-01-01

    Roč. 391, č. 1 (2008), s. 32-38 ISSN 0035-8711 R&D Projects: GA ČR GA205/07/0052; GA MŠk(CZ) LC06014 Grant - others:ESA(XE) ESA-PECS project No. 98040 Institutional research plan: CEZ:AV0Z10030501 Keywords : polarization * relativity * instrumentation: polarimeters * X-rays: binaries Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.185, year: 2008

  13. An Evolving Compact Jet in the Black Hole X-Ray Binary Maxi J1836-194

    Science.gov (United States)

    Russell, D. M.; Russell, T. D.; Miller-Jones, J. C. A.; O'Brien, K.; Soria, R.; Sivakoff, G. R.; Slaven-Blair, T.; Lewis, F.; Markoff, S.; Homan, J.; hide

    2013-01-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from approx 10(exp 11) to approx 4 × 10(exp 13) Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.

  14. Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?

    Science.gov (United States)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-01-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."

  15. Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?

    Science.gov (United States)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-11-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”

  16. On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra

    Science.gov (United States)

    Fabian, A. C.; Wilkins, D. R.; Miller, J. M.; Reis, R. C.; Reynolds, C. S.; Cackett, E. M.; Nowak, M. A.; Pooley, G. G.; Pottschmidt, K.; Sanders, J. S.; Ross, R. R.; Wilms, J.

    2012-07-01

    The spin of Cygnus X-1 is measured by fitting reflection models to Suzaku data covering the energy band 0.9-400 keV. The inner radius of the accretion disc is found to lie within 2 gravitational radii (rg=GM/c2), and a value of ? is obtained for the dimensionless black hole spin. This agrees with recent measurements using the continuum fitting method by Gou et al. and of the broad iron line by Duro et al. The disc inclination is measured at ?, which is consistent with the recent optical measurement of the binary system inclination by Orosz et al. of 27°± 0?8. We pay special attention to the emissivity profile caused by irradiation of the inner disc by the hard power-law source. The X-ray observations and simulations show that the index q of that profile deviates from the commonly used, Newtonian, value of 3 within 3rg, steepening considerably within 2rg, as expected in the strong gravity regime.

  17. On the Determination of the Spin of the Black Hole in Cyg X-1 from X-Ray Reflection Spectra

    Science.gov (United States)

    Fabian, A. C.; Wilkins, D.; Miller, J. M.; Reis, R. C.; Reynolds, C. S.; Cackett, E. M.; Nowak, M. A.; Pooley, G.; Pottschmidt, K.; Sanders, J. S.; hide

    2012-01-01

    The spin of Cygnus X-I is measured by fitting reflection models to Suzaku data covering the energy band 0.9-400 keY. The inner radius of the accretion disc is found to lie within 2 gravitational radii (rg = GM/c(exp 2)) and a value for the dimensionless black hole spin is obtained of 0.97(sup .0.14) (sup -0.02). This agrees with recent measurements using the continuum fitting method by Gou et al. and of the broad iron line by Duro et al. The disc inclination is measured at 23.7(sup +6.7) (sup -5.4) deg. which is consistent with the recent optical measurement of the binary system inclination by Orosz et al of 27+/- 0.8 deg. We pay special attention to the emissivity profile caused by irradiation of the inner disc by the hard power-law source. 1be X-ray observations and simulations show that the index q of that profile deviates from the commonly used, Newtonian, value of 3 within 3r(sub g), steepening considerably within 2r(sub g). as expected in the strong gravity regime.

  18. Black hole candidates

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Black hole candidates. In the case of X-ray sources such as Cyg X-1, the mass of the compact object inferred from combined optical and X-ray data, suggest M_compact object > 3.4 M_sun => Black Hole! A remarkable discovery!! Thus X-ray emitting binary systems ...

  19. Cross-spectral modelling of the black hole X-ray binary XTE J1550-564: challenges to the propagating fluctuations paradigm

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-08-01

    Timing properties of black hole X-ray binaries in outburst can be modelled with mass accretion rate fluctuations propagating towards the black hole. Such models predict time lags between energy bands due to propagation delays. First application of a propagating fluctuations model to black hole power spectra showed good agreement with the data. Indeed, hard lags observed from these systems appear to be in agreement with this generic prediction. Our propfluc code allows us to simultaneously predict power spectra, time lags and coherence of the variability as a function of energy. This was successfully applied to the Swift data on the black hole MAXI J1659-152, fitting jointly the power spectra in two energy bands and the cross-spectrum between these two bands. In this work, we attempt to model two high signal-to-noise Rossi X-ray Timing Explorer (RXTE) observations of the black hole XTE J1550-564. We find that neither observation can be adequately explained by the model even when considering, additionally to previous propfluc versions, different propagation speeds of the fluctuations. After extensive exploration of model extensions, we tentatively conclude that the quantitative and qualitative discrepancy between model predictions and data is generic to the propagating fluctuations paradigm. This result encourages further investigation of the fundamental hypotheses of the propagating fluctuations model. We discuss some of these hypotheses with an eye to future works.

  20. A FOURIER-TRANSFORMED BREMSSTRAHLUNG FLASH MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS IN ACCRETING BLACK HOLE SOURCES

    International Nuclear Information System (INIS)

    Kroon, John J.; Becker, Peter A.

    2014-01-01

    Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resulting Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources

  1. The evolution of the X-ray phase lags during the outbursts of the black hole candidate GX 339-4

    Science.gov (United States)

    Altamirano, Diego; Méndez, Mariano

    2015-06-01

    Owing to the frequency and reproducibility of its outbursts, the black hole candidate GX 339-4 has become the standard against which the outbursts of other black hole candidate are matched up. Here we present the first systematic study of the evolution of the X-ray lags of the broad-band variability component (0.008-5 Hz) in GX 339-4 as a function of the position of the source in the hardness-intensity diagram. The hard photons always lag the soft ones, consistent with previous results. In the low-hard state the lags correlate with X-ray intensity, and as the source starts the transition to the intermediate/soft states, the lags first increase faster, and then appear to reach a maximum, although the exact evolution depends on the outburst and the energy band used to calculate the lags. The time of the maximum of the lags appears to coincide with a sudden drop of the optical/near-infrared flux, the fractional rms amplitude of the broad-band component in the power spectrum, and the appearance of a thermal component in the X-ray spectra, strongly suggesting that the lags can be very useful to understand the physical changes that GX 339-4 undergoes during an outburst. We find strong evidence for a connection between the evolution of the cut-off energy of the hard component in the energy spectrum and the phase lags, suggesting that the average magnitude of the lags is correlated with the properties of the corona/jet rather than those of the disc. Finally, we show that the lags in GX 339-4 evolve in a similar manner to those of the black hole candidate Cygnus X-1, suggesting similar phenomena could be observable in other black hole systems.

  2. Periodic X-ray Modulation and its Possible Relation with Eccentricity in Black Hole Binaries : Long-Term Swift/BAT and RXTE/ASM Data Analysis

    Science.gov (United States)

    Ghosh, Arindam; Chakrabarti, Sandip Kumar

    2016-07-01

    X-ray binary orbits are expected to have some eccentricity, albeit small. Stellar companion of a black hole orbiting in an eccentric orbit will experience modulating tidal force with a periodicity same as that of the orbital period which will result in a modulation of accretion rates, seed photon flux, and flux of inverse Comptonized harder X-rays as well. Timing analysis of long-term X-ray data (1.5-12 keV) of RXTE/ASM and all sky survey data (15-50 keV) of Swift/BAT satellites reveal this periodicity in several black hole candidates. If this modulation is assumed to be solely due to tidal effects (without taking other effects, such as eclipses, reflection from winds, super-hump phenomena etc. into account), the RMS-value of the peak in power density spectrum allows us to estimate eccentricities of these orbits. We present these very interesting results. We show that our results generally agree with independent studies of these parameters.

  3. Black Hole Mass Determination In the X-Ray Binary 4U 1630-47: Scaling of Spectral and Variability Characteristics

    Science.gov (United States)

    Seifina, Elena; Titarchuk, Lev; Shaposhnikov, Nikolai

    2014-01-01

    We present the results of a comprehensive investigation on the evolution of spectral and timing properties of the Galactic black hole candidate 4U 1630-47 during its spectral transitions. In particular, we show how a scaling of the correlation of the photon index of the Comptonized spectral component gamma with low-frequency quasi-periodic oscillations (QPOs), ?(sub L), and mass accretion rate, M, can be applied to the black hole mass and the inclination angle estimates.We analyze the transition episodes observed with the Rossi X-Ray Timing Explorer and BeppoSAX satellites.We find that the broadband X-ray energy spectra of 4U 1630-47 during all spectral states can be modeled by a combination of a thermal component, a Comptonized component, and a red-skewed iron-line component. We also establish that gamma monotonically increases during transition from the low-hard state to the high-soft state and then saturates for high mass accretion rates. The index saturation levels vary for different transition episodes. Correlations of gamma versus ?(sub L) also show saturation at gamma (is) approximately 3. Gamma -M and gamma -?(sub L) correlations with their index saturation revealed in 4U 1630-47 are similar to those established in a number of other black hole candidates and can be considered as an observational evidence for the presence of a black hole in these sources. The scaling technique, which relies on XTE J1550-564, GRO 1655-40, and H1743-322 as reference sources, allows us to evaluate a black hole mass in 4U 1630-47 yielding M(sub BH) (is) approximately 10 +/- 0.1 solar masses and to constrain the inclination angle of i (is) approximately less than 70 deg.

  4. Characterization of the Infrared/X-ray sub-second variability for the black-hole transient GX 339-4

    Science.gov (United States)

    Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.

    2018-03-01

    We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in August 2008. Thanks to simultaneous high time-resolution observations made with the VLT and RXTE, we performed the first characterisation of the sub-second variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on timescales of 16 seconds, with a marginally variable slope, steeper than the one found on timescales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis we found an approximately constant infrared time lag of ≈0.1s, and a very high coherence of ˜90 per cent on timescales of tens of seconds, slowly decreasing toward higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on timescales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.

  5. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  6. Variable O VI and N V Emission from the X-ray Binary LMC X-3: Heating of the Black Hole Companion

    OpenAIRE

    Song, Limin; Tripp, Todd M.; Wang, Q. Daniel; Yao, Yangsen; Cui, Wei; Xue, Yongquan; Orosz, Jerome A.; Steeghs, Danny; Steiner, James F.; Torres, Manuel A. P.; McClintock, Jeffrey E.

    2010-01-01

    Based on high-resolution ultraviolet spectroscopy obtained with FUSE and COS, we present new detections of O VI and N V emission from the black-hole X-ray binary (XRB) system LMC X-3. We also update the ephemeris of the XRB using recent radial velocity measurements obtained with the echelle spectrograph on the Magellan-Clay telescope. We observe significant velocity variability of the UV emission, and we find that the O VI and N V emission velocities follow the optical velocity curve of the X...

  7. Relativistic iron features from X-ray illuminated spots and the measure of the black hole mass in AGN

    Czech Academy of Sciences Publication Activity Database

    Matt, G.; Bianchi, S.; Dovčiak, Michal; Guainazzi, M.; Karas, Vladimír

    -, č. 155 (2004), s. 381-382 ISSN 0375-9687 Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * acreation discs * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.607, year: 2004

  8. Determining the origin and possible mechanisms of QPOS in x-ray emissions of neutron stars and black holes

    Science.gov (United States)

    Thomson, Brent Wayne

    QPOs (Quasi-Periodic Oscillations) are time oscillations that appear in the light curve of observational data in x-ray bands. They are of mysterious origin although they are believed to be a result of the intense gravity around neutron stars and black holes and emit x-rays from accretion disks. I investigate a derived ratio between two periods has been found in the QPO data. The two periods, which appear as peaks in the power density spectrum have been found to be in a 3:2 ratio and can possibly distinguish theoretical models. In the work presented here, two physical approaches are developed that can explain the integer resonance ratio. One is a cusp layer model, which is based on a boundary layer model that uses the physical conditions at opposite sides of said layer to explore the magnitude of the vertical versus radial epicyclic frequencies and confirm the anticipated scales of the observed frequencies. It also happens to recreate a 3:2 resonance ratio for the Keplerian angular frequencies at the ISCO, taken as the preferred radius for the boundary layer model. A toy model was recreated and utilized to emulate the Alfven radius due to the accretion disk's innate magnetic field and explore how it serves as a disruption radius and impacts the accretion of mass and the effective inner edge of the disk. The simulations show that there is no significance deviation from the ISCO as an effective inner edge for the accretion disk due to the magnetospheric influence of the disk alone. I also invoke a parameter to handle the coupling between the vertical and radial epicyclical frequencies and relate it to the pressure within the disk. I show the coupling is strongest at the equatorial plane where pressure is at its maximum value. A model I utilize is a relativistic resonance model, combined with a helioseismological approach to explore the pulsation of the inner edge of the accretion disk that imparts the resonance of the accreting matter moving along the Kerr space

  9. An Extreme X-ray Disk Wind in the Black Hole Candidate IGR J17091-3624

    Science.gov (United States)

    King, A. L.; Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Maitra, D.; Cackett, E. M.; Rupen, M. P.

    2012-01-01

    Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized. dense. and to have typical velocities of approx 1000 km/s or less projected along our line of sight. Here. we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous EVLA radio observations. obtained in 2011. The second Chandra observation reveals an absorption line at 6.91+/-0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of 9300(+500/-400) km/ s (0.03c. or the escape velocity at 1000 R(sub schw)). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of approx 14600 km/s (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems

  10. THE X-RAY SPECTRUM OF THE COOLING-FLOW QUASAR H1821+643: A MASSIVE BLACK HOLE FEEDING OFF THE INTRACLUSTER MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Christopher S.; Lohfink, Anne M. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Babul, Arif [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Fabian, Andrew C.; Russell, Helen R.; Walker, Stephen A. [Institute of Astronomy, Madingley Road, Cambridge, CB3 OHA (United Kingdom); Hlavacek-Larrondo, Julie, E-mail: chris@astro.umd.edu [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada)

    2014-09-10

    We present a deep Suzaku observation of H1821+643, an extremely rare example of a powerful quasar hosted by the central massive galaxy of a rich cooling-core cluster of galaxies. Informed by previous Chandra studies of the cluster, we achieve a spectral separation of emission from the active galactic nucleus (AGN) and the intracluster medium (ICM). With a high degree of confidence, we identify the signatures of X-ray reflection/reprocessing by cold and slowly moving material in the AGN's immediate environment. The iron abundance of this matter is found to be significantly sub-solar (Z ≈ 0.4 Z {sub ☉}), an unusual finding for powerful AGN but in line with the idea that this quasar is feeding from the ICM via a Compton-induced cooling flow. We also find a subtle soft excess that can be described phenomenologically (with an additional blackbody component) or as ionized X-ray reflection from the inner regions of a high inclination (i ≈ 57°) accretion disk around a spinning (a > 0.4) black hole. We describe how the ionization state of the accretion disk can be used to constrain the Eddington fraction of the source. Applying these arguments to our spectrum implies an Eddington fraction of 0.25-0.5, with an associated black hole mass of 3--6×10{sup 9} M{sub ⊙}.

  11. Discovery of a 7 mHz X-Ray Quasi-Periodic Oscillation from the Most Massive Stellar-Mass Black Hole IC 10 X-1

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Mushotzky, Richard F.

    2013-01-01

    We report the discovery with XMM-Newton of an approx.. = 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33 sigma confidence level and has a fractional amplitude (% rms) and a quality factor, Q is identical with nu/delta nu, of approx. = 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of approx. = -2, and a QPO at 7 mHz. At frequencies approx. > 0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the "heartbeat" mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz "dipper QPOs" of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  12. Electron-positron processes and spectral evolution in black hole accretion disk dynamo models for AGN sources of the cosmic X-ray and γ ray backgrounds

    International Nuclear Information System (INIS)

    Leiter, D.

    1983-01-01

    This work discusses a black hole accretion disk dynamo model for Active Galactic Nuclei (AGN) sources of the cosmic X-ray and γ ray backgrounds which involves both thermal and nonthermal accretion disk processes around greater than or equal to 10 8 M/sub sun/ Kerr black holes. Before black hole spin-up to the Kerr metric state, the large value of the compactness parameter L(luminosity)/r(size of emitting region) > 10 30 erg/cm-sec associated with the L/L/sub Edd/ less than or equal to l luminosity ratio in Precursor Active Galaxies (PAG) suppresses all nonthermal emission mechanisms. In this PAG state the resulting emission is predominantly thermal and is due to Comptonization of soft photons by an electron-positron plasma, generated within the hot accretion disk region by γ + γ reversible e+/- processes in the transrelativistic regime. While the underlying plasma in the PAG accretion disk hot inner region may be optically thin initially, the overall effect of the copious γ + γ reversible e+/- generated electron-positron plasma is to push the overall optical depth to tau greater than or equal to 1. This has two main effects: a) it causes the resulting Comptonized spectrum of X-radiation from PAG to be associated with a flat spectral index comparable to that of the residual Cosmic X-ray Background (CXB), and b) the copious γ + γ reversible e+/- within the hot accretion disk region play the role of a phase transition thermostat, and act to maintain the temperature of the hot inner region at greater than or equal to 109 0 K. 16 references

  13. CROSS-CORRELATING COSMIC INFRARED AND X-RAY BACKGROUND FLUCTUATIONS: EVIDENCE OF SIGNIFICANT BLACK HOLE POPULATIONS AMONG THE CIB SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Cappelluti, N.; Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Kashlinsky, A.; Mather, J. C.; Moseley, S. H. [Observational Cosmology Laboratory, Code 665, Goddard Space Flight Center, Greenbelt MD 20771 (United States); Arendt, R. G.; Finoguenov, A. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Fazio, G. G. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Km 103 Carret. Tijunana-Ensenada, Ensenada 22860, BC (Mexico)

    2013-05-20

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an {approx_equal} 8' Multiplication-Sign 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 {mu}m and 4.5 {mu}m and the Chandra [0.5-2] keV data has been detected, at angular scales {approx}> 20'', with an overall significance of {approx_equal} 3.8{sigma} and {approx_equal} 5.6{sigma}, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 {mu}m and 4.5 {mu}m magnitudes m{sub AB} {approx}> 25-26 and [0.5-2] keV X-ray fluxes <<7 Multiplication-Sign 10{sup -17} erg cm{sup 2} s{sup -1}. We determine that at least 15%-25% of the large scale power of the CIB fluctuations is correlated with the spatial power spectrum of the X-ray fluctuations. If this correlation is attributed to emission from accretion processes at both IR and X-ray wavelengths, this implies a much higher fraction of accreting black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations.

  14. AN INTEGRATED MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS AND QUIESCENT SPECTRA FROM HOMOGENEOUS AND INHOMOGENEOUS BLACK HOLE ACCRETION CORONAE

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States)

    2016-04-20

    Many accreting black holes manifest time lags during outbursts, in which the hard Fourier component typically lags behind the soft component. Despite decades of observations of this phenomenon, the underlying physical explanation for the time lags has remained elusive, although there are suggestions that Compton reverberation plays an important role. However, the lack of analytical solutions has hindered the interpretation of the available data. In this paper, we investigate the generation of X-ray time lags in Compton scattering coronae using a new mathematical approach based on analysis of the Fourier-transformed transport equation. By solving this equation, we obtain the Fourier transform of the radiation Green’s function, which allows us to calculate the exact dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous coronal clouds. We use the new formalism to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. We show that our model can successfully reproduce both the observed time lags and the time-averaged (quiescent) X-ray spectra for Cyg X-1 and GX 339-04, using a single set of coronal parameters for each source. The time lags are the result of impulsive bremsstrahlung injection occurring near the outer edge of the corona, while the time-averaged spectra are the result of continual distributed injection of soft photons throughout the cloud.

  15. Cross-correlating Cosmic IR and X-ray Background Fluctuations: Evidence of Significant Black Hole Populations Among the CIB Sources

    Science.gov (United States)

    Cappelluti, N.; Kashlinsky, A.; Arendt, R. G.; Comastri, A.; Fazio, G. G.; Finoguenov, A.; Hasinger, G.; Mather, J. C.; Miyaji, T; Moseley, S. H.

    2013-01-01

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an approx = 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 micron and 4.5 micron and the Chandra [0.5-2] keV data has been detected, at angular scales approx >20'', with an overall significance of approx = 3.8 sigma and approx. = 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 micron and 4.5 micron magnitudes m(sub AB) approx. > 25-26 and [0.5-2] keV X-ray fluxes black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations. local foregrounds, nor the known remaining normal galaxies and active galactic nuclei (AGN) can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations

  16. Optical Precursors to Black Hole X-Ray Binary Outbursts: An Evolving Synchrotron Jet Spectrum in Swift J1357.2–0933

    Science.gov (United States)

    Russell, David M.; Qasim, Ahlam Al; Bernardini, Federico; Plotkin, Richard M.; Lewis, Fraser; Koljonen, Karri I. I.; Yang, Yi-Jung

    2018-01-01

    We present six years of optical monitoring of the black hole (BH) candidate X-ray binary Swift J1357.2–0933, during and since its discovery outburst in 2011. On these long timescales, the quiescent light curve is dominated by high amplitude, short-term (seconds–days) variability spanning ∼2 mag, with an increasing trend of the mean flux from 2012 to 2017 that is steeper than in any other X-ray binary found to date (0.17 mag yr‑1). We detected the initial optical rise of the 2017 outburst of Swift J1357.2–0933, and we report that the outburst began between 2017 April 1 and 6. Such a steep optical flux rise preceding an outburst is expected according to disk instability models, but the high amplitude variability in quiescence is not. Previous studies have shown that the quiescent spectral, polarimetric, and rapid variability properties of Swift J1357.2–0933 are consistent with synchrotron emission from a weak compact jet. We find that a variable optical/infrared spectrum is responsible for the brightening: a steep, red spectrum before and soon after the 2011 outburst evolves to a brighter, flatter spectrum since 2013. The evolving spectrum appears to be due to the jet spectral break shifting from the infrared in 2012 to the optical in 2013, then back to the infrared by 2016–2017 while the optical remains relatively bright. Swift J1357.2–0933 is a valuable source to study BH jet physics at very low accretion rates and is possibly the only quiescent source in which the optical jet properties can be regularly monitored.

  17. Tracing the accretion history of supermassive black holes through X-ray variability: results from the ChandraDeep Field-South

    Science.gov (United States)

    Paolillo, M.; Papadakis, I.; Brandt, W. N.; Luo, B.; Xue, Y. Q.; Tozzi, P.; Shemmer, O.; Allevato, V.; Bauer, F. E.; Comastri, A.; Gilli, R.; Koekemoer, A. M.; Liu, T.; Vignali, C.; Vito, F.; Yang, G.; Wang, J. X.; Zheng, X. C.

    2017-11-01

    We study the X-ray variability properties of distant active galactic nuclei (AGNs) in the ChandraDeep Field-South region over 17 yr, up to z ˜ 4, and compare them with those predicted by models based on local samples. We use the results of Monte Carlo simulations to account for the biases introduced by the discontinuous sampling and the low-count regime. We confirm that variability is a ubiquitous property of AGNs, with no clear dependence on the density of the environment. The variability properties of high-z AGNs, over different temporal time-scales, are most consistent with a power spectral density (PSD) described by a broken (or bending) power law, similar to nearby AGNs. We confirm the presence of an anticorrelation between luminosity and variability, resulting from the dependence of variability on black hole (BH) mass and accretion rate. We explore different models, finding that our acceptable solutions predict that BH mass influences the value of the PSD break frequency, while the Eddington ratio λEdd affects the PSD break frequency and, possibly, the PSD amplitude as well. We derive the evolution of the average λEdd as a function of redshift, finding results in agreement with measurements based on different estimators. The large statistical uncertainties make our results consistent with a constant Eddington ratio, although one of our models suggest a possible increase of λEdd with lookback time up to z ˜ 2-3. We conclude that variability is a viable mean to trace the accretion history of supermassive BHs, whose usefulness will increase with future, wide-field/large effective area X-ray missions.

  18. Limits on [O III] 5007 Emission from NGC 4472's Globular Clusters: Constraints on Planetary Nebulae and Ultraluminous Black Hole X-Ray Binaries in Globular Clusters

    Science.gov (United States)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.

    2012-06-01

    We have searched for [O III] 5007 emission in high-resolution spectroscopic data from FLAMES/GIRAFFE Very Large Telescope observations of 174 massive globular clusters (GCs) in NGC 4472. No planetary nebulae (PNe) are observed in these clusters, constraining the number of PNe per bolometric luminosity, α evolution, if all stars produce PNe. Comparing our results to populations of PNe in galaxies, we find most galaxies have a higher α than these GCs (more PNe per bolometric luminosity—though some massive early-type galaxies do have similarly low α). The low α required in these GCs suggests that the number of PNe per bolometric luminosity does not increase strongly with decreasing mass or metallicity of the stellar population. We find no evidence for correlations between the presence of known GC PNe and either the presence of low-mass X-ray binaries (LMXBs) or the stellar interaction rates in the GCs. This, and the low α observed, suggests that the formation of PNe may not be enhanced in tight binary systems. These data do identify one [O III] emission feature, this is the (previously published) broad [O III] emission from the cluster RZ 2109. This emission is thought to originate from the LMXB in this cluster, which is accreting at super-Eddington rates. The absence of any similar [O III] emission from the other clusters favors the hypothesis that this source is a black hole LMXB, rather than a neutron star LMXB with significant geometric beaming of its X-ray emission.

