WorldWideScience

Sample records for black carbon aerosols

  1. Black carbon in aerosol during BIBLE B

    Science.gov (United States)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  2. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  3. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  4. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  5. Contribution of Black Carbon Aerosol to Drying of the Mediterranean

    Science.gov (United States)

    Tang, T.; Shindell, D. T.; Samset, B. H.; Boucher, O.; Forster, P.; Hodnebrog, Ø.; Myhre, G.; Sillmann, J.; Voulgarakis, A.; Andrews, T.; Faluvegi, G.; Fläschner, D.; Iverson, T.; Kasoar, M.; Kharin, V. V.; Kirkevag, A.; Lamarque, J. F.; Olivié, D.; Richardson, T.; Stjern, C.; Takemura, T.; Zwiers, F. W.

    2017-12-01

    Atmospheric aerosols affect cloud properties, radiative balance and thus, the hydrological cycle. Many studies have reported that precipitation has decreased in the Mediterranean since the mid-20th century, and investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare observed Mediterranean precipitation trends during 1951-2010 with responses to individual forcing in a set of state-of-the-art global climate models. Our analyses suggest that nearly one-third (30%) of the observed precipitation decrease may be attributable to black carbon forcing. The remainder is most strongly linked to forcing of well-mixed greenhouse gases (WMGHGs), with scattering sulfate aerosols having negligible impacts. Black carbon caused an enhanced positive North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)-like sea level pressure (SLP) pattern, characterized by higher SLP at mid-latitudes and lower SLP at high-latitudes. This SLP change diverted the jet stream and storm tracks further northward, reducing precipitation in the Mediterranean while increasing precipitation in Northern Europe. The results from this study suggest that future black carbon emissions may significantly affect regional water resources, agricultural practices, ecosystems, and economy in the Mediterranean region.

  6. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    Science.gov (United States)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  7. Black carbon aerosols and the third polar ice cap

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  8. Black carbon reduction will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  9. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements

    Directory of Open Access Journals (Sweden)

    R. S. Stone

    2014-06-01

    Full Text Available Abstract Aerosols, transported from distant source regions, influence the Arctic surface radiation budget. When deposited on snow and ice, carbonaceous particles can reduce the surface albedo, which accelerates melting, leading to a temperature-albedo feedback that amplifies Arctic warming. Black carbon (BC, in particular, has been implicated as a major warming agent at high latitudes. BC and co-emitted aerosols in the atmosphere, however, attenuate sunlight and radiatively cool the surface. Warming by soot deposition and cooling by atmospheric aerosols are referred to as “darkening” and “dimming” effects, respectively. In this study, climatologies of spectral aerosol optical depth AOD (2001–2011 and Equivalent BC (EBC (1989–2011 from three Arctic observatories and from a number of aircraft campaigns are used to characterize Arctic aerosols. Since the 1980s, concentrations of BC in the Arctic have decreased by more than 50% at ground stations where in situ observations are made. AOD has increased slightly during the past decade, with variations attributed to changing emission inventories and source strengths of natural aerosols, including biomass smoke and volcanic aerosol, further influenced by deposition rates and airflow patterns.

  10. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  11. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    Science.gov (United States)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  12. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    Science.gov (United States)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  13. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2009-11-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD retrievals from AERONET and Ozone Monitoring Instrument (OMI and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model

  14. Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Ping Pui; Riemer, Nicole; West, Matthew

    2016-05-27

    Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcel cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.

  15. Environmental pollution due to black carbon aerosols and its impacts in a tropical urban city

    Energy Technology Data Exchange (ETDEWEB)

    Madhavi Latha, K. [National Remote Sensing Agency, Department of Space-Government of India, Balanagar, Hyderabad 500 037 (India); Badarinath, K.V.S. [National Remote Sensing Agency, Department of Space-Government of India, Balanagar, Hyderabad 500 037 (India)]. E-mail: badrinath_kvs@nrsa.gov.in

    2005-05-15

    Black carbon (BC) has become the subject of interest in the recent years for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes, viz., vegetation burning, industrial effluents, motor vehicle exhausts, etc. In this paper, we present results from our measurements on BC aerosols, total aerosol mass concentration, and aerosol optical depth over an urban environment, namely Hyderabad during January-May, 2003. Diurnal variations of BC suggest that high BC concentrations are observed during 6:00-9:00 h and 19:00-23:00 h. Weekday variations of BC suggest that the day average BC concentrations increases gradually from Monday to Wednesday and gradually decreases from Thursday to Sunday. Fraction of BC to total mass concentration has been observed to be 7%. BC showed positive correlation with total mass concentration and aerosol optical depth at 500 nm. Radiative transfer calculations suggest that during January-May, diurnal averaged aerosol forcing at the surface was calculated to be -33 Wm{sup -2} and at the top of the atmosphere (TOA) it is to be +9 Wm{sup -2}.

  16. Black carbon's contribution to aerosol absorption optical depth over S. Korea

    Science.gov (United States)

    Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.

    2017-12-01

    Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.

  17. Regional Responses to Black Carbon Aerosols: The Importance of Air-Sea Interaction

    Science.gov (United States)

    Gnanadesikan, A.; Scott, A. A.; Pradal, M.-A.; Seviour, W. J. M.; Waugh, D. W.

    2017-12-01

    The impact of modern black carbon aerosols on climate via their changes in radiative balance is studied using a coupled model where sea surface temperatures (SSTs) are allowed to vary and an atmosphere-only version of the same model where SSTs are held fixed. Allowing the ocean to respond is shown to have a profound impact on the pattern of temperature change. Particularly, large impacts are found in the North Pacific (which cools by up to 1 K in the coupled model) and in north central Asia (which warms in the coupled simulation and cools in the fixed SST simulation). Neither set of experiments shows large changes in surface temperatures in the Southeast Asian region where the atmospheric burden of black carbon is highest. These results are related to the stabilization of the atmosphere and changes in oceanic heat transport. Over the North Pacific, atmospheric stabilization results in an increase in stratiform clouds. The resulting shading reduces evaporation, freshening the surface layer of the ocean and reducing the inflow of warm subtropical waters. Over the land, a delicate balance between greater atmospheric absorption, shading of the surface and changes in latent cooling of the surface helps to determine whether warming or cooling is seen. Our results emphasize the importance of coupling in determining the response of the climate system to black carbon and suggest that black carbon may play an important role in modulating climate change over the North Pacific.

  18. Absorbing Aerosols: Field and Laboratory Studies of Black Carbon and Dust

    Science.gov (United States)

    Aiken, A. C.; Flowers, B. A.; Dubey, M. K.

    2011-12-01

    Currently, absorbing aerosols are thought to be the most uncertain factor in atmospheric climate models (~0.4-1.2 W/m2), and the 2nd most important factor after CO2 in global warming (1.6 W/m2; Ramanathan and Carmichael, Nature Geoscience, 2008; Myhre, Science, 2009). While most well-recognized atmospheric aerosols, e.g., sulfate from power-plants, have a cooling effect on the atmosphere by scattering solar radiation, black carbon (BC or soot) absorbs sunlight strongly which results in a warming of the atmosphere. Dust particles are also present globally and can absorb radiation, contributing to a warmer and drier atmosphere. Direct on-line measurements of BC and hematite, an absorbing dust aerosol, can be made with the Single Particle Soot Photometer (SP2), which measures the mass of the particles by incandescence on an individual particle basis. Measurements from the SP2 are combined with absorption measurements from the three-wavelength photoacoustic soot spectrometer (PASS-3) at 405, 532, and 781 nm and the ultraviolet photoacoustic soot spectrometer (PASS-UV) at 375 nm to determine wavelength-dependent mass absorption coefficients (MACs). Laboratory aerosol samples include flame-generated soot, fullerene soot, Aquadag, hematite, and hematite-containing dusts. Measured BC MAC's compare well with published values, and hematite MAC's are an order of magnitude less than BC. Absorbing aerosols measured in the laboratory are compared with those from ambient aerosols measured during the Las Conchas fire and BEACHON-RoMBAS. The Las Conchas fire was a wildfire in the Jemez Mountains of New Mexico that burned over 100,000 acres during the Summer of 2011, and BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) is a field campaign focusing on biogenic aerosols at the Manitou Forest Observatory near Colorado Springs, CO in Summer 2011. Optical properties and size

  19. Do Regional Aerosols Contribute to the Riverine Export of Dissolved Black Carbon?

    Science.gov (United States)

    Jones, M. W.; Quine, T. A.; de Rezende, C. E.; Dittmar, T.; Johnson, B.; Manecki, M.; Marques, J. S. J.; de Aragão, L. E. O. C.

    2017-11-01

    The fate of black carbon (BC), a stable form of thermally altered organic carbon produced during biomass and fuel combustion, remains an area of uncertainty in the global carbon cycle. The transfer of photosynthetically derived BC into extremely long-term oceanic storage is of particular significance and rivers are the key linkage between terrestrial sources and oceanic stores. Significant fluvial fluxes of dissolved BC to oceans result from the slow release of BC from degrading charcoal stocks; however, these fluvial fluxes may also include undetermined contributions of aerosol BC, produced by biomass and fossil fuel combustion, which are deposited in river catchments following atmospheric transport. By investigation of the Paraíba do Sul River catchment in Southeast Brazil we show that aerosol deposits can be substantial contributors to fluvial fluxes of BC. We derived spatial distributions of BC stocks within the catchment associated with soil charcoal and with aerosol from both open biomass burning and fuel combustion. We then modeled the fluvial concentrations of dissolved BC (DBC) in scenarios with varying rates of export from each stock. We analyzed the ability of each scenario to reproduce the variability in DBC concentrations measured in four data sets of river water samples collected between 2010 and 2014 and found that the best performing scenarios included a 5-18% (135-486 Mg DBC year-1) aerosol contribution. Our results suggest that aerosol deposits of BC in river catchments have a shorter residence time in catchments than charcoal BC and, therefore, contribute disproportionately (with respect to stock magnitude) toward fluvial fluxes of BC.

  20. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    Science.gov (United States)

    Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.

    2016-01-01

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

  1. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

    Science.gov (United States)

    Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.

    2017-12-01

    Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

  2. PM2.5 and aerosol black carbon in Suva, Fiji

    Science.gov (United States)

    Isley, C. F.; Nelson, P. F.; Taylor, M. P.; Mani, F. S.; Maata, M.; Atanacio, A.; Stelcer, E.; Cohen, D. D.

    2017-02-01

    Concentrations of particulate air pollution in Suva, Fiji, have been largely unknown and consequently, current strategies to reduce health risk from air pollution in Suva are not targeted effectively. This lack of air quality data is common across the Pacific Island Countries. A monitoring study, during 2014 and 2015, has characterised the fine particulate air quality in Suva, representing the most detailed study to date of fine aerosol air pollutants for the Pacific Islands; with sampling at City, Residential (Kinoya) and Background (Suva Point) sites. Meteorology for Suva, as it relates to pollutant dispersion for this period of time, has also been analysed. The study design enables the contribution of maritime air and the anthropogenic emissions to be carefully distinguished from each other and separately characterised. Back trajectory calculations show that a packet of air sampled at the Suva City site has typically travelled 724 km in the 24-h prior to sampling, mainly over open ocean waters; inferring that pollutants would also be rapidly transported away from Suva. For fine particulates, Suva City reported a mid-week PM2.5 of 8.6 ± 0.4 μg/m3, averaged over 13-months of gravimetric sampling. Continuous monitoring (Osiris laser photometer) suggests that some areas of Suva may experience levels exceeding the WHO PM2.5 guideline of 10 μg/m3, however, compared to other countries, Fiji's PM2.5 is low. Peak aerosol particulate levels, at all sites, were experienced at night-time, when atmospheric conditions were least favourable to dispersion of air pollutants. Suva's average ambient concentrations of black carbon in PM2.5, 2.2 ± 0.1 μg/m3, are, however, similar to those measured in much larger cities. With any given parcel of air spending only seven minutes, on average, over the land area of Suva Peninsula, these black carbon concentrations are indicative that significant combustion emissions occur within Suva. Many other communities in the Pacific Islands

  3. A contribution of black and brown carbon to the aerosol light absorption

    Science.gov (United States)

    Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin

    2017-04-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of

  4. The role of iron and black carbon in aerosol light absorption

    Directory of Open Access Journals (Sweden)

    Y. Derimian

    2008-07-01

    Full Text Available Iron is a major component of atmospheric aerosols, influencing the light absorption ability of mineral dust, and an important micronutrient that affects oceanic biogeochemistry. The regional distribution of the iron concentration in dust is important for climate studies; however, this is difficult to obtain since it requires in-situ aerosol sampling or simulation of complex natural processes. Simultaneous studies of aerosol chemical composition and radiometric measurements of aerosol optical properties, which were performed in the Negev desert of Israel continuously for about eight years, suggest a potential for deriving a relationship between chemical composition and light absorption properties, in particular the spectral single-scattering albedo.

    The two main data sets of the present study were obtained by a sun/sky radiometer and a stacked filter unit sampler that collects particles in coarse and fine size fractions. Analysis of chemical and optical data showed the presence of mixed dust and pollution aerosol in the study area, although their sources appear to be different. Spectral SSA showed an evident response to increased concentrations of iron, black carbon equivalent matter, and their mixing state. A relationship that relates the spectral SSA, the percentage of iron in total particulate mass, and the pollution components was derived. Results calculated, using this relationship, were compared with measurements from dust episodes in several locations around the globe. The comparison showed reasonable agreement between the calculated and the observed iron concentrations, and supported the validity of the suggested approach for the estimation of iron concentrations in mineral dust.

  5. Observations of black carbon aerosols characteristics over an urban environment: Radiative forcing and related implications.

    Science.gov (United States)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera; Rahman, Said

    2017-12-15

    With observations of black carbon (BC) aerosol concentrations, optical and radiative properties were obtained over the urban city of Karachi during the period of March 2006-December 2008. BC concentrations were continuously measured using an Aethalometer, while optical and radiative properties were estimated through the Optical Properties of Aerosols and Clouds (OPAC) and Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) models, respectively. For the study period, the measured BC concentrations were higher during January, February and November, while lower during May, June, July and August. A maximum peak value was observed during January 2007 while the minimum value was observed during June 2006. The Short Wave (SW) BC Aerosol Radiative Forcing (ARF) both at Top of the Atmosphere (ToA) and within ATMOSphere (ATMOS) were positive during all the months, whereas negative SW BC ARF was found at the SurFaCe (SFC). Overall, SW BC ARF was higher during January, February and November, while relatively lower ARF was found during May, June, July and August. Conversely, the Long Wave (LW) BC ARF at ToA and SFC remained positive, whereas within ATMOS it shifted towards positive values (heating effect) during June-August. Finally, the net (SW+LW) BC ARF were found to be positive at ToA and in ATMOS, while negative at SFC. Moreover, a systematic increase in Atmospheric Heating Rate (AHR) was found during October to January. Additionally, we found highest correlation between Absorption Aerosol Optical Depth (AOD abs ) and SW BC ARF within ATMOS followed by SFC and ToA. Overall, the contribution of BC to the total ARF was found to greater than 84% for the whole observational period while contributing up to 93% during January 2007. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microparticles and human health: particulate materials, trace metals elements and black carbon in aerosols collected at Andravoahangy-Antananarivo, Madagascar

    International Nuclear Information System (INIS)

    Rasoazanany, E. O.; Andriamahenina, N. N.; Harinoely, M.; Ravoson, H. N.; Randriamanivo, L. V.; Raoelina Andriambololona; Ramaherison, H.

    2013-01-01

    The present work is to determine the concentrations of microparticles having diameter inferior to 10 μm (PM 10 ), the metal trace elements and the black carbon in the aerosols sampled in Andravoahangy-Antananarivo, Madagascar in 2008. The air sampler GENT is used to collect aerosol samples. The total reflection X-ray fluorescence spectrometer is used for qualitative and quantitative analysis of simultaneous way all metallic trace elements contained in the aerosols. The M43D reflectometer permits to measure the reflectances in order to determine the black carbon concentrations. The results show that the average concentrations of the particulate matters PM 2,5-10 are higher than those of PM 2,5 . The average concentrations of PM 10 in the aerosols are exceeding the World Health Organisation (WHO) and European Union guidelines, set at 50 μg.m -3 and those of PM 2,5 are higher than the 2005 WHO (25 μg.m-3) and the United States Environment Protection Agency (35 μg.m -3 ) guidelines. Consequently, air quality in Andravoahangy does not respect these daily guidelines. The identified metallic trace elements in the aerosols are Ti, Cr, Mn, Fe, Ni, Cu, Zn and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The concentrations of black carbon are higher in the fine particles. The maximum value is 9.12 μg.m -3 . [fr

  7. Black Carbon, Aerosol optical depth and Angstrom Exponent in São Paulo, Brazil

    Science.gov (United States)

    Miranda, R. M.; Perez-Martinez, P. J.; Andrade, M. D. F.

    2017-12-01

    Black carbon (BC) is a major absorber of solar radiation, and its impact on the radiative balance is therefore considered important. Fossil fuel combustion processes and biomass burning result in the emission of BC. Black carbon is being monitored since 2014 with a Multi-Angle Absorption Photometer-MAAP (5012; Thermo Scientific) in the East Zone of São Paulo, Brazil. São Paulo Metropolitan Area with more than 19 million inhabitants, 7 million vehicles, has high concentrations of air pollutants, especially in the winter. Vehicles can be considered the principal source of particles emitted to the atmosphere. Concentration of the pollutant had an average of 1.95 ug.m-3 ± 2.06 and a maximum value of 19.93 ug.m-3. These large variations were due to meteorological effects and to the influence of anthropogenic activities, since samples were collected close to important highways. Winds coming from the East part predominate. Higher concentrations were found in the winter months (June, July and August). Optical data from AERONET (Aerosol Optical Depth-AOD 550 nm and Angstrom Exponent 440-675 nm) were related to BC concentrations for the period from August, 2016. Average values of AOD at 500 nm and Angstrom Parameter (440-675nm) were 0.16±0.11 and 1.44±0.23, respectively. Higher BC concentrations were related to lower Angstrom values.

  8. Measurements and Analysis of Black Carbon Aerosols in the Eastern Mediterranean Megacity

    Science.gov (United States)

    Unal, A.; Ozdemir, H.; Kindap, T.; Demir, G.; Karaca, M.; Khan, M. N.

    2010-12-01

    In a world where at least 50 percent of the population is living in urban environments, air pollution and specifically particulate matter became one of the most critical issues. There have been many studies that focused on mass concentration measurements of PM10 and PM2.5. Recent studies suggest that chemical composition is critical in understanding the effects of PM on health as well as climate. For example, public health studies reveal that, components of the atmospheric aerosols have different impacts on human health. Smith et al. (2009) stated that; on the basis of the 1μg/m3 contrast, the percentage increase in all-cause mortality for PM2.5 was 0.58; sulfate effects were about twice those of PM2.5, and effects of elemental carbon (an indicator of black carbon mass) about ten times greater. To date, many studies and national inventories have been based on particulate matter (PM10 and PM2.5), and the major greenhouse pollutants, but not speciated emissions, especially in the developing world (Smith et al., 2009; Chow et al., 2010). But air quality standards will soon need to include particulate black carbon (BC), as it directly afffects climate, visibility, and human health. Anthropogenic emissions are increasing dramatically worldwide and recent estimates of global BC emissions range from 8 to 24 Tg (1012 g) per year. In this study, we investigated BC pollution for the first time in Istanbul, Turkey. Istanbul is a megacity of over 15 million inhabitants (OECD, 2008). On-road traffic is also increasing rapidly in the city (over 3 million vehicles on the road). Hence, the city has a potential to be an important source for both local and regional pollution in the Eastern Mediterranean. In our study, an Aethalometer (<0.1μg/m3 sensitivity) was used for continuous and real-time measurements of BC concentration. Measurements were carried out at the selected five different locations throughout the city. 1st and 2nd sites were near high-traffic streets; in the city

  9. Radiative effects of black carbon aerosols on Indian monsoon: a study using WRF-Chem model

    Science.gov (United States)

    Soni, Pramod; Tripathi, Sachchida Nand; Srivastava, Rajesh

    2018-04-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.

  10. Origin and radiative forcing of black carbon aerosol: production and consumption perspectives.

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Yi, Kan; Yang, Haozhe; Guan, Dabo; Liu, Zhu; Zhang, Jiachen; Ou, Jiamin; Dorling, Stephen; Mi, Zhifu; Shen, Huizhong; Zhong, Qirui; Tao, Shu

    2018-04-24

    Air pollution, a threat to air quality and human health, has attracted ever-increasing attention in recent years. In addition to having local influence, air pollutants can also travel the globe via atmospheric circulation and international trade. Black carbon (BC), emitted from incomplete combustion, is a unique but representative particulate pollutant. This study tracked down the BC aerosol and its direct radiative forcing to the emission sources and final consumers using the global chemical transport model (MOZART-4), the rapid radiative transfer model for general circulation simulations (RRTM) and a multiregional input-output analysis (MRIO). BC is physically transported (i.e., atmospheric transport) from western to eastern countries in the mid-latitude westerlies, but its magnitude is near an order of magnitude higher if the virtual flow embodied in international trade is considered. The transboundary effects on East and South Asia by other regions increased from about 3% (physical transport only) to 10% when considering both physical and virtual transport. The influence efficiency on East Asia is also large because of the comparatively large emission intensity and emission-intensive exports (e.g., machinery and equipment). The radiative forcing in Africa imposed by consumption from Europe, North America and East Asia (0.01Wm-2) was even larger than the total forcing in North America. Understanding the supply chain and incorporating both atmospheric and virtual transport may improve multilateral cooperation on air pollutant mitigation both domestically and internationally.

  11. Spatial distribution of aerosol black carbon over India during pre-monsoon season

    Science.gov (United States)

    Beegum, S. Naseema; Moorthy, K. Krishna; Babu, S. Suresh; Satheesh, S. K.; Vinoj, V.; Badarinath, K. V. S.; Safai, P. D.; Devara, P. C. S.; Singh, Sacchidanand; Vinod; Dumka, U. C.; Pant, P.

    Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a mutli-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March-May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each in Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 μg m -3 over industrial/urban locations to as low as 0.065 μg m -3 over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December-February) to pre-monsoon (March-May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with an afternoon low and a nighttime high; (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL). At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May. This is attributed to the increased convective mixing and to the

  12. Influence of sample composition on aerosol organic and black carbon determinations

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  13. Influence of sample composition on aerosol organic and black carbon determinations

    International Nuclear Information System (INIS)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550 degrees C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations

  14. Radiative effect of black carbon aerosol on a squall line case in North China

    Science.gov (United States)

    Fu, Shizuo; Deng, Xin; Li, Zhe; Xue, Huiwen

    2017-11-01

    The radiative effect of black carbon aerosol (BC) on a squall line case in north China is studied with the Weather Research and Forecasting model. Before the initiation of the squall line, the surface-emitted BC is mixed only in the boundary layer (BL). BC is then transported from the BL into the free troposphere by the updrafts in the squall line system. Once distributed in the atmosphere, BC absorbs solar radiation and heats the surrounding air. The maximum increase of temperature is 0.05 K for the moderately polluted case bc2 and 0.37 K for the heavily polluted case bc20. In case bc2, where the BC concentration is not very high, the solar flux reaching the surface, the sensible heat flux, and the latent heat flux are not significantly affected by BC. In case bc20, the solar flux reaching the surface, the sensible heat flux, and the latent heat flux are reduced by up to 80, 30, and 21 W m- 2, respectively. The reduced surface evaporation leads to a reduced vapor amount at the early stage. After some time, the heating effect causes a large-scale convergence and brings slightly more vapor into the domain. The effect of BC on the cold pool strength and low-level wind shear is small and hence does not significantly affect the triggering of new convections. In addition, our results show that the effect of BC is negligible on the strength and rain rate of the squall line case.

  15. The ``Micro'' Aethalometer - an enabling technology for new applications in the measurement of Aerosol Black Carbon

    Science.gov (United States)

    Hansen, A. D.; Močnik, G.

    2010-12-01

    Aerosol Black Carbon (BC) is a tracer for combustion emissions; a primary indicator of adverse health effects; and the second leading contributor to Global Climate Change. The “Micro” Aethalometer is a recently-developed miniature instrument that makes a real-time measurement of BC on a very short timebase in a self-contained, battery-powered package that is lightweight and pocket sized. This technological development critically enables new areas of research: Measurements of the vertical profile of BC, by carrying the sampler aloft on a balloon (tethered or released) or aircraft (piloted or UAV); Estimates of the concentration of BC in the troposphere and lower stratosphere in the 8 - 12 km. altitude range, by measurements in the passenger cabin during commercial air travel; Epidemiological studies of personal exposure to BC, by carrying the sampler on a subject person in health studies; Measurements of the concentration of BC in rural and remote regions, by means of a small, battery-powered instrument that is convenient to deploy; measurements of high concentrations of “smoke” in indoor and outdoor environments in developing countries; Unobtrusive monitoring of BC infiltration into indoor environments, by means of a small, quiet instrument that can be placed in publicly-used spaces, school classrooms, museums, and other potentially-impacted locations; Adaptation of the technology to the direct source measurement of BC concentrations in emissions from diesel exhausts, combustion plumes, and other sources. We will show examples of data from various recent projects to illustrate the capabilities and applications of this new instrument.

  16. The online measured black carbon aerosol and source orientations in the Nam Co region, Tibet.

    Science.gov (United States)

    Zhang, Xin; Ming, Jing; Li, Zhongqin; Wang, Feiteng; Zhang, Guoshuai

    2017-11-01

    Equivalent black carbon (eBC) mass concentrations were measured by an aethalometer (AE-31) in the Nam Co, central Tibet from 2010 to 2014. Different from previous filter-sampling studies (Ming et al., J Environ Sci 22(11):1748-1756, 2010; Zhao et al., Environ Sci Pollut Res 20:5827-5838, 2013), the first high-resolution online eBC measurement conducted in central Tibet is reported here, allowing to discuss the diurnal variations as well as seasonal variabilities of eBC. Average daily eBC concentration was 74 ± 50 ng/m 3 , reflecting a global background level. Meteorological conditions influenced eBC concentrations largely at seasonal scale, which are higher in February-May but lower in June-January. The highest eBC concentrations (greater than 210 ng/m 3 ) were more associated with the W and WSW winds smaller than 6 m/s. The diurnal variations of eBC showed plateaus from 10:00 to 15:00 with seasonal variations, associated with local anthropogenic activities, such as indigenous Tibetan burning animal waste and tourism traffic. The PBLHs showed a co-variance with eBC concentrations, implicating close sources. The aerosol optical depths derived from the MODIS data over the Nam Co Observatory Station (NCOS)-included sub-area (30° N-40° N, 90° E-100° E) showed significant relationship with eBC concentrations. This suggests that nearby or short-distance sources other than long-distance transported pollutants could be important contributors to eBC concentrations at the NCOS, different from the conclusions suggested by previous studies.

