WorldWideScience

Sample records for black hole simulations

  1. ATLAS: Simulated production of a black hole

    CERN Multimedia

    2006-01-01

    This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was produced in the proton-proton collisions. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.

  2. ATLAS: Simulated production of a black hole

    CERN Multimedia

    2006-01-01

    This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was produced in the proton-proton collision. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.

  3. Magnetohydrodynamic simulations of black hole accretion

    CERN Document Server

    Reynolds, C S; Chiang, J; Reynolds, Christopher S; Armitage, Philip J.; Chiang, James

    2001-01-01

    We discuss the results of three-dimensional magnetohydrodynamic simulations, using a pseudo-Newtonian potential, of thin disk (h/r ~ 0.1) accretion onto black holes. We find (i) that magnetic stresses persist within the marginally stable orbit, and (ii) that the importance of those stresses for the dynamics of the flow depends upon the strength of magnetic fields in the disk outside the last stable orbit. Strong disk magnetic fields (alpha > 0.1) lead to a gross violation of the zero-torque boundary condition at the last stable orbit, while weaker fields (alpha ~ 0.01) produce results more akin to traditional models for thin disk accretion onto black holes. Fluctuations in the magnetic field strength in the disk could lead to changes in the radiative efficiency of the flow on short timescales.

  4. Binary black holes on a budget: Simulations using workstations

    CERN Document Server

    Marronetti, P; Brügmann, B; González, J; Hannam, M; Husa, S; Sperhake, U; Marronetti, Pedro; Tichy, Wolfgang; Bruegmann, Bernd; Gonzalez, Jose; Hannam, Mark; Husa, Sascha; Sperhake, Ulrich

    2007-01-01

    Binary black hole simulations have traditionally been computationally very expensive: current simulations are performed in supercomputers involving dozens if not hundreds of processors, thus systematic studies of the parameter space of binary black hole encounters still seem prohibitive with current technology. Here we present results obtained using dual processor workstations with comparable quality to those obtained using much larger computer resources. For this, we use the multi-layered refinement level code BAM, based on the moving punctures method. BAM provides grid structures composed of boxes of increasing resolution near the center of the grid. In the case of binaries, the highest resolution boxes are placed around each black hole and they track them in their orbits until the final merger when a single set of levels surrounds the black hole remnant. This is particular useful when simulating spinning black holes since the gravitational fields gradients are larger. We present simulations of binaries wit...

  5. Simulated production of a black hole in ATLAS

    CERN Multimedia

    2007-01-01

    This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was created in the proton-proton collision. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.

  6. Binary black holes on a budget: simulations using workstations

    International Nuclear Information System (INIS)

    Binary black hole simulations have traditionally been computationally very expensive: current simulations are performed in supercomputers involving dozens if not hundreds of processors, thus systematic studies of the parameter space of binary black hole encounters still seem prohibitive with current technology. Here we show how the multi-layered refinement level code BAM can be used on dual processor workstations to simulate certain binary black hole systems. BAM, based on the moving punctures method, provides grid structures composed of boxes of increasing resolution near the centre of the grid. In the case of binaries, the highest resolution boxes are placed around each black hole and they track them in their orbits until the final merger when a single set of levels surrounds the black hole remnant. This is particularly useful when simulating spinning black holes since the gravitational fields gradients are larger. We present simulations of binaries with equal mass black holes with spins parallel to the binary axis and intrinsic magnitude of S/m2 = 0.75. Our results compare favourably to those of previous simulations of this particular system. We show that the moving punctures method produces stable simulations at maximum spatial resolutions up to M/160 and for durations of up to the equivalent of 20 orbital periods

  7. Numerical Relativity Towards Simulations of 3D Black Hole Coalescence

    CERN Document Server

    Seidel, E

    1998-01-01

    I review recent developments in numerical relativity, focussing on progress made in 3D black hole evolution. Progress in development of black hole initial data, apparent horizon boundary conditions, adaptive mesh refinement, and characteristic evolution is highlighted, as well as full 3D simulations of colliding and distorted black holes. For true 3D distorted holes, with Cauchy evolution techniques, it is now possible to extract highly accurate, nonaxisymmetric waveforms from fully nonlinear simulations, which are verified by comparison to pertubration theory, and with characteristic techniques extremely long term evolutions of 3D black holes are now possible. I also discuss a new code designed for 3D numerical relativity, called Cactus, that will be made public.

  8. Evolution of Supermassive Black Holes from Cosmological Simulations

    CERN Document Server

    Filloux, Ch; Pacheco, J A de Freitas; Silk, J

    2009-01-01

    The correlations between the mass of supermassive black holes and properties of their host galaxies are investigated through cosmological simulations. Black holes grow from seeds of 100 solar masses inserted into density peaks present in the redshift range 12-15. Seeds grow essentially by accreting matter from a nuclear disk and also by coalescences resulting from merger episodes. At z=0, our simulations reproduce the black hole mass function and the correlations of the black hole mass both with stellar velocity dispersion and host dark halo mass. Moreover, the evolution of the black hole mass density derived from the present simulations agrees with that derived from the bolometric luminosity function of quasars, indicating that the average accretion history of seeds is adequately reproduced . However, our simulations are unable to form black holes with masses above $10^9 M_{\\odot}$ at $z\\sim 6$, whose existence is inferred from the bright quasars detected by the Sloan survey in this redshift range.

  9. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    OpenAIRE

    Dexter, Jason; Fragile, P. Chris

    2011-01-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locatio...

  10. Modelling the Growth of Supermassive Black Holes in Cosmological Simulations

    CERN Document Server

    Muldrew, Stuart I; Power, Chris

    2013-01-01

    There is strong evidence that supermassive black holes reside in all galaxies that contain a stellar spheroid and their mass is tightly correlated with properties such as stellar bulge mass and velocity dispersion. There are also strong theoretical arguments that feedback from supermassive black holes plays an important role in shaping the high mass end of the galaxy mass function, hence to accurately model galaxies we also need to model the black holes. We present a comparison of two black hole growth models implemented within a large-scale, cosmological SPH simulation including star formation and feedback. One model is a modified Bondi-Hoyle prescription that grows black holes based on the smooth density of local gas, while the other is the recently proposed Accretion Disc Particle (ADP) method. This model swallows baryonic particles that pass within an accretion radius of the black hole and adds them to a subgrid accretion disc. Black holes are then grown by material from this disc. We find that both model...

  11. Black-hole Merger Simulations for LISA Science

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; Centrella, Joan M.; McWilliams, Sean T.

    2009-01-01

    The strongest expected sources of gravitational waves in the LISA band are the mergers of massive black holes. LISA may observe these systems to high redshift, z>10, to uncover details of the origin of massive black holes, and of the relationship between black holes and their host structures, and structure formation itself. These signals arise from the final stage in the development of a massive black-hole binary emitting strong gravitational radiation that accelerates the system's inspiral toward merger. The strongest part of the signal, at the point of merger, carries much information about the system and provides a probe of extreme gravitational physics. Theoretical predictions for these merger signals rely on supercomputer simulations to solve Einstein's equations. We discuss recent numerical results and their impact on LISA science expectations.

  12. Models of galaxies with central black holes simulation methods

    CERN Document Server

    Sigurdsson, S; Quinlan, G D; Sigurdsson, Steinn; Hernquist, Lars; Quinlan, Gerald D

    1994-01-01

    We present a method for simulating numerically the effect of the adiabatic growth of black holes on the structure of elliptical galaxies. Using a parallel self--consistent field code, we add black holes to N--body realizations of model distribution functions for spherical galaxies, using a continuous mass--spectrum. The variable particle mass, combined with a simple multiple timestep integration scheme, makes it possible to evolve the models for many dynamical times with N \\sim 10^6-10^8, allowing high spatial and mass resolution. This paper discusses verification of the code using analytic models for spherical galaxies, comparing our numerical results of the effect of central black holes on the structure of the galaxies with previously published models. The intrinsic and projected properties of the final particle distribution, including higher order moments of the velocity distribution, permit comparison with observed characteristics of real galaxies, and constrain the masses of any central black holes prese...

  13. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    CERN Document Server

    Dexter, Jason

    2011-01-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 degrees, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth, and exhibit unique features such as broad "blue wings." Coupled with precession,...

  14. Binary black hole late inspiral: Simulations for gravitational wave observations

    CERN Document Server

    Baker, J G; Choi, D I; Kelly, B J; Koppitz, M; McWilliams, S T; Van Meter, J R; Baker, John G.; Centrella, Joan; Choi, Dae-Il; Kelly, Bernard J.; Koppitz, Michael; Meter, James R. van; Williams, Sean T. Mc

    2006-01-01

    Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Until recently it has been impossible to reliably derive the predictions of General Relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late inspiral stage on orbits with very low eccentricity and evolve for ~1200M through ~7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass ~14 cycles before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when compari...

  15. Numerical Relativity Simulations for Black Hole Merger Astrophysics

    Science.gov (United States)

    Baker, John G.

    2010-01-01

    Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.

  16. OBSERVATIONAL SIGNATURES OF TILTED BLACK HOLE ACCRETION DISKS FROM SIMULATIONS

    International Nuclear Information System (INIS)

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 deg., in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad 'blue wings'. Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear 'signature' of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  17. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    Science.gov (United States)

    Dexter, Jason; Fragile, P. Chris

    2011-03-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15°, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad "blue wings." Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear "signature" of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  18. Quantum Monte Carlo simulation with a black hole

    Science.gov (United States)

    Benić, Sanjin; Yamamoto, Arata

    2016-05-01

    We perform quantum Monte Carlo simulations in the background of a classical black hole. The lattice discretized path integral is numerically calculated in the Schwarzschild metric and in its approximated metric. We study spontaneous symmetry breaking of a real scalar field theory. We observe inhomogeneous symmetry breaking induced by an inhomogeneous gravitational field.

  19. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  20. Dynamic fisheye grids for binary black hole simulations

    International Nuclear Information System (INIS)

    We present a new warped gridding scheme adapted to simulating gas dynamics in binary black hole spacetimes. The grid concentrates grid points in the vicinity of each black hole to resolve the smaller scale structures there, and rarefies grid points away from each black hole to keep the overall problem size at a practical level. In this respect, our system can be thought of as a ‘double’ version of the fisheye coordinate system, used before in numerical relativity codes for evolving binary black holes. The gridding scheme is constructed as a mapping between a uniform coordinate system—in which the equations of motion are solved—to the distorted system representing the spatial locations of our grid points. Since we are motivated to eventually use this system for circumbinary disc calculations, we demonstrate how the distorted system can be constructed to asymptote to the typical spherical polar coordinate system, amenable to efficiently simulating orbiting gas flows about central objects with little numerical diffusion. We discuss its implementation in the Harm3d code, tailored to evolve the magnetohydrodynamics equations in curved spacetimes. We evaluate the performance of the system’s implementation in Harm3d with a series of tests, such as the advected magnetic field loop test, magnetized Bondi accretion, and evolutions of hydrodynamic discs about a single black hole and about a binary black hole. Like we have done with Harm3d, this gridding scheme can be implemented in other unigrid codes as a (possibly) simpler alternative to adaptive mesh refinement. (paper)

  1. Results from Binary Black Hole Simulations in Astrophysics Applications

    Science.gov (United States)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  2. The Accretion Disc Particle Method for Simulations of Black Hole Feeding and Feedback

    OpenAIRE

    Power, Chris; Nayakshin, Sergei; King, Andrew

    2010-01-01

    Black holes grow by accreting matter from their surroundings. However, angular momentum provides an efficient natural barrier to accretion and so only the lowest angular momentum material will be available to feed the black holes. The standard sub-grid model for black hole accretion in galaxy formation simulations - based on the Bondi-Hoyle method - does not account for the angular momentum of accreting material, and so it is unclear how representative the black hole accretion rate estimated ...

  3. Sowing Black Hole Seeds: Forming Direct Collapse Black Holes With Realistic Lyman-Werner Radiation Fields in Cosmological Simulations

    Science.gov (United States)

    Holley-Bockelmann, Kelly; Dunn, Glenna; Bellovary, Jillian M.; Christensen, Charlotte

    2016-01-01

    Luminous quasars detected at redshifts z > 6 require that the first black holes form early and grow to ~109 solar masses within one Gyr. Our work uses cosmological simulations to study the formation and early growth of direct collapse black holes. In the pre-reionization epoch, molecular hydrogen (H2) causes gas to fragment and form Population III stars, but Lyman-Werner radiation can suppress H2 formation and allow gas to collapse directly into a massive black hole. The critical flux required to inhibit H2 formation, Jcrit, is hotly debated, largely due to the uncertainties in the source radiation spectrum, H2 self-shielding, and collisional dissociation rates. Here, we test the power of the direct collapse model in a non-uniform Lyman-Werner radiation field, using an updated version of the SPH+N-body tree code Gasoline with H2 non-equilibrium abundance tracking, H2 cooling, and a modern SPH implementation. We vary Jcrit from 30 to 104 J21 to study the effect on seed black holes, focusing on black hole formation as a function of environment, halo mass, metallicity, and proximity of the Lyman-Werner source. We discuss the constraints on massive black hole occupation fraction in the quasar epoch, and implications for reionization, high-redshift X-ray background radiation, and gravitational waves.

  4. Recent Advances in the Numerical Simulations of Binary Black Holes

    CERN Document Server

    Marronetti, Pedro

    2011-01-01

    Since the breakthrough papers from 2005/2006, the field of numerical relativity has experienced a growth spurt that took the two-body problem in general relativity from the category of "really-hard-problems" to the realm of "things-we-know-how-to-do". Simulations of binary black holes in circular orbits, the holy grail of numerical relativity, are now tractable problems that lead to some of the most spectacular results in general relativity in recent years. We cover here some of the latest achievements and highlight the field's next challenges.

  5. Gravitational torque-driven black hole growth and feedback in cosmological simulations

    CERN Document Server

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Özel, Feryal; Hopkins, Philip F

    2016-01-01

    We investigate black hole-host galaxy scaling relations in cosmological simulations with a self-consistent black hole growth and feedback model. The sub-grid accretion model captures the key scalings governing angular momentum transport from galactic scales down to parsec scales, while our kinetic feedback implementation enables the injection of outflows with properties chosen to match observed nuclear outflows. We show that "quasar mode" feedback can have a large impact on the thermal properties of the intergalactic medium and the growth of galaxies and massive black holes for kinetic feedback efficiencies as low as 0.1% relative to the bolometric luminosity. Nonetheless, our simulations suggest that the black hole-host scaling relations are only weakly dependent on the effects of black hole feedback on galactic scales, owing to feedback suppressing the growth of galaxies and massive black holes by a similar amount. In contrast, the rate at which gravitational torques feed the central black hole relative to ...

  6. Numerical Simulations of Viscous Accretion Flow around Black Holes

    Science.gov (United States)

    Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-06-01

    We present shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The steady state shocked solution in the inviscid, as well as in the viscous regime, matched theoretical predictions well, but increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in microquasars; and strong shock oscillation induces strong episodic jet emission. The periodicity of jets and shock oscillation are similar. Our simulation shows that the jets for higher viscosity parameter are evidently stronger and faster than that for lower viscosity.

  7. High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael

    2007-01-01

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  8. Catfish: A Monte Carlo simulator for black holes at the LHC

    CERN Document Server

    Cavaglià, M; Cremaldi, L; Summers, D

    2006-01-01

    We present a new Fortran Monte Carlo generator to simulate black hole events at CERN's Large Hadron Collider. The generator interfaces to the PYTHIA Monte Carlo fragmentation code. The physics of the BH generator includes, but not limited to, inelasticity effects, exact field emissivities, corrections to semiclassical black hole evaporation and gravitational energy loss at formation. These features are essential to realistically reconstruct the detector response and test different models of black hole formation and decay at the LHC.

  9. Catfish: A Monte Carlo simulator for black holes at the LHC

    Science.gov (United States)

    Cavaglià, M.; Godang, R.; Cremaldi, L.; Summers, D.

    2007-09-01

    We present a new Fortran Monte Carlo generator to simulate black hole events at CERN's Large Hadron Collider. The generator interfaces to the PYTHIA Monte Carlo fragmentation code. The physics of the BH generator includes, but not limited to, inelasticity effects, exact field emissivities, corrections to semiclassical black hole evaporation and gravitational energy loss at formation. These features are essential to realistically reconstruct the detector response and test different models of black hole formation and decay at the LHC.

  10. Cosmological simulations of black hole growth: AGN luminosities and downsizing

    CERN Document Server

    Michaela, Hirschmann; Alexandro, Saro; Stefano, Borgani; Andreas, Burkert

    2013-01-01

    In this study, we present a detailed, statistical analysis of black hole (BH) growth and the evolution of active galactic nuclei (AGN) using cosmological hydrodynamic simulations run down to z=0. The simulations self-consistently follow radiative cooling, star formation, metal enrichment, BH growth and associated feedback processes from both supernovae typeII/Ia and AGN. We consider two simulation runs, one with a large co-moving volume of (128 Mpc/h)^3 and one with a smaller volume of (48 Mpc/h)^3 but with a higher mass resolution. Consistently with previous results, our simulations are in reasonably good agreement with BH properties of the local Universe. Furthermore, they can successfully reproduce the evolution of the bolometric AGN luminosity function for both the low- and the high-luminosity end up to z=2.5. The smaller but higher resolution run can match the observational data of the low bolometric luminosity end even up to z=4-5. We also perform a direct comparison with the observed soft and hard X-ra...

  11. Numerical simulation of the massive scalar field evolution in the Reissner-Nordstroem black hole background

    International Nuclear Information System (INIS)

    We study the massive scalar wave propagation in the background of a Reissner-Nordstroem black hole by using numerical simulations. We learn that the value Mm plays an important role in determining the properties of the relaxation of the perturbation. For Mm>1, the dependence of the relaxation on the black hole parameters appears. The bigger the mass of the black hole, the faster the perturbation decays. The difference of the relaxation process caused by the black hole charge Q has also been exhibited

  12. Numerical resolution effects on simulations of massive black hole seeds

    CERN Document Server

    Regan, John A; Haehnelt, Martin G

    2013-01-01

    We have performed high-resolution numerical simulations with the hydrodynamical AMR code Enzo to investigate the formation of massive seed black holes in a sample of six dark matter haloes above the atomic cooling threshold. The aim of this study is to illustrate the effects of varying the maximum refinement level on the final object formed. The virial temperatures of the simulated haloes range from $\\rm{T} \\sim 10000\\ \\rm{K} - 16000\\ \\rm{K}$ and they have virial masses in the range $\\rm{M} \\sim 2 \\times 10^7 \\rm{M_{\\odot}}$ to $\\rm{M} \\sim 7 \\times 10^7 \\rm{M_{\\odot}}$ at $z \\sim 15$. The outcome of our six fiducial simulations is both generic and robust. A rotationally supported, marginally gravitationally stable, disk forms with an exponential profile. The mass and scale length of this disk depends strongly on the maximum refinement level used. Varying the maximum refinement level by factors between 1 / 64 to 256 times the fiducial level illustrates the care that must be taken in interpreting the results. ...

  13. Music from the heavens - Gravitational waves from supermassive black hole mergers in the EAGLE simulations

    Science.gov (United States)

    Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John

    2016-08-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilising the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a ΛCDM cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger timescale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

  14. Noncommutative Solitonic Black Hole

    CERN Document Server

    Chang-Young, Ee; Lee, Daeho; Lee, Youngone

    2012-01-01

    We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field using the Moyal product expanded up to first order in the noncommutativity parameter in the two noncommutative spatial directions. By numerical simulation we look for black hole solutions by increasing the non- commutativity parameter value starting from regular solutions with vanishing noncommutativity. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.

  15. Simulating the growth of Intermediate Mass Black Holes

    CERN Document Server

    Pacucci, Fabio

    2015-01-01

    Theoretical models predict that a population of Intermediate Mass Black Holes (IMBHs) of mass $M_\\bullet \\approx 10^{4-5} \\, \\mathrm{M_{\\odot}}$ might form at high ($z > 10$) redshift by different processes. Such objects would represent the seeds out of which $z > 6$ Super-Massive Black Holes (SMBHs) grow. We numerically investigate the radiation-hydrodynamic evolution governing the growth of such seeds via accretion of primordial gas within their parent dark matter halo of virial temperature $T_{vir} \\sim 10^4 \\, \\mathrm{K}$. We find that the accretion onto a Direct Collapse Black Hole (DCBH) of initial mass $M_0=10^5 \\, \\mathrm{M_{\\odot}}$ occurs at an average rate $\\dot{M}_{\\bullet} \\simeq 1.35 \\, \\dot{M}_{Edd} \\simeq 0.1 \\, \\mathrm{M_{\\odot} \\, yr^{-1}}$, is intermittent (duty-cycle $ < 50\\%$) and lasts $\\approx 142 \\, \\mathrm{Myr}$; the system emits on average at super-Eddington luminosities, progressively becoming more luminous as the density of the inner mass shells, directly feeding the central obj...

  16. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  17. Noncommutative black holes

    International Nuclear Information System (INIS)

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole

  18. Numerical relativity simulations of thick accretion disks around tilted Kerr black holes

    Science.gov (United States)

    Mewes, Vassilios; Font, José A.; Galeazzi, Filippo; Montero, Pedro J.; Stergioulas, Nikolaos

    2016-03-01

    In this paper we present 3D numerical relativity simulations of thick accretion disks around tilted Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered (0.044-0.16) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. Our lightest model, which is the most astrophysically favorable outcome of mergers of binary compact objects, is stable. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of black hole spin and disk angular momentum in the most massive model with constant specific angular momentum l . For the model with nonconstant l -profile we observe a long-lived m =1 nonaxisymmetric structure which shows strong oscillations of the tilt angle in the inner regions of the disk. This effect might be connected to the development of Kozai-Lidov oscillations. Our simulations also confirm earlier findings that the development of the PP instability causes the long-term emission of large amplitude gravitational waves, predominantly for the l =m =2 multipole mode. The imprint of the black hole (BH) precession on the gravitational waves from tilted BH-torus systems remains an interesting open issue that would require significantly longer simulations than those presented in this paper.

  19. Intermediate-mass black holes in globular clusters: observations and simulations

    Science.gov (United States)

    Lützgendorf, Nora; Kissler-Patig, Markus; Gebhardt, Karl; Baumgardt, Holger; Kruijssen, Diederik; Noyola, Eva; Neumayer, Nadine; de Zeeuw, Tim; Feldmeier, Anja; van der Helm, Edwin; Pelupessy, Inti; Zwart, Simon Portegies

    2016-02-01

    The study of intermediate-mass black holes (IMBHs) is a young and promising field of research. If IMBHs exist, they could explain the rapid growth of supermassive black holes by acting as seeds in the early stage of galaxy formation. Formed by runaway collisions of massive stars in young and dense stellar clusters, intermediate-mass black holes could still be present in the centers of globular clusters, today. Our group investigated the presence of intermediate-mass black holes for a sample of 10 Galactic globular clusters. We measured the inner kinematic profiles with integral-field spectroscopy and determined masses or upper limits of central black holes in each cluster. In combination with literature data we further studied the positions of our results on known black-hole scaling relations (such as M • - σ) and found a similar but flatter correlation for IMBHs. Applying cluster evolution codes, the change in the slope could be explained with the stellar mass loss occurring in clusters in a tidal field over its life time. Furthermore, we present results from several numerical simulations on the topic of IMBHs and integral field units (IFUs). We ran N-body simulations of globular clusters containing IMBHs in a tidal field and studied their effects on mass-loss rates and remnant fractions and showed that an IMBH in the center prevents core collapse and ejects massive objects more rapidly. These simulations were further used to simulate IFU data cubes. For the specific case of NGC 6388 we simulated two different IFU techniques and found that velocity dispersion measurements from individual velocities are strongly biased towards lower values due to blends of neighboring stars and background light. In addition, we use the Astrophysical Multipurpose Software Environment (AMUSE) to combine gravitational physics, stellar evolution and hydrodynamics to simulate the accretion of stellar winds onto a black hole.

  20. Dancing with black holes

    CERN Document Server

    Aarseth, Sverre J

    2007-01-01

    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

  1. Are black holes totally black?

    CERN Document Server

    Grib, A A

    2014-01-01

    Geodesic completeness needs existence near the horizon of the black hole of "white hole" geodesics coming from the region inside of the horizon. Here we give the classification of all such geodesics with the energies $E/m \\le 1$ for the Schwarzschild and Kerr's black hole. The collisions of particles moving along the "white hole" geodesics with those moving along "black hole" geodesics are considered. Formulas for the increase of the energy of collision in the centre of mass frame are obtained and the possibility of observation of high energy particles arriving from the black hole to the Earth is discussed.

  2. Numerical relativity simulations of thick accretion disks around tilted Kerr black holes

    CERN Document Server

    Mewes, Vassilios; Galeazzi, Filippo; Montero, Pedro J; Stergioulas, Nikolaos

    2015-01-01

    In this work we present 3D numerical relativity simulations of thick accretion disks around {\\it tilted} Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered ($0.044-0.16$) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of ...

  3. Improved fast-rotating black hole evolution simulations with modified Baumgarte-Shapiro-Shibata-Nakamura formulation

    CERN Document Server

    Yo, Hwei-Jang; Lin, Chun-Yu; Pan, Hsing-Po

    2015-01-01

    Different formulations of Einstein's equations used in numerical relativity can affect not only the stability but also the accuracy of numerical simulations. In the original Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation, the loss of the angular momentum, $J$, is non-negligible in highly spinning single black hole evolutions. This loss also appears, usually right after the merger, in highly spinning binary black hole simulations, The loss of $J$ may be attributed to some unclear numerical dissipation. Reducing unphysical dissipation is expected to result in more stable and accurate evolutions. In the previous work \\cite{yhlc12} we proposed several modifications which are able to prevent black hole evolutions from the unphysical dissipation, and the resulting simulations are more stable than in the traditional BSSN formulation. Specifically, these three modifications (M1, M2, and M3) enhance the effects of stability, hyperbolicity, and dissipation of the formulation. We experiment further in this work w...

  4. Noncommutative solitonic black hole

    International Nuclear Information System (INIS)

    We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value. (paper)

  5. Noncommutative solitonic black hole

    Science.gov (United States)

    Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone

    2012-05-01

    We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.

  6. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  7. Performance Analysis of AODV under Black Hole Attack through Use of OPNET Simulator

    CERN Document Server

    Esmaili, H A; gharaee, Hossein

    2011-01-01

    Mobile ad hoc networks (MANETs) are dynamic wireless networks without any infrastructure. These networks are weak against many types of attacks. One of these attacks is the black hole. In this attack, a malicious node advertises itself as having freshest or shortest path to specific node to absorb packets to itself. The effect of black hole attack on ad hoc network using AODV as a routing protocol will be examined in this research. Furthermore, we investigate solution for increasing security in these networks. Simulation results using OPNET simulator depict that packet delivery ratio in the presence of malicious nodes, reduces notably.

  8. Numerical simulations of super-critical black hole accretion flows in general relativity

    OpenAIRE

    Sadowski, A.; Narayan, R; McKinney, J. C.; Tchekhovskoy, A.