  19. The Inclination of the Soft X-Ray Transient A0620-00 and the Mass of its Black Hole

    Science.gov (United States)

    Cantrell, Andrew G.; Bailyn, Charles D.; Orosz, Jerome A.; McClintock, Jeffrey E.; Remillard, Ronald A.; Froning, Cynthia S.; Neilsen, Joseph; Gelino, Dawn M.; Gou, Lijun

    2010-02-01

    We analyze photometry of the soft X-ray transient A0620 - 00 spanning nearly 30 years, including previously published and previously unpublished data. Previous attempts to determine the inclination of A0620 using subsets of these data have yielded a wide range of measured values of i. Differences in the measured value of i have been due to changes in the shape of the light curve and uncertainty regarding the contamination from the disk. We give a new technique for estimating the disk fraction and find that disk light is significant in all light curves, even in the infrared. We also find that all changes in the shape and normalization of the light curve originate in a variable disk component. After accounting for this disk component, we find that all the data, including light curves of significantly different shapes, point to a consistent value of i. Combining results from many separate data sets, we find i = 51fdg0 ± 0fdg9, implying M = 6.6 ± 0.25 M sun. Using our dynamical model and zero-disk stellar VIH magnitudes, we find d = 1.06 ± 0.12 kpc. Understanding the disk origin of nonellipsoidal variability may assist with making reliable determinations of i in other systems, and the fluctuations in disk light may provide a new observational tool for understanding the three-dimensional structure of the accretion disk.

  20. THE INCLINATION OF THE SOFT X-RAY TRANSIENT A0620-00 AND THE MASS OF ITS BLACK HOLE

    International Nuclear Information System (INIS)

    Cantrell, Andrew G.; Bailyn, Charles D.; Orosz, Jerome A.; McClintock, Jeffrey E.; Gou, Lijun; Remillard, Ronald A.; Froning, Cynthia S.; Neilsen, Joseph; Gelino, Dawn M.

    2010-01-01

    We analyze photometry of the soft X-ray transient A0620 - 00 spanning nearly 30 years, including previously published and previously unpublished data. Previous attempts to determine the inclination of A0620 using subsets of these data have yielded a wide range of measured values of i. Differences in the measured value of i have been due to changes in the shape of the light curve and uncertainty regarding the contamination from the disk. We give a new technique for estimating the disk fraction and find that disk light is significant in all light curves, even in the infrared. We also find that all changes in the shape and normalization of the light curve originate in a variable disk component. After accounting for this disk component, we find that all the data, including light curves of significantly different shapes, point to a consistent value of i. Combining results from many separate data sets, we find i = 51. 0 0 ± 0. 0 9, implying M = 6.6 ± 0.25 M sun . Using our dynamical model and zero-disk stellar VIH magnitudes, we find d = 1.06 ± 0.12 kpc. Understanding the disk origin of nonellipsoidal variability may assist with making reliable determinations of i in other systems, and the fluctuations in disk light may provide a new observational tool for understanding the three-dimensional structure of the accretion disk.

  1. NuSTAR AND Swift Observations of the Very High State in GX 339-4: Weighing the Black Hole With X-Rays

    Science.gov (United States)

    Parker, M. L.; Tomsick, J. A.; Kennea, J. A.; Miller, J. M.; Harrison, F. A.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; hide

    2016-01-01

    We present results from spectral fitting of the very high state of GX339-4 with Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift. We use relativistic reflection modeling to measure the spin of the black hole and inclination of the inner disk and find a spin of a = 0.95+0.08/-0.02 and inclination of 30deg +/- 1deg (statistical errors). These values agree well with previous results from reflection modeling. With the exceptional sensitivity of NuSTAR at the high-energy side of the disk spectrum, we are able to constrain multiple physical parameters simultaneously using continuum fitting. By using the constraints from reflection as input for the continuum fitting method, we invert the conventional fitting procedure to estimate the mass and distance of GX 339-4 using just the X-ray spectrum, finding a mass of 9.0+1.6/-1.2 Stellar Mass and distance of 8.4 +/- 0.9 kpc (statistical errors).

  2. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  3. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  4. Unraveling the formation history of the black hole X-ray binary LMC X-3 from the zero age main sequence to the present

    Science.gov (United States)

    Sørensen, Mads; Fragos, Tassos; Steiner, James F.; Antoniou, Vallia; Meynet, Georges; Dosopoulou, Fani

    2017-01-01

    Aims: We have endeavoured to understand the formation and evolution of the black hole (BH) X-ray binary LMC X-3. We estimated the properties of the system at four evolutionary stages: (1) at the zero-age main-sequence (ZAMS); (2) immediately before the supernova (SN) explosion of the primary; (3) immediately after the SN; and (4) at the moment when Roche-lobe overflow began. Methods: We used a hybrid approach that combined detailed calculations of the stellar structure and binary evolution with approximate population synthesis models. This allowed us to estimate potential natal kicks and the evolution of the BH spin. We incorporated as model constraints the most up-to-date observational information throughout, which include the binary orbital properties, the companion star mass, effective temperature, surface gravity and radius, and the BH mass and spin. Results: We find at 5% and 95% confidence, respectively, that LMC X-3 began as a ZAMS system with the mass of the primary star in the range M1,ZAMS = 22-31 M⊙ and a secondary star of M2,ZAMS = 5.0-8.3 M⊙, in a wide (PZAMS ≳ 2.000 days) and eccentric (eZAMS ≳ 0.18) orbit. Immediately before the SN, the primary had a mass of M1,preSN = 11.1-18.0 M⊙, but the secondary star was largely unaffected. The orbital period decreased to 0.6-1.7 days and is still eccentric 0 ≤ epreSN ≤ 0.44. We find that a symmetric SN explosion with no or small natal kicks (a few tens of km s-1) imparted on the BH cannot be formally excluded, but large natal kicks in excess of ≳120 km s-1 increase the estimated formation rate by an order of magnitude. Following the SN, the system has a BH MBH,postSN = 6.4-8.2 M⊙ and is set on an eccentric orbit. At the onset of the Roche-lobe overflow, the orbit is circular and has a period of PRLO = 0.8-1.4 days. The full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A12

  5. NuSTARand Swift observations of the very high state in GX 339-4: Weighing the black hole with X-rays

    DEFF Research Database (Denmark)

    Parker, M. L.; Tomsick, J. A.; Kennea, J. A.

    2016-01-01

    We present results from spectral fitting of the very high state of GX 339-4 with Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift. We use relativistic reflection modeling to measure the spin of the black hole and inclination of the inner disk and find a spin of a = 0.95(-0.08)(+0.02) and ......We present results from spectral fitting of the very high state of GX 339-4 with Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift. We use relativistic reflection modeling to measure the spin of the black hole and inclination of the inner disk and find a spin of a = 0...

  6. Constellation X-Ray Observatory Unlocking the Mysteries of Black Holes, Dark Matter and Life Cycles of Matter in the Universe

    Science.gov (United States)

    Weaver, Kim; Wanjek, Christopher

    2004-01-01

    This document provides an overview of the Contellation X-Ray Observatory and its mission. The observatory consists of four x-ray telescopes borne on a satellite constellation at the Earth-Sun L2 point.

  7. Black Holes in Our Universe

    Indian Academy of Sciences (India)

    was discovered in the constellation Cygnus; a bright X-ray emit- ter associated with a twin-star system, and christened Cygnus X-. 1. It has a massive star and a black hole orbiting each other. With an optical telescope it is the companion star of the black hole which is visible, which produces stellar winds blowing away from.

  8. Violent flickering in Black Holes

    Science.gov (United States)

    2008-10-01

    Unique observations of the flickering light from the surroundings of two black holes provide new insights into the colossal energy that flows at their hearts. By mapping out how well the variations in visible light match those in X-rays on very short timescales, astronomers have shown that magnetic fields must play a crucial role in the way black holes swallow matter. Flickering black hole ESO PR Photo 36/08 Flickering black hole Like the flame from a candle, light coming from the surroundings of a black hole is not constant -- it flares, sputters and sparkles. "The rapid flickering of light from a black hole is most commonly observed at X-ray wavelengths," says Poshak Gandhi, who led the international team that reports these results. "This new study is one of only a handful to date that also explore the fast variations in visible light, and, most importantly how these fluctuations relate to those in X-rays." The observations tracked the shimmering of the black holes simultaneously using two different instruments, one on the ground and one in space. The X-ray data were taken using NASA's Rossi X-ray Timing Explorer satellite. The visible light was collected with the high speed camera ULTRACAM, a visiting instrument at ESO's Very Large Telescope (VLT), recording up to 20 images a second. ULTRACAM was developed by team members Vik Dhillon and Tom Marsh. "These are among the fastest observations of a black hole ever obtained with a large optical telescope," says Dhillon. To their surprise, astronomers discovered that the brightness fluctuations in the visible light were even more rapid than those seen in X-rays. In addition, the visible-light and X-ray variations were found not to be simultaneous, but to follow a repeated and remarkable pattern: just before an X-ray flare the visible light dims, and then surges to a bright flash for a tiny fraction of a second before rapidly decreasing again. None of this radiation emerges directly from the black hole, but from the

  9. How to Distinguish Neutron Star and Black Hole X-ray Binaries? Spectral Index and Quasi-Periodic Oscillation Frequency Correlation

    Science.gov (United States)

    Titarchuk, Lev; Shaposhnikov, Nickolai

    2005-01-01

    Recent studies have revealed strong correlations between 1-10 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources when seen in the low/hard state, the steep power-law (soft) state, and in transition between these states. In the soft state these index-QPO frequency correlations show a saturation of the photon index GAMMA approximately equal to 2.7 at high values of the low frequency nu(sub L). This saturation effect was previously identified as a black hole signature. In this paper we argue that this saturation does not occur, at least for one neutron star (NS) source 4U 1728-34, for which the index GAMMA monotonically increases with nu(sub L) to the values of 6 and higher. We base this conclusion on our analysis of approximately 1.5 Msec of RXTE archival data for 4U 1728-34. We reveal the spectral evolution of the Comptonized blackbody spectra when the source transitions from the hard to soft states. The hard state spectrum is a typical thermal Comptonization spectrum of the soft photons which originate in the disk and the NS outer photospheric layers. The hard state photon index is GAMMA approximately 2. The soft state spectrum consists of two blackbody components which are only slightly Comptonized. Thus we can claim (as expected from theory) that in NS sources thermal equilibrium is established for the soft state. To the contrary in BH sources, the equilibrium is never established due to the presence of the BH horizon. The emergent BH spectrum, even in the high/soft state, has a power law component. We also identify the low QPO frequency nu(sub L) as a fundamental frequency of the quasi-spherical component of the transition layer (presumably related to the corona and the NS and disk magnetic closed field lines). The lower frequency nu(sub SL) is identified as the frequency of oscillations of a quasi-cylindrical configuration of the TL (presumably related to the NS and disk magnetic

  10. Hard X-ray spectral and timing properties of IGR J17454-2919 consistent with a black hole in the hard state

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Bachetti, Matteo; Tomsick, J.

    2014-01-01

    frequencies. The Lorentzian has a width of 2 Hz and a fractional rms of 25+/-3%. The hard power-law index, the high energy of the cutoff, and the level of variability all are consistent with properties expected for an accreting black hole in the hard state. While we cannot completely rule out the possibility...... power-law with an exponential cutoff and a broad, asymmetric, iron emission line. The column density is (3.3+/-0.6)e22 cm-2 (using Anders & Grevesse 1989 abundances; errors on all spectral parameters are 90% confidence), the photon index is 1.46+/-0.06, and the e-folding energy is >100 keV (with...... the "cutoffpl" model in XSPEC). The unabsorbed 3-79 keV flux is 3.96e-10 erg/cm2/s with a 0.8% error. At the Galactic center distance, this corresponds to an isotropic luminosity of 3e36 erg/s. The power spectrum consists of two components: a zero-centered Lorentzian peaking near 1 Hz and a power-law at lower...

  11. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  12. LIMITS ON [O III] 5007 EMISSION FROM NGC 4472'S GLOBULAR CLUSTERS: CONSTRAINTS ON PLANETARY NEBULAE AND ULTRALUMINOUS BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, Mark B.; Zepf, Stephen E. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Maccarone, Thomas J., E-mail: mpeacock@msu.edu [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2012-06-20

    We have searched for [O III] 5007 emission in high-resolution spectroscopic data from FLAMES/GIRAFFE Very Large Telescope observations of 174 massive globular clusters (GCs) in NGC 4472. No planetary nebulae (PNe) are observed in these clusters, constraining the number of PNe per bolometric luminosity, {alpha} < 0.8 Multiplication-Sign 10{sup -7} PN/L{sub Sun }. This is significantly lower than the rate predicted from stellar evolution, if all stars produce PNe. Comparing our results to populations of PNe in galaxies, we find most galaxies have a higher {alpha} than these GCs (more PNe per bolometric luminosity-though some massive early-type galaxies do have similarly low {alpha}). The low {alpha} required in these GCs suggests that the number of PNe per bolometric luminosity does not increase strongly with decreasing mass or metallicity of the stellar population. We find no evidence for correlations between the presence of known GC PNe and either the presence of low-mass X-ray binaries (LMXBs) or the stellar interaction rates in the GCs. This, and the low {alpha} observed, suggests that the formation of PNe may not be enhanced in tight binary systems. These data do identify one [O III] emission feature, this is the (previously published) broad [O III] emission from the cluster RZ 2109. This emission is thought to originate from the LMXB in this cluster, which is accreting at super-Eddington rates. The absence of any similar [O III] emission from the other clusters favors the hypothesis that this source is a black hole LMXB, rather than a neutron star LMXB with significant geometric beaming of its X-ray emission.

  13. Quantum black holes

    CERN Document Server

    Calmet, Xavier; Winstanley, Elizabeth

    2014-01-01

    Written by foremost experts, this short book gives a clear description of the physics of quantum black holes. The reader will learn about quantum black holes in four and higher dimensions, primordial black holes, the production of black holes in high energy particle collisions, Hawking radiation, black holes in models of low scale quantum gravity and quantum gravitational aspects of black holes.

  14. Hard X-ray detection of the black hole candidates 4U 1630-47 and IGR J17091-3624 up to 200 keV with INTEGRAL

    DEFF Research Database (Denmark)

    Bodaghee, A.; Kuulkers, E.; Tomsick, J. A.

    2012-01-01

    with a power law (Gamma = 1.7+/-0.4; red. Chi^2/dof = 1.5/10; observed flux = 6e-10 erg/cm2/s in 20-100 keV) up to ~200 keV with no evidence for a cutoff. It was also detected above the 6-sigma level in both ISGRI bands during the previous observation of the field (rev. 1207). A possible transition to the hard......During monitoring observations of the Norma and Inner Perseus Arms (rev. 1209: 2012 Sept. 6 from 18:18:23 to 22:00:21 UTC), INTEGRAL-ISGRI revealed that the accreting black hole candidates 4U 1630-47 and IGR J17091-3624 have brightened in the hard X-rays. Mosaic images consisting of 12.6 ks worth...... of observations of this field show that the two objects are detected in both the soft (18-40 keV) and hard (40-100 keV) ISGRI bands. For 4U 1630-47, count rates in the ISGRI soft and hard bands are 7.1+/-0.4 cts/s (34+/-2 mCrab, 20-sigmas) and 3.1+/-0.3 cts/s (30+/-3 mCrab, 12-sigmas), respectively. The former...

  15. The search for black holes

    International Nuclear Information System (INIS)

    Torn, K.

    1976-01-01

    Conceivable experimental investigations to prove the existence of black holes are discussed. Double system with a black hole turning around a star-satellite are in the spotlight. X-radiation emmited by such systems and resulting from accretion of the stellar gas by a black hole, and the gas heating when falling on the black hole might prove the model suggested. A source of strong X-radiation observed in the Cygnus star cluster and referred to as Cygnus X-1 may be thus identified as a black hole. Direct registration of short X-ray pulses with msec intervals might prove the suggestion. The lack of appropriate astrophysic facilities is pointed out to be the major difficulty on the way of experimental verifications

  16. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  17. Black holes in the universe

    International Nuclear Information System (INIS)

    Camenzind, M.

    2005-01-01

    While physicists have been grappling with the theory of black holes (BH), as shown by the many contributions to the Einstein year, astronomers have been successfully searching for real black holes in the Universe. Black hole astrophysics began in the 1960s with the discovery of quasars and other active galactic nuclei (AGN) in distant galaxies. Already in the 1960s it became clear that the most natural explanation for the quasar activity is the release of gravitational energy through accretion of gas onto supermassive black holes. The remnants of this activity have now been found in the centers of about 50 nearby galaxies. BH astrophysics received a new twist in the 1970s with the discovery of the X-ray binary (XRB) Cygnus X-1. The X-ray emitting compact object was too massive to be explained by a neutron star. Today, about 20 excellent BH candidates are known in XRBs. On the extragalactic scale, more than 100.000 quasars have been found in large galaxy surveys. At the redshift of the most distant ones, the Universe was younger than one billion year. The most enigmatic black hole candidates identified in the last years are the compact objects behind the Gamma-Ray Bursters. The formation of all these types of black holes is accompanied by extensive emission of gravitational waves. The detection of these strong gravity events is one of the biggest challenges for physicists in the near future. (author)

  18. Black holes

    International Nuclear Information System (INIS)

    Carter, B.

    1980-01-01

    In years 1920 as a result of quantum mechanics principles governing the structure of ordinary matter, a sudden importance for a problem raised a long time ago by Laplace: what happens when a massive body becomes so dense that even light cannot escape from its gravitational field. It is difficult to conceive how could be avoided in the actual universe the accumulation of important masses of cold matter having been submitted to gravitational breaking down followed by the formation of what is called to day a black hole [fr

  19. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Black holes; numerical relativity; nonlinear sigma. Abstract. Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. ... Theoretical and Computational Studies Group, Southampton College, Long Island University, Southampton, NY 11968, USA ...

  20. Very Broad [O III] λλ4959, 5007 Emission from the NGC 4472 Globular Cluster RZ 2109 and Implications for the Mass of Its Black Hole X-Ray Source

    Science.gov (United States)

    Zepf, Stephen E.; Stern, Daniel; Maccarone, Thomas J.; Kundu, Arunav; Kamionkowski, Marc; Rhode, Katherine L.; Salzer, John J.; Ciardullo, Robin; Gronwall, Caryl

    2008-08-01

    We present Keck LRIS spectroscopy of the black hole-hosting globular cluster RZ 2109 in the Virgo elliptical galaxy NGC 4472. We find that this object has extraordinarily broad [O III] λ5007 and [O III] λ4959 emission lines, with velocity widths of approximately 2000 km s-1. This result has significant implications for the nature of this accreting black hole system and the mass of the globular cluster black hole. We show that the broad [O III] λ5007 emission must arise from material driven at high velocity from the black hole system. This is because the volume available near the black hole is too small by many orders of magnitude to have enough [O III]-emitting atoms to account for the observed L([O III] λ5007) at high velocities, even if this volume is filled with oxygen at the critical density for [O III] λ5007. The Balmer emission is also weak, indicating the observed [O III] is not due to shocks. We therefore conclude that the [O III] λλ4959, 5007 is produced by photoionization of material driven across the cluster. The only known way to drive significant material at high velocity is for a system accreting mass near or above its Eddington limit, which indicates a stellar-mass black hole. Since it is dynamically implausible to form an accreting stellar-mass black hole system in a globular cluster with an intermediate-mass black hole (IMBH), it appears this massive globular cluster does not have an IMBH. We discuss further tests of this conclusion, and its implications for the MBH - Mstellar and MBH - σ relations. Based on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  2. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  3. Black Hole Spin Measurement Uncertainty

    Science.gov (United States)

    Salvesen, Greg; Begelman, Mitchell C.

    2018-01-01

    Angular momentum, or spin, is one of only two fundamental properties of astrophysical black holes, and measuring its value has numerous applications. For instance, obtaining reliable spin measurements could constrain the growth history of supermassive black holes and reveal whether relativistic jets are powered by tapping into the black hole spin reservoir. The two well-established techniques for measuring black hole spin can both be applied to X-ray binaries, but are in disagreement for cases of non-maximal spin. This discrepancy must be resolved if either technique is to be deemed robust. We show that the technique based on disc continuum fitting is sensitive to uncertainties regarding the disc atmosphere, which are observationally unconstrained. By incorporating reasonable uncertainties into black hole spin probability density functions, we demonstrate that the spin measured by disc continuum fitting can become highly uncertain. Future work toward understanding how the observed disc continuum is altered by atmospheric physics, particularly magnetic fields, will further strengthen black hole spin measurement techniques.

  4. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  5. Massive Black Hole Implicated in Stellar Destruction

    Science.gov (United States)

    2010-01-01

    New results from NASA's Chandra X-ray Observatory and the Magellan telescopes suggest that a dense stellar remnant has been ripped apart by a black hole a thousand times as massive as the Sun. If confirmed, this discovery would be a cosmic double play: it would be strong evidence for an intermediate mass black hole, which has been a hotly debated topic, and would mark the first time such a black hole has been caught tearing a star apart. This scenario is based on Chandra observations, which revealed an unusually luminous source of X-rays in a dense cluster of old stars, and optical observations that showed a peculiar mix of elements associated with the X-ray emission. Taken together, a case can be made that the X-ray emission is produced by debris from a disrupted white dwarf star that is heated as it falls towards a massive black hole. The optical emission comes from debris further out that is illuminated by these X-rays. The intensity of the X-ray emission places the source in the "ultraluminous X-ray source" or ULX category, meaning that it is more luminous than any known stellar X-ray source, but less luminous than the bright X-ray sources (active galactic nuclei) associated with supermassive black holes in the nuclei of galaxies. The nature of ULXs is a mystery, but one suggestion is that some ULXs are black holes with masses between about a hundred and several thousand times that of the Sun, a range intermediate between stellar-mass black holes and supermassive black holes located in the nuclei of galaxies. This ULX is in a globular cluster, a very old and crowded conglomeration of stars. Astronomers have suspected that globular clusters could contain intermediate-mass black holes, but conclusive evidence for this has been elusive. "Astronomers have made cases for stars being torn apart by supermassive black holes in the centers of galaxies before, but this is the first good evidence for such an event in a globular cluster," said Jimmy Irwin of the University

  6. Images of the laser entrance hole from the static x-ray imager at NIF.

    Science.gov (United States)

    Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K

    2010-10-01

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  7. NASA Observatory Confirms Black Hole Limits

    Science.gov (United States)

    2005-02-01

    The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first

  8. On the distribution of stellar-sized black hole spins

    OpenAIRE

    Nielsen, Alex B.

    2016-01-01

    Black hole spin will have a large impact on searches for gravitational waves with advanced detectors. While only a few stellar mass black hole spins have been measured using X- ray techniques, gravitational wave detectors have the capacity to greatly increase the statistics of black hole spin measurements. We show what we might learn from these measurements and how the black hole spin values are influenced by their formation channels.

  9. On the distribution of stellar-sized black hole spins

    International Nuclear Information System (INIS)

    Nielsen, Alex B.

    2016-01-01

    Black hole spin will have a large impact on searches for gravitational waves with advanced detectors. While only a few stellar mass black hole spins have been measured using X- ray techniques, gravitational wave detectors have the capacity to greatly increase the statistics of black hole spin measurements. We show what we might learn from these measurements and how the black hole spin values are influenced by their formation channels. (paper)

  10. A Black Hole Spectral Signature

    Science.gov (United States)

    Titarchuk, Lev; Laurent, Philippe

    2000-03-01

    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be

  11. Cyclotron emission near stellar mass black holes

    Science.gov (United States)

    Apparao, K. M. V.

    1984-01-01

    Cyclotron emission in the inner regions of an accretion disk around a matter accreting black hole can be appreciable. In the case of the X-ray source Cyg X-1, cyclotron emission may provide the soft photons needed for 'Comptonization' to produce high energy X-rays. The inverse correlation between the fluxes of high energy and low energy X-rays during the 'high' and 'low' states of Cyg X-1, may be understood as a result of the variation of the rate of accretion and the Compton scattering of the cyclotron photons. In the case of the X-ray source GX 339-4, the observed optical flux during the high states does not seem to be due to cyclotron emission, but probably due to reprocessing of high energy X-rays by the outer regions of the disk.

  12. Measuring the spins of accreting black holes

    International Nuclear Information System (INIS)

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  13. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  14. Dynamics of black holes

    OpenAIRE

    Hayward, Sean A.

    2008-01-01

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...

  15. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  16. Galactic Black Hole Binaries: High-Energy Radiation

    National Research Council Canada - National Science Library

    Grove, J. E; Grindlay, J. E; Harmon, B. A; Hua, X. -M; Kazanas, D; McConnell, M

    1997-01-01

    Observations of galactic black hole candidates made by the instruments aboard the Compton GRO in the hard X-ray and gamma-ray bands have significantly enhanced our knowledge of the emission properties of these objects...

  17. Monopole black hole skyrmions

    OpenAIRE

    Moss, I.G.; Shiiki, N.; Winstanley, E.

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  18. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  19. Stellar black holes in globular clusters

    Science.gov (United States)

    Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve

    1993-01-01

    The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.