  17. Numerical Investigation on Absorption Enhancement of Black Carbon Aerosols Partially Coated With Nonabsorbing Organics

    Science.gov (United States)

    Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin

    2018-01-01

    This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (Eab) of polydisperse BC aggregates partially coated by organics, which is calculated by the exact multiple-sphere T-matrix method. The coated volume fraction of BC plays a substantial role in determining the absorption enhancement of partially coated BC aggregates, which typically have an Eab in the range of 1.0-2.0 with a larger value for larger coated volume fraction of BC as the shell/core ratio, BC geometry, and size distribution are fixed. The shell/core ratio, BC geometry, and size distribution have little impact on the Eab of coated BC with small coated volume fraction of BC, while they become significant for large coated volume fraction of BC. The Eab of partially coated BC particles can be slightly less than 1.0 for the large BC in the accumulation mode exhibiting large shell/core ratio and small coated volume fraction of BC, indicating that the absorption shows even slight decrease relative to uncoated BC particles. For partially coated BC aggregates in the accumulation and coarse modes, the refractive index uncertainties of BC result in the Eab differences of less than 9% and 2%, respectively, while those of organics can induce larger variations with the maximum differences up to 22% and 18%, respectively. Our study indicates that accounting for particle coating microphysics, particularly the coated volume fraction of BC, can potentially help to understand the differences in observations of largely variable absorption enhancements over various regions.

  18. Air pollution studies in terms of particulate matters, elements and black carbon in the aerosols collected at Andravoahangy-Antananarivo

    International Nuclear Information System (INIS)

    HARINOELY, M.

    2012-01-01

    This work was performed at the Institut National des Sciences et Techniques Nucleaires (Madagascar-INSTN) in the framework of RAF/4/019 project organized by the International Atomic Energy Agency. The main objective of this work is to study the level of air pollution in terms of particulate matters, elements and black carbon in the site of Andravoahangy-Antananarivo and to transmit the results obtained to the competent authorities so that they can make decisions to reduce the impacts of air pollution on the population. The total reflection X-ray fluorescence spectrometer is used for qualitative and quantitative analyses of the elements contained in the aerosols and the reflectometer M43D for the determination of the black carbon concentrations. The results showed that the average concentrations of the particulate matters PM 2,5-10 are higher than those of PM 2,5 . The average concentrations of PM 10 in the aerosols are exceeding the World Health Organisation (WHO) and European Union guidelines, set at 50 μg.m -3 and those of PM 2,5 are higher than the 2005 WHO (25 μg.m -3 ) and the United States Environmental Protection Agency (35 μg.m -3 ) guidelines. The identified elements in the aerosols are Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The concentrations of black carbon are higher in the fine particles, with a maximum value of 9.12 μg.m -3 . [fr

  19. Long term change in atmospheric dust absorption, dust scattering and black carbon aerosols scattering coefficient parameters over western Indian locations

    Science.gov (United States)

    Satoliya, Anil Kumar; Vyas, B. M.; Shekhawat, M. S.

    2018-05-01

    The first time satellite space based measurement of atmospheric black carbon (BC) aerosols scattering coefficient at 550nm (BC SC at 550nm), dust aerosols scattering and dust aerosols extinction coefficient (DSC at 550nm and DEC at 550nm) parameters have been used to understand their long term trend of natural and anthropogenic aerosols behavior with its close association with ground based measured precipitation parameters such as Total Rain Fall (TRF), and Total Number of Rainy Days (TNRD) for the same period over western Indian regions concerned to the primary aerosols sources of natural activities. The basic objective of this study is an attempt to investigate the inter-correlation between dust and black carbon aerosols loading characteristics with a variation of rainfall pattern parameters as indirect aerosols induced effect i.e., aerosols-cloud interaction. The black carbon aerosols generated by diverse anthropogenic or human made activities are studied by choosing of measured atmospheric BC SC at 550nm parameter, whereas desert dust mineral aerosols primarily produced by varieties of natural activities pre-dominated of dust mineral desert aerosols mainly over Thar desert influenced area of hot climate and rural tropical site are investigated by selecting DSC at 550nm and DEC at 550nm of first semi-urban site i.e., Udaipur (UDP, 24.6°N, 73.35°E, 580m above surface level (asl)) situated in southern Rajasthan part as well as over other two Great Indian Thar desert locations i.e., Jaisalmer (JSM, 26.90°N, 69.90°E, 220m asl)) and Bikaner (BKN, 28.03°N, 73.30°E, 224m asl) located in the vicinity of the Thar desert region situated in Rajasthan state of the western Indian region. The source of the present study would be collection of longer period of monthly values of the above parameters of spanning 35 years i.e., 1980 to 2015. Such types of atmospheric aerosols-cloud monsoon interaction investigation is helpful in view of understanding their direct and

  20. Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

    International Nuclear Information System (INIS)

    Wang Hai-Hua; Sun Xian-Ming

    2012-01-01

    The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models. The internal mixing model is modeled with a two-layered sphere (water cloud droplets containing black carbon (BC) inclusions), and the single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz—Mie theory. The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally. The multiple scattering characteristics are computed by using the Monte Carlo method. The results show that when the size of the BC aerosol is small, the reflection intensity of the internal mixing model is bigger than that of the external mixing model. However, if the size of the BC aerosol is big, the absorption of the internal mixing model will be larger than that of the external mixing model. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  2. Emissions of Black Carbon, Organic, and Inorganic Aerosols From Biomass Burning in North America and Asia in 2008

    Science.gov (United States)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; hide

    2011-01-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  3. The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions

    Directory of Open Access Journals (Sweden)

    C. Wang

    2009-10-01

    Full Text Available Previous works have suggested that the direct radiative forcing (DRF of black carbon (BC aerosols are able to force a significant change in tropical convective precipitation ranging from the Pacific and Indian Ocean to the Atlantic Ocean. In this in-depth analysis, the sensitivity of this modeled effect of BC on tropical convective precipitation to the emissions of BC from 5 major regions of the world has been examined. In a zonal mean base, the effect of BC on tropical convective precipitation is a result of a displacement of ITCZ toward the forcing (warming hemisphere. However, a substantial difference exists in this effect associated with BC over different continents. The BC effect on convective precipitation over the tropical Pacific Ocean is found to be most sensitive to the emissions from Central and North America due to a persistent presence of BC aerosols from these two regions in the lowermost troposphere over the Eastern Pacific. The BC effect over the tropical Indian and Atlantic Ocean is most sensitive to the emissions from South as well as East Asia and Africa, respectively. Interestingly, the summation of these individual effects associated with emissions from various regions mostly exceeds their actual combined effect as shown in the model run driven by the global BC emissions, so that they must offset each other in certain locations and a nonlinearity of this type of effect is thus defined. It is known that anthropogenic aerosols contain many scattering-dominant constituents that might exert an effect opposite to that of absorbing BC. The combined aerosol forcing is thus likely differing from the BC-only one. Nevertheless, this study along with others of its kind that isolates the DRF of BC from other forcings provides an insight of the potentially important climate response to anthropogenic forcings particularly related to the unique particulate solar absorption.

  4. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011–2012 of field campaigns

    Directory of Open Access Journals (Sweden)

    L. Ferrero

    2016-10-01

    Full Text Available We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard. The campaign lasted 2 years (2011–2012 and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l. during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  5. Optics of Water Cloud Droplets Mixed with Black-Carbon Aerosols

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Cairns, Brian; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to calculate scattering and absorption properties of micrometer-sized water droplets contaminated by black carbon. Our numerically exact results reveal that, depending on the mode of soot-water mixing, the soot specific absorption can vary by a factor exceeding 6.5. The specific absorption is maximized when the soot material is quasi-uniformly distributed throughout the droplet interior in the form of numerous small monomers. The range of mixing scenarios captured by our computations implies a wide range of remote sensing and radiation budget implications of the presence of black carbon in liquid-water clouds. We show that the popular Maxwell-Garnett effective-medium approximation can be used to calculate the optical cross sections, single-scattering albedo, and asymmetry parameter for the quasi-uniform mixing scenario, but is likely to fail in application to other mixing scenarios and in computations of the elements of the scattering matrix.

  6. Black Carbon and Sulfate Aerosols in the Arctic: Long-term Trends, Radiative Impacts, and Source Attributions

    Science.gov (United States)

    Wang, H.; Zhang, R.; Yang, Y.; Smith, S.; Rasch, P. J.

    2017-12-01

    The Arctic has warmed dramatically in recent decades. As one of the important short-lived climate forcers, aerosols affect the Arctic radiative budget directly by interfering radiation and indirectly by modifying clouds. Light-absorbing particles (e.g., black carbon) in snow/ice can reduce the surface albedo. The direct radiative impact of aerosols on the Arctic climate can be either warming or cooling, depending on their composition and location, which can further alter the poleward heat transport. Anthropogenic emissions, especially, BC and SO2, have changed drastically in low/mid-latitude source regions in the past few decades. Arctic surface observations at some locations show that BC and sulfate aerosols had a decreasing trend in the recent decades. In order to understand the impact of long-term emission changes on aerosols and their radiative effects, we use the Community Earth System Model (CESM) equipped with an explicit BC and sulfur source-tagging technique to quantify the source-receptor relationships and decadal trends of Arctic sulfate and BC and to identify variations in their atmospheric transport pathways from lower latitudes. The simulation was conducted for 36 years (1979-2014) with prescribed sea surface temperatures and sea ice concentrations. To minimize potential biases in modeled large-scale circulations, wind fields in the simulation are nudged toward an atmospheric reanalysis dataset, while atmospheric constituents including water vapor, clouds, and aerosols are allowed to evolve according to the model physics. Both anthropogenic and open fire emissions came from the newly released CMIP6 datasets, which show strong regional trends in BC and SO2 emissions during the simulation time period. Results show that emissions from East Asia and South Asia together have the largest contributions to Arctic sulfate and BC concentrations in the upper troposphere, which have an increasing trend. The strong decrease in emissions from Europe, Russia and

  7. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    International Nuclear Information System (INIS)

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; Chang, Ping

    2017-01-01

    Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the global average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.

  8. Laboratory Measurements of Mass Specific Absorption Spectra for Suites of Black Carbon-like, Biomass Burning and Mineral Dust Aerosols

    Science.gov (United States)

    Radney, J.; Zangmeister, C.

    2017-12-01

    Light-absorbing atmospheric aerosols can be grouped into three categories: black carbon (BC), brown carbon (BrC) or mineral dust (MD). In many cases, the absorption of these species is best quantified using a mass-specific absorption cross section (MAC) since the particles are in the Rayleigh regime (BC) or optically thin (BrC and MD); notably, MAC values are both traceable to the SI and transferrable between photoacoustic spectroscopy and filter-based absorption measurements. Here, we present laboratory measurements of MAC for all three light-absorbing aerosol classes. Particles were size- and mass-selected using a differential mobility analyzer and aerosol particle mass analyzer, respectively, with absorption coefficients (αabs) and number concentrations (N) being measured by a broadband photoacoustic spectrometer and condensation particle counter, respectively. This suite of instrumentation allows for direct quantification of MAC from the measured parameters (MAC = αabs/Nmp). Further, the measurements contained > 8 data points spanning λ = 405 nm to 840 nm allowing for spectral curvatures (i.e. the Absorption Angstrom Exponent or AAE) to be fit from many data points versus the more common 2-point interpolations. For the carbonaceous, BC-like aerosols - five samples generated from flames, spark discharge soot (i.e. fullerene soot), graphene, reduced graphene oxide (rGO), and fullerene (C60) - we found: 1) measured MAC ranged between 2.4 m2 g-1 and 8.6 m2 g-1 at λ = 550 nm, 2) most AAEs ranged between 0.5 and 1.3; C60 AAE was 7.5 ± 0.9 and 3) MAC spectra were dependent on fuel type and formation conditions. For BrC particles generated from smoldering combustion of 3 hardwood (Oak, Hickory and Mesquite) and 3 softwood species (Western redcedar, Blue spruce and Baldcypress), we found: 1) median MAC values ranged from 1.4 x 10-2 m2 g-1 to 7.9 x 10-2 m2 g-1 at λ = 550 nm, 2) AAE values ranged between 3.5 and 6.2, and 3) Oak, Western redcedar and Blue spruce

  9. Investigating the Use of a Diffusion Flame to Produce Black Carbon Standards for Thermal- Optical Analysis of Carbonaceous Aerosols

    Science.gov (United States)

    Ortiz Montalvo, D. L.; Kirchstetter, T. W.; Soto-García, L. L.; Mayol-Bracero, O. L.

    2006-12-01

    Combustion generated particles are a concern to both climate and public health due to their ability to scatter and absorb solar radiation and alter cloud properties, and because they are small enough to be inhaled and deposit in the lungs where they may cause respiratory and other health problems. Specific concern is focused on particles that originate from the combustion of diesel fuel. Diesels particles are composed mainly of carbonaceous material, especially in locations where diesel fuel sulfur is low. These particles are black due to the strongly light absorbing nature of the refractory carbon components, appropriately called black carbon (BC). This research project focuses on the uncertainty in the measurement of BC mass concentration, which is typically determined by analysis of particles collected on a filter using a thermal-optical analysis (TOA) method. Many studies have been conducted to examine the accuracy of the commonly used variations of the TOA method, which vary in their sample heating protocol, carrier gas, and optical measurement. These studies show that BC measurements are inaccurate due to the presence of organic carbon (OC) in the aerosols. OC may co-evolve with BC or char to form BC during analysis, both of which make it difficult to distinguish between the OC and BC in the sample. The goal of this study is to develop the capability of producing standard samples of known amounts of BC, either alone or mixed with other aerosol constituents, and then evaluate which TOA methods accurately determine the BC amount. An inverted diffusion flame of methane and air was used to produce particle samples containing only BC as well as samples of BC mixed with humic acid (HA). Our study found that HA is light absorbing and catalyzes the combustion of BC. It is expected that both of these attributes will challenge the ability of TOA methods in distinguishing between OC and BC, such as the simple two step TOA method which relies solely on temperature to

  10. Long-term trends in California mobile source emissions and ambient concentrations of black carbon and organic aerosol.

    Science.gov (United States)

    McDonald, Brian C; Goldstein, Allen H; Harley, Robert A

    2015-04-21

    A fuel-based approach is used to assess long-term trends (1970-2010) in mobile source emissions of black carbon (BC) and organic aerosol (OA, including both primary emissions and secondary formation). The main focus of this analysis is the Los Angeles Basin, where a long record of measurements is available to infer trends in ambient concentrations of BC and organic carbon (OC), with OC used here as a proxy for OA. Mobile source emissions and ambient concentrations have decreased similarly, reflecting the importance of on- and off-road engines as sources of BC and OA in urban areas. In 1970, the on-road sector accounted for ∼90% of total mobile source emissions of BC and OA (primary + secondary). Over time, as on-road engine emissions have been controlled, the relative importance of off-road sources has grown. By 2010, off-road engines were estimated to account for 37 ± 20% and 45 ± 16% of total mobile source contributions to BC and OA, respectively, in the Los Angeles area. This study highlights both the success of efforts to control on-road emission sources, and the importance of considering off-road engine and other VOC source contributions when assessing long-term emission and ambient air quality trends.

  11. Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments

    Science.gov (United States)

    Pan, Xiaole; Kanaya, Yugo; Taketani, Fumikazu; Miyakawa, Takuma; Inomata, Satoshi; Komazaki, Yuichi; Tanimoto, Hiroshi; Wang, Zhe; Uno, Itsushi; Wang, Zifa

    2017-11-01

    The emission characteristics of refractory black carbon (rBC) from biomass burning are essential information for numerical simulations of regional pollution and climate effects. We conducted combustion experiments in the laboratory to investigate the emission ratio and mixing state of rBC from the burning of wheat straw and rapeseed plants, which are the main crops cultivated in the Yangtze River Delta region of China. A single particle soot photometer (SP2) was used to measure rBC-containing particles at high temporal resolution and with high accuracy. The combustion state of each burning case was indicated by the modified combustion efficiency (MCE), which is calculated using the integrated enhancement of carbon dioxide and carbon monoxide concentrations relative to their background values. The mass size distribution of the rBC particles showed a lognormal shape with a mode mass equivalent diameter (MED) of 189 nm (ranging from 152 to 215 nm), assuming an rBC density of 1.8 g cm-3. rBC particles less than 80 nm in size (the lower detection limit of the SP2) accounted for ˜ 5 % of the total rBC mass, on average. The emission ratios, which are expressed as ΔrBC / ΔCO (Δ indicates the difference between the observed and background values), displayed a significant positive correlation with the MCE values and varied between 1.8 and 34 ng m-3 ppbv-1. Multi-peak fitting analysis of the delay time (Δt, or the time of occurrence of the scattering peak minus that of the incandescence peak) distribution showed that rBC-containing particles with rBC MED = 200 ± 10 nm displayed two peaks at Δt = 1.7 µs and Δt = 3.2 µs, which could be attributed to the contributions from both flaming and smoldering combustion in each burning case. Both the Δt values and the shell / core ratios of the rBC-containing particles clearly increased as the MCE decreased from 0.98 (smoldering-dominant combustion) to 0.86 (flaming-dominant combustion), implying the great importance of the

  12. A New Method to Obtain the Black Carbon Mixing State of Biomass and Combustion Aerosols

    Science.gov (United States)

    Irwin, M.; Liu, D.; Joshi, R.; Allan, J. D.; Coe, H.; Flynn, M.; Olfert, J. S.; Broda, K.; Fu, P.; Sun, Y.; Ge, X.; Wang, J.

    2017-12-01

    Black carbon particles (BC) significantly contribute to warming effects in the atmosphere, altering weather systems, and pose significant health risks. These impacts are especially efficient at regional hotspots with high emissions of pollutants, such as in fast-developing megacities. These urban environments have the most population exposure, and improving the understanding of the sources and the processing of pollutants in these environments is critical in guiding policy making. Here we present the results of BC characterization in Beijing during the winter of 2016 (10th Nov-10th Dec), as part of a large joint UK-China field experiment. During this experiment, we successfully gathered 4 weeks of continuous measurements, including several severe pollution events in Beijing. MethodologyThe mixing state of BC, which is how BC is associated with non-BC material (its coating) within a particle, is crucial to determine its lifetime in the atmosphere and also its optical properties. However precisely quantifying the BC mixing state has posed a challenge, in part due to complex particle morphology. We have applied morphology-independent measurements of BC mixing state on a single-particle basis throughout this experiment: mono-dispersed particle mass (MP) is selected using a Centrifugal Particle Mass Analyser (CPMA, Cambustion Ltd) and a single particle soot photometer (SP2, DMT inc.) was used downstream of the CPMA to measure the refractory BC mass (MrBC). The full scan of CPMA masses (21 mass bins covering most of MP) are performed every half hour, following polydispersed particles measured without running CPMA.

  13. Ice Nucleation Activity of Black Carbon and Organic Aerosol Emitted from Biomass Burning

    Science.gov (United States)

    Rauker, A. M.; Schill, G. P.; Hill, T. C. J.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.

    2017-12-01

    Ice-nucleating particles (INPs) must be present in clouds warmer than approximately -36 °C for initial ice crystal formation to occur. Although rare, they modify the lifetime, albedo and precipitation rates of clouds. Black carbon (BC) particles are present in the upper troposphere, and have been implicated as possible INPs, but recent research has not led to a consensus on their importance as INPs. Biomass burning is known to be a source of INPs as well as a major contributor to BC concentrations. Preliminary research from both prescribed burns (Manhattan, Kanas) and wildfires (Boise, Idaho and Weldon, Colorado), using the Colorado State University Continuous Flow Diffusion Chamber (CSU-CFDC) coupled to a Single Particle Soot Photometer (SP2), suggest that BC contributed ≤ 10% to INP concentrations in biomass burning conditions. To evaluate the identity of non-BC as an INP, filters were collected downwind from the same prescribed burns and wildfires, and particles re-suspended in water were subjected to the immersion freezing method to quantify INP concentrations. The contributions of biological and total organic species to INP concentrations were determined through heat and hydrogen peroxide pre-treatments. Total INPs ranged from 0.88 - 31 L-1 air at -20 °C with 82 - 99 % of the INPs at that temperature being organic (i.e., deactivated by H2O2 digestion). Results are consistent with CSU-CFDC-SP2 derived rBC INP contributions from the same fires. The results from the study also support previous findings that prescribed burns and wildfires produce plumes enriched in INPs.

  14. Black Sea aerosols

    International Nuclear Information System (INIS)

    Hacisalihoglu, G.; Eliyakut, F.; Anwari, M.A.; Ataman, O.Y.; Balkas, T.I.; Tuncel, G.; Olmez, I.

    1991-01-01

    Shipboard, high volume air particulate samples were collected from the Black Sea atmosphere and analyzed by instrumental neutron activation analysis, atomic absorption spectrophotometry and ion chromatography for about 40 elements and ions. Concentrations of elements in the eastern and western parts of the Black Sea are different at the 95% confidence level, with lower concentrations in the eastern Black Sea. Back-trajectories and concentrations of elements in trajectory groups show that Europe accounts for more than 70% of the anthropogenic elements in the atmosphere. The average sulfate concentration was 7 μg/m 3 , which is comparable with rural sulfate levels in western Europe. Fluxes of elements from the atmosphere to the Black Sea are in good agreement with the results of similar flux calculations for other regions

  15. Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-11-01

    Full Text Available The emission characteristics of refractory black carbon (rBC from biomass burning are essential information for numerical simulations of regional pollution and climate effects. We conducted combustion experiments in the laboratory to investigate the emission ratio and mixing state of rBC from the burning of wheat straw and rapeseed plants, which are the main crops cultivated in the Yangtze River Delta region of China. A single particle soot photometer (SP2 was used to measure rBC-containing particles at high temporal resolution and with high accuracy. The combustion state of each burning case was indicated by the modified combustion efficiency (MCE, which is calculated using the integrated enhancement of carbon dioxide and carbon monoxide concentrations relative to their background values. The mass size distribution of the rBC particles showed a lognormal shape with a mode mass equivalent diameter (MED of 189 nm (ranging from 152 to 215 nm, assuming an rBC density of 1.8 g cm−3. rBC particles less than 80 nm in size (the lower detection limit of the SP2 accounted for ∼ 5 % of the total rBC mass, on average. The emission ratios, which are expressed as ΔrBC ∕ ΔCO (Δ indicates the difference between the observed and background values, displayed a significant positive correlation with the MCE values and varied between 1.8 and 34 ng m−3 ppbv−1. Multi-peak fitting analysis of the delay time (Δt, or the time of occurrence of the scattering peak minus that of the incandescence peak distribution showed that rBC-containing particles with rBC MED  =  200 ± 10 nm displayed two peaks at Δt  =  1.7 µs and Δt  =  3.2 µs, which could be attributed to the contributions from both flaming and smoldering combustion in each burning case. Both the Δt values and the shell / core ratios of the rBC-containing particles clearly increased as the MCE decreased from 0.98 (smoldering

  16. Black Carbon Aerosol over the Los Angeles Basin during CalNex

    Science.gov (United States)

    2012-04-20

    Dentener et al., 2006] and simulated in regional air quality models [Binkowski and Roselle , 2003]. While the majority of atmospheric particulate chemical...S. J. Roselle (2003), Models-3 Community Multi- scale Air Quality (CMAQ) model aerosol component: 1. Model descrip- tion, J. Geophys. Res., 108(D6

  17. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    Science.gov (United States)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965-1979, doi:10.5194/amt-8-1965-2015, 2015. Eleftheriadis, K., Vratolis, S., and Nyeki, S.: Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Ålesund, Svalbard from 1998-2007, Geophys. Res. Lett., 36, L02809, doi:10.1029/2008GL035741, 2009

  18. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    Science.gov (United States)

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    that emission of soot particles may be localized to fossil fuel combustion, whereas wood/biomass burning emission of black carbon is due to transportation from farther distances. Regression analysis between eBCff and CO (r = 0.44) indicated a similar source as vehicular emissions. The very high loading of PM2.5 along with eBC over Delhi suggests that urgent action is needed to mitigate the emissions of carbonaceous aerosol in the northern part of India.

  19. Aerosol deposition (trace elements and black carbon) over the highest glacier of the Eastern European Alps during the last centuries

    Science.gov (United States)

    Bertò, Michele; Barbante, Carlo; Gabrieli, Jacopo; Gabrielli, Paolo; Spolaor, Andrea; Dreossi, Giuliano; Laj, Paolo; Zanatta, Marco; Ginot, Patrick; Fain, Xavier

    2016-04-01

    Ice cores are an archive of a wide variety of climatic and environmental information from the past, retaining them for hundreds of thousands of years. Anthropogenic pollutants, trace elements, heavy metals and major ions, are preserved as well providing insights on the past atmospheric circulations and allowing evaluating the human impact on the environment. Several ice cores were drilled in glaciers at mid and low latitudes, as in the European Alps. The first ice cores drilled to bedrock in the Eastern Alps were retrieved during autumn 2011 on the "Alto dell`Ortles glacier", the uppermost glacier of the Ortles massif (3905m, South Tirol, Italy), in the frame of the "Ortles Project". A preliminary dating of the core suggests that it should cover at least 300-400 years. Despite the summer temperature increase of the last decades this glacier still contain cold ice. Indeed, O and H isotopes profiles well describe the atmospheric warming as well as the low temperatures recorded during the Little Ice Age (LIA). Moreover, this glacier is located close to densely populated and industrialized areas and can be used for reconstructing for the first time past and recent air pollution and the human impact in the Eastern European Alps. The innermost part of the core is under analysis by means of a "Continuous Flow Analysis" system. This kind of analysis offers a high resolution in data profiles. The separation between the internal and the external parts of the core avoid any kind of contamination. An aluminum melting head melts the core at about 2.5 cm min-1. Simultaneous analyses of conductivity, dust concentration and size distribution (from 0.8 to 80 μm), trace elements with Inductive Coupled Plasma Mass Spectrometer (ICP-MS, Agilent 7500) and refractory black carbon (rBC) with the Single Particle Soot Photometer (SP2, Droplet Measurement Technologies) are performed. A fraction of the melt water is collected by an auto-sampler for further analysis. The analyzed elements

  20. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    Science.gov (United States)

    Saikawa, Eri; Naik, Vaishali; Horowitz, Larry W.; Liu, Junfeng; Mauzerall, Denise L.

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO 2), a sulfate (SO 42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO 42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO 2, SO 42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO 42- and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of -74 mW m -2 in 2000 and between -15 and -97 mW m -2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the

  1. Characterization and Scaling of Black Carbon Aerosol Concentration with City Population Based on In-Situ Measurements and Analysis

    Science.gov (United States)

    Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.

    2010-12-01

    The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.