    2013-01-01

    A new general relativistic radiation magnetohydrodynamical code KORAL, is described, which employs the M1 scheme to close the radiation moment equations. The code has been successfully verified against a number of tests. Axisymmetric simulations of super-critical magnetized accretion on a non-rotating black hole (a=0.0) and a spinning black hole (a=0.9) are presented. The accretion rates in the two models are \\dot M = 100-200 \\dot M_Edd. These first general relativistic simulations of super-c...

  9. Music from the heavens - Gravitational waves from supermassive black hole mergers in the EAGLE simulations

    CERN Document Server

    Salcido, Jaime; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A; Schaye, Joop; Regan, John

    2016-01-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilising cosmological hydrodynamical simulations from the EAGLE suite. These simulations assume a $\\Lambda$CDM cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with a model to calculate the gravitational waves signals from the intrinsic parameters of the black holes. The EAGLE models predict $\\sim2$ detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between $10^5 \\textrm{M}_{\\odot} h^{-1}$ seed mass black holes merging at redshifts between $z\\sim2.5...

  10. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    Science.gov (United States)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  11. Slowly balding black holes

    International Nuclear Information System (INIS)

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πc(ℎ/2π)), where Φ∞≅2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  12. Nonstationary analogue black holes

    International Nuclear Information System (INIS)

    We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics. (paper)

  13. Dynamics of black holes

    OpenAIRE

    Hayward, Sean A.

    2008-01-01

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...

  14. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  15. Black Hole Statistics

    OpenAIRE

    Strominger, Andrew

    1993-01-01

    The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather they obey an exotic variety of particle statistics known as ``infinite statist...

  16. Phantom Black Holes

    OpenAIRE

    Gao, C. J.; Zhang, S. N.

    2006-01-01

    The exact solutions of electrically charged phantom black holes with the cosmological constant are constructed. They are labelled by the mass, the electrical charge, the cosmological constant and the coupling constant between the phantom and the Maxwell field. It is found that the phantom has important consequences on the properties of black holes. In particular, the extremal charged phantom black holes can never be achieved and so the third law of thermodynamics for black holes still holds. ...

  17. General Relativistic Simulations of Jet Formation in a Rapidly Rotating Black Hole Magnetosphere

    OpenAIRE

    Koide, Shinji; Meier, David L; Shibata, Kazunari; Kudoh, Takahiro

    1999-01-01

    To investigate the formation mechanism of relativistic jets in active galactic nuclei and micro-quasars, we have developed a new general relativistic magnetohydrodynamic code in Kerr geometry. Here we report on the first numerical simulation of jet formation in a rapidly-rotating (a=0.95) Kerr black hole magnetosphere. We study cases in which the Keplerian accretion disk is both co-rotating and counter-rotating with respect to the black hole rotation. In the co-rotating disk case, our results...

  18. Searching for numerically simulated signals from black-hole binaries with a phenomenological template family

    International Nuclear Information System (INIS)

    Recent progress in numerical relativity now allows computation of the binary black-hole merger, whereas post-Newtonian and perturbative techniques can be used to model the inspiral and ringdown phases. So far, most gravitational-wave searches have made use of various post-Newtonian-inspired templates to search for signals arising from the coalescence of compact binary objects. Ajith et al have produced hybrid waveforms for non-spinning binary black-hole systems which include the three stages of the coalescence process, and constructed from them phenomenological templates which capture the features of these waveforms in a parametrized form. As a first step towards extending the present inspiral searches to higher-mass binary black-hole systems, we have used these phenomenological waveforms in a search for numerically simulated signals injected into synthetic LIGO data as part of the NINJA project.

  19. Simulation of black hole collisions in asymptotically Anti-de Sitter spacetimes.

    Science.gov (United States)

    Bantilan, Hans; Romatschke, Paul

    2015-02-27

    We present results from the evolution of spacetimes that describe the merger of asymptotically global anti-de Sitter black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on the initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring down. The boundary stress tensor of the dual conformal field theory is conformally related to a stress tensor in Minkowski space that inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times. PMID:25768753

  20. Effect of Black Hole Active Attack on Reactive Routing Protocol AODV in MANET using Network Simulator

    Directory of Open Access Journals (Sweden)

    Arunima Patel

    2013-01-01

    Full Text Available Mobile Ad-Hoc Network is a collection of mobile nodes that are dynamically and arbitrarily located in such a manner that the interconnections between nodes are capable of changing on continual basis. MANET has potential applications in very unpredictable and dynamic environments. Due to security vulnerabilities of the routing protocols, wireless ad-hoc networks are unprotected to attacks of the malicious nodes. One of these attacks is the Black Hole Attack. In this paper, we focus on analyzing the effect of active Black Hole Attack on one of famous reactive routing protocol AODV. Our aim is to simulate the effect of Black Hole Attack on AODV protocol using various performance metric parameters.

  1. Slowly balding black holes

    Science.gov (United States)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-01

    The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  2. Simulations of direct collisions of gas clouds with the central black hole

    Science.gov (United States)

    Alig, C.; Burkert, A.; Johansson, P. H.; Schartmann, M.

    2011-03-01

    We perform numerical simulations of clouds in the Galactic Centre (GC) engulfing the nuclear supermassive black hole and show that this mechanism leads to the formation of gaseous accretion discs with properties that are similar to the expected gaseous progenitor discs that fragmented into the observed stellar disc in the GC. As soon as the cloud hits the black hole, gas with opposite angular momentum relative to the black hole collides downstream. This process leads to redistribution of angular momentum and dissipation of kinetic energy, resulting in a compact gaseous accretion disc. A parameter study using 13 high-resolution simulations of homogeneous clouds falling on to the black hole and engulfing it in parts demonstrates that this mechanism is able to produce gaseous accretion discs that could potentially be the progenitor of the observed stellar disc in the GC. A comparison of simulations with different equations of state (adiabatic, isothermal and full cooling) demonstrates the importance of including a detailed thermodynamical description. However the simple isothermal approach already yields good results on the radial mass transfer and accretion rates, as well as disc eccentricities and sizes. We find that the cloud impact parameter strongly influences the accretion rate, whereas the impact velocity has a small effect on the accretion rate.

  3. Black Hole Battery

    Science.gov (United States)

    Levin, Janna; D'Orazio, Daniel

    2016-03-01

    Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.

  4. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  5. Three-dimensional simulations of supercritical black hole accretion discs - luminosities, photon trapping and variability

    Science.gov (United States)

    Sądowski, Aleksander; Narayan, Ramesh

    2016-03-01

    We present a set of four three-dimensional, general relativistic, radiation magnetohydrodynamical simulations of black hole accretion at supercritical mass accretion rates, dot{M} > dot{M}_Edd. We use these simulations to study how disc properties are modified when we vary the black hole mass, the black hole spin, or the mass accretion rate. In the case of a non-rotating black hole, we find that the total efficiency is of the order of 3 per cent dot{M} c^2, approximately a factor of 2 less than the efficiency of a standard thin accretion disc. The radiation flux in the funnel along the axis is highly super-Eddington, but only a small fraction of the energy released by accretion escapes in this region. The bulk of the 3 per cent dot{M} c^2 of energy emerges farther out in the disc, either in the form of photospheric emission or as a wind. In the case of a black hole with a spin parameter of 0.7, we find a larger efficiency of about 8 per cent dot{M} c^2. By comparing the relative importance of advective and diffusive radiation transport, we show that photon trapping is effective near the equatorial plane. However, near the disc surface, vertical transport of radiation by diffusion dominates. We compare the properties of our fiducial three-dimensional run with those of an equivalent two-dimensional axisymmetric model with a mean-field dynamo. The latter simulation runs nearly 100 times faster than the three-dimensional simulation, and gives very similar results for time-averaged properties of the accretion flow, but does not reproduce the time-variability.

  6. Noncommutative Solitonic Black Hole

    OpenAIRE

    Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone

    2011-01-01

    We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find t...

  7. Disk Emission from Magneto-hydrodynamic Simulations of Spinning Black Holes

    CERN Document Server

    Schnittman, Jeremy D; Noble, Scott C

    2015-01-01

    We present the results of a new series of global 3D relativistic magneto-hydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of $H/R\\sim 0.05$ and spin parameters $a/M=0, 0.5, 0.9$, and $0.99$. Using the ray-tracing code Pandurata, we generate broad-band thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Lastly, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well-known to the continuum fitting method of measuring black hole spin.

  8. Low-Frequency Oscillations in Global Simulations of Black Hole Accretion

    CERN Document Server

    O'Neill, Sean M; Miller, M Coleman; Sorathia, Kareem A

    2010-01-01

    We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles had been seen previously in numerous local shearing box simulations of accretion, but this is to our knowledge the first time they have been identified in a global disk. The observed cycles manifest themselves as strong oscillations in the azimuthal magnetic field occupying a region that extends into a low-density corona several scale heights above the disk. The cycle frequencies are ten to twenty times lower than the local orbital frequency, making them potentially interesting sources of variability in real astrophysical systems. Furthermore, cycles manifest themselves at discrete frequencies that in many instances share power across broad radial ranges. We also explore possible connections between these simulated cycles and the observed low-frequency quasi-periodic oscillations (LFQPOs) in galactic black hole binary systems. Specifi...

  9. The redshift factor and the first law of binary black hole mechanics in numerical simulations

    CERN Document Server

    Zimmerman, Aaron; Pfeiffer, Harald P

    2016-01-01

    The redshift factor $z$ is an invariant quantity of fundamental interest in Post-Newtonian and self-force descriptions of compact binaries. It connects different approximation schemes, and plays a central role in the first law of binary black hole mechanics, which links local quantities to asymptotic measures of energy and angular momentum in these systems. Through this law, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits. We propose and implement a novel method for extracting the redshift factor on apparent horizons in numerical simulations of quasi-circular binary inspirals. Our results confirm the conjectured relationship between $z$ and the surface gravity of the holes and that the first law holds to a remarkable degree for binary inspirals. The redshift factor allows us to test analytic predictions for $z$ in spacetimes where the binary is only approximately circular, giving a new connection between analytic approx...

  10. A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations

    CERN Document Server

    Bachmann, Lisa K; Hirschmann, Michaela; Prieto, M Almudena; Remus, Rhea-Silvia

    2014-01-01

    In large scale cosmological hydrodynamic simulations simplified sub-grid models for gas accretion onto black holes and AGN feedback are commonly used. Such models typically depend on various free parameters, which are not well constrained. We present a new advanced model containing a more detailed description of AGN feedback, where those parameters reflect the results of recent observations. The model takes the dependency of these parameters on the black hole properties into account and describes a continuous transition between the feedback processes acting in the so-called radio-mode and quasar-mode. In addition, we implement a more detailed description of the accretion of gas onto black holes by distinguishing between hot and cold gas accretion. Our new implementations prevent black holes from gaining too much mass, particularly at low redshifts so that our simulations are now very successful in reproducing the observed present-day black hole mass function. Our new model also suppresses star formation in ma...

  11. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    CERN Document Server

    Mainetti, Deborah; Campana, Sergio; Colpi, Monica

    2016-01-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double peaked flare (Mandel & Levin 2015). In this paper we perform for the first time, with GADGET2, a suite of SPH simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the syst...

  12. Resource Letter BH-2: Black Holes

    CERN Document Server

    Gallo, Elena

    2008-01-01

    This resource letter is designed to guide students, educators, and researchers through (some of) the literature on black holes. Both the physics and astrophysics of black holes are discussed. Breadth has been emphasized over depth, and review articles over primary sources. We include resources ranging from non-technical discussions appropriate for broad audiences to technical reviews of current research. Topics addressed include classification of stationary solutions, perturbations and stability of black holes, numerical simulations, collisions, the production of gravity waves, black hole thermodynamics and Hawking radiation, quantum treatments of black holes, black holes in both higher and lower dimensions, and connections to nuclear and condensed matter physics. On the astronomical end, we also cover the physics of gas accretion onto black holes, relativistic jets, gravitationally red-shifted emission lines, evidence for stellar-mass black holes in binary systems and super-massive black holes at the centers...

  13. Stimulated Black Hole Evaporation

    CERN Document Server

    Spaans, Marco

    2016-01-01

    Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.

  14. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  15. Evidence for black holes.

    Science.gov (United States)

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138

  16. Black hole statistics

    International Nuclear Information System (INIS)

    The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather, they obey an exotic variety of particle statistics known as ''infinite statistics'' which resembles that of distinguishable particles and is realized by a q deformation of the quantum commutation relations

  17. Deforming regular black holes

    CERN Document Server

    Neves, J C S

    2015-01-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  18. Black hole collapse simulated by vacuum fluctuations with a moving semi-transparent mirror

    OpenAIRE

    de Haro, Jaume; Elizalde, Emilio(Consejo Superior de Investigaciones Cientificas, ICE-CSIC and IEEC, UAB Campus, 08193 Bellaterra, Barcelona, Spain)

    2007-01-01

    Creation of scalar massless particles in two-dimensional Minkowski space-time--as predicted by the dynamical Casimir effect--is studied for the case of a semitransparent mirror initially at rest, then accelerating for some finite time, along a trajectory that simulates a black hole collapse (defined by Walker, and Carlitz and Willey), and finally moving with constant velocity. When the reflection and transmission coefficients are those in the model proposed by Barton, Calogeracos, and Nicolae...

  19. High-Precision Numerical Simulations of Rotating Black Holes Accelerated by CUDA

    OpenAIRE

    Ginjupalli, Rakesh; Khanna, Gaurav

    2010-01-01

    Hardware accelerators (such as Nvidia's CUDA GPUs) have tremendous promise for computational science, because they can deliver large gains in performance at relatively low cost. In this work, we focus on the use of Nvidia's Tesla GPU for high-precision (double, quadruple and octal precision) numerical simulations in the area of black hole physics -- more specifically, solving a partial-differential-equation using finite-differencing. We describe our approach in detail and present the final pe...

  20. White holes and eternal black holes

    International Nuclear Information System (INIS)

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  1. White holes and eternal black holes

    OpenAIRE

    Stephen D. H. Hsu

    2010-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.

  2. Black holes and beyond

    International Nuclear Information System (INIS)

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for instance, the UK

  3. Signatures of black holes at the LHC

    OpenAIRE

    Cavaglia, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.

    2007-01-01

    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

  4. Numerical simulation of binary black hole and neutron star mergers

    Energy Technology Data Exchange (ETDEWEB)

    Kastaun, W.; Rezzolla, L.

    2014-07-01

    Currently, we are expanding our results mainly in three directions. One is the influence of the matter properties at high densities. Another is the influence of resistive effects on the evolution of magnetic fields. Finally, we are including the effects of neutrino cooling into merger simulations. (orig.)

  5. Supermassive Black Holes and Their Environments

    OpenAIRE

    Colberg, Joerg M.; Di Matteo, Tiziana

    2008-01-01

    We make use of the first high--resolution hydrodynamic simulations of structure formation which self-consistently follows the build up of supermassive black holes introduced in Di Matteo et al. (2007) to investigate the relation between black holes (BH), host halo and large--scale environment. There are well--defined relations between halo and black hole masses and between the activities of galactic nuclei and halo masses at low redshifts. A large fraction of black holes forms anti--hierarchi...

  6. Black hole growth in hierarchical galaxy formation.

    OpenAIRE

    Malbon, R. K.; Baugh, C M; Frenk, C. S.; Lacey, C. G.

    2007-01-01

    We incorporate a model for black hole growth during galaxy mergers into the semi-analytical galaxy formation model based on Lambda-CDM proposed by Baugh et al. (2005). Our black hole model has one free parameter, which we set by matching the observed zeropoint of the local correlation between black hole mass and bulge luminosity. We present predictions for the evolution with redshift of the relationships between black hole mass and bulge properties. Our simulations reproduce the evolution of ...

  7. The Illustris simulation: Evolving population of black holes across cosmic time

    CERN Document Server

    Sijacki, Debora; Genel, Shy; Springel, Volker; Torrey, Paul; Snyder, Greg; Nelson, Dylan; Hernquist, Lars

    2014-01-01

    We study the properties of black holes and their host galaxies across cosmic time in the Illustris simulation. Illustris is a large scale cosmological hydrodynamical simulation which resolves a (106.5 Mpc)^3 volume with more than 12 billion resolution elements and includes state-of-the-art physical models relevant for galaxy formation. We find that the black hole mass density for redshifts z = 0 - 5 and the black hole mass function at z = 0 predicted by Illustris are in excellent agreement with the most recent observational constraints. We show that the bolometric and hard X-ray luminosity functions of AGN at z = 0 reproduce observational data very well over the full dynamic range probed. This requires radiative efficiencies to be on average low, epsilon_r <= 0.1, unless the bolometric corrections are largely underestimated. Cosmic downsizing of the AGN population is in broad agreement with the findings from X-ray surveys, but we caution that obscuration effects may introduce systematic biases in the flux-...

  8. Using Simulations of Black Holes to Study General Relativity and the Properties of Inner Accretion Flow

    CERN Document Server

    Hoormann, Janie K

    2016-01-01

    While Albert Einstein's theory of General Relativity (GR) has been tested extensively in our solar system, it is just beginning to be tested in the strong gravitational fields that surround black holes. As a way to study the behavior of gravity in these extreme environments I have used and added to a ray-tracing code that simulates the X-ray emission from the accretion disks surrounding black holes. In particular, the observational channels which can be simulated include the thermal and reflected spectra, polarization, and reverberation signatures. These calculations can be performed assuming GR as well as four alternative spacetimes. These results can be used to see if it is possible to determine if observations can test the No-Hair theorem of GR which states that stationary, astrophysical black holes are only described by their mass and spin. Although it proves difficult to distinguish between theories of gravity it is possible to exclude a large portion of the possible deviations from GR using observations...

  9. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    Science.gov (United States)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  10. Energy Extraction from Black Holes

    OpenAIRE

    Straumann, Norbert

    2007-01-01

    In this lecture I give an introduction to the rotational energy extraction of black holes by the electromagnetic Blandford-Znajek process and the generation of relativistic jets. After some basic material on the electrodynamics of black hole magnetospheres, we derive the most important results of Blandford and Znajek by making use of Kerr-Schild coordinates, which are regular on the horizon. In a final part we briefly describe results of recent numerical simulations of accretion flows on rota...

  11. Noncommutative Singular Black Holes

    International Nuclear Information System (INIS)

    In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.

  12. Noncommutative Singular Black Holes

    Science.gov (United States)

    Hamid Mehdipour, S.

    2010-11-01

    In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.

  13. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  14. Black holes in inflation

    Science.gov (United States)

    Bousso, R.; Hawking, S. W.

    1997-08-01

    We summarise recent work on the quantum production of black holes in the inflationary era. We describe, in simple terms, the Euclidean approach used, and the results obtained both for the pair creation rate and for the evolution of the black holes.

  15. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  16. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    Koustubh Ajit Kabe

    2012-09-01

    In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.

  17. General-relativistic magnetohydrodynamics simulations of black hole accretion disks: Dynamics and radiative properties

    Science.gov (United States)

    Shiokawa, Hotaka

    The goal of the series of studies in this thesis is to understand the black hole accretion process and predict its observational properties. The highly non-linear process involves a turbulent magnetized plasma in a general relativistic regime, thus making it hard to study analytically. We use numerical simulations, specifically general relativistic magnetohydrodynamics (GRMHD), to construct a realistic dynamical and radiation model of accretion disks. Our simulations are for black holes in low luminous regimes that probably possesses a hot and thick accretion disk. Flows in this regime are called radiatively inefficient accretion flows (RIAF). The most plausible mechanism for transporting angular momentum is turbulence induced by magnetorotational instability (MRI). The RIAF model has been used to model the supermassive black hole at the center of our Milky Way galaxy, Sagittarius A* (Sgr A*). Owing to its proximity, rich observational data of Sgr A* is available to compare with the simulation results. We focus mainly on four topics. First, we analyse numerical convergence of 3D GRMHD global disk simulations. Convergence is one of the essential factors in deciding quantitative outcomes of the simulations. We analyzed dimensionless shell-averaged quantities such as plasma beta, the azimuthal correlation length (angle) of fluid variables, and spectra of the source for four different resolutions. We found that all the variables converged with the highest resolution (384x384x256 in radial, poloidal, and azimuthal directions) except the magnetic field correlation length. It probably requires another factor of 2 in resolution to achieve convergence. Second, we studied the effect of equation of state on dynamics of GRMHD simulation and radiative transfer. Temperature of RIAF gas is high, and all the electrons are relativistic, but not the ions. In addition, the dynamical time scale of the accretion disk is shorter than the collisional time scale of electrons and ions

  18. Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion

    Science.gov (United States)

    Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Chandra, M.; Gammie, C. F.

    2015-12-01

    Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an entropy equation for the electrons and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the backreaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at ≪10-5 of the Eddington accretion rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial applications to axisymmetric simulations of accreting black holes show that (1) physically motivated electron heating rates that depend on the local magnetic field strength yield electron temperature distributions significantly different from the constant electron-to-proton temperature ratios assumed in previous work, with higher electron temperatures concentrated in the coronal region between the disc and the jet; (2) electron thermal conduction significantly modifies the electron temperature in the inner regions of black hole accretion flows if the effective electron mean free path is larger than the local scaleheight of the disc (at least for the initial conditions and magnetic field configurations we study). The methods developed in this work are important for producing more realistic predictions for the emission from accreting black holes such as Sagittarius A* and M87; these applications will be explored in future work.

  19. Reflection from black holes

    CERN Document Server

    Kuchiev, M Yu

    2003-01-01

    Black holes are presumed to have an ideal ability to absorb and keep matter. Whatever comes close to the event horizon, a boundary separating the inside region of a black hole from the outside world, inevitably goes in and remains inside forever. This work shows, however, that quantum corrections make possible a surprising process, reflection: a particle can bounce back from the event horizon. For low energy particles this process is efficient, black holes behave not as holes, but as mirrors, which changes our perception of their physical nature. Possible ways for observations of the reflection and its relation to the Hawking radiation process are outlined.

  20. Evolution of massive black holes

    OpenAIRE

    Volonteri, Marta

    2007-01-01

    Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...

  1. Fluctuating Black Hole Horizons

    CERN Document Server

    Mei, Jianwei

    2013-01-01

    In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.

  2. Moving black holes via singularity excision

    International Nuclear Information System (INIS)

    We present a singularity excision algorithm appropriate for numerical simulations of black holes moving throughout the computational domain. The method is an extension of the excision procedure previously used to obtain stable simulations of single, non-moving black holes. The excision procedure also shares elements used in recent work to study the dynamics of a scalar field in the background of a single, boosted black hole. The excision method is tested with single black-hole evolutions using a coordinate system in which the coordinate location of the black hole, and thus the excision boundary, moves throughout the computational domain

  3. Antigravity and black holes

    CERN Document Server

    Hajdukovic, D

    2006-01-01

    We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.

  4. MEASURING GAS ACCRETION AND ANGULAR MOMENTUM NEAR SIMULATED SUPERMASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    Using cosmological simulations with a dynamic range in excess of 107, we study the transport of gas mass and angular momentum through the circumnuclear region of a disk galaxy containing a supermassive black hole (SMBH). The simulations follow fueling over relatively quiescent phases of the galaxy's evolution (no mergers) and without feedback from active galactic nuclei (AGNs), as part of the first stage of using state-of-the-art, high-resolution cosmological simulations to model galaxy and black hole co-evolution. We present results from simulations at different redshifts (z = 6, 4, and 3) and three different black hole masses (3 x 107, 9 x 107, and 3 x 108 Msun; at z = 4), as well as a simulation including a prescription that approximates optically thick cooling in the densest regions. The interior gas mass throughout the circumnuclear disk shows transient and chaotic behavior as a function of time. The Fourier transform of the interior gas mass follows a power law with slope -1 throughout the region, indicating that, in the absence of the effects of galaxy mergers and AGN feedback, mass fluctuations are stochastic with no preferred timescale for accretion over the duration of each simulation (∼1-2 Myr). The angular momentum of the gas disk changes direction relative to the disk on kiloparsec scales over timescales less than 1 Myr, reflecting the chaotic and transient gas dynamics of the circumnuclear region. Infalling clumps of gas, which are driven inward as a result of the dynamical state of the circumnuclear disk, may play an important role in determining the spin evolution of an SMBH, as has been suggested in stochastic accretion scenarios.

  5. Cosmic Black Holes

    OpenAIRE

    Ahn, Eun-Joo; Cavaglia, Marco

    2003-01-01

    Production of high-energy gravitational objects is a common feature of gravitational theories. The primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities. Cosmic black holes can be used to probe physical properties of the very early universe which would usually require the knowledge of the theory of quantum gravity. They may be the only tool to explore thermalisation of the early universe. Whereas the creation of cosmic black ...

  6. SIMULATIONS OF RECOILING MASSIVE BLACK HOLES IN THE VIA LACTEA HALO

    International Nuclear Information System (INIS)

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a MBH = 3.7 x 106 Msun MBH remnant in the 'Via Lactea I' simulation, a Milky Way-sized dark matter halo. The black hole receives a recoil velocity of Vkick = 80, 120, 200, 300, and 400 km s-1 at redshift 1.5, and its orbit is followed for over 1 Gyr within a 'live' host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is highly nonradial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor. Such a model should offer a realistic picture of the dynamics of kicked MBHs in situations where gas drag, friction by disk stars, and the flattening of the central cusp by the returning black hole are all negligible effects. We find that MBHs ejected with initial recoil velocities Vkick ∼> 500 km s-1 do not return to the host center within a Hubble time. In a Milky Way-sized galaxy, a recoiling hole carrying a gaseous disk of initial mass ∼MBH may shine as a quasar for a substantial fraction of its 'wandering' phase. The long decay timescales of kicked MBHs predicted by this study may thus be favorable to the detection of off-nuclear quasar activity.

  7. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  8. Hydrodynamical numerical simulation of wind production from black hole hot accretion flows at very large radii

    CERN Document Server

    Bu, De-Fu; Gan, Zhao-Ming; Yang, Xiao-hong

    2015-01-01

    In previous works, it has been shown that strong winds exist in hot accretion flows around black holes. Those works focus only on the region close to the black hole thus it is unknown whether or where the wind production stops at large radii. In this paper, we investigate this problem based on hydrodynamical numerical simulations. For this aim, we have taken into account the gravity of both the central black hole and the nuclear star clusters. When calculating the latter, we assume that the velocity dispersion of stars is a constant and the gravitational potential of the nuclear star cluster $\\propto \\sigma^2 \\ln (r)$, where $\\sigma$ is the velocity dispersion of stars and $r$ is the distance from the center of the galaxy. Different from previous works, we focus on the region where the gravitational potential is dominated by the star cluster. We find that, same as the accretion flow at small radii, the mass inflow rate decreases inward and the flow is convectively unstable. However, trajectory analysis has sh...

  9. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    Science.gov (United States)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  10. Effects of Magnetic Field Topology in Black Hole-Neutron Star Mergers: Long-Term Simulations

    CERN Document Server

    Wan, Mew-Bing

    2016-01-01

    We report long-term simulations of black hole-neutron star binary mergers where the neutron star possesses an asymmetric magnetic field dipole. Focusing on the scenario where the neutron star is tidally disrupted by the black hole, we track the evolution of the binary up to $\\approx 100$ms after merger. We uncover more than one episode of thermally driven winds being launched along a funnel wall in all these cases beginning from $\\approx 25$ms after merger. The emission rate of the second wind episode is found to increase with the degree of asymmetry. A large-scale poloidal magnetic field configuration is formed along the funnel wall accompanied by the generation of a large Poynting flux. The magnetic field in the accretion disk around the black hole remnant is amplified by the non-axisymmetric magneto-rotational instability. However, the asymmetry in the magnetic field leads to increased turbulence which causes the poloidal magnetic field in the accretion disk to grow largely in a non-linear manner.