  20. Probing strong-field general relativity near black holes

    CERN Multimedia

    CERN. Geneva; Alvarez-Gaumé, Luís

    2005-01-01

    Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...

  1. Black hole feedback on the first galaxies

    Science.gov (United States)

    Jeon, Myoungwon; Pawlik, Andreas H.; Greif, Thomas H.; Glover, Simon C. O.; Bromm, Volker; Milosavljević, Miloš; Klessen, Ralf S.

    2012-09-01

    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through selfconsistent, cosmological simulations. X-ray radiation fromthe accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback startingwith the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.

  2. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  3. Interacting black holes

    International Nuclear Information System (INIS)

    Costa, Miguel S.; Perry, Malcolm J.

    2000-01-01

    We revisit the geometry representing l collinear Schwarzschild black holes. It is seen that the black holes' horizons are deformed by their mutual gravitational attraction. The geometry has a string like conical singularity that connects the holes but has nevertheless a well defined action. Using standard gravitational thermodynamics techniques we determine the free energy for two black holes at fixed temperature and distance, their entropy and mutual force. When the black holes are far apart the results agree with Newtonian gravity expectations. This analyses is generalized to the case of charged black holes. Then we consider black holes embedded in string/M-theory as bound states of branes. Using the effective string description of these bound states and for large separation we reproduce exactly the semi-classical result for the entropy, including the correction associated with the interaction between the holes

  4. How to Build a Supermassive Black Hole

    Science.gov (United States)

    Wanjek, Christopher

    2003-01-01

    NASA astronomer Kim Weaver has got that sinking feeling. You know, it's that unsettling notion you get when you sift through your X-ray data and, to your surprise, find mid-sized black holes sinking toward the center of a galaxy, where they merge with others to form a single supermassive black hole. Could such a thing be true? These would be the largest mergers since America On Line bought Time-Warner, and perhaps even more violent. The process would turn a starburst galaxy inside out, making it more like a quasar host galaxy. Using the Chandra X-Ray Observatory, Weaver saw a hint of this fantastic process in a relatively nearby starburst galaxy named NGC 253 in the constellation Sculptor. She noticed that starburst galaxies - those gems set aglow in a colorful life cycle of hyperactive star birth, death, and renewal - seem to have a higher concentration of mid-mass black holes compared to other galaxies.

  5. Observational constraints on black hole accretion disks

    Science.gov (United States)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  6. Black Hole Blows Big Bubble

    Science.gov (United States)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  7. Black holes in astrophysics

    International Nuclear Information System (INIS)

    Narayan, Ramesh

    2005-01-01

    This paper reviews the current status of black hole (BH) astrophysics, focusing on topics of interest to a physics audience. Astronomers have discovered dozens of compact objects with masses greater than 3M o-dot , the likely maximum mass of a neutron star. These objects are identified as BH candidates. Some of the candidates have masses ∼5M o-dot -20M o-dot and are found in x-ray binaries, while the rest have masses ∼10 6 M o-dot -10 9.5 M o-dot and are found in galactic nuclei. A variety of methods are being tried to estimate the spin parameters of the candidate BHs. There is strong circumstantial evidence that many of the objects have event horizons, so there is good reason to believe that the candidates are true BHs. Recent MHD simulations of magnetized plasma accreting on rotating BHs seem to hint that relativistic jets may be produced by a magnetic analogue of the Penrose process

  8. X-rays as a probe of the Universe

    Indian Academy of Sciences (India)

    Table of contents. X-rays as a probe of the Universe · Probing the Universe ….. Flux = sT4 umax = 1011 T (in Kelvin) · History of x-ray astronomy · X-ray Production · X-ray spectra · Celestial sphere as seen by UHURU (1970) · Slide 8 · X-rays from accreting binary systems · Slide 10 · Neutron stars: Black Hole: · Primary X-ray ...

  9. Marriage of x-ray and optical astronomy

    International Nuclear Information System (INIS)

    McClintock, J.E.

    1975-01-01

    An historical discussion of the relation of x-ray and optical astronomy is given including distances within our galaxy, the optical identification of x-ray sources, the binary x-ray stars, neutron stars and black holes, a program in x-ray astronomy, and future missions

  10. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  11. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  12. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  13. Nonextremal stringy black hole

    International Nuclear Information System (INIS)

    Suzuki, K.

    1997-01-01

    We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society

  14. The fundamental plane of accretion onto black holes with dynamical masses

    NARCIS (Netherlands)

    Gültekin, K.; Cackett, E.M.; Miller, J.M.; Di Matteo, T.; Markoff, S.; Richstone, D.O.

    2009-01-01

    Black hole accretion and jet production are areas of intensive study in astrophysics. Recent work has found a relation between radio luminosity, X-ray luminosity, and black hole mass. With the assumption that radio and X-ray luminosities are suitable proxies for jet power and accretion power,

  15. Advective accretion flow properties around rotating black holes ...

    Indian Academy of Sciences (India)

    RAMIZ AKTAR

    2018-02-10

    Feb 10, 2018 ... in black hole source GRO J1655-40. While doing this, we attempt to constrain the range of ak based on observed. HFQPOs (∼300 Hz and ∼450 Hz) for the black hole source GRO J1655-40. Keywords. Accretion: accretion disc—black hole physics—shock waves—ISM: jets and outflows—X-ray: binaries. 1.

  16. Magnetic Origin of Black Hole Winds Across the Mass Scale

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2017-01-01

    Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic (approx. 300 km/sec) to sub-relativistic (approx. 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

  17. Black holes are warm

    International Nuclear Information System (INIS)

    Ravndal, F.

    1978-01-01

    Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)

  18. Black hole Berry phase

    NARCIS (Netherlands)

    de Boer, J.; Papadodimas, K.; Verlinde, E.

    2009-01-01

    Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the

  19. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  20. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  1. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of ...

  2. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  3. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  4. Ghost Remains After Black Hole Eruption

    Science.gov (United States)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after

  5. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    as a star or dispersing altogether. Were we engineers with advanced technology, we might attempt to find that critical amount of energy necessary to form a black hole. However, despite some fears to the contrary, such technology does not exist, so instead we investigate this critical regime numerically. The first step is to pick ...

  6. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    denotes the partial derivatives of . The construction of a numerical method with which ... which configurations form black holes and which disperse (the only two options in this model). The problem in picturing such a space is that it is infinite ..... 4.1 The future: Less symmetry. The work described above all assumes spherical ...

  7. X-ray atomic scattering factors of low-Z ions with a core hole

    International Nuclear Information System (INIS)

    Hau-Riege, Stefan P.

    2007-01-01

    Short and intense x-ray pulses may be used for atomic-resolution diffraction imaging of single biological molecules. One of the dominant damage mechanisms is atomic ionization, resulting in a large fraction of atoms with core holes. We calculated the atomic scattering factor of atoms with atomic charge numbers between 3 and 10 in different ionization states with and without a core hole. Our results show that orbital occupation and the change of the orbitals upon core ionization (core relaxation) have a significant impact on the diffraction pattern

  8. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  9. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  10. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  11. Black holes - a way out of the universe

    International Nuclear Information System (INIS)

    Hartvigsen, Y.

    1975-01-01

    Following a general discussion of the phenomenon of gravitational collapse and the formation of dwarf stars, neutron stars and black holes, the characteristics of black holes are discussed in more detail. The nature of a black hole in the space-time continuum of the general relativity theory is described and the 'Einstein-Rosen bridge', or 'snake-pit', is presented. The concept that matter drawn into a black hole in our universe may be emitted from a 'white hole' on the 'other side' is also presented. Evidence for the existence of black holes in the universe is discussed and the X-ray source in Cygnus X-1 is cited as a possible example. Finally the interesting possibility is mentioned that our universe itself may be a black hole, having its origin in a white hole, which mathematically could represent the 'big bang' theory. (JIW)

  12. Two stellar-mass black holes in the globular cluster M22.

    Science.gov (United States)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-04

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes.

  13. The Correlation between Hard X-Ray Peak Flux and Soft X-Ray Peak Flux in the Outburst Rise of Low-Mass X-Ray Binaries

    NARCIS (Netherlands)

    Yu, W.; van der Klis, M.; Fender, R.P.

    2004-01-01

    We have analyzed Rossi X-Ray Timing Explorer pointed observations of the outbursts of black hole and neutron star soft X-ray transients in which an initial low/hard state, or ``island'' state, followed by a transition to a softer state was observed. In three sources-the black hole transient XTE

  14. Formation of a black hole in the dark.

    Science.gov (United States)

    Mirabel, I Félix; Rodrigues, Irapuan

    2003-05-16

    We show that the black hole in the x-ray binary Cygnus X-1 was formed in situ and did not receive an energetic trigger from a nearby supernova. The progenitor of the black hole had an initial mass greater than 40 solar masses, and during the collapse to form the approximately 10-solar mass black hole of Cygnus X-1, the upper limit for the mass that could have been suddenly ejected is approximately 1 solar mass, much less than the mass ejected in a supernova. The observations suggest that high-mass stellar black holes may form promptly, when massive stars disappear silently.

  15. Relativistic jets from accreting black holes

    International Nuclear Information System (INIS)

    Coriat, Mickael

    2010-01-01

    Matter ejection processes, more commonly called jets, are among the most ubiquitous phenomena of the universe at ail scales of size and energy and are inseparable from accretion process. This intimate link, still poorly understood, is the main focus of this thesis. Through multi-wavelength observations of X-ray binary Systems hosting a black hole, I will try to bring new constraints on the physics of relativistic jets and the accretion - ejection coupling. We strive first to compare the simultaneous infrared, optical and X-ray emissions of the binary GX 339-4 over a period of five years. We study the nature of the central accretion flow, one of the least understood emission components of X-ray binaries, both in its geometry and in term of the physical processes that take place. This component is fundamental since it is could be the jets launching area or be highly connected to it. Then we focus on the infrared emission of the jets to investigate the physical conditions close to the jets base. We finally study the influence of irradiation of the outer accretion disc by the central X-ray source. Then, we present the results of a long-term radio and X-ray study of the micro-quasar H1743- 322. This System belongs to a population of accreting black holes that display, for a given X-ray luminosity, a radio emission fainter than expected. We make several assumptions about the physical origin of this phenomenon and show in particular that these sources could have a radiatively efficient central accretion flow. We finally explore the phases of return to the hard state of GX 339-4. We follow the re-emergence of the compact jets emission and try to bring new constraints on the physics of jet formation. (author) [fr

  16. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  17. Colliding black hole solution

    International Nuclear Information System (INIS)

    Ahmed, Mainuddin

    2005-01-01

    A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)

  18. Illuminating black holes

    Science.gov (United States)

    Barr, Ian A.; Bull, Anne; O'Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.

    2016-07-01

    Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.

  19. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  20. The Thermodynamics of Black Holes

    Directory of Open Access Journals (Sweden)

    Wald Robert M.

    2001-01-01

    Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  1. Quantum black holes

    International Nuclear Information System (INIS)

    't Hooft, G.

    1987-01-01

    No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references

  2. Charged Galileon black holes

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory

  3. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    Science.gov (United States)

    2011-01-01

    with the Hubble Space Telescope. They found a region near the center of the galaxy that strongly emits radio waves with characteristics of those emitted by super-fast "jets" of material spewed outward from areas close to a black hole. They then searched images from the Chandra X-Ray Observatory that showed this same, radio-bright region to be strongly emitting energetic X-rays. This combination, they said, indicates an active, black-hole-powered, galactic nucleus. "Not many dwarf galaxies are known to have massive black holes," Sivakoff said. While central black holes of roughly the same mass as the one in Henize 2-10 have been found in other galaxies, those galaxies all have much more regular shapes. Henize 2-10 differs not only in its irregular shape and small size but also in its furious star formation, concentrated in numerous, very dense "super star clusters." "This galaxy probably resembles those in the very young Universe, when galaxies were just starting to form and were colliding frequently. All its properties, including the supermassive black hole, are giving us important new clues about how these black holes and galaxies formed at that time," Johnson said. The astronomers reported their findings in the January 9 online edition of Nature, and at the American Astronomical Society's meeting in Seattle, WA.

  4. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    X-ray spectra of black hole binaries and active galactic nuclei show a non- thermal power law spectra extended over wide energy range toward hard X-rays to γ-rays. In contrast to these X-ray sources, XBPs fundamentally show a power law spectra with photon indices 1–2 with high-energy turnover at relatively low energies.

  5. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  6. Pulsation of black holes

    Science.gov (United States)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  7. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  8. Bringing Black Holes Home

    Science.gov (United States)

    Furmann, John M.

    2003-03-01

    Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.

  9. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  10. Nonisolated dynamic black holes and white holes

    International Nuclear Information System (INIS)

    McClure, M. L.; Anderson, Kaem; Bardahl, Kirk

    2008-01-01

    Modifying the Kerr-Schild transformation used to generate black and white hole spacetimes, new dynamic black and white holes are obtained using a time-dependent Kerr-Schild scalar field. Physical solutions are found for black holes that shrink with time and for white holes that expand with time. The black hole spacetimes are physical only in the vicinity of the black hole, with the physical region increasing in radius with time. The white hole spacetimes are physical throughout. Unlike the standard Schwarzschild solution the singularities are nonisolated, since the time dependence introduces a mass-energy distribution. The surfaces in the metrics where g tt =g rr =0 are dynamic, moving inward with time for the black holes and outward for the white holes, which leads to a question of whether these spacetimes truly have event horizons--a problem shared with Vaidya's cosmological black hole spacetimes. By finding a surface that shrinks or expands at the same rate as the null geodesics move, and within which null geodesics move inward or outward faster than the surfaces shrink or expand, respectively, it is verified that these do in fact behave like black and white holes

  11. Giant Black Hole Rips Apart Star

    Science.gov (United States)

    2004-02-01

    Thanks to two orbiting X-ray observatories, astronomers have the first strong evidence of a supermassive black hole ripping apart a star and consuming a portion of it. The event, captured by NASA's Chandra and ESA's XMM-Newton X-ray Observatories, had long been predicted by theory, but never confirmed. Astronomers believe a doomed star came too close to a giant black hole after being thrown off course by a close encounter with another star. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information about how these black holes grow and affect surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, leader of the international team of researchers. "This unlucky star just wandered into the wrong neighborhood." While other observations have hinted stars are destroyed by black holes (events known as "stellar tidal disruptions"), these new results are the first strong evidence. Evidence already exists for supermassive black holes in many galaxies, but looking for tidal disruptions represents a completely independent way to search for black holes. Observations like these are urgently needed to determine how quickly black holes can grow by swallowing neighboring stars. Animation of Star Ripped Apart by Giant Black Hole Star Ripped Apart by Giant Black Hole Observations with Chandra and XMM-Newton, combined with earlier images from the German Roentgen satellite, detected a powerful X-ray outburst from the center of the galaxy RX J1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees Celsius before being swallowed by the black hole. The energy liberated in the process

  12. Slowly balding black holes

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-01-01

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  13. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  14. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  15. Are black holes springlike?

    Science.gov (United States)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  16. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  17. Partons and black holes

    International Nuclear Information System (INIS)

    Susskind, L.; Griffin, P.

    1994-01-01

    A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection

  18. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  19. Aspects of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  20. LIGO Finds Lightest Black-Hole Binary

    Science.gov (United States)

    Kohler, Susanna

    2017-11-01

    of the components have all been estimated at 20 solar masses or more. This has made it difficult to compare these black holes to those detected by electromagnetic means which are mostly under 10 solar masses in size.GW170608 is the lowest-mass of the LIGO/Virgo black-hole mergers shown in blue. The primary mass is comparable to the masses of black holes we have measured by electromagnetic means (purple detections). [LIGO-Virgo/Frank Elavsky/Northwestern]One type of electromagnetically detected black hole are those in low-mass X-ray binaries (LMXBs). LMXBs consist of a black hole and a non-compact companion: a low-mass donor star that overflows its Roche lobe, feeding material onto the black hole. It is thought that these black holes form without significant spin, and are later spun up as a result of the mass accretion. Before LIGO, however, we didnt have any non-accreting black holes of this size to observe for comparison.Now, detections like GW170608 and the Boxing Day event (which was also on the low end of the mass scale) are allowing us to start exploring spin distributions of non-accreting black holes to determine if were right in our understanding of black-hole spins. We dont yet have a large enough comparison sample to make a definitive statement, but GW170608 is indicative of a wealth of more discoveries we can hope to find in LIGOs next observing run, after a series of further design upgrades scheduled to conclude in 2018. The future of gravitational wave astronomy continues to look promising!CitationLIGO collaboration, submitted to ApJL. https://arxiv.org/abs/1711.05578

  1. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  2. Growth of Primordial Black Holes

    Science.gov (United States)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  3. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  4. Twistors and Black Holes

    NARCIS (Netherlands)

    Neitzke, A.; Pioline, B.; Vandoren, S.

    2007-01-01

    Motivated by black hole physics in N = 2,D = 4 supergravity, we study the geometry of quaternionic-K¨ahler manifolds Mobtained by the c-map construction from projective special Kähler manifolds Ms. Improving on earlier treatments, we compute the Käahler potentials on the twistor space Z and Swann

  5. Black Holes and Entanglement

    International Nuclear Information System (INIS)

    Borsten, L.

    2011-01-01

    An unexpected interplay between the seemingly disparate fields of M-theory and Quantum Information has recently come to light. We summarise these developments, culminating in a classification of 4-qubit entanglement from the physics of STU black holes. Based on work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim, A. Marrani and W. Rubens.

  6. Black Holes and Entanglement

    Science.gov (United States)

    Borsten, L.

    2011-07-01

    An unexpected interplay between the seemingly disparate fields of M-theory and Quantum Information has recently come to light. We summarise these developments, culminating in a classification of 4-qubit entanglement from the physics of STU black holes. Based on work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim, A. Marrani and W. Rubens.

  7. Black Hole Event Horizons and Advection-Dominated Accretion

    Science.gov (United States)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2001-01-01

    The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the

  8. Measurements of laser-hole boring into overdense plasmas using x-ray laser refractometry (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, R.; Takahashi, K.; Tanaka, K.A.; Kato, Y. [Institute of Laser Engineering (ILE), Osaka University, Suita, Osaka 565 (Japan); Murai, K. [DMP, ONRI, Ikeda, Osaka 563 (Japan); Weber, F.; Barbee, T.W.; DaSilva, L.B. [Lawrence Livermore National Laboratory, University of California, Livermore, California 94550 (United States)

    1999-01-01

    We developed a 19.6 nm laser x-ray laser grid-image refractometer (XRL-GIR) to diagnose laser-hole boring into overdense plasmas. The XRL-GIR was optimized to measure two-dimensional electron density perturbation on a scale of a few tens of {mu}m in underdense plasmas. Electron density profiles of laser-produced plasmas were obtained for 10{sup 20}{endash}10{sup 22}thinspcm{sup {minus}3} with the XRL-GIR and for 10{sup 19}{endash}10{sup 20}thinspcm{sup {minus}3} from an ultraviolet interferometer, the profiles of which were compared with those from hydrodynamic simulation. By using this XRL-GIR, we directly observed laser channeling into overdense plasmas accompanied by a bow shock wave showing a Mach cone ascribed to supersonic propagation of the channel front. {copyright} {ital 1999 American Institute of Physics.}

  9. Core-hole-induced dynamical effects in the x-ray emission spectrum of liquid methanol.

    Science.gov (United States)

    Ljungberg, M P; Zhovtobriukh, I; Takahashi, O; Pettersson, L G M

    2017-04-07

    We compute the x-ray emission spectrum of liquid methanol, with the dynamical effects that result from the creation of the core hole included in a semiclassical way. Our method closely reproduces a fully quantum mechanical description of the dynamical effects for relevant one-dimensional models of the hydrogen-bonded methanol molecules. For the liquid, we find excellent agreement with the experimental spectrum, including the large isotope effect in the first split peak. The dynamical effects depend sensitively on the initial structure in terms of the local hydrogen-bonding (H-bonding) character: non-donor molecules contribute mainly to the high-energy peak while molecules with a strong donating H-bond contribute to the peak at lower energy. The spectrum thus reflects the initial structure mediated by the dynamical effects that are, however, seen to be crucial in order to reproduce the intensity distribution of the recently measured spectrum.

  10. Warped products and black holes

    International Nuclear Information System (INIS)

    Hong, Soon-Tae

    2005-01-01

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  11. A hybrid x-ray and microscopy method for diametrical profile measurement of internal holes in steel components

    Science.gov (United States)

    Liu, T.; Malcolm, A. A.; Yin, X. M.; Liew, S. J.; Prawiradiraja, T. P.

    2008-09-01

    High-resolution X-ray is now an essential tool for internal defect and structure inspection in electronics and advanced materials industry. However, it is always a challenge to use it for accurate dimensional measurement due to the nature of the fan-beam X-ray source, particularly for cylindrical objects. This paper presents a novel hybrid X-ray and microscopy method for the profile measurement of the internal hole of a cylinder-shaped steel component. The part to be measured has a beer bottle shape but is open at the bottom side. The objective is to measure the diametrical profile of the internal hole with an accuracy of about 10μm. Traditionally this is measured with using a microscope after cutting and polishing the specimen. This is not only a tedious work, but is also inaccurate due to the uncertainty in cutting and polishing. This report demonstrates that the two edge-profiles of the internal hole can be obtained with X-ray inspection by sequentially placing each of them at the central of the X-ray beam so that the fan-beam effect can be minimized. The resolution of the X-ray inspection is about 6µm under a 20x magnification. Subsequently, the diameter of the hole is measured at two positions through the open end using a microscope with a 20x and a 10x objectives respectively. The results obtained with the two methods are then combined to generate the whole diametrical profile of the internal hole.

  12. Magnonic Black Holes.

    Science.gov (United States)

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  13. Studying Microquasars with X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Giorgio Matt

    2018-03-01

    Full Text Available Microquasars are Galactic black hole systems in which matter is transferred from a donor star and accretes onto a black hole of, typically, 10–20 solar masses. The presence of an accretion disk and a relativistic jet made them a scaled down analogue of quasars—thence their name. Microquasars feature prominently in the scientific goals of X-ray polarimeters, because a number of open questions, which are discussed in this paper, can potentially be answered: the geometry of the hot corona believed to be responsible for the hard X-ray emission; the role of the jet; the spin of the black hole.

  14. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  15. f(R) Black holes

    OpenAIRE

    Moon, Taeyoon; Myung, Yun Soo; Son, Edwin J.

    2011-01-01

    We study the $f(R)$-Maxwell black hole imposed by constant curvature and its all thermodynamic quantities, which may lead to the Reissner-Nordstr\\"om-AdS black hole by redefining Newtonian constant and charge. Further, we obtain the $f(R)$-Yang-Mills black hole imposed by constant curvature, which is related to the Einstein-Yang-Mills black hole in AdS space. Since there is no analytic black hole solution in the presence of Yang-Mills field, we obtain asymptotic solutions. Then, we confirm th...

  16. Black Hole Hunters Set New Distance Record

    Science.gov (United States)

    2010-01-01

    Astronomers using ESO's Very Large Telescope have detected, in another galaxy, a stellar-mass black hole much farther away than any other previously known. With a mass above fifteen times that of the Sun, this is also the second most massive stellar-mass black hole ever found. It is entwined with a star that will soon become a black hole itself. The stellar-mass black holes [1] found in the Milky Way weigh up to ten times the mass of the Sun and are certainly not be taken lightly, but, outside our own galaxy, they may just be minor-league players, since astronomers have found another black hole with a mass over fifteen times the mass of the Sun. This is one of only three such objects found so far. The newly announced black hole lies in a spiral galaxy called NGC 300, six million light-years from Earth. "This is the most distant stellar-mass black hole ever weighed, and it's the first one we've seen outside our own galactic neighbourhood, the Local Group," says Paul Crowther, Professor of Astrophysics at the University of Sheffield and lead author of the paper reporting the study. The black hole's curious partner is a Wolf-Rayet star, which also has a mass of about twenty times as much as the Sun. Wolf-Rayet stars are near the end of their lives and expel most of their outer layers into their surroundings before exploding as supernovae, with their cores imploding to form black holes. In 2007, an X-ray instrument aboard NASA's Swift observatory scrutinised the surroundings of the brightest X-ray source in NGC 300 discovered earlier with the European Space Agency's XMM-Newton X-ray observatory. "We recorded periodic, extremely intense X-ray emission, a clue that a black hole might be lurking in the area," explains team member Stefania Carpano from ESA. Thanks to new observations performed with the FORS2 instrument mounted on ESO's Very Large Telescope, astronomers have confirmed their earlier hunch. The new data show that the black hole and the Wolf-Rayet star dance

  17. Rotating black hole and quintessence

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2016-01-01

    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e 2 ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E , it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter ω and so is the ergoregion. (orig.)

  18. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  19. The disk-wind-jet connection in the black hole H 1743-322

    NARCIS (Netherlands)

    Miller, J.M.; Raymond, J.; Fabian, A.C.; Reynolds, C.S.; King, A.L.; Kallman, T.R.; Cackett, E.M.; van der Klis, M.; Steeghs, D.T.H.