  2. Seasonal variations of sulfate, carbonaceous species (black carbon and polycyclic aromatic hydrocarbons), and trace elements in fine atmospheric aerosols collected at subtropical islands in the East China Sea

    Science.gov (United States)

    Kaneyasu, Naoki; Takada, Hideshige

    2004-03-01

    In order to characterize the outflow of pollution derived aerosols from the Asian Pacific rim to the North Pacific Ocean, seasonal variations of fine aerosol components (aerodynamic diameter <2 μm) were collected at two islands (Amami Island and Miyako Island) that surround the East China Sea. Monthly averaged concentrations of non-sea-salt SO42- (nss.SO42-) and black carbon (BC) at Amami and Miyako showed relatively high values in winter to spring and low values in summer. The observed seasonal variation is basically determined by the northwesterly monsoon in winter to spring and southeasterly wind from the stationary North Pacific anticyclone in summer. The minimum concentration levels of nss.SO42- and BC in summer were almost 2-3 times that of the North Pacific background level. Trace metals in aerosols showed similar seasonal variations observed for nss.SO42- and BC. The concentrations of nss.SO42- and Sb were highly correlated; this is in contradiction with the results at stations established in Pacific Exploratory Mission-West ground monitoring sites. Polycyclic aromatic hydrocarbons (PAHs) also showed a pronounced maximum in winter and/or spring, with maximum concentrations comparable in magnitude to those in spring at Barrow, Alaska. Many of the low molecular weight species of PAHs had high correlation with BC, suggesting that they were either transported independently in a similar way or were transported attached to BC. Furthermore, the relative abundance of some PAH species in the present study and those found in deep-ocean surface sediments sampled in the middle Pacific Ocean are compared and discussed.

  3. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-04-25

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

  4. Biomass burning plumes and the aging of black carbon aerosols in the tropopause region observed with the CARIBIC single particle soot photometer

    Science.gov (United States)

    Ditas, J.; Ma, N.; Zhang, Y.; Assmann, D. N.; Neumaier, M.; Wang, S.; Wang, J.; Zahn, A.; Hermann, M.; Brenninkmeijer, C. A. M.; Poeschl, U.; Su, H.; Cheng, Y.

    2017-12-01

    Biomass burning (BB) events can release large amounts of refractory black carbon (rBC) into the upper troposphere and lowermost stratosphere (UT/LMS) (Dahlkötter et al., 2014). To explore this effect, a Single Particle Soot Photometer (SP2) was added to the scientific payload of the instrumented CARIBIC container that is installed monthly in the cargo bay of a passenger aircraft (the IAGOS-CARIBIC atmospheric observatory, www.iagos.org). Regular measurement flights with different destinations are performed, covering an area of about 120°W to 120°E and 75°N to 30°S. A wide range of in situ measurements (CO, O3, greenhouse gases, aerosol particles and volatile organic compounds) is combined with a collection of air and aerosol samples for laboratory analyses. Since August 2014, the SP2 measures BC number and mass concentration at altitudes between 8 and 12 km. More than 600 BC measurement hours show a strong impact of BB emissions on the lowermost stratosphere. The BB plumes are identified with the help of concurrent carbon monoxide and acetonitrile measurements showing substantially increased concentrations compared to their background level. Transported into the lowermost stratosphere, BB smoke can be transported over long distances and the BC particles can stay in the atmosphere up to one year. The monthly missions of four consecutive CARIBIC flights sometimes enable to revisit a certain air mass, as was the case during a measurement flight to San Francisco in August 2014, with a stopover time of 2h. The revisited biomass burning plume located over the Altlantic ocean near Greenland was traced back by backward and forward trajectories to open fires in Canada (upper Fig.). The transit time of the smoke plume was estimated to 16 - 19h which perfectly matches our flight time difference ( 18h). Based on the LEO-fit method (Leading Edge Only fit) from Gao et al. (2007), the mixing state of the BC particles within the BB plume was calculated. Our unique data set

  5. Potential impacts of black carbon on the marine microbial community

    NARCIS (Netherlands)

    Malits, A.; Cattaneo, R.; Sintes, E.; Gasol, J.M.; Herndl, G.J.; Weinbauer, M.G.

    2015-01-01

    Black carbon (BC) is the carbonaceous residue of the incomplete combustion of fossil fuels and biomass and encompasses a range of chemically heterogeneous substances from partly charred plant material to highly condensed soot aerosols. We addressed the potential role of BC aerosol deposition on

  6. Estimation of the mass absorption cross-section of the black and brown carbon aerosols during GoPoEx 2014

    Science.gov (United States)

    Cho, C.; Kim, S. W.; Lee, M.; Gustafsson, O.; Fang, W.

    2017-12-01

    Black carbon (BC) is a major contributor to the atmospheric heating by absorbing the solar radiation. According to recent studies, the solar absorption of brown carbon (BrC) is not negligible and even comparable to that of BC at visible to UV wavelengths, but most optical instruments that quantify light absorption are unable to distinguish each other. Thus, light absorption properties of BC or BrC usually have been studied through modeling researches by using mass absorption cross-section (MAC). Although MAC has a large spatial and temporal variability, most modeling studies have used a specific value of BC MAC and even the absorption by BrC is seldom considered in most chemical and climate models. The generalization of modeling research can lead to serious errors of radiative forcing by BC and BrC. In this study, MAC of BC and BrC are separately determined and the contribution of BC and BrC on aerosol light absorption are estimated from co-located simultaneous in-situ measurements, COSMOS, CLAP and Sunset EC/OC analyzer, at Gosan climate observatory, Korea during Gosan Pollution Experiment in January 2014 (GoPoEx 2014). At 565 nm, MAC of BC is found to be about 6.4±1.5 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements. This value is similar to those from previous studies in China (Cui et al., STE, 2016), but lower than those observed to be ranged 10-18 m2 g-1 in America or Europe (Lack et al., PNAS, 2012). Aerosol absorption coefficient (AAC) and BC mass concentration from COSMOS, meanwhile, are approximately 15-20% lower than those of CLAP. This difference can be attributable to the contribution of BrC. The MAC of BrC was calculated using the absorption coefficient of BrC and by the following three methods: (1) the difference of mass concentration from Aethalometer and COSMOS applied new BC MAC of this study, (2) The mass concentration of water-soluble organic carbon, (3) a method using the mass concentration of organic carbon suggested by Chung et al

  7. Roosevelt Island Climate Evolution Project (RICE): A 65 Kyr ice core record of black carbon aerosol deposition to the Ross Ice Shelf, West Antarctica.

    Science.gov (United States)

    Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad

    2015-04-01

    Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.

  8. Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iAREA campaigns in Ny-Ålesund

    Science.gov (United States)

    Markowicz, K. M.; Ritter, C.; Lisok, J.; Makuch, P.; Stachlewska, I. S.; Cappelletti, D.; Mazzola, M.; Chilinski, M. T.

    2017-09-01

    This work presents a methodology for obtaining vertical profiles of aerosol single scattering properties based on a combination of different measurement techniques. The presented data were obtained under the iAREA (Impact of absorbing aerosols on radiative forcing in the European Arctic) campaigns conducted in Ny-Ålesund (Spitsbergen) during the spring seasons of 2015-2017. The retrieval uses in-situ observations of black carbon concentration and absorption coefficient measured by a micro-aethalometer AE-51 mounted onboard a tethered balloon, as well as remote sensing data obtained from sun photometer and lidar measurements. From a combination of the balloon-borne in-situ and the lidar data, we derived profiles of single scattering albedo (SSA) as well as absorption, extinction, and aerosol number concentration. Results have been obtained in an altitude range from about 400 m up to 1600 m a.s.l. and for cases with increased aerosol load during the Arctic haze seasons of 2015 and 2016. The main results consist of the observation of increasing values of equivalent black carbon (EBC) and absorption coefficient with altitude, and the opposite trend for aerosol concentration for particles larger than 0.3 μm. SSA was retrieved with the use of lidar Raman and Klett algorithms for both 532 and 880 nm wavelengths. In most profiles, SSA shows relatively high temporal and altitude variability. Vertical variability of SSA computed from both methods is consistent; however, some discrepancy is related to Raman retrieval uncertainty and absorption coefficient estimation from AE-51. Typically, very low EBC concentration in Ny-Ålesund leads to large error in the absorbing coefficient. However, SSA uncertainty for both Raman and Klett algorithms seems to be reasonable, e.g. SSA of 0.98 and 0.95 relate to an error of ±0.01 and ± 0.025, respectively.

  9. On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    J. Backman

    2012-12-01

    Full Text Available Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of São Paulo (MASP, population 20 million accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 × 104–3.2 × 104 cm−3 frequently exceeding 4 × 104 cm−3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength varied in the range 12–33 Mm−1 and 21–64 Mm−1, respectively. The former one is equal to 1.8–5.0 μg m−3 of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (ω0 varied in the range 0.59–0.76. Overall, this suggests a top of atmosphere (TOA warming effect. However

  10. A trajectory analysis of atmospheric transport of black carbon aerosols to Canadian high Arctic in winter and spring (1990–2005

    Directory of Open Access Journals (Sweden)

    L. Huang

    2010-06-01

    Full Text Available Black carbon (BC particles accumulated in the Arctic troposphere and deposited on snow have been calculated to have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, seven distinct transport pathways (or clusters affecting Alert (82.5° N, 62.5° W, Nunavut in Canada are identified in this work. Transport frequency associated with each pathway is obtained as the fraction of trajectories in that cluster. Based on atmospheric transport frequency and BC surface flux from surrounding regions (i.e. North America, Europe, and former USSR, a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measurements at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively. Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Other factors, such as deposition, could also contribute to the variability in BC concentrations but were not considered in this analysis. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that former USSR is the major contributor to the near-surface BC levels at the Canadian high Arctic site with an average contribution of about 67% during the 16-year period, followed by European Union (18% and North America (15%. In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more

  11. Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions

    Directory of Open Access Journals (Sweden)

    D. Hirdman

    2010-10-01

    Full Text Available As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols and Transport and building on previous work (Hirdman et al., 2010, this paper studies the long-term trends of both atmospheric transport as well as equivalent black carbon (EBC and sulphate for the three Arctic stations Alert, Barrow and Zeppelin. We find a general downward trend in the measured EBC concentrations at all three stations, with a decrease of −2.1±0.4 ng m−3 yr−1 (for the years 1989–2008 and −1.4±0.8 ng m−3 yr−1 (2002–2009 at Alert and Zeppelin respectively. The decrease at Barrow is, however, not statistically significant. The measured sulphate concentrations show a decreasing trend at Alert and Zeppelin of −15±3 ng m−3 yr−1 (1985–2006 and −1.3±1.2 ng m−3 yr−1 (1990–2008 respectively, while there is no trend detectable at Barrow.

    To reveal the contribution of different source regions on these trends, we used a cluster analysis of the output of the Lagrangian particle dispersion model FLEXPART run backward in time from the measurement stations. We have investigated to what extent variations in the atmospheric circulation, expressed as variations in the frequencies of the transport from four source regions with different emission rates, can explain the long-term trends in EBC and sulphate measured at these stations. We find that the long-term trend in the atmospheric circulation can only explain a minor fraction of the overall downward trend seen in the measurements of EBC (0.3–7.2% and sulphate (0.3–5.3% at the Arctic stations. The changes in emissions are dominant in explaining the trends. We find that the highest EBC and sulphate concentrations are associated with transport from Northern Eurasia and decreasing emissions in this region drive the

  12. Assessing the Cytotoxicity of Black Carbon As A Model for Ultrafine Anthropogenic Aerosol Across Human and Murine Cells: A Chronic Exposure Model of Nanosized Particulate Matter

    Science.gov (United States)

    Salinas, E.

    2015-12-01

    Combustion-derived nanomaterials or ultrafine (fuels. Ultrafine particles (UFPs) can absorb other noxious pollutants including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), toxic organic compounds, and heavy metals. The combination of high population density, meteorological conditions, and industrial productivity brings high levels of air pollution to the metropolitan area of El Paso, Texas, USA/ Ciudad Juarez, Chihuahua, Mexico, comprising the Paso del Norte air basin. A study conducted by scientists from the Research Triangle Park in North Carolina, analyzed sites adjacent to heavy-traffic highways in El Paso and elucidated higher UFP concentrations in comparison to previously published work exploring pollution and adverse health effects in the basin. UFPs can penetrate deep into the alveolar sacs of the lung, reaching distant alveolar sacs and inducing a series of immune responses that are detrimental to the body: evidence suggests that UFPs can also cross the alveolar-blood barrier and potentially endanger the body's immune response. The physical properties of UFPs and the dynamics of local atmospheric and topographical conditions indicate that emissions of nanosized carbonaceous aerosols could pose significant threats to biological tissues upon inhalation by local residents of the Paso del Norte. This study utilizes Black Carbon (BC) as a model for environmental UFPs and its effects on the immunological response. An in vitro approach is used to measure the ability of BC to promote cell death upon long-term exposure. Human epithelial lung cells (A549), human peripheral-blood monocytes (THP-1), murine macrophages (RAW264.7), and murine epithelial lung cells (LA-4) were treated with BC and assessed for metabolic activity after chronic exposure utilizing three distinct and independent cell viability assays. The cell viability experiments included a chronic study at 7, 10, and 14 days of UFP exposure at six different concentrations of

  13. Black carbon aerosol properties measured by a single particle soot photometer in emissions from biomass burning in the laboratory and field

    Science.gov (United States)

    G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe

    2010-01-01

    We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...

  14. Black carbon radiative forcing at TOA decreased during aging.

    Science.gov (United States)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-05

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  15. Source attribution of black carbon in Arctic snow.

    Science.gov (United States)

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  16. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions

    International Nuclear Information System (INIS)

    Long, Christopher M.; Nascarella, Marc A.; Valberg, Peter A.

    2013-01-01

    Airborne particles containing elemental carbon (EC) are currently at the forefront of scientific and regulatory scrutiny, including black carbon, carbon black, and engineered carbon-based nanomaterials, e.g., carbon nanotubes, fullerenes, and graphene. Scientists and regulators sometimes group these EC-containing particles together, for example, interchangeably using the terms carbon black and black carbon despite one being a manufactured product with well-controlled properties and the other being an undesired, incomplete-combustion byproduct with diverse properties. In this critical review, we synthesize information on the contrasting properties of EC-containing particles in order to highlight significant differences that can affect hazard potential. We demonstrate why carbon black should not be considered a model particle representative of either combustion soots or engineered carbon-based nanomaterials. Overall, scientific studies need to distinguish these highly different EC-containing particles with care and precision so as to forestall unwarranted extrapolation of properties, hazard potential, and study conclusions from one material to another. -- Highlights: •Major classes of elemental carbon-containing particles have distinct properties. •Despite similar names, carbon black should not be confused with black carbon. •Carbon black is distinguished by a high EC content and well-controlled properties. •Black carbon particles are characterized by their heterogenous properties. •Carbon black is not a model particle representative of engineered nanomaterials. -- This review demonstrates the significant physical and chemical distinctions between elemental carbon-containing particles e.g., carbon black, black carbon, and engineered nanomaterials

  17. Black Carbon Measurements From Ireland's Transboundary Network (TXB)

    Science.gov (United States)

    Spohn, T. K.; Martin, D.; O'Dowd, C. D. D.

    2017-12-01

    Black Carbon (BC) is carbonaceous aerosol formed by incomplete fossil fuel combustion. Named for its light absorbing properties, it acts to trap heat in the atmosphere, thus behaving like a greenhouse gas, and is considered a strong, short-lived climate forcer by the International Panel on Climate Change (IPCC). Carbonaceous aerosols from biomass burning (BB) such as forest fires and residential wood burning, also known as brown carbon, affect the ultra violet (UV) light absorption in the atmosphere as well. In 2016 a three node black carbon monitoring network was established in Ireland as part of a Transboundary Monitoring Network (TXB). The three sites (Mace Head, Malin Head, and Carnsore Point) are coastal locations on opposing sides of the country, and offer the opportunity to assess typical northern hemispheric background concentrations as well national and European pollution events. The instruments deployed in this network (Magee Scientific AE33) facilitate elimination of the changes in response due to `aerosol loading' effects; and a real-time calculation of the `loading compensation' parameter which offers insights into aerosol optical properties. Additionally, these instruments have an inbuilt algorithm, which estimates the difference in absorption in the ultraviolet wavelengths (mostly by brown carbon) and the near infrared wavelengths (only by black carbon).Presented here are the first results of the BC measurements from the three Irish stations, including instrument validation, seasonal variation as well as local, regional, and transboundary influences based on air mass trajectories as well as concurrent in-situ observations (meteorological parameters, particle number, and aerosol composition). A comparison of the instrumental algorithm to off-line sensitivity calculations will also be made to assess the contribution of biomass burning to BC pollution events.

  18. A study of the mixing state of black carbon in urban zone

    Science.gov (United States)

    Mallet, M.; Roger, J. C.; Despiau, S.; Putaud, J. P.; Dubovik, O.

    2004-02-01

    The knowledge of the mixing state of black carbon particle with other aerosol species is critical for adequate simulations of the direct radiative effect of black carbon particles and its effect on climate. This paper reports the investigation of the mixing state of black carbon aerosol in the urban zone. The study uses a combination of in situ and ground-based remote sensing observations conducted during the ESCOMPTE experiment, which took place in industrialized region in France in summer of 2001. The criteria we used for identifying mixing state relies on the known enhancement of absorption for aerosol composed by internal versus external mixtures of black carbon with weakly absorbing aerosol components. First, using in situ aerosol data, we performed Mie computations and reconstructed the single scattering albedo of aerosol for the two different mixing assumptions: black carbon mixed externally or internally with other aerosol species. Then, we compared the obtained values ωo,int and ωo,ext with the retrievals of ωo from independent AERONET Sun-photometric measurements. The aerosol single scattering albedo (ωo,aer.) derived from the AERONET photometer observations (with the mean value equal to 0.84 ± 0.04) was found to be close to ωo,ext reconstructed from in situ observation under assumptions of external mixture. This similarity between AERONET values and external mixture simulations was observed during all the days studied. Our conclusion on external mixture of black carbon aerosol with other particles in urban zone during ESCOMPTE (close to the pollution source) is coherent with observations made during other independent studies reported in a number of recent publications.

  19. Chemical Properties of Brown Carbon Aerosol Generated at the Missoula Fire Sciences Laboratory

    Science.gov (United States)

    Washenfelder, R. A.; Womack, C.; Franchin, A.; Middlebrook, A. M.; Wagner, N.; Manfred, K.

    2017-12-01

    Aerosol scattering and absorption are still among the largest uncertainties in quantifying radiative forcing. Biomass burning is a major source of light-absorbing carbonaceous aerosol in the United States. These aerosol are generally classified into two categories: black carbon (graphitic-like aerosol that absorbs broadly across the ultraviolet and visible spectral regions) and brown carbon (organic aerosol that absorbs strongly in the ultraviolet and near-visible spectral regions). The composition, volatility, and chemical aging of brown carbon are poorly known, but are important to understanding its radiative effects. We deployed three novel instruments to the Missoula Fire Sciences Laboratory in 2016 to measure brown carbon absorption: a photoacoustic spectrometer, broadband cavity enhanced spectrometer, and particle-into-liquid sampler coupled to a liquid waveguide capillary cell. The instruments sampled from a shared inlet with well-characterized dilution and thermal denuding. We sampled smoke from 32 controlled burns of fuels relevant to western U.S. wildfires. We use these measurements to determine the volatility of water-soluble brown carbon, and compare this to the volatility of water-soluble organic aerosol and total organic aerosol. We further examine the wavelength-dependence of the water-soluble brown carbon absorption as a function of denuder temperature. Together this gives new information about the solubility, volatility, and chemical composition of brown carbon.

  20. Characterization of PM2.5 particles originating from a modern waste incineration plant by factor analysis of chemical data, mass and black carbon in ambient aerosol

    DEFF Research Database (Denmark)

    Aboh, J. K.; Henriksson, Dag; Laursen, Jens

    2006-01-01

    are subject to restrictions are well below the allowed limits as stated by Swedish and European standards. The aim of the present work is to study the particle pollutants with emphasis on PM2.5 in the ambient air and to identify the specific contribution from the new incineration plant. Many different sources...... contribute to PM2.5 in urban air. Thus, the general problem is to characterise and identify the particle pollution, which can be attributed to gases and/or particles emitted by the waste incineration plant. For this reason aerosol samples, PM2.5, were collected and analyzed for concentrations of twenty...

  1. Emissions & Measurements - Black Carbon | Science ...

    Science.gov (United States)

    Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD) support measurement and laboratory analysis approaches to accurately characterize source emissions, and near source concentrations of air pollutants. They also support integrated Agency research programs (e.g., source to health outcomes) and the development of databases and inventories that assist Federal, state, and local air quality managers and industry implement and comply with air pollution standards. EM research underway in NRMRL supports the Agency's efforts to accurately characterize, analyze, measure and manage sources of air pollution. This pamphlet focuses on the EM research that NRMRL researchers conduct related to black carbon (BC). Black Carbon is a pollutant of concern to EPA due to its potential impact on human health and climate change. There are extensive uncertainties in emissions of BC from stationary and mobile sources. Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD)

  2. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    Science.gov (United States)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of

  3. Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Naomi; Ogura, Isamu, E-mail: i-ogura@aist.go.jp; Kotake, Mari; Kishimoto, Atsuo; Honda, Kazumasa [Technology Research Association for Single Wall Carbon Nanotubes (TASC) (Japan)

    2013-11-15

    For daily monitoring of occupational exposure to aerosolized carbon nanotubes (CNTs) where CNTs are manufactured and handled, inexpensive real-time measuring methods are preferable. In this study, we evaluated the capabilities of a portable black carbon monitor (BCM; also called an aethalometer) and a light-scattering aerosol photometer in detecting airborne CNTs. The responses of these instruments to airborne CNTs, aerosolized through vortex shaking, were evaluated by comparing the measurements of CNT mass concentrations made by these instruments to those determined through thermal carbon analysis. Results showed that their raw readings underestimated CNT mass concentrations in most cases. Their sensitivities depended on the type of CNTs and decreased with the particle sizes of aerosolized CNT clumps. We also found that the sensitivity of the BCM tended to substantially decrease with increasing filter load, even before the point at which the filter should be replaced as recommended by the manufacturer, which could be attributed to a clean environmental condition (i.e., the absence of ubiquitous light-scattering material). As an example of the use of these instruments for measuring airborne CNTs in the presence of background aerosols, a CNT-handling simulation was also conducted. Although both the BCM and the photometer could detect CNT emissions, the BCM was more sensitive to the detection of emitted CNTs in the presence of background aerosols. The correction factors obtained from the response evaluations could enhance the measurement accuracy of these instruments, which will be helpful for the daily monitoring of CNTs at workplaces.

  4. Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes

    International Nuclear Information System (INIS)

    Hashimoto, Naomi; Ogura, Isamu; Kotake, Mari; Kishimoto, Atsuo; Honda, Kazumasa

    2013-01-01

    For daily monitoring of occupational exposure to aerosolized carbon nanotubes (CNTs) where CNTs are manufactured and handled, inexpensive real-time measuring methods are preferable. In this study, we evaluated the capabilities of a portable black carbon monitor (BCM; also called an aethalometer) and a light-scattering aerosol photometer in detecting airborne CNTs. The responses of these instruments to airborne CNTs, aerosolized through vortex shaking, were evaluated by comparing the measurements of CNT mass concentrations made by these instruments to those determined through thermal carbon analysis. Results showed that their raw readings underestimated CNT mass concentrations in most cases. Their sensitivities depended on the type of CNTs and decreased with the particle sizes of aerosolized CNT clumps. We also found that the sensitivity of the BCM tended to substantially decrease with increasing filter load, even before the point at which the filter should be replaced as recommended by the manufacturer, which could be attributed to a clean environmental condition (i.e., the absence of ubiquitous light-scattering material). As an example of the use of these instruments for measuring airborne CNTs in the presence of background aerosols, a CNT-handling simulation was also conducted. Although both the BCM and the photometer could detect CNT emissions, the BCM was more sensitive to the detection of emitted CNTs in the presence of background aerosols. The correction factors obtained from the response evaluations could enhance the measurement accuracy of these instruments, which will be helpful for the daily monitoring of CNTs at workplaces

  5. Biomass Burning Emissions of Black Carbon from African Sources

    Science.gov (United States)

    Aiken, A. C.; Leone, O.; Nitschke, K. L.; Dubey, M. K.; Carrico, C.; Springston, S. R.; Sedlacek, A. J., III; Watson, T. B.; Kuang, C.; Uin, J.; McMeeking, G. R.; DeMott, P. J.; Kreidenweis, S. M.; Robinson, A. L.; Yokelson, R. J.; Zuidema, P.

    2016-12-01

    Biomass burning (BB) emissions are a large source of carbon to the atmosphere via particles and gas phase species. Carbonaceous aerosols are emitted along with gas-phase carbon monoxide (CO) and carbon dioxide (CO2) that can be used to determine particulate emission ratios and modified combustion efficiencies. Black carbon (BC) aerosols are potentially underestimated in global models and are considered to be one of the most important global warming factors behind CO2. Half or more BC in the atmosphere is from BB, estimated at 6-9 Tg/yr (IPCC, 5AR) and contributing up to 0.6 W/m2 atmospheric warming (Bond et al., 2013). With a potential rise in drought and extreme events in the future due to climate change, these numbers are expected to increase. For this reason, we focus on BC and organic carbon aerosol species that are emitted from forest fires and compare their emission ratios, physical and optical properties to those from controlled laboratory studies of single-source BB fuels to understand BB carbonaceous aerosols in the atmosphere. We investigate BC in concentrated BB plumes as sampled from the new U.S. DOE ARM Program campaign, Layered Atlantic Smoke Interactions with Clouds (LASIC). The ARM Aerosol Mobile Facility 1 (AMF1) and Mobile Aerosol Observing System (MAOS) are currently located on Ascension Island in the South Atlantic Ocean, located midway between Angola and Brazil. The location was chosen for sampling maximum aerosol outflow from Africa. The far-field aged BC from LASIC is compared to BC from indoor generation from single-source fuels, e.g. African grass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). BC is measured with a single-particle soot photometer (SP2) alongside numerous supporting instrumentation, e.g. particle counters, CO and CO2 detectors, aerosol scattering and absorption measurements, etc. FLAME-IV includes both direct emissions and well-mixed aerosol samples that have undergone dilution, cooling, and condensation. BC

  6. Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing

    Science.gov (United States)

    Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei

    2017-04-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.

  7. Brown Carbon and Black Carbon in the Smoky Atmosphere during Boreal Forest Fires

    Science.gov (United States)

    Gorchakov, G. I.; Karpov, A. V.; Pankratova, N. V.; Semoutnikova, E. G.; Vasiliev, A. V.; Gorchakova, I. A.

    2017-12-01

    We have investigated the variability of smoke aerosol absorbing ability with variations in the content of brown carbon (BrC) and black carbon (BC). Using monitoring data on radiative characteristics of smoke aerosol at AERONET stations and the spatial distribution of aerosol optical depth (AOD) obtained by the MODIS spectrometer ( Terra satellite), we have detected large-scale smokes during boreal forest fires in Russia and Canada (1995-2012). The spatial distribution (50°-70° N, 95°-125° W) and temporal variability (at AERONET station Fort McMurray) of AOD during the smoking of a part of Canada in July 2012 have been analyzed. AOD probability distributions for July 14-18, 2012, and an estimate of aerosol radiative forcing of smoke aerosol at the upper boundary of the atmosphere have been obtained. We have proposed a technique for the diagnostics of BrC and BC in smoke aerosol particles from the spectral dependence of the imaginary part of the refractive index. At a wavelength of 440 nm, the contributions of BrC and BC to the smokeaerosol absorbing abitity can be comparable in magnitude. In many cases, the absorption spectra of smoke aerosol can be adequately approximated by either power or exponential functions. The presence of BrC in smoke-aerosol particles highly extends the variety of observed absorption spectra in a smoky atmosphere and spectral dependences of single scattering albedo. In the spectral range of 440-1020 nm, the radiative characteristics of smoke aerosol are largely contributed by its fine mode.