  11. Black hole accretion disc impacts

    Science.gov (United States)

    Pihajoki, P.

    2016-04-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  12. Black hole accretion disc impacts

    CERN Document Server

    Pihajoki, Pauli

    2015-01-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  13. Hydrodynamical Numerical Simulation of Wind Production from Black Hole Hot Accretion Flows at Very Large Radii

    Science.gov (United States)

    Bu, De-Fu; Yuan, Feng; Gan, Zhao-Ming; Yang, Xiao-Hong

    2016-02-01

    Previous works show that strong winds exist in hot accretion flows around black holes. Those works focus only on the region close to the black hole, so it is unknown whether or where the wind production stops at large radii. In this paper, we investigate this problem with hydrodynamical simulations. We take into account the gravities of both the black hole and the nuclear star clusters. For the latter, we assume that the velocity dispersion of stars is a constant and its gravitational potential \\propto {σ }2{ln}(r), where σ is the velocity dispersion of stars, and r is the distance from the center of the galaxy. We focus on the region where the gravitational potential is dominated by the star cluster. We find that, just as for the accretion flow at small radii, the mass inflow rate decreases inward, and the flow is convectively unstable. However, a trajectory analysis shows that there is very little wind launched from the flow. Our result, combined with the results of Yuan et al.’s study from 2015, indicates that the mass flux of wind launched from hot accretion flow {\\dot{M}}{{wind}}={\\dot{M}}{{BH}}(r/20{r}s), with r≲ {R}A\\equiv {{GM}}{{BH}}/{σ }2. Here, {\\dot{M}}{{BH}} is the accretion rate at the black hole horizon, and RA is similar to the Bondi radius. We argue that the inward decrease of inflow rate is not due to mass loss via wind, but to convective motion. The disappearance of wind outside RA must be due to the change of the gravitational potential, but the exact reason remains to be probed.

  14. A high-frequency Doppler feature in the power spectra of simulated GRMHD black hole accretion disks

    International Nuclear Information System (INIS)

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole

  15. A High-Frequency Doppler Feature in the Power Spectra of Simulated GRMHD Black Hole Accretion Disks

    CERN Document Server

    Wellons, Sarah; Psaltis, Dimitrios; Narayan, Ramesh; McClintock, Jeffrey E

    2013-01-01

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  16. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  17. Scalarized hairy black holes

    International Nuclear Information System (INIS)

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn

  18. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  19. Scalarized Hairy Black Holes

    CERN Document Server

    Kleihaus, Burkhard; Yazadjiev, Stoytcho

    2015-01-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  20. Toroidal Horizons in Binary Black Hole Mergers

    OpenAIRE

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. ...

  1. Black hole - neutron star merger simulations: Precessing binaries with neutrino treatment

    Science.gov (United States)

    Desai, Dhruv; Foucart, Francois; Kasen, Daniel

    2016-06-01

    Black hole-neutron star (BH-NS) mergers are exciting events to model, as they are a source of gravitational waves, like those discovered for the first time by Advanced LIGO earlier this year. These mergers are also the source of gamma-ray bursts and radioactively powered transients. We present here an outline of our entire research process. We first display results of general relativistic-hydrodynamic simulations using the Spectral Einstein Code (SpEC). We ran a set of BH-NS merger simulations varying three of the initial parameters of the black hole: mass, spin magnitude, and spin inclination (relative to the orbital angular momentum of the binary system). The code factors in neutrino cooling and use a temperature dependent, nuclear theory based equation of state, as opposed to simpler equations of state previously used. Though systems which treat precession and neutrino cooling have been simulated individually, the systems we analyzed are the first to take both into account. Once a disk has formed and settled down, we take data from the GR simulations and input it into the particle evolution code, which reads in the positions/velocities and further evolves the system in a Newtonian potential. We then present the fallback rate of bound particles throughout this period of evolution, the approximate density evolution, and the spatial distribution of ejecta.

  2. Evidence on the Origin of Ergospheric Disk Field Line Topology in Simulations of Black Hole Accretion

    CERN Document Server

    Punsly, Brian

    2011-01-01

    This Letter investigates the origin of the asymmetric magnetic field line geometry in the ergospheric disk (and the corresponding asymmetric powerful jet) in 3-D perfect magnetohydrodynamic (MHD) numerical simulations of a rapidly rotating black hole accretion system reported in \\citet{pun10}. Understanding, why and how these unexpected asymmetric structures form is of practical interest because an ergospheric disk jet can boost the black hole driven jet power many-fold possibly resolving a fundamental disconnect between the energy flux estimates of powerful quasar jets and simulated jet power \\citep{pun11}. The new 3-D simulations of \\citet{bec09} that were run with basically the same code that was used in the simulation discussed in \\citet{pun10} describe the "coronal mechanism" of accreting poliodal magnetic flux towards the event horizon. It was determined that reconnection in the inner accretion disk is a "necessary" component for this process. The coronal mechanism seems to naturally explain the asymmet...

  3. General relativistic simulations of black hole-neutron star mergers: Effects of tilted magnetic fields

    OpenAIRE

    Etienne, Zachariah B.; Paschalidis, Vasileios; Shapiro, Stuart L.

    2012-01-01

    Black hole--neutron star (BHNS) binary mergers can form disks in which magnetorotational instability (MRI)-induced turbulence may drive accretion onto the remnant BH, supporting relativistic jets and providing the engine for a short-hard gamma-ray burst (SGRB). Our earlier study of magnetized BHNSs showed that NS tidal disruption winds the magnetic field into a toroidal configuration, with poloidal fields so weak that capturing MRI with full-disk simulations would require $\\sim 10^8$ CPU-hour...

  4. High-Precision Numerical Simulations of Rotating Black Holes Accelerated by CUDA

    CERN Document Server

    Ginjupalli, Rakesh

    2010-01-01

    Hardware accelerators (such as Nvidia's CUDA GPUs) have tremendous promise for computational science, because they can deliver large gains in performance at relatively low cost. In this work, we focus on the use of Nvidia's Tesla GPU for high-precision (double, quadruple and octal precision) numerical simulations in the area of black hole physics -- more specifically, solving a partial-differential-equation using finite-differencing. We describe our approach in detail and present the final performance results as compared with a single-core desktop processor and also the Cell BE. We obtain mixed results -- order-of-magnitude gains in overall performance in some cases and negligible gains in others.

  5. Inertial Current Generators of Poynting Flux in MHD Simulations of Black Hole Ergospheres

    CERN Document Server

    Punsly, B

    2005-01-01

    This Letter investigates the physics that is responsible for creating the current system that supports the outgoing Poynting flux emanating from the ergosphere of a rotating black hole in the limit that the magnetic energy density greatly exceeds the plasma rest mass density (magnetically dominated limit). The underlying physics is derived from published three-dimensional simulations that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). It is found that the majority of the Poynting flux emitted from the magnetically dominated regions of the ergosphere has a source associated with inertial effects outside of the event horizon.

  6. On Noncommutative Black Holes Thermodynamics

    CERN Document Server

    Faizal, Mir; Ulhoa, S C

    2015-01-01

    In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.

  7. The Thermodynamics of Black Holes

    Directory of Open Access Journals (Sweden)

    Wald Robert M.

    2001-01-01

    Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  8. The Thermodynamics of Black Holes

    OpenAIRE

    Wald Robert M.

    1999-01-01

    We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  9. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  10. Black holes in astrophysics

    International Nuclear Information System (INIS)

    In this review we shall concentrate on the application of the concept of black hole to different areas in astrophysics. Models in which this idea is involved are connected with basically two areas in astrophysics: a) The death of massive stars due to gravitational collapse. This process would lead to the formation of black holes with stellar masses (10-20 M sun). The detection of these kind of - objects is in principle possible, by means of studying the so-called X-ray binary system. b) Active nuclei of galaxies, including quasars as an extreme case. In this case, the best model available to explain the generation of the enormous amounts of energy observed as well as several other properties, is accretion into a supermassive black hole (106-1010 M sun) in the center. The problem of the origin of such black holes is related to cosmology. (author)

  11. Topics in black hole evaporation

    International Nuclear Information System (INIS)

    Two major aspects of particle creation by gravitational fields of black holes are studied: the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. Neutrino emission is investigated under three topics: The asymmetry of the angular dependence of neutrino emission from rotating black holes; the production of a local matter excess by rotating black holes in a baryon symmetric universe; and cosmological magnetic field generation by neutrinos from evaporating black holes. Finally the author studies the effects of interactions on the black hole evaporation process

  12. Simulations of Recoiling Massive Black Holes in the Via Lactea Halo

    CERN Document Server

    Guedes, Javiera; Kuhlen, Micheal; Diemand, Jürg; Zemp, Marcel

    2009-01-01

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a MBH = 3.7x10^6 Msun MBH remnant in the Via Lactea I simulation, a Milky Way sized dark matter halo. The black hole receives a recoil velocity of Vkick = 80, 120, 200, 300, and 400 km/s at redshift 1.5, and its orbit is followed for over 1 Gyr within a live host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is hightly non-radial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor...

  13. Cosmological Black Holes

    OpenAIRE

    Stornaiolo, Cosimo

    2001-01-01

    In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...

  14. Quantum black holes

    International Nuclear Information System (INIS)

    No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references

  15. Thermal corpuscular black holes

    OpenAIRE

    Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio

    2015-01-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temp...

  16. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Steven L Liebling

    2000-10-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  17. Charged Galileon black holes

    Science.gov (United States)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  18. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  19. Cosmic censorship inside black holes

    CERN Document Server

    Thorlacius, L

    2006-01-01

    A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.

  20. Quantum Black Holes as Atoms

    OpenAIRE

    Bekenstein, Jacob D.

    1997-01-01

    In some respects the black hole plays the same role in gravitation that the atom played in the nascent quantum mechanics. This analogy suggests that black hole mass $M$ might have a discrete spectrum. I review the physical arguments for the expectation that black hole horizon area eigenvalues are uniformly spaced, or equivalently, that the spacing between stationary black hole mass levels behaves like 1/M. This sort of spectrum has also emerged in a variety of formal approaches to black hole ...

  1. Ab Initio Cosmological Simulations of CR7 as an Active Black Hole

    CERN Document Server

    Smidt, Joseph; Johnson, Jarrett L

    2016-01-01

    We present the first ab initio cosmological simulations of a CR7-like object which approximately reproduce the observed line widths and strengths. In our model, CR7 is powered by a massive (2.23 x 10^7 M_Sun), accreting (0.25 Eddington) supermassive black hole (BH). Our model takes into account multi-dimensional effects, X-ray feedback, secondary ionizations and primordial chemistry. We estimate Ly-alpha line widths by post-processing simulation output with Monte Carlo radiative transfer and calculate emissivity contributions from radiative recombination and collisional excitation. We find the luminosities in the Lyman-alpha and He II 1640 angstrom lines to be 5.0 x 10^44 and 2.4 x 10^43 erg/s, respectively, in agreement with the observed values of > 8.3 x 10^43 and 2.0 x 10^43 erg/s. We also find that the black hole heats the halo and renders it unable to produce stars as required to keep the halo metal free. These results demonstrate the viability of the BH hypothesis for CR7 in a cosmological context. Assu...

  2. Black Holes Shed Light on Galaxy Formation

    Science.gov (United States)

    2000-01-01

    This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.

  3. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  4. Black holes and beyond

    International Nuclear Information System (INIS)

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome ‘remnants’. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a ‘fuzzball’ structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: ► The information paradox is a serious problem. ► To solve it we need to find ‘hair’ on black holes. ► In string theory we find ‘hair’ by the fuzzball construction. ► Fuzzballs help to resolve many other issues in gravity.

  5. Simulations of Viscous Accretion Flow around Black Holes in Two-Dimensional Cylindrical Geometry

    CERN Document Server

    Lee, Seong-Jae; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-01-01

    We simulate shock-free and shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. Inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any QPO-like activity developed. The steady state shocked solution in the inviscid, as well as, in the viscous regime, matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in micro-qua...

  6. Comparing Gravitational Waveform Extrapolation to Cauchy-Characteristic Extraction in Binary Black Hole Simulations

    CERN Document Server

    Taylor, Nicholas W; Reisswig, Christian; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Szilagyi, Bela

    2013-01-01

    We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar $\\Psi_4$ at a finite distance from the source and Cauchy-characteristic extraction (CCE). The direct NP approach is simpler than CCE, but NP waveforms can be contaminated by near-zone effects---unless the waves are extracted at several distances from the source and extrapolated to infinity. Even then, the resulting waveforms can in principle be contaminated by gauge effects. In contrast, CCE directly provides, by construction, gauge-invariant waveforms at future null infinity. We verify the gauge invariance of CCE by running the same physical simulation using two different gauge conditions. We find that these two gauge conditions produce the same CCE waveforms but show differences in extrapolated-$\\Psi_4$ waveforms. We examine data from several different binary configurations and measure the domi...

  7. Photon-conserving Comptonization in simulations of accretion disks around black holes

    CERN Document Server

    Sadowski, Aleksander

    2015-01-01

    We introduce a new method for treating Comptonization in computational fluid dynamics. By construction, this method conserves the number of photons. Whereas the traditional "blackbody Comptonization" approach assumes that the radiation is locally a perfect blackbody and therefore uses a single parameter, the radiation temperature, to describe the radiation, the new "photon-conserving Comptonization" approach treats the photon gas as a Bose-Einstein fluid and keeps track of both the radiation temperature and the photon number density. We have implemented photon-conserving Comptonization in the general relativistic radiation magnetohydrodynamical code KORAL and we describe its impact on simulations of mildly super-critical black hole accretion disks. We find that blackbody Comptonization underestimates the gas and radiation temperature by up to a factor of two compared to photon-conserving Comptonization. This discrepancy could be serious when computing spectra. The photon-conserving simulation indicates that t...

  8. Virtual black holes

    Science.gov (United States)

    Hawking, S. W.

    1996-03-01

    One would expect spacetime to have a foamlike structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the nontrivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix S/ that does not factorize into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.

  9. Charged Galileon black holes

    CERN Document Server

    Babichev, Eugeny; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...

  10. A Simulated Novel Approach for Identifying Black Hole Attack in AODV based MANET

    Directory of Open Access Journals (Sweden)

    Kanika Lakhani

    2013-03-01

    Full Text Available Security is an essential requirement in mobile ad hoc networks to provide protected communication between mobile nodes. Due to unique characteristics of MANETS, it creates a number of consequential challenges to its security design. To overcome the challenges, there is a need to build a powerful, multifeatured security solution that achieves both broad protection and desirable network performance. MANETs are vulnerable to various attacks, blackhole, is one of the possible attacks. Black hole is a type of routing attack where a malicious node advertise itself as having the shortest path to all nodes in the environment by sending fake route reply. By doing this, the malicious node can deprive the traffic from the source node and can be implemented as a denial-of-service attack where the packets can be dropped later on. In this paper, a solution is proposed to identify the malicious node and implanting security against the threats of blackhole by notifying other nodes in the network of the incident. The simulation of the proposed algorithm demonstrates that the solution prevents the nodes in the network from blackhole attack and also improves the overall performance of AODV in the presence of black hole attack.

  11. LOW-FREQUENCY OSCILLATIONS IN GLOBAL SIMULATIONS OF BLACK HOLE ACCRETION

    International Nuclear Information System (INIS)

    We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles have previously been seen in local shearing box simulations, but we discuss their evolution over 1500 inner disk orbits of a global π/4 disk wedge spanning two orders of magnitude in radius and seven scale heights in elevation above/below the disk midplane. The observed cycles manifest themselves as oscillations in azimuthal magnetic field occupying a region that extends into a low-density corona several scale heights above the disk. The cycle frequencies are 10-20 times lower than the local orbital frequency, making them potentially interesting sources of low-frequency variability when scaled to real astrophysical systems. Furthermore, power spectra derived from the full time series reveal that the cycles manifest themselves at discrete, narrowband frequencies that often share power across broad radial ranges. We explore possible connections between these simulated cycles and observed low-frequency quasi-periodic oscillations (LFQPOs) in galactic black hole binary systems, finding that dynamo cycles have the appropriate frequencies and are located in a spatial region associated with X-ray emission in real systems. Derived observational proxies, however, fail to feature peaks with rms amplitudes comparable to LFQPO observations, suggesting that further theoretical work and more sophisticated simulations will be required to form a complete theory of dynamo-driven LFQPOs. Nonetheless, this work clearly illustrates that global MHD dynamos exhibit quasi-periodic behavior on timescales much longer than those derived from test particle considerations.

  12. Hawking emission from quantum gravity black holes

    OpenAIRE

    Nicolini, Piero; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)

    2011-01-01

    We address the issue of modelling quantum gravity effects in the evaporation of higher dimensional black holes in order to go beyond the usual semi-classical approximation. After reviewing the existing six families of quantum gravity corrected black hole geometries, we focus our work on non-commutative geometry inspired black holes, which encode model independent characteristics, are unaffected by the quantum back reaction and have an analytical form compact enough for numerical simulations. ...

  13. Noncommutative black hole thermodynamics

    International Nuclear Information System (INIS)

    We give a general derivation, for any static spherically symmetric metric, of the relation Th=(K/2π) connecting the black hole temperature (Th) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one

  14. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746

  15. Black Hole Bose Condensation

    International Nuclear Information System (INIS)

    General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a cold, stable remnant

  16. Black Hole Bose Condensation

    Science.gov (United States)

    Vaz, Cenalo; Wijewardhana, L. C. R.

    2013-12-01

    General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.

  17. Turbulent Black Holes

    CERN Document Server

    Yang, Huan; Lehner, Luis

    2014-01-01

    We show that rapidly-spinning black holes can display turbulent gravitational behavior which is mediated by a new type of parametric instability. This instability transfers energy from higher temporal and azimuthal spatial frequencies to lower frequencies--- a phenomenon reminiscent of the inverse energy cascade displayed by 2+1-dimensional turbulent fluids. Our finding reveals a path towards gravitational turbulence for perturbations of rapidly-spinning black holes, and provides the first evidence for gravitational turbulence in an asymptotically flat spacetime. Interestingly, this finding predicts observable gravitational wave signatures from such phenomena in black hole binaries with high spins and gives a gravitational description of turbulence relevant to the fluid-gravity duality.

  18. Turbulent Black Holes

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-01

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade displayed by (2 +1 )-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  19. Three-dimensional simulations of super-critical black hole accretion disks --- luminosities, photon trapping and variability

    CERN Document Server

    Sadowski, Aleksander

    2015-01-01

    We present a set of four three-dimensional, general relativistic, radiation MHD simulations of black hole accretion at super-critical mass accretion rates, $\\dot{M} > \\dot{M}_{\\rm Edd}$. We use these simulations to study how disk properties are modified when we vary the black hole mass, the black hole spin, or the mass accretion rate. In the case of a non-rotating black hole, we find that the total efficiency is of order $3\\%\\dot M c^2$, approximately a factor of two less than the efficiency of a standard thin accretion disk. The radiation flux in the funnel along the axis is highly super-Eddington, but only a small fraction of the energy released by accretion escapes in this region. The bulk of the $3\\%\\dot M c^2$ of energy emerges farther out in the disk, either in the form of photospheric emission or as a wind. In the case of a black hole with a spin parameter of 0.7, we find a larger efficiency of about $8\\%\\dot M c^2$. By comparing the relative importance of advective and diffusive radiation transport, w...

  20. Superfluid Black Holes

    CERN Document Server

    Hennigar, Robie A; Tjoa, Erickson

    2016-01-01

    We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  1. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  2. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  3. Scattering from black holes

    Energy Technology Data Exchange (ETDEWEB)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging.

  4. Scattering from black holes

    International Nuclear Information System (INIS)

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  5. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  6. Are Black Holes Springy?

    CERN Document Server

    Good, Michael R R

    2014-01-01

    A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.

  7. Horndeski black hole geodesics

    CERN Document Server

    Tretyakova, D A

    2016-01-01

    We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.

  8. Electron Thermodynamics in GRMHD Simulations of Low-Luminosity Black Hole Accretion

    CERN Document Server

    Ressler, Sean M; Quataert, Eliot; Chandra, Mani; Gammie, Charles F

    2015-01-01

    Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an electron entropy equation and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the back-reaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at $\\ll 10^{-5}$ of the Eddington rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial a...

  9. Simulating galaxy formation with black hole driven thermal and kinetic feedback

    CERN Document Server

    Weinberger, Rainer; Hernquist, Lars; Pillepich, Annalisa; Marinacci, Federico; Pakmor, Rüdiger; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Naiman, Jill; Torrey, Paul

    2016-01-01

    The inefficiency of star formation in massive elliptical galaxies is widely believed to be caused by the interactions of an active galactic nucleus (AGN) with the surrounding gas. Achieving a sufficiently rapid reddening of moderately massive galaxies without expelling too many baryons has however proven difficult for hydrodynamical simulations of galaxy formation, prompting us to explore a new model for the accretion and feedback effects of supermassive black holes. For high accretion rates relative to the Eddington limit, we assume that a fraction of the accreted rest mass energy heats the surrounding gas thermally, similar to the `quasar mode' in previous work. For low accretion rates, we invoke a new, pure kinetic feedback model which imparts momentum into the surrounding gas in a stochastic manner. These two modes of feedback are motivated both by theoretical conjectures for the existence of different types of accretion flows as well as recent observational evidence for the importance of kinetic AGN wind...

  10. The black hole final state

    OpenAIRE

    Horowitz, Gary T.; Maldacena, Juan

    2003-01-01

    We propose that in quantum gravity one needs to impose a final state boundary condition at black hole singularities. This resolves the apparent contradiction between string theory and semiclassical arguments over whether black hole evaporation is unitary.

  11. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  12. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  13. Exact solutions of higher dimensional black holes

    CERN Document Server

    Tomizawa, Shinya

    2011-01-01

    We review exact solutions of black holes in higher dimensions, focusing on asymptotically flat black hole solutions and Kaluza-Klein type black hole solutions. We also summarize some properties which such black hole solutions reveal.

  14. QCD and spin effects in black hole airshowers

    OpenAIRE

    Cavaglia, Marco; Roy, Arunava

    2007-01-01

    In models with large extra dimensions, black holes may be produced in high-energy particle collisions. We revisit the physics of black hole formation in extensive airshowers from ultrahigh-energy cosmic rays, focusing on collisional QCD and black hole emissivity effects. New results for rotating black holes are presented. Monte Carlo simulations show that QCD effects and black hole spin produce no observable signatures in airshowers. These results further confirm that the main characteristics...

  15. The First Massive Black Hole Seeds and Their Hosts

    OpenAIRE

    Bellovary, Jillian; Volonteri, Marta; Governato, Fabio; Shen, Sijing; Quinn, Thomas; Wadsley, James

    2011-01-01

    We investigate the formation of the first massive black holes in high redshift galaxies, with the goal of providing insights to which galaxies do or do not host massive black holes. We adopt a novel approach to forming seed black holes in galaxy halos in cosmological SPH+N-body simulations. The formation of massive black hole seeds is dictated directly by the local gas density, temperature, and metallicity, and motivated by physical models of massive black hole formation. We explore seed blac...

  16. Black Hole Evaporation. A Survey

    OpenAIRE

    Benachenhou, Farid

    1994-01-01

    This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional model which has black hole solutions is introduced, the so-called CGHS model. These two dimensional blac...

  17. Towards noncommutative quantum black holes

    International Nuclear Information System (INIS)

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole

  18. Towards Noncommutative Quantum Black Holes

    OpenAIRE

    Lopez-Dominguez, J. C.; Obregon, O.; Ramirez, C.; Sabido, M.

    2006-01-01

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.

  19. Black Hole: The Interior Spacetime

    CERN Document Server

    Ong, Yen Chin

    2016-01-01

    The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.

  20. Black hole magnetospheres

    International Nuclear Information System (INIS)

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  1. Numerical simulations of relativistic wind accretion on to black holes using Godunov-type methods

    CERN Document Server

    Font, J A; Papadopoulos, P P; Font, Jose A.; Ibanez, Jose M.; Papadopoulos, Philippos

    1999-01-01

    We have studied numerically the so-called Bondi-Hoyle (wind) accretion on to a rotating (Kerr) black hole in general relativity. We have used the Kerr-Schild form of the Kerr metric, free of coordinate singularities at the black hole horizon. The `test-fluid' approximation has been adopted, assuming no dynamical evolution of the gravitational field. We have used a recent formulation of the general relativistic hydrodynamic equations which casts them into a first-order hyperbolic system of conservation laws. Our studies have been performed using a Godunov-type scheme based on Marquina's flux-formula. We find that regardless of the value of the black hole spin the final accretion pattern is always stable, leading to constant accretion rates of mass and momentum. The flow is characterized by a strong tail shock which is increasingly wrapped around the central black hole as the hole angular momentum increases. The rotation induced asymmetry in the pressure field implies that besides the well known drag, the black...

  2. Black Holes in Higher Dimensions

    International Nuclear Information System (INIS)

    In four space-time dimensions black holes of Einstein-Maxwell theory satisfy a number of theorems. In more than four space-time dimensions, however, some of the properties of black holes can change. In particular, uniqueness of black holes no longer holds. In five and more dimensions black rings arise. Thus in a certain region of the phase diagram there are three black objects with the same global charges present. Here we discuss properties of higher-dimensional vacuum and charged black holes, which possess a spherical horizon topology, and of vacuum and charged black rings, which have a ringlike horizon topology

  3. Warped products and black holes

    International Nuclear Information System (INIS)

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  4. Warped products and black holes

    CERN Document Server

    Hong, S T

    2005-01-01

    We apply the warped product spacetime scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstr\\"om-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes.

  5. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  6. ATLAS: Black hole production and decay

    CERN Multimedia

    2004-01-01

    This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was produced in the proton-proton collision. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.

  7. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

    CERN Document Server

    Meliani, Zakaria; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri

    2016-01-01

    (Abridged) We here continue our effort to model the behaviour of matter when orbiting or accreting onto a generic black hole by developing a new numerical code employing advanced techniques geared solve the equations of in general-relativistic hydrodynamics. The new code employs a number of high-resolution shock-capturing Riemann-solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of AMR techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to compute accurately the electromagnetic emissions from such accretion flows. We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry and performed either in 2D or 3D. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black hole binary interacting with the surrounding ...

  8. Radiative, two-temperature simulations of low luminosity black hole accretion flows in general relativity

    CERN Document Server

    Sadowski, A; Narayan, R; Abarca, D; McKinney, J C

    2016-01-01

    We present a numerical method which evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components -- ions and electrons -- which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a standard prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation, and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric spacetime of the black hole. Numerical results are presented for five models of low luminosity black hole accretion. ...

  9. Rotating Brane World Black Holes

    OpenAIRE

    Modgil, Moninder Singh; Panda, Sukanta; Sengupta, Gautam

    2001-01-01

    A five dimensional rotating black string in a Randall-Sundrum brane world is considered. The black string intercepts the three brane in a four dimensional rotating black hole. The geodesic equations and the asymptotics in this background are discussed.