    2012-01-01

    X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be

  20. The Extreme Spin of the Black Hole Cygnus X-1

    Science.gov (United States)

    Gou, Lijun; McClintock, Jeffrey E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2011-01-01

    Remarkably, an astronomical black hole is completely described by the two numbers that specify its mass and its spin. Knowledge of spin is crucial for understanding how, for example, black holes produce relativistic jets. Recently, it has become possible to measure the spins of black holes by focusing on the very inner region of an accreting disk of hot gas orbiting the black hole. According to General Relativity (GR), this disk is truncated at an inner radius 1 that depends only on the mass and spin of the black hole. We measure the radius of the inner edge of this disk by fitting its continuum X-ray spectrum to a fully relativistic model. Using our measurement of this radius, we deduce that the spin of Cygnus X-1 exceeds 97% of the maximum value allowed by GR.

  1. Black Holes and Firewalls

    Science.gov (United States)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  2. Black holes, cooling flows and galaxy formation.

    Science.gov (United States)

    Peacock, J A

    2005-03-15

    Central black holes in galaxies are now well established as a ubiquitous phenomenon, and this fact is important for theories of cosmological structure formation. Merging of galaxy haloes must preserve the proportionality between black hole mass and baryonic mass; the way in which this happens may help solve difficulties with existing ing models of galaxy formation, which suffer from excessive cooling and thus over- produce stars. Feedback from active nuclei may be the missing piece of the puzzle, regulating galaxy-scale cooling flows. Such a process now seems to be observed in cluster-scale cooling flows, where dissipation of sound waves generated by radio lobes can plausibly balance the energy lost in X-rays, at least in a time-averaged sense.

  3. The CASTER Black Hole Finder Probe

    International Nuclear Information System (INIS)

    McConnell, M. L.; Bloser, P. F.; Macri, J. R.; Ryan, J. M.; Case, G. L.; Stacy, J. G.; Cherry, M. L.; Guzik, T. G.; Schaefer, B.; Wefel, J. P.; Cravens, J.; Hurley, K.; Kippen, R. M.; Vestrand, W. T.; Miller, R. S.; Paciesas, W.

    2006-01-01

    The primary scientific mission of the Black Hole Finder Probe (BHFP), part of the NASA Beyond Einstein program, is to survey the local Universe for black holes over a wide range of mass and accretion rate. One approach to such a survey is a hard X-ray coded-aperture imaging mission operating in the 10-600 keV energy band. The development of new inorganic scintillator materials provides improved performance that is well suited to the BHFP science requirements. Detection planes formed with these materials coupled with a new generation of readout devices represent a major advancement in the performance capabilities of scintillator-based gamma cameras. Here, we discuss the Coded Aperture Survey Telescope for Energetic Radiation (CASTER), a concept that represents a BHFP based on the use of the latest scintillator technology

  4. Beyond the black hole

    International Nuclear Information System (INIS)

    Boslough, J.

    1985-01-01

    This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)

  5. Stellar-Mass Black Holes in the Solar Neighborhood

    CERN Document Server

    Chisholm, J S R; Kolb, Edward W; Chisholm, James R.; Dodelson, Scott; Kolb, Edward W.

    2003-01-01

    We search for nearby, isolated, accreting, ``stellar-mass'' (3 to $100M_\\odot$) black holes. Models suggest a synchrotron spectrum in visible wavelengths and some emission in X-ray wavelengths. Of 3.7 million objects in the Sloan Digital Sky Survey Early Data Release, about 150,000 have colors and properties consistent with such a spectrum, and 47 of these objects are X-ray sources from the ROSAT All Sky Survey. Optical spectra exclude seven of these. We give the positions and colors of these 40 black-hole candidates, as well as a measure of their distances from the stellar loci in color--color space. We discuss uncertainties the expected number of sources, and the contribution of black holes to local dark matter.

  6. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  7. Giant black hole rips star apart

    Science.gov (United States)

    2004-02-01

    Astronomers believe that a doomed star came too close to a giant black hole after a close encounter with another star threw it off course. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information on how these black holes grow and affect the surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Dr Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, who led the international team of researchers. "This unlucky star just wandered into the wrong neighbourhood." While other observations have hinted that stars are destroyed by black holes (events known as ‘stellar tidal disruptions’), these new results are the first strong evidence. Observations with XMM-Newton and Chandra, combined with earlier images from the German Roentgensatellite (ROSAT), detected a powerful X-ray outburst from the centre of the galaxy RXJ1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees before being swallowed by the black hole. The energy liberated in this process is equivalent to that of a supernova. "Now, with all of the data in hand, we have the smoking gun proof that this spectacular event has occurred," said co-author Prof. Guenther Hasinger, also of MPE. The black hole in the centre of RX J1242-11 is estimated to have a mass about 100 million times that of the Sun. By contrast, the destroyed star probably had a mass about equal to that of the Sun, making it a lopsided battle of gravity. "This is the ultimate ‘David versus Goliath’ battle, but here David loses," said Hasinger. The astronomers estimated that about one hundredth of the mass of the star was ultimately consumed, or accreted, by the black hole. This small

  8. GOODS Missing Black Hole Report: Hundreds Found!

    Science.gov (United States)

    2007-10-01

    Astronomers have unmasked hundreds of black holes hiding deep inside dusty galaxies billions of light-years away Normal Galaxies Normal Galaxies The massive, growing black holes, discovered by NASA's Spitzer and Chandra space telescopes, represent a large fraction of a long-sought missing population. Their discovery implies there are hundreds of millions of additional black holes growing in our young universe, more than doubling the total amount known at that distance. "Active, supermassive black holes are everywhere in the early universe," said Mark Dickinson of the National Optical Astronomy Observatory in Tucson, Ariz. "We had seen the tip of the iceberg before in our search for these objects. Now, we can see the iceberg itself." Dickinson is a co-author of two new papers appearing in the Nov. 10 issue of the Astrophysical Journal. Emanuele Daddi of the Commissariat a l'Energie Atomique in France led the research. The findings are also the first direct evidence that most, if not all, massive galaxies in the distant universe spend their youths building monstrous black holes at their cores. For decades, large populations of active black holes have been considered missing. These highly energetic structures, also called quasars, consist of a dusty, doughnut-shaped cloud that surrounds and feeds a growing supermassive black hole. They give off a lot of X-rays that can be detected as a general glow in space, but sometimes the quasars themselves can't be seen because dust and gas blocks their X-rays from our point of view. "We knew from other studies from about 30 years ago that there must be more quasars in the universe, but we didn't know where to find them until now," said Daddi. Daddi and his team initially set out to study 1,000 dusty, massive galaxies that are busy making stars, and were thought to lack quasars. The galaxies are about the same mass as our own spiral Milky Way galaxy, but irregular in shape. At 9 to 11 billion light-years away, they exist at a

  9. Black Holes in Our Universe

    Indian Academy of Sciences (India)

    most sensitive scientific instrument ever ... sion, expelling a lot of the mass, but leaving behind a black hole that is at least ... hole, and indeed such a phenomenon may explain the disappear- ance of a star in the galaxy N6946 [21]. The collapse of stars into black holes might account for some of the extraordinarily powerful ...

  10. A black hole nova obscured by an inner disk torus.

    Science.gov (United States)

    Corral-Santana, J M; Casares, J; Muñoz-Darias, T; Rodríguez-Gil, P; Shahbaz, T; Torres, M A P; Zurita, C; Tyndall, A A

    2013-03-01

    Stellar-mass black holes (BHs) are mostly found in x-ray transients, a subclass of x-ray binaries that exhibit violent outbursts. None of the 50 galactic BHs known show eclipses, which is surprising for a random distribution of inclinations. Swift J1357.2-093313 is a very faint x-ray transient detected in 2011. On the basis of spectroscopic evidence, we show that it contains a BH in a 2.8-hour orbital period. Further, high-time-resolution optical light curves display profound dips without x-ray counterparts. The observed properties are best explained by the presence of an obscuring toroidal structure moving outward in the inner disk, seen at very high inclination. This observational feature should play a key role in models of inner accretion flows and jet collimation mechanisms in stellar-mass BHs.

  11. Search for Binary Black Hole Candidates from the VLBI Images of ...

    Indian Academy of Sciences (India)

    gravitational wave sources in the Universe. As the binary orbiting black holes give off gravitational waves, their orbit decays and the orbital period decreases. This stage is called binary black hole inspiral. Galaxy–galaxy merging systems are mostly found in optical and X-ray images. In radio, it is less efficient in identifying ...

  12. Black holes and holography

    International Nuclear Information System (INIS)

    Mathur, Samir D

    2012-01-01

    The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.

  13. Measuring Quasar Spin via X-ray Continuum Fitting

    Science.gov (United States)

    Jenkins, Matthew; Pooley, David; Rappaport, Saul; Steiner, Jack

    2018-01-01

    We have identified several quasars whose X-ray spectra appear very soft. When fit with power-law models, the best-fit indices are greater than 3. This is very suggestive of thermal disk emission, indicating that the X-ray spectrum is dominated by the disk component. Galactic black hole binaries in such states have been successfully fit with disk-blackbody models to constrain the inner radius, which also constrains the spin of the black hole. We have fit those models to XMM-Newton spectra of several of our identified soft X-ray quasars to place constraints on the spins of the supermassive black holes.

  14. GROWTH OF MASSIVE BLACK HOLES AT THEIR LATE STAGE

    International Nuclear Information System (INIS)

    Xu Yadi; Cao Xinwu

    2010-01-01

    It is believed that the growth of local massive black holes was dominated by accretion during quasar phases, while a fraction of the local black hole mass was accumulated through accreting gases at very low rates. We derive the black hole mass density as a function of redshift with the bolometric luminosity function of active galactic nuclei (AGNs) assuming that massive black holes grew via accreting the circumnuclear gases, in which the derived black hole mass density is required to match the measured local black hole mass density at z = 0. Advection-dominated accretion flows (ADAFs) are supposed to be present in low-luminosity AGNs/normal galaxies, which are very hot and radiate mostly in the hard X-ray band. Most of the X-ray background (XRB) is contributed by bright AGNs, and a variety of AGN population synthesis models were developed to model the observed XRB in the last two decades. Based on our derived black hole mass density, we calculate the contribution to the XRB from the ADAFs in faint AGNs/normal galaxies with a given Eddington ratio distribution, which is mostly in the hard X-ray energy band with an energy peak at ∼200 keV. The growth of massive black holes during the ADAF phase can therefore be constrained with the observed XRB. Combining an AGN population synthesis model with our results, we find that the fitting on the observed XRB, especially at the hard X-ray energy band with ∼>100 keV, is improved provided the contribution of the ADAFs in low-luminosity AGNs/normal galaxies is properly included. It is found that less than ∼15% of local massive black hole mass density was accreted during ADAF phases. We suggest that more accurate measurements of the XRB in the energy band with ∼>100 keV in the future may help constrain the growth of massive black holes at their late stage. We also calculate their contribution to the extragalactic γ-ray background (EGRB), and find that less than ∼1% of the observed EGRB is contributed by the ADAFs in

  15. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  16. Quantum effects in black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1979-01-01

    A strict definition of black holes is presented and some properties with regard to their mass are enumerated. The Hawking quantum effect - the effect of vacuum instability in the black hole gravitational field, as a result of shich the black hole radiates as a heated body is analyzed. It is shown that in order to obtain results on the black hole radiation it is sufficient to predetermine the in-vacuum state at a time moment in the past, when the collapsing body has a large size, and its gravitational field can be neglected. The causes and the place of particle production by the black hole, and also the space-time inside the black hole, are considered

  17. Particle creation by black holes

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1975-01-01

    In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 10 15 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: S + 1/4 A never decreases where S is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. (orig.) [de

  18. Some observational aspects of compact galactic X-ray sources

    International Nuclear Information System (INIS)

    Heise, J.

    1982-01-01

    This thesis contains the following observations of compact galactic X-ray sources: i) the X-ray experiments onboard the Astronomical Netherlands Satellite ANS, ii) a rocket-borne ultra soft X-ray experiment and iii) the Objective Grating Spectrometer onboard the EINSTEIN observatory. In Chapter I the various types of compact galactic X-ray sources are reviewed and put into the perspective of earlier and following observations. In Chapter II the author presents some of the observations of high luminosity X-ray sources, made with ANS, including the detection of soft X-rays from the compact X-ray binary Hercules X-1 and the ''return to the high state'' of the black hole candidate Cygnus X-1. Chapter III deals with transient X-ray phenomena. Results on low luminosity galactic X-ray sources are collected in Chapter IV. (Auth.)

  19. Origin of supermassive black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.

    2007-01-01

    The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...

  20. Destroying extremal magnetized black holes

    Science.gov (United States)

    Siahaan, Haryanto M.

    2017-07-01

    The gedanken experiment by Wald to destroy a black hole using a test particle in the equatorial plane is adapted to the case of extremal magnetized black holes. We find that the presence of external magnetic fields resulting from the "Ernst magnetization" permits a test particle to have strong enough energy to destroy the black hole. However, the corresponding effective potentials show that such particles would never reach the horizon.

  1. Artificial black holes

    CERN Document Server

    Visser, Matt; Volovik, Grigory E

    2009-01-01

    Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.

  2. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  3. Statistical black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1975-01-01

    Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole

  4. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  5. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    Strominger, A.

    1996-01-01

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  6. On black hole horizon fluctuations

    International Nuclear Information System (INIS)

    Tuchin, K.L.

    1999-01-01

    A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken

  7. Black holes and the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  8. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  9. Braneworld Black Hole Gravitational Lensing

    International Nuclear Information System (INIS)

    Liang Jun

    2017-01-01

    A class of braneworld black holes, which I called as Bronnikov–Melnikov–Dehen (BMD) black holes, are studied as gravitational lenses. I obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. I also compare the results with those obtained for Schwarzschild and two braneworld black holes, i.e., the tidal Reissner-Nordström (R-N) and the Casadio–Fabbri–Mazzacurati (CFM) black holes. (paper)

  10. How black holes saved relativity

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  11. Nariai black holes with quintessence

    OpenAIRE

    Fernando, Sharmanthie

    2014-01-01

    In this paper we study the properties of Schwarzschild black hole surrounded by quintessence matter. The main objective of the paper is to show the existence of Nariai type black hole for special values of the parameters in the theory. The Nariai black hole with the quintessence has the topology $dS_2 \\times S_2$ with $dS_2$ with a different scalar curvature than what would be expected for the Schwarzschild-de Sitter degenerate black hole. Temperature and the entropy for the Schwarzschild-de ...

  12. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    Kol, Barak; Sorkin, Evgeny; Piran, Tsvi

    2004-01-01

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  13. Taking the Pulse of a Black Hole System

    Science.gov (United States)

    2011-01-01

    Using two NASA X-ray satellites, astronomers have discovered what drives the "heartbeats" seen in the light from an unusual black hole system. These results give new insight into the ways that black holes can regulate their intake and severely curtail their growth. This study examined GRS 1915+105 (GRS 1915 for short), a binary system in the Milky Way galaxy containing a black hole about 14 times more massive than the Sun that is feeding off material from a companion star. As this material falls towards the black hole, it forms a swirling disk that emits X-rays. The black hole in GRS 1915 has been estimated to rotate at the maximum possible rate, allowing material in the inner disk to orbit very close to the black hole, at a radius only 20% larger than the event horizon, where the material travels at 50% the speed of light. Using the Chandra X-ray Observatory and the Rossi X-ray Timing Explorer (RXTE), researchers monitored this black hole system over a period of eight hours. As they watched, GRS 1915 gave off a short, bright pulse of X-ray light approximately every 50 seconds, varying in brightness by a factor of about three. This type of rhythmic cycle closely resembles an electrocardiogram of a human heart -- though at a slower pace. "Trying to understand the physics of this 'heartbeat state' is a little like trying to understand how a person's heart beats by watching changes in the blood flow through their veins," said Joey Neilsen, a graduate student at Harvard University, who presented these results from his dissertation at the American Astronomical Society (AAS) meeting in Seattle, Wash. It was previously known that GRS 1915 can develop such heartbeats when its mass consumption rate is very high. After monitoring it with the special combination of Chandra and RXTE, Neilsen and his collaborators realized that they could use the pulses to figure out what controls how much material the black hole consumes. "With each beat, the black hole pumps an enormous

  14. Investigation of the surface composition of electrodeposited black chromium by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Survilienė, S.; Češūnienė, A.; Jasulaitienė, V.; Jurevičiūtė, I.

    2015-01-01

    Highlights: • Black chromium electrodeposited from a Cr(III) bath is composed of oxide, hydroxide and metallic chromium. • Metallic phase is absent in black chromium electrodeposited from a Cr(III) + ZnO bath. • The near-surface layer is rich in hydroxides, whereas oxides of both metals predominate in the depth of the coatings. - Abstract: The paper reviews black chromium electrodeposited from a trivalent chromium bath containing ZnO as a second main component. The chemical compositions of the top layers of the black chromium coatings were studied by the X-ray photoelectron spectroscopy method. The surface of black chromium was found to be almost entirely covered with organic substances. To gain information on the state of each element in the deposit bulk, the layer-by-layer etching of the black chromium surface with argon gas was used. Analysis of XPS spectra has shown that the top layers of black chromium without zinc are composed of various Cr(III) components, organic substances and metallic Cr, whereas metallic Cr is almost absent in black chromium containing some amount of Zn(II) compounds. The ratios of metal/oxide phases were found to be 10/27 and 2/28 for black chromium without and with zinc, respectively. It has been determined that owing to the presence of ZnO in the Cr(III) bath, the percentage of metallic chromium is substantially reduced in black chromium which is quite important for good solar selective characteristics of the coating. The results confirm some of earlier observations and provide new information on the composition of the near-surface layers

  15. An unusually massive stellar black hole in the Galaxy.

    Science.gov (United States)

    Greiner, J; Cuby, J G; McCaughrean, M J

    2001-11-29

    The X-ray source known as GRS1915+105 belongs to a group dubbed 'microquasars'. These objects are binary systems which sporadically eject matter at speeds that appear superluminal, as is the case for some quasars. GRS1915+105 is also one of only two known binary sources thought to contain a maximally spinning black hole. Determining the basic parameters of GRS195+105, such as the masses of the components, will help us to understand jet formation in this system, as well as providing links to other objects which exhibit jets. Using X-ray data, indirect methods have previously been used to infer a variety of masses for the accreting compact object in the range 10-30 solar masses (M middle dot in circle). Here we report a direct measurement of the orbital period and mass function of GRS1915+105, which allow us to deduce a mass of 14 +/- 4 M middle dot in circle for the black hole. Black holes with masses >5-7 M middle dot in circle challenge the conventional picture of black-hole formation in binary systems. Based on the mass estimate, we interpret the distinct X-ray variability of GRS1915+105 as arising from instabilities in an accretion disk that is dominated by radiation pressure, and radiating near the Eddington limit (the point where radiation pressure supports matter against gravity). Also, the mass estimate constrains most models which relate observable X-ray properties to the spin of black holes in microquasars.

  16. Ultraluminous supersoft X-ray sources

    Science.gov (United States)

    Liu, Jifeng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2017-06-01

    While ultraluminous supersoft X-ray sources (ULSs) bear features for intermediate mass black holes or very massive white dwarfs possibly close to Chandrasekhar mass limit, our recent discovery of processing relativistic baryonic jets from a prototype ULS in M81 demonstrate that they are not IMBHs or WDs, but black holes accreting at super-Eddington rates. This discovery strengthens the recent ideas that ULXs are stellar black holes with supercritical accretion, and provides a vivid manifestation of what happens when a black hole devours too much, that is, it will generate thick disk winds and fire out sub-relativistic baryonic jets along the funnel as predicted by recent numerical simulations.

  17. Researchers Resolve Intermediate Mass Black Hole Mystery

    Science.gov (United States)

    2004-04-01

    New research, funded by the Royal Netherlands Academy of Sciences, the Institute of Advanced Physical and Chemical Research, NASA and the University of Tokyo, solved the mystery of how a black hole, with the mass more than several hundreds times larger than that of our Sun, could be formed in the nearby starburst galaxy, M82. Recent observations of the Chandra X-ray observatory (Matsumoto et al., 2001 ApJ 547, L25) indicate the presence of an unusually bright source in the star cluster MGG11 in the starburst galaxy M82. The properties of the X-ray source are best explained by a black hole with a mass of about a thousand times the mass of the Sun, placing it intermediate between the relatively small (stellar mass) black holes in the Milky way Galaxy and the supermassive black holes found in the nuclei of galaxies. For comparison, stellar-mass black holes are only a few times more massive than the Sun, whereas the black hole in the center of the Milky-way Galaxy is more than a few million times more massive than the Sun. An international team of researchers, using the world's fastest computer, the GRAPE-6 system in Japan, were engaged in a series of simulations of star clusters that resembled MGG11. They used the GRAPE-6 to perform simulations with two independently developed computer programs (Starlab and NBODY4 developed by Sverre Aarseth in Cambridge), both of which give the same qualitative result. The simulations ware initiated by high resolution observations of the star cluster MGG11 by McCrady et al (2003, ApJ 596, 240) using the Hubble Space Telescope and Keck, and by Harashima et al (2001) using the giant Subaru telescope. M82 Chandra X-ray image of the central region of the starburst galaxy M82. The GRAPE's detailed, star-by-star simulations represent the state of the art in cluster modeling. For the first time using the GRAPE, researchers perform simulations of the evolution of young and dense star clusters with up to 600000 stars; they calculate the

  18. Black-hole galactic nuclei: a high-energy perspective

    CERN Document Server

    Boldt, E; Loewenstein, M

    2002-01-01

    The gravitational radiation signals to be anticipated from events involving black-hole galactic nuclei depend on the spin of the underlying object. To obtain evidence about the spin of Seyfert AGN black holes, we can rely on future ultra-high resolution spectral/spatial x-ray studies of iron K line fluorescence from the innermost regions of accreting matter. Normal galaxies present more of a challenge. To account for the highest energy cosmic rays, we propose that ultra-relativistic particle acceleration can occur near the event horizons of spun-up supermassive black-holes at the non-active nuclei of giant elliptical galaxies. This conjecture about the black hole spin associated with such nuclei is subject to verification via the characteristic TeV curvature radiation expected to be detected with upcoming gamma-ray observatories.

  19. Active galactic nucleus black hole mass estimates in the era of time domain astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Brandon C.; Treu, Tommaso; Pancoast, Anna [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Malkan, Matthew [Department of Astronomy, 430 Portola Plaza, Box 951547, University of California, Los Angeles, CA 90095-1547 (United States); Woo, Jong-Hak [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2013-12-20

    We investigate the dependence of the normalization of the high-frequency part of the X-ray and optical power spectral densities (PSDs) on black hole mass for a sample of 39 active galactic nuclei (AGNs) with black hole masses estimated from reverberation mapping or dynamical modeling. We obtained new Swift observations of PG 1426+015, which has the largest estimated black hole mass of the AGNs in our sample. We develop a novel statistical method to estimate the PSD from a light curve of photon counts with arbitrary sampling, eliminating the need to bin a light curve to achieve Gaussian statistics, and we use this technique to estimate the X-ray variability parameters for the faint AGNs in our sample. We find that the normalization of the high-frequency X-ray PSD is inversely proportional to black hole mass. We discuss how to use this scaling relationship to obtain black hole mass estimates from the short timescale X-ray variability amplitude with precision ∼0.38 dex. The amplitude of optical variability on timescales of days is also anticorrelated with black hole mass, but with larger scatter. Instead, the optical variability amplitude exhibits the strongest anticorrelation with luminosity. We conclude with a discussion of the implications of our results for estimating black hole mass from the amplitude of AGN variability.

  20. Black holes and quantum mechanics

    NARCIS (Netherlands)

    t Hooft, G.|info:eu-repo/dai/nl/074127888

    2010-01-01

    After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these

  1. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  2. ATLAS simulated black hole event

    CERN Multimedia

    Pequenão, J

    2008-01-01

    The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  3. What, no black hole evaporation

    International Nuclear Information System (INIS)

    Hajicek, P.; Israel, W.

    1980-01-01

    Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)

  4. The Black Hole Formation Probability

    Science.gov (United States)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P BH(M ZAMS). Although we find that it is difficult to derive a unique P BH(M ZAMS) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P BH(M ZAMS) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P BH(M ZAMS) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  5. THE BLACK HOLE FORMATION PROBABILITY

    International Nuclear Information System (INIS)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-01-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P BH (M ZAMS ). Although we find that it is difficult to derive a unique P BH (M ZAMS ) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P BH (M ZAMS ) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P BH (M ZAMS ) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment

  6. Can Black Hole Relax Unitarily?

    Science.gov (United States)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  7. Area spectrum of slowly rotating black holes

    OpenAIRE

    Myung, Yun Soo

    2010-01-01

    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  8. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  9. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  10. Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes.