  8. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    Science.gov (United States)

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emis...

  9. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    Science.gov (United States)

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  10. Seasonal features of black carbon measured at Syowa Station, Antarctica

    Science.gov (United States)

    Hara, K.; Osada, K.; Yabuki, M.; Shiobara, M.; Yamanouchi, T.

    2015-12-01

    Black carbon (BC) is one of important aerosol constituents because the strong light absorption ability. Low concentrations of aerosols and BC let BC make insignificant contribution to aerosol radiative forcing in the Antarctica at the moment. Because of less or negligible source strength of BC in the Antarctic circle, BC can be used as a tracer of transport from the mid-latitudes. This study aims to understand seasonal feature, transport pathway, and origins of black carbon in the Antarctic coats. Black carbon measurement has been made using 7-wavelength aethalometer at Syowa Station, Antarctica since February, 2005. Mass BC concentrations were estimated from light attenuation by Weingartner's correction procedure (Weingartner et al., 2003) in this study. Detection limit was 0.2 - 0.4 ng/m3 in our measurement conditions (2-hour resolution and flow rate of ca. 10LPM). BC concentrations ranged from near detection limit to 55.7 ng/m3 at Syowa Station, Antarctica during the measurements. No trend has been observed since February, 2005. High BC concentrations were coincident with poleward flow from the mid-latitudes under the storm conditions by cyclone approach, whereas low BC concentrations were found in transport from coastal regions and the Antarctic continent. Considering that outflow from South America and Southern Africa affect remarkably air quality in the Southern Ocean of Atlantic and Indian Ocean sectors, BC at Syowa Station might be originated from biomass burning and human activity on South America and Southern Africa. Seasonal features of BC at Syowa Station shows maximum in September - October and lower in December - April. Spring maximum in September - October was obtained at the other Antarctic stations (Neumayer, Halley, South pole, and Ferraz). Although second maximum was found in January at the other stations, the maximum was not observed at Syowa Station.

  11. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  12. Immersion microcalorimetry of a carbon black

    International Nuclear Information System (INIS)

    Mendelbaum, Georges

    1966-01-01

    This research thesis first reports a detailed bibliographical study on various topics (fabrication of carbon black, oxidation, immersion heat, adsorptions, main existing theories, and thermodynamics) and then the development of immersion and adsorption microcalorimetry apparatuses aimed at studying the surface of a carbon black and the influence of the oxidation of this carbon black on the adsorption of polar and non-polar solvents. Immersion heats of a raw or oxidised carbon black have been measured in water, in cyclohexane and in methanol. The adsorption of methanol at 20 C and that of nitrogen at -196 C have also been measured. The author outlines that degassing conditions had to be taken into account before performing measurements [fr

  13. Structure and properties of carbon black particles

    Science.gov (United States)

    Xu, Wei

    Structure and properties of carbon black particles were investigated using atomic force microscopy, gas adsorption, Raman spectroscopy, and X-ray diffraction. Supplementary information was obtained using TEM and neutron scattering. The AFM imaging of carbon black aggregates provided qualitative visual information on their morphology, complementary to that obtained by 3-D modeling based on TEM images. Our studies showed that carbon black aggregates were relatively flat. The surface of all untreated carbon black particles was found to be rough and its fractal dimension was 2.2. Heating reduced the roughness and fractal dimension for all samples heat treated at above 1300 K to 2.0. Once the samples were heat treated rapid cooling did not affect the surface roughness. However, rapid cooling reduced crystallite sizes, and different Raman spectra were obtained for carbon blacks of various history of heat treatment. By analyzing the Raman spectra we determined the crystallite sizes and identified amorphous carbon. The concentration of amorphous carbon depends on hydrogen content. Once hydrogen was liberated at increased temperature, the concentration of amorphous carbon was reduced and crystallites started to grow. Properties of carbon blacks at high pressure were also studied. Hydrostatic pressure did not affect the size of the crystallites in carbon black particles. The pressure induced shift in Raman frequency of the graphitic component was a result of increased intermolecular forces and not smaller crystallites. Two methods of determining the fractal dimension, the FHH model and the yardstick technique based on the BET theory were used in the literature. Our study proved that the FHH model is sensitive to numerous assumptions and leads to wrong conclusions. On the other hand the yardstick method gave correct results, which agreed with the AFM results.

  14. Black carbon and West African Monsoon precipitation. Observations and simulations

    International Nuclear Information System (INIS)

    Huang, J.; Adams, A.; Zhang, C.; Wang, C.

    2009-01-01

    We have recently investigated large-scale co-variability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM) region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC). From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear. (orig.)

  15. Graft-copolymerization onto carbon black

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Nishii, Masanobu; Kijima, Toshiyuki; Kato, Hiroshi.

    1988-07-01

    Radiation-induced graft copolymerization of vinyl monomer onto carbon black was performed. During the γ-ray- and electron beam-induced polymerization (In-source), or the electron beam post-polymerization, the graft-copolymerization behavior was affected by the kinds of both carbon blacks and monomers, i.e. the smaller the size of carbon black particles, the higher the apparent grafted fraction. Homopolymer in the grafted carbon black samples was washed out by the solvent of the polymer, and the extracted polymer seemed to be dimer or trimer of the used monomer. In the case of the post-polymerization with the pre-irradiation doses of 50 Mrad, homopolymer was hardly observed. The polymer sheets of plastics or rubbers with grafted carbon black had an electrical conductivity unalterable considerably by the heating cycles. The particles of grafted carbon black in the sheet might be kept much more at the surface layer within 100 nm depth than at the inner layer. (author)

  16. Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China

    Science.gov (United States)

    Huang, X.

    2015-12-01

    X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the

  17. Atmospheric aerosol brown carbon in the high Himalayas

    Science.gov (United States)

    Kirillova, Elena; Decesari, Stefano; Marinoni, Angela; Bonasoni, Paolo; Vuillermoz, Elisa; Facchini, M. Cristina; Fuzzi, Sandro

    2016-04-01

    Anthropogenic light-absorbing atmospheric aerosol can reach very high concentrations in the planetary boundary layer in South-East Asia ("brown clouds"), affecting atmospheric transparency and generating spatial gradients of temperature over land with a possible impact on atmospheric dynamics and monsoon circulation. Besides black carbon (BC), an important light-absorbing component of anthropogenic aerosols is the organic carbon component known as 'brown carbon' (BrC). In this research, we provided first measurements of atmospheric aerosol BrC in the high Himalayas during different seasons. Aerosol sampling was conducted at the GAW-WMO Global station "Nepal Climate Observatory-Pyramid" (NCO-P) located in the high Khumbu valley at 5079 m a.s.l. in the foothills of Mt. Everest. PM10 aerosol samples were collected from July 2013 to November 2014. The sampling strategy was set up in order to discriminate the daytime valley breeze bringing polluted air masses up to the observatory and free tropospheric air during nighttime. Water-soluble BrC (WS-BrC) and methanol-soluble BrC (MeS-BrC) were extracted and analyzed using a UV/VIS spectrophotometer equipped with a 50 cm liquid waveguide capillary cell. In the polluted air masses, the highest levels of the BrC light absorption coefficient at 365 nm (babs365) were observed during the pre-monsoon season (1.83±1.46 Mm-1 for WS-BrC and 2.86±2.49 Mm-1 for MeS-BrC) and the lowest during the monsoon season (0.21±0.22 Mm-1 for WS-BrC and 0.32±0.29 Mm-1 for MeS-BrC). The pre-monsoon season is the most frequently influenced by a strong atmospheric brown cloud (ABC) transport to NCO-P due to increased convection and mixing layer height over South Asia combined with the highest up-valley wind speed and the increase of the emissions from open fires due to the agricultural practice along the Himalayas foothills and the Indo-Gangetic Plain. In contrast, the monsoon season is characterized by a weakened valley wind regime and an

  18. Sources of uncertainties in modelling black carbon at the global scale

    Directory of Open Access Journals (Sweden)

    E. Vignati

    2010-03-01

    Full Text Available Our understanding of the global black carbon (BC cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of

  19. Pyrolytic carbon black composite and method of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe

    2016-09-13

    A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.

  20. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R; Mueller, S; Koetz, R; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  1. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Science.gov (United States)

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  2. Black Carbon at the Mt. Bachelor Observatory Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Dan A. [Univ. of Washington, Bothell, WA (United States); Sedlacek, Arthur [Brookhaven National Lab. (BNL), Upton, NY (United States); Laing, James R. [Univ. of Washington, Bothell, WA (United States)

    2017-03-01

    This campaign was initiated to measure refractory black carbon (rBC, as defined in Schwarz et al. (2010)) at the Mt. Bachelor Observatory (MBO) using the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility single-particle soot photometer (SP2; unit 54). MBO is a high-elevation site located on the summit of Mt. Bachelor in central Oregon, USA (43.979°N, 121.687°W, 2,763 meters ASL). This site is operated by Professor Dan Jaffe’s group at the University of Washington Bothell and has been used continuously as an atmospheric observatory for the past 12 years (Jaffe et al., 2005; Gratz et al., 2014). The location of MBO allows frequent sampling of the free troposphere along with a wide array of plumes from regional and distant sources. MBO is currently supported with funding from the National Science Foundation (NSF) to the Principal Investigator (PI; D. Jaffe) via the project “Influence of Free Tropospheric Ozone and PM on Surface Air Quality in the Western U.S.” (#1447832) covering the period 03/15/2015 to 02/28/2018. The SP2 instrument from Droplet Measurement Technologies provides particle-resolved measurements of rBC mass loading, size and mass distributions, and mixing state. The SP2 was installed at MBO on 6/27/2016 and ran through 9/23/2016. Additional measurements at MBO during this campaign included carbon monoxide (CO), fine particulate matter (PM1), aerosol light scattering coefficients (σscat) at three wavelengths using a TSI nephelometer, aerosol absorption coefficients (σabs) with the Brechtel tricolor absorption photometer (TAP), aerosol number size distributions with a scanning mobility particle sizer spectrometer (SMPS), and black carbon (eBC) with an aethalometer. BC data from this campaign have been submitted to the ARM Data Archive. Black carbon (BC) is the predominant light-absorbing aerosol constituent in the atmosphere, and is estimated to exert a positive radiative forcing second only to CO

  3. 129 Xe-NMR of carbon black filled elastomers

    International Nuclear Information System (INIS)

    Sperling-Ischinsky, K.; Veeman, W.S.

    1999-01-01

    It is shown that 129 Xe-NMR is a powerful tool to investigate carbon black and carbon black filled elastomers. For the carbon black material itself the 129 Xe chemical shift of xenon adsorbed at the surface of carbon black aggregates yields information about the relative average pore size of the carbon black aggregates. The experimental 129 Xe-NMR results of carbon black filled ethylene-propylene-diene (EPDM) can be explained when it is assumed that the xenon atoms in the bound EPDM fraction exchange rapidly on the NMR time scale between a state where they are adsorbed on the carbon black surface and a state in which they are absorbed in the EPDM layer. This would imply that the carbon black aggregates are not completely covered with EPDM chains. (author)

  4. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Peng; Aiona, Paige K.; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A.; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly-emitted biomass burning organic aerosol (BBOA) samples collected during test burns of selected biomass fuels: sawgrass, peat, ponderosa pine, and black spruce. We characterize individual BrC chromophores present in these samples using high performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. We demonstrate that both the overall BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels and burning conditions. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as potential markers of BrC originating from different biomass burning sources. On average, ~50% of the light absorption above 300 nm can be attributed to a limited number of strong BrC chromophores, which may serve as representative light-absorbing species for studying atmospheric processing of BrC aerosol. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of 16 hours. A “molecular corridors” analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low volatility (<1 g m-1) and will be retained in the particle phase under atmospherically relevant conditions.

  5. Modified carbon black materials for lithium-ion batteries

    Science.gov (United States)

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  6. Black carbon: The reverse of its dark side

    NARCIS (Netherlands)

    Koelmans, A.A.; Jonker, M.T.O.; Cornelissen, G.; Bucheli, T.D.; Noort, van P.C.M.; Gustafsson, O.

    2006-01-01

    The emission of black carbon is known to cause major environmental problems. Black carbon particles contribute to global warming, carry carcinogenic compounds and cause serious health risks. Here, we show another side of the coin. We review evidence that black carbon may strongly reduce the risk

  7. Rethinking the distinction between black and brown carbon

    Science.gov (United States)

    Adler, G. A.; Franchin, A.; Lamb, K. D.; Manfred, K.; Middlebrook, A. M.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.

    2017-12-01

    Aerosol radiative properties contribute large uncertainty to modeling of the earth's radiative budget. Black carbon (BC) aerosols originate from combustion processes and substantially contribute to warming and uncertainty - ongoing efforts are focused on reducing their anthropogenic emissions even as their emissions from biomass burning sources, such as wildfire, may increase in the future. Quantifying the radiative effect of BC is challenging, in part due to its association with other light absorbing materials including Brown carbon organic aerosol (BrC) that absorbs primarily blue and ultraviolet light while BC absorbs broadly across the visible. Conventionally BrC is thought of a low volatility spherical particles, distinguishing it from BC, which has a distinctive agglomerate morphology and is refractory at high temperatures. However, the separation of BC and BrC is often operationally defined and dependent on the measurement method. Using measurements of aerosol morphology, mass, absorption, and refractory BC mass content we were able to identify a light absorbing contribution from biomass burning aerosol that does not correspond to either BC or BrC as conventionally defined. Our measurements were collected from realistic biomass burning fires at the Missoula Fire Sciences Laboratory as part of the NOAA FIREX project (2016) and from extensive natural wildfire sampled aloft during NASA SEAC4RS field study (2013). We coin the term Dark Brown Carbon (DBrC) to describe this material, which absorbs broadly across the visible and survives thermal denuding at 250°C but does not incandesce in laser induced incandesce (LII) measurements. DBrC may be an intermediate burning stage product between polycyclic aromatic hydrocarbons (PAHs) and the mature soot. DBrC deserves further study to quantify its abundance and aging in ambient biomass burning plumes, and its relationship to tar balls. Our findings show that more than half of the light absorption in biomass burning

  8. Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals

    International Nuclear Information System (INIS)

    Chakrabarty, Rajan K.; Arnold, Ian J.; Francisco, Dianna M.; Hatchett, Benjamin; Hosseinpour, Farnaz; Loria, Marcela; Pokharel, Ashok; Woody, Brian M.

    2013-01-01

    Incense sticks and mustard oil are the two most popular combustion fuels during rituals and social ceremonies in Asian countries. Given their widespread use in both closed and open burning activities, it is important to quantify the spectral radiative properties of aerosols emitted from the combustion of both fuels. This information is needed by climate models to assess the impact of these aerosols on radiative forcing. In this study, we used a 3-wavelength integrated photoacoustic-nephelometer – operating simultaneously at 405, 532 and 781 nm – to measure the optical coefficients of aerosols emitted from the laboratory combustion of mustard oil lamp and two types of incense sticks. From the measured optical coefficients at three wavelengths, time-varying single scattering albedo (SSA), absorption Ångström exponent (AAE), and scattering Ångström exponent (SAE) were calculated. For incense smoke particles, the time-averaged mean AAE values were found to be as high as 8.32 (between 405 and 532 nm) and 6.48 (between 532 and 781 nm). This spectrally-varying characteristic of AAE indicates that brown carbon – a class of organic carbon which strongly absorbs solar radiation in the blue and near ultraviolet – is the primary component of incense smoke aerosols. For aerosols emitted from the burning of mustard oil lamp, the time-averaged mean AAE values were ∼1.3 (between 405 and 781 nm) indicating that black carbon (BC) is the primary constituent. Scanning electron microscopy combined with image processing revealed the morphology of incense smoke aerosols to be non-coalescing and weakly-bound aggregates with a mean two-dimensional (2-d) fractal dimension (D f )=1.9±0.07, while the mustard oil smoke aerosols had typical fractal-like BC aggregate morphology with a mean 2-d D f =1.85±0.09. -- Highlights: ► Incense and mustard oil burning aerosols characterized by 3-wavelength photoacoustic spectroscopy and nephelometery, and electron microscopy. ► Brown

  9. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    Science.gov (United States)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  10. Monumental heritage exposure to urban black carbon pollution

    Science.gov (United States)

    Patrón, D.; Lyamani, H.; Titos, G.; Casquero-Vera, J. A.; Cardell, C.; Močnik, G.; Alados-Arboledas, L.; Olmo, F. J.

    2017-12-01

    In this study, aerosol light-absorption measurements obtained at three sites during a winter campaign were used to analyse and identify the major sources of Black Carbon (BC) particles in and around the Alhambra monument, a UNESCO World Heritage Site that receives over 2 million visitors per year. The Conditional Bivariate Probability Function and the Aethalometer model were employed to identify the main sources of BC particles and to estimate the contributions of biomass burning and fossil fuel emissions to the total Equivalent Black Carbon (EBC) concentrations over the monumental complex. Unexpected high levels of EBC were found at the Alhambra, comparable to those measured in relatively polluted European urban areas during winter. EBC concentrations above 3.0 μg/m3, which are associated with unacceptable levels of soiling and negative public reactions, were observed at Alhambra monument on 13 days from 12 October 2015 to 29 February 2016, which can pose a risk to its long-term conservation and may cause negative social and economic impacts. It was found that road traffic emissions from the nearby urban area and access road to the Alhambra were the main sources of BC particles over the monument. However, biomass burning emissions were found to have very small impact on EBC concentrations at the Alhambra. The highest EBC concentrations were observed during an extended stagnant episode associated with persistent high-pressure systems, reflecting the large impact that can have these synoptic conditions on BC over the Alhambra.

  11. Carbon nanotube-based black coatings

    Science.gov (United States)

    Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M.

    2018-03-01

    Coatings comprising carbon nanotubes are very black, that is, characterized by uniformly low reflectance over a broad range of wavelengths from the visible to far infrared. Arguably, there is no other material that is comparable. This is attributable to the intrinsic properties of graphitic material as well as the morphology (density, thickness, disorder, and tube size). We briefly describe a history of other coatings such as nickel phosphorous, gold black, and carbon-based paints and the comparable structural morphology that we associate with very black coatings. The need for black coatings is persistent for a variety of applications ranging from baffles and traps to blackbodies and thermal detectors. Applications for space-based instruments are of interest and we present a review of space qualification and the results of outgassing measurements. Questions of nanoparticle safety depend on the nanotube size and aspect ratio as well as the nature and route of exposure. We describe the growth of carbon nanotube forests along with the catalyst requirements and temperature limitations. We also describe coatings derived from carbon nanotubes and applied like paint. Building the measurement apparatus and determining the optical properties of something having negligible reflectance are challenging and we summarize the methods and means for such measurements. There exists information in the literature for effective media approximations to model the dielectric function of vertically aligned arrays. We summarize this along with the refractive index of graphite from the literature that is necessary for modeling the optical properties. In our experience, the scientific questions can be overshadowed by practical matters, so we provide an appendix of recipes for making as-grown and sprayed coatings along with an example of reflectance measurements.

  12. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions

    Science.gov (United States)

    Pokhrel, Rudra P.; Beamesderfer, Eric R.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2017-04-01

    A wide range of globally significant biomass fuels were burned during the fourth Fire Lab at Missoula Experiment (FLAME-4). A multi-channel photoacoustic absorption spectrometer (PAS) measured dry absorption at 405, 532, and 660 nm and thermally denuded (250 °C) absorption at 405 and 660 nm. Absorption coefficients were broken into contributions from black carbon (BC), brown carbon (BrC), and lensing following three different methodologies, with one extreme being a method that assumes the thermal denuder effectively removes organics and the other extreme being a method based on the assumption that black carbon (BC) has an Ångström exponent of unity. The methodologies employed provide ranges of potential importance of BrC to absorption but, on average, there was a difference of a factor of 2 in the ratio of the fraction of absorption attributable to BrC estimated by the two methods. BrC absorption at shorter visible wavelengths is of equal or greater importance to that of BC, with maximum contributions of up to 92 % of total aerosol absorption at 405 nm and up to 58 % of total absorption at 532 nm. Lensing is estimated to contribute a maximum of 30 % of total absorption, but typically contributes much less than this. Absorption enhancements and the estimated fraction of absorption from BrC show good correlation with the elemental-carbon-to-organic-carbon ratio (EC / OC) of emitted aerosols and weaker correlation with the modified combustion efficiency (MCE). Previous studies have shown that BrC grows darker (larger imaginary refractive index) as the ratio of black to organic aerosol (OA) mass increases. This study is consistent with those findings but also demonstrates that the fraction of total absorption attributable to BrC shows the opposite trend: increasing as the organic fraction of aerosol emissions increases and the EC / OC ratio decreases.

  13. Black carbon network in Mexico. First Results

    Science.gov (United States)

    Barrera, Valter; Peralta, Oscar; Granado, Karen; Ortinez, Abraham; Alvarez-Ospina, Harry; Espinoza, Maria de la Luz; Castro, Telma

    2017-04-01

    After the United Nations Framework Convention on Climate Change celebrated in Paris 2016, many countries should adopt some mechanisms in the next years to contribute to mitigate greenhouse gas emissions and support sustainable development. Mexico Government has adopted an unconditional international commitment to carry out mitigation actions that would result in the reduction of 51% in black carbon (BC) emissions by year 2030. However, many BC emissions have been calculated by factor emissions. Since optical measurements of environmental BC concentrations can vary according the different components and their subsequence wavelength measure, it's important to obtain more accurate values. BC is formally defined as an ideally light-absorbing substance composed by carbon (Bond et al., 2013), and is the second main contributor (behind Carbon Dioxide; CO2) to positive radiative forcing (Ramanathan and Carmichael, 2008). Recently, BC has been used as an additional indicator in air quality management in some cities because is emitted from the incomplete combustion of fossil fuels, biofuel and biomass burning in both anthropogenic and it is always emitted with other particles and gases, such as organic carbon (OC), nitrogen oxides (NOx), and sulfur dioxide (SO2). Black Carbon, PM2.5 and pollutant gases were measured from January 2015 to December 2015 at three main cities in Mexico, and two other places to evaluate the BC concentration levels in the country. The urban background sites (Mexico City, Monterrey, Guadalajara, MXC-UB, GDL-UB, MTY-UB), a sub-urban background site (Juriquilla, Queretaro, JUR-SUB) and a regional background site (Altzomoni, ALT-RB). Results showed the relationship between BC and PM2.5 in the 3 large cities, with BC/PM2.5 ratios near 0.14 to 0.09 and a high BC-CO relationship in all the year in Mexico City, who showed that mobile sources are a common, at least in cities with a non-significant biomass burning emission related to agriculture or coal

  14. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  15. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress

    International Nuclear Information System (INIS)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi; Wang, Xiaodong; Xing, Feng; Han, Ningxu; He, Yijian

    2016-01-01

    Highlights: • Carbonation affects the chloride profile in concrete under chloride aerosol attack. • The chloride binding capacity can be reduced by the presence of carbonation. • Carbonation increases the rate of chloride diffusion for chloride aerosol ingress. • Chloride aerosol ingress reduces the carbonation depth and increases the pH value. • The use of fly ash in concrete enhances the resistance of chloride aerosol ingress. - Abstract: This paper presents an experimental investigation regarding the coupled effect of carbonation and chloride aerosol ingress on the durability performance of fly ash concrete. Test results demonstrate that carbonation significantly affects the chloride ingress profile, reduces the chloride binding capacity, and accelerates the rate of chloride ion diffusion. On the other hand, the carbonation rate of fly ash concrete is reduced by the presence of chlorides aerosol. The interaction nature between concrete carbonation and chloride aerosol ingress is also demonstrated by the microscopic analysis results obtained from scanning electron microscope and mercury intrusion porosimetry.

  16. On the Use of the Field Sunset Semi-continuous Analyzer to Measure Equivalent Black Carbon Concentrations.

    Czech Academy of Sciences Publication Activity Database

    Zíková, Naděžda; Vodička, Petr; Ludwig, W.; Hitzenberger, R.; Schwarz, Jaroslav

    2016-01-01

    Roč. 50, č. 3 (2016), s. 284-296 ISSN 0278-6826 R&D Projects: GA ČR(CZ) GBP503/12/G147; GA MŠk 7AMB12AT021 Institutional support: RVO:67985858 Keywords : black carbon * aerosols * aethalometer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.926, year: 2016

  17. Assessment of the Aerosol Generation and Toxicity of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Patrick T. O'Shaughnessy

    2014-06-01

    Full Text Available Current interest in the pulmonary toxicity of carbon nanotubes (CNTs has resulted in a need for an aerosol generation system that is capable of consistently producing a CNT aerosol at a desired concentration level. This two-part study was designed to: (1 assess the properties of a commercially-available aerosol generator when producing an aerosol from a purchased powder supply of double-walled carbon nanotubes (DWCNTs; and (2 assess the pulmonary sub-acute toxicity of DWCNTs in a murine model during a 5-day (4 h/day whole-body exposure. The aerosol generator, consisting of a novel dustfeed mechanism and venturi ejector was determined to be capable of producing a DWCNT consistently over a 4 h exposure period at an average level of 10.8 mg/m3. The count median diameter was 121 nm with a geometric standard deviation of 2.04. The estimated deposited dose was 32 µg/mouse. The total number of cells in bronchoalveolar lavage (BAL fluid was significantly (p < 0.01 increased in exposed mice compared to controls. Similarly, macrophages in BAL fluid were significantly elevated in exposed mice, but not neutrophils. All animals exposed to CNT and euthanized immediately after exposure had changes in the lung tissues showing acute inflammation and injury; however these pathological changes resolved two weeks after the exposure.

  18. Graft polymerization of vynil monomers at carbon black surface (1)

    International Nuclear Information System (INIS)

    Haryono Arumbinang.

    1976-01-01

    Effect of aromatic condensates containing functional group on carbon black surface, effect of pH condensates on carbon black chemisorption, analysis and configuration of functional group, the crystal structure, property measurement standard, particle diameter measurement, oil adsorption, colour capacity, volatile acid content, electric resistence and the volume of the granular or carbon black dust, are given. Electron paramagnetic resonance determination of the amount of free radicals on carbon black surface, its oxidation and effects on the surface and inner structure of carbon black, and graft polymerization by radiation copolymerization, are discussed. Experiments on radiation graft copolymerization by acrylic acid, methacrylate, and glycidol methacrylate, in a vacuum condition, have been carried out. It is concluded that further research on the modification and configuration of carbon black should be developed. (author)

  19. Prenatal Exposure to Carbon Black (Printex 90)

    DEFF Research Database (Denmark)

    Jackson, Petra; Vogel, Ulla; Wallin, Håkan

    2011-01-01

    Maternal pulmonary exposure to ultrafine particles during pregnancy may affect the health of the child. Developmental toxicity of carbon black (Printex 90) nanoparticles was evaluated in a mouse model. Time-mated mice were intratracheally instilled with Printex 90 dispersed in Millipore water on ...... on gestation days (GD) 7, 10, 15 and 18, with total doses of 11, 54 and 268 mu g Printex 90/animal. The female offspring prenatally exposed to 268 mu g Printex 90/animal displayed altered habituation pattern during the Open field test....