  10. Numerical simulations of relativistic wind accretion on to black holes using Godunov-type methods

    OpenAIRE

    Font, Jose A.; Ibanez, Jose M.; Papadopoulos, Philippos

    1999-01-01

    We have studied numerically the so-called Bondi-Hoyle (wind) accretion on to a rotating (Kerr) black hole in general relativity. We have used the Kerr-Schild form of the Kerr metric, free of coordinate singularities at the black hole horizon. The `test-fluid' approximation has been adopted, assuming no dynamical evolution of the gravitational field. We have used a recent formulation of the general relativistic hydrodynamic equations which casts them into a first-order hyperbolic system of con...

  11. Hydro-without-hydro framework for simulations of black hole-neutron star binaries

    International Nuclear Information System (INIS)

    We introduce a computational framework which avoids solving explicitly hydrodynamic equations and is suitable for studying the pre-merger evolution of black hole-neutron star binary systems. The essence of the method consists of constructing a neutron star model with a black hole companion and freezing the internal degrees of freedom of the neutron star during the course of the evolution of the spacetime geometry. We present the main ingredients of the framework, from the formulation of the problem to the appropriate computational techniques to study these binary systems. In addition, we present numerical results of the construction of initial data sets and evolutions that demonstrate the feasibility of this approach

  12. Observational Evidence for Black Holes

    OpenAIRE

    Narayan, Ramesh; McClintock, Jeffrey E.

    2013-01-01

    Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly corr...

  13. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  14. Toroidal Horizons in Binary Black Hole Mergers

    CERN Document Server

    Bohn, Andy; Teukolsky, Saul A

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  15. Fe K$\\alpha$ Profiles from Simulations of Accreting Black Holes

    CERN Document Server

    Kinch, Brooks E; Kallman, Timothy R; Krolik, Julian H

    2016-01-01

    We present first results from a new technique for the prediction of Fe K$\\alpha$ profiles directly from general relativistic magnetohydrodynamic (GRMHD) simulations. Data from a GRMHD simulation are processed by a Monte Carlo global radiation transport code, which determines the X-ray flux irradiating the disk surface and the coronal electron temperature self-consistently. With that irradiating flux and the disk's density structure drawn from the simulation, we determine the reprocessed Fe K$\\alpha$ emission from photoionization equilibrium and solution of the radiation transfer equation. We produce maps of the surface brightness of Fe K$\\alpha$ emission over the disk surface, which---for our example of a $10 M_\\odot$, Schwarzschild black hole accreting at $1\\%$ the Eddington value---rises steeply one gravitational radius outside the radius of the innermost stable circular orbit and then falls $\\propto r^{-2}$ at larger radii. We explain these features of the Fe K$\\alpha$ radial surface brightness profile as ...

  16. An electromagnetic black hole made of metamaterials

    CERN Document Server

    Cheng, Qiang

    2009-01-01

    Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...

  17. Prisons of light : black holes

    Science.gov (United States)

    Ferguson, Kitty

    What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  18. Point mass Cosmological Black Holes

    CERN Document Server

    Firouzjaee, Javad T

    2016-01-01

    Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.

  19. Influence of equation of state in supernova simulations. Neutrinos from proto-neutron star and black hole formation

    International Nuclear Information System (INIS)

    We present the influence of equation of state in supernovae from gravitational collapse of massive stars. We examine the important roles of EOS in supernova explosions, proto-neutron stars (or black holes) and supernova neutrinos, adopting the relativistic EOS table for supernova simulations and the conventional EOS. We discuss the density-temperature range which appears in supernova simulations to see whether exotic hadrons or quarks may appear in supernova physics. (author)

  20. Brane-World Black Holes

    CERN Document Server

    Chamblin, A; Reall, H S

    2000-01-01

    Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.

  1. Brane-world black holes

    Science.gov (United States)

    Chamblin, A.; Hawking, S. W.; Reall, H. S.

    2000-03-01

    Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.

  2. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  3. Black Holes and Fourfolds

    CERN Document Server

    Bena, Iosif; Vercnocke, Bert

    2012-01-01

    We establish the relation between the structure governing supersymmetric and non-supersymmetric four- and five-dimensional black holes and multicenter solutions and Calabi-Yau flux compactifications of M-theory and type IIB string theory. We find that the known BPS and almost-BPS multicenter black hole solutions can be interpreted as GKP compactifications with (2,1) and (0,3) imaginary self-dual flux. We also show that the most general GKP compactification leads to new classes of BPS and non-BPS multicenter solutions. We explore how these solutions fit into N=2 truncations, and elucidate how supersymmetry becomes camouflaged. As a necessary tool in our exploration we show how the fields in the largest N=2 truncation fit inside the six-torus compactification of eleven-dimensional supergravity.

  4. Shape of black holes

    CERN Document Server

    Clement, María E Gabach

    2015-01-01

    It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.

  5. Magnetohydrodynamic Numerical Simulation of Wind Production from Hot Accretion Flows around Black Holes at Very Large Radii

    Science.gov (United States)

    Bu, De-Fu; Yuan, Feng; Gan, Zhao-Ming; Yang, Xiao-Hong

    2016-06-01

    Numerical simulations of hot accretion flows around black holes have shown the existence of strong wind. Those works focused only on the region close to the black hole and thus it is unknown whether or where the wind production stops at large radii. To address this question, we have recently performed hydrodynamic (HD) simulations by taking into account the gravitational potential of both the black hole and the nuclear star cluster. The latter is assumed to be proportional to {σ }2{ln}(r), with σ being the velocity dispersion of stars and r the distance from the center of the galaxy. It was found that when the gravity is dominated by nuclear stars, i.e., outside a radius {R}A\\equiv {{GM}}{{BH}}/{σ }2, winds can no longer be produced. That work, however, neglects the magnetic field, which is believed to play a crucial dynamical role in the accretion and thus must be taken into account. In this paper, we revisit this problem by performing magnetohydrodynamic (MHD) simulations. We confirm the result of our previous paper, namely that wind cannot be produced in the region R\\gt {R}A. Our result, combined with recent results of Yuan et al., indicates that the formula describing the mass flux of wind, {\\dot{M}}{{wind}}={\\dot{M}}{{BH}}(r/20{r}s), can only be applied to the region where the black hole potential is dominant. Here {\\dot{M}}{{BH}} is the mass accretion rate at the black hole horizon and the value of R A is similar to the Bondi radius.

  6. Noncommutative Black Holes

    CERN Document Server

    Bastos, C; Dias, N C; Prata, J N

    2010-01-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.

  7. Infinitely Coloured Black Holes

    OpenAIRE

    Mavromatos, Nick E.; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)

    1999-01-01

    We formulate the field equations for $SU(\\infty)$ Einstein-Yang-Mills theory, and find spherically symmetric black-hole solutions. This model may be motivated by string theory considerations, given the enormous gauge symmetries which characterize string theory. The solutions simplify considerably in the presence of a negative cosmological constant, particularly for the limiting cases of a very large cosmological constant or very small gauge field. The situation of an arbitrarily small gauge f...

  8. Beyond the black hole

    International Nuclear Information System (INIS)

    This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)

  9. Thermal BEC Black Holes

    OpenAIRE

    Roberto Casadio(INFN, Bologna); Andrea Giugno; Octavian Micu; Alessio Orlandi

    2015-01-01

    We review some features of Bose–Einstein condensate (BEC) models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractiv...

  10. Fully Relativistic Simulations of Black Holes and Neutron Stars with Global Magnetic Fields

    Science.gov (United States)

    Motl, Patrick

    We propose to conduct fully relativistic simulations of the merger of compact objects to investigate their connection to the population of short-duration, hard-spectrum gamma ray bursts. In particular, we will explore possible observational signatures that may lead to the simultaneous study of such mergers through both their gravitational radiation and through an electromagnetic counterpart. The combination of so-called multi-messenger observations can yield significantly more astrophysical content than either gravitational radiation or electromagnetic radiation alone. Through the work described herein to extend our previous efforts we will arrive at a numerical tool set that allows us to simulate the merger of a neutron star with another neutron star or with a black hole that include (i) full general relativity, (ii) a hydrodynamic treatment of the neutron star material, (iii) electromagnetic fields in both the stellar material and globally and (iv) a treatment of energy transport and losses via neutrinos. These physics modules run within the publicly available, distributed adaptive mesh refinement framework (named HAD) developed by our collaboration. The numerical tools that we develop and release will likely be of use in other areas of computational astrophysics. Furthermore, predications and the interpretation of the signatures from compact object mergers may make a timely contribution to current efforts to study these systems observationally as well as efforts underway to detect these mergers through their gravitational radiation for the first time.

  11. Comparing gravitational waveform extrapolation to Cauchy-characteristic extraction in binary black hole simulations

    Science.gov (United States)

    Taylor, Nicholas W.; Boyle, Michael; Reisswig, Christian; Scheel, Mark A.; Chu, Tony; Kidder, Lawrence E.; Szilágyi, Béla

    2013-12-01

    We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar Ψ4 at a finite distance from the source and Cauchy-characteristic extraction (CCE). The direct NP approach is simpler than CCE, but NP waveforms can be contaminated by near-zone effects—unless the waves are extracted at several distances from the source and extrapolated to infinity. Even then, the resulting waveforms can in principle be contaminated by gauge effects. In contrast, CCE directly provides, by construction, gauge-invariant waveforms at future null infinity. We verify the gauge invariance of CCE by running the same physical simulation using two different gauge conditions. We find that these two gauge conditions produce the same CCE waveforms but show differences in extrapolated-Ψ4 waveforms. We examine data from several different binary configurations and measure the dominant sources of error in the extrapolated-Ψ4 and CCE waveforms. In some cases, we find that NP waveforms extrapolated to infinity agree with the corresponding CCE waveforms to within the estimated error bars. However, we find that in other cases extrapolated and CCE waveforms disagree, most notably for m=0 “memory” modes.

  12. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    Science.gov (United States)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted onto BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z~2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive halos present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z=3 and z=2 respectively.

  13. Numerical simulations of optically thick accretion onto a black hole. II. Rotating flow

    International Nuclear Information System (INIS)

    In this paper, we report on recent upgrades to our general relativistic radiation magnetohydrodynamics code, Cosmos++, including the development of a new primitive inversion scheme and a hybrid implicit-explicit solver with a more general M 1 closure relation for the radiation equations. The new hybrid solver helps stabilize the treatment of the radiation source terms, while the new closure allows for a much broader range of optical depths to be considered. These changes allow us to expand by orders of magnitude the range of temperatures, opacities, and mass accretion rates, and move a step closer toward our goal of performing global simulations of radiation-pressure-dominated black hole accretion disks. In this work, we test and validate the new method against an array of problems. We also demonstrate its ability to handle super-Eddington, quasi-spherical accretion. Even with just a single proof-of-principle simulation, we already see tantalizing hints of the interesting phenomenology associated with the coupling of radiation and gas in super-Eddington accretion flows.

  14. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    CERN Document Server

    Volonteri, Marta; Pichon, Christophe; Devriendt, Julien

    2016-01-01

    We analyze the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted onto BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Yet there seem to be too many BHs with mass~ 1e7 Msun at high redshift, and too few BHs with similar mass at z=0 in intermediate-mass galaxies. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal process are likely to be responsible for this, and for a tight BH-galaxy mass correlation. Starting at z~2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavel...

  15. Black holes reconsidered

    CERN Document Server

    Helfer, Adam D

    2011-01-01

    I review elements of the foundations of black-hole theory with attention to problematic issues, and describe some techniques which either seem to help with the difficulties or at least investigate their scope. The definition of black holes via event horizons has been problematic because it depends on knowing the global structure of space-time; often attempts to avoid this (e.g. apparent horizons) require knowledge of the interior geometry. I suggest studying instead the holonomy relating the exterior neighborhood of the incipient horizon to the regime of distant observers; at least in the spherically symmetric case, this holonomy will develop certain universal features, in principle observable from signals emitted from infalling objects. I discuss the theory of quantum fields in curved space-time, and the difficulties with Hawking's prediction of black-hole radiation. I then show that the usual, very natural, theory of quantum fields in curved space-time runs into difficulties when applied to measurement prob...

  16. Slowly balding black holes

    CERN Document Server

    Lyutikov, Maxim

    2011-01-01

    The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...

  17. Thermal corpuscular black holes

    Science.gov (United States)

    Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio

    2015-06-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.

  18. Merging Black Holes and Gravitational Waves

    Science.gov (United States)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  19. UNDERSTANDING BLACK HOLE MASS ASSEMBLY VIA ACCRETION AND MERGERS AT LATE TIMES IN COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Accretion is thought to primarily contribute to the mass accumulation history of supermassive black holes (SMBHs) throughout cosmic time. While this may be true at high redshifts, at lower redshifts and for the most massive black holes (BHs) mergers themselves might add significantly to the mass budget. We explore this in two disparate environments—a massive cluster and a void region. We evolve SMBHs from 4 > z > 0 using merger trees derived from hydrodynamical cosmological simulations of these two regions, scaled to the observed value of the stellar mass fraction to account for overcooling. Mass gains from gas accretion proportional to bulge growth and BH-BH mergers are tracked, as are BHs that remain ''orbiting'' due to insufficient dynamical friction in a merger remnant, as well as those that are ejected due to gravitational recoil. We find that gas accretion remains the dominant source of mass accumulation in almost all SMBHs; mergers contribute 2.5% ± 0.1% for all SMBHs in the cluster and 1.0% ± 0.1% in the void since z = 4. However, mergers are significant for massive SMBHs. The fraction of mass accumulated from mergers for central BHs generally increases for larger values of the host bulge mass: in the void, the fraction is 2% at M *, bul = 1010 M ☉, increasing to 4% at M *, bul ≳ 1011 M ☉, and in the cluster it is 4% at M *, bul = 1010 M ☉ and 23% at 1012 M ☉. We also find that the total mass in orbiting SMBHs is negligible in the void, but significant in the cluster, in which a potentially detectable 40% of SMBHs and ≈8% of the total SMBH mass (where the total includes central, orbiting, and ejected SMBHs) is found orbiting at z = 0. The existence of orbiting and ejected SMBHs requires modification of the Soltan argument. We estimate this correction to the integrated accreted mass density of SMBHs to be in the range 6%-21%, with a mean value of 11% ± 3%. Quantifying the growth due to mergers at these late times, we

  20. UNDERSTANDING BLACK HOLE MASS ASSEMBLY VIA ACCRETION AND MERGERS AT LATE TIMES IN COSMOLOGICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kulier, Andrea; Ostriker, Jeremiah P.; Lackner, Claire N.; Cen, Renyue [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Natarajan, Priyamvada, E-mail: akulier@princeton.edu [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States)

    2015-02-01

    Accretion is thought to primarily contribute to the mass accumulation history of supermassive black holes (SMBHs) throughout cosmic time. While this may be true at high redshifts, at lower redshifts and for the most massive black holes (BHs) mergers themselves might add significantly to the mass budget. We explore this in two disparate environments—a massive cluster and a void region. We evolve SMBHs from 4 > z > 0 using merger trees derived from hydrodynamical cosmological simulations of these two regions, scaled to the observed value of the stellar mass fraction to account for overcooling. Mass gains from gas accretion proportional to bulge growth and BH-BH mergers are tracked, as are BHs that remain ''orbiting'' due to insufficient dynamical friction in a merger remnant, as well as those that are ejected due to gravitational recoil. We find that gas accretion remains the dominant source of mass accumulation in almost all SMBHs; mergers contribute 2.5% ± 0.1% for all SMBHs in the cluster and 1.0% ± 0.1% in the void since z = 4. However, mergers are significant for massive SMBHs. The fraction of mass accumulated from mergers for central BHs generally increases for larger values of the host bulge mass: in the void, the fraction is 2% at M {sub *,} {sub bul} = 10{sup 10} M {sub ☉}, increasing to 4% at M {sub *,} {sub bul} ≳ 10{sup 11} M {sub ☉}, and in the cluster it is 4% at M {sub *,} {sub bul} = 10{sup 10} M {sub ☉} and 23% at 10{sup 12} M {sub ☉}. We also find that the total mass in orbiting SMBHs is negligible in the void, but significant in the cluster, in which a potentially detectable 40% of SMBHs and ≈8% of the total SMBH mass (where the total includes central, orbiting, and ejected SMBHs) is found orbiting at z = 0. The existence of orbiting and ejected SMBHs requires modification of the Soltan argument. We estimate this correction to the integrated accreted mass density of SMBHs to be in the range 6%-21%, with a mean

  1. Comparisons of eccentric binary black hole simulations with post-Newtonian models

    CERN Document Server

    Hinder, Ian; Laguna, Pablo; Shoemaker, Deirdre

    2008-01-01

    We present the first comparison between numerical relativity (NR) simulations of an eccentric binary black hole system with corresponding post-Newtonian (PN) results. We evolve an equal-mass, non-spinning configuration with an initial eccentricity e = 0.1 for 21 gravitational wave cycles before merger, and find agreement in the gravitational wave phase with an adiabatic eccentric PN model with 2 PN radiation reaction within 0.1 radians for 8 cycles. The NR and PN phase difference grows to 0.8 radians by 5 cycles before merger. We find that these results can be obtained by expanding the eccentric PN expressions in terms of the frequency-related variable x = (omega M)^{2/3} with M the total mass of the binary. When using instead the mean motion n = 2 pi/P, where P is the orbital period, the comparison leads to significant disagreements with NR. We also introduce a new method for matching NR and PN waveforms, based on extrapolating parameters determined from least squares fitting as t -> -infinity.

  2. Acceleration of wind in optically thin and thick black hole accretion disks simulated in general relativity

    CERN Document Server

    Moller, Anton

    2015-01-01

    We study the force balance and resulting acceleration of gas in general relativity basing on simulations of accretion on a stellar-mass, non-rotating black hole. We compare properties of acceleration in an optically thin, radiatively inefficient disk, and in an optically thick, super-critical disk accreting at 10 times the Eddington rate. We study both the average forces acting at given location and forces acting on a gas along its individual trajectory. We show that the acceleration is not a continuous process -- in most gases gas is accelerated only in short-lasting episodes. We find that in the case of optically thin disks gas is pushed out by magnetic field in the polar region and by thermal pressure and centrifugal force below the disk surface. In case of optically thick, radiative accretion, it is the radiation pressure which accelerates the gas in the polar funnel and which compensates and sometimes prevails, together with the centrifugal force, the gravity deeper in the disk. We also show that the New...

  3. Black hole collapse simulated by vacuum fluctuations with a moving semitransparent mirror

    International Nuclear Information System (INIS)

    Creation of scalar massless particles in two-dimensional Minkowski space-time--as predicted by the dynamical Casimir effect--is studied for the case of a semitransparent mirror initially at rest, then accelerating for some finite time, along a trajectory that simulates a black hole collapse (defined by Walker and Carlitz and Willey), and finally moving with constant velocity. When the reflection and transmission coefficients are those in the model proposed by Barton, Calogeracos, and Nicolaevici [r(ω)=-iα/(ω+iα) and s(ω)=ω/(ω+iα), with α≥0], the Bogoliubov coefficients on the backside of the mirror can be computed exactly. This allows us to prove that, when α is very large (as in the case of an ideal, perfectly reflecting mirror) a thermal emission of scalar massless particles obeying Bose-Einstein statistics is radiated from the mirror (a blackbody radiation), in accordance with results previously obtained in the literature. However, when α is finite (semitransparent mirror, a physically realistic situation) the striking result is obtained that the thermal emission of scalar massless particles obeys Fermi-Dirac statistics. We also show here that the reverse change of statistics takes place in a bidimensional fermionic model for massless particles, namely, that the Fermi-Dirac statistics for the completely reflecting situation will turn into the Bose-Einstein statistics for a partially reflecting, physical mirror

  4. Stimulated emission and black holes

    International Nuclear Information System (INIS)

    The probability of a black hole emitting m particles when n particles are incident on the black hole was first derived by Bekenstein and Meisels, and later, using a different method, by Panangaden and Wald. In another paper by Bekenstein, it was argued that black holes should have stimulated emission in all modes including the nonsuperradiant ones. In this paper, we use a model based on quantum field theory. We show that Bose-Einstein statistics enhances the probability for particles to scatter in the same direction. We also prove that a black hole is equivalent to a perfect blackbody surrounded by a mirror. In our model, the black hole does not exhibit stimulated emission in nonsuperradiant modes. We also compare the black hole to a gray body

  5. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  6. Black Hole Masses are Quantized

    CERN Document Server

    Dvali, Gia; Mukhanov, Slava

    2011-01-01

    We give a simple argument showing that in any sensible quantum field theory the masses of black holes cannot assume continuous values and must be quantized. Our proof solely relies on Poincare-invariance of the asymptotic background, and is insensitive to geometric characteristics of black holes or other peculiarities of the short distance physics. Therefore, our results are equally-applicable to any other localized objects on asymptotically Poincare-invariant space, such as classicalons. By adding a requirement that in large mass limit the quantization must approximately account for classical results, we derive an universal quantization rule applicable to all classicalons (including black holes) in arbitrary number of dimensions. In particular, this implies, that black holes cannot emit/absorb arbitrarily soft quanta. The effect has phenomenological model-independent implications for black holes and other classicalons that may be created at LHC. We predict, that contrary to naive intuition, the black holes a...

  7. Black hole's 1/N hair

    International Nuclear Information System (INIS)

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers

  8. Small black holes on cylinders

    International Nuclear Information System (INIS)

    We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders proposed in J. High Energy Phys. 05, 032 (2002). We use the new metric to compute corrections to the thermodynamics which is seen to deviate from that of the (d+1)-dimensional Schwarzschild black hole. Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We discuss the consequences of these results for the general understanding of black holes and we connect the results to the phase structure of black holes and strings on cylinders

  9. Information Storage in Black Holes

    OpenAIRE

    Maia, M. D.

    2005-01-01

    The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the $M_6 (4,2)$ bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.

  10. Origin of supermassive black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.

    2007-01-01

    The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...

  11. Brane-world black holes

    International Nuclear Information System (INIS)

    In this talk, I present and discuss a number of attempts to construct black hole solutions in models with Warped Extra Dimensions. Then, a contact is made with models with Large Extra Dimensions, where black-hole solutions are easily constructed - here the focus will be on the properties of microscopic black holes and the possibility of using phenomena associated with them, such as the emission of Hawking radiation, to discover fundamental properties of our spacetime.

  12. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    CERN Document Server

    :,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Boyle, M; Brügmann, B; Buchman, L T; Campanelli, M; Chu, T; Etienne, Z B; Hannam, M; Healy, J; Hinder, I; Kidder, L E; Laguna, P; Liu, Y T; London, L; Lousto, C O; Lovelace, G; MacDonald, I; Marronetti, P; Mösta, P; Müller, D; Mundim, B C; Nakano, H; Paschalidis, V; Pekowsky, L; Pollney, D; Pfeiffer, H P; Ponce, M; Pürrer, M; Reifenberger, G; Reisswig, C; Santamaría, L; Scheel, M A; Shapiro, S L; Shoemaker, D; Sopuerta, C F; Sperhake, U; Szilágyi, B; Taylor, N W; Tichy, W; Tsatsin, P; Zlochower, Y

    2014-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...

  13. The Status of Black-Hole Binary Merger Simulations with Numerical Relativity

    CERN Document Server

    McWilliams, Sean T

    2010-01-01

    The advent of long-term stability in numerical relativity has yielded a windfall of answers to long-standing questions regarding the dynamics of space-time, matter, and electromagnetic fields in the strong-field regime of black-hole binary mergers. In this review, we will briefly summarize the methodology currently applied to these problems, emphasizing the most recent advancements. We will discuss recent results of astrophysical relevance, and present some novel interpretation. Though we primarily present a review, we also present a simple analytical model for the time-dependent Poynting flux from two orbiting black holes immersed in a magnetic field, which compares favorably with recent numerical results. Finally, we will discuss recent advancements in our theoretical understanding of merger dynamics and gravitational waveforms that have resulted from interpreting the ever-growing body of numerical relativity results.

  14. The status of black-hole binary merger simulations with numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, Sean T, E-mail: sean@astro.columbia.edu [Institute for Strings, Cosmology and Astroparticle Physics (ISCAP), Columbia University, New York, NY 10027 (United States); Physics Department, Princeton University, Princeton, NJ 08544 (United States)

    2011-07-07

    The advent of long-term stability in numerical relativity has yielded a windfall of answers to long-standing questions regarding the dynamics of space-time, matter, and electromagnetic fields in the strong-field regime of black-hole binary mergers. In this review, we will briefly summarize the methodology currently applied to these problems, emphasizing the most recent advancements. We will discuss recent results of astrophysical relevance, and present some novel interpretation. Although we primarily present a review, we also present a simple analytical model for the time-dependent Poynting flux from two orbiting black holes immersed in a magnetic field, which compares favorably with recent numerical results. Finally, we will discuss recent advancements in our theoretical understanding of merger dynamics and gravitational waveforms that have resulted from interpreting the ever-growing body of numerical relativity results.

  15. Dynamo action in thick disks around Kerr black holes: high-order resistive GRMHD simulations

    CERN Document Server

    Bugli, M; Bucciantini, N

    2014-01-01

    We present the first kinematic study of an $\\alpha\\Omega$-dynamo in the General Relativistic Magneto-HydroDynamics (GRMHD) regime, applied to thick disks orbiting around Kerr black holes and using a fully covariant mean field dynamo closure for the Ohm law. We show that the $\\alpha\\Omega$-dynamo mechanism leads to a continuous exponential growth of the magnetic field within the disk and to the formation of dynamo waves drifting away or toward the equatorial plane. Since the evolution of the magnetic field occurs qualitatively in the same fashion as in the Sun, we present also butterfly diagrams that characterize our models and show the establishment of an additional timescale, which depends on the microscopic properties of the turbulent motions, possibly providing an alternative explanation to periodicities observed in many high-energy astrophysical sources where accretion onto a rotating black hole is believed to operate.

  16. Thermal BEC Black Holes

    Science.gov (United States)

    Casadio, Roberto; Giugno, Andrea; Micu, Octavian; Orlandi, Alessio

    2015-10-01

    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a discrete ground state of energy $m$ (the bosons forming the black hole), and a continuous spectrum with energy $\\omega > m$ (representing the Hawking radiation and modelled with a Planckian distribution at the expected Hawking temperature). The $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M = N m$ and a Planckian distribution for $E > M$ at the same Hawking temperature. The partition function is then found to yield the usual area law for the entropy, with a logarithmic correction related with the Hawking component. The backreaction of modes with $\\omega > m$ is also shown to reduce the Hawking flux and the evaporation properly stops for vanishing mass.

  17. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  18. Black holes and the multiverse

    Science.gov (United States)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  19. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  20. How black holes saved relativity

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  1. Thermodynamics of Accelerating Black Holes

    CERN Document Server

    Appels, Michael; Kubiznak, David

    2016-01-01

    We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.

  2. Radiative, two-temperature simulations of low luminosity black hole accretion flows in general relativity

    OpenAIRE

    Sadowski, A.; Wielgus, M.; Narayan, R.; Abarca, D.; McKinney, J.C.

    2016-01-01

    We present a numerical method which evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components -- ions and electrons -- which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a standard prescription f...