    Science.gov (United States)

    Sterling, Alphonse C; Moore, Ronald L; Falconer, David A; Adams, Mitzi

    2015-07-23

    Solar X-ray jets are thought to be made by a burst of reconnection of closed magnetic field at the base of a jet with ambient open field. In the accepted version of the 'emerging-flux' model, such a reconnection occurs at a plasma current sheet between the open field and the emerging closed field, and also forms a localized X-ray brightening that is usually observed at the edge of the jet's base. Here we report high-resolution X-ray and extreme-ultraviolet observations of 20 randomly selected X-ray jets that form in coronal holes at the Sun's poles. In each jet, contrary to the emerging-flux model, a miniature version of the filament eruptions that initiate coronal mass ejections drives the jet-producing reconnection. The X-ray bright point occurs by reconnection of the 'legs' of the minifilament-carrying erupting closed field, analogous to the formation of solar flares in larger-scale eruptions. Previous observations have found that some jets are driven by base-field eruptions, but only one such study, of only one jet, provisionally questioned the emerging-flux model. Our observations support the view that solar filament eruptions are formed by a fundamental explosive magnetic process that occurs on a vast range of scales, from the biggest mass ejections and flare eruptions down to X-ray jets, and perhaps even down to smaller jets that may power coronal heating. A similar scenario has previously been suggested, but was inferred from different observations and based on a different origin of the erupting minifilament.

  11. Regular phantom black holes.

    Science.gov (United States)

    Bronnikov, K A; Fabris, J C

    2006-06-30

    We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.

  12. Black hole decay as geodesic motion

    International Nuclear Information System (INIS)

    Gupta, Kumar S.; Sen, Siddhartha

    2003-01-01

    We show that a formalism for analyzing the near-horizon conformal symmetry of Schwarzschild black holes using a scalar field probe is capable of describing black hole decay. The equation governing black hole decay can be identified as the geodesic equation in the space of black hole masses. This provides a novel geometric interpretation for the decay of black holes. Moreover, this approach predicts a precise correction term to the usual expression for the decay rate of black holes

  13. Black holes and quantum processes in them

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1976-01-01

    The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them

  14. Magnetic fields around black holes

    Science.gov (United States)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  15. Are LIGO's Black Holes Made From Smaller Black Holes?

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    The recent successes of the Laser Interferometer Gravitational-Wave Observatory (LIGO) has raised hopes that several long-standing questions in black-hole physics will soon be answerable. Besides revealing how the black-hole binary pairs are built, could detections with LIGO also reveal how the black holes themselves form?Isolation or HierarchyThe first detection of gravitational waves, GW150914, was surprising for a number of reasons. One unexpected result was the mass of the two black holes that LIGO saw merging: they were a whopping 29 and 36 solar masses.On the left of this schematic, two first-generation (direct-collapse) black holes form a merging binary. The right illustrates a second-generation hierarchical merger: each black hole in the final merging binary was formed by the merger of two smaller black holes. [Adapted fromGerosa et al., a simultaneously published paper that also explores the problem of hierarchical mergers and reaches similar conclusions]How do black holes of this size form? One possibility is that they form in isolation from the collapse of a single massive star. In an alternative model, they are created through the hierarchical merger of smaller black holes, gradually building up to the size we observed.A team of scientists led by Maya Fishbach (University of Chicago) suggests that we may soon be able to tell whether or not black holes observed by LIGO formed hierarchically. Fishbach and collaborators argue that hierarchical formation leaves a distinctive signature on the spins of the final black holes and that as soon as we have enough merger detections from LIGO, we can use spin measurements to statistically determine if LIGO black holes were formed hierarchically.Spins from Major MergersWhen two black holes merge, both their original spins and the angular momentum of the pair contribute to the spin of the final black hole that results. Fishbach and collaborators calculate the expected distribution of these final spins assuming that

  16. Disks around merging binary black holes: From GW150914 to supermassive black holes

    Science.gov (United States)

    Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.

    2018-02-01

    We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.

  17. Featured Image: Making a Rapidly Rotating Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  18. Black Hole Event Horizons and Advection-Dominated Accretion

    Science.gov (United States)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    The work supported in part by this grant is part of a larger program on the detection of black hole event horizons, which is also partially supported by NASA grant GO0-1105A. This work has been carried out primarily in collaboration with Dr. M. Garcia and Prof. R. Narayan at the Harvard-Smithsonian Center for Astrophysics and with D. Barret and J. Hameury at Centre d'Etude Spoliate des Rayonnements, France. Our purpose is to confirm the existence of black-hole event horizons by comparing accreting black holes to secreting neutron stars in quiescent X-ray novae. Such a comparison is feasible because black holes and neutron stars are both present in similar environments in X-ray novae. Our second purpose is to assess the nature of accretion flows onto black holes at very low mass transfer rates. Observations of some XMM targets are still pending, whereas most of the Chandra observations have been completed. We anticipate further publications on this work in the future.

  19. X-Ray Emission from Compact Sources

    Energy Technology Data Exchange (ETDEWEB)

    Cominsky, L

    2004-03-23

    This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

  20. GRS 1758–258: RXTE Monitoring of a Rare Persistent Hard State Black Hole

    Directory of Open Access Journals (Sweden)

    M. Obst

    2011-01-01

    Full Text Available GRS 1758–258 is the least studied of the three persistent black hole X-ray binaries in our Galaxy. It is also one of only two known black hole candidates, including all black hole transients, which shows a decrease of its 3-10 keV flux when entering the thermally dominated soft state, rather than an increase.We present the spectral evolution of GRS 1758–258 from RXTE-PCA observations spanning a time of about 11 years from 1996 to 2007. During this time, seven dim soft states are detected. We also consider INTEGRAL monitoring observations of the source and compare the long-term behavior to that of the bright persistent black hole X-ray binary Cygnus X-1. We discuss the observed state transitions in the light of physical scenarios for black hole transitions.

  1. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2015-01-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  2. A Lovelock black hole bestiary

    International Nuclear Information System (INIS)

    Camanho, Xián O; Edelstein, José D

    2013-01-01

    We revisit the study of (A)dS black holes in Lovelock theories. We present a new tool that allows to attack this problem in full generality. In analyzing maximally symmetric Lovelock black holes with non-planar horizon topologies, many distinctive and interesting features are observed. Among them, the existence of maximally symmetric vacua does not support black holes in vast regions of the space of gravitational couplings, multi-horizon black holes and branches of solutions that suggest the existence of a rich diagram of phase transitions. The appearance of naked singularities seems unavoidable in some cases, raising the question about the fate of the cosmic censorship conjecture in these theories. There is a preferred branch of solutions for planar black holes, as well as for non-planar black holes with high enough mass or temperature. Our study clarifies the role of all branches of solutions, including asymptotically dS black holes, and whether they should be considered when studying these theories in the context of AdS/CFT. (paper)

  3. Chandra Reviews Black Hole Musical: Epic But Off-Key

    Science.gov (United States)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also

  4. X-Ray Emission from the Jets of XTE J1550-564

    OpenAIRE

    Kaaret, P.; Corbel, S.; Tomsick, J.A.; Fender, R.P.; Miller, J.M.; Orosz, J.A.; Tzioumis, A.K.; Wijnands, R.A.D.

    2003-01-01

    We report on X-ray observations of the the large-scale jets recently discovered in the radio and detected in X-rays from the black hole candidate X-ray transient and microquasar XTE J1550-564. On 11 March 2002, X-ray emission was detected 23 arcsec to the West of the black hole candidate and was extended along the jet axis with a full width at half maximum of 1.2 arcsec and a full width at 10% of maximum intensity of 5 arcsec. The morphology of the X-ray emission matched well to that of the r...

  5. Quantum Mechanics of Black Holes

    Science.gov (United States)

    Witten, Edward

    2012-08-01

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  6. Tunnelling from Goedel black holes

    International Nuclear Information System (INIS)

    Kerner, Ryan; Mann, R. B.

    2007-01-01

    We consider the spacetime structure of Kerr-Goedel black holes, analyzing their parameter space in detail. We apply the tunnelling method to compute their temperature and compare the results to previous calculations obtained via other methods. We claim that it is not possible to have the closed timelike curve (CTC) horizon in between the two black hole horizons and include a discussion of issues that occur when the radius of the CTC horizon is smaller than the radius of both black hole horizons

  7. Black Holes: A Traveler's Guide

    Science.gov (United States)

    Pickover, Clifford A.

    1998-03-01

    BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.

  8. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  9. Quantum mechanics of black holes.

    Science.gov (United States)

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  10. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  11. Gravitational polarizability of black holes

    International Nuclear Information System (INIS)

    Damour, Thibault; Lecian, Orchidea Maria

    2009-01-01

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  12. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  13. Phase transition for black holes with scalar hair and topological black holes

    OpenAIRE

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by usi...

  14. STELLAR-MASS BLACK HOLE SPIN CONSTRAINTS FROM DISK REFLECTION AND CONTINUUM MODELING

    International Nuclear Information System (INIS)

    Miller, J. M.; Reynolds, C. S.; Fabian, A. C.; Miniutti, G.; Gallo, L. C.

    2009-01-01

    Accretion disk reflection spectra, including broad iron emission lines, bear the imprints of the strong Doppler shifts and gravitational redshifts close to black holes. The extremity of these shifts depends on the proximity of the innermost stable circular orbit to the black hole, and that orbit is determined by the black hole spin parameter. Modeling relativistic spectral features, then, gives a means of estimating black hole spin. We report on the results of fits made to archival X-ray spectra of stellar-mass black holes and black hole candidates, selected for strong disk reflection features. Following recent work, these spectra were fit with reflection models and disk continuum emission models (where required) in which black hole spin is a free parameter. Although our results must be regarded as preliminary, we find evidence for a broad range of black hole spin parameters in our sample. The black holes with the most relativistic radio jets are found to have high spin parameters, though jets are observed in a black hole with a low spin parameter. For those sources with constrained binary system parameters, we examine the distribution of spin parameters versus black hole mass, binary mass ratio, and orbital period. We discuss the results within the context of black hole creation events, relativistic jet production, and efforts to probe the innermost relativistic regime around black holes.

  15. Accreting Neutron Star and Black Hole Binaries with NICER

    Science.gov (United States)

    Chakrabarty, Deepto

    2018-01-01

    The NICER mission on the International Space Station has significant new capabilities for the study of accreting neutron stars and blackholes, including large effective area, low background, and excellent low-energy X-ray response. Both the NICER Burst and Accretion Working Group and the Observatory Science Working Group have designed observing programs that probe various aspects of accretion physics. I will present some early results from the first six months of the NICER mission, including observations of the black hole transients MAXI J1535-571 and GX 339-4, the high-mass X-ray binary pulsars GRO J1008-57 and Swift J02436+6124, and the X-ray burster 4U 1820-30.

  16. Black holes and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)

    2010-07-15

    After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.

  17. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Bojowald, Martin

    2005-01-01

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  18. Never Before Seen: Two Supermassive Black Holes in Same Galaxy

    Science.gov (United States)

    2002-11-01

    For the first time, scientists have proof two supermassive black holes exist together in the same galaxy, thanks to data from NASA's Chandra X-ray Observatory. These black holes are orbiting each other and will merge several hundred million years from now, to create an even larger black hole resulting in a catastrophic event that will unleash intense radiation and gravitational waves. The Chandra image reveals that the nucleus of an extraordinarily bright galaxy, known as NGC 6240, contains not one, but two giant black holes, actively accreting material from their surroundings. This discovery shows that massive black holes can grow through mergers in the centers of galaxies, and that these enigmatic events will be detectable with future space-borne gravitational wave observatories. "The breakthrough came with Chandra's ability to clearly distinguish the two nuclei, and measure the details of the X-radiation from each nucleus," said Guenther Hasinger, of the Max Planck Institute for Extraterrestrial Physics in Germany, a coauthor of an upcoming Astrophysical Journal Letters paper describing the research. "These cosmic fingerprints revealed features characteristic of supermassive black holes -- an excess of high-energy photons from gas swirling around a black hole, and X-rays from fluorescing iron atoms in gas near black holes," he said. Previous X-ray observatories had shown that the central region produces X-rays, while radio, infrared and optical observations had detected two bright nuclei, but the nature of this region remained a mystery. Astronomers did not know the location of the X-ray source, or the nature of the two bright nuclei. "With Chandra, we hoped to determine which one, if either, of the nuclei was an active supermassive black hole," said Stefanie Komossa, also of the Max Planck Institute, lead author of the paper on NGC 6240. "Much to our surprise, we found that both were active black holes!" At a distance of about 400 million light years, NGC 6240

  19. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    Wei Ren

    2006-01-01

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  20. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  1. Black holes from extended inflation

    International Nuclear Information System (INIS)

    Hsu, S.D.H.; Lawrence Berkeley Lab., CA

    1990-01-01

    It is argued that models of extended inflation, in which modified Einstein gravity allows a graceful exit from the false vacuum, lead to copious production of black holes. The critical temperature of the inflationary phase transition must be >10 8 GeV in order to avoid severe cosmological problems in a universe dominated by black holes. We speculate on the possibility that the interiors of false vacuum regions evolve into baby universes. (orig.)

  2. Black Holes as Dark Matter

    OpenAIRE

    Frampton, Paul H.

    2009-01-01

    While the energy of the universe has been established to be about 0.04 baryons, 0.24 dark matter and 0.72 dark energy, the cosmological entropy is almost entirely, about $(1 - 10^{-15})$, from black holes and only $10^{-15}$ from everything else. This identification of all dark matter as black holes is natural in statistical mechanics. Cosmological history of dark matter is discussed.

  3. Black holes from fluid mechanics

    Science.gov (United States)

    Lahiri, Subhaneil

    2009-12-01

    We use the AdS/CFT correspondence in a regime where the field theory is well described by fluid mechanics to study large black holes in asymptotically locally anti de Sitter spaces. In particular, we use the fluid description to study the thermodynamics of the black holes and the existence of exotic horizon topologies in higher dimensions. First we test this method by comparing large rotating black holes in global AdSD spaces to stationary solutions of the relativistic Navier-Stokes equations on SD-2. Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, IIB string theory on AdS5 x S 5 and M theory on AdS4 x S7 and AdS7 x S 4. We then construct solutions to the relativistic Navier-Stokes equations that describe the long wavelength collective dynamics of the deconfined plasma phase of N = 4 Yang Mills theory compactified down to d = 3 on a Scherk-Schwarz circle. Our solutions are stationary, axially symmetric spinning balls and rings of plasma. These solutions, which are dual to (yet to be constructed) rotating black holes and black rings in Scherk-Schwarz compactified AdS 5, and have properties that are qualitatively similar to those of black holes and black rings in flat five dimensional gravity. We also study the stability of these solutions to small fluctuations, which provides an indirect method for studying Gregory-Laflamme instabilities. We also extend the construction to higher dimensions, allowing one to study the existence of new black hole topologies and their phase diagram.

  4. Black holes: the membrane paradigm

    International Nuclear Information System (INIS)

    Thorne, K.S.; Price, R.H.; Macdonald, D.A.

    1986-01-01

    The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole

  5. Black holes in binary stellar systems and galactic nuclei

    International Nuclear Information System (INIS)

    Cherepashchuk, A M

    2014-01-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M BH =(4−20)M ⊙ ) in X-ray binary systems and of several hundred supermassive black holes (M BH =(10 6 −10 10 )M ⊙ ) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a ∗ have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a ∗ =0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths λ≲1 mm (the international program, Event Horizon Telescope). (100

  6. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  7. Atomic structure in black hole

    International Nuclear Information System (INIS)

    Nagatani, Yukinori

    2006-01-01

    We propose that any black hole has atomic structure in its inside and has no horizon as a model of black holes. Our proposal is founded on a mean field approximation of gravity. The structure of our model consists of a (charged) singularity at the center and quantum fluctuations of fields around the singularity, namely, it is quite similar to that of atoms. Any properties of black holes, e.g. entropy, can be explained by the model. The model naturally quantizes black holes. In particular, we find the minimum black hole, whose structure is similar to that of the hydrogen atom and whose Schwarzschild radius is approximately 1.1287 times the Planck length. Our approach is conceptually similar to Bohr's model of the atomic structure, and the concept of the minimum Schwarzschild radius is similar to that of the Bohr radius. The model predicts that black holes carry baryon number, and the baryon number is rapidly violated. This baryon number violation can be used as verification of the model. (author)

  8. The most massive black holes on the Fundamental Plane of black hole accretion

    Science.gov (United States)

    Mezcua, M.; Hlavacek-Larrondo, J.; Lucey, J. R.; Hogan, M. T.; Edge, A. C.; McNamara, B. R.

    2018-02-01

    We perform a detailed study of the location of brightest cluster galaxies (BCGs) on the Fundamental Plane of black hole (BH) accretion, which is an empirical correlation between a BH X-ray and radio luminosity and mass supported by theoretical models of accretion. The sample comprises 72 BCGs out to z ˜ 0.3 and with reliable nuclear X-ray and radio luminosities. These are found to correlate as L_X ∝ L_R^{0.75 ± 0.08}, favouring an advection-dominated accretion flow as the origin of the X-ray emission. BCGs are found to be on average offset from the Fundamental Plane such that their BH masses seem to be underestimated by the MBH-MK relation a factor ˜10. The offset is not explained by jet synchrotron cooling and is independent of emission process or amount of cluster gas cooling. Those core-dominated BCGs are found to be more significantly offset than those with weak core radio emission. For BCGs to on average follow the Fundamental Plane, a large fraction ( ˜ 40 per cent) should have BH masses >1010 M⊙ and thus host ultramassive BHs. The local BH-galaxy scaling relations would not hold for these extreme objects. The possible explanations for their formation, either via a two-phase process (the BH formed first, the galaxy grows later) or as descendants of high-z seed BHs, challenge the current paradigm of a synchronized galaxy-BH growth.

  9. Saturated multikilovolt x-ray amplification with Xe clusters: single-pulse observation of Xe(L) spectral hole burning

    International Nuclear Information System (INIS)

    Borisov, Alex B; Davis, Jack; Song, Xiangyang; Koshman, Yevgeniya; Dai Yang; Boyer, Keith; Rhodes, Charles K

    2003-01-01

    Single-pulse measurements of spectral hole burning of Xe(L) 3d → 2p hollow atom transition arrays observed from a self-trapped plasma channel provide new information on the dynamics of saturated amplification in the λ ∼ 2.8-2.9 A region. The spectral hole burning on transitions in the Xe 34+ and Xe 35+ arrays reaches full suppression of the spontaneous emission and presents a corresponding width Δ h-bar ω x ∼ = 60 eV, a value adequate for efficient amplification of multikilovolt x-ray pulses down to a limiting length τ x ∼ 30 as. The depth of the suppression at 2.86 A indicates that the gain-to-loss ratio is ≥10. An independent determination of the x-ray pulse energy from damage produced on the surface of a Ti foil in the far field of the source gives a pulse energy of 20-30 μJ, a range that correlates well with the observation of the spectral hole burning and indicates an overall extraction efficiency of ∼10%. (letter to the editor)

  10. Neutron Stars and Black Holes New clues from Chandra and XMM-Newton

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Neutron stars and black holes, the most compact astrophysical objects, have become observable in many different ways during the last few decades. We will first review the phenomenology and properties of neutron stars and black holes (stellar and supermassive) as derived from multiwavelength observatories. Recently much progress has been made by means of the new powerful X-ray observatories Chandra and XMM-Newton which provide a substantial increase in sensitivity as well as spectral and angular resolution compared with previous satellites like ROSAT and ASCA. We shall discuss in more detail two recent topics: (1) The attempts to use X-ray spectroscopy for measuring the radii of neutron stars which depend on the equation of state at supranuclear densities. Have quark stars been detected? (2) The diagnostics of the strong gravity regions around supermassive black holes using X-ray spectroscopy.

  11. Star clusters containing massive, central black holes: evolution calculations

    International Nuclear Information System (INIS)

    Marchant, A.B.

    1980-01-01

    This dissertation presents a detailed, two-dimensional simulations of star cluster evolution. A Monte-Carlo method is adapted to simulate the development with time of isolated star clusters. Clusters which evolve on relaxation timescales with and without central black holes are treated. The method is flexible and rugged, rather than highly accurate. It treats the boundary conditions of stellar evaporation and tidal disruption by a central black hole in a precise, stochastic fashion. Dynamical cloning and renormalization and the use of a time-step adjustment algorithm enhance the feasibility of the method which simulates systems with wide ranges of intrinsic length and time scales. First, the method is applied to follow the development and core collapse of an initial Plummer-model cluster without a central black hole. Agreement of these results for early times with the results of previous authors serves as a verification of this method. Three calculations of cluster re-expansion, each beginning with the insertion of a black hole at the center of a highly collapsed cluster core is presented. Each case is characterized by a different value of initial black hole mass or black hole accretion efficiency for the consumption of debris from disrupted stars. It is found that for the special cases examined here substantial, but not catastrophic, growth of the central black hole may accompany core re-expansion. Also, the observability of the evolutionary phases associated with core collapse and re-expansion, constraints on x-ray sources which could be associated with growing black holes, and the observable signature of the cusp of stars surrounding a central black hole are discussed

  12. Black hole quantum spectrum

    Science.gov (United States)

    Corda, Christian

    2013-12-01

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.

  13. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  14. Thermodynamics of Horava-Lifshitz black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Kim, Yong-Wan

    2010-01-01

    We study black holes in the Horava-Lifshitz gravity with a parameter λ. For 1/3≤λ 3, the black holes behave the Reissner-Nordstroem type black hole in asymptotically flat spacetimes. Hence, these all are quite different from the Schwarzschild-AdS black hole of Einstein gravity. The temperature, mass, entropy, and heat capacity are derived for investigating thermodynamic properties of these black holes. (orig.)

  15. Detecting Black Hole Binaries by Gaia

    OpenAIRE

    Yamaguchi, Masaki S.; Kawanaka, Norita; Bulik, Tomasz; Piran, Tsvi

    2017-01-01

    We study the prospect of the Gaia satellite to identify black hole binary systems by detecting the orbital motion of the companion stars. Taking into account the initial mass function, mass transfer, common envelope phase, interstellar absorption and identifiability of black holes, we estimate the number of black hole binaries detected by Gaia and their distributions with respect to the black hole mass for several models with different parameters. We find that $\\sim 300-6000$ black hole binar...

  16. Black holes and neutron stars: evolution of binary systems

    International Nuclear Information System (INIS)

    Kraft, R.P.

    1975-01-01

    Evidence for the existence of neutron stars and black holes in binary systems has been reviewed, and the following summarizes the current situation: (1) No statistically significant case has been made for the proposition that black holes and/or neutron stars contribute to the population of unseen companions of ordinary spectroscopic binaries; (2) Plausible evolutionary scenarios can be advanced that place compact X-ray sources into context as descendants of several common types of mass-exchange binaries. The collapse object may be a black hole, a neutron star, or a white dwarf, depending mostly on the mass of the original primary; (3) The rotating neutron star model for the pulsating X-ray sources Her X-1 and Cen X-3 is the simplest interpretation of these objects, but the idea that the pulsations result from the non-radial oscillations of a white dwarf cannot be altogether dismissed. The latter is particularly attractive in the case of Her X-1 because the total mass of the system is small; (4) The black hole picture for Cyg X-1 represents the simplest model that can presently be put forward to explain the observations. This does not insure its correctness, however. The picture depends on a long chain of inferences, some of which are by no means unassailable. (Auth.)

  17. The Formation and Growth of Black Holes in the Universe: New cosmological clues

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    In the last few years a change of paradigm occurred in the field of black hole research. We now believe, that stellar mass black holes are created in powerful gamma ray bursts. Stellar remnants of the first generation of stars have very likely been the seeds of supermassive black holes, which we find dormant in the centers of most nearby galaxies - including our own Milky Way. A tight correlation between black hole mass and the global properties of their host galaxies indicates a co-formation and evolution of black holes and galaxies. The X-ray sky is dominated by a diffuse extragalactic background radiation, which our team, together with others, was able to resolve almost completely into discrete sources using the X-ray satellites ROSAT, Chandra and XMM-Newton. Optical and NIR follow-up identifications showed, that we observe the growth phase of the population of supermassive black holes throughout the history of the Universe. The accretion history derived from X-ray observations shows, that the black holes ...

  18. The Formation and Growth of Black Holes in the Universe New cosmological clues

    CERN Multimedia

    CERN. Geneva; Landua, Rolf

    2004-01-01

    In the last few years a change of paradigm occurred in the field of black hole research. We now believe, that stellar mass black holes are created in powerful gamma ray bursts. Stellar remnants of the first generation of stars have very likely been the seeds of supermassive black holes, which we find dormant in the centers of most nearby galaxies - including our own Milky Way. A tight correlation between black hole mass and the global properties of their host galaxies indicates a co-formation and evolution of black holes and galaxies. The X-ray sky is dominated by a diffuse extragalactic background radiation, which our team, together with others, was able to resolve almost completely into discrete sources using the X-ray satellites ROSAT, Chandra and XMM-Newton. Optical and NIR follow-up identifications showed, that we observe the growth phase of the population of supermassive black holes throughout the history of the Universe. The accretion history derived from X-ray observations shows, that the black holes ...

  19. Black holes, qubits and octonions

    International Nuclear Information System (INIS)

    Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.