  20. Exchanges in boundary layer and low troposphere and consequences on pollution of Fos-Berre-Marseille area (ESCOMPTE experiment); Les aerosols: emissions, formation d'aerosols organiques secondaires, transport longue distance. Zoom sur les aerosols carbones en Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, B

    2006-01-15

    There are two types of 'carbonaceous aerosols': 'black carbon' (BC) and 'organic carbon'(OC). BC is directly emitted in the atmosphere while OC is either directly emitted (primary OC, OCp) or secondarily formed through oxidation processes in the atmosphere (secondary organic aerosols, SOA). Complexity of carbonaceous aerosols is still poorly represented in existing aerosol models and uncertainties appear mainly both in their emission inventories and in their complex atmospheric evolution (transport, gas-particle interactions, dry/wet deposition), making difficult the estimation of their radiative impact. In this framework, I developed during my PhD at Laboratoire d'Aerologie, a new approach to deal with this complexity, with implementation of both a new carbonaceous aerosol emission inventory and a new aerosol modelling tool at global scale. My work is divided in 5 different tasks: - better characterisation of BC and OCp emissions, achieved through the development of a new emission inventory from fossil fuel and biofuel combustion sources (industrial, domestic and mobile sources). This inventory provides BC and OCp emissions for Europe at 25 km * 25 km resolution for the years 1990, 1995, 2000, 2005 and 2010, with two additional regional zooms: on France, at 10 km * 10 km resolution for the years 2000 and 2010 with improved road traffic, and in Marseille region (Escompte campaign, 1999,-2001) at 1 km * 1 km resolution for the year 1999; - better modelling of carbonaceous aerosol complex atmospheric evolution, through coupling of a global scale gas transport/chemistry model (TM4) with an aerosol module (ORISAM) featuring size-distributed aerosols (on 8 diameter sections from 40 nm to 10 {mu}m) organic/inorganic chemical composition and explicit treatment of SOA formation; - simulations with this new aerosol model ORISAM-TM4 and model/measurements comparisons to study BC and OC long-range transport; - sensitivity tests on SOA

  1. Optical Properties of Small Ice Crystals with Black Carbon Inclusions

    Science.gov (United States)

    Yang, X.; Geier, M.; Arienti, M.

    2013-12-01

    The optical properties of ice crystals play a fundamental role in modeling atmospheric radiation and hydrological cycle, which are critical in monitoring climate change. While Black Carbon (BC) is recognized as the dominant absorber with positive radiative forcing (warming) (Ramanathan & Carmichael, 2008), in-situ observations (Cappa, et al, 2012) indicate that the characterization of the mixing state of BC with ice crystals and other non-BC particles in global climate models (Ghan & Schwartz, 2007) needs further investigation. The limitation in the available mixing models is due to the drastically different absorbing properties of BC compared to other aerosols. We explore the scattering properties of ice crystals (in shapes commonly found in cirrus clouds and contrails - Yang, et al. 2012) with the inclusion of BC particles. The Discrete Dipole Approximation (DDA) (Yurkin & Hoekstra, 2011) is utilized to directly calculate the optical properties of the crystals with multiple BC inclusions, modeled as a distribution of spheres. The results are then compared with the most popular models of internal and external mixing (Liou, et al. 2011). The DDA calculations are carried out over a broad range of BC particle sizes and volume fractions within the crystal at the 532 nm wavelength and for ice crystals smaller than 50 μm. The computationally intensive database generated in this study is critical for understanding the effect of different types of BC inclusions on the atmosphere radiative forcing. Examples will be discussed to illustrate the modification of BC optical properties by encapsulation in ice crystals and how the parameterization of the BC mixing state in global climate models can be improved. Acknowledgements Support by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  2. Influence of public transport in black carbon

    Science.gov (United States)

    Vasquez, Y.; Oyola, P.; Gramsch, E. V.; Moreno, F.; Rubio, M.

    2013-05-01

    As a consequence of poor air quality in Santiago de Chile, several measures were taken by the local authorities to improve the environmental conditions and protect the public health. In year 2005 the Chilean government implemented a project called "Transantiago" aimed to introduce major modifications in the public transportation system. The primary objectives of this project were to: provide an economically, socially and environmentally sustainable service and improve the quality of service without increasing fares. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. The black carbon has been used to evaluate changes in air quality due to changes in traffic. The assessment was done using measurements of black carbon before Transantiago (June-July 2005) and after its implementation (June-July 2007). Four sites were selected to monitor black carbon at street levels, one site (Alameda) that represents trunk-bus streets, i.e., buses crossing the city through main avenues. Buses using these streets had an important technological update with respect to 2005. Two streets (Usach and Departamental) show a mixed condition, i.e., they combine feeder and trunk buses. These streets combine new EURO III buses with old buses with more than 3 years of service. The last street (Eliodoro Yañez) represent private cars road without public transportation and did not experience change. Hence, the results from the years 2005 and 2007 can be directly compared using an appropriate methodology. To ensure that it was not the meteorological conditions that drive the trends, the comparison between year 2005 and 2007 was done using Wilcoxon test and a regression model. A first assessment at the four sites suggested a non decrease in black carbon concentration from 2005 to 2007, except for Alameda. A first statistical approach confirmed small increases in BC in Usach and E

  3. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    Science.gov (United States)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  4. Quantifying Black Carbon Deposition Over the Greenland Ice Sheet from Forest Fires in Canada

    Science.gov (United States)

    Thomas, J. L.; Polashenski, C. M.; Soja, Amber J.; Marelle, L.; Casey, K. A.; Choi, H. D.; Raut, J.-C.; Wiedinmyer, C.; Emmons, L. K.; Fast, J. D.; hide

    2017-01-01

    Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57 on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud-Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high-resolution regional chemical transport modeling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.

  5. Chemically treated carbon black waste and its potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Pengwei; Maneerung, Thawatchai; Ng, Wei Cheng; Zhen, Xu [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Tong, Yen Wah [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Ting, Yen-Peng [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Koh, Shin Nuo [Sembcorp Industries Ltd., 30 Hill Street #05-04, 179360 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Hazardous impurities separated from carbon black waste with little damage to solid. • Heavy metals were effectively removed from carbon black waste by HNO{sub 3} leaching. • Treated carbon black waste has high adsorption capacity (∼356.4 mg{sub dye}/g). • Carbon black waste was also found to show high electrical conductivity (10 S/cm). - Abstract: In this work, carbon black waste – a hazardous solid residue generated from gasification of crude oil bottom in refineries – was successfully used for making an absorbent material. However, since the carbon black waste also contains significant amounts of heavy metals (especially nickel and vanadium), chemical leaching was first used to remove these hazardous impurities from the carbon black waste. Acid leaching with nitric acid was found to be a very effective method for removal of both nickel and vanadium from the carbon black waste (i.e. up to 95% nickel and 98% vanadium were removed via treatment with 2 M nitric acid for 1 h at 20 °C), whereas alkali leaching by using NaOH under the same condition was not effective for removal of nickel (less than 10% nickel was removed). Human lung cells (MRC-5) were then used to investigate the toxicity of the carbon black waste before and after leaching. Cell viability analysis showed that the leachate from the original carbon black waste has very high toxicity, whereas the leachate from the treated samples has no significant toxicity. Finally, the efficacy of the carbon black waste treated with HNO{sub 3} as an absorbent for dye removal was investigated. This treated carbon black waste has high adsorption capacity (∼361.2 mg {sub dye}/g {sub carbonblack}), which can be attributed to its high specific surface area (∼559 m{sup 2}/g). The treated carbon black waste with its high adsorption capacity and lack of cytotoxicity is a promising adsorbent material. Moreover, the carbon black waste was found to show high electrical conductivity (ca. 10 S

  6. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Directory of Open Access Journals (Sweden)

    Han Dongxiao

    2011-01-01

    Full Text Available Abstract In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  7. Monsoon sensitivity to aerosol direct radiative forcing in the ...

    Indian Academy of Sciences (India)

    to the total, scattering aerosols and black carbon aerosols. ... acts as an internal damping mechanism spinning down the regional hydrological cycle and leading to sig- ... tion and emission of longwave radiation. ... effect of aerosols over India, where the emission of .... that aerosol effects on monsoon water cycle dynam-.

  8. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    Science.gov (United States)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  9. Black Carbon Radiative Forcing over the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.5–5.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.7–4.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  10. Lung clearance of inhaled particles after exposure to carbon black generated from a resuspension system

    International Nuclear Information System (INIS)

    Lee, P.S.; Gorski, R.A.; Hering, W.E.; Chan, T.L.

    1987-01-01

    A system to resuspend carbon black particles for providing submicron aerosols for inhalation exposure studies has been developed. The effect of continuous exposure to carbonaceous material (as a surrogate for the carbonaceous particles in diesel exhaust) on the pulmonary clearance of inhaled diesel tracer particles was studied in male Fischer 344 rats. Submicron carbon black particles with a mass median aerodynamic diameter (MMAD) of 0.22 micron and a size distribution similar to that of exhaust particles from a GM 5.7-liter diesel engine were successfully generated and administered to test animals at a nominal concentration of 6 mg/m3 for 20 hr/day, 7 days/week, for periods lasting 1 to 11 weeks. Immediately after the carbon black exposure, test animals were administered 14 C-tagged diesel particles for 45 min in a nose-only chamber. The pulmonary retention of inhaled radioactive tracer particles was determined at preselected time intervals. Based upon the data collected up to 1 year postexposure, prolonged exposure to carbon black particles exhibits a similar inhibitory effect on pulmonary clearance as does prolonged exposure to diesel exhaust with a comparable particulate dose. This observation indicates that the excessive accumulation of carbonaceous material may be the predominant factor affecting lung clearance

  11. Monitoring of organic and elemental carbon (OC/EC) in the atmospheric aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, A.; Fuchs, J.; Jaeschke, W.; Weingartner, E.; Baltensperger, U.

    2003-03-01

    A new instrument for the measurement of ambient carbonaceous aerosol concentrations is described, which enables discrimination between organic and elemental carbon on a semi-continuous basis. (author)

  12. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  13. Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica

    Directory of Open Access Journals (Sweden)

    Atip Boonbumrung

    2016-01-01

    Full Text Available The properties of nitrile rubber (NBR reinforced by multiwalled carbon nanotube (MWCNT, conductive carbon black (CCB, carbon black (CB, and precipitated silica (PSi were investigated via viscoelastic behavior, bound rubber content, electrical properties, cross-link density, and mechanical properties. The filler content was varied from 0 to 15 phr. MWCNT shows the greatest magnitude of reinforcement considered in terms of tensile strength, modulus, hardness, and abrasion resistance followed by CCB, CB, and PSi. The MWCNT filled system also exhibits extremely high levels of filler network and trapped rubber even at relatively low loading (5 phr leading to high electrical properties and poor dynamic mechanical properties. Although CCB possesses the highest specific surface area, it gives lower level of filler network than MWCNT and also gives the highest elongation at break among all fillers. Both CB and PSi show comparable degree of reinforcement which is considerably lower than CCB and MWCNT.

  14. Black carbon sequestration as an alternative to bioenergy

    International Nuclear Information System (INIS)

    Fowles, Malcolm

    2007-01-01

    Most policy and much research concerning the application of biomass to reduce global warming gas emissions has concentrated either on increasing the Earth's reservoir of biomass or on substituting biomass for fossil fuels, with or without CO 2 sequestration. Suggested approaches entail varied risks of impermanence, delay, high costs, and unknowable side-effects. An under-researched alternative approach is to extract from biomass black (elemental) carbon, which can be permanently sequestered as mineral geomass and may be relatively advantageous in terms of those risks. This paper reviews salient features of black carbon sequestration and uses a high-level quantitative model to compare the approach with the alternative use of biomass to displace fossil fuels. Black carbon has been demonstrated to produce significant benefits when sequestered in agricultural soil, apparently without bad side-effects. Black carbon sequestration appears to be more efficient in general than energy generation, in terms of atmospheric carbon saved per unit of biomass; an exception is where biomass can efficiently displace coal-fired generation. Black carbon sequestration can reasonably be expected to be relatively quick and cheap to apply due to its short value chain and known technology. However, the model is sensitive to several input variables, whose values depend heavily on local conditions. Because characteristics of black carbon sequestration are only known from limited geographical contexts, its worldwide potential will not be known without multiple streams of research, replicated in other contexts. (author)

  15. Molecular simulation of polycyclic aromatic hydrocarbon sorption to black carbon

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2009-01-01

    Strong sorption of hydrophobic organic contaminants to soot or black carbon (BC) is an important environmental process limiting the bioremediation potential of contaminated soils and sediments. Reliable methods to predict BC sorption coefficients for organic contaminants are therefore required. A

  16. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events

    Science.gov (United States)

    Hall, Joanne; Loboda, Tatiana

    2018-05-01

    The deposition of short-lived aerosols and pollutants on snow above the Arctic Circle transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon has received a great deal of attention due to its absorptive efficiency and its fairly complex influence on the climate. Cropland burning in Russia is a large contributor to the black carbon emissions deposited directly onto the snow in the Arctic region during the spring when the impact on the snow/ice albedo is at its highest. In this study, our focus is on identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic. Specifically, atmospheric blocking events are large-scale patterns in the atmospheric pressure field that are nearly stationary and act to block migratory cyclones. The persistent low-level wind patterns associated with these mid-latitude weather patterns are likely to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during the spring. Our results revealed that overall, in March, the transport time of hypothetical black carbon emissions from Russian cropland burning to the Arctic snow is shorter (in some areas over 50 hours less at higher injection heights) and the success rate is also much higher (in some areas up to 100% more successful) during atmospheric blocking conditions as compared to conditions without an atmospheric blocking event. The enhanced transport of black carbon has important implications for the efficacy of deposited black carbon. Therefore, understanding these relationships could lead to possible mitigation strategies for reducing the impact of deposition of black carbon from crop residue burning in the Arctic.

  17. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events.

    Science.gov (United States)

    Hall, J.; Loboda, T. V.

    2017-12-01

    Short lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic region. However, accurate monitoring of cropland burning from existing active fire and burned area products is limited, thereby leading to an underestimation in black carbon emissions from cropland burning. This research focuses on 1) assessing the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia through low-level transport, and 2) identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions to the Arctic. Specifically, atmospheric blocking events present a potential mechanism that could act to enhance the likelihood of transport or accelerate the transport of pollutants to the snow-covered Arctic from Russian cropland burning based on their persistent wind patterns. This research study confirmed the importance of Russian cropland burning as a potential source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Based on the successful transport pathways, this study identified the potential transport of black carbon from Russian cropland burning beyond 80°N which has important implications for permanent sea ice cover. Further, based on the persistent wind patterns of blocking events, this study identified that blocking events are able to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during spring when the impact on the snow/ice albedo is at its highest. The

  18. Synthesis of multiwalled carbon nanotube from different grades of carbon black using arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Neha, E-mail: n4neha31@gmail.com [Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (India); Sharma, N. N. [Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (India); Director, School of Automobile, Mechanical & Mechatronics, Manipal University,Jaipur,India (India)

    2016-04-13

    This paper describes the synthesis of nanotube from different grades (Tread * A(non-ASTM), N134,N121,N660 and N330)of carbon black using DC arc discharge method at 40A current for 60sec. Carbon black samples of different grades were procured from industry (Aditya Birla Science and Technology Limited, India). Scanning Electron Micrographs (SEM) of the deposited carbon nanostructures suggests that MWCNTs are formed at 40A and for a minimal exposure time of 60sec.The result formed indicates the N330 grade of carbon black gets converted to MWCNTs (Multiwall Carbon nanotube) as compared to other grades.

  19. Adsorption of Remazol Black B dye on Activated Carbon Felt

    Directory of Open Access Journals (Sweden)

    Donnaperna Lucio

    2008-11-01

    Full Text Available The adsorption of Remazol Black B (anionic dye on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explained by "intra-particle diffusion model". For Remazol Black B, the Khan model is best suited to simulate the adsorption isotherms.

  20. A Community Network of 100 Black Carbon Sensors

    Science.gov (United States)

    Preble, C.; Kirchstetter, T.; Caubel, J.; Cados, T.; Keeling, C.; Chang, S.

    2017-12-01

    We developed a low-cost black carbon sensor, field tested its performance, and then built and deployed a network of 100 sensors in West Oakland, California. We operated the network for 100 days beginning mid-May 2017 to measure spatially resolved black carbon concentrations throughout the community. West Oakland is a San Francisco Bay Area mixed residential and industrial community that is adjacent to regional port and rail yard facilities and surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we deployed the black carbon monitoring network outside of residences and business, along truck routes and arterial streets, and at upwind locations. The sensor employs the filter-based light transmission method to measure black carbon and has good precision and correspondence with current commercial black carbon instruments. Throughout the 100-day period, each of the 100 sensors transmitted data via a cellular network. A MySQL database was built to receive and manage the data in real-time. The database included diagnostic features to monitor each sensor's operational status and facilitate the maintenance of the network. Spatial and temporal patterns in black carbon concentrations will be presented, including patterns around industrial facilities, freeways, and truck routes, as well as the relationship between neighborhood concentrations and the BAAQMD's monitoring site. Lessons learned during this first of its kind black carbon monitoring network will also be shared.

  1. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  2. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  3. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  4. Coatings of black carbon in Tijuana, Mexico, during the CalMex Campaign

    Science.gov (United States)

    Takahama, S.; Russell, L. M.; Duran, R.; Subramanian, R.; Kok, G.

    2010-12-01

    Black carbon number and mass concentrations were measured by a single-particle soot photometer (SP2; by Droplet Measurement Technologies) in Tijuana, Mexico between May 15, 2010, and June 30, 2010, for the CalMex campaign. The measurement site, Parque Morelos, is a recreational area located in the Southeast region of Tijuana. The SP2 was equipped with 8-channels of signal detection that spans a wider range of sensitivity for incandescing and scattering measurements than traditional configurations. The campaign-average number concentration of incandescing particles was 280 #/cc, peaking during traffic activity in the mornings. Incandescing particles made up 50% of all particles (incandescing and purely scattering) detected by the SP2. The mode of the number size distribution estimated for black carbon, according to estimated mass-equivalent diameters, was approximately 100 nm or smaller. Temporal variations in estimated coating thicknesses for these black carbon particles are discussed together with co-located measurements of organic aerosol and inorganic salts.

  5. Impact of OH Heterogenous Oxidation on the Evolution of Brown Carbon Aerosol Optical Properties

    Science.gov (United States)

    Schnitzler, E.; Abbatt, J.

    2017-12-01

    The effects of varying relative humidity (RH) on the evolution of brown carbon (BrC) optical properties induced by heterogeneous OH oxidation were investigated in a series of photooxidation chamber experiments. A BrC surrogate was generated from aqueous 1,3-dihydroxybenzene (10 mM) and H2O2 (10 mM) exposed to >300 nm radiation, atomized, passed through a series of trace gas denuders, and injected into the chamber, which was conditioned to about 10 or 60% RH. Following aerosol injection, H2O2 was continuously bubbled into the chamber; an hour later, the chamber was irradiated with black-lights (UV-B) to produce OH. Before irradiation, aerosol absorption and scattering at 405 nm, measured using a photoacoustic spectrometer, decreased due only to deposition and dilution, and single scattering albedo (SSA) was relatively steady. In the presence of gas-phase OH, absorption first increased, despite continued particle losses, and SSA decreased. Subsequently, absorption decreased faster than scattering, and SSA increased uniformly. At 60% RH, colour enhancement, likely associated with functionalization, was greatest after only minutes of reaction. In contrast, at 10% RH, peak colour enhancement occurred after about two hours of reaction, indicating that the decrease in RH and the attendant increase in particle viscosity significantly impeded heterogeneous OH oxidation of the BrC surrogate.

  6. Comparison of methods for the quantification of the different carbon fractions in atmospheric aerosol samples

    Science.gov (United States)

    Nunes, Teresa; Mirante, Fátima; Almeida, Elza; Pio, Casimiro

    2010-05-01

    Atmospheric carbon consists of: organic carbon (OC, including various organic compounds), elemental carbon (EC, or black carbon [BC]/soot, a non-volatile/light-absorbing carbon), and a small quantity of carbonate carbon. Thermal/optical methods (TOM) have been widely used for quantifying total carbon (TC), OC, and EC in ambient and source particulate samples. Unfortunately, the different thermal evolution protocols in use can result in a wide elemental carbon-to-total carbon variation. Temperature evolution in thermal carbon analysis is critical to the allocation of carbon fractions. Another critical point in OC and EC quantification by TOM is the interference of carbonate carbon (CC) that could be present in the particulate samples, mainly in the coarse fraction of atmospheric aerosol. One of the methods used to minimize this interference consists on the use of a sample pre-treatment with acid to eliminate CC prior to thermal analysis (Chow et al., 2001; Pio et al., 1994). In Europe, there is currently no standard procedure for determining the carbonaceous aerosol fraction, which implies that data from different laboratories at various sites are of unknown accuracy and cannot be considered comparable. In the framework of the EU-project EUSAAR, a comprehensive study has been carried out to identify the causes of differences in the EC measured using different thermal evolution protocols. From this study an optimised protocol, the EUSAAR-2 protocol, was defined (Cavali et al., 2009). During the last two decades thousands of aerosol samples have been taken over quartz filters at urban, industrial, rural and background sites, and also from plume forest fires and biomass burning in a domestic closed stove. These samples were analysed for OC and EC, by a TOM, similar to that in use in the IMPROVE network (Pio et al., 2007). More recently we reduced the number of steps in thermal evolution protocols, without significant repercussions in the OC/EC quantifications. In order

  7. Review of brown carbon aerosols: Recent progress and perspectives.

    Science.gov (United States)

    Yan, Juping; Wang, Xiaoping; Gong, Ping; Wang, Chuanfei; Cong, Zhiyuan

    2018-09-01

    Brown carbon (BrC), a carbonaceous aerosol which absorbs solar radiation over a broad range of wavelengths, is beginning to be seen as an important contributor to global warming. BrC absorbs both inorganic and organic pollutants, leading to serious effects on human health. We review the fundamental features of BrC, including its sources, chemical composition, optical properties and radiative forcing effects. We detail the importance of including photochemical processes related to BrC in the GEOS-Chem transport model for the estimation of aerosol radiative forcing. Calculation methods for BrC emission factors are examined, including the problems and limitations of current measurement methods. We provide some insight into existing publications and recommend areas for future research, such as further investigations into the reaction mechanisms of the aging of secondary BrC, calculations of the emission factors for BrC from different sources, the absorption of large and long-lived BrC molecules and the construction of an enhanced model for the simulation of radiative forcing. This review will improve our understanding of the climatic and environmental effects of BrC. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Bounding the Role of Black Carbon in the Climate System: a Scientific Assessment

    Science.gov (United States)

    Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Bernsten, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Karcher, B.; Koch, D.; hide

    2013-01-01

    Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg/yr in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W/sq m with 90% uncertainty bounds of (+0.08, +1.27)W/sq m. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W/sq m. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W/sq m with 90% uncertainty bounds of +0.17 to +2.1 W/sq m. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing

  9. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tami C.; Doherty, Sarah J.; Fahey, D. W.; Forster, Piers; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, Steven J.; Karcher, B.; Koch, Dorothy; Kinne, Stefan; Kondo, Yutaka; Quinn, P. K.; Sarofim, Marcus; Schultz, Martin; Schulz, M.; Venkataraman, C.; Zhang, Hua; Zhang, Shiqiu; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, Joshua P.; Shindell, Drew; Storelvmo, Trude; Warren, Stephen G.; Zender, C. S.

    2013-06-06

    Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with models, but when possible, they are evaluated with both microphysical measurements and field observations. Global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by about about 60%. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of black carbon is +0.43 W m-2 with 90% uncertainty bounds of (+0.17, +0.68) W m-2. Total direct forcing by all black carbon sources in the present day is estimated as +0.49 (+0.20, +0.76) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings and their rapid responses and feedbacks. The best estimate of industrial-era (1750 to 2005) climate forcing of black carbon through all forcing mechanisms is +0.77 W m-2 with 90% uncertainty bounds of +-0.06 to +1.53 W m-2. Thus, there is a 96% probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. With a value of +0.77 W m-2, black carbon is likely the second

  10. Neutron scattering analysis of rubber carbon black composite structure

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Wampler, W.A.; Gerspacher, M.

    1994-01-01

    We explore the uses of small-angle neutron scattering to dissect component form, structure and distribution in carbon black-reinforced rubber by varying the contrast of the system relative to some fluid by changing the fluid scattering-length density. This is the method of contrast variation. Contrast variation allows us to separate scattering contributions from the different components. Here, we extend our studies on high surface area (HSA) carbon black suspended in cyclohexane/deuterocyclohexane to HSA mixed with polyisoprene as a gel of ''bound'' rubber swollen with the same solvent mixtures. Contrast variation of swollen composite gels shows that there are two length scales in the gel structure. Above 1 nm fluctuations in the carbon black predominate. Interactions with elastomer hold the HSA aggregates appart. Below 1 nm the scattering is largely from the elastomer. The smooth surface structure of the carbon black is unaltered by the interactions with elastomer and appears smooth over length scales above about 1 nm. These results show that contrast variation can provide information on composite structure that is not available by other means. This information relates to the reinforcement mechanism of elastomers by carbon blacks

  11. Gravimetric determination of the iodine number of carbon black

    International Nuclear Information System (INIS)

    Murphy, L.J. Jr.

    1991-01-01

    This paper discusses a gravimetric method for the determination of the iodine adsorption number of carbon black. It comprises determining the concentration of an accurately weighed iodine blank solution by adding a standardized titrant to the iodine solution until a titration endpoint is reached and determining the concentration of the iodine solution by accurately weighing the amount of the standardized titrant necessary to reach the endpoint, accurately weighing an amount of carbon black and adding an appropriate amount of an accurately weighed portion of the iodine solution, equilibrating the carbon black-iodine solution mixture, adding the standardized titrant to an accurately weighed portion of the supernatant from the carbon black-iodine mixture until a titration endpoint is reached and determining the concentration of the supernatant by accurately weighing the amount of the standardized titrant necessary to reach the endpoint, wherein the titration endpoint of the supernatant is obtained using an indicating and a reference electrode, and calculating the iodine adsorption number of the carbon black based on the gravimetrically determined concentration of the titrant, the iodine solution, and the supernatant

  12. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    International Nuclear Information System (INIS)

    Rathod, T.D.; Sahu, S.K.; Tiwari, M.; Pandit, G.G.

    2016-01-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g"−"1 and 17.84±6.45 W g"−"1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67–90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV–visible spectrum. - Highlights: • Biomass fuels (wood and dung cake) were studied for brown carbon direct radiative effects. • Model calculations predicted positive contribution of Brown carbon aerosols to organic carbon direct radiative effect. • Average direct radiative values for brown carbon from dung cake were higher compare to wood. • The visible light absorption played major role in brown carbon contribution (67–90 %) to total direct radiative effect.