  3. The Status of Black-Hole Binary Merger Simulations with Numerical Relativity

    OpenAIRE

    McWilliams, Sean T.

    2010-01-01

    The advent of long-term stability in numerical relativity has yielded a windfall of answers to long-standing questions regarding the dynamics of space-time, matter, and electromagnetic fields in the strong-field regime of black-hole binary mergers. In this review, we will briefly summarize the methodology currently applied to these problems, emphasizing the most recent advancements. We will discuss recent results of astrophysical relevance, and present some novel interpretation. Though we pri...

  4. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    OpenAIRE

    Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Lewis, J.; Barone, F; Li, T. G. F.; Libbrecht, K.

    2014-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion mo...

  5. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  6. stu Black Holes Unveiled

    Directory of Open Access Journals (Sweden)

    Armen Yeranyan

    2008-10-01

    Full Text Available The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previous partial results, as well as the fake supergravity (first order formalism and an analysis of the marginal stability of corresponding D-brane configurations, are given.

  7. Noncommutative black holes

    Science.gov (United States)

    Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  8. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  9. Noncommutative black holes

    International Nuclear Information System (INIS)

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  10. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  11. Holographic Black Hole Chemistry

    CERN Document Server

    Karch, Andreas

    2015-01-01

    Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. We show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large $N$ gauge theory only depend on the number of colors, $N$, via an overall factor of $N^2$.

  12. Magneto-hydrodynamical Numerical simulation of wind production from black hole hot accretion flows at very large radii

    CERN Document Server

    Bu, De-Fu; Gan, Zhao-Ming; Yang, Xiao-Hong

    2016-01-01

    Numerical simulations of black hole hot accretion flows have shown the existence of strong wind. Those works focus only on the region close to black hole thus it is unknown whether or where the wind production stops at large radii. To address this question, Bu et al. (2016) have performed hydrodynamic (HD) simulations by taking into account the gravitational potential of both the black hole and the nuclear star clusters. The latter is assumed to be $\\propto \\sigma^2 \\ln(r)$, with $\\sigma$ being the velocity dispersion of stars and $r$ be the distance from the center of the galaxy. It was found that when the gravity is dominated by nuclear stars, i.e., outside of radius $R_A\\equiv GM_{\\rm BH}/\\sigma^2$, winds can no longer be produced. That work, however, neglects the magnetic field, which is believed to play a crucial dynamical role in the accretion and thus must be taken into account. In this paper, we revisit this problem by performing magneto-hydrodynamical (MHD) simulations. We confirm the result of Bu et...

  13. Surfing a Black Hole

    Science.gov (United States)

    2002-10-01

    Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours [1] Summary An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) , has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy. Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec . Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations. In a break-through paper appearing in the research journal Nature on October 17th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2" . It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years. The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live . PR Photo 23a/02 : NACO image of the central region of the Milky Way

  14. Tidal disruption rate of stars by supermassive black holes obtained by direct N-body simulations

    CERN Document Server

    Brockamp, M; Kroupa, P

    2011-01-01

    The disruption rate of stars by supermassive black holes (SMBHs) is calculated numerically with a modified version of Aarseth's NBODY6 code. The initial stellar distribution around the SMBH follows a S\\'{e}rsic n=4 profile representing bulges and early type galaxies. In order to infer relaxation driven effects and to increase the statistical significance, a very large set of N-body integrations with different particle numbers N, ranging from 10^{3} to 0.5 \\cdot 10^{6} particles, is performed. Three different black hole capture radii are taken into account, enabling us to scale these results to a broad range of astrophysical systems with relaxation times shorter than one Hubble time, i.e. for SMBHs up to M_bh \\approx 10^{7} M_sun. The computed number of disrupted stars are driven by diffusion in angular momentum space into the loss cone of the black hole and the rate scales with the total number of particles as dN/dt \\propto N^{b}, where b is as large as 0.83. This is significantly steeper than the expected sc...

  15. Semiclassical approach to black hole evaporation

    International Nuclear Information System (INIS)

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two-dimensional black hole models. The first is the original Callan-Giddings-Harvey-Strominger (CGHS) model, the second is another two-dimensional dilaton-gravity model, but with properties much closer to physics in the real, four-dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are found to agree qualitatively with the exactly solved modified CGHS models, namely, that the semiclassical approximation breaks down just before a naked singularity appears

  16. Quantum production of black holes at colliders

    CERN Document Server

    Arsene, Nicusor; Micu, Octavian

    2016-01-01

    We investigate black hole production in pp collisions at the Large Hadron Collider by employing the horizon quantum mechanics for models of gravity with extra spatial dimensions. This approach can be applied to processes around the fundamental gravitational scale and naturally yields a suppression below the fundamental gravitational scale and for increasing number of extra dimensions. The results of numerical simulations performed with the black hole event generator BLACKMAX are here reported in order to illustrate the main differences in the number of expected black hole events and mass distributions.

  17. Formation of black hole and emission of gravitational waves

    OpenAIRE

    Nakamura,Takashi

    2006-01-01

    Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed.

  18. Formation of black hole and emission of gravitational waves.

    Science.gov (United States)

    Nakamura, Takashi

    2006-12-01

    Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed. PMID:25792793

  19. Thermal BEC black holes

    CERN Document Server

    Casadio, Roberto; Micu, Octavian; Orlandi, Alessio

    2015-01-01

    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a...

  20. Thermal corpuscular black holes

    CERN Document Server

    Casadio, Roberto; Orlandi, Alessio

    2015-01-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M=N\\,m$ and a Planckian distribution for $E>M$ at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction preci...

  1. Virtual Black Holes

    CERN Document Server

    Hawking, Stephen William

    1996-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S^2\\times S^2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S^2\\times S^2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix \\ that does not factorise into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the \\theta angle of QCD is zero without having to invoke the problematical existence of a light axion. The pic...

  2. Black hole thermodynamical entropy

    Energy Technology Data Exchange (ETDEWEB)

    Tsallis, Constantino [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Santa Fe Institute, Santa Fe, NM (United States); Cirto, Leonardo J.L. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil)

    2013-07-15

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S{sub BG} of a (3+1) black hole is proportional to its area L{sup 2} (L being a characteristic linear length), and not to its volume L{sup 3}. Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S{sub BG} is proportional to lnL if d=1, and to L{sup d-1} if d>1, instead of being proportional to L{sup d} (d {>=} 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  3. Transient Black Hole Binaries

    CERN Document Server

    Belloni, T M

    2016-01-01

    The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...

  4. Quantum black hole evaporation

    CERN Document Server

    Schoutens, K; Verlinde, Erik; Schoutens, Kareljan; Verlinde, Erik; Verlinde, Herman

    1993-01-01

    We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to deriv...

  5. Millimeter Flares and VLBI Visibilities from Relativistic Simulations of Magnetized Accretion onto the Galactic Center Black Hole

    CERN Document Server

    Dexter, Jason; Fragile, P Chris

    2009-01-01

    The recent VLBI observation of the Galactic center black hole candidate Sgr A* at 1.3mm shows source structure on event-horizon scales. This detection enables a direct comparison of the emission region with models of the accretion flow onto the black hole. We present the first results from time-dependent radiative transfer of general relativistic MHD simulation data, and compare simulated synchrotron images at black hole spin a=0.9 with the VLBI measurements. After tuning the accretion rate to match the millimeter flux, we find excellent agreement between predicted and observed visibilities, even when viewed face-on (i < 30 degrees). VLBI measurements on 2000-3000km baselines should constrain the inclination. The data constrain the accretion rate to be (1.0-2.3)x10^-9 M_sun / yr with 99% confidence, consistent with but independent of prior estimates derived from spectroscopic and polarimetric measurements. Finally, we compute light curves, which show that magnetic turbulence can directly produce flaring ev...

  6. Spectroastrometry of rotating gas disks for the detection of supermassive black holes in galactic nuclei. I. Method and simulations

    CERN Document Server

    Gnerucci, A; Capetti, A; Axon, D; Robinson, A

    2010-01-01

    This is the first in a series of papers in which we study the application of spectroastrometry in the context of gas kinematical studies aimed at measuring the mass of supermassive black holes. The spectroastrometrical method consists in measuring the photocenter of light emission in different wavelength or velocity channels. In particular we explore the potential of spectroastrometry of gas emission lines in galaxy nuclei to constrain the kinematics of rotating gas disks and to measure the mass of putative supermassive black holes. By means of detailed simulations and test cases, we show that the fundamental advantage of spectroastrometry is that it can provide information on the gravitational potential of a galaxy on scales significantly smaller (~ 1/10) than the limit imposed by the spatial resolution of the observations. We then describe a simple method to infer detailed kinematical informations from spectroastrometry in longslit spectra and to measure the mass of nuclear mass concentrations. Such method ...

  7. Area spectrum of slowly rotating black holes

    OpenAIRE

    Myung, Yun Soo

    2010-01-01

    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  8. Spacetime Duality of BTZ Black Hole

    OpenAIRE

    Ho, Jeongwon; Kim, Won T.; Park, Young-Jai

    1999-01-01

    We consider the duality of the quasilocal black hole thermodynamics, explicitly the quasilocal black hole thermodynamic first law, in BTZ black hole solution as a special one of the three-dimensional low energy effective string theory.

  9. Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    Science.gov (United States)

    Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-07-01

    Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ∼ 30{r}{{g}} for \\dot{M}∼ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ∼ 10{r}{{g}} with increasing mass accretion rate \\dot{M}∼ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.

  10. Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    Science.gov (United States)

    Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-07-01

    Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ˜ 30{r}{{g}} for \\dot{M}˜ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ˜ 10{r}{{g}} with increasing mass accretion rate \\dot{M}˜ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.

  11. Black hole feedback from thick accretion discs

    OpenAIRE

    Sadowski, Aleksander; Lasota, Jean-Pierre; Abramowicz, Marek A.; Narayan, Ramesh

    2015-01-01

    We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is $3\\%$ - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretio...

  12. What, no black hole evaporation

    International Nuclear Information System (INIS)

    Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)

  13. Nonlinear Electrodynamics and black holes

    CERN Document Server

    Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo

    2007-01-01

    It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.

  14. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  15. Can Black Hole Relax Unitarily?

    CERN Document Server

    Solodukhin, S N

    2004-01-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  16. Quantum black hole without singularity

    CERN Document Server

    Kiefer, Claus

    2015-01-01

    We discuss the quantization of a spherical dust shell in a rigorous manner. Classically, the shell can collapse to form a black hole with a singularity. In the quantum theory, we construct a well-defined self-adjoint extension for the Hamilton operator. As a result, the evolution is unitary and the singularity is avoided. If we represent the shell initially by a narrow wave packet, it will first contract until it reaches the region where classically a black hole would form, but then re-expands to infinity. In a way, the state can be interpreted as a superposition of a black hole with a white hole.

  17. Supersymmetric black holes in string theory

    OpenAIRE

    Mohaupt, T.

    2007-01-01

    We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation to t...

  18. Prisons of Light - Black Holes

    Science.gov (United States)

    Ferguson, Kitty

    1998-05-01

    In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  19. Black Holes and Galaxy Metamorphosis

    CERN Document Server

    Holley-Bockelmann, K

    2001-01-01

    Supermassive black holes can be seen as an agent of galaxy transformation. In particular, a supermassive black hole can cause a triaxial galaxy to evolve toward axisymmetry by inducing chaos in centrophilic orbit families. This is one way in which a single supermassive black hole can induce large-scale changes in the structure of its host galaxy -- changes on scales far larger than the Schwarzschild radius ($O(10^{-5}) \\rm{pc}$) and the radius of influence of the black hole ($O(1)-O(100) \\rm{pc}$). We will discuss the transformative power of supermassive black holes in light of recent high resolution N-body realizations of cuspy triaxial galaxies.

  20. Black holes and the multiverse

    CERN Document Server

    Garriga, Jaume; Zhang, Jun

    2015-01-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive blac...

  1. Quantum strings and black holes

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2001-01-01

    The transition between (non supersymmetric) quantum string states and Schwarzschild black holes is discussed. This transition occurs when the string coupling $g^2$ (which determines Newton's constant) increases beyond a certain critical value $g_c^2$. We review a calculation showing that self-gravity causes a typical string state of mass $M$ to shrink, as the string coupling $g^2$ increases, down to a compact string state whose mass, size, entropy and luminosity match (for the critical value $g_c^2 \\sim (M \\sqrt{\\alpha'})^{-1}$) those of a Schwarzschild black hole. This confirms the idea (proposed by several authors) that the entropy of black holes can be accounted for by counting string states. The level spacing of the quantum states of Schwarzschild black holes is expected to be exponentially smaller than their radiative width. This makes it very difficult to conceive (even Gedanken) experiments probing the discreteness of the quantum energy levels of black holes.

  2. Slicing black hole spacetimes

    Science.gov (United States)

    Bini, Donato; Bittencourt, Eduardo; Geralico, Andrea; Jantzen, Robert T.

    2015-04-01

    A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand, properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.

  3. Slicing black hole spacetimes

    CERN Document Server

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T

    2015-01-01

    A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.

  4. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is

  5. How Dim Accreting Black Holes Could Be?

    CERN Document Server

    Abramowicz, M A; Abramowicz, Marek Artur; Igumenshchev, Igor V.

    2001-01-01

    Recent hydrodynamical simulations of radiatively inefficient black hole accretion flows with low viscosity have demonstrated that these flows differ significantly from those described by an advection-dominated model. The black hole flows are advection-dominated only in their inner parts, but convectively dominated at radii R>100R_g. In such flows, the radiative output comes mostly from the convection part, and the radiative efficiency is independent of accretion rate and equals ~0.001. This value gives a limit for how dim an accreting black hole could be. It agrees with recent Chandra observations which indicate that accreting black holes in low-mass X-ray binaries are by factor about 100 dimmer that neutron stars accreting with the same accretion rates.

  6. New Directions in Black Hole Astrophysics

    Science.gov (United States)

    Reynolds, C. S.

    2002-12-01

    The astrophysics of accreting black holes has been a scientific focus of most major future X-ray missions. In this presentation, I will describe how our science goals and expectations have been effected by new data from Chandra and XMM-Newton as well as new theoretical work. I will argue on the basis of XMM-Newton data that black hole spin does not manifest itself through subtle effects but may have dramatic astrophysical consequences. If this is correct, the exotic astrophysics of black hole spin, including astrophysical realizations of the Penrose and Blandford-Znajek processes, will be a principal focus of Constellation-X, XEUS and MAXIM. On the other hand, data from the late stages of the RXTE/ASCA missions as well as XMM-Newton suggest that the simple technique of relativistic X-ray iron line reverberation mapping, which was originally touted as a good method for studying the inner accretion disk, may be hard to realize. Finally, I will discuss recent theoretical/simulation work on the appearance of a MHD turbulent accretion disk around a black hole. Such simulations may be a good framework to understand future timing observations of Galactic Black Hole Candidates and their quasi-periodic oscillations. They also suggest a quantitative way of measuring the space-time geometry around supermassive black holes in AGN.

  7. Rotating black hole and quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)

    2016-04-15

    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e{sup 2} ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E}, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter ω and so is the ergoregion. (orig.)

  8. Phase transition in black holes

    CERN Document Server

    Roychowdhury, Dibakar

    2014-01-01

    The present thesis is devoted towards the study of various aspects of the phase transition phenomena occurring in black holes defined in an Anti-de-Sitter (AdS) space. Based on the fundamental principles of thermodynamics and considering a grand canonical framework we examine various aspects of the phase transition phenomena occurring in AdS black holes. We analytically check that this phase transition between the smaller and larger mass black holes obey Ehrenfest relations defined at the critical point and hence confirm a second order phase transition. This include both the rotating and charged black holes in Einstein gravity. Apart from studying these issues, based on a canonical framework, we also investigate the critical behavior in charged AdS black holes. The scaling laws for these black holes are found to be compatible with the static scaling hypothesis. Finally, based on the usual framework of AdS/CFT duality, we investigate the phase transition phenomena occurring in charged hairy black holes defined...

  9. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  10. Acceleration of Black Hole Universe

    Science.gov (United States)

    Zhang, Tianxi

    2012-05-01

    An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.

  11. Black Hole Grabs Starry Snack

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  12. A nonsingular rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)

    2015-11-15

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  13. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-01-01

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  14. Black Hole Bound State Metamorphosis

    CERN Document Server

    Chowdhury, Abhishek; Saha, Arunabha; Sen, Ashoke

    2012-01-01

    N=4 supersymmetric string theories contain negative discriminant states whose numbers are known precisely from microscopic counting formulae. On the macroscopic side, these results can be reproduced by regarding these states as multi-centered black hole configurations provided we make certain identification of apparently distinct multi-centered black hole configurations according to a precise set of rules. In this paper we provide a physical explanation of such identifications, thereby establishing that multi-centered black hole configurations reproduce correctly the microscopic results for the number of negative discriminant states without any ad hoc assumption.

  15. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  16. The Black Hole Information Problem

    CERN Document Server

    Polchinski, Joseph

    2016-01-01

    The black hole information problem has been a challenge since Hawking's original 1975 paper. It led to the discovery of AdS/CFT, which gave a partial resolution of the paradox. However, recent developments, in particular the firewall puzzle, show that there is much that we do not understand. I review the black hole, Hawking radiation, and the Page curve, and the classic form of the paradox. I discuss AdS/CFT as a partial resolution. I then discuss black hole complementarity and its limitations, leading to many proposals for different kinds of `drama.' I conclude with some recent ideas.

  17. Evaporation of primordial black holes

    Science.gov (United States)

    Hawking, S. W.

    The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.

  18. Thermodynamics of Lifshitz black holes

    Science.gov (United States)

    Devecioǧlu, Deniz Olgu; Sarıoǧlu, Özgür

    2011-06-01

    We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.

  19. The r-process in black hole-neutron star mergers based on a fully general-relativistic simulation

    Science.gov (United States)

    Nishimura, N.; Wanajo, S.; Sekiguchi, Y.; Kiuchi, K.; Kyutoku, K.; Shibata, M.

    2016-01-01

    We investigate the black hole-neutron star binary merger in the contest of the r-process nucleosynthesis. Employing a hydrodynamical model simulated in the framework of full general relativity, we perform nuclear reaction network calculations. The extremely neutron-rich matter with the total mass 0.01 M⊙ is ejected, in which a strong r-process with fission cycling proceeds due to the high neutron number density. We discuss relevant astrophysical issues such as the origin of r-process elements as well as the r-process powered electromagnetic transients.

  20. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  1. Star formation around supermassive black holes.

    Science.gov (United States)

    Bonnell, I A; Rice, W K M

    2008-08-22

    The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole. PMID:18719276

  2. Accretion, Primordial Black Holes and Standard Cosmology

    OpenAIRE

    Nayak, Bibekananda; Singh, Lambodar Prasad

    2009-01-01

    Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.

  3. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  4. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    B Nayak; P Singh

    2011-01-01

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.

  5. Towards a Theory of Quantum Black Hole

    OpenAIRE

    Berezin, V.

    2001-01-01

    We describe some specific quantum black hole model. It is pointed out that the origin of a black hole entropy is the very process of quantum gravitational collapse. The quantum black hole mass spectrum is extracted from the mass spectrum of the gravitating source. The classical analog of quantum black hole is constructed.

  6. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  7. Switching off black hole evaporation

    International Nuclear Information System (INIS)

    The inclusion of the back-reaction in the Hawking effect leads to the result that, if vector boson fields predominate in nature, then black holes stop evaporating when their mass reaches a non-vanishing limiting value. (author)

  8. Formation of Supermassive Black Holes

    CERN Document Server

    Volonteri, Marta

    2010-01-01

    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.

  9. Black hole thermodynamics from decoherence

    CERN Document Server

    Guo, Xiao-Kan

    2015-01-01

    We present an approach to the four laws of black hole thermodynamics by utilizing the thermodynamics of quantum coherence. Firstly, Hawking effect is attributed to the decoherence of the two-mode squeezed state in a black hole spacetime. Then use is made of the relative entropy between undecohered and decohered squeezed states whose monotonicity gives the zeroth and the second law, while the first law can be obtained either by the vanishing of the first derivative of relative entropy or by studying the effective thermal model generated by the modular Hamiltonian. Futhermore, information-theoretic arguments give a Planck's form of the third law of black hole thermodynamics. With this approach we can understand the laboratory analogues of black holes solely by quantum theory. This approach also opens a way to reconstruct classical geometry from quantum gravity.

  10. Black hole interior mass formula

    International Nuclear Information System (INIS)

    We argue by explicit computations that, although the area product, horizon radii product, entropy product, and irreducible mass product of the event horizon and Cauchy horizon are universal, the surface gravity product, the surface temperature product and the Komar energy product of the said horizons do not seem to be universal for Kerr-Newman black hole spacetimes. We show the black hole mass formula on the Cauchy horizon following the seminal work by Smarr [Phys Rev Lett 30:71 (1973), Phys Rev D 7:289 (1973)] for the outer horizon. We also prescribe the four laws of black hole mechanics for the inner horizon. A new definition of the extremal limit of a black hole is discussed. (orig.)

  11. Simulations of flux variability of oscillating accretion fluid tori around Kerr black holes

    CERN Document Server

    Bakala, Pavel; Šrámková, Eva; Kotrlová, Andrea; Török, Gabriel; Vincent, Frederic H; Abramowicz, Marek A

    2014-01-01

    High frequency quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra (PDS) of several microquasars and low mass X-ray binaries. Many proposed QPO models are based on oscillations of accretion toroidal fluid structures orbiting in the vicinity of a compact object. We study oscillating accretion tori orbiting in the vicinity of a Kerr black hole. We demonstrate that significant variation of the observed flux can be caused by the combination of radial and vertical oscillation modes of a slender, polytropic, perfect fluid, non-self-graviting torus with constant specific angular momentum. We investigate two combinations of the oscillating modes corresponding to the direct resonance QPO model and the modified relativistic precession QPO model.

  12. Black Hole Meiosis

    CERN Document Server

    Van Herck, Walter

    2009-01-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, arXiv:0810.4301. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the `chromosomes' of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as `crossing-over in the meiosis of a D-particle'. Our results improve on hep-th/0702012, provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity...

  13. Black hole meiosis

    Science.gov (United States)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  14. QCD against black holes?

    CERN Document Server

    Royzen, Ilya I

    2009-01-01

    Along with compacting baryon (neutron) spacing, two very important factors come into play at once: the lack of self-stabilization within a compact neutron star (NS) associated with possible black hole (BH) horizon appearance and the phase transition - color deconfinement and QCD-vacuum reconstruction - within the nuclear matter. That is why both phenomena should be taken into account side by side, as the gravitational collapse is considered. Since, under the above transition, the hadronic-phase vacuum (filled up with gluon and chiral $q\\bar q$-condensates) turns into the "empty" (perturbation) subhadronic-phase one and, thus, the corresponding (very high) pressure falls down rather abruptly, the formerly cold (degenerated) nuclear medium starts to implode into the new vacuum. If the mass of a star is sufficiently large, then this implosion produces an enormous heating, which stops only after quark-gluon plasma of a temperature about 100 MeV (or even higher) is formed to withstand the gravitational compression...

  15. The Black Hole Universe Model

    Science.gov (United States)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  16. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  17. Vacuum metastability with black holes.

    OpenAIRE

    Burda, Philipp; Gregory, Ruth; Moss, Ian

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evapor...

  18. Black Holes and String Theory

    CERN Document Server

    Myers, R C

    2001-01-01

    This is a short summary of my lectures given at the Fourth Mexican School on Gravitation and Mathematical Physics. These lectures gave a brief introduction to black holes in string theory, in which I primarily focussed on describing some of the recent calculations of black hole entropy using the statistical mechanics of D-brane states. The following overview will also provide the interested students with an introduction to the relevant literature.

  19. Charged rotating noncommutative black holes

    International Nuclear Information System (INIS)

    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  20. Charged rotating noncommutative black holes

    Science.gov (United States)

    Modesto, Leonardo; Nicolini, Piero

    2010-11-01

    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  1. Charged rotating noncommutative black holes

    CERN Document Server

    Modesto, Leonardo

    2010-01-01

    In this paper we complete the program of the Noncomutative Geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newmann-Janis algorithm in case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  2. Geometric inequalities for black holes

    CERN Document Server

    Dain, Sergio

    2014-01-01

    It is well known that the three parameters that characterize the Kerr black hole (mass, angular momentum and horizon area) satisfy several important inequalities. Remarkably, some of these inequalities remain valid also for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this article recent results in this subject are reviewed.

  3. Black holes and cosmic censorship

    International Nuclear Information System (INIS)

    It is widely accepted that the complete gravitational collapse of a body always yields a black hole, and that naked singularities are never produced (the cosmic censorship hypothesis). The local (or strong) cosmic censorship hypothesis states that singularities which are even locally naked (e.g., to an observer inside a black hole) are never produced. This dissertation studies the validity of these two conjectures. The Kerr-Newman metrics describes the black holes only when M2 greater than or equal to Q2 + P2, where M is the mass of the black hole, a = J/M its specific angular momentum, Q its electric charge, and P its magnetic charge. In the first part of this dissertation, the possibility of converting an extreme Kerr-Newman black hole (M2 = a2 + Q2 + P2) into a naked singularity by the accretion of test particles is considered. The motion of test particles is studied with a large angular momentum to energy ratio, and also test particles with a large charge to energy ratio. The final state is always found to be a black hole if the angular momentum, electric charge, and magnetic charge of the black hole are all much greater than the corresponding angular momentum, electric charge, and magnetic charge of the test particle. In Part II of this dissertation possible black hole interior solutions are studied. The Cauchy horizons and locally naked timelike singularities of the charged (and/or rotating) solutions are contrasted with the spacelike all-encompassing singularity of the Schwarzschild solution. It is determined which portions of the analytic extension of the Reissner-Nordstroem solution are relevant to realistic gravitational collapse

  4. Dynamic black-hole entropy

    OpenAIRE

    Hayward, Sean A.; Mukohyama, Shinji; Ashworth, M. C.

    1998-01-01

    We consider two non-statistical definitions of entropy for dynamic (non-stationary) black holes in spherical symmetry. The first is analogous to the original Clausius definition of thermodynamic entropy: there is a first law containing an energy-supply term which equals surface gravity times a total differential. The second is Wald's Noether-charge method, adapted to dynamic black holes by using the Kodama flow. Both definitions give the same answer for Einstein gravity: one-quarter the area ...

  5. Soft Hair on Black Holes

    OpenAIRE

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-01-01

    It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft ($i.e.$ zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that com...

  6. Probability for primordial black holes

    Science.gov (United States)

    Bousso, R.; Hawking, S. W.

    1995-11-01

    We consider two quantum cosmological models with a massive scalar field: an ordinary Friedmann universe and a universe containing primordial black holes. For both models we discuss the complex solutions to the Euclidean Einstein equations. Using the probability measure obtained from the Hartle-Hawking no-boundary proposal we find that the only unsuppressed black holes start at the Planck size but can grow with the horizon scale during the roll down of the scalar field to the minimum.

  7. Constraints on Black Hole Remnants

    OpenAIRE

    Giddings, S. B.