    2009-01-01

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems

  20. STROBE-X: X-ray timing and spectroscopy on dynamical timescales from microseconds to years

    Directory of Open Access Journals (Sweden)

    Colleen A. Wilson-Hodge

    Full Text Available The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X probes strong gravity for stellar mass to supermassive black holes and ultradense matter with unprecedented effective area, high time-resolution, and good spectral resolution, while providing a powerful time-domain X-ray observatory. Keywords: Missions, X-ray timing, X-ray spectroscopy, Compact objects

  1. Selections from 2016: Primordial Black Holes as Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background AnisotropiesPublished May2016Main takeaway:A study by Alexander Kashlinsky (NASA Goddard SFC) proposes that the cold dark matter that makes up the majority of the universes matter may be made of black holes. These black holes, Kashlinsky suggests, are primordial: they collapsed directly from dense regions of the universe soon after the Big Bang.Why its interesting:This model would simultaneously explain several observations. In particular, we see similarities in patterns between the cosmic infrared and X-ray backgrounds. This would make sense if accretion onto primordial black holes in halos produced the X-ray background in the same regions where the first stars also formed, producing the infrared background.What this means for current events:In Kashlinskys model, primordial black holes would occasionally form binary pairs and eventually spiral in and merge. The release of energy from such an event would then be observable by gravitational-wave detectors. Could the gravitational-wave signal that LIGO detected last year have been two primordial black holes merging? More observations will be needed to find out.CitationA. Kashlinsky 2016 ApJL 823 L25. doi:10.3847/2041-8205/823/2/L25

  2. NuSTAR observations of the black holes GS 1354-645: Evidence of rapid black hole spin

    DEFF Research Database (Denmark)

    El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.

    2016-01-01

    We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 "hard" state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal...... a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a = cf/GM(2) >= 0.98 (1 sigma statistical limits only). The fits also require a high inclination: 0 similar or equal to 75 (2)degrees. Strong "dips" are sometimes observed in the X-ray light curves of sources...... in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates....

  3. Sowing Black Hole Seeds: Forming Direct Collapse Black Holes With Realistic Lyman-Werner Radiation Fields in Cosmological Simulations

    Science.gov (United States)

    Holley-Bockelmann, Kelly; Dunn, Glenna; Bellovary, Jillian M.; Christensen, Charlotte

    2016-01-01

    Luminous quasars detected at redshifts z > 6 require that the first black holes form early and grow to ~109 solar masses within one Gyr. Our work uses cosmological simulations to study the formation and early growth of direct collapse black holes. In the pre-reionization epoch, molecular hydrogen (H2) causes gas to fragment and form Population III stars, but Lyman-Werner radiation can suppress H2 formation and allow gas to collapse directly into a massive black hole. The critical flux required to inhibit H2 formation, Jcrit, is hotly debated, largely due to the uncertainties in the source radiation spectrum, H2 self-shielding, and collisional dissociation rates. Here, we test the power of the direct collapse model in a non-uniform Lyman-Werner radiation field, using an updated version of the SPH+N-body tree code Gasoline with H2 non-equilibrium abundance tracking, H2 cooling, and a modern SPH implementation. We vary Jcrit from 30 to 104 J21 to study the effect on seed black holes, focusing on black hole formation as a function of environment, halo mass, metallicity, and proximity of the Lyman-Werner source. We discuss the constraints on massive black hole occupation fraction in the quasar epoch, and implications for reionization, high-redshift X-ray background radiation, and gravitational waves.

  4. Black Holes across the Mass Spectrum-from Stellar Mass BH to ULXs and AGN

    Science.gov (United States)

    Mushotzky, Richard

    2006-01-01

    I will discuss the observational characteristics of black holes and how they compare across the 10^8 range in mass and as a function of luminosity and apparent Eddington ratio. I will concentrate on the broad band spectrum, the timing signatures and the energy budget of these objects. In particular I will stress the similarities and differences in the x-ray spectra and power density spectra of AGN, ultraluminous x-ray sources and galactic black holes as a function of 'state'. I will also discuss the nature of the Fe K line and other diagnostics of the regions near the event horizon.

  5. Compact stellar X-ray sources

    NARCIS (Netherlands)

    Lewin, W.H.G.; van der Klis, M.

    2006-01-01

    X-ray astronomy is the prime available window on astrophysical compact objects: black holes, neutron stars and white dwarfs. In the last ten years new observational opportunities have led to an explosion of knowledge in this field. This book provides a comprehensive overview of the astrophysics of

  6. Era of Galaxy and Black Hole Growth Spurt Discovered

    Science.gov (United States)

    2005-04-01

    Distant galaxies undergoing intense bursts of star formation have been shown by NASA's Chandra X-ray Observatory to be fertile growing grounds for the largest black holes in the Universe. Collisions between galaxies in the early Universe may be the ultimate cause for both the accelerated star formation and black hole growth. By combining the deepest X-ray image ever obtained with submillimeter and optical observations, an international team of scientists has found evidence that some extremely luminous adolescent galaxies and their central black holes underwent a phenomenal spurt of growth more than 10 billion years ago. This concurrent black hole and galaxy growth spurt is only seen in these galaxies and may have set the stage for the birth of quasars - distant galaxies that contain the largest and most active black holes in the Universe. Simulation of a Galaxy Collision Simulation of a Galaxy Collision "The extreme distances of these galaxies allow us to look back in time, and take a snapshot of how today's largest galaxies looked when they were producing most of their stars and growing black holes," said David Alexander of the University of Cambridge, UK, and lead author of a paper in the April 7, 2005 issue of Nature that describes this work. The galaxies studied by Alexander and his colleagues are known as submillimeter galaxies, so-called because they were originally identified by the James Clerk Maxwell submillimeter telescope (JCMT) on Mauna Kea in Hawaii. The submillimeter observations along with optical data from Keck indicate these galaxies had an unusually large amount of gas. The gas in each galaxy was forming into stars at a rate of about one per day, or 100 times the present rate in the Milky Way galaxy. The Chandra X-ray data show that the supermassive black holes in the galaxies were also growing at the same time. Chandra X-ray Image of CDFN Chandra X-ray Image of CDFN These galaxies are very faint and it is only with the deepest observations of the

  7. Black holes: a slanted overview

    International Nuclear Information System (INIS)

    Vishveshwara, C.V.

    1988-01-01

    The black hole saga spanning some seventy years may be broadly divided into four phases, namely, (a) the dark ages when little was known about black holes even though they had come into existence quite early through the Schwarzschild solution, (b) the age of enlightenment bringing in deep and prolific discoveries, (c) the age of fantasy that cast black holes in all sorts of extraordinary roles, and (d) the golden age of relativistic astrophysics - to some extent similar to Dirac's characterisation of the development of quantum theory - in which black holes have been extensively used to elucidate a number of astrophysical phenomena. It is impossible to give here even the briefest outline of the major developments in this vast area. We shall only attempt to present a few aspects of black hole physics which have been actively pursued in the recent past. Some details are given in the case of those topics that have not found their way into text books or review articles. (author)

  8. Cosmology with primordial black holes

    International Nuclear Information System (INIS)

    Lindley, D.

    1981-09-01

    Cosmologies containing a substantial amount of matter in the form of evaporating primordial black holes are investigated. A review of constraints on the numbers of such black holes, including an analysis of a new limit found by looking at the destruction of deuterium by high energy photons, shows that there must be a negligible population of small black holes from the era of cosmological nucleosynthesis onwards, but that there are no strong constraints before this time. The major part of the work is based on the construction of detailed, self-consistent cosmological models in which black holes are continually forming and evaporating The interest in these models centres on the question of baryon generation, which occurs via the asymmetric decay of a new type of particle which appears as a consequence of the recently developed Grand Unified Theories of elementary particles. Unfortunately, there is so much uncertainty in the models that firm conclusions are difficult to reach; however, it seems feasible in principle that primordial black holes could be responsible for a significant part of the present matter density of the Universe. (author)

  9. Ultrafast Core-Hole-Induced Dynamics in Water Probed by X-Ray Emission Spectroscopy

    International Nuclear Information System (INIS)

    Odelius, Michael; Nordlund, Dennis; Pettersson, Lars G.M.; Ogasawara, Hirohito; Fuchs, Oliver; Weinhardt, Lothar; Maier, Florian; Umbach, Eberhard; Heske, Clemens; Zubavichus, Yan; Grunze, Michael; Denlinger, Jonathan D.; Nilsson, Anders

    2005-01-01

    The isotope effect and excitation-energy dependence have been measured in the oxygen K-edge x-ray emission spectrum (XES). The use of XES to monitor core decay processes provides information about molecular dynamics (MD) on an ultrafast time scale through the O1s lifetime of a few femtoseconds. Different nuclear masses give rise to differences in the dynamics and the observed isotope effect in XES is direct evidence of the importance of such processes. MD simulations show that even the excitation-energy dependence in the XES is mainly related to differences in core-excited-state dynamics

  10. Black holes and galaxy formation

    CERN Document Server

    Propst, Raphael J

    2010-01-01

    Galaxies are the basic unit of cosmology. The study of galaxy formation is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning. The physics of galaxy formation is complicated because it deals with the dynamics of stars, thermodynamics of gas and energy production of stars. A black hole is a massive object whose gravitational field is so intense that it prevents any form of matter or radiation to escape. It is hypothesized that the most massive galaxies in the universe- "elliptical galaxies"- grow simultaneously with the supermassive black holes at their centers, giving us much stronger evidence that black holes control galaxy formation. This book reviews new evidence in the field.

  11. Massive Black Holes and Galaxies

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.

  12. The black hole quantum atmosphere

    Science.gov (United States)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-11-01

    Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  13. The black hole quantum atmosphere

    Directory of Open Access Journals (Sweden)

    Ramit Dey

    2017-11-01

    Full Text Available Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  14. Black holes a very short introduction

    CERN Document Server

    Blundell, Katherine

    2015-01-01

    Black holes are a constant source of fascination to many due to their mysterious nature. Black Holes: A Very Short Introduction addresses a variety of questions, including what a black hole actually is, how they are characterized and discovered, and what would happen if you came too close to one. It explains how black holes form and grow—by stealing material that belongs to stars—as well as how many there may be in the Universe. It also explores the large black holes found in the centres of galaxies, and how black holes power quasars and lie behind other spectacular phenomena in the cosmos.

  15. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  16. Geometric inequalities for black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2013-01-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  17. An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae.

    Science.gov (United States)

    Kızıltan, Bülent; Baumgardt, Holger; Loeb, Abraham

    2017-02-08

    Intermediate-mass black holes should help us to understand the evolutionary connection between stellar-mass and super-massive black holes. However, the existence of intermediate-mass black holes is still uncertain, and their formation process is therefore unknown. It has long been suspected that black holes with masses 100 to 10,000 times that of the Sun should form and reside in dense stellar systems. Therefore, dedicated observational campaigns have targeted globular clusters for many decades, searching for signatures of these elusive objects. All candidate signatures appear radio-dim and do not have the X-ray to radio flux ratios required for accreting black holes. Based on the lack of an electromagnetic counterpart, upper limits of 2,060 and 470 solar masses have been placed on the mass of a putative black hole in 47 Tucanae (NGC 104) from radio and X-ray observations, respectively. Here we show there is evidence for a central black hole in 47 Tucanae with a mass of solar masses when the dynamical state of the globular cluster is probed with pulsars. The existence of an intermediate-mass black hole in the centre of one of the densest clusters with no detectable electromagnetic counterpart suggests that the black hole is not accreting at a sufficient rate to make it electromagnetically bright and therefore, contrary to expectations, is gas-starved. This intermediate-mass black hole might be a member of an electromagnetically invisible population of black holes that grow into supermassive black holes in galaxies.

  18. X-RAY EMISSION FROM J1446–4701, J1311–3430, AND OTHER BLACK WIDOW PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Arumugasamy, Prakash; Pavlov, George G. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Garmire, Gordon P., E-mail: pxa151@ucs.psu.edu [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2015-12-01

    We present the results of detailed X-ray analysis of two black-widow pulsars (BWPs), J1446–4701 and J1311–3430. PSR J1446–4701 is a BWP with orbital parameters near the median values of the sample of known BWPs. Its X-ray emission that was detected by XMM-Newton is well characterized by a soft power-law (PL) spectrum (photon index Γ ≈ 3), and it shows no significant orbital modulations. In view of a lack of radio eclipses and an optical non-detection, the system most likely has a low orbital inclination. PSR J1311–3430 is an extreme BWP with a very compact orbit and the lowest minimum mass companion. Our Chandra data confirm the hard Γ ≈ 1.3 emission seen in previous observations. Through phase-restricted spectral analysis, we found a hint (∼2.6σ) of spectral hardening around pulsar inferior conjunction. We also provide a uniform analysis of the 12 BWPs observed with Chandra and compare their X-ray properties. Pulsars with soft, Γ > 2.5 emission seem to have lower than average X-ray and γ-ray luminosities. We do not, however, see any other prominent correlation between the pulsar’s X-ray emission characteristics and any of its other properties. The contribution of the intra-binary shock to the total X-ray emission, if any, is not discernible in this sample of pulsars with shallow observations.

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... shades of gray and air appears black. Until recently, x-ray images were maintained on large film ... assist you in finding the most comfortable position possible that still ensures x-ray image quality. top ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... up in shades of gray and air appears black. Until recently, x-ray images were maintained on ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  2. Laser-Hole Boring into Overdense Plasmas Measured with Soft X-Ray Laser Probing

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Kodama, R. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Tanaka, K. A. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Hashimoto, H. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Kato, Y. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Mima, K. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Weber, F. A. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Barbee, T. W. Jr. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Da Silva, L. B. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2000-03-13

    A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 {mu}m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10{sup 17} W /cm{sup 2} . Cross sections of the channel were obtained which show a 30 {mu}m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front. (c) 2000 The American Physical Society.

  3. Core-Hole Molecular Frame X-Ray Photoelectron Angular Distributions as Molecular Geometry Probes

    Science.gov (United States)

    Trevisan, Cynthia; Williams, Joshua; Menssen, Adrian; Weber, Thorsten; Rescigno, Thomas; McCurdy, Clyde; Landers, Allen

    2014-05-01

    We present experimental and theoretical results for the angular dependence of electrons ejected from the core orbitals of ethane (C2H6) and tetrafluoromethane (CF4) in an effort to understand the origin of the imaging effect by which the molecular frame photoelectron angular distributions (MFPADs) for removing an electron from a 1s orbital effectively image the geometry of a class of molecules. At low energies, our calculations predict the same imaging effect in X2H6 previously found in CH4, H2O and NH3. By contrast, in experiment and calculations CF4 displays an anti-imaging effect, whereby the electron ejected by core photoionization has the tendency to avoid molecular bonds, if averaged over directions of polarization of the incident X-ray beam. Our measurements employ the COLTRIMS method and the calculations were performed with the Complex Kohn Variational method.

  4. Interior structure of rotating black holes. III. Charged black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.

    2011-01-01

    This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.

  5. Winds of Change: How Black Holes May Shape Galaxies

    Science.gov (United States)

    2010-03-01

    New observations from NASA's Chandra X-ray Observatory provide evidence for powerful winds blowing away from the vicinity of a supermassive black hole in a nearby galaxy. This discovery indicates that "average" supermassive black holes may play an important role in the evolution of the galaxies in which they reside. For years, astronomers have known that a supermassive black hole grows in parallel with its host galaxy. And, it has long been suspected that material blown away from a black hole - as opposed to the fraction of material that falls into it -- alters the evolution of its host galaxy. A key question is whether such "black hole blowback" typically delivers enough power to have a significant impact. Powerful relativistic jets shot away from the biggest supermassive black holes in large, central galaxies in clusters like Perseus are seen to shape their host galaxies, but these are rare. What about less powerful, less focused galaxy-scale winds that should be much more common? "We're more interested here in seeing what an "average"-sized supermassive black hole can do to its galaxy, not the few, really big ones in the biggest galaxies," said Dan Evans of the Massachusetts Institute of Technology who presented these results at the High Energy Astrophysics Division of the American Astronomical Society meeting in Kona, Hawaii. Evans and his colleagues used Chandra for five days to observe NGC 1068, one of the nearest and brightest galaxies containing a rapidly growing supermassive black hole. This black hole is only about twice as massive as the one in the center of our Galaxy, which is considered to be a rather ordinary size. The X-ray images and spectra obtained using Chandra's High Energy Transmission Grating Spectrometer (HETGS) showed that a strong wind is being driven away from the center of NGC 1068 at a rate of about a million miles per hour. This wind is likely generated as surrounding gas is accelerated and heated as it swirls toward the black hole. A

  6. Tidal disruption of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Bode T.

    2012-12-01

    Full Text Available Modeling ultra-close encounters between a white dwarf and a spinning, intermediate mass black hole requires a full general relativistic treatment of gravity. This paper summarizes results from such a study. Our results show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole spin. On the other hand, the late-time accretion onto the black hole follows the same decay, Ṁ ∝  t−5/3, estimated from Newtonian gravity disruption studies. The spectrum of the fallback material peaks in the soft X-rays and sustains Eddington luminosity for 1–3 yrs after the disruption. The orientation of the black hole spin has also a profound effect on how the outflowing debris obscures the central region. The disruption produces a burst of gravitational radiation with characteristic frequencies of ∼3.2 Hz and strain amplitudes of ∼10−18 for galactic intermediate mass black holes.

  7. Black hole entropy, curved space and monsters

    International Nuclear Information System (INIS)

    Hsu, Stephen D.H.; Reeb, David

    2008-01-01

    We investigate the microscopic origin of black hole entropy, in particular the gap between the maximum entropy of ordinary matter and that of black holes. Using curved space, we construct configurations with entropy greater than the area A of a black hole of equal mass. These configurations have pathological properties and we refer to them as monsters. When monsters are excluded we recover the entropy bound on ordinary matter S 3/4 . This bound implies that essentially all of the microstates of a semiclassical black hole are associated with the growth of a slightly smaller black hole which absorbs some additional energy. Our results suggest that the area entropy of black holes is the logarithm of the number of distinct ways in which one can form the black hole from ordinary matter and smaller black holes, but only after the exclusion of monster states

  8. Entropy of black holes with multiple horizons

    Science.gov (United States)

    He, Yun; Ma, Meng-Sen; Zhao, Ren

    2018-05-01

    We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  9. Model problems for gravitationally perturbed black holes

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.; Macdonald, D.A.; Crowley, R.J.; Redmount, I.H.

    1986-01-01

    The membrane formalism is applied to various types of gravitational perturbations of a black hole. Attention is given to the disturbance of the horizon of a black hole by compact masses lowered toward a nonrotating hole and the deformations experienced by a rotating hole. Nonaxisymmetric gravitational tidal fields in rigid motion about a rotating hole are considered, along with the behavior of massive particle moving along the equator of a rotating hole, and the spindown of a rotating hole in an external tidal field. The extraction of rotational energy from a black hole by orbiting bodies is examined, as are superradiant scattering of gravitational waves and the quasi-normal modes of a black hole. The perturbations imparted to a black hole by a compact body plunging into the membrane (a stretched horizon) at a velocity close to the local light speed and by a radially accelerated particle above the horizon of a nonrotating hole are also explored

  10. Black Holes in Our Universe

    Indian Academy of Sciences (India)

    Current technologies have enabled glimpses at the many facetsof black holes, which we know to be plentiful in our cosmos.A panoramic view of the evidence for them is presented hereacross the large range of masses that they span. Author Affiliations. Prajval Shastri. Resonance – Journal of Science Education.

  11. 'Black holes': escaping the void.

    Science.gov (United States)

    Waldron, Sharn

    2013-02-01

    The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche. © 2013, The Society of Analytical Psychology.

  12. Stellar dynamics and black holes

    Indian Academy of Sciences (India)

    Stellar dynamics and black holes. DAVID MERRITT. Department of Physics, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester,. NY 14623, USA. E-mail: merritt@astro.rit.edu. Abstract. Chandrasekhar's most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review ...

  13. From Pinholes to Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  14. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva

    2016-05-01

    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  15. Black Hole Macro-Quantumness

    CERN Document Server

    Dvali, Gia

    2014-01-01

    It is a common wisdom that properties of macroscopic bodies are well described by (semi)classical physics. As we have suggested this wisdom is not applicable to black holes. Despite being macroscopic, black holes are quantum objects. They represent Bose-Einstein condensates of N-soft gravitons at the quantum critical point, where N Bogoliubov modes become gapless. As a result, physics governing arbitrarily-large black holes (e.g., of galactic size) is a quantum physics of the collective Bogoiliubov modes. This fact introduces a new intrinsically-quantum corrections in form of 1/N, as opposed to exp(-N). These corrections are unaccounted by the usual semiclassical expansion in h and cannot be recast in form of a quantum back-reaction to classical metric. Instead the metric itself becomes an approximate entity. These 1/N corrections abolish the presumed properties of black holes, such as non existence of hair, and are the key to nullifying the so-called information paradox.

  16. Black Holes: A Selected Bibliography.

    Science.gov (United States)

    Fraknoi, Andrew

    1991-01-01

    Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…

  17. Tidal disruption of asteroids by supermassive black holes

    Directory of Open Access Journals (Sweden)

    Gomboc A.

    2012-12-01

    Full Text Available The compact radio source Sgr A* at the centre of our Galaxy harbours a super-massive black hole, and is therefore the nearest laboratory for testing the super-massive black hole astrophysics and environment. Since it is not an active galactic nucleus, it also offers the possibility of observing the capture of low-mass objects, such as comets or asteroids, that may orbit the central black hole. In this paper we discuss conditions for tidal disruption of low-mass objects and predictions of the appearance and light curve of such events, as well as their relevance for the X-ray and infra-red flares detected in Sgr A*. The modelled light curves of such tidal disruption events bear marks of the strong gravitational field: tidal squeezing and elongation of the object, gravitational lensing, aberration of light, and Doppler effects. Finally, we show that this model is able to reproduce and fit X-ray flares.

  18. X-ray Optics Development at MSFC

    Science.gov (United States)

    Sharma, Dharma P.

    2017-01-01

    Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.

  19. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  20. Black hole holography and mean field evolution

    Science.gov (United States)

    Lowe, David A.; Thorlacius, Larus

    2018-01-01

    Holographic theories representing black holes are expected to exhibit quantum chaos. We argue if the laws of quantum mechanics are expected to hold for observers inside such black holes, then such holographic theories must have a mean field approximation valid for typical black hole states, and for timescales approaching the scrambling time. Using simple spin models as examples, we examine the predictions of such an approach for observers inside black holes, and more speculatively inside cosmological horizons.

  1. Black holes and traversible wormholes: a synthesis

    OpenAIRE

    Hayward, Sean A.

    2002-01-01

    A unified framework for black holes and traversible wormholes is described, where both are locally defined by outer trapping horizons, two-way traversible for wormholes and one-way traversible for black or white holes. In a two-dimensional dilaton gravity model, examples are given of: construction of wormholes from black holes; operation of wormholes for transport, including back-reaction; maintenance of an operating wormhole; and collapse of wormholes to black holes. In spherically symmetric...

  2. Will black holes eventually engulf the Universe?

    International Nuclear Information System (INIS)

    Martin-Moruno, Prado; Jimenez Madrid, Jose A.; Gonzalez-Diaz, Pedro F.

    2006-01-01

    The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological models

  3. Building blocks of a black hole

    OpenAIRE

    Bekenstein, Jacob D.; Gour, Gilad

    2002-01-01

    What is the nature of the energy spectrum of a black hole ? The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As stressed long ago by by Mukhanov, such eigenvalues must be exponentially degenerate with respect to the area quantum number if one is to understand black hole entropy as reflecting degeneracy of the observable states. Here we construct the black hole states by means of a pair of "creation operators" subject to a particular...

  4. Radiation from the LTB black hole

    OpenAIRE

    Firouzjaee, J. T.; Mansouri, Reza

    2011-01-01

    Does a dynamical black hole embedded in a cosmological FRW background emit Hawking radiation where a globally defined event horizon does not exist? What are the differences to the Schwarzschild black hole? What about the first law of black hole mechanics? We face these questions using the LTB cosmological black hole model recently published. Using the Hamilton-Jacobi and radial null geodesic-methods suitable for dynamical cases, we show that it is the apparent horizon which contributes to the...

  5. The X-Ray Variability of Sagittarius A*

    Science.gov (United States)

    Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, Nicolas; Porquet, Delphine; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.

    2015-01-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  6. Black holes as parts of entangled systems

    Science.gov (United States)

    Basini, G.; Capozziello, S.; Longo, G.

    A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.

  7. On black holes and gravitational waves

    CERN Document Server

    Loinger, Angelo

    2002-01-01

    Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.

  8. Compensating Scientism through "The Black Hole."

    Science.gov (United States)

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…

  9. Area spectra of near extremal black holes

    International Nuclear Information System (INIS)

    Chen, Deyou; Yang, Haitang; Zu, Xiaotao

    2010-01-01

    Motivated by Maggiore's new interpretation of quasinormal modes, we investigate area spectra of a near extremal Schwarzschild-de Sitter black hole and a higher-dimensional near extremal Reissner-Nordstrom-de Sitter black hole. The result shows that the area spectra are equally spaced and irrelevant to the parameters of the black holes. (orig.)

  10. Extremal black holes in N=2 supergravity

    NARCIS (Netherlands)

    Katmadas, S.

    2011-01-01

    An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS),

  11. On Quantum Contributions to Black Hole Growth

    NARCIS (Netherlands)

    Spaans, M.

    2013-01-01

    The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years.

  12. Black Hole Monodromy and Conformal Field Theory

    NARCIS (Netherlands)

    Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J.

    2013-01-01

    The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event

  13. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    loops [8]. In 1974, Hawking discovered that the black holes emit thermal radiation due to quantum effects [9]. So the black holes get evaporated depending upon their masses. Smaller the masses of the PBHs, quicker they evaporate. But the density of a black hole varies inversely with its mass. So high density is needed for ...