  13. Studies on aerosol properties during ICARB–2006 campaign period ...

    Indian Academy of Sciences (India)

    Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over ...

  14. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada: BC DEPOSITION FROM FOREST FIRES

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J. L. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Polashenski, C. M. [USACE-CRREL, Fort Wainwright Alaska USA; Thayer School of Engineering, Dartmouth College, Hanover New Hampshire USA; Soja, A. J. [National Institute of Aerospace, NASA Langley Research Center, Hampton Virginia USA; Marelle, L. [Center for International Climate and Environmental Research-Oslo (CICERO), Oslo Norway; Casey, K. A. [Thayer School of Engineering, Dartmouth College, Hanover New Hampshire USA; Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt Maryland USA; Choi, H. D. [National Institute of Aerospace, NASA Langley Research Center, Hampton Virginia USA; Raut, J. -C. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Wiedinmyer, C. [National Center for Atmospheric Research, Boulder Colorado USA; Emmons, L. K. [National Center for Atmospheric Research, Boulder Colorado USA; Fast, J. D. [Pacific Northwest National Laboratory, Richland Washington USA; Pelon, J. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Law, K. S. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Flanner, M. G. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor Michigan USA; Dibb, J. E. [Earth Systems Research Center, EOS, University of New Hampshire, Durham New Hampshire USA

    2017-08-05

    We identify an important Black Carbon (BC) aerosol deposition event that was observed in snow stratigraphy and dated to between 27 July 2013 – 2 August 2013. This event comprises a significant portion (~60%) of total deposition over a 10 month period (July 2013 – April 2014). Here we link this event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the CALIOP and MODIS instruments during transport between Canada and Greenland, confirming that this event involved emissions from forest fires in Canada. We use high-resolution regional chemical transport mod-eling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model accurately captures the timing of the BC deposition event and shows that the major contribution to deposition during this event is emissions originating from fires in Canada. However, the model under-predicts aerosol deposition compared to measurements at all sites by a factor of 2–100. Under-prediction of modeled BC deposition originates from uncertainties in fire emissions combined with uncertainties in aerosol scavenging by clouds. This study suggests that it is possible to describe the transport of an exceptional smoke event on regional and continental scales. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.

  15. Dome effect of black carbon and its key influencing factors: a one-dimensional modelling study

    Science.gov (United States)

    Wang, Zilin; Huang, Xin; Ding, Aijun

    2018-02-01

    Black carbon (BC) has been identified to play a critical role in aerosol-planetary boundary layer (PBL) interaction and further deterioration of near-surface air pollution in megacities, which has been referred to as the dome effect. However, the impacts of key factors that influence this effect, such as the vertical distribution and aging processes of BC, as well as the underlying land surface, have not been quantitatively explored yet. Here, based on available in situ measurements of meteorology and atmospheric aerosols together with the meteorology-chemistry online coupled model WRF-Chem, we conduct a set of parallel simulations to quantify the roles of these factors in influencing the BC dome effect and surface haze pollution. Furthermore, we discuss the main implications of the results to air pollution mitigation in China. We found that the impact of BC on the PBL is very sensitive to the altitude of aerosol layer. The upper-level BC, especially that near the capping inversion, is more essential in suppressing the PBL height and weakening the turbulent mixing. The dome effect of BC tends to be significantly intensified as BC mixed with scattering aerosols during winter haze events, resulting in a decrease in PBL height by more than 15 %. In addition, the dome effect is more substantial (up to 15 %) in rural areas than that in the urban areas with the same BC loading, indicating an unexpected regional impact of such an effect to air quality in countryside. This study indicates that China's regional air pollution would greatly benefit from BC emission reductions, especially those from elevated sources from chimneys and also domestic combustion in rural areas, through weakening the aerosol-boundary layer interactions that are triggered by BC.

  16. Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2005-01-01

    Full Text Available Black carbon (BC particles in the atmosphere have important impacts on climate. The amount of BC in the atmosphere must be carefully quantified to allow evaluation of the climate effects of this type of aerosol. In this study, we present the treatment of BC aerosol in the developmental version of the 4th generation Canadian Centre for Climate modelling and analysis (CCCma atmospheric general circulation model (AGCM. The focus of this work is on the conversion of insoluble BC to soluble/mixed BC by physical and chemical ageing. Physical processes include the condensation of sulphuric and nitric acid onto the BC aerosol, and coagulation with more soluble aerosols such as sulphates and nitrates. Chemical processes that may age the BC aerosol include the oxidation of organic coatings by ozone. Four separate parameterizations of the ageing process are compared to a control simulation that assumes no ageing occurs. These simulations use 1 an exponential decay with a fixed 24h half-life, 2 a condensation and coagulation scheme, 3 an oxidative scheme, and 4 a linear combination of the latter two ageing treatments. Global BC burdens are 2.15, 0.15, 0.11, 0.21, and 0.11TgC for the control run, and four ageing schemes, respectively. The BC lifetimes are 98.1, 6.6, 5.0, 9.5, and 4.9 days, respectively. The sensitivity of modelled BC burdens, and concentrations to the factor of two uncertainty in the emissions inventory is shown to be greater than the sensitivity to the parameterization used to represent the BC ageing, except for the oxidation based parameterization. A computationally efficient parameterization that represents the processes of condensation, coagulation, and oxidation is shown to simulate BC ageing well in the CCCma AGCM. As opposed to the globally fixed ageing time scale, this treatment of BC ageing is responsive to varying atmospheric composition.

  17. Effect of sterilization on mineralization of straw and black carbon

    OpenAIRE

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    The study was aimed at investigating the role of microorganisms in the degradation of BC (black carbon). CO evolution was measured under sterilized and non-sterilized soil using BC and straw amendments. Black carbon and straw were produced from homogenously C labelled roots of barley (Hordeum vulgare) with a specific activity 2.9 MBq g C. Production of BC was implemented at 300 °C for 24 h in a muffle oven, incubated in soil and C in the evolved CO was measured after 0.5, 1, 2, 4, 8, 16, 26 a...

  18. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder

    NARCIS (Netherlands)

    Marinho, B.; Gomes Ghislandi, M.; Tkalya, E.; Koning, C.E.; With, de G.

    2012-01-01

    The electrical conductivity of different carbon materials (multi-walled carbon nanotubes, graphene, carbon black and graphite), widely used as fillers in polymeric matrices, was studied using compacts produced by a paper preparation process and by powder compression. Powder pressing assays show that

  19. End of the "Little Ice Age" in the Alps not forced by industrial black carbon

    Science.gov (United States)

    Sigl, Michael; Osmont, Dimtri; Gabrieli, Jacopo; Barbante, Carlo; Schwikowski, Margit

    2016-04-01

    Light absorbing aerosols present in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes radiative properties of these media, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations in these media and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of these aerosols through time. Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps (Painter et al. 2012). Basis for this hypothesis were model simulations using ice-core measurements of elemental carbon at low temporal resolution from two ice cores in the Alps. Here we present sub-annually resolved, well replicated ice-core measurements of refractory black carbon (rBC; using a SP2 soot photometer), mineral dust (Fe, Ca), biomass burning (NH4, K) and distinctive industrial pollution tracers (Bi, Pb, SO4) from an ice core in the Alps covering the past 250 years. These reconstructions allow to precisely compare the timing of observed acceleration of glacier melt in the mid-19th century with that of the increase of soot deposition on ice-sheets caused by the industrialization of Western Europe. Our study suggests that at the time when European rBC emission rates started to significantly increase Alpine glaciers have already experienced more than 70% of their total 19th century length reduction. Industrial BC emissions can therefore not been considered as the primary forcing of the rapid deglaciation at the end of the Little Ice Age in the Alps. References: Painter, T. H., M. G. Flanner, G. Kaser, B. Marzeion, R. A. VanCuren, and W. Abdalati (2013), End of the Little Ice

  20. Using measurements for evaluation of black carbon modeling

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2011-01-01

    Full Text Available The ever increasing use of air quality and climate model assessments to underpin economic, public health, and environmental policy decisions makes effective model evaluation critical. This paper discusses the properties of black carbon and light attenuation and absorption observations that are the key to a reliable evaluation of black carbon model and compares parametric and nonparametric statistical tools for the quantification of the agreement between models and observations. Black carbon concentrations are simulated with TM5/M7 global model from July 2002 to June 2003 at four remote sites (Alert, Jungfraujoch, Mace Head, and Trinidad Head and two regional background sites (Bondville and Ispra. Equivalent black carbon (EBC concentrations are calculated using light attenuation measurements from January 2000 to December 2005. Seasonal trends in the measurements are determined by fitting sinusoidal functions and the representativeness of the period simulated by the model is verified based on the scatter of the experimental values relative to the fit curves. When the resolution of the model grid is larger than 1° × 1°, it is recommended to verify that the measurement site is representative of the grid cell. For this purpose, equivalent black carbon measurements at Alert, Bondville and Trinidad Head are compared to light absorption and elemental carbon measurements performed at different sites inside the same model grid cells. Comparison of these equivalent black carbon and elemental carbon measurements indicates that uncertainties in black carbon optical properties can compromise the comparison between model and observations. During model evaluation it is important to examine the extent to which a model is able to simulate the variability in the observations over different integration periods as this will help to identify the most appropriate timescales. The agreement between model and observation is accurately described by the overlap of

  1. High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China.

    Science.gov (United States)

    Zheng, Junyu; He, Min; Shen, Xingling; Yin, Shasha; Yuan, Zibing

    2012-11-01

    A high-resolution regional black carbon (BC) and organic carbon (OC) emission inventory for the year 2009 was developed for the Pearl River Delta (PRD) region, China, based on the collected activity data and the latest emission factors. PM(2.5), BC and OC emissions were estimated to be 303 kt, 39 kt and 31 kt, respectively. Industrial processes were major contributing sources to PM(2.5) emissions. BC emissions were mainly from mobile sources, accounting for 65.0%, while 34.1% of OC emissions were from residential combustion. The primary OC/BC ratios for individual cities in the PRD region were dependent on the levels of economic development due to differences in source characteristics, with high ratios in the less developed cities and low ratios in the central and southern developed areas. The preliminary temporal profiles were established, showing the highest OC emissions in winter and relatively constant BC emissions throughout the year. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3 km. Large amounts of BC emissions were distributed over the central-southern PRD city clusters, while OC emissions exhibited a relatively even spatial distribution due to the significant biomass burning emissions from the outlying area of the PRD region. Uncertainties in carbonaceous aerosol emissions were usually higher than in other primary pollutants like SO(2), NO(x), and PM(10). One of the key uncertainty sources was the emission factor, due to the absence of direct measurements of BC and OC emission rates. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Cellphones as a Distributed Platform for Black Carbon Data Collection

    Science.gov (United States)

    Ramanathan, N.; Ramana, M.; Lukac, M. L.; Siva, P.; Ahmed, T.; Kar, A.; Rehman, I.; Ramanathan, V.

    2010-12-01

    demonstration, we hope to better understand whether a scaled out implementation of our system could provide a means of improving the monitoring of nations’ adherence to international climate change protocols and agreements regarding greenhouse gases, including the Kyoto and Copenhagen Accords. The improved cost basis of our collection method could help reduce the expense of such monitoring and encourage such oversight procedures to become more widely enacted. Moreover, we believe that the increased ease that our cellphone technology may bring to data collection may help develop public interest in not only BC generally, but also in actively self-monitoring BC concentrations and more broadly, in networked monitoring solutions to environmental issues. As a result, individual measurements of black carbon exposure can become an important component of global climate change strategies. Jacobson, M. Z. (2010), Short-term effects of controlling fossil fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J. Geophys. Res., 115. Ramanathan, V., P. J. Crutzen, J. T. Kiehl and D. Rosenfeld (2001), Aerosols, Climate, and The Hydrological Cycle. Science, 294.

  3. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  4. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    Publication year: 2012 Source:Journal of Power Sources, Volume 217 Sean J. Ashton, Matthias Arenz The intention of the study presented here is to compare the electrochemical oxidation tendencies of a pristine Ketjen Black EC300 high surface area (HSA) carbon black, and four graphitised counterparts...... heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows......; however, CRC samples graphitised =2800 °C did not exhibit this same behaviour. Highlights ¿ We quantitatively determine electrooxidation of carbon support materials. ¿ We can distinguish between the total and partial electrooxidation. ¿ Non or mildly heat treated carbon forms passivating layer. ¿ Heat...

  5. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  6. Electrical conductivity of short carbon fibers and carbon black-reinforced chloroprene rubber

    International Nuclear Information System (INIS)

    Khoshniat, A. R.; MirAli, M.; Hemmati, M.; Afshar Taromi, F.; Katbab, A.

    2002-01-01

    Elastomers and plastics are intrinsically insulating materials, but by addition of some conductive particles such as conductive carbon black, carbon fibers and metals, they can change to conductive form. Conductivity of these composites are due to formation of the lattices of conductive filler particles in polymer chains. In this report, conductivity of chloroprene rubber filled with carbon black and carbon fibers as a function of temperature and pressure are studied. Electrical conductivity of chloroprene in a function of temperature and pressure are studied. Electrical conductivity of chloroprene in the presence of carbon black with proper mixing conditions increases to the conductivity level of semiconductors and even in the presence of carbon fibers it increases to the level of a conductor material. Meanwhile, the sensitivity of this compound to heat and pressure rises. Thus these composites have found various applications in the manufacture of heat and pressure sensitive sensors

  7. Synthesis and luminescence of nanodiamonds from carbon black

    International Nuclear Information System (INIS)

    Hu Shengliang; Tian Fei; Bai Peikang; Cao Shirui; Sun Jing; Yang Jing

    2009-01-01

    Dispersed nanodiamonds just several nanometers in diameter have been successfully synthesized using carbon black as the carbon source by a long-pulse-width laser irradiation in water at room temperature and normal pressure. The produced nanodiamonds can emit strong visible light after simple surface passivation. The light emission is attributed to the surface states related to linkage groups formed on nanodiamond surface. The surface-passivated nanodiamonds with stable photoluminescence have high potential application in bioimaging and medicine

  8. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    International Nuclear Information System (INIS)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m 2 between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m 2 depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  9. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    Directory of Open Access Journals (Sweden)

    R. K. Chakrabarty

    2016-03-01

    Full Text Available The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC – a class of visible light-absorbing organic carbon (OC – with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg−1. Their mass absorption efficiencies were in the range of 0.2–0.8 m2 g−1 at 405 nm (violet and dropped sharply to 0.03–0.07 m2 g−1 at 532 nm (green, characterized by a mean Ångström exponent of  ≈  9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated “tar balls”. The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing of the atmosphere.

  10. Black carbon and the Himalayan cryosphere: A review

    Science.gov (United States)

    Gertler, Charles G.; Puppala, Siva Praveen; Panday, Arnico; Stumm, Dorothea; Shea, Joseph

    2016-01-01

    The Himalayan cryosphere borders global hotspots for emissions of black carbon (BC), a carbonaceous aerosol with a short atmospheric lifespan and potentially significant impacts on glaciers and snow cover. BC in the atmosphere absorbs radiation efficiently, leading to localized positive climate forcing. BC may also be deposited onto snow and ice surfaces, thereby changing their albedo. This review presents up-to-date observational data of BC in the atmosphere and in snow and ice, as well as its effects on the cryosphere in the Hindu-Kush-Himalayan (HKH) region along the northern edge of South Asia. Significant spatial variation exists in the measured concentrations of BC in the atmosphere and cryosphere. A strong seasonal pattern exists, with highest concentrations in the pre-monsoon and lowest during the monsoon. Existing observations show bias towards certain areas, with a noticeable lack of measurements on the south side of the Himalaya. Significant uncertainty persists in the emissions estimates of BC in the HKH region, with a standard deviation of regional emissions from various emission inventories of 0.5150 × 10-9 kg m-2 s-1, or 47.1% of the mean (1.0931 × 10-9 kg m-2 s-1). This and other uncertainties, including poor model resolution, imprecision in deposition modeling, and incongruities among measurement types, propagate through simulations of BC concentration in atmosphere and cryosphere. Modeled atmospheric concentrations can differ from observations by as much as a factor of three with no systematic bias, and modeled concentrations in snow and ice can differ from observations by a factor of 60 in certain regions. In the Himalaya, estimates of albedo change due to BC range from about 2 to 10%, estimates of direct radiative forcing due to BC in the atmosphere from (-2)-7 W m-2, and surface forcing estimates from 0 to 28 W m-2, though every forcing estimate uses its own definition, with varying degrees of complexity and numbers of feedbacks. We find the

  11. Exploration of biodegradation mechanisms of black carbon-bound nonylphenol in black carbon-amended sediment

    International Nuclear Information System (INIS)

    Cheng, Guanghuan; Sun, Mingyang; Ge, Xinlei; Xu, Xinhua; Lin, Qi; Lou, Liping

    2017-01-01

    The present study aimed to investigate biodegradation mechanisms of black carbon (BC)-bound contaminants in BC-amended sediment when BC was applied to control organic pollution. The single-point Tenax desorption technique was applied to track the species changes of nonylphenol (NP) during biodegradation process in the rice straw carbon (RC)-amended sediment. And the correlation between the biodegradation and desorption of NP was analyzed. Results showed that microorganisms firstly degraded the rapid-desorbing NP (6 h Tenax desorption) in RC-amended sediment. The biodegradation facilitated the desorption of slow-desorbing NP, which was subsequently degraded as well (192 h Tenax desorption). Notably, the final amount of NP degradation was greater than that of NP desorption, indicating that absorbed NP by RC amendment can be degraded by microorganisms. Finally, the residual NP amount in RC-amended sediment was decided by RC content and its physicochemical property. Moreover, the presence of the biofilm was observed by the confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) so that microorganisms were able to overcome the mass transfer resistance and directly utilized the absorbed NP. Therefore, single-point Tenax desorption alone may not be an adequate basis for the prediction of the bioaccessibility of contaminants to microorganisms or bioremediation potential in BC-amended sediment. - Highlights: • Biodegradation mechanism of RC-bound NP in sediment was examined. • The microbe prioritized the degradation of NP in desorption fraction. • The microbe formed the biofilm to directly degrade part of non-desorbable NP. • Residual NP amount was decided by RC content and physicochemical property. • Quantifying biodegradation by bioavailability will underestimate the actual outcomes. - The microbes directly degrade the non-desorbable NP bound to amended RC, so quantifying the biodegradation only by desorption will underestimate the

  12. Black carbon measurements during winter 2013-2014 in Athens and intercomparison between different techniques

    Science.gov (United States)

    Liakakou, Eleni; Stravroulas, Jason; Roukounakis, Nikolaos; Paraskevopoulou, Despina; Fourtziou, Luciana; Psiloglou, Vassilis; Gerasopoulos, Evangelos; Sciare, Jean; Mihalopoulos, Nikolaos

    2014-05-01

    Black carbon (BC) is a particulate pollutant species emitted from the combustion of fuels, biomass burning for agricultural purposes and forest fires, with the first two anthropogenic sources being the major contributors to the atmospheric burden of BC. The presence of BC is important due to its direct and indirect physicochemical effects and its use as a tracer of burning and subsequent transport processes. Black carbon measurements took place during winter 2013 -2014 in the frame of a pollution monitoring experiment conducted at the urban site of Thissio, Athens (city center) at the premises of the National Observatory of Athens. The economic crisis in Greece and the resulting turn of Athens inhabitants to wood burning for domestic heating, has led to increased daily concentrations of BC in the range of 2-6 μg m-3, peaking at night time (15-20 μg m-3). Three different optical methods were used for the determination of BC. A Particle Soot Absorption Photometer (PSAP; Radiance Research) commercial instrument was used to monitor the light absorption coefficient (σap) at 565 nm of ambient aerosols, with 1 minute resolution. During parts of the campaign, a portable Aethalometer (AE-42; Magee Scientific) was also used to provide measurement of the aerosol BC content at 7 wavelengths over 5 minutes intervals. Exploiting the measurements at different wavelengths is was feasible to separate wood burning BC from BC related to fossil fuel. Two Multi Angle Absorption Photometers (MAAP; Thermo) were also operated as reference. Finally, aerosol samples were collected on 12-hour basis using a sequential dichotomous sampler for the sampling of PM2.5, PM2.5-10and PM10 fractions of aerosols on quartz filters, and the filters were analyzed for elemental carbon (EC) by a thermal - optical transmission technique. The main objective of the study is the intercomparison of the different BC monitoring techniques under a large range of ambient concentrations achieved due to the special

  13. Highly Loaded Carbon Black Supported Pt Catalysts for Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Larsen, M.J.; Zdražil, Miroslav; Gulková, Daniela; Vít, Zdeněk; Šolcová, Olga; Soukup, Karel; Koštejn, Martin; Bonde, J.L.; Maixnerová, Lucie; Odgaard, M.

    2015-01-01

    Roč. 256, NOV 1 (2015), s. 375-383 ISSN 0920-5861 R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : carbon black * fuell cell * electrocatalyst Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 4.312, year: 2015

  14. Aircraft measurements of aerosol black carbon from a coastal ...

    Indian Academy of Sciences (India)

    ABL) and 1500m (above the ABL). During this, the aircraft covered a latitudinal span of ~3.6. ◦. , which was much higher than the spatial coverage in the earlier sorties at HYD and KNP. The limit of the latitudinal coverage was basically due to the endurance of the aircraft. The results are shown in figure 6. The flight originated ...

  15. Snow darkening caused by black carbon emitted from fires

    Science.gov (United States)

    Engels, Jessica; Kloster, Silvia; Bourgeois, Quentin

    2014-05-01

    We implemented the effect of snow darkening caused by black carbon (BC) emitted from forest fires into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM) to estimate its potential climate impact of present day fire occurrence. Considerable amounts of black carbon emitted from fires are transported into snow covered regions. Already very small quantities of black carbon reduce the snow reflectance, with consequences for snow melting and snow spatial coverage. Therefore, the SNICAR (SNow And Ice Radiation) model (Flanner and Zender (2005)) is implemented in the land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at the MPI-M. The SNICAR model includes amongst other processes a complex calculation of the snow albedo depending on black carbon in snow and snow grain growth depending on water vapor fluxes for a five layer snow scheme. For the implementation of the SNICAR model into the one layer scheme of ECHAM6-JSBACH, we used the SNICAR-online version (http://snow.engin.umich.edu). This single-layer simulator provides the albedo of snow for selectable combinations of impurity content (e.g. black carbon), snow grain size, and incident solar flux characteristics. From this scheme we derived snow albedo values for black carbon in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) and for different snow grain sizes for the visible (0.3 - 0.7 µm) and near infrared range (0.7 - 1.5 µm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 µm). Here, a radius of 50 µm corresponds to new snow, whereas a radius of 1000 µm corresponds to old snow. The required snow age is taken from the BATS (Biosphere Atmosphere Transfer Scheme, Dickinson et al. (1986)) snow albedo implementation in ECHAM6-JSBACH. Here, we will present an extended evaluation of the model including a comparison of modeled black carbon in snow concentrations to observed

  16. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    Energy Technology Data Exchange (ETDEWEB)

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  17. Higher Atmosphere Heating due to black carbon Over the Northern Part of India

    Science.gov (United States)

    Tiwari, S.; Singh, S., , Dr

    2017-12-01

    Light-absorbing, atmospheric particles have gained greater attention in recent years because of their direct and indirect impacts on regional and global climate. Atmospheric black carbon (BC) aerosol (also called soot particle) is a leading climate warming agent, yet uncertainties in the global direct aerosol radiative forcing remain large. Based on a year of aerosol absorption measurements at seven wavelengths, BC concentrations were investigated in Dhanbad, the coal capital of India. Coal is routinely burned for cooking and residential heat as well as in small industries. The mean daily concentrations of ultraviolet-absorbing black carbon measured at 370 nm (UVBC) and black carbon measured at 880 nm (BC) were 9.8 ± 5.7 and 6.5 ± 3.8 μg m-3, respectively. The difference between UVBC and BC, Delta-C, is an indicator of biomass or residential coal burning and averaged 3.29 ± 4.61 μg m-3. An alternative approach uses the calculation of the Angstrom Exponent (AE) to estimate the amounts of biomass/coal and traffic BC. Biomass/coal burning contributed 87% and fossil fuel combustion contributed 13% to the annual average BC concentration. In the post-monsoon season, potential source contribution function analysis showed that air masses came from the central and northwestern Indo-Gangetic Plains resulting in mean UVBC values of 10.9 μg m-3 and BC of 7.2 μg m-3. The mean winter UVBC and BC concentrations were 15.0 and 10.1 μg m-3, respectively. These highest values were largely driven by local sources under conditions of poor dispersion. The direct radiative forcing (DRF) due to UVBC and BC at the surface (SFC) and the top of the atmosphere (TOA) were calculated. The mean atmospheric heating rates due to UVBC and BC were estimated to be 1.40°K day-1 and 1.18°K day-1, respectively. This high heating rate may affect the monsoon circulation in this region.

  18. Bird specimens track 135 years of atmospheric black carbon and environmental policy

    Science.gov (United States)

    DuBay, Shane G.; Fuldner, Carl C.

    2017-10-01

    Atmospheric black carbon has long been recognized as a public health and environmental concern. More recently, black carbon has been identified as a major, ongoing contributor to anthropogenic climate change, thus making historical emission inventories of black carbon an essential tool for assessing past climate sensitivity and modeling future climate scenarios. Current estimates of black carbon emissions for the early industrial era have high uncertainty, however, because direct environmental sampling is sparse before the mid-1950s. Using photometric reflectance data of >1,300 bird specimens drawn from natural history collections, we track relative ambient concentrations of atmospheric black carbon between 1880 and 2015 within the US Manufacturing Belt, a region historically reliant on coal and dense with industry. Our data show that black carbon levels within the region peaked during the first decade of the 20th century. Following this peak, black carbon levels were positively correlated with coal consumption through midcentury, after which they decoupled, with black carbon concentrations declining as consumption continued to rise. The precipitous drop in atmospheric black carbon at midcentury reflects policies promoting burning efficiency and fuel transitions rather than regulating emissions alone. Our findings suggest that current emission inventories based on predictive modeling underestimate levels of atmospheric black carbon for the early industrial era, suggesting that the contribution of black carbon to past climate forcing may also be underestimated. These findings build toward a spatially dynamic emission inventory of black carbon based on direct environmental sampling.

  19. Black carbon radiative forcing derived from AERONET measurements and models over an urban location in the southeastern Iberian Peninsula

    Science.gov (United States)

    Valenzuela, A.; Arola, A.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.