    1993-01-01

    One possible fate of information lost to black holes is its preservation in black hole remnants. It is argued that a type of effective field theory describes such remnants (generically referred to as informons). The general structure of such a theory is investigated and the infinite pair production problem is revisited. A toy model for remnants clarifies some of the basic issues; in particular, infinite remnant production is not suppressed simply by the large internal volumes as proposed in c...

  8. Information retrieval from black holes

    OpenAIRE

    Lochan, Kinjalk; Chakraborty, Sumanta; Padmanabhan, T.

    2016-01-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge and angular momentum is expected to be revealed to such asymptotic observers after th...

  9. Black hole thermodynamics from decoherence

    OpenAIRE

    Guo, Xiao-Kan

    2015-01-01

    We present an approach to the four laws of black hole thermodynamics by utilizing the thermodynamics of quantum coherence. Firstly, Hawking effect is attributed to the decoherence of the two-mode squeezed state in a black hole spacetime. Then use is made of the relative entropy between undecohered and decohered squeezed states whose monotonicity gives the zeroth and the second law, while the first law can be obtained either by the vanishing of the first derivative of relative entropy or by st...

  10. New regular black hole solutions

    International Nuclear Information System (INIS)

    In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.

  11. Black Holes as Dark Matter

    OpenAIRE

    Frampton, Paul H.

    2009-01-01

    While the energy of the universe has been established to be about 0.04 baryons, 0.24 dark matter and 0.72 dark energy, the cosmological entropy is almost entirely, about $(1 - 10^{-15})$, from black holes and only $10^{-15}$ from everything else. This identification of all dark matter as black holes is natural in statistical mechanics. Cosmological history of dark matter is discussed.

  12. Are Black Holes Elementary Particles?

    OpenAIRE

    Ha, Yuan K.

    2009-01-01

    Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.

  13. Black holes: the membrane paradigm

    International Nuclear Information System (INIS)

    The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole

  14. Discriminating Supersymmetry and Black Holes at the Large Hadron Collider

    CERN Document Server

    Roy, Arunava

    2008-01-01

    We show how to differentiate the minimal supersymmetric extension of the standard model from black hole events at the Large Hadron Collider. Black holes are simulated with the CATFISH generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET. Our study, based on event shape variables, visible and missing momenta, and analysis of dilepton events, demonstrates that supersymmetry and black hole events at the LHC can be easily discriminated.

  15. Massive Black Holes: formation and evolution

    OpenAIRE

    Rees, Martin J.; Volonteri, Marta

    2007-01-01

    Supermassive black holes are nowadays believed to reside in most local galaxies. Observations have revealed us vast information on the population of local and distant black holes, but the detailed physical properties of these dark massive objects are still to be proven. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. We briefly review here the basic properties of the population of supermassive black holes,...

  16. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  17. Regular black hole in three dimensions

    International Nuclear Information System (INIS)

    We find a new black hole in three-dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare the thermodynamics of this black hole with that of a non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy. (orig.)

  18. Regular black hole in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Yun Soo [Inje University, Institute of Basic Science and School of Computer Aided Science, Gimhae (Korea); Yoon, Myungseok [Sogang University, Center for Quantum Spacetime, Seoul (Korea)

    2009-07-15

    We find a new black hole in three-dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare the thermodynamics of this black hole with that of a non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy. (orig.)

  19. Supersymmetry versus black holes at the LHC

    CERN Document Server

    Roy, Arunava

    2007-01-01

    Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. We propose a simple but powerful method to discriminate the two models: the analysis of isolated leptons with high transverse momentum. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our results show the measure of the dilepton invariant mass provides a strong signature to differentiate supersymmetry and black hole events at the Large Hadron Collider. Analysis of event-shape variables and multilepton events complement and strengthen this conclusion.

  20. Black hole quantum spectrum

    International Nuclear Information System (INIS)

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum ''overtone'' number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the ''hydrogen atom'' and the ''quasi-thermal emission'' in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox. (orig.)

  1. Black hole quantum spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Corda, Christian [Institute for Theoretical Physics and Advanced Mathematics (IFM) Einstein-Galilei, Prato (Italy); Istituto Universitario di Ricerca ' ' Santa Rita' ' , Prato (Italy); International Institute for Applicable Mathematics and Information Sciences (IIAMIS), Hyderabad (India)

    2013-12-15

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum ''overtone'' number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the ''hydrogen atom'' and the ''quasi-thermal emission'' in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox. (orig.)

  2. Black Hole Boldly Goes Where No Black Hole Has Gone Before

    Science.gov (United States)

    2007-01-01

    Astronomers have found a black hole where few thought they could ever exist, inside a globular star cluster. The finding has broad implications for the dynamics of stars clusters and also for the existence of a still-speculative new class of black holes called 'intermediate-mass' black holes. The discovery is reported in the current issue of Nature. Tom Maccarone of the University of Southampton in England leads an international team on the finding, made primarily with the European Space Agency's XMM-Newton satellite. Globular clusters are dense bundles of thousands to millions of old stars, and many scientists have doubted that black holes could survive in such an exclusive environment. Computer simulations show that a newly formed black hole would first sink towards the centre of the cluster but quickly get gravitationally slingshot out entirely when interacting with the cluster's myriad stars. Credit: ESA/Hubble Artist's impression of globular star cluster The new finding provides the first convincing evidence that some black hole might not only survive but grow and flourish in globular clusters. What has astonished astronomers is how quickly the black hole was found. "We were preparing for a long, systematic search of thousands of globular clusters with the hope of finding just one black hole," said Maccarone. "But bingo, we found one as soon as we started the search. It was only the second globular cluster we looked at." The search continues to find more, Maccarone said, yet only one black hole was needed to resolve the decades-old discussion about black holes and globular clusters. Scientists say there are two main classes of black holes. Supermassive black holes containing the mass of millions to billions of suns are found in the core of most galaxies, including our own. A quasar is one kind of supermassive black hole. Stellar-size black holes contain the mass of about ten suns. These are created from the collapsed core of massive stars. Our galaxy likely

  3. Black-hole eddy currents

    International Nuclear Information System (INIS)

    We study dissipative test electromagnetic fields in a black-hole background. Quantities such as surface velocity, tangential electric field, normal magnetic induction, total surface current, and conduction surface current are introduced and are shown to satisfy Ohm's law with a surface resistivity of 4π approx. = 377 ohms. Associated with these currents there exists a ''Joule heating''. These currents can exist when the black hole is inserted in an external electric circuit, but they can exist even in the absence of external currents. In particular, we study the eddy currents induced by the rotation of a black hole in an oblique uniform magnetic field, and we show how the computation of the ohmic losses allows a very simple derivation of the torque exerted on the hole

  4. Up to 700k GPU cores, Kepler, and the Exascale future for simulations of star clusters around black holes.

    Science.gov (United States)

    Berczik, Peter; Spurzem, Rainer; Wang, Long; Zhong, Shiyan; Huang, Siyi

    2013-10-01

    We present direct astrophysical N-body simulations with up to a few million bodies using our parallel MPI/CUDA code on large GPU clusters in China, Ukraine and Germany, with different kinds of GPU hardware. These clusters are directly linked under the Chinese Academy of Sciences special GPU cluster program in the cooperation of ICCS (International Center for Computational Science). We reach about the half the peak Kepler K20 GPU performance for our ?-GPU code [2], in a real application scenario with individual hierarchically block time-steps with the high (4th, 6th and 8th) order Hermite integration schemes and a real core-halo density structure of the modeled stellar systems. The code and hardware are mainly used to simulate star clusters [23, 24] and galactic nuclei with supermassive black holes [20], in which correlations between distant particles cannot be neglected.

  5. Up to 700k GPU cores, Kepler, and the Exascale future for simulations of star clusters around black holes

    CERN Document Server

    Berczik, P; Wang, L; Zhong, S; Veles, O; Zinchenko, I; Huang, S; Tsai, M; Kennedy, G; Li, S; Naso, L; Li, C

    2013-01-01

    We present direct astrophysical N-body simulations with up to a few million bodies using our parallel MPI/CUDA code on large GPU clusters in China, Ukraine and Germany, with different kinds of GPU hardware. These clusters are directly linked under the Chinese Academy of Sciences special GPU cluster program in the cooperation of ICCS (International Center for Computational Science). We reach about the half the peak Kepler K20 GPU performance for our phi-GPU code [2], in a real application scenario with individual hierarchically block time-steps with the high (4th, 6th and 8th) order Hermite integration schemes and a real core-halo density structure of the modeled stellar systems. The code and hardware are mainly used to simulate star clusters [23, 24] and galactic nuclei with supermassive black holes [20], in which correlations between distant particles cannot be neglected.

  6. Black holes and branes in string theory

    CERN Document Server

    Skenderis, K

    1999-01-01

    This is a set of introductory lecture notes on black holes in string theory. After reviewing some aspects of string theory such as dualities, brane solutions, supersymmetric and non-extremal intersection rules, we analyze in detail extremal and non-extremal 5d black holes. We first present the D-brane counting for extremal black holes. Then we show that 4d and 5d non-extremal black holes can be mapped to the BTZ black hole (times a compact manifold) by means of dualities. The validity of these dualities is analyzed in detail. We present an analysis of the same system in the spirit of the adS/CFT correspondence. In the ``near-horizon'' limit (which is actually a near inner-horizon limit for non-extremal black holes) the black hole reduces again to the BTZ black hole. A state counting is presented in terms of the BTZ black hole.

  7. Coalescence Rate of Supermassive Black Hole Binaries Derived from Cosmological Simulations: Detection Rates for LISA and ET

    CERN Document Server

    Filloux, Ch; Durier, F; de Araujo, J C N

    2011-01-01

    The coalescence history of massive black holes has been derived from cosmological simulations, in which the evolution of those objects and that of the host galaxies are followed in a consistent way. The present study indicates that supermassive black holes having masses greater than $\\sim 10^{9} M_{\\odot}$ underwent up to 500 merger events along their history. The derived coalescence rate per comoving volume and per mass interval permitted to obtain an estimate of the expected detection rate distribution of gravitational wave signals ("ring-down") along frequencies accessible by the planned interferometers either in space (LISA) or in the ground (Einstein). For LISA, in its original configuration, a total detection rate of about $15 yr^{-1}$ is predicted for events having a signal-to-noise ratio equal to 10, expected to occur mainly in the frequency range $4-9 mHz$. For the Einstein gravitational wave telescope, one event each 14 months down to one event each 4 years is expected with a signal-to-noise ratio o...

  8. Formation of Overheated Regions and Truncated Disks around Black Holes; Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    CERN Document Server

    Takahashi, Hiroyuki R; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-01-01

    Using three-dimensional general relativistic radiation magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk ($\\gtrsim 10^{7}$K) is truncated near the black hole. Hot and less-dense regions, of which the gas temperature is $ \\gtrsim 10^9$K and more than ten times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, and sandwich the cold disk, leading to the effective Compton upscattering. The truncation radius is $\\sim 30 r_{\\rm g}$ for $\\dot{M} \\sim L_{\\rm Edd}/c^2$, where $r_{\\rm g}, \\dot M, L_\\mathrm{Edd}, c$ are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed. Our results are consistent with observations of very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to $\\sim 10 r_{\\rm g}$ with increasing mass accret...

  9. Numerical Simulation of Vertical Oscillations in an Axisymmetric Thick Accretion Flow around a Black Hole

    CERN Document Server

    Deb, Arnab; Chakrabarti, Sandip K

    2016-01-01

    We study time evolution of rotating, axisymmetric, two dimensional inviscid accretion flows around black holes using a grid based finite difference method. We do not use reflection symmetry on the equatorial plane in order to inspect if the disk along with the centrifugal barrier oscillated vertically. In the inviscid limit, we find that the CENtrifugal pressure supported BOundary Layer (CENBOL) is oscillating vertically, more so, when the specific angular momentum is higher. As a result, the rate of outflow produced from the CENBOL, also oscillates. Indeed, the outflow rates in the upper half and the lower half are found to be anti-correlated. We repeat the exercise for a series of specific angular momentum {\\lambda} of the flow in order to demonstrate effects of the centrifugal force on this interesting behaviour. We find that, as predicted in theoretical models of disks in vertical equilibrium, the CENBOL is produced only when the centrifugal force is significant and more specifically, when {\\lambda} > 1.5...

  10. Black holes: a slanted overview

    International Nuclear Information System (INIS)

    The black hole saga spanning some seventy years may be broadly divided into four phases, namely, (a) the dark ages when little was known about black holes even though they had come into existence quite early through the Schwarzschild solution, (b) the age of enlightenment bringing in deep and prolific discoveries, (c) the age of fantasy that cast black holes in all sorts of extraordinary roles, and (d) the golden age of relativistic astrophysics - to some extent similar to Dirac's characterisation of the development of quantum theory - in which black holes have been extensively used to elucidate a number of astrophysical phenomena. It is impossible to give here even the briefest outline of the major developments in this vast area. We shall only attempt to present a few aspects of black hole physics which have been actively pursued in the recent past. Some details are given in the case of those topics that have not found their way into text books or review articles. (author)

  11. Macroscopic black holes, microscopic black holes and noncommutative membrane

    Energy Technology Data Exchange (ETDEWEB)

    Li Miao [Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080 (China)

    2004-07-21

    We study the stretched membrane of a black hole as consisting of a perfect fluid. We find that the pressure of this fluid is negative and the specific heat is also negative. A surprising result is that if we are to assume the fluid to be composed of some quanta, then the dispersion relation of the fundamental quantum is E = m{sup 2}/k, with m at the scale of the Planck mass. There are two possible interpretations of this dispersion relation. One is the noncommutative spacetime on the stretched membrane and the other is that the fundamental quanta are microscopic black holes.

  12. Macroscopic black holes, microscopic black holes and noncommutative membrane

    International Nuclear Information System (INIS)

    We study the stretched membrane of a black hole as consisting of a perfect fluid. We find that the pressure of this fluid is negative and the specific heat is also negative. A surprising result is that if we are to assume the fluid to be composed of some quanta, then the dispersion relation of the fundamental quantum is E = m2/k, with m at the scale of the Planck mass. There are two possible interpretations of this dispersion relation. One is the noncommutative spacetime on the stretched membrane and the other is that the fundamental quanta are microscopic black holes

  13. A black hole in a globular cluster.

    Science.gov (United States)

    Maccarone, Thomas J; Kundu, Arunav; Zepf, Stephen E; Rhode, Katherine L

    2007-01-11

    Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed. PMID:17203062

  14. Phase structure of fuzzy black holes

    Science.gov (United States)

    Digal, S.; Govindarajan, T. R.; Gupta, Kumar S.; Martin, X.

    2012-01-01

    Noncommutative deformations of the BTZ black holes are described by non- commutative cylinders. We study the scalar fields in this background. The spectrum is studied analytically and through numerical simulations we establish the existence of novel `stripe phases'. These are different from stripes on Moyal spaces and stable due to topo- logical obstruction.

  15. Black Hole Spindown by Light Bosons

    OpenAIRE

    Gruzinov, Andrei

    2016-01-01

    The saturation mechanism for the fastest-growing instability of massive scalar field in Kerr metric is identified, assuming saturation by cubic or quartic nonlinearities of the field potential. The resulting spindown rate of the black hole is calculated. The (rather involved) saturation scenario is confirmed by numerical simulations.

  16. ATLAS collision event. The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

    CERN Multimedia

    Pequenão, J

    2008-01-01

    ATLAS collision event. The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  17. Dark Matter Accretion into Supermassive Black Holes

    CERN Document Server

    Peirani, Sébastien

    2008-01-01

    The relativistic accretion rate of dark matter by a black hole is revisited. Under the assumption that the phase space density indicator, $Q=\\rho_{\\infty}/\\sigma^3_{\\infty}$, remains constant during the inflow, the derived accretion rate can be higher up to five orders of magnitude than the classical accretion formula, valid for non-relativistic and non-interacting particles, when typical dark halo conditions are considered. For these typical conditions, the critical point of the flow is located at distances of about 30-150 times the horizon radius. Application of our results to black hole seeds hosted by halos issued from cosmological simulations indicate that dark matter contributes to no more than ~10% of the total accreted mass, confirming that the bolometric quasar luminosity is related to the baryonic accretion history of the black hole.

  18. Black hole feedback from thick accretion discs

    CERN Document Server

    Sadowski, Aleksander; Abramowicz, Marek A; Narayan, Ramesh

    2015-01-01

    We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is $3\\%$ - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretion rates, and returned to the interstellar medium. Accretion on to rotating black holes is more efficient because of the additional extraction of rotational energy. However, the jet component is collimated and likely to interact only weakly with the environment, whereas the outflow and radiation components cover a wide solid angle.

  19. Dark matter accretion into supermassive black holes

    International Nuclear Information System (INIS)

    The relativistic accretion rate of dark matter by a black hole is revisited. Under the assumption that the phase space density indicator, Q=ρ∞/σ∞3, remains constant during the inflow, the derived accretion rate can be higher up to 5 orders of magnitude than the classical accretion formula, valid for nonrelativistic and noninteracting particles, when typical dark halo conditions are considered. For these typical conditions, the critical point of the flow is located at distances of about 30-150 times the horizon radius. Application of our results to black hole seeds hosted by halos issued from cosmological simulations indicate that dark matter contributes to no more than ∼10% of the total accreted mass, confirming that the bolometric quasar luminosity is related to the baryonic accretion history of the black hole.

  20. Time dependent black holes and scalar hair

    International Nuclear Information System (INIS)

    We show how to correctly account for scalar accretion onto black holes in scalar field models of dark energy by a consistent expansion in terms of a slow roll parameter. At leading order, we find an analytic solution for the scalar field within our Hubble volume, which is regular on both black hole and cosmological event horizons, and compute the back reaction of the scalar on the black hole, calculating the resulting expansion of the black hole. Our results are independent of the relative size of black hole and cosmological event horizons. We comment on the implications for more general black hole accretion, and the no hair theorems. (paper)

  1. Implementing black hole as efficient power plant

    OpenAIRE

    Wei, Shao-Wen; Liu, Yu-Xiao

    2016-01-01

    Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine w...

  2. Black hole spectroscopy from Loop Quantum Gravity models

    OpenAIRE

    Barrau, A.; Cao, Xiangyu; Noui, Karim; Perez, Alejandro

    2015-01-01

    Using Monte Carlo simulations, we compute the integrated emission spectra of black holes in the framework of Loop Quantum Gravity (LQG). The black hole emission rates are governed by the entropy whose value, in recent holographic loop quantum gravity models, was shown to agree at leading order with the Bekenstein-Hawking entropy. Quantum corrections depend on the Barbero-Immirzi parameter $\\gamma$. Starting with black holes of initial horizon area $A \\sim 10^2$ in Planck units, we present the...

  3. Energy on black hole spacetimes

    CERN Document Server

    Corichi, Alejandro

    2012-01-01

    We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.

  4. Scrambling with matrix black holes

    Science.gov (United States)

    Brady, Lucas; Sahakian, Vatche

    2013-08-01

    If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.

  5. Liouvillian perturbations of black holes

    Science.gov (United States)

    Couch, W. E.; Holder, C. L.

    2007-10-01

    We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.

  6. Massive Black Holes and Galaxies

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.

  7. Disrupting Entanglement of Black Holes

    CERN Document Server

    Leichenauer, Stefan

    2014-01-01

    We study entanglement in thermofield double states of strongly coupled CFTs by analyzing two-sided Reissner-Nordstrom solutions in AdS. The central object of study is the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For large regions the mutual information is positive and for small ones it vanishes; we compute the critical length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the butterfly effect of Shenker and Stanford to a wide class of charged black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a time of order $\\log E/\\delta E$ in units of the temperature. We conjecture that the parametric form of this timescale is universal.

  8. Force-feeding Black Holes

    CERN Document Server

    Begelman, Mitchell C

    2012-01-01

    We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ("hyperaccretion"). This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few per cent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below a few thousand degrees K, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion (sigma) of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and sigma that resembles the empiri...

  9. Control of black hole evaporation?

    International Nuclear Information System (INIS)

    Contradiction between Hawking's semi-classical arguments and the string theory on the evaporation of a black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that the original Hawking effect can also be regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of the Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during the evaporation process and as a result the evaporation process itself, significantly

  10. Asymptotic black hole quasinormal frequencies

    OpenAIRE

    Motl, Lubos; Neitzke, Andrew

    2003-01-01

    We give a new derivation of the quasinormal frequencies of Schwarzschild black holes in d greater than or equal to 4 and Reissner-Nordstrom black holes in d = 4, in the limit of infinite damping. For Schwarzschild in d greater than or equal to 4 we find that the asymptotic real part is THawkinglog(3) for scalar perturbations and for some gravitational perturbations; this confirms a result previously obtained by other means in the case d = 4. For Reissner-Nordstrom in d = 4 w...

  11. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  12. Black Hole Statistics from Holography

    OpenAIRE

    Shepard, Peter G.

    2005-01-01

    We study the microstates of the ``small'' black hole in the $\\half$-BPS sector of AdS$_5\\times S^5$, the superstar of Myers and Tafjord, using the powerful holographic description provided by LLM. The system demonstrates the inherently statistical nature of black holes, with the geometry of Myer and Tafjord emerging only after averaging over an ensemble of geometries. The individual microstate geometries differ in the highly non-trivial topology of a quantum foam at their core, and the entrop...

  13. Information Loss in Black Holes

    CERN Document Server

    Hawking, Stephen William

    2005-01-01

    The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with non-trivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence.

  14. Information loss in black holes

    Science.gov (United States)

    Hawking, S. W.

    2005-10-01

    The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with nontrivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence.

  15. Black holes and warped spacetime

    International Nuclear Information System (INIS)

    Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime

  16. Introduction to Black Hole Evaporation

    CERN Document Server

    Lambert, Pierre-Henry

    2013-01-01

    These lecture notes are an elementary and pedagogical introduction to the black hole evaporation, based on a lecture given by the author at the Ninth Modave Summer School in Mathematical Physics and are intended for PhD students. First, quantum field theory in curved spacetime is studied and tools needed for the remaining of the course are introduced. Then quantum field theory in Rindler spacetime in 1+1 dimensions and in the spacetime of a spherically collapsing star are considered, leading to Unruh and Hawking effects, respectively. Finally some consequences such as thermodynamics of black holes and information loss paradox are discussed.

  17. Black hole evolution: I. Supernova-regulated black hole growth

    CERN Document Server

    Dubois, Yohan; Silk, Joseph; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2015-01-01

    The growth of a supermassive black hole (BH) is determined by how much gas the host galaxy is able to feed it, which in turn is controlled by the cosmic environment, through galaxy mergers and accretion of cosmic flows that time how galaxies obtain their gas, but also by internal processes in the galaxy, such as star formation and feedback from stars and the BH itself. In this paper, we study the growth of a 10^12 Msun halo at z=2, which is the progenitor of an archetypical group of galaxies at z=0, and of its central BH by means of a high-resolution zoomed cosmological simulation, the Seth simulation. We study the evolution of the BH driven by the accretion of cold gas in the galaxy, and explore the efficiency of the feedback from supernovae (SNe). For a relatively inefficient energy input from SNe, the BH grows at the Eddington rate from early times, and reaches self-regulation once it is massive enough. We find that at early cosmic times z>3.5, efficient feedback from SNe forbids the formation of a settled...

  18. Probing the magnetic field structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    CERN Document Server

    Gold, Roman; Johnson, Michael D; Doeleman, Sheperd S

    2016-01-01

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic-field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical (MHD) simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A$^\\ast$ (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability (MRI) as well as models with large-scale ordered fields in magnetically-arrested disks (MAD). We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford-...

  19. Spinning black hole in the puncture method: Numerical experiments

    International Nuclear Information System (INIS)

    The strong-field region inside a black hole needs special attention during numerical simulation. One approach for handling the problem is the moving puncture method, which has become an important tool in numerical relativity since it allows long term simulations of binary black holes. An essential component of this method is the choice of the '1+log'-slicing condition. We present an investigation of this slicing condition in rotating black hole spacetimes. We discuss how the results of the stationary Schwarzschild '1+log'-trumpet change when spin is added. This modification enables a simple and cheap algorithm for determining the spin of a non-moving black hole for this particular slicing condition. Applicability of the algorithm is verified in simulations of single black hole, binary neutron star and mixed binary simulations

  20. Regular Black Holes with Cosmological Constant

    Institute of Scientific and Technical Information of China (English)

    MO Wen-Juan; CAI Rong-Gen; SU Ru-Keng

    2006-01-01

    We present a class of regular black holes with cosmological constant Λ in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the Λ term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole, and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.

  1. Implementing black hole as efficient power plant

    CERN Document Server

    Wei, Shao-Wen

    2016-01-01

    Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work with black hole, and such heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole.

  2. Tests and applications of the SXS binary black hole catalog

    Science.gov (United States)

    Scheel, Mark; Simulations of Extreme Spacetimes (SXS) Collaboration Collaboration

    2016-03-01

    Numerical relativity is the only reliable method of computing the full gravitational waveform--including inspiral, merger, and ringdown--for strongly-gravitating systems like coalescing black holes, which are of foremost importance to gravitational-wave interferometers such as LIGO. We have used the Spectral Einstein Code [black-holes.org/SpEC.html] to construct a public catalog of hundreds of binary black hole simulations, for use by gravitational-wave science, and for calibration of fast analytic models of binary black-hole waveforms. We discuss the current status of the catalog, tests of the resulting waveforms, and selected applications.

  3. Formalism for Primordial Black Hole Formation in Spherical Symmetry

    CERN Document Server

    Bloomfield, Jolyon; Face, Stephen

    2015-01-01

    We present a comprehensive formalism for the description of primordial black hole formation in spherical symmetry based on the formalisms of Misner, Sharp, and Hernandez, which can be used to predict whether or not a black hole will form, and extract the resulting black hole mass when formation does occur. Rigorous derivations of all aspects of the formalism are provided, including a thorough investigation of appropriate initial and boundary conditions. We connect our formalism with numerous other approaches in the literature. Some implementation details for numerical code are provided. We include animations of simulated primordial black hole formation as supplemental material.

  4. Modified dispersion relations and black hole physics

    OpenAIRE

    Ling, Yi; Hu, Bo; Li, Xiang

    2005-01-01

    A modified formulation of energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such modification will give corrections to both the temperature and the entropy of black holes. In particular this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaching the Planck scale. It can prevent black holes from total evaporation, as a result pr...

  5. Black-hole formation from stellar collapse

    International Nuclear Information System (INIS)

    I review the end-state of massive stellar evolution, following the evolution of these massive stars from the onset of collapse through the formation of a compact remnant and the possible supernova or hypernova explosion. In particular, I concentrate on the formation of black holes from stellar collapse: the fraction of stars that form black holes, the black-hole mass distribution and the velocities these black-hole remnants may receive during their formation process

  6. Black holes sourced by a massless scalar

    CERN Document Server

    Cadoni, Mariano

    2015-01-01

    We construct asymptotically flat black hole solutions of Einstein-scalar gravity sourced by a nontrivial scalar field with 1/r asymptotic behaviour. Near the singularity the black hole behaves as the Janis-Newmann-Winicour-Wyman solution. The hairy black hole solutions allow for a consistent thermodynamical description. At large mass they have the same thermodynamical behaviour of the Schwarzschild black hole, whereas for small masses they differ substantially from the latter.

  7. Merging galaxies and black hole ejections

    Science.gov (United States)

    Valtonen, M. J.