  14. Black holes under external influence

    Indian Academy of Sciences (India)

    In particular we pay attention to the effect of the expulsion of the flux of external fields across charged and rotating black holes which are approaching extremal states. Recently this effect has been shown to occur for black hole solutions in string theory. We also discuss black holes surrounded by rings and disks and rotating ...

  15. The fuzzball proposal for black holes

    NARCIS (Netherlands)

    Skenderis, K.; Taylor, M.

    2008-01-01

    The fuzzball proposal states that associated with a black hole of entropy S, there are expS horizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the

  16. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Abstract. Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the con- jecture that the primordial ...

  17. Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes

    OpenAIRE

    Takahashi, Rohta

    2004-01-01

    Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin paramete...

  18. Black holes, qubits and octonions

    Energy Technology Data Exchange (ETDEWEB)

    Borsten, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: leron.borsten@imperial.ac.uk; Dahanayake, D. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: duminda.dahanayake@imperial.ac.uk; Duff, M.J. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: m.duff@imperial.ac.uk; Ebrahim, H. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom); Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Theory Group, Martin Fisher School of Physics, Brandeis University, MS057, 415 South Street, Waltham, MA 02454 (United States)], E-mail: hebrahim@brandeis.edu; Rubens, W. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: william.rubens06@imperial.ac.uk

    2009-02-15

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)]{sup 3} invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T{sup 6} provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E{sub 7} contains [SL(2)]{sup 7} invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E{sub 7} has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of

  19. GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S; Blackburn, J. K.; Blair, C. D.

    2017-01-01

    On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of 12^(+7)_(-2) M⊙ and 7^(+2)_(-2) M⊙ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowi...

  20. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  1. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  2. Modified viscosity in accretion disks. Application to Galactic black hole binaries, intermediate mass black holes, and active galactic nuclei

    Science.gov (United States)

    Grzędzielski, Mikołaj; Janiuk, Agnieszka; Czerny, Bożena; Wu, Qingwen

    2017-07-01

    Aims: Black holes (BHs) surrounded by accretion disks are present in the Universe at different scales of masses, from microquasars up to the active galactic nuclei (AGNs). Since the work of Shakura & Sunyaev (1973, A&A, 24, 337) and their α-disk model, various prescriptions for the heat-production rate are used to describe the accretion process. The current picture remains ad hoc due the complexity of the magnetic field action. In addition, accretion disks at high Eddington rates can be radiation-pressure dominated and, according to some of the heating prescriptions, thermally unstable. The observational verification of their resulting variability patterns may shed light on both the role of radiation pressure and magnetic fields in the accretion process. Methods: We compute the structure and time evolution of an accretion disk, using the code GLADIS (which models the global accretion disk instability). We supplement this model with a modified viscosity prescription, which can to some extent describe the magnetisation of the disk. We study the results for a large grid of models, to cover the whole parameter space, and we derive conclusions separately for different scales of black hole masses, which are characteristic for various types of cosmic sources. We show the dependencies between the flare or outburst duration, its amplitude, and period, on the accretion rate and viscosity scaling. Results: We present the results for the three grids of models, designed for different black hole systems (X-ray binaries, intermediate mass black holes, and galaxy centres). We show that if the heating rate in the accretion disk grows more rapidly with the total pressure and temperature, the instability results in longer and sharper flares. In general, we confirm that the disks around the supermassive black holes are more radiation-pressure dominated and present relatively brighter bursts. Our method can also be used as an independent tool for the black hole mass determination

  3. The Growth of Black Holes and Bulges at the Cores of Cooling Flows

    NARCIS (Netherlands)

    Rafferty, D.A.; McNamara, B.R.; Nulsen, P.E.J.; Wise, M.

    2007-01-01

    Central cluster galaxies (cDs) in cooling flows are growing rapidly through gas accretion and star formation. At the same time, AGN outbursts fueled by accretion onto supermassive black holes are generating X-ray cavity systems and driving outflows that exceed those in powerful quasars. We show that

  4. Formation of massive black holes through runaway collisions in dense young star clusters

    NARCIS (Netherlands)

    Portegies Zwart, S.F.; Baumgardt, H.; Hut, P.; Makino, J.; McMillan, S.L.W.

    2004-01-01

    A luminous X-ray source is associated with MGG 11-a cluster of young stars ~200pc from the centre of the starburst galaxy M 82 (refs 1, 2). The properties of this source are best explained by invoking a black hole with a mass of at least 350 solar masses (350Msolar), which is intermediate between

  5. A Chandra Survey of Supermassive Black Holes with Dynamical Mass Measurements

    NARCIS (Netherlands)

    Gültekin, K.; Cackett, E.M.; Miller, J.M.; Di Matteo, T.; Markoff, S.; Richstone, D.O.

    2012-01-01

    We present Chandra observations of 12 galaxies that contain supermassive black holes (SMBHs) with dynamical mass measurements. Each galaxy was observed for 30 ks and resulted in a total of 68 point-source detections in the target galaxies including SMBH sources, ultraluminous X-ray sources (ULXs),

  6. Radiation from early black holes - I. Effects on the neutral intergalactic medium

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Zaroubi, S.

    2008-01-01

    In the pre-reionization Universe, the regions of the intergalactic medium (IGM) which are far from luminous sources are the last to undergo reionization. Until then, they should be scarcely affected by stellar radiation; instead, the X-ray emission from an early black hole (BH) population can have

  7. Black hole growth in the early Universe is self-regulated and largely hidden from view.

    Science.gov (United States)

    Treister, Ezequiel; Schawinski, Kevin; Volonteri, Marta; Natarajan, Priyamvada; Gawiser, Eric

    2011-06-15

    The formation of the first massive objects in the infant Universe remains impossible to observe directly and yet it sets the stage for the subsequent evolution of galaxies. Although some black holes with masses more than 10(9) times that of the Sun have been detected in luminous quasars less than one billion years after the Big Bang, these individual extreme objects have limited utility in constraining the channels of formation of the earliest black holes; this is because the initial conditions of black hole seed properties are quickly erased during the growth process. Here we report a measurement of the amount of black hole growth in galaxies at redshift z = 6-8 (0.95-0.7 billion years after the Big Bang), based on optimally stacked, archival X-ray observations. Our results imply that black holes grow in tandem with their host galaxies throughout cosmic history, starting from the earliest times. We find that most copiously accreting black holes at these epochs are buried in significant amounts of gas and dust that absorb most radiation except for the highest-energy X-rays. This suggests that black holes grew significantly more during these early bursts than was previously thought, but because of the obscuration of their ultraviolet emission they did not contribute to the re-ionization of the Universe.

  8. Modified dispersion relations and black hole physics

    International Nuclear Information System (INIS)

    Ling Yi; Li Xiang; Hu Bo

    2006-01-01

    A modified formulation of the energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such a modification will give corrections to both the temperature and the entropy of black holes. In particular, this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaches the Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible mechanism to treat the remnant of black holes as a candidate for dark matter

  9. Dyonic black hole in heterotic string theory

    International Nuclear Information System (INIS)

    Jatkar, D.P.; Mukherji, S.

    1997-01-01

    We study some features of the dyonic black hole solution in heterotic string theory on a six-torus. This solution has 58 parameters. Of these, 28 parameters denote the electric charge of the black hole, another 28 correspond to the magnetic charge, and the other two parameters are the mass and the angular momentum of the black hole. We discuss the extremal limit and show that in various limits it reduces to the known black hole solutions. The solutions saturating the Bogomolnyi bound are identified. An explicit solution is presented for the non-rotating dyonic black hole. (orig.)

  10. Black-hole creation in quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Chao, Wu [Rome, Univ. `La Sapienza` (Italy). International Center for Relativistic Astrophysics]|[Specola Vaticana, Vatican City State (Vatican City State, Holy See)

    1997-11-01

    It is proven that the probability of a black hole created from the de Sitter space-time background, at the Wkb level, is the exponential of one quarter of the sum of the black hole and cosmological horizon areas, or the total entropy of the universe. This is true not only for the spherically symmetric cases of the Schwarzschild or Reissner-Nordstroem black holes, but also for the rotating cases of the Kerr black hole and the rotating charged case of the Newman black hole. The de Sitter metric is the most probable evolution at the Planckian era of the universe.

  11. Black hole entropy and quantum information

    CERN Document Server

    Duff, M J

    2006-01-01

    We review some recently established connections between the mathematics of black hole entropy in string theory and that of multipartite entanglement in quantum information theory. In the case of N=2 black holes and the entanglement of three qubits, the quartic [SL(2)]^3 invariant, Cayley's hyperdeterminant, provides both the black hole entropy and the measure of tripartite entanglement. In the case of N=8 black holes and the entanglement of seven qubits, the quartic E_7 invariant of Cartan provides both the black hole entropy and the measure of a particular tripartite entanglement encoded in the Fano plane.

  12. Black Holes Shed Light on Galaxy Formation

    Science.gov (United States)

    2000-01-01

    This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.

  13. The stable problem of the black-hole connected region in the Schwarzschild black hole

    OpenAIRE

    Tian, Guihua

    2005-01-01

    The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...

  14. Measuring spacetime: from the big bang to black holes.

    Science.gov (United States)

    Tegmark, Max

    2002-05-24

    Space is not a boring static stage on which events unfold over time, but a dynamic entity with curvature, fluctuations, and a rich life of its own. Spectacular measurements of the cosmic microwave background, gravitational lensing, type Ia supernovae, large-scale structure, spectra of the Lyman alpha forest, stellar dynamics, and x-ray binaries are probing the properties of spacetime over 22 orders of magnitude in scale. Current measurements are consistent with an infinite flat everlasting universe containing about 30% cold dark matter, 65% dark energy, and at least two distinct populations of black holes.

  15. Slow relaxation of rapidly rotating black holes

    International Nuclear Information System (INIS)

    Hod, Shahar

    2008-01-01

    We study analytically the relaxation phase of perturbed, rapidly rotating black holes. In particular, we derive a simple formula for the fundamental quasinormal resonances of near-extremal Kerr black holes. The formula is expressed in terms of the black hole physical parameters: ω=mΩ-i2πT BH (n+(1/2)), where T BH and Ω are the temperature and angular velocity of the black hole, and m is the azimuthal harmonic index of a corotating equatorial mode. This formula implies that the relaxation period τ∼1/ω of the black hole becomes extremely long as the extremal limit T BH →0 is approached. The analytically derived formula is shown to agree with direct numerical computations of the black hole resonances. We use our results to demonstrate analytically the fact that near-extremal Kerr black holes saturate the recently proposed universal relaxation bound.

  16. Quantum information erasure inside black holes

    International Nuclear Information System (INIS)

    Lowe, David A.; Thorlacius, Larus

    2015-01-01

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  17. Quantum information erasure inside black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, David A. [Department of Physics, Brown University,Providence, RI, 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107 Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics,Stockholm University, AlbaNova University Centre, 10691 Stockholm (Sweden)

    2015-12-15

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  18. Black hole with quantum potential

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt); Khalil, Mohammed M., E-mail: moh.m.khalil@gmail.com [Department of Electrical Engineering, Alexandria University, Alexandria 12544 (Egypt)

    2016-08-15

    In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  19. Black hole with quantum potential

    Directory of Open Access Journals (Sweden)

    Ahmed Farag Ali

    2016-08-01

    Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  20. Lifetime of a black hole

    International Nuclear Information System (INIS)

    Carlitz, R.D.; Willey, R.S.

    1987-01-01

    We study the constraints placed by quantum mechanics upon the lifetime of a black hole. In the context of a moving-mirror analog model for the Hawking radiation process, we conclude that the period of Hawking radiation must be followed by a much longer period during which the remnant mass (of order m/sub P/) may be radiated away. We are able to place a lower bound on the time required for this radiation process, which translates into a lower bound for the lifetime of the black hole. Particles which are emitted during the decay of the remnant, like the particles which comprise the Hawking flux, may be uncorrelated with each other. But each particle emitted from the decaying remnant is correlated with one particle emitted as Hawking radiation. The state which results after the remnant has evaporated is one which locally appears to be thermal, but which on a much larger scale is marked by extensive correlations

  1. From Black Holes to Quivers

    CERN Document Server

    Manschot, Jan; Sen, Ashoke

    2012-01-01

    Middle cohomology states on the Higgs branch of supersymmetric quiver quantum mechanics - also known as pure Higgs states - have recently emerged as possible microscopic candidates for single-centered black hole micro-states, as they carry zero angular momentum and appear to be robust under wall-crossing. Using the connection between quiver quantum mechanics on the Coulomb branch and the quantum mechanics of multi-centered black holes, we propose a general algorithm for reconstructing the full moduli-dependent cohomology of the moduli space of an arbitrary quiver, in terms of the BPS invariants of the pure Higgs states. We analyze many examples of quivers with loops, including all cyclic Abelian quivers and several examples with two loops or non-Abelian gauge groups, and provide supporting evidence for this proposal. We also develop methods to count pure Higgs states directly.

  2. Black holes in magnetic monopoles

    Science.gov (United States)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1991-01-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs field vacuum expectation value v is less than or equal to a critical value v sub cr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v less than v sub cr, we find additional solutions which are singular at f = 0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordstrom solutions is discussed.

  3. Accelerating and rotating black holes

    International Nuclear Information System (INIS)

    Griffiths, J B; Podolsky, J

    2005-01-01

    An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalized form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter l and the Plebanski-Demianski parameter n is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed

  4. A black-hole cosmology

    International Nuclear Information System (INIS)

    Debney, G.; Farnsworth, D.

    1983-01-01

    Motivated by the fact that 2m/r is of the order of magnitude unity for the observable universe, we explore the possibility that a Schwarzschild or black hole cosmological model is appropriate. Luminosity distance and frequency shifts of freely-falling, standard, monochromatic objects are viewed by a freely-falling observer. The observer is inside r=2m. The observer in such a world does not see the same universe as do astronomers. (author)

  5. Gravitating discs around black holes

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Huré, J.-M.; Semerák, O.

    2004-01-01

    Roč. 21, č. 7 (2004), R1-R5 ISSN 0264-9381 R&D Projects: GA ČR GA205/03/0902; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * accretion discs * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.941, year: 2004

  6. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  7. Using Simulations of Black Holes to Study General Relativity and the Properties of Inner Accretion Flow

    Science.gov (United States)

    Hoormann, Janie Katherine

    2016-06-01

    While Albert Einstein's theory of General Relativity (GR) has been tested extensively in our solar system, it is just beginning to be tested in the strong gravitational fields that surround black holes. As a way to study the behavior of gravity in these extreme environments, I have used and added to a ray-tracing code that simulates the X-ray emission from the accretion disks surrounding black holes. In particular, the observational channels which can be simulated include the thermal and reflected spectra, polarization, and reverberation signatures. These calculations can be performed assuming GR as well as four alternative spacetimes. These results can be used to see if it is possible to determine if observations can test the No-Hair theorem of GR which states that stationary, astrophysical black holes are only described by their mass and spin. Although it proves difficult to distinguish between theories of gravity, it is possible to exclude a large portion of the possible deviations from GR using observations of rapidly spinning stellar mass black holes such as Cygnus X-1. The ray-tracing simulations can furthermore be used to study the inner regions of black hole accretion flows. I examined the dependence of X-ray reverberation observations on the ionization of the disk photosphere. My results show that X-ray reverberation and X-ray polarization provides a powerful tool to constrain the geometry of accretion disks which are too small to be imaged directly. The second part of my thesis describes the work on the balloon-borne X-Calibur hard X-ray polarimetry mission and on the space-borne PolSTAR polarimeter concept.

  8. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  9. Entanglement Entropy of Black Holes

    Directory of Open Access Journals (Sweden)

    Sergey N. Solodukhin

    2011-10-01

    Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  10. Glory scattering by black holes

    International Nuclear Information System (INIS)

    Matzner, R.A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T.

    1985-01-01

    We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/dΩ = 4π 2 lambda -1 B/sub g/ 2 (dB mWπ, where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 √3 + 3.48 exp(-theta), theta > owigπ. The numerical values of dsigma/dΩ for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes

  11. Gas cloud G2 can illuminate the black hole population near the galactic center.

    Science.gov (United States)

    Bartos, Imre; Haiman, Zoltán; Kocsis, Bence; Márka, Szabolcs

    2013-05-31

    Galactic nuclei are expected to be densely populated with stellar- and intermediate-mass black holes. Exploring this population will have important consequences for the observation prospects of gravitational waves as well as understanding galactic evolution. The gas cloud G2 currently approaching Sgr A* provides an unprecedented opportunity to probe the black hole and neutron star population of the Galactic nucleus. We examine the possibility of a G2-cloud-black-hole encounter and its detectability with current x-ray satellites, such as Chandra and NuSTAR. We find that multiple encounters are likely to occur close to the pericenter, which may be detectable upon favorable circumstances. This opportunity provides an additional important science case for leading x-ray observatories to closely follow G2 on its way to the nucleus.

  12. Black Holes, Worm Holes, and Future Space Propulsion

    Science.gov (United States)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  13. Supermassive black holes in the distant universe

    CERN Document Server

    2004-01-01

    This book provides a unique overview of recent developments in studies of AGN and the evolution of supermassive black holes, with particular emphasis on the revolutionary results from the Chandra and XMM-Newton X-ray Observatories Each chapter is a comprehensive analysis and review by an expert in the field that should provide easy access to the subject The chapters progressively follow a single theme---the mapping of the accretion history of the universe---from both theoretical and observational points of view The chapters are written at a level that should be accessible to graduate students and non-specialists, yet the depth and innovation of the analyses will also make it highly informative to the specialist The topical nature of the subject matter means that the material presented in this book is not well covered in the present literature Moreover, the depth and interconnectedness of the chapters ensures that the coverage is much more comprehensive and informative than a conference proceeding would be The...

  14. Thick accretion disks around black holes

    International Nuclear Information System (INIS)

    Paczynski, B.

    1982-01-01

    Theory of thick low viscosity disks accreting onto black holes is reviewed. Usefulness of a simplified pseudo-Newtonian potential for studies of disk models is emphasized. It is shown how very high accretion rate leads to a large disk thickness, large pressure gradients in the radial direction, formation of a narrow open funnel around the rotation axis, and a decrease of efficiency of convertion of rest mass into radiation. It is possible that the well collimated powerful radiation beam emerging from the funnel may accelerate some gas to moderately relativistic velocity in a form of a twin jet. The process is not efficient if the funnel is optically thin, but it is hoped that large optical depth of gas in the funnel may increase the fraction of total power coming out as kinetic energy of the jet. This class of models may be applied to SS 433, and possibly to other compact X-ray sources like Sco X-1 and Cyg X-1. These models may be relevant to some active galactic nuclei, but their relatively low efficiency in converting mass to radiation and kinetic energy does not permit too universal application. (orig.)

  15. The X-ray Variability of Sgr A*

    Science.gov (United States)

    Neilsen, Joey

    2014-10-01

    Sgr A* is the poster child for profoundly quiescent accretion flows. Forty years after its discovery in the radio and fifteen years after its discovery in X-rays with Chandra, the extreme X-ray faintness of the closest supermassive black hole remains an important puzzle in black hole accretion. To study this remarkable source, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012, providing an excellent opportunity to probe the physics of accretion in the Galactic Center. I will present an update to our work on the X-ray variability of Sgr A*, expanding a statistical analysis of its daily flares into a more comprehensive picture of its variable processes. Finally, I will discuss the exciting physical implications of this variability for the connection between X-ray and infrared emission and our understanding of the radiation physics of Sgr A*.

  16. Black-hole bomb and superradiant instabilities

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Dias, Oscar J.C.; Lemos, Jose P.S.; Yoshida, Shijun

    2004-01-01

    A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are satisfied, giving rise to superradiant scattering. By placing a mirror around the black hole one can make the system unstable. This is the black-hole bomb of Press and Teukolsky. We investigate in detail this process and compute the growing time scales and oscillation frequencies as a function of the mirror's location. It is found that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition, our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes should be unstable

  17. Black-hole thermodynamics and Riemann surfaces

    International Nuclear Information System (INIS)

    Krasnov, Kirill

    2003-01-01

    We use the analytic continuation procedure proposed in our earlier works to study the thermodynamics of black holes in 2 + 1 dimensions. A general black hole in 2 + 1 dimensions has g handles hidden behind h horizons. The result of the analytic continuation of a black-hole spacetime is a hyperbolic 3-manifold having the topology of a handlebody. The boundary of this handlebody is a compact Riemann surface of genus G = 2g + h - 1. Conformal moduli of this surface encode in a simple way the physical characteristics of the black hole. The moduli space of black holes of a given type (g, h) is then the Schottky space at genus G. The (logarithm of the) thermodynamic partition function of the hole is the Kaehler potential for the Weil-Peterson metric on the Schottky space. The Bekenstein bound on the black-hole entropy leads us to conjecture a new strong bound on this Kaehler potential

  18. Hawking radiation and strong gravity black holes

    International Nuclear Information System (INIS)

    Qadir, A.; Sayed, W.A.

    1979-01-01

    It is shown that the strong gravity theory of Salam et al. places severe restrictions on black hole evaporation. Two major implications are that: mini blck holes (down to masses approximately 10 -16 kg) would be stable in the present epoch; and that some suggested mini black hole mechanisms to explain astrophysical phenomena would not work. The first result implies that f-gravity appears to make black holes much safer by removing the possibility of extremely violent black hole explosions suggested by Hawking. (Auth.)

  19. How A Black Hole Lights Up Its Surroundings

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    called photoionization. But could jets also be involved?In a recent study led by kos Bogdn, a team of scientists at the Harvard-Smithsonian Center for Astrophysics used X-ray observations of a galaxys nucleus to explore the possibility that its narrow-line region is heated and ionized not only by radiation, but also by the shocks produced as radio jets collide with their surrounding environment.Heating from JetsChandra X-ray data for Mrk 3, with radio contours overplotted. Both wavelengths show S-shaped morphology of the jets, with the X-ray emission enveloping the radio emission. A strong shock is present in the west and a weaker shock toward the east. [Bogdn et al. 2017]Bogdn and collaborators analyzed deep Chandra X-ray observations of the center of Mrk 3, an early-type galaxy located roughly 200 million light-years away. Chandras imaging and high-resolution spectroscopy of the galaxys narrow-line region allowed the team to build a detailed picture of the hot gas, demonstrating that it shows similar S-shaped morphology to the gas emitting at radio wavelengths, but its more broadly distributed.The authors demonstrate the presence of shocks in the X-ray gas both toward the west and toward the east of the nucleus. These shocks, combined with the broadening of the X-ray emission and other signs, strongly support the idea that collisions of the jets with the surrounding environment heat the narrow-line-region gas, contributing to its ionization. The authors argue that, given how common small-scale radio jets are in galaxies such as Mrk 3, its likely that collisional ionization plays an important role in how the black holes in these galaxies impart energy to their surrounding environments.Citationkos Bogdn et al 2017 ApJ 848 61. doi:10.3847/1538-4357/aa8c76

  20. A Be-type star with a black-hole companion.

    Science.gov (United States)

    Casares, J; Negueruela, I; Ribó, M; Ribas, I; Paredes, J M; Herrero, A; Simón-Díaz, S

    2014-01-16

    Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10(-7) times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

  1. A CONNECTION BETWEEN PLASMA CONDITIONS NEAR BLACK HOLE EVENT HORIZONS AND OUTFLOW PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, K. I. I.; Russell, D. M.; Bernardini, F. [New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates); Fernández-Ontiveros, J. A. [Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Markoff, Sera [Astronomical Institute “Anton Pannekoek”, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Russell, T. D.; Miller-Jones, J. C. A.; Curran, P. A.; Soria, R. [International Centre for Radio Astronomy Research—Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Van der Horst, A. J. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Casella, P. [INAF, Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone (Italy); Gandhi, P., E-mail: karri.koljonen@nyu.edu [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2015-12-01

    Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-ray energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude in sources that span nine orders of magnitude in black hole mass, revealing a similarity of jet properties over a large range of black hole masses powering these jets. This correlation demonstrates that the internal properties of the jet rely most critically on the conditions of the plasma close to the black hole, rather than other parameters such as the black hole mass or spin, and will provide a benchmark that should be reproduced by the jet formation models.

  2. New observational constraints on the growth of the first supermassive black holes

    International Nuclear Information System (INIS)

    Treister, E.; Schawinski, K.; Volonteri, M.; Natarajan, P.

    2013-01-01

    We constrain the total accreted mass density in supermassive black holes at z > 6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. Studying galaxies obtained from the deepest Hubble Space Telescope images combined with the Chandra 4 Ms observations of the Chandra Deep Field-South, we achieve the most restrictive constraints on total black hole growth in the early universe. We estimate an accreted mass density <1000 M ☉ Mpc –3 at z ∼ 6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations. These results place interesting constraints on early black hole growth and mass assembly by accretion and imply one or more of the following: (1) only a fraction of the luminous galaxies at this epoch contain active black holes; (2) most black hole growth at early epochs happens in dusty and/or less massive—as yet undetected—host galaxies; (3) there is a significant fraction of low-z interlopers in the galaxy sample; (4) early black hole growth is radiatively inefficient, heavily obscured, and/or due to black hole mergers as opposed to accretion; or (5) the bulk of the black hole growth occurs at late times. All of these possibilities have important implications for our understanding of high-redshift seed formation models.