    2017-07-01

    This paper provides an account of observed variations in Black carbon (BC) aerosol concentrations and their induced radiative forcing for the first time over Granada a measurement site in Southeastern Iberian Peninsula. Column-integrated BC concentrations were retrieved for the period 2005-2012. Monthly averages of BC concentrations (± one standard deviation) ranged from higher values in January and December with 4.0 ± 2.5 and 4 ± 3 mg/m2, respectively, to lower values in July and August with 1.6 ± 1.2 and 2.0 ± 0.5 mg/m2, respectively. This reduction is not only observed in the average values, but also in the median, third and first quartiles. The average BC concentration in winter (3.8 ± 0.6 mg/m2) was substantially higher than in summer (1.9 ± 0.3 mg/m2), being the eight-year average of 2.9 ± 0.9 mg/m2. The reduction in the use of fossil fuels during the economic crisis contributed significantly to reduced atmospheric loadings of BC. According to our analysis this situation persisted until 2010. BC concentration values were analyzed in terms of air mass influence using cluster analysis. BC concentrations for cluster 1 (local and regional areas) showed high correlations with air masses frequency in winter and autumn. In these seasons BC sources were related to the intense road traffic and increased BC emissions from domestic heating. High BC concentrations were found in autumn just when air mass frequencies for cluster 3 (Mediterranean region) were more elevated, suggesting that air masses coming from that area transport biomass burning particles towards Granada. BC aerosol optical properties were retrieved from BC fraction using aerosol AERONET size volume distribution and Mie theory. A radiative transfer model (SBDART) was used to estimate the aerosol radiative forcing separately for composite aerosol (total aerosols) and exclusively for BC aerosols. The mean radiative forcing for composite aerosol was + 23 ± 6 W/m2 (heating rate of + 0.21 ± 0.06 K

  20. An accurate filter loading correction is essential for assessing personal exposure to black carbon using an Aethalometer.

    Science.gov (United States)

    Good, Nicholas; Mölter, Anna; Peel, Jennifer L; Volckens, John

    2017-07-01

    The AE51 micro-Aethalometer (microAeth) is a popular and useful tool for assessing personal exposure to particulate black carbon (BC). However, few users of the AE51 are aware that its measurements are biased low (by up to 70%) due to the accumulation of BC on the filter substrate over time; previous studies of personal black carbon exposure are likely to have suffered from this bias. Although methods to correct for bias in micro-Aethalometer measurements of particulate black carbon have been proposed, these methods have not been verified in the context of personal exposure assessment. Here, five Aethalometer loading correction equations based on published methods were evaluated. Laboratory-generated aerosols of varying black carbon content (ammonium sulfate, Aquadag and NIST diesel particulate matter) were used to assess the performance of these methods. Filters from a personal exposure assessment study were also analyzed to determine how the correction methods performed for real-world samples. Standard correction equations produced correction factors with root mean square errors of 0.10 to 0.13 and mean bias within ±0.10. An optimized correction equation is also presented, along with sampling recommendations for minimizing bias when assessing personal exposure to BC using the AE51 micro-Aethalometer.

  1. Characterization of black carbon in an urban-rural fringe area of Beijing.

    Science.gov (United States)

    Ji, Dongsheng; Li, Liang; Pang, Bo; Xue, Peng; Wang, Lili; Wu, Yunfei; Zhang, Hongliang; Wang, Yuesi

    2017-04-01

    Measuring black carbon (BC) is critical to understand the impact of combustion aerosols on air quality and climate change. In this study, BC was measured in 2014 at a unique community formed with rapid economic development and urbanization in an urban-rural fringe area of Beijing. Hourly BC concentrations were 0.1-33.5 μg/m 3 with the annual average of 4.4 ± 3.7 μg/m 3 . BC concentrations had clear diurnal, weekly, and seasonal variations, and were closely related with atmospheric visibility. The absorption coefficient of aerosols increased while its contribution to extinction coefficient decreased with the enhancement of PM 2.5 concentration. The high mass absorption efficiency (MAE) of EC was attributed to a combination of coal combustion, vehicular emission and rapidly coating by water-soluble ions and organic carbon (OC). BC concentrations followed a typical lognormal pattern, with over 88% samples in 0.1-10.0 μg/m 3 . Low BC levels were mostly bounded up with winds from north and northwest. Coal combustion and biomass burning were closely associated with severe haze pollution events. Firework discharge had significant UV absorption contribution. During the Asia-Pacific Economic Cooperation (APEC) forum in November 2014, air quality obviously improved due to various control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    Science.gov (United States)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-08-01

    Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.

  3. Characterization of Black Carbon Mixing State Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Davidovits, P. [Boston College, Chestnut Hill, MA (United States); Lewis, E. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Onasch, T. B. [Aerodyne Research, Billerica, MA (United States)

    2016-04-01

    Interpreting the temporal relationship between the scattering and incandescence signals recorded by the Single Particle Soot Photometer (SP2), Sedlacek et al. (2012) reported that 60% of the refractory black carbon containing particles in a plume containing biomass burning tracers exhibited non-core-shell structure. Because the relationship between the rBC (refractory black carbon) incandescence and the scattering signals had not been reported in the peer-reviewed literature, and to further evaluate the initial interpretation by Sedlacek et al., a series of experiments was undertaken to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance to characterize this signal relationship. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermochemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources. This work was communicated in a 2015 publication (Sedlacek et al. 2015)

  4. Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. M. Dickhut

    2008-09-01

    Full Text Available Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS was utilized in this study to provide detailed molecular level characterization of the high molecular weight (HMW; m/z>223 component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223–600 for each sample. Approximately 86% (Virginia and 78% (New York of these peaks were assigned molecular formulas using only carbon (C, hydrogen (H, oxygen (O, nitrogen (N, and sulfur (S as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1–4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition, several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC.

  5. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S.; Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  6. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S; Stroem, J [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  7. Impacts of Stratospheric Black Carbon on Agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Elliott, J. W.

    2017-12-01

    impacts. We present these results as a demonstration of using different crop models to study this problem, and we invite more global crop modeling groups to use the same climate forcing, which we would be happy to provide, to gain a better understanding of global agricultural responses under different future climate scenarios with stratospheric aerosols.

  8. Determination of black carbon and nanoparticles along glaciers in the Spitsbergen (Svalbard) region exploiting a mobile platform

    Science.gov (United States)

    Spolaor, Andrea; Barbaro, Elena; Mazzola, Mauro; Viola, Angelo P.; Lisok, Justyna; Obleitner, Friedrich; Markowicz, Krzysztof M.; Cappelletti, David

    2017-12-01

    An innovative approach to characterize concentration of atmospheric aerosol particles and air mass layering along the elevation profile of glaciers is presented for the first time and validated, exploiting low weight and fast response sensors deployed on a snowmobile. Two micro-Aethalometers for black carbon measurements and a miniature Diffusion Size Classifier (miniDisc) for total aerosol concentration (airborne particles) in the 14-260 nm range were used. Test experiments were conducted in the Arctic (Svalbard) in Spring (2016). Three glaciers in the Spitsbergen region were considered for this exploratory study, the Austre Brøggerbreen, the Edithbreen and the Kongsvegen. The Austre Brøggerbreen and Edithbreen were considered as test sites to setup the experiment, to optimize the sampling strategy and to identify some basic experimental artefacts. Kongsvegen glacier was chosen for the main case study, extending from the Kongsfjorden coast to roughly 700 m above sea level for a total length of ca. 25 km and with a nearly constant elevation gradient. The obtained results were rather consistent for the three glaciers and show an increase of nanoparticles with altitude. Black carbon concentration show stationary to decreasing trends going from the bottom to the top of the glaciers. These observations indicate a very active secondary aerosol formation at the highest elevations, responsible for the increase concentration of ultrafine particles at the glacier top. On the other side, black carbon shows higher levels at the lower altitudes of the glacier. This is indicative that in absence of a long-range transport as demonstrated by calculated back trajectories, black carbon might have accumulated due to the effect of katabatic winds flow along the glacier profile. The results obtained were compared and are largely consistent with the observations from concurrent soundings with a tethered balloon experiment conducted in the nearby site of Ny-Ålesund. The proposed

  9. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    Science.gov (United States)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  10. Potential climate impact of black carbon emitted by rockets

    Science.gov (United States)

    Ross, Martin; Mills, Michael; Toohey, Darin

    2010-12-01

    A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black carbon particles in the northern stratosphere that could cause potentially significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical stratospheric ozone abundances are predicted to change as much as 1%, while polar ozone changes by up to 6%. Polar surface temperatures change as much as one degree K regionally with significant impacts on polar sea ice fractions. After one decade of continuous launches, globally averaged radiative forcing from the black carbon would exceed the forcing from the emitted CO2 by a factor of about 105 and would be comparable to the radiative forcing estimated from current subsonic aviation.

  11. Electromagnetic properties of carbon black and barium titanate composite materials

    International Nuclear Information System (INIS)

    Wang Guiqin; Chen Xiaodong; Duan Yuping; Liu Shunhua

    2008-01-01

    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands

  12. Quantification of the carbonaceous matter origin in submicron marine aerosol particles by dual carbon isotope analysis

    Science.gov (United States)

    Ceburnis, D.; Garbaras, A.; Szidat, S.; Rinaldi, M.; Fahrni, S.; Perron, N.; Wacker, L.; Leinert, S.; Remeikis, V.; Facchini, M. C.; Prevot, A. S. H.; Jennings, S. G.; O'Dowd, C. D.

    2011-01-01

    Dual carbon isotope analysis has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides a conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80% organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of fossil-fuel origin. By contrast, for polluted air advecting out from Europe into the NE Atlantic, the source apportionment is 30% marine biogenic, 40% fossil fuel, and 30% continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  13. The effect of aerosol on closure of the regionale short-wave radiation balance

    NARCIS (Netherlands)

    Henzing JS; Knap WH; Stammes P; ten Brink HM; Kos GPA; Even A; Swart DPJ; Bergwerff JP; Apituley A; NOP

    2001-01-01

    IPPC reports the aerosol radiative forcing per major aerosol category, like sulphate and fossil fuel derived carbon. Part of this carbon is reflective and part of the material (black carbon "soot") absorbs radiation. We find that in the Netherlands sulphate contributes some 30% to the

  14. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate [Baylor Univ., Waco, TX (United States)

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.

  15. Personal exposure to Black Carbon in transport microenvironments

    Science.gov (United States)

    Dons, Evi; Int Panis, Luc; Van Poppel, Martine; Theunis, Jan; Wets, Geert

    2012-08-01

    We evaluated personal exposure of 62 individuals to the air pollutant Black Carbon, using 13 portable aethalometers while keeping detailed records of their time-activity pattern and whereabouts. Concentrations encountered in transport are studied in depth and related to trip motives. The evaluation comprises more than 1500 trips with different transport modes. Measurements were spread over two seasons. Results show that 6% of the time is spent in transport, but it accounts for 21% of personal exposure to Black Carbon and approximately 30% of inhaled dose. Concentrations in transport were 2-5 times higher compared to concentrations encountered at home. Exposure was highest for car drivers, and car and bus passengers. Concentrations of Black Carbon were only half as much when traveling by bike or on foot; when incorporating breathing rates, dose was found to be twice as high for active modes. Lowest 'in transport' concentrations were measured in trains, but nevertheless these concentrations are double the concentrations measured at home. Two thirds of the trips are car trips, and those trips showed a large spread in concentrations. In-car concentrations are higher during peak hours compared to off-peak, and are elevated on weekdays compared to Saturdays and even more so on Sundays. These findings result in significantly higher exposure during car commute trips (motive 'Work'), and lower concentrations for trips with motive 'Social and leisure'. Because of the many factors influencing exposure in transport, travel time is not a good predictor of integrated personal exposure or inhaled dose.

  16. Characterizing the Vertical and Spatial Distribution of Black Carbon on the North Slope of Alaska

    Science.gov (United States)

    Sedlacek, A. J., III; Feng, Y.; Biraud, S.; Springston, S. R.

    2016-12-01

    The Polar Regions are recognized for their pronounced sensitivity to changes in radiative forcing. Indeed, the Cryosphere is often referred to as the `canary in the coalmine' for climate change in the popular literature. It is this sensitivity that provides both motivation and need for targeted measurement campaigns to test the behavior and predictive capabilities of current climate models to so as to improve our understanding of which factors are most important in Arctic climate change. One class of under measured radiative forcing agents in the Polar Region is the absorbing aerosol - black carbon and brown carbon. In particular, the paucity of vertical profile information of BC is partly responsible for the difficulty of reducing uncertainty in model assessment of aerosol radiative impact at high latitudes. During the summer of 2015, a Single-Particle Soot Photometer (SP2) was deployed aboard the DOE Gultstream-1 (G-1) aircraft to measure refractory BC (rBC) concentrations as part of the DOE-sponsored ACME-V (ARM Airborne Carbon Measurements) campaign. This campaign was conducted from June through to mid-September along the North Slope of Alaska and was punctuated by vertical profiling over 5 sites (Atquasuk, Barrow, Ivotuk, Oliktok, and Toolik). In addition, measurement of CO, CO2 and CH4 were also taken to provide information on the spatial and seasonal differences in GHG sources and how these sources correlate with BC. Comparisons between observations and a global climate model (CAM5) simulations will be shown along with a discussion on the ability of the model to capture observed monthly mean profiles of BC and stratified aerosol layers. Additionally, the capability of the SP2 to partition rBC-containing particles into nascent or aged allows an evaluation of how well the CAM5 model captures long distant transported aged carbonaceous aerosols. Finally model sensitivity studies will be presented that investigated the relative importance of the different

  17. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection

    Directory of Open Access Journals (Sweden)

    A. C. Jones

    2016-03-01

    Full Text Available In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C. As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.

  18. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  19. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries

    International Nuclear Information System (INIS)

    Dominko, Robert; Gaberscek, Miran; Drofenik, Jernej; Bele, Marjan; Jamnik, Janez

    2003-01-01

    The influence of carbon black content and carbon black distribution on performance of oxide-based cathodes, such as LiCoO 2 and LiMn 2 O 4 , is investigated. The electronic conductivity of oxide material/carbon black composites is compared with electrochemical characteristics of the same composites. Uniformity of carbon black distribution in cathode composites is achieved using novel coating technology in cathode preparation. In this technology, the active particles are first pretreated in a gelatin solution. The adsorbed gelatin then controls the deposition of carbon black so that carbon black particles are uniformly distributed in the final composite. The influence of various parameters, such as pH of gelatin, amount of gelatin and concentration of carbon black on the uniformity of carbon black distribution is investigated. It is shown that the conventional technology of cathode preparation yields quite non-uniform distribution of carbon black in cathode material. At the end, we demonstrate that uniformity of carbon black distribution has a crucial impact on reversible capacity, especially at high current densities

  20. Mechanical desorption of immobilized proteins using carbon dioxide aerosols for reusable biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Renu; Hong, Seongkyeol [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Jang, Jaesung, E-mail: jjang@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2015-01-01

    Highlights: • Immobilized proteins were removed using carbon dioxide aerosols. • We observed high removal efficiencies due to the aerosol treatment. • We confirmed the removal with FTIR and X-ray photoelectron spectroscopy. • This CO{sub 2} aerosol treatment did not undermine re-functionalization. • This technique is a fast and damage-free method to reuse a sensor surface. - Abstract: Reusability of a biosensor has recently received considerable attention, and it is closely related with the effective desorption of probe molecules. We present a novel mechanical desorption technique to reuse biosensors by using periodic jets of carbon dioxide (CO{sub 2}) aerosols (a mixture of solid and gaseous CO{sub 2}), and demonstrate its feasibility by removing physically adsorbed and covalently bonded fluorescent proteins i.e., Escherichia coli fluorescein isothiocyanate antibody and bovine serum albumin (E. coli FITC–Ab and FITC–BSA) from silicon chips. The proteins on the chip surfaces were measured by fluorescent images before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured for various concentrations (1–20 μg mL{sup −1}) of E. coli FITC–Ab and FITC–BSA with two different removal cycles (5 and 11 cycles; each cycle: 8 s). We observed high removal efficiencies (>93.5% for physically adsorbed Ab and >84.6% for covalently bonded Ab) at 11 cycle aerosol treatment. This CO{sub 2} aerosol treatment did not undermine re-functionalization, which was confirmed by the fluorescent images of FITC–Abs for fresh and reused chips. Desorption of the immobilized layers was validated by Fourier transform infrared and X-ray photoelectron spectroscopic analyses. We also conducted an experiment on the regeneration of E. coli sensing chips using this aerosol treatment, and the chips were re-used 5 times successfully. This mechanical desorption technique is a highly effective and novel strategy for reusable biosensors.

  1. Mechanical desorption of immobilized proteins using carbon dioxide aerosols for reusable biosensors

    International Nuclear Information System (INIS)

    Singh, Renu; Hong, Seongkyeol; Jang, Jaesung

    2015-01-01

    Highlights: • Immobilized proteins were removed using carbon dioxide aerosols. • We observed high removal efficiencies due to the aerosol treatment. • We confirmed the removal with FTIR and X-ray photoelectron spectroscopy. • This CO 2 aerosol treatment did not undermine re-functionalization. • This technique is a fast and damage-free method to reuse a sensor surface. - Abstract: Reusability of a biosensor has recently received considerable attention, and it is closely related with the effective desorption of probe molecules. We present a novel mechanical desorption technique to reuse biosensors by using periodic jets of carbon dioxide (CO 2 ) aerosols (a mixture of solid and gaseous CO 2 ), and demonstrate its feasibility by removing physically adsorbed and covalently bonded fluorescent proteins i.e., Escherichia coli fluorescein isothiocyanate antibody and bovine serum albumin (E. coli FITC–Ab and FITC–BSA) from silicon chips. The proteins on the chip surfaces were measured by fluorescent images before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured for various concentrations (1–20 μg mL −1 ) of E. coli FITC–Ab and FITC–BSA with two different removal cycles (5 and 11 cycles; each cycle: 8 s). We observed high removal efficiencies (>93.5% for physically adsorbed Ab and >84.6% for covalently bonded Ab) at 11 cycle aerosol treatment. This CO 2 aerosol treatment did not undermine re-functionalization, which was confirmed by the fluorescent images of FITC–Abs for fresh and reused chips. Desorption of the immobilized layers was validated by Fourier transform infrared and X-ray photoelectron spectroscopic analyses. We also conducted an experiment on the regeneration of E. coli sensing chips using this aerosol treatment, and the chips were re-used 5 times successfully. This mechanical desorption technique is a highly effective and novel strategy for reusable biosensors

  2. Warming-induced increase in aerosol number concentration likely to moderate climate change

    NARCIS (Netherlands)

    Paasonen, P.; Asmi, A.; Petäjä, T.; Kajos, M.K.; Äijälä, M.; Junninen, H.; Holst, T.; Abbatt, J.P.D.; Arneth, A.; Birmili, W.; Denier van der Gon, H.A.C.; Hamed, A.; Hoffer, A.; Laakso, L.; Laaksonen, A.; Richard Leaitch, W.; Plass-Dülmer, C.; Pryor, S.C.; Räisänen, P.; Swietlicki, E.; Wiedensohler, A.; Worsnop, D.R.; Kerminen, V.-M.; Kulmala, M.

    2013-01-01

    Atmospheric aerosol particles influence the climate system directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. Apart from black carbon aerosol, aerosols cause a negative radiative forcing at the top of the atmosphere and substantially mitigate

  3. A cellphone based system for large-scale monitoring of black carbon

    Science.gov (United States)

    Ramanathan, N.; Lukac, M.; Ahmed, T.; Kar, A.; Praveen, P. S.; Honles, T.; Leong, I.; Rehman, I. H.; Schauer, J. J.; Ramanathan, V.

    2011-08-01

    Black carbon aerosols are a major component of soot and are also a major contributor to global and regional climate change. Reliable and cost-effective systems to measure near-surface black carbon (BC) mass concentrations (hereafter denoted as [BC]) globally are necessary to validate air pollution and climate models and to evaluate the effectiveness of BC mitigation actions. Toward this goal we describe a new wireless, low-cost, ultra low-power, BC cellphone based monitoring system (BC_CBM). BC_CBM integrates a Miniaturized Aerosol filter Sampler (MAS) with a cellphone for filter image collection, transmission and image analysis for determining [BC] in real time. The BC aerosols in the air accumulate on the MAS quartz filter, resulting in a coloration of the filter. A photograph of the filter is captured by the cellphone camera and transmitted by the cellphone to the analytics component of BC_CBM. The analytics component compares the image with a calibrated reference scale (also included in the photograph) to estimate [BC]. We demonstrate with field data collected from vastly differing environments, ranging from southern California to rural regions in the Indo-Gangetic plains of Northern India, that the total BC deposited on the filter is directly and uniquely related to the reflectance of the filter in the red wavelength, irrespective of its source or how the particles were deposited. [BC] varied from 0.1 to 1 μg m -3 in Southern California and from 10 to 200 μg m -3 in rural India in our field studies. In spite of the 3 orders of magnitude variation in [BC], the BC_CBM system was able to determine the [BC] well within the experimental error of two independent reference instruments for both indoor air and outdoor ambient air. Accurate, global-scale measurements of [BC] in urban and remote rural locations, enabled by the wireless, low-cost, ultra low-power operation of BC_CBM, will make it possible to better capture the large spatial and temporal variations in

  4. Toxicity assessment of carbon black waste: A by-product from oil refineries

    International Nuclear Information System (INIS)

    Zhen, Xu; Ng, Wei Cheng; Fendy; Tong, Yen Wah; Dai, Yanjun; Neoh, Koon Gee; Wang, Chi-Hwa

    2017-01-01

    Highlights: • Carbon black waste extract decreased cell viability in a dose and time-dependent manner. • Apoptosis of human cell lines was induced by carbon black waste extract. • Carbon black waste extract elicited oxidative stress by increasing intracellular ROS generation. • Carbon black waste extract impaired antioxidant enzymatic activities of human cell lines. • The high toxicity of carbon black waste extract could be attributed mainly to the effect of vanadium. - Abstract: In Singapore, approximately 30 t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with

  5. Toxicity assessment of carbon black waste: A by-product from oil refineries

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Xu; Ng, Wei Cheng [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Fendy; Tong, Yen Wah [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Carbon black waste extract decreased cell viability in a dose and time-dependent manner. • Apoptosis of human cell lines was induced by carbon black waste extract. • Carbon black waste extract elicited oxidative stress by increasing intracellular ROS generation. • Carbon black waste extract impaired antioxidant enzymatic activities of human cell lines. • The high toxicity of carbon black waste extract could be attributed mainly to the effect of vanadium. - Abstract: In Singapore, approximately 30 t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with

  6. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    International Nuclear Information System (INIS)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-01-01

    Three different internal mixing methods (Core–Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20–70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20–50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core–Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC–sulfate aerosol is about –3.18 W/m 2 for the external method and –6.91 W/m 2 for the internal methods at the surface, and –3.03/–1.56/–1.85 W/m 2 for the external/Core–Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause. - Highlights: • The aerosol optical properties with different mixing

  7. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  8. Quantifying the potential for low-level transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic.

    Science.gov (United States)

    Hall, Joanne V.; Loboda, Tatiana V.

    2017-12-01

    Short-lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Among those black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide, with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic. However, commonly applied atmospheric transport models rely on estimates of black carbon emissions from cropland burning which are known to be highly inaccurate in both the amount and the timing of release. Instead, this study quantifies the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia, identified by the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections, through low-level transport to the snow in the Arctic using wind vectors from the European Centre for Medium-Range Weather Forecasts’ ERA-Interim Reanalysis product. Our results confirm that Russian cropland burning is a potentially significant source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Approximately 10% of the observed spring (March - May) cropland active fires (7% annual) likely contribute to black carbon deposition on the Arctic snow from as far south as at least 40°N. Furthermore, our results show that potential spring black carbon emissions from cropland burning in Russia can be deposited beyond 80°N, however, the majority ( 90% - depending on injection height) of all potential spring deposition occurs below 75°N.

  9. Quantifying the Potential for Low-Level Transport of Black Carbon Emissions from Cropland Burning in Russia to the Snow-Covered Arctic

    Directory of Open Access Journals (Sweden)

    Joanne V. Hall

    2017-12-01

    Full Text Available Short lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Among those black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide, with a total climate forcing of +1.1 Wm−2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic. However, commonly applied atmospheric transport models rely on estimates of black carbon emissions from cropland burning which are known to be highly inaccurate in both the amount and the timing of release. Instead, this study quantifies the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia, identified by the Moderate Resolution Imaging Spectroradiometer (MODIS active fire detections, through low-level transport to the snow in the Arctic using wind vectors from the European Centre for Medium-Range Weather Forecasts' ERA-Interim Reanalysis product. Our results confirm that Russian cropland burning is a potentially significant source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Approximately 10% of the observed spring (March–May cropland active fires (7% annual likely contribute to black carbon deposition on the Arctic snow from as far south as at least 40°N. Furthermore, our results show that potential spring black carbon emissions from cropland burning in Russia can be deposited beyond 80°N, however, the majority (~90%-depending on injection height of all potential spring deposition occurs below 75°N.

  10. Arctic Black Carbon Loading and Profile Using the Single-Particle Soot Photometer (SP2) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. However given the pronounced sensitivity of the polar regions to radiative balance perturbations, it is incumbent upon our community to better understand and quantify these perturbations, and their unique feedbacks, so that robust model predictions of this region can be realized. One class of under-measured radiative forcing agents in the polar region is the absorbing aerosol—black carbon and brown carbon. Black carbon (BC; also referred to as light-absorbing carbon [LAC], refractory black carbon [rBC], and soot) is second only to CO2 as a positive forcing agent. Roughly 60% of BC emissions can be attributed to anthropogenic sources (fossil fuel combustion and open-pit cooking), with the remaining fraction being due to biomass burning. Brown carbon (BrC), a major component of biomass burning, collectively refers to non-BC carbonaceous aerosols that typically possess minimal light absorption at visible wavelengths but exhibit pronounced light absorption in the near-ultraviolet (UV) spectrum. Both species can be sourced locally or be remotely transported to the Arctic region and are expected to perturb the radiative balance. The work conducted in this field campaign addresses one of the more glaring deficiencies currently limiting improved quantification of the impact of BC radiative forcing in the cryosphere: the paucity of data on the vertical and spatial distributions of BC. By expanding the Gulfstream aircraft (G-1) payload for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility-sponsored ACME-V campaign to include the Single-Particle Soot Photometer (SP2)) and leveraging the ACME-V campaign

  11. Roles of black carbon on the fate of heavy metals and agrochemicals in soil

    Science.gov (United States)

    Char(coal) and other black carbon materials can comprise up to 35% of total organic carbon in US agricultural soils, and are known to strongly and often irreversibly bind contaminants including heavy metals. Black carbon has received renewed interests in recent years as a solid co-product formed du...

  12. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  13. Characterizing and sourcing ambient PM2.5 over key emission regions in China III: Carbon isotope based source apportionment of black carbon

    Science.gov (United States)

    Yu, Kuangyou; Xing, Zhenyu; Huang, Xiaofeng; Deng, Junjun; Andersson, August; Fang, Wenzheng; Gustafsson, Örjan; Zhou, Jiabin; Du, Ke

    2018-03-01

    Regional haze over China has severe implications for air quality and regional climate. To effectively combat these effects the high uncertainties regarding the emissions from different sources needs to be reduced. In this paper, which is the third in a series on the sources of PM2.5 in pollution hotspot regions of China, we focus on the sources of black carbon aerosols (BC), using carbon isotope signatures. Four-season samples were collected at two key locations: Beijing-Tianjin-Hebei (BTH, part of Northern China plain), and the Pearl River Delta (PRD). We find that that fossil fuel combustion was the predominant source of BC in both BTH and PRD regions, accounting for 75 ± 5%. However, the contributions of what fossil fuel components were dominating differed significantly between BTH and PRD, and varied dramatically with seasons. Coal combustion is overall the all-important BC source in BTH, accounting for 46 ± 12% of the BC in BTH, with the maximum value (62%) found in winter. In contrast for the PRD region, liquid fossil fuel combustion (e.g., oil, diesel, and gasoline) is the dominant source of BC, with an annual mean value of 41 ± 15% and the maximum value of 55% found in winter. Region- and season-specific source apportionments are recommended to both accurately assess the climate impact of carbonaceous aerosol emissions and to effectively mitigate deteriorating air quality caused by carbonaceous aerosols.