    1990-01-01

    In mergers of galaxies their central black holes are accumulated together. Researchers show that few black hole systems arise which decay through black hole collisions and black hole ejections. The ejection statistics are calculated and compared with two observed systems where ejections have been previously suggested: double radio sources and high redshift quasars near low redshift galaxies. In both cases certain aspects of the associations are explained by the merger hypothesis.

  8. Noncommutative geometry inspired Schwarzschild black hole

    OpenAIRE

    Nicolini, Piero; Smailagic, Anais; Spallucci, Euro

    2005-01-01

    We investigate the behavior of a noncommutative radiating Schwarzschild black hole. It is shown that coordinate noncommutativity cures usual problems encountered in the description of the terminal phase of black hole evaporation. More in detail, we find that: the evaporation end-point is a zero temperature extremal black hole even in the case of electrically neutral, non-rotating, objects; there exists a finite maximum temperature that the black hole can reach before cooling down to absolute ...

  9. Energy conservation for dynamical black holes

    OpenAIRE

    Hayward, Sean A.

    2004-01-01

    An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. For a growing black hole, this first law of black-hole dynamics is equivalent to an equation of Ashtekar & Krishnan, but the new integral and differential forms are regular in the limit where the black hole ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures o...

  10. Will black holes eventually engulf the universe?

    OpenAIRE

    Martin-Moruno, Prado; Madrid, Jose A. Jimenez; Gonzalez-Diaz, Pedro F.

    2006-01-01

    The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological...

  11. Quantum Black Holes As Elementary Particles

    OpenAIRE

    Ha, Yuan K.

    2008-01-01

    Are black holes elementary particles? Are they fermions or bosons? We investigate the remarkable possibility that quantum black holes are the smallest and heaviest elementary particles. We are able to construct various fundamental quantum black holes: the spin-0, spin 1/2, spin-1, and the Planck-charge cases, using the results in general relativity. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox posed by the Greisen-Zatsepin-Kuzmin limit on the energy of cosmi...

  12. Stationary Scalar Clouds Around Rotating Black Holes

    OpenAIRE

    Hod, Shahar

    2012-01-01

    Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stat...

  13. Collisions of oppositely charged black holes

    CERN Document Server

    Zilhão, Miguel; Herdeiro, Carlos; Lehner, Luis; Sperhake, Ulrich

    2013-01-01

    The first fully non-linear numerical simulations of colliding charged black holes in D=4 Einstein-Maxwell theory were recently reported arXiv:1205.1063. These collisions were performed for black holes with equal charge-to-mass ratio, for which initial data can be found in closed analytic form. Here we generalize the study of collisions of charged black holes to the case of unequal charge-to-mass ratios. We focus on oppositely charged black holes, as to maximize acceleration-dependent effects. As |Q|/M increases from 0 to 0.99, we observe that the gravitational radiation emitted increases by a factor of ~ 2.7; the electromagnetic radiation emission becomes dominant for |Q|/M >~ 0.37 and at |Q|/M=0.99 is larger, by a factor of ~ 5.8, than its gravitational counterpart. We observe that these numerical results exhibit a precise and simple scaling with the charge. Furthermore, we show that the results from the numerical simulations are qualitatively captured by a simple analytic model that computes the electromagn...

  14. The first massive black holes

    OpenAIRE

    Volonteri, Marta

    2012-01-01

    I briefly outline recent theoretical developments on the formation of the first massive black holes (MBHs) that may grow into the population of MBHs powering quasars and inhabiting galactic centers today. I also touch upon possible observational tests that may give insights on what the properties of the first MBHs were.

  15. Close encounters of black holes

    CERN Document Server

    Giulini, D

    2003-01-01

    This is an introduction into the problem of how to set up black hole initial-data for the matter-free field equations of General Relativity. The approach is semi-pedagogical and addresses a more general audience of astrophysicists and students with no specialized training in General Relativity beyond that of an introductory lecture.

  16. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva

    2016-05-01

    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  17. Information retrieval from black holes

    CERN Document Server

    Lochan, Kinjalk; Padmanabhan, T

    2016-01-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semi-classically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation non-thermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show ...

  18. Extremal Higher Spin Black Holes

    CERN Document Server

    Bañados, Máximo; Faraggi, Alberto; Jottar, Juan I

    2015-01-01

    The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require nor implies the existence of supersymmetry, we exemplify its consequences in the context of sl(3|2) + sl(3|2) Chern-Simons theory. Remarkably, while as usual not all extremal solutions preserve supersymmetries, we find that the higher spin setup allows for non-extremal supersymmetric black hole solutio...

  19. Gravitating Disks Around Black Holes

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Šubr, Ladislav

    Cambridge : Cambridge University Press, 2010 - (Peterson, B.), s. 332-332 ISBN 978-0-521-76502-2. - (IAU Symposium Proceedings Series. 267). [Symposium of the International Astronomical Union /267./. Rio de Janeiro (BR), 10.08.2009-14.08.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disks * gravitation * black hole physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. From Pinholes to Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  1. Quantum Geometry and Black Holes

    CERN Document Server

    Ashtekar, Abhay; Ashtekar, Abhay; Krasnov, Kirill

    1998-01-01

    Non-perturbative quantum general relativity provides a possible framework to analyze issues related to black hole thermodynamics from a fundamental perspective. A pedagogical account of the recent developments in this area is given. The emphasis is on the conceptual and structural issues rather than technical subtleties. The article is addressed to post-graduate students and beginning researchers.

  2. Scalar fields versus black holes

    International Nuclear Information System (INIS)

    It is shown that if a body is endowed with a scalar charge, the event horizon associated with the modified Schwarzchild solution is reduced to a point, this avoiding the black holes formation. The discussion is restricted to ordinary scalar fields and conformally invariant scalar fields, respectively. (authors)

  3. Magnetospheres around rotating black holes

    Czech Academy of Sciences Publication Activity Database

    Dovčiak, Michal; Karas, V.

    Singapor: World Scientific Publishing Co., 2003 - (Ruffini, R.; Sigismondi, C.), s. 288-295 [Nonlinear gravitodynamics. Rome (IT), 29.06.1998-04.07.1998] Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  4. Compensating Scientism through "The Black Hole."

    Science.gov (United States)

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for transcendent…

  5. Light geodesics near an evaporating black hole

    Science.gov (United States)

    Guerreiro, Thiago; Monteiro, Fernando

    2015-10-01

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed.

  6. Dilatonic Black Holes, Naked Singularities and Strings

    OpenAIRE

    Cox, P. H.; B. Harms(University of Alabama); Leblanc, Y.

    1992-01-01

    We extend a previous calculation which treated Schwarschild black hole horizons as quantum mechanical objects to the case of a charged, dilaton black hole. We show that for a unique value of the dilaton parameter `a', which is determined by the condition of unitarity of the S matrix, black holes transform at the extremal limit into strings.

  7. Extremal black holes in N=2 supergravity

    NARCIS (Netherlands)

    Katmadas, S.

    2011-01-01

    An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS), whic

  8. Scalar field radiation from dilatonic black holes

    Science.gov (United States)

    Gohar, H.; Saifullah, K.

    2012-12-01

    We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.

  9. Micro black holes in the laboratory

    OpenAIRE

    Bleicher, Marcus; Nicolini, Piero; Sprenger, Martin; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)

    2011-01-01

    The possibility of creating microscopic black holes is one of the most exciting predictions for the LHC, with potentially major consequences for our current understanding of physics. We briefly review the theoretical motivation for micro black hole production, and our understanding of their subsequent evolution. Recent work on modelling the radiation from quantum-gravity-corrected black holes is also discussed.

  10. Resource Letter BH-1: Black Holes.

    Science.gov (United States)

    Detweiler, Steven

    1981-01-01

    Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)

  11. Black Hole Monodromy and Conformal Field Theory

    NARCIS (Netherlands)

    A. Castro; J.M. Lapan; A. Maloney; M.J. Rodriguez

    2013-01-01

    The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event h

  12. On Quantum Contributions to Black Hole Growth

    NARCIS (Netherlands)

    Spaans, M.

    2013-01-01

    The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years. Consequent

  13. Theoretical reevaluations of black hole mass -- bulge mass relation - I. Influences of the seed black hole mass

    OpenAIRE

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Makiya, Ryu; Ishiyama, Tomoaki; Matsuoka, Yoshiki; Nagashima, Masahiro; Enoki, Motohiro; Oogi, Taira; Kobayashi, Masakazu A. R.

    2016-01-01

    We show influences of the mass of seed black holes on black hole mass -- bulge mass relation at z ~ 0 by using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. We constrain our model to reproduce observed properties of galaxies at z ~ 0. Similar to other semi-analytic models, we place a seed black hole immediately after a galaxy forms. When we set the seed black hole mass to 10^5 M_sun, we find that the model result becomes inconsistent with recen...

  14. Comments on Black Holes in Matrix Theory

    OpenAIRE

    Horowitz, Gary T.; Martinec, Emil J.

    1997-01-01

    The recent suggestion that the entropy of Schwarzschild black holes can be computed in matrix theory using near-extremal D-brane thermodynamics is examined. It is found that the regime in which this approach is valid actually describes black strings stretched across the longitudinal direction, near the transition where black strings become unstable to the formation of black holes. It is argued that the appropriate dynamics on the other (black hole) side of the transition is that of the zero m...

  15. Extremal higher spin black holes

    Science.gov (United States)

    Bañados, Máximo; Castro, Alejandra; Faraggi, Alberto; Jottar, Juan I.

    2016-04-01

    The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3 d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require supersymmetry, we exemplify its consequences in the context of sl(3|2) ⊕ sl(3|2) Chern-Simons theory and show that, as usual, not all extremal solutions preserve supersymmetries. Remarkably, we find in addition that the higher spin setup allows for non-extremal supersymmetric black hole solutions. Furthermore, we discuss our results from the perspective of the holographic duality between sl(3|2) ⊕ sl(3|2) Chern-Simons theory and two-dimensional CFTs with W (3|2) symmetry, the simplest higher spin extension of the N = 2 super-Virasoro algebra. In particular, we compute W (3|2) BPS bounds at the full quantum level, and relate their semiclassical limit to extremal black hole or conical defect solutions in the 3 d bulk. Along the way, we discuss the role of the spectral flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds in general N = 2 two-dimensional CFTs with extended symmetry algebras.

  16. Scattering by regular black holes: Planar massless scalar waves impinging upon a Bardeen black hole

    CERN Document Server

    Macedo, Caio F B; Crispino, Luís C B

    2015-01-01

    Singularities are common features of general relativity black holes. However, within general relativity, one can construct black holes that present no singularities. These regular black hole solutions can be achieved by, for instance, relaxing one of the energy conditions on the stress energy tensor sourcing the black hole. Some regular black hole solutions were found in the context of non-linear electrodynamics, the Bardeen black hole being the first one proposed. In this paper, we consider a planar massless scalar wave scattered by a Bardeen black hole. We compare the scattering cross section computed using a partial-wave description with the classical geodesic scattering of a stream of null geodesics, as well as with the semi-classical glory approximation. We obtain that, for some values of the corresponding black hole charge, the scattering cross section of a Bardeen black hole has a similar interference pattern of a Reissner-Nordstr\\"om black hole.

  17. Black hole mimickers: Regular versus singular behavior

    International Nuclear Information System (INIS)

    Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal ε-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal ε-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to be less

  18. Tunnelling from black holes and tunnelling into white holes

    Science.gov (United States)

    Chatterjee, Bhramar; Ghosh, A.; Mitra, P.

    2008-03-01

    Hawking radiation is nowadays being understood as tunnelling through black hole horizons. Here, the extension of the Hamilton-Jacobi approach to tunnelling for non-rotating and rotating black holes in different non-singular coordinate systems not only confirms this quantum emission from black holes but also reveals the new phenomenon of absorption into white holes by quantum mechanical tunnelling. The rôle of a boundary condition of total absorption or emission is also clarified.

  19. Investigating the retention of intermediate-mass black holes in star clusters using N-body simulations

    Science.gov (United States)

    Konstantinidis, Symeon; Amaro-Seoane, Pau; Kokkotas, Kostas D.

    2013-09-01

    Context. Unlike supermassive and stellar-mass black holes (SBHs), the existence of intermediate-mass black holes (IMBHs) with masses ranging between 102-5 M⊙ has not yet been confirmed. The main problem in the detection is that the innermost stellar kinematics of globular clusters (GCs) or small galaxies, the possible natural loci to IMBHs, are very difficult to resolve. However, if IMBHs reside in the centre of GCs, a possibility is that they interact dynamically with their environment. A binary formed with the IMBH and a compact object of the GC would naturally lead to a prominent source of gravitational radiation, detectable with future observatories. Aims: We use N-body simulations to study the evolution of GCs containing an IMBH and calculate the gravitational radiation emitted from dynamically formed IMBH-SBH binaries and the possibility that the IMBH escapes the GC after an IMBH-SBH merger. Methods: We ran for the first time direct-summation integrations of GCs with an IMBH including the dynamical evolution of the IMBH with the stellar system and relativistic effects, such as energy loss in gravitational waves (GWs) and periapsis shift, and gravitational recoil. Results: We find in one of our models an intermediate mass-ratio inspiral (IMRI), which leads to a merger with a recoiling velocity higher than the escape velocity of the GC. The GWs emitted fall in the range of frequencies that a LISA-like observatory could detect, like the European eLISA or with mission options considered in the recent preliminary mission study conducted in China. The merger has an impact on the global dynamics of the cluster, as an important heating source is removed when the merged system leaves the GC. The detection of one IMRI would constitute a test of GR, as well as an irrefutable proof of the existence of IMBHs.

  20. Dancing around the Black Hole

    Science.gov (United States)

    2001-08-01

    were born" . Agreement between observations and models This interesting scenario is supported by recent, extensive model computations by the team. In these computer models, large numbers of "stars" (mass points) move in a model galaxy with both a large and a nuclear bar, as observed in the three galaxies. Herve Wozniak refers to them as "self-consistent N-body simulations" and explains why the team is enthusiastic: "When our models also include star formation in the gas in the central region, a new, "dynamically cool" component of young stars emerges and mixes with the old stellar population" . He goes on: "The light from those young stars is superposed on that from the older ones in that area. Because of this, the overall "velocity dispersion" in the central region is then smaller than what it is further out. This is exactly as we observed in the ISAAC spectra obtained in the present programme" . Eric Emsellem points out that such a "dynamically cold" system is unstable and cannot last very long . "Soon it will "heat up" due to complex dynamical processes. It is quite possible that some of these stars will eventually end up as food for the hungry Black Hole.." Prospects With these new high-resolution infrared observations of the structure and the objects in the innermost regions of active galaxies, ISAAC and the VLT are paving the way for future studies of the processes that take place in the immediate neighbourhood of the central black holes. More active galaxies will now be observed with this method and it will be interesting to see if the presently discovered "cool" and young stellar systems represent a common phenomenon or not. More information The first stages of the research project reported in this Press Release are described in a scientific article ("Dynamics of embedded bars and the connection with AGN" by E. Emsellem et al.) that appeared in the European research journal Astronomy & Astrophysics (Vol. 368, p. 52). Two other articles about the new models and

  1. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  2. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  3. Stationary Scalar Clouds Around Rotating Black Holes

    CERN Document Server

    Hod, Shahar

    2012-01-01

    Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stationary scalar field dark matter distributions surrounding rapidly rotating black holes.

  4. Black holes under external influence

    Indian Academy of Sciences (India)

    Jiří Bičák

    2000-10-01

    The work on black holes immersed in external fields is reviewed in both test-field approximation and within exact solutions. In particular we pay attention to the effect of the expulsion of the flux of external fields across charged and rotating black holes which are approaching extremal states. Recently this effect has been shown to occur for black hole solutions in string theory. We also discuss black holes surrounded by rings and disks and rotating black holes accelerated by strings.

  5. Black hole formation in the early universe

    CERN Document Server

    Latif, M A; Schmidt, W; Niemeyer, J

    2013-01-01

    Supermassive black holes with up to a $\\rm 10^{9}~M_{\\odot}$ dwell in the centers of present-day galaxies, and their presence has been confirmed at z $\\geq$ 6. Their formation at such early epochs is still an enigma. Different pathways have been suggested to assemble supermassive black holes in the first billion years after the Big Bang. Direct collapse has emerged as a highly plausible scenario to form black holes as it provides seed masses of $\\rm 10^{5}-10^{6}~M_{\\odot}$. Gravitational collapse in atomic cooling haloes with virial temperatures T$_{vir} \\geq 10^{4}$~K may lead to the formation of massive seed black holes in the presence of an intense background UV flux. Turbulence plays a central role in regulating accretion and transporting angular momentum. We present here the highest resolution cosmological large-eddy simulations to date which track the evolution of high-density regions on scales of $0.25$~AU beyond the formation of the first peak, and study the impact of subgrid-scale turbulence. The pe...

  6. The Acoustic Black Hole Is Not Merely An Analogy

    CERN Document Server

    Ge, Xian-Hui; Tian, Yu; Wu, Xiao-Ning; Zhang, Yun-Long

    2015-01-01

    With the attempt to find the holographic description of the usual acoustic black hole in fluid, we construct an acoustic black hole formed in the $d$-dimensional fluid located at the timelike cutoff surface of an neutral black brane in asymptotically AdS$_{d+1}$ spacetime, the bulk gravitational dual of the acoustic black hole is presented at first order of the hydrodynamic fluctuation. Moreover, the Hawking-like temperature of the acoustic black hole horizon is showed to be connected to the Hawking temperature of the real AdS black brane in the bulk, and the duality between the phonon propagating in the acoustic black hole and the sound channel quasinormal mode is analyzed. We thus point out that, the acoustic black hole in fluid, which was originally proposed as an analogous model to simulate Hawking radiation of the real black hole, is not merely an analogy, it can indeed be used to describe specific properties of the real black hole, in the spirits of the fluid/gravity duality.

  7. Creating a urine black hole

    Science.gov (United States)

    Hurd, Randy; Pan, Zhao; Meritt, Andrew; Belden, Jesse; Truscott, Tadd

    2015-11-01

    Since the mid-nineteenth century, both enlisted and fashion-conscious owners of khaki trousers have been plagued by undesired speckle patterns resulting from splash-back while urinating. In recent years, industrial designers and hygiene-driven entrepreneurs have sought to limit this splashing by creating urinal inserts, with the effectiveness of their inventions varying drastically. From this large assortment of inserts, designs consisting of macroscopic pillar arrays seem to be the most effective splash suppressers. Interestingly this design partially mimics the geometry of the water capturing moss Syntrichia caninervis, which exhibits a notable ability to suppress splash and quickly absorb water from impacting rain droplets. With this natural splash suppressor in mind, we search for the ideal urine black hole by performing experiments of simulated urine streams (water droplet streams) impacting macroscopic pillar arrays with varying parameters including pillar height and spacing, draining and material properties. We propose improved urinal insert designs based on our experimental data in hopes of reducing potential embarrassment inherent in wearing khakis.

  8. Could supermassive black holes be quintessential primordial black holes?

    International Nuclear Information System (INIS)

    There is growing observational evidence for a population of supermassive black holes (SMBHs) in galactic bulges. We examine in detail the conditions under which these black holes must have originated from primordial black holes (PBHs). We consider the merging and accretion history experienced by SMBHs to find that, whereas it is possible that they were formed by purely astrophysical processes, this is unlikely and most probably a population of primordial progenitors is necessary. We identify the mass distribution and comoving density of this population and then propose a cosmological scenario producing PBHs with the right properties. Although this is not essential we consider PBHs produced at the end of a period of inflation with a blue spectrum of fluctuations. We constrain the value of the spectral tilt in order to obtain the required PBH comoving density. We then assume that PBHs grow by accreting quintessence, showing that their mass scales like the horizon mass while the quintessence field itself is scaling. We find that if scaling is broken just before nucleosynthesis (as is the case with some attractive nonminimally coupled models) we obtain the appropriate PBH mass distribution. Hawking evaporation is negligible in most cases, but we also discuss situations in which the interplay of accretion and evaporation is relevant

  9. Massive Black Hole Recoil in High Resolution Hosts

    OpenAIRE

    Guedes, Javiera; Diemand, Jürg; Zemp, Marcel; Kuhlen, Michael; Madau, Piero; Mayer, Lucio; Stadel, Joachim

    2008-01-01

    The final inspiral and coalescence of a black hole binary can produce highly beamed gravitational wave radiation. To conserve linear momentum, the black hole remnant can recoil with "kick" velocity as high as 4000 km/s. We present two sets of full N-body simulations of recoiling massive black holes (MBH) in high-resolution, non-axisymmetric potentials. The host to the first set of simulations is the main halo of the Via Lactea I simulation (Diemand et al. 2007). The nature of the resulting or...

  10. Falling into a black hole

    OpenAIRE

    Mathur, Samir D.

    2007-01-01

    String theory tells us that quantum gravity has a dual description as a field theory (without gravity). We use the field theory dual to ask what happens to an object as it falls into the simplest black hole: the 2-charge extremal hole. In the field theory description the wavefunction of a particle is spread over a large number of `loops', and the particle has a well-defined position in space only if it has the same `position' on each loop. For the infalling particle we find one definition of ...

  11. Charged rotating black holes at large D

    CERN Document Server

    Tanabe, Kentaro

    2016-01-01

    We study odd dimensional charged equally rotating black holes in the Einstein-Maxwell theory with/without a cosmological constant by using the large D expansion method, where D is a spacetime dimension. Solving the Einstein-Maxwell equations in the 1/D expansion we obtain the large D effective equations for charged equally rotating black holes. The effective equations describe the nonlinear dynamics of charged equally rotating black holes. Especially the perturbation analysis of the effective equations gives analytic formula for quasinormal mode frequencies, and we can show charged equally rotating black holes have instabilities. As one interesting feature of instabilities, we observe that the ultraspinning instability of neutral equally rotating black holes in de Sitter is connected with the instability of de Sitter Reissner-Nordstrom black hole in a rotation-charge plane of the solution parameter space. So these instabilities have same origin as dynamical properties of charged rotating black holes. We also ...

  12. Quantum information erasure inside black holes

    Science.gov (United States)

    Lowe, David A.; Thorlacius, Larus

    2015-12-01

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  13. Quasistars: Accreting black holes inside massive envelopes

    CERN Document Server

    Begelman, Mitchell C; Armitage, Philip J

    2007-01-01

    We study the structure and evolution of "quasistars," accreting black holes embedded within massive hydrostatic gaseous envelopes. These configurations may model the early growth of supermassive black hole seeds. The accretion rate onto the black hole adjusts so that the luminosity carried by the convective envelope equals the Eddington limit for the total mass. This greatly exceeds the Eddington limit for the black hole mass alone, leading to rapid growth of the black hole. We use analytic models and numerical stellar structure calculations to study the structure and evolution of quasistars. We derive analytically the scaling of the photospheric temperature with the black hole mass and envelope mass, and show that it decreases with time as the black hole mass increases. Once the photospheric temperature becomes lower than 10000 K, the photospheric opacity drops precipitously and the photospheric temperature hits a limiting value, analogous to the Hayashi track for red giants and protostars, below which no hy...

  14. From Schwinger Balls to Black Holes

    CERN Document Server

    Allahbakhshi, Davood

    2016-01-01

    We have shown intriguing similarities between Schwinger balls and black holes. By considering black hole as a gravitational Schwinger ball, we have derived the Bekenstein-Hawking entropy and the first law of black hole thermodynamics as a direct result of the inverse area dependence of the gravitational force. It is also shown that the Planck length is nothing but the gravitational Schwinger length. The relation between the mass and the radius of the black hole is derived by considering the black hole as a Schwinger ball of gravitons. We show how the evolution of the entanglement entropy of the black hole, as Page introduced many years ago, can be obtained by including gravitons in the black hole's evaporation process and using a deformed EPR mechanism. Also this deformed EPR mechanism can solve the information paradox. We show how naive simultaneous usage of Page's argument and equivalence principle leads to firewall problem.

  15. Quantum information erasure inside black holes

    CERN Document Server

    Lowe, David A

    2015-01-01

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  16. The interplay between a galactic bar and a supermassive black hole: nuclear fueling in a sub-parsec resolution galaxy simulation

    CERN Document Server

    Emsellem, Eric; Bournaud, Frédéric; Elmegreen, Bruce; Combes, Françoise; Gabor, Jared

    2014-01-01

    We study the connection between the large-scale dynamics and the gas fueling toward a central black hole via the analysis of a Milky Way-like simulation at sub-parsec resolution. This allows us to follow a set of processes at various scales (e.g., the triggering of inward gas motion towards inner resonances via the large-scale bar, the connection to the central black hole via mini spirals) in a self-consistent manner. This simulation provides further insights on the role of shear for the inhibition of star formation within the bar in regions with significant amount of gas. We also witness the decoupling of the central gas and nuclear cluster from the large-scale disc, via interactions with the black hole. This break of symmetry in the mass distribution triggers the formation of gas clumps organised in a time-varying 250 pc ring-like structure, the black hole being offset by about 70 pc from its centre. Some clumps form stars, while most get disrupted or merge. Supernovae feedback further creates bubbles and f...

  17. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes. PMID:25910104

  18. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part II

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this second lecture, we focus on simulations of black hole binary mergers. We hig hlight the instabilities that plagued the codes for many years, the r ecent breakthroughs that led to the first accurate simulations, and the current state of the art.

  19. An Introduction to Black Hole Evaporation

    OpenAIRE

    Traschen, Jennie

    2000-01-01

    Classical black holes are defined by the property that things can go in, but don't come out. However, Stephen Hawking calculated that black holes actually radiate quantum mechanical particles. The two important ingredients that result in back hole evaporation are (1) the spacetime geometry, in particular the black hole horizon, and (2) the fact that the notion of a "particle" is not an invariant concept in quantum field theory. These notes contain a step-by-step presentation of Hawking's calc...

  20. Nonstationary dark energy around a black hole

    International Nuclear Information System (INIS)

    Numerical simulations of the accretion of test scalar fields with nonstandard kinetic terms (of the k-essence type) onto a Schwarzschild black hole are performed. We find a full dynamical solution for the spherical accretion of a Dirac-Born-Infeld type scalar field. The simulations show that the accretion eventually settles down to a well-known stationary solution. This particular analytical steady state solution maintains two separate horizons. The standard horizon is for the usual particles propagating with the limiting speed of light, while the other sonic horizon is for the k-essence perturbations propagating with the speed of sound around this accreting background. For the case where the k-essence perturbations propagate superluminally, we show that one can send signals from within a black hole during the approach to the stationary solution. We also find that a ghost condensate model settles down to a stationary solution during the accretion process.

  1. High-resolution magnetohydrodynamics simulation of black hole-neutron star merger: Mass ejection and short gamma-ray burst

    CERN Document Server

    Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke; Wada, Tomohide

    2015-01-01

    We report results of a high-resolution numerical-relativity simulation for the merger of black hole-magnetized neutron star binaries on Japanese supercomputer "K". We focus on a binary that is subject to tidal disruption and subsequent formation of a massive accretion torus. We find the launch of thermally driven torus wind, subsequent formation of a funnel wall above the torus and a magnetosphere with collimated poloidal magnetic field, and high Blandford-Znajek luminosity. We show for the first time this picture in a self-consistent simulation. The turbulence-like motion induced by the non-axisymmetric magnetorotational instability as well as the Kelvin-Helmholtz instability inside the accretion torus works as an agent to drive the mass accretion and converts the accretion energy to thermal energy, which results in the generation of a strong wind. By an in-depth resolution study, we reveal that high resolution is essential to draw such a picture. We also discuss the implication for the r-process nucleosynth...