  3. Black Hole Dynamic Potentials Koustubh Ajit Kabe

    Indian Academy of Sciences (India)

    In the following paper, certain black hole dynamic potentials have been ... the equations of the laws of black hole dynamics as given by Bekenstein and those ..... work. This makes K, the energy which is available for work in time-reversible pro- cesses (white holes) observing constancy of surface gravity. Since the area of the.

  4. Charged spinning black holes as particle accelerators

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune

    2010-01-01

    It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/√(3))≤(a/M)≤1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

  5. THE FIRST GALAXIES: ASSEMBLY WITH BLACK HOLE FEEDBACK

    International Nuclear Information System (INIS)

    Jeon, Myoungwon; Pawlik, Andreas H.; Bromm, Volker; Milosavljević, Miloš; Greif, Thomas H.; Glover, Simon C. O.; Klessen, Ralf S.

    2012-01-01

    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the BH accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the BH as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from an HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.

  6. The First Galaxies: Assembly with Black Hole Feedback

    Science.gov (United States)

    Jeon, Myoungwon; Pawlik, Andreas H.; Greif, Thomas H.; Glover, Simon C. O.; Bromm, Volker; Milosavljević, Miloš; Klessen, Ralf S.

    2012-07-01

    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the BH accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the BH as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from an HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.

  7. A Black Hole in Our Galactic Center

    Science.gov (United States)

    Ruiz, Michael J.

    2008-01-01

    An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…

  8. BSW process of the slowly evaporating charged black hole

    OpenAIRE

    Wang, Liancheng; He, Feng; Fu, Xiangyun

    2015-01-01

    In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

  9. Plasma horizons of a charged black hole

    International Nuclear Information System (INIS)

    Hanni, R.S.

    1977-01-01

    The most promising way of detecting black holes seems to be through electromagnetic radiation emitted by nearby charged particles. The nature of this radiation depends strongly on the local electromagnetic field, which varies with the charge of the black hole. It has often been purported that a black hole with significant charge will not be observed, because, the dominance of the Coulomb interaction forces its neutralization through selective accretion. This paper shows that it is possible to balance the electric attraction of particles whose charge is opposite that of the black hole with magnetic forces and (assuming an axisymmetric, stationary solution) covariantly define the regions in which this is possible. A Kerr-Newman hole in an asymptotically uniform magnetic field and a current ring centered about a Reissner-Nordstroem hole are used as examples, because of their relevance to processes through which black holes may be observed. (Auth.)

  10. Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Fabio G. Santomauro

    2017-07-01

    Full Text Available We report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr3 and CsPb(ClBr3 perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L3-edge, and the Cs L2-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, while electrons appear as delocalized in the conduction band. No signature of either electronic or structural changes is observed at the Cs L2-edge. The results at the Br and Pb edges suggest the existence of a weakly localized exciton, while the absence of signatures at the Cs edge indicates that the Cs+ cation plays no role in the charge transport, at least beyond 80 ps. This first, time-resolved element-specific study of perovskites helps understand the rather modest charge carrier mobilities in these materials.

  11. Boosting jet power in black hole spacetimes.

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  12. Escape of Black Holes from the Brane

    International Nuclear Information System (INIS)

    Flachi, Antonino; Tanaka, Takahiro

    2005-01-01

    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the 'black hole plus brane' system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes

  13. Hidden conformal symmetry of extremal black holes

    International Nuclear Information System (INIS)

    Chen Bin; Long Jiang; Zhang Jiaju

    2010-01-01

    We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS 3 , and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.

  14. Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John

    2015-01-01

    Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.

  15. Seeding black holes in cosmological simulations

    Science.gov (United States)

    Taylor, P.; Kobayashi, C.

    2014-08-01

    We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass-velocity dispersion relation, and the size-velocity dispersion relation of galaxies. The black hole seed mass is ˜103 M⊙, which is orders of magnitude smaller than that which has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.

  16. What does a black hole look like?

    CERN Document Server

    Bailyn, Charles D

    2014-01-01

    Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes...

  17. Charged topological black hole pair creation

    International Nuclear Information System (INIS)

    Mann, R.B.

    1998-01-01

    I examine the pair creation of black holes in space-times with a cosmological constant of either sign. I consider cosmological C-metrics and show that the conical singularities in this metric vanish only for three distinct classes of black hole metric, two of which have compact event horizons on each spatial slice. One class is a generalization of the Reissner-Nordstroem (anti-)de Sitter black holes in which the event horizons are the direct product of a null line with a 2-surface with topology of genus g. The other class consists of neutral black holes whose event horizons are the direct product of a null conoid with a circle. In the presence of a domain wall, black hole pairs of all possible types will be pair created for a wide range of mass and charge, including even negative mass black holes. I determine the relevant instantons and Euclidean actions for each case. (orig.)

  18. Reversible Carnot cycle outside a black hole

    International Nuclear Information System (INIS)

    Xi-Hao, Deng; Si-Jie, Gao

    2009-01-01

    A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T 1 and a black hole with Hawking temperature T H . By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1 – T H /T 1 . Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible. (general)

  19. Hawking temperature of constant curvature black holes

    International Nuclear Information System (INIS)

    Cai Ronggen; Myung, Yun Soo

    2011-01-01

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.

  20. Making the black box signal processor transparent explains the contradictions in x-ray spectroscopy

    International Nuclear Information System (INIS)

    Papp, T.; Maxwell, J.A.; Papp, A.T.

    2008-01-01

    Full text: There are significant differences in the experimental data needed in the analysis of x-ray spectra, and many of the results contradict basic conservation laws and simple arithmetic. We have identified that the main source of the unexplainable results is rooted in the signal processing electronics. We have developed a line of fully digital signal processors that have yielded improved resolution, line shape, tailing and pile up recognition. The signal processor is a time variant, non-paralyzable signal processor. The signal processor accounts for and registers all events, sorting them into two spectra, one spectrum for the desirable or accepted events, and one spectrum for the rejected events. Although the information on the rejected events is always necessary, we recently realized its additional benefits in high rate, (10 5 -10 6 cps) analytical measurements. Having all information available we were surprised to see how different conclusions and level of understandings are possible in detector characterization, detector efficiency, spectrum evaluation methodology, and that it explains many of the contradictions. We will demonstrate how the Coster-Kronig transition measurements often do not even comply with arithmetic, and why is it difficult to interpret the spectra with other processors. It will be presented that for different spectra in origin, like radioisotope measurements, x-ray fluorescence, and particle induced x-ray emission, the primary signal from the preamplifier is so different, that the signal processor is facing very different challenges, and different metrological approaches are necessary in data processing. This data processing methodology cannot be established on the partial and fractional information offered by other approaches. However, the maximum information utilization approach offered by our processor's rejected spectrum supplements the accepted spectrum to allow the development of straight forward and accurate metrology. All the

  1. STROBE-X: X-ray timing and spectroscopy on dynamical timescales from microseconds to years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Arzoumanian, Zaven; Brandt, Soren; Hernanz, Margarita; Hui, C. Michelle; Jenke, Peter A.; Maccarone, Thomas; Remillard, Ron; Wood, Kent; Zane, Silvia; Strobe-X Collaboration

    The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) probes strong gravity for stellar mass to supermassive black holes and ultradense matter with unprecedented effective area, high time-resolution, and good spectral resolution, while providing a powerful time-domain X-ray observatory.

  2. Measuring the angular momentum of supermassive black holes

    CERN Document Server

    Brenneman, Laura

    2013-01-01

    Measuring the spins of supermassive black holes (SMBHs) in active galactic nuclei (AGN) can inform us about the relative role of gas accretion vs. mergers in recent epochs of the life of the host galaxy and its AGN. Recent advances in theory and observation have enabled spin measurements for a handful of SMBHs thus far, but this science is still very much in its infancy. Herein, I discuss how and why we seek to measure black hole spin in AGN, using recent results from long X-ray observing campaigns on three radio-quiet AGN (MCG-6-30-15, NGC 3783 and Fairall 9) to illustrate this process and its caveats. I then present our current knowledge of the distribution of SMBH spins in the local universe. I also address prospects for improving the accuracy, precision and quantity of these spin constraints in the next decade and beyond with instruments such as NuSTAR, Astro-H and a future generation large-area X-ray telescope.

  3. Superradiance by mini black holes with mirror

    OpenAIRE

    Lee, Jong-Phil

    2011-01-01

    The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger a...

  4. Geometrothermodynamics of higher dimensional black holes

    Science.gov (United States)

    Bravetti, Alessandro; Momeni, Davood; Myrzakulov, Ratbay; Quevedo, Hernando

    2013-08-01

    We study the thermodynamics and geometrothermodynamics of different black hole configurations in more than four spacetime dimensions. We use the response functions to find the conditions under which second order phase transitions occur in higher-dimensional static Reissner-Nordström and stationary Kerr black holes. Our results indicate that the equilibrium manifold of all these black hole configurations is in general curved and that curvature singularities appear exactly at those places where second order phase transitions occur.

  5. Effective Stringy Description of Schwarzschild Black Holes

    OpenAIRE

    Krasnov , Kirill; Solodukhin , Sergey N.

    2004-01-01

    We start by pointing out that certain Riemann surfaces appear rather naturally in the context of wave equations in the black hole background. For a given black hole there are two closely related surfaces. One is the Riemann surface of complexified ``tortoise'' coordinate. The other Riemann surface appears when the radial wave equation is interpreted as the Fuchsian differential equation. We study these surfaces in detail for the BTZ and Schwarzschild black holes in four and higher dimensions....

  6. Observability of Quantum State of Black Hole

    CERN Document Server

    David, J R; Mandal, G; Wadia, S R; David, Justin R.; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.

    1997-01-01

    We analyze terms subleading to Rutherford in the $S$-matrix between black hole and probes of successively high energies. We show that by an appropriate choice of the probe one can read off the quantum state of the black hole from the S-matrix, staying asymptotically far from the BH all the time. We interpret the scattering experiment as scattering off classical stringy backgrounds which explicitly depend on the internal quantum numbers of the black hole.

  7. Black hole mergers in the universe

    OpenAIRE

    Zwart, Simon Portegies; McMillan, Stephen

    1999-01-01

    Mergers of black-hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates too low to be of observational interest. In this paper we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation...

  8. A New Model of Black Hole Formation

    Directory of Open Access Journals (Sweden)

    Thayer G. D.

    2013-10-01

    Full Text Available The formation of a black hole and its event horizon are described. Conclusions, which are the result of a thought experiment, show that Schwarzschild [1] was correct: A singularity develops at the event horizon of a newly-formed black hole. The intense gravitational field that forms near the event horizon results in the mass-energy of the black hole accumulating in a layer just inside the event horizon, rather than collapsing into a central singularity.

  9. Gravitational lensing by a Horndeski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Badia, Javier [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2017-11-15

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  10. Unified geometric description of black hole thermodynamics

    International Nuclear Information System (INIS)

    Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto

    2008-01-01

    In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.

  11. Shaping Globular Clusters with Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation

  12. Extremal Black Holes and Attractors

    CERN Document Server

    Ferrara, S

    2010-01-01

    These lectures give an elementary introduction to the subject of four dimensional black holes (BHs) in supergravity and the Attractor Mechanism in the extremal case. Some thermodynamical properties are discussed and some relevant formula for the critical points of the BH effective potential are given. The case of Maxwell-Einstein-axion-dilaton (super)gravity is discussed in detail. Analogies among BH entropy and multipartite entanglement of qubits in quantum information theory, as well moduli spaces of extremal BH attractors, are also discussed.

  13. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  14. Quantum capacity of quantum black holes

    Science.gov (United States)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  15. LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    Gezari, Suvi; Heckman, Tim; Cenko, S. Bradley; Eracleous, Michael; Forster, Karl; Goncalves, Thiago S.; Martin, D. Chris; Morrissey, Patrick; Wyder, Ted K.; Neff, Susan G.; Seibert, Mark; Schiminovich, David

    2009-01-01

    A dormant supermassive black hole lurking in the center of a galaxy will be revealed when a star passes close enough to be torn apart by tidal forces, and a flare of electromagnetic radiation is emitted when the bound fraction of the stellar debris falls back onto the black hole and is accreted. Although the tidal disruption of a star is a rare event in a galaxy, ∼10 -4 yr -1 , observational candidates have emerged in all-sky X-ray and deep ultraviolet (UV) surveys in the form of luminous UV/X-ray flares from otherwise quiescent galaxies. Here we present the third candidate tidal disruption event discovered in the Galaxy Evolution Explorer (GALEX) Deep Imaging Survey: a 1.6 x 10 43 erg s -1 UV/optical flare from a star-forming galaxy at z = 0.1855. The UV/optical spectral energy distribution (SED) during the peak of the flare measured by GALEX and Palomar Large Field Camera imaging can be modeled as a single temperature blackbody with T bb = 1.7 x 10 5 K and a bolometric luminosity of 3 x 10 45 erg s -1 , assuming an internal extinction with E(B - V) gas = 0.3. The Chandra upper limit on the X-ray luminosity during the peak of the flare, L X (2 - 10 keV) 41 erg s -1 , is 2 orders of magnitude fainter than expected from the ratios of UV to X-ray flux density observed in active galaxies. We compare the light curves and broadband properties of all three tidal disruption candidates discovered by GALEX, and find that (1) the light curves are well fitted by the power-law decline expected for the fallback of debris from a tidally disrupted solar-type star and (2) the UV/optical SEDs can be attributed to thermal emission from an envelope of debris located at roughly 10 times the tidal disruption radius of a ∼10 7 M sun central black hole. We use the observed peak absolute optical magnitudes of the flares (-17.5>M g > - 18.9) to predict the detection capabilities of upcoming optical synoptic surveys.

  16. On the thermodynamics of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso (Chile)

    2015-04-09

    We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition.

  17. Black hole evaporation in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo; Rachwał, Lesław [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Modesto, Leonardo [Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055 (China); Porey, Shiladitya, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: shilp@iitk.ac.in, E-mail: rachwal@fudan.edu.cn [Department of Physics, Indian Institute of Technology, 208016 Kanpur (India)

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  18. Micro black holes and the democratic transition

    International Nuclear Information System (INIS)

    Dvali, Gia; Pujolas, Oriol

    2009-01-01

    Unitarity implies that the evaporation of microscopic quasiclassical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasiclassical black holes, according to which all of the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top of the usual quantum evaporation time, there is a new time scale which characterizes a purely classical process during which the black hole loses the ability to differentiate among the species and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially nondemocratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the other branes that are beyond its reach. We demonstrate that in reality the system evolves classically in time, in such a way that the black hole accretes the neighboring branes. The end result is a completely democratic static configuration, in which all of the branes share the same black hole and all of the species are produced with the same Hawking temperature. Thus, just like their macroscopic counterparts, the microscopic black holes are universal bridges to the hidden sector physics.

  19. Black Hole Universe Model and Dark Energy

    Science.gov (United States)

    Zhang, Tianxi

    2011-01-01

    Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.

  20. Charged black holes in phantom cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)

    2008-11-15

    In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)

  1. Destroying black holes with test bodies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Ted [Center for Fundamental Physics, University of Maryland, College Park, MD 20742-4111 (United States); Sotiriou, Thomas P, E-mail: jacobson@umd.ed, E-mail: T.Sotiriou@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-04-01

    If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.

  2. Light geodesics near an evaporating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Thiago, E-mail: thiago.barbosa@unige.ch; Monteiro, Fernando, E-mail: fernando.monteiro@unige.ch

    2015-10-16

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox.

  3. Noncommutative Black Holes at the LHC

    Science.gov (United States)

    Villhauer, Elena Michelle

    2017-12-01

    Based on the latest public results, 13 TeV data from the Large Hadron Collider at CERN has not indicated any evidence of hitherto tested models of quantum black holes, semiclassical black holes, or string balls. Such models have predicted signatures of particles with high transverse momenta. Noncommutative black holes remain an untested model of TeV-scale gravity that offers the starkly different signature of particles with relatively low transverse momenta. Considerations for a search for charged noncommutative black holes using the ATLAS detector will be discussed.

  4. Tidal interactions with Kerr black holes

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1977-01-01

    The tidal deformation of an extended test body falling with zero angular momentum into a Kerr black hole is calculated. Numerical results for infall along the symmetry axis and in the equatorial plane of the black hole are presented for a range of values of a, the specific angular momentum of the black hole. Estimates of the tidal contribution to the gravitational radiation are also given. The tidal contribution in equatorial infall into a maximally rotating Kerr black hole may be of the same order as the center-of-mass contribution to the gravitational radiation

  5. Particle accelerators inside spinning black holes.

    Science.gov (United States)

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  6. Schwarzschild black holes can wear scalar wigs.

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  7. Rotating black holes and Coriolis effect

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Jui, E-mail: agoodmanjerry.ep02g@nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: wuxn@amss.ac.cn [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: yiyang@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: phyuan.py00g@nctu.edu.tw [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)

    2016-10-10

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  8. Rotating black holes and Coriolis effect

    Directory of Open Access Journals (Sweden)

    Chia-Jui Chou

    2016-10-01

    Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  9. Planar domain walls in black hole spacetimes

    Science.gov (United States)

    Ficek, Filip; Mach, Patryk

    2018-02-01

    We investigate the behavior of low-mass, planar domain walls in the so-called ϕ4 model of the scalar field on the Schwarzschild and Kerr backgrounds. We focus on a transit of a domain wall through a black hole and solve numerically the equations of motion for a range of parameters of the domain wall and the black hole. We observe a behavior resembling an occurrence of ringing modes. Perturbations of domain walls vanish during latter evolution, suggesting their stability against a passage through the black hole. The results obtained for Kerr and Reissner-Nordström black holes are also compared.

  10. Entropy evaporated by a black hole

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1982-01-01

    It is shown that the entropy of the radiation evaporated by an uncharged, nonrotating black hole into vacuum in the course of its lifetime is approximately (4/3) times the initial entropy of this black hole. Also considered is a thermodynamically reversible process in which an increase of black-hole entropy is equal to the decrease of the entropy of its surroundings. Implications of these results for the generalized second law of thermodynamics and for the interpretation of black-hole entropy are pointed out

  11. Traversable Wormholes and Black Hole Complementarity

    OpenAIRE

    Gottesman, Daniel

    1994-01-01

    Black hole complementarity is incompatible with the existence of traversable wormholes. In fact, traversable wormholes cause problems for any theory where information comes out in the Hawking radiation.

  12. Black hole thermodynamics from Euclidean horizon constraints.

    Science.gov (United States)

    Carlip, S

    2007-07-13

    To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints.

  13. Quantum black hole: What is that?

    International Nuclear Information System (INIS)

    Berezin, Victor

    2000-01-01

    In this paper we are trying to explain our point of view on what a quantum black hole is. The ideas are based on the previous works by the author and his collaborators where the concrete models of quantum black holes were constructed. It is argued that the main feature of quantum black holes that would allow us to distinguish them from other quantum object is some specific quantum radiation. Such a radiation in the quasiclassical limit is just the Hawking evaporation if the change in the black hole mass due to radiation can be neglected

  14. Do black holes really evaporate thermally

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1980-01-01

    The Raychaudhuri equation is used to analyze the effect of the Hawking radiation back reaction upon a black-hole event horizon. It is found that if the effective stress-energy tensor of the Hawking radiation has negative energy density as expected, then an evaporating black hole initially a solar mass in size must disappear in less than a second. This implies that either the evaporation process, if it occurs at all, must be quite different from what is commonly supposed, or else black-hole event horizons: and hence black holes: do not exist

  15. On algebraically special perturbations of black holes

    International Nuclear Information System (INIS)

    Chandrasekhar, S.

    1984-01-01

    Algebraically special perturbations of black holes excite gravitational waves that are either purely ingoing or purely outgoing. Solutions, appropriate to such perturbations of the Kerr, the Schwarzschild, and the Reissner-Nordstroem black-holes, are obtained in explicit forms by different methods. The different methods illustrate the remarkable inner relations among different facets of the mathematical theory. In the context of the Kerr black-hole they derive from the different ways in which the explicit value of the Starobinsky constant emerges, and in the context of the Schwarzschild and the Reissner-Nordstroem black-holes they derive from the potential barriers surrounding them belonging to a special class. (author)

  16. A dark jet dominates the power output of the stellar black hole Cygnus X-1.

    Science.gov (United States)

    Gallo, Elena; Fender, Rob; Kaiser, Christian; Russell, David; Morganti, Raffaella; Oosterloo, Tom; Heinz, Sebastian

    2005-08-11

    Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.

  17. Surface geometry of 5D black holes and black rings

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Goswami, Rituparno

    2007-01-01

    We discuss geometrical properties of the horizon surface of five-dimensional rotating black holes and black rings. Geometrical invariants characterizing these 3D geometries are calculated. We obtain a global embedding of the 5D rotating black horizon surface into a flat space. We also describe the Kaluza-Klein reduction of the black ring solution (along the direction of its rotation) which, though it is nakedly singular, relates this solution to the 4D metric of a static black hole distorted by the presence of external scalar (dilaton) and vector ('electromagnetic') fields. The properties of the reduced black hole horizon and its embedding in E 3 are briefly discussed

  18. The mass of the black hole in LMC X-3

    International Nuclear Information System (INIS)

    Orosz, Jerome A.; Steiner, James F.; McClintock, Jeffrey E.; Buxton, Michelle M.; Bailyn, Charles D.; Steeghs, Danny; Guberman, Alec; Torres, Manuel A. P.

    2014-01-01

    We analyze a large set of new and archival photometric and spectroscopic observations of LMC X-3 to arrive at a self-consistent dynamical model for the system. Using echelle spectra obtained with the Magellan Inamori Kyocera Echelle instrument on the 6.5 m Magellan Clay telescope and the UVES instrument on the second 8.2 m Very Large Telescope, we find a velocity semiamplitude for the secondary star of K 2 = 241.1 ± 6.2 km s –1 , where the uncertainty includes an estimate of the systematic error caused by X-ray heating. Using the spectra, we also find a projected rotational velocity of V rot sin i = 118.5 ± 6.6 km s –1 . From an analysis of archival B and V light curves as well as new B and V light curves from the SMARTS 1.3 m telescope, we find an inclination of i = 69.°84 ± 0.°37 for models that do not include X-ray heating and an inclination of i = 69.°24 ± 0.°72 for models that incorporate X-ray heating. Adopting the latter inclination measurement, we find masses of 3.63 ± 0.57 M ☉ and 6.98 ± 0.56 M ☉ for the companion star and the black hole, respectively. We briefly compare our results with earlier work and discuss some of their implications.

  19. Black hole winds II: Hyper-Eddington winds and feedback

    Science.gov (United States)

    King, Andrew; Muldrew, Stuart I.

    2016-01-01

    We show that black holes supplied with mass at hyper-Eddington rates drive outflows with mildly sub-relativistic velocities. These are ˜0.1-0.2c for Eddington accretion factors {dot{m}_acc}˜ 10-100, and ˜1500 km s-1 for {dot{m}_acc}˜ 10^4. Winds like this are seen in the X-ray spectra of ultraluminous sources (ULXs), strongly supporting the view that ULXs are stellar-mass compact binaries in hyper-Eddington accretion states. SS433 appears to be an extreme ULX system ({dot{m}_acc}˜ 10^4) viewed from outside the main X-ray emission cone. For less-extreme Eddington factors {dot{m}_acc}˜ 10-100 the photospheric temperatures of the winds are ˜100 eV, consistent with the picture that the ultraluminous supersoft sources (ULSs) are ULXs seen outside the medium-energy X-ray beam, unifying the ULX/ULS populations and SS433 (actually a ULS but with photospheric emission too soft to detect). For supermassive black holes (SMBHs), feedback from hyper-Eddington accretion is significantly more powerful than the usual near-Eddington (`UFO') case, and if realized in nature would imply M - σ masses noticeably smaller than observed. We suggest that the likely warping of the accretion disc in such cases may lead to much of the disc mass being expelled, severely reducing the incidence of such strong feedback. We show that hyper-Eddington feedback from bright ULXs can have major effects on their host galaxies. This is likely to have important consequences for the formation and survival of small galaxies.

  20. Relativistic jet activity from the tidal disruption of a star by a massive black hole.

    Science.gov (United States)

    Burrows, D N; Kennea, J A; Ghisellini, G; Mangano, V; Zhang, B; Page, K L; Eracleous, M; Romano, P; Sakamoto, T; Falcone, A D; Osborne, J P; Campana, S; Beardmore, A P; Breeveld, A A; Chester, M M; Corbet, R; Covino, S; Cummings, J R; D'Avanzo, P; D'Elia, V; Esposito, P; Evans, P A; Fugazza, D; Gelbord, J M; Hiroi, K; Holland, S T; Huang, K Y; Im, M; Israel, G; Jeon, Y; Jeon, Y-B; Jun, H D; Kawai, N; Kim, J H; Krimm, H A; Marshall, F E; P Mészáros; Negoro, H; Omodei, N; Park, W-K; Perkins, J S; Sugizaki, M; Sung, H-I; Tagliaferri, G; Troja, E; Ueda, Y; Urata, Y; Usui, R; Antonelli, L A; Barthelmy, S D; Cusumano, G; Giommi, P; Melandri, A; Perri, M; Racusin, J L; Sbarufatti, B; Siegel, M H; Gehrels, N

    2011-08-24

    Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.