  2. Boosted Tidal Disruption by Massive Black Hole Binaries During Galaxy Mergers - In The View of N-Body Simulation

    CERN Document Server

    Li, Shuo; Berczik, Peter; Spurzem, Rainer

    2015-01-01

    Supermassive black hole binaries (SMBHBs) are productions of the hierarchical galaxy formation model. There are many close connections between central SMBH and its host galaxy because the former plays very important roles on the formation and evolution of a galaxy. For this reason, the evolution of SMBHBs in merging galaxies is an essential problem. Since there are many discussions about SMBHB evolution in gas rich environment, we focus on the quiescent galaxy, using tidal disruption as a diagnostic tool. Our study is based on a series of numerical large particle number direct N-body simulations for dry major mergers. According to the simulation results, the evolution can be divided into three phases. In phase I, the tidal disruption rate for two well separated SMBHs in merging system has similar level to single SMBH in isolate galaxy. After two SMBHs getting close enough to form a bound binary in phase II, the disruption rate can be enhanced for ~ 2 order of magnitudes within a short time. This "boosted" dis...

  3. The coalescence rates of double black holes

    OpenAIRE

    Belczynski, Krzysztof; Bulik, Tomasz; Dominik, Michal; Prestwich, Andrea

    2011-01-01

    We present the summary of the recent investigations of double black hole binaries in context of their formation and merger rates. In particular we discuss the spectrum of black hole masses, the formation scenarios in the local Universe and the estimates of detection rates for gravitational radiation detectors like LIGO and VIRGO. Our study is based on observed properties of known Galactic and extra-galactic stellar mass black holes and evolutionary predictions. We argue that the binary black ...

  4. Black Holes with Proca Hair

    CERN Document Server

    Fan, Zhong-Ying

    2016-01-01

    In this paper, we consider Einstein gravity coupled to a Proca field, either minimally or non-minimally, together with a vector potential of the type $V=2\\Lambda_0+ m^2 A^2/2 + \\gamma_4 A^4$. For a simpler non-minimally coupled theory with $\\Lambda_0=m=\\gamma_4=0$, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first laws of the extremal black holes are modified by a one form associated with the Proca. In particular, due to the existence of the non-minimal coupling, the Proca forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first laws. For a minimally coupled theory with $\\Lambda_0\

  5. Looking inside a black hole

    International Nuclear Information System (INIS)

    The cosmic censorship conjecture posits that singularities forming to the future of a regular Cauchy surface are hidden by an event horizon. Consequently any topological structures will ultimately collapse within the horizon of a black hole and so no observer can actively probe them classically. We consider here a quantum analogue of this problem, in which we compare the transition rates of an Unruh–DeWitt detector placed outside the horizon of an eternal BTZ black hole and its associated geon counterpart. We find the transition rates differ, with the latter being time-dependent, implying that we are indeed able to probe the structure of the singularity from outside the horizon. (fast track communications)

  6. Cosmological Parameters and Black Holes

    CERN Document Server

    Harun-al-Rashid, S M

    2002-01-01

    This work is related to different questions within cosmology. The principal idea herein is to develop cosmological knowledge making use of the analyses of observational data in order to find the values of the matter density Omega_m and vacuum energy density Omega_Lambda. Data fitting is carried out using two statistical methods, chi^2 and maximum likelihood. The data analysis exhibits that a low density and flat Universe is strongly favoured. Applying the Omega_m value found for clusters of galaxies, we demonstrate that clusters have very little room for baryonic dark matter. An upper limit to the small but non-negligible sum of baryonic dark matter and galaxy mass can be estimated, requiring the use of special statistics. A Toroidal Black Hole (TBH) study, in contrast to the Spherical Black Hole (SBH), shows that the TBH can be used as an important tool in explaining AGN phenomena.

  7. Geometrodynamics of Schwarzschild black holes

    CERN Document Server

    Kuchar, K V

    1994-01-01

    The curvature coordinates $T,R$ of a Schwarz\\-schild spacetime are turned into canonical coordinates $T(r), {\\sf R}(r)$ on the phase space of spherically symmetric black holes. The entire dynamical content of the Hamiltonian theory is reduced to the constraints requiring that the momenta $P_{T}(r), P_{\\sf R}(r)$ vanish. What remains is a conjugate pair of canonical variables $m$ and $p$ whose values are the same on every embedding. The coordinate $m$ is the Schwarzschild mass, and the momentum $p$ the difference of parametrization times at right and left infinities. The Dirac constraint quantization in the new representation leads to the state functional $\\Psi (m; T, {\\sf R}] = \\Psi (m)$ which describes an unchanging superposition of black holes with different masses. The new canonical variables may be employed in the study of collapsing matter systems.

  8. Black hole with quantum potential

    Science.gov (United States)

    Ali, Ahmed Farag; Khalil, Mohammed M.

    2016-08-01

    In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  9. Black hole statistics from holography

    International Nuclear Information System (INIS)

    We study the microstates of the 'small' black hole in the 1/2-BPS sector of AdS5 x S5, the superstar, using the powerful holographic description provided by LLM. The system demonstrates the inherently statistical nature of black holes, with the geometry presented elsewhere emerging only after averaging over an ensemble of geometries. The individual microstate geometries differ in the highly non-trivial topology of a quantum foam at their core, and the entropy can be understood as a partition of N units of flux among 5-cycles, as required by flux quantization. While the system offers confirmation of the most controversial aspect of Mathur and Lunin's recent 'fuzzball' proposal, we see signs of a discrepancy in interpreting its details

  10. Black hole with quantum potential

    Directory of Open Access Journals (Sweden)

    Ahmed Farag Ali

    2016-08-01

    Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  11. Black Hole with Quantum Potential

    CERN Document Server

    Ali, Ahmed Farag

    2015-01-01

    In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which introduces a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. It also ameliorates the black hole singularity and the information loss problem.

  12. Symmetries of supergravity black holes

    CERN Document Server

    Chow, David D K

    2008-01-01

    We investigate Killing tensors for various black hole solutions of supergravity theories. Rotating black holes of an ungauged theory, toroidally compactified heterotic supergravity, with NUT parameters and two U(1) gauge fields are constructed. If both charges are set equal, then the solutions simplify, and then there are concise expressions for rank-2 conformal Killing-Stackel tensors. These are induced by rank-2 Killing-Stackel tensors of a conformally related metric that possesses a separability structure. We directly verify the separation of the Hamilton-Jacobi equation on this conformally related metric, and of the null Hamilton-Jacobi and massless Klein-Gordon equations on the "physical" metric. Similar results are found for more general solutions; we mainly focus on those with certain charge combinations equal in gauged supergravity, but also consider certain other solutions.

  13. Black holes in magnetic monopoles

    Science.gov (United States)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1991-01-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs field vacuum expectation value v is less than or equal to a critical value v sub cr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v less than v sub cr, we find additional solutions which are singular at f = 0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordstrom solutions is discussed.

  14. Massive BTZ black hole thermodynamics

    CERN Document Server

    Hendi, S H; Panahiyan, S

    2016-01-01

    Motivated by large applications of BTZ black holes and interesting results of massive gravity, we investigate massive BTZ black holes in presence of Maxwell and Born-Infeld (BI) electrodynamics. We study geometric as well as thermodynamic structure of the solutions through canonical ensemble. Despite the existence of massive term, obtained solutions are asymptotically (a)dS and have a curvature singularity at the origin. Next, we regard varying cosmological constant and examine Van der Waals like behavior of the solutions in the extended phase space. In addition, we employ geometrical thermodynamic approaches and show that using Weinhold, Ruppeiner and Quevedo metrics leads to existence of ensemble dependency while HPEM metric yields uniform picture. For neutral case, it will be shown that generalization to massive gravity leads to presence of non-zero temperature and heat capacity for vanishing horizon radius. Such behavior is not observed for linearly charged solutions while generalization to nonlinearly on...

  15. Black Holes and Exotic Spinors

    OpenAIRE

    Hoff da Silva, J. M.(Departamento de Física e Química, UNESP, Universidade Estadual Paulista, Av. Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá, SP, Brazil); C. H. Coronado Villalobos; Roldao da Rocha

    2016-01-01

    Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime ex...

  16. Black holes and the Universe

    International Nuclear Information System (INIS)

    The superstrong gravitational field is the protagonist of this book. This gravitation is the power that warps space and time into a funnel and generates a black hole when a cosmic body undergoes catastrophic collapse. This superstrong gravitation reigns in the Universe, controlling the motion of infinitely large masses. The book describes natural phenomena caused by superstrong gravitation but perceived as nothing short of miracles, but it also explains how these miracles are studied and understood. (author)

  17. Black holes, singularities and predictability

    International Nuclear Information System (INIS)

    The paper favours the view that singularities may play a central role in quantum gravity. The author reviews the arguments leading to the conclusion, that in the process of black hole formation and evaporation, an initial pure state evolves to a final density matrix, thus signaling a breakdown in ordinary quantum dynamical evolution. Some related issues dealing with predictability in the dynamical evolution, are also discussed. (U.K.)

  18. Black Hole Thermodynamics and Electromagnetism

    OpenAIRE

    Sidharth, Burra G.

    2005-01-01

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in...

  19. Van der Waals black hole

    International Nuclear Information System (INIS)

    In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters) all three weak, strong, and dominant energy conditions

  20. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  1. Complexity, action, and black holes

    Science.gov (United States)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-04-01

    Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the "Wheeler-DeWitt" patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  2. Gravitating discs around black holes

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Huré, J.-M.; Semerák, O.

    2004-01-01

    Roč. 21, č. 7 (2004), R1-R5. ISSN 0264-9381 R&D Projects: GA ČR GA205/03/0902; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * accretion discs * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.941, year: 2004

  3. Homogeneous spacelike singularities inside spherical black holes

    OpenAIRE

    Burko, Lior M.

    1997-01-01

    Recent numerical simulations have found that the Cauchy horizon inside spherical charged black holes, when perturbed nonlinearly by a self-gravitating, minimally-coupled, massless, spherically-symmetric scalar field, turns into a null weak singularity which focuses monotonically to $r=0$ at late times, where the singularity becomes spacelike. Our main objective is to study this spacelike singularity. We study analytically the spherically-symmetric Einstein-Maxwell-scalar equations asymptotica...

  4. Soft Hair on Black Holes

    CERN Document Server

    Hawking, Stephen W; Strominger, Andrew

    2016-01-01

    It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft ($i.e.$ zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the ho...

  5. Soft Hair on Black Holes

    Science.gov (United States)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  6. Hair of astrophysical black holes

    CERN Document Server

    Lyutikov, Maxim

    2012-01-01

    The "no hair" theorem is not applicable to black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N_B = e \\Phi_\\infty /(\\pi c \\hbar), where \\Phi_\\infty is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. The black hole's magnetosphere subsequently relaxes to the split monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that...

  7. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units. PMID:27341223

  8. Quantum Tunneling in Black Holes

    CERN Document Server

    Majhi, Bibhas Ranjan

    2011-01-01

    This thesis is focussed towards the applications of the quantum tunneling mechanism to study black holes. Here we give a general frame work of the existing tunneling mechanism, both the radial null geodesic and Hamilton Jacobi methods. On the radial null geodesic method side, we study the modifications to the tunneling rate, Hawking temperature and the Bekenstein- Hawking area law by including the back reaction as well as non-commutative effects in the space-time. A reformulation of the Hamilton-Jacobi (HJ) method is first introduced. Based on this, a close connection between the quantum tunneling and the gravitational anomaly mechanisms to discuss Hawking effect, is put forwarded. An interesting advantage of this reformulated HJ method is that one can get directly the emission spectrum from the event horizon of the black hole, which was missing in the earlier literature. Also, the quantization of the entropy and area of a black hole is discussed in this method. Another part of the thesis is the introduction ...

  9. Entropy of Quantum Black Holes

    Directory of Open Access Journals (Sweden)

    Romesh K. Kaul

    2012-02-01

    Full Text Available In the Loop Quantum Gravity, black holes (or even more general Isolated Horizons are described by a SU(2 Chern-Simons theory. There is an equivalent formulation of the horizon degrees of freedom in terms of a U(1 gauge theory which is just a gauged fixed version of the SU(2 theory. These developments will be surveyed here. Quantum theory based on either formulation can be used to count the horizon micro-states associated with quantum geometry fluctuations and from this the micro-canonical entropy can be obtained. We shall review the computation in SU(2 formulation. Leading term in the entropy is proportional to horizon area with a coefficient depending on the Barbero-Immirzi parameter which is fixed by matching this result with the Bekenstein-Hawking formula. Remarkably there are corrections beyond the area term, the leading one is logarithm of the horizon area with a definite coefficient −3/2, a result which is more than a decade old now. How the same results are obtained in the equivalent U(1 framework will also be indicated. Over years, this entropy formula has also been arrived at from a variety of other perspectives. In particular, entropy of BTZ black holes in three dimensional gravity exhibits the same logarithmic correction. Even in the String Theory, many black hole models are known to possess such properties. This suggests a possible universal nature of this logarithmic correction.

  10. Entanglement Entropy of Black Holes

    Directory of Open Access Journals (Sweden)

    Sergey N. Solodukhin

    2011-10-01

    Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  11. Glory scattering by black holes

    International Nuclear Information System (INIS)

    We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/dΩ = 4π2lambda-1B/sub g/ 2(dB mWπ, where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 √3 + 3.48 exp(-theta), theta > owigπ. The numerical values of dsigma/dΩ for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes

  12. Modeling Flows Around Merging Black Hole Binaries

    CERN Document Server

    van Meter, James R; Miller, M Coleman; Reynolds, Christopher S; Centrella, Joan M; Baker, John G; Boggs, William D; Kelly, Bernard J; McWilliams, Sean T

    2009-01-01

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step towards solving this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm ...

  13. Shapes of rotating nonsingular black hole shadows

    Science.gov (United States)

    Amir, Muhammed; Ghosh, Sushant G.

    2016-07-01

    It is believed that curvature singularities are a creation of general relativity and, hence, in the absence of a quantum gravity, models of nonsingular black holes have received significant attention. We study the shadow (apparent shape), an optical appearance because of its strong gravitational field, cast by a nonsingular black hole which is characterized by three parameters, i.e., mass (M ), spin (a ), and a deviation parameter (k ). The nonsingular black hole under consideration is a generalization of the Kerr black hole that can be recognized asymptotically (r ≫k ,k >0 ) explicitly as the Kerr-Newman black hole, and in the limit k →0 as the Kerr black hole. It turns out that the shadow of a nonsingular black hole is a dark zone covered by a deformed circle. Interestingly, it is seen that the shadow of a black hole is affected due to the parameter k . Indeed, for a given a , the size of a shadow reduces as the parameter k increases, and the shadow becomes more distorted as we increase the value of the parameter k when compared with the analogous Kerr black hole shadow. We also investigate, in detail, how the ergoregion of a black hole is changed due to the deviation parameter k .

  14. Black hole spectroscopy from loop quantum gravity models

    Science.gov (United States)

    Barrau, Aurelien; Cao, Xiangyu; Noui, Karim; Perez, Alejandro

    2015-12-01

    Using Monte Carlo simulations, we compute the integrated emission spectra of black holes in the framework of loop quantum gravity (LQG). The black hole emission rates are governed by the entropy whose value, in recent holographic loop quantum gravity models, was shown to agree at leading order with the Bekenstein-Hawking entropy. Quantum corrections depend on the Barbero-Immirzi parameter γ . Starting with black holes of initial horizon area A ˜102 in Planck units, we present the spectra for different values of γ . Each spectrum clearly decomposes into two distinct parts: a continuous background which corresponds to the semiclassical stages of the evaporation and a series of discrete peaks which constitutes a signature of the deep quantum structure of the black hole. We show that γ has an effect on both parts that we analyze in detail. Finally, we estimate the number of black holes and the instrumental resolution required to experimentally distinguish between the considered models.

  15. Quantum gravity effects in black holes at the LHC

    International Nuclear Information System (INIS)

    We study possible back-reaction and quantum gravity effects in the evaporation of black holes which could be produced at the LHC through a modification of the Hawking emission. The corrections are phenomenologically taken into account by employing a modified relation between the black hole mass and temperature. The usual assumption that black holes explode around 1 TeV is also released, and the evaporation process is extended to (possibly much) smaller final masses. We show that these effects could be observable for black holes produced with a relatively large mass and should therefore be taken into account when simulating micro-black hole events for the experiments planned at the LHC

  16. Accretion onto the First Stellar Mass Black Holes

    CERN Document Server

    Alvarez, Marcelo A; Abel, Tom

    2008-01-01

    The first stars in the universe, forming at redshifts z>15 in minihalos with masses of order 10^6 Msun, may leave behind black holes as their remnants. These objects could conceivably serve as "seeds" for much larger black holes observed at redshifts z~6. We study the growth of the remnant black holes through accretion including for the first time the emitted accretion radiation with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the accretion flow from large scales, resulting in negligible mass growth of the black hole. We compare cases with the accretion luminosity included and neglected to show that the accretion radiation drastically changes the environment within 100 pc of the black hole, where gas temperatures are increased by an order of magnitude. The gas densities are reduced and further star formation in the same minihalo prevented for the two hundred million years of evolution we followed. These calculation...

  17. The Early Growth of the First Black Holes

    Science.gov (United States)

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-01

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Finally, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  18. Black Holes, the Brightest Objects in the Universe

    International Nuclear Information System (INIS)

    Black holes are everywhere in the Universe. They form when massive stars end their life in a simultaneous violent collapse and energetic explosion. Galaxies end up littered with small black holes, each roughly the mass of ten Suns. Nearly every galaxy center ends up with a single huge black hole, with the mass of a million to a billion Suns. During their lifetimes, black holes chew up their surroundings and spew out ultra-energetic beams of radiation and matter that are visible from across the Universe. In this lecture, I will discuss how black holes form, outline how we detect them, and show movies that illustrate how they work according to Einstein and state-of-the-art computer simulations. We will see that these blackest of all objects in the Universe actually shine the brightest.

  19. Performance Analysis of Manet Before and After Black Hole Attack

    Directory of Open Access Journals (Sweden)

    Ms.Heena Bhalla

    2012-01-01

    Full Text Available A Mobile ad-hoc network is a temporary network set up by wireless mobile computers (or nodes moving arbitrary in the places that have no network infrastructure. Due to security vulnerabilities of the routing protocols, wireless ad-hoc networks are unprotected to attacks of the malicious nodes. One of the prominent attacks is the Black Hole Attack which absorbs all data packets in the network. Since the data packets do not reach the destination node on account of this attack, data loss will occur. In this paper we simulated MANETs with and without Black Hole to study the effects of Black hole attack on network performance. Because of Black Hole Attack the average packet drop increased form 0.25% to 90.69% . The throughput of the network decreased 93.56% due to Black Hole effect.

  20. A Black Hole in Our Galactic Center

    Science.gov (United States)

    Ruiz, Michael J.

    2008-01-01

    An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…

  1. 5D Black Holes and Matrix Strings

    OpenAIRE

    Dijkgraaf, R.; Verlinde, E.; Verlinde, H.

    1997-01-01

    We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA fivebrane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.

  2. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  3. Resolving flows around black holes: numerical technique and applications

    OpenAIRE

    Curtis, Michael; Sijacki, Debora

    2015-01-01

    Black holes are believed to be one of the key ingredients of galaxy formation models, but it has been notoriously challenging to simulate them due to the very complex physics and large dynamical range of spatial scales involved. Here we address a significant shortcoming of a Bondi-Hoyle-like prescription commonly invoked to estimate black hole accretion in cosmological hydrodynamic simulations of galaxy formation, namely that the Bondi-Hoyle radius is frequently unresolved. We describe and im...

  4. Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Context

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Robyn Deborah; /JILA, Boulder

    2008-07-01

    Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmological scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Ly{alpha} forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting

  5. Fe K$\\alpha$ Profiles from Simulations of Accreting Black Holes

    OpenAIRE

    Kinch, Brooks E.; Schnittman, Jeremy D.; Kallman, Timothy R.; Krolik, Julian H.

    2016-01-01

    We present first results from a new technique for the prediction of Fe K$\\alpha$ profiles directly from general relativistic magnetohydrodynamic (GRMHD) simulations. Data from a GRMHD simulation are processed by a Monte Carlo global radiation transport code, which determines the X-ray flux irradiating the disk surface and the coronal electron temperature self-consistently. With that irradiating flux and the disk's density structure drawn from the simulation, we determine the reprocessed Fe K$...

  6. Destroying Kerr-Sen black holes

    Science.gov (United States)

    Siahaan, Haryanto M.

    2016-03-01

    By neglecting the self-force, self-energy, and radiative effects, it has been shown that an extremal or near-extremal Kerr-Newman black hole can turn into a naked singularity when it captures charged and spinning massive particles. A straightforward question then arises: do charged and rotating black holes in string theory possess the same property? In this paper we apply Wald's gedanken experiment, in his study on the possibility of destroying extremal Kerr-Newman black holes, to the case of (near-)extremal Kerr-Sen black holes. We find that feeding a test particle into a (near-)extremal Kerr-Sen black hole could lead to a violation of the extremal bound for the black hole.

  7. Black hole chemistry: thermodynamics with Lambda

    CERN Document Server

    Kubiznak, David; Teo, Mae

    2016-01-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities, in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality - an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at exten...

  8. Boosting jet power in black hole spacetimes

    CERN Document Server

    Neilsen, David; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garret, T

    2010-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  9. Boosting jet power in black hole spacetimes

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis

    2011-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341

  10. Black Holes and Abelian Symmetry Breaking

    CERN Document Server

    Chagoya, Javier; Tasinato, Gianmassimo

    2016-01-01

    Black hole configurations offer insights on the non-linear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector-tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector-tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarization, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solu...

  11. Weighing black holes in the universe

    Institute of Scientific and Technical Information of China (English)

    WU Xue-bing

    2006-01-01

    The determination of the mass of black holes in our universe is crucial to understand their physics nature but is a great challenge to scientists.In this paper Ⅰ briefly review some methods that are currently used to estimate the mass of black holes,especially those in X-ray binary systems and in galactic nuclei.Our recent progress in improving the mass estimates of supermasssive black holes in active galactic nuclei by involving some empirical relations is presented.Finally Ⅰ point out the similarities and common physics in Galactic black hole X-ray binaries and active galactic nuclei,and demonstrate that the black hole mass estimation is very much helpful to understand the accretion physics around black holes.

  12. Kerr-Newman Black Hole In Quintessence

    CERN Document Server

    Xu, Zhaoyi

    2016-01-01

    We study the Kerr-Newman solutions of the Einstein-Maxwell equation in quintessence field around a black hole by Newman-Janis algorithm. From the horizon structure and stationary limit surfaces, we find that Kerr-Newman black hole exists an ergosphere with $r^{+} < r < r^{L}$, which is related to the parameters $\\omega$ and $\\alpha$. We obtain the general expression between $\\alpha$ and $\\omega$ if the cosmological horizon exists, in which for $\\omega=-1/2$, $\\alpha\\leq\\sqrt{2}/5$, and for $\\omega=-2/3$, $\\alpha\\leq 1/6$. For $\\omega=-2/3$, the result is same with rotational black hole in quintessence. The singularity of the black holes is the same with that of Kerr black hole. We also discuss the rotation velocity of the black holes on the equatorial plane for $\\omega =-2/3$ and $-1/2$.

  13. Reversible Carnot cycle outside a black hole

    Institute of Scientific and Technical Information of China (English)

    Deng Xi-Hao; Gao Si-Jie

    2009-01-01

    A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature Th. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1-TH/T1 Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible.

  14. The thermal radiation from dynamic black holes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using the related formula of dynamic black holes, the instantaneous radiation energy density of the general spherically symmetric charged dynamic black hole and the arbitrarily accelerating charged dynamic black hole is calculated. It is found that the instantaneous radiation energy density of black hole is always proportional to the quartic of the temperature of event horizon in the same direction. The proportional coefficient of generalized Stefan-Boltzmann is no longer a constant, and it becomes a dynamic coefficient that is related to the event horizon changing rate, space-time structure near event horizon and the radiation absorption coefficient of the black hole. It is shown that there should be an internal relation between the gravitational field around black hole and its thermal radiation.

  15. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  16. Entropy, area, and black hole pairs

    CERN Document Server

    Hawking, Stephen William; Ross, S F; Hawking, S W; Horowitz, Gary T; Ross, Simon F

    1995-01-01

    We clarify the relation between gravitational entropy and the area of horizons. We first show that the entropy of an extreme Reissner-Nordstr\\"om black hole is zero, despite the fact that its horizon has nonzero area. Next, we consider the pair creation of extremal and nonextremal black holes. It is shown that the action which governs the rate of this pair creation is directly related to the area of the acceleration horizon and (in the nonextremal case) the area of the black hole event horizon. This provides a simple explanation of the result that the rate of pair creation of non-extreme black holes is enhanced by precisely the black hole entropy. Finally, we discuss black hole annihilation, and argue that Planck scale remnants are not sufficient to preserve unitarity in quantum gravity.

  17. Entropy, area, and black hole pairs

    Science.gov (United States)

    Hawking, S. W.; Horowitz, Gary T.; Ross, Simon F.

    1995-04-01

    We clarify the relation between gravitational entropy and the area of horizons. We first show that the entropy of an extreme Reissner-Nordström black hole is zero, despite the fact that its horizon has nonzero area. Next, we consider the pair creation of extremal and nonextremal black holes. It is shown that the action which governs the rate of this pair creation is directly related to the area of the acceleration horizon and (in the nonextremal case) the area of the black hole event horizon. This provides a simple explanation of the result that the rate of pair creation of nonextreme black holes is enhanced by precisely the black hole entropy. Finally, we discuss black hole annihilation, and argue that Planck scale remnants are not sufficient to preserve unitarity in quantum gravity.

  18. Microcanonical Description of (Micro Black Holes

    Directory of Open Access Journals (Sweden)

    Benjamin Harms

    2011-02-01

    Full Text Available The microcanonical ensemble is the proper ensemble to describe black holes which are not in thermodynamic equilibrium, such as radiating black holes. This choice of ensemble eliminates the problems, e.g., negative specific heat (not allowed in the canonical ensemble and loss of unitarity, encountered when the canonical ensemble is used. In this review we present an overview of the weaknesses of the standard thermodynamic description of black holes and show how the microcanonical approach can provide a consistent description of black holes and their Hawking radiation at all energy scales. Our approach is based on viewing the horizon area as yielding the ensemble density at fixed system energy. We then compare the decay rates of black holes in the two different pictures. Our description is particularly relevant for the analysis of micro-black holes whose existenceis predicted in models with extra-spatial dimensions.

  19. Hawking temperature of constant curvature black holes

    International Nuclear Information System (INIS)

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of MD-1xS1, where D is the spacetime dimension and MD-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.

  20. Reversible Carnot cycle outside a black hole

    International Nuclear Information System (INIS)

    A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature TH. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1 – TH/T1. Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible. (general)