  14. Program GICC, final report (March 2005), inventory of carbonaceous aerosol particles from 1860 to 2100 or which carbonaceous aerosol for a significant climatic regional/global impact?; Programme GICC, RAPPORT DEFINITIF (Mars 2005), inventaire d'emissions d'aerosol carbone de 1860 a 2100 ou quelles emissions d'aerosol carbone pour un impact climatique regional/global significatif?

    Energy Technology Data Exchange (ETDEWEB)

    Cachier, H.; Guinot, B. [Laboratoire des Sciences du Climat et de l' Environnment, UMR CEA/CNRS 1572 - CEA Saclay, 91 - Gif sur Yvette (France); Criqui, P.; Mima, S. [IEPE, 38 - Grenoble (France); Brignon, J.M. [INERIS, 60 - Verneuil-en-Halatte (France); Penner, J. [Michigan Univ., Ann Arbor, MI (United States); Carmichael, G. [Iowa Univ., Iowa City, IA (United States); Gadi, R. [National Physical Lab., New Delhi (India); Denier Van der Gon, H. [TNO Hollande (Netherlands); Gregoire, J.M. [JRC, Ispra (Italy); Liousse, C.; Michel, C.; Guillaume, B.; Junker, C

    2007-07-01

    The aim of our program is to determine past, present and future emission inventories of carbonaceous particles from 1860 to 2100 for fossil fuel and biofuel sources. Emission inventories for savannah and forest fires have been developed by using burnt area products given by satellite for Asia and Africa. The strong collaboration with the different groups attending this GICC program has allowed to develop the following results. 1- With the improvement of algorithms and new choices for emission factors, emission inventories for black carbon (BC), primary organic carbon (OCp) and total organic carbon (OCtot) have been constructed for the period 1950 to 1997 for fossil fuel and biofuel sources. With these new development, biofuel sources have been seen to be significant, especially in the developing countries. 2- Past inventories have been developed for fossil fuel and biofuel sources from 1860 to 1997 by taking into account the evolution of fuel consumption, fuel use and emission factors. 3- Savannah and forest fire inventories have been constructed based on burnt area products, for Africa (1981-1991, 2000) and Asia (2000-2001). These results show the importance of using real time data instead of statistics. 4-Future emission inventory of black carbon by fossil fuel sources has been constructed for 2100 following the IPCC scenario A2 (catastrophic case) and B1 (perfect world). 5-Characterization of biofuel emissions has been realized by organizing an experiment in a combustion chamber where indian and chinese biofuels (fuelwood, agricultural wastes, dung-cake etc..). were burnt, reproducing the burning methods used in these countries. 6-Finally, the differences between the existing inventories of carbonaceous aerosols has been explained. (A.L.B.)

  15. Centennial black carbon turnover observed in a Russia steppe soil

    Energy Technology Data Exchange (ETDEWEB)

    Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I.

    2008-09-15

    Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m{sup -2}, or about 7-10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182-541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene poly carboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  16. Centennial black carbon turnover observed in a Russian steppe soil

    Directory of Open Access Journals (Sweden)

    K. Hammes

    2008-09-01

    Full Text Available Black carbon (BC, from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m−2, or about 7–10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182–541 years, much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene polycarboxylic acids (BPCA as molecular markers. The proportions of less-condensed (and thus more easily degradable BC structures decreased, whereas the highly condensed (and more recalcitrant BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  17. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact campaign was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility site in Barrow, Alaska. The carbonaceous component was characterized by measuring the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the PM, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine PM fractions (PM2.5) and 49 coarse (PM10) PM fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the Barrow Black Carbon Source and Impact (BBCSI) study used standard Tisch “hi-vol” motors that have a known lifetime of approximately 1 month under constant use; this necessitated monthly maintenance, and it is suggested that, for future deployment in the Arctic, the motors be upgraded to industrial blowers. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric PM samples from Barrow, Alaska, from July 2012 to June 2013. Preliminary analysis of the OC and BC concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer. However, the annual OC concentrations had a very different seasonal pattern with the highest concentrations during the summer, lowest concentrations during the fall, and increased concentrations during the winter and spring (Figure 1).

  18. Penelitian pengaruh campuran carbon black dan china clay terhadap sifat tegangan putus dan kekerasan karet vulkanisat

    Directory of Open Access Journals (Sweden)

    Supraptiningsih Supraptiningsih

    1999-07-01

    Full Text Available It has been done a research of the influence of mixed carbon black and hardness properties on the vulcanization of rubber. It has been made with additive of carbon black and china clay mixed, in total variation. The result is seen that total variation of carbon black and china clay not influence to tensile strength, but their interacton can do it. The hardness of vulcanization of rubber will be influence by total variation of carbon black china clay anad their interaction.

  19. Comparison Between Elemental Carbon Measured Using Thermal-Optical Analysis and Black Carbon Measurements Using A Novel Cellphone-Based System

    Science.gov (United States)

    Ramanathan, N.; Khan, B.; Leong, I.; Lukac, M.

    2011-12-01

    Black carbon (BC) is produced through the incomplete combustion of fossil and solid fuels. Current BC emissions inventories have large uncertainties of factors of 2 or more due to sparse measurements and because BC is often emitted by local sources that vary over time and space (Bond et al, 2004). Those uncertainties are major sources of error in air pollution models. Emissions from a variety of improved cookstove/fuel/combustion conditions were collected on pre-conditioned 47 mm quartz-fiber filters and analyzed for organic carbon (OC) and elemental carbon (EC) using thermal-optical analysis (TOA). The samples were then analyzed for BC concentration by using cellphone-based instrumentation developed by Ramanathan et al., 2011. The cellphone-based monitoring system (CBMS) is a wireless, low-cost, low-power system that monitors BC emissions. The CBMS is comprised of an aerosol filter sampler containing a battery-powered air pump and a 25mm filter holder that draws air in through a quartz-fiber filter. As black carbon deposits increase, the filter darkens--the darkest color representing the highest loading. A cellphone photograph of the filter with the black carbon deposit is taken and relayed to an analytics unit for comparison to a reference scale to estimate airborne BC concentration. The BC concentration can then be compared to the thermally derived EC concentration. TOA was conducted on a Sunset Laboratory Dual Optics Carbon Analyzer using a modified version of the Birch and Cary (1996) NIOSH 5040 protocol. The dual-optical instrument permitted simultaneous monitoring of the transmission (TOT) and reflectance (TOR). 619 samples were collected; EC was obtained using NIOSH TOT and NIOSH TOR methods, and BC was obtained using the CBMS analytics unit. The mean BC value reported by the CBMS agrees within 20% of the reference values for EC, confirming the findings in Ramanathan et al. (2011) based on samples from India. Given this accuracy, we conclude that the CBMS

  20. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology

    International Nuclear Information System (INIS)

    Pantea, Dana; Darmstadt, Hans; Kaliaguine, Serge; Roy, Christian

    2003-01-01

    Conductive carbon blacks from different manufacturers were studied in order to obtain some insight into the relation between their electrical conductivity and their surface properties. The surface chemistry was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS), whereas the topology of the carbon black surface was investigated using low-pressure nitrogen adsorption. All these techniques yield information on the graphitic character of the surface. In general, the electrical conductivity of the conductive blacks increases with the graphitic character of the surface. For low surface area conductive blacks, the electrical conductivity correlates well with the surface chemistry. In the case of the XPS and SIMS data, this correlation is also valid when other types of carbon blacks such as thermal and furnace blacks are included, confirming the determining influence of the carbon black surface chemistry on the electrical conductivity

  1. Adsorption of NO{sub 2} on carbon aerosols particles at the low ppb-level

    Energy Technology Data Exchange (ETDEWEB)

    Kalberer, M.; Ammann, M.; Baltensperger, U.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The adsorption of NO{sub 2} at the low ppb-level (3-40 ppb) on carbon aerosol particles was investigated. A sticking coefficient of about 2.10{sup -4} was found, similar to that in previous studies using radioactively labeled {sup 13}NO{sub 2}. (author) 2 figs., 2 refs.

  2. Sensitive method for dosing carboxylic functions of carbons and its application to the study of thermally processed carbon blacks

    International Nuclear Information System (INIS)

    Bernardin, Jacques

    1968-01-01

    This research thesis reports the development of a sensitive method for the dosing of carboxylic functions present at the surface of carbon blacks, and the use of this method to study the evolution of a carbon black during heat treatments. After a brief description of modes of fabrication of carbon blacks and of their structure, the author proposes an overview of knowledge on their oxidation and functional analysis. After having outlined that existing methods do not allow the measurement of function quantities less than ten micro-equivalent per gram of carbon, the author reports the development of a method which allows such measurements. By using this method, the author shows that carboxylic groups of a carbon black, oxidized by air or not, decompose during degassing by forming carbon dioxide, and that, reciprocally, the released carbon dioxide is exclusively produced by the decomposition of carboxylic groups [fr

  3. An approach to a black carbon emission inventory for Mexico by two methods

    International Nuclear Information System (INIS)

    Cruz-Núñez, Xochitl

    2014-01-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon = elemental carbon. Results show that black carbon emissions are in interval 53–473 Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. - Highlights: • Black carbon emissions are estimated between 53 and 473 Gg/year on a fuel consumption method. • Black carbon emissions are estimated between 62 and 89 Gg/year on a sector method

  4. An approach to a black carbon emission inventory for Mexico by two methods

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Núñez, Xochitl, E-mail: xcruz@unam.mx

    2014-05-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon = elemental carbon. Results show that black carbon emissions are in interval 53–473 Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. - Highlights: • Black carbon emissions are estimated between 53 and 473 Gg/year on a fuel consumption method. • Black carbon emissions are estimated between 62 and 89 Gg/year on a sector method.

  5. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    Science.gov (United States)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  6. Estimation of Sector-Resolved Effects of Dust and Black Carbon Emissions on Water Resources in the Himalaya, Karakoram, and Hindu Kush Mountains

    Science.gov (United States)

    Mosier, T. M.; Alvarado, M. J.; Kleiman, G.; Winijkul, E.; Shindell, D. T.; Adams-Selin, R.; Hunt, E. D.; Brodowski, C. M.; Lonsdale, C. R.; Faluvegi, G.

    2017-12-01

    Global climate change from greenhouse gases (GHGs) and regional changes caused by aerosols, including dust and black carbon, are impacting seasonal snowpacks, long-term mass balance of glaciers, and water availability in mountain regions. In particular, the basins originating in the Himalayas, Karakoram, and Hindu Kush (HKHK) are home to over 1 billion people who depend on water resources from these mountain headwaters for a wide variety of purposes. Disentangling the effects of GHGs and aerosols on water resources is therefore important to facilitate the design of regional aerosol emissions policies that positively impact water resources - as well as air quality - over multiple time horizons. To assess the atmospheric transport of aerosols, we run WRF-Chem v3.6.1 for South Asia, with aerosol emissions corresponding to a modified version of the ECLIPSE 5a emissions inventory and global climate simulated by GISS-E2-R with prognostic aerosol characterization including aerosol-cloud interactions with cloud microphysics. The future scenarios include a no further controls (NFC) scenario, as well as a mitigation (MIT) scenario, in which aerosol emissions within South Asia are reduced substantially but emissions outside the region are maintained at NFC levels. Using tagged tracers, we estimate the emissions contributions from diesel fuel, industry, solid fuel, open burning, and biomass burning; we also track emissions by country within the region and emissions from outside the region. These simulations are used as boundary conditions to the modular, process-based Conceptual Cryosphere Hydrology Framework (CCHF) v2. To account for effects of black carbon and dust on snow and ice albedo, we add a light absorbing impurities (LAI) module to CCHF. By combining WRF-Chem boundary conditions and CCHF land process representations we are able to efficiently run multiple 1 km multi-year simulations with a daily time step for the entire HKHK region and assess the relative

  7. Upgrading pyrolytic residue from waste tires to commercial carbon black.

    Science.gov (United States)

    Zhang, Xue; Li, Hengxiang; Cao, Qing; Jin, Li'e; Wang, Fumeng

    2018-05-01

    The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.

  8. Final Progress Report for Collaborative Research: Aging of Black Carbon during Atmospheric Transport: Understanding Results from the DOE’s 2010 CARES and 2012 ClearfLo Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoleni, Claudio [Michigan Technological Univ., Houghton, MI (United States); Subramanian, R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-08-31

    Over the course of this project, we have analyzed data and samples from the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the Clear air for London (ClearfLo) campaign, as well as conducted or participated in laboratory experiments designed to better understand black carbon mixing state and climate-relevant properties. The laboratory campaigns took place at the Pacific Northwest National Laboratory and Carnegie Mellon University to study various climate-relevant aerosol properties of different sources of soot mixing with secondary organic aerosol precursors. Results from some of these activities were summarized in the previous progress report. This final report presents the manuscripts that have been published (many in the period since the last progress report), lists presentations at different conferences based on grant-related activities, and presents some results that are likely to be submitted for publication in the near future.

  9. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    Science.gov (United States)

    Hunt, R. D.; Johnson, J. A.; Collins, J. L.; McMurray, J. W.; Reif, T. J.; Brown, D. R.

    2018-01-01

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC2), which is UC1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UC2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90-92% of TD with full conversion of UC to UC2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC2. The selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.

  10. Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass.

    Science.gov (United States)

    Budisulistiorini, Sri Hapsari; Riva, Matthieu; Williams, Michael; Chen, Jing; Itoh, Masayuki; Surratt, Jason D; Kuwata, Mikinori

    2017-04-18

    Light-absorbing brown carbon (BrC) constituents of organic aerosol (OA) have been shown to significantly absorb ultraviolet (UV) and visible light and thus impact radiative forcing. However, molecular identification of the BrC constituents is still limited. In this study, we characterize BrC constituents at the molecular level in (i) aerosols emitted by combustion of peat, fern/leaf, and charcoal from Indonesia and (ii) ambient aerosols collected in Singapore during the 2015 haze episode. Aerosols were analyzed using ultra performance liquid chromatography instrument interfaced to a diode array detector and electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode. In the laboratory-generated aerosols, we identified 41 compounds that can potentially absorb near-UV and visible wavelengths, such as oxygenated-conjugated compounds, nitroaromatics, and S-containing compounds. The sum of BrC constituents in peat, fern/leaf, and charcoal burning aerosols are 16%, 35%, and 28% of the OA mass, respectively, giving an average contribution of 24%. On average, the BrC constituents account for 0.4% of the ambient OA mass; however, large uncertainties in mass closure remain because of the lack of authentic standards. This study highlights the potential of light-absorbing BrC OA constituents from peat, fern/leaf, and charcoal burning and their importance in the atmosphere.

  11. PTCR effect in carbon black/copolymer composites

    International Nuclear Information System (INIS)

    Costa, L.C.; Chakki, A.; Achour, M.E.; Graca, M.P.F.

    2011-01-01

    Some materials show an abrupt increase in resistivity when the temperature changes only over a few degrees. This phenomenon, known as PTCR effect (positive temperature coefficient of resistivity), has been largely studied in the last few years, due to its potential applications in industry. Particularly, it can be used in auto controlled heaters, temperature sensors, protection circuits and in security systems for power electronic circuits. In this work we present the study of the electrical properties of the percolating system carbon black particles filled with ethylene butylacrylate copolymer composite (EBA), in the temperature range from -100 to 100 o C and in frequencies between 10 Hz and 100 kHz. The PTCR effect was observed at temperatures slightly above the room temperature, for concentrations higher than that of the percolation critical concentration. The mechanism responsible for the change in resistivity, at this stage, is predominantly tunnelling, wherein the conductive filler particles are not in physical contact, and the electrons tunnel through the insulating gap between them. At low temperatures, such as below and close to the glass transition temperature, the DC conductivity obeys the Arrhenius law. The calculated activation energy values are independent of carbon black contents inside the copolymer matrix, suggesting that these particles do not interact significantly with the chain segments of the macromolecules in the EBA copolymer.

  12. PTCR effect in carbon black/copolymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L.C., E-mail: kady@fis.ua.p [I3N and Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal); Chakki, A.; Achour, M.E. [LASTID, Physics Department, Faculty of Sciences, Ibn Tofail University, BP 133, 14000 Kenitra (Morocco); Graca, M.P.F. [I3N and Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2011-01-15

    Some materials show an abrupt increase in resistivity when the temperature changes only over a few degrees. This phenomenon, known as PTCR effect (positive temperature coefficient of resistivity), has been largely studied in the last few years, due to its potential applications in industry. Particularly, it can be used in auto controlled heaters, temperature sensors, protection circuits and in security systems for power electronic circuits. In this work we present the study of the electrical properties of the percolating system carbon black particles filled with ethylene butylacrylate copolymer composite (EBA), in the temperature range from -100 to 100 {sup o}C and in frequencies between 10 Hz and 100 kHz. The PTCR effect was observed at temperatures slightly above the room temperature, for concentrations higher than that of the percolation critical concentration. The mechanism responsible for the change in resistivity, at this stage, is predominantly tunnelling, wherein the conductive filler particles are not in physical contact, and the electrons tunnel through the insulating gap between them. At low temperatures, such as below and close to the glass transition temperature, the DC conductivity obeys the Arrhenius law. The calculated activation energy values are independent of carbon black contents inside the copolymer matrix, suggesting that these particles do not interact significantly with the chain segments of the macromolecules in the EBA copolymer.

  13. Fire emission heights in the climate system – Part 2: Impact on transport, black carbon concentrations and radiation

    Directory of Open Access Journals (Sweden)

    A. Veira

    2015-07-01

    Full Text Available Wildfires represent a major source for aerosols impacting atmospheric radiation, atmospheric chemistry and cloud micro-physical properties. Previous case studies indicated that the height of the aerosol–radiation interaction may crucially affect atmospheric radiation, but the sensitivity to emission heights has been examined with only a few models and is still uncertain. In this study we use the general circulation model ECHAM6 extended by the aerosol module HAM2 to investigate the impact of wildfire emission heights on atmospheric long-range transport, black carbon (BC concentrations and atmospheric radiation. We simulate the wildfire aerosol release using either various versions of a semi-empirical plume height parametrization or prescribed standard emission heights in ECHAM6-HAM2. Extreme scenarios of near-surface or free-tropospheric-only injections provide lower and upper constraints on the emission height climate impact. We find relative changes in mean global atmospheric BC burden of up to 7.9±4.4 % caused by average changes in emission heights of 1.5–3.5 km. Regionally, changes in BC burden exceed 30–40 % in the major biomass burning regions. The model evaluation of aerosol optical thickness (AOT against Moderate Resolution Imaging Spectroradiometer (MODIS, AErosol RObotic NETwork (AERONET and Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP observations indicates that the implementation of a plume height parametrization slightly reduces the ECHAM6-HAM2 biases regionally, but on the global scale these improvements in model performance are small. For prescribed emission release at the surface, wildfire emissions entail a total sky top-of-atmosphere (TOA radiative forcing (RF of −0.16±0.06 W m−2. The application of a plume height parametrization which agrees reasonably well with observations introduces a slightly stronger negative TOA RF of −0.20±0.07 W m−2. The standard ECHAM6-HAM2 model in which 25 % of the

  14. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    Science.gov (United States)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  15. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  16. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  17. Relationship between Black Carbon and heavy traffic in São Paulo, Brazil

    Science.gov (United States)

    Miranda, R. M.; Perez-Martinez, P.; Ribeiro, F. N. D.; Andrade, M. D. F.

    2015-12-01

    Carbonaceous aerosols play an important role in air quality, human health and global climate change. Black Carbon (BC) can be considered the most efficient light absorber in the visible spectrum and is mainly found in the fine fraction of aerosol. Typically is emitted by incomplete combustion of fossil fuels related to traffic, industrial processes and biomass burning. São Paulo Metropolitan Area (SPMA) with more than 19 million inhabitants, 7 million vehicles, as well as the major industrial and technological park of the country, has high concentrations of air pollutants, especially in the winter and vehicles are considered the principal source of particles emitted to the atmosphere. Since November 2014, Black Carbon and PM2.5 are being monitored using a MAAP (Multi Angle Absorption Photometer) Thermo 5012 and a Dust Trak DRX-8533 TSI in the East Campus of University of São Paulo, close to important highways and also to the largest airport of Brazil (Guarulhos Airport). Average BC concentration was 1.7 μg/m3 with some peaks above 17.0 μg/m3 and for PM2.5 average was 10.2 μg/m3. Particle concentrations reached values greater than the air quality standard (60 μg/m3) in the winter months. Winds coming from the East direction predominate. Traffic restrictions to heavy duty vehicles in the road-rings next to the sampling site during some hours of the day are the responsible for the daily BC and PM2.5 behavior (figure below), where high concentrations occur early in the morning and late at night, when heavy diesel vehicles are released for transit. Seasonal variations are different for BC and PM2.5 due to local sources of BC and meteorological conditions that have more influence on the particles. The weekly variation indicates that concentrations are lower on Sundays and higher from Tuesday to Thursday. Emission factors for BC were calculated based on traffic information.

  18. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    Science.gov (United States)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  19. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  20. Sources of uncertainties in modelling black carbon at the global scale

    NARCIS (Netherlands)

    Vignati, E.; Karl, M.; Krol, M.C.; Wilson, J.; Stier, P.; Cavalli, F.

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in

  1. Plasma polymerization surface modification of Carbon black and its effect in elastomers

    NARCIS (Netherlands)

    Mathew, T.; Datta, Rabin; Dierkes, Wilma K.; Talma, Auke; Ooij, W.J.; Noordermeer, Jacobus W.M.

    2011-01-01

    Surface modification of carbon black by plasma polymerization was aimed to reduce its surface energy in order to compatibilize the filler with various elastomers. A fullerenic carbon black was used for the modification process. Thermogravimetric analysis, wetting behavior with liquids of known

  2. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Lau, W. K. -M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Ramanathan, V. [Department of Atmospheric and Climate Sciences, University of California, San Diego California USA; Wu, G. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Ding, Y. [National Climate Center, China Meteorological Administration, Beijing China; Manoj, M. G. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Liu, J. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Qian, Y. [Pacific Northwest National Laboratory, Richland Washington USA; Li, J. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhou, T. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Fan, J. [Pacific Northwest National Laboratory, Richland Washington USA; Rosenfeld, D. [Institute of Earth Sciences, Hebrew University, Jerusalem Israel; Ming, Y. [Geophysical Fluid Dynamic Laboratory, NOAA, Princeton New Jersey USA; Wang, Y. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Huang, J. [College of Atmospheric Sciences, Lanzhou University, Lanzhou China; Wang, B. [Department of Atmospheric Sciences, University of Hawaii, Honolulu Hawaii USA; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Xu, X. [Chinese Academy of Meteorological Sciences, Beijing China; Lee, S. -S. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Cribb, M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Zhang, F. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Yang, X. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhao, C. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Wang, K. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Xia, X. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Yin, Y. [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Zhang, H. [National Climate Center, China Meteorological Administration, Beijing China; Guo, J. [Chinese Academy of Meteorological Sciences, Beijing China; Zhai, P. M. [Chinese Academy of Meteorological Sciences, Beijing China; Sugimoto, N. [National Institute for Environmental Studies, Tsukuba Japan; Babu, S. S. [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram India; Brasseur, G. P. [Max Planck Institute for Meteorology, Hamburg Germany

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  3. Towards Soil and Sediment Inventories of Black Carbon

    Science.gov (United States)

    Masiello, C. A.

    2008-12-01

    A body of literature on black carbon (BC) concentrations in soils and sediments is rapidly accumulating, but as of yet, there are no global or regional inventories of BC in either reservoir. Soil and sediment BC inventories are badly needed for a range of fields. For example, in oceanography a global sediment BC inventory is crucial in understanding the role of biomass burning in the development of stable marine carbon reservoirs, including dissolved organic carbon and sedimentary organic carbon. Again in the marine environment, BC likely strongly impacts the fate and transport of anthropogenic pollutants: regional inventories of BC in sediments will help develop better environmental remediation strategies. In terrestrial systems well-constrained natural BC soil inventories would help refine ecological, agricultural, and soil biogeochemical studies. BC is highly sorptive of nutrients including nitrogen and phosphorous. The presence of BC in ecosystems almost certainly alters N and P cycling; however, without soil BC inventories, we cannot know where BC has a significant impact. BC's nutrient sorptivity and water-holding capacity make it an important component of agricultural soils, and some researchers have proposed artificially increasing soil BC inventories to improve soil fertility. Natural soil BC concentrations in some regions are quite high, but without a baseline inventory, it is challenging to predict when agricultural amendment will significantly exceed natural conditions. And finally, because BC is one of the most stable fractions of organic carbon in soils, understanding its concentration and regional distribution will help us track the dynamics of soil organic matter response to changing environmental conditions. Developing effective regional and global BC inventories is challenging both because of data sparsity and methodological intercomparison issues. In this presentation I will describe a roadmap to generating these valuable inventories.

  4. Correlation between rheological and mechanical properties of black PE100 compounds – Effect of carbon black masterbatch

    Directory of Open Access Journals (Sweden)

    G. Pircheraghi

    2017-08-01

    Full Text Available Black PE100 compounds were prepared using a co-rotating twin screw extruder by addition of carbon black masterbatches containing 35–40 wt% carbon black and different polymer carriers to a pipe grade PE100 material with bimodal molecular weight distribution. Different properties of carbon black masterbatches and PE100 black compounds were evaluated using thermal, rheological and mechanical tests. Rheological results indicated an inverse correlation between melt flow index (MFI of masterbatch samples and storage modulus, complex viscosity and shear viscosity of black compounds, while flow instabilities of compounds were also postponed to higher shear rates. TGA indicated that masterbatch with highest value of MFI contained highest amount of low molecular weight lubricants which resulted in inhibition of strain hardening behavior in tensile test of its respective black compound unlike all other samples, reflecting possible suppressing of its long term resistance to slow crack growth. This behavior is attributable to facilitated crystallization and chain folding of longer chains in the presence of low molecular weight lubricants in this sample and consequently formation of thicker lamellas as confirmed by DSC, hence lowering density of entanglements in amorphous area and inhibition of strain hardening.

  5. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    Science.gov (United States)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  6. Black carbon in the atmosphere and snow, from pre-industrial times until present

    Directory of Open Access Journals (Sweden)

    R. B. Skeie

    2011-07-01

    Full Text Available The distribution of black carbon (BC in the atmosphere and the deposition of BC on snow surfaces since pre-industrial time until present are modelled with the Oslo CTM2 model. The model results are compared with observations including recent measurements of BC in snow in the Arctic. The global mean burden of BC from fossil fuel and biofuel sources increased during two periods. The first period, until 1920, is related to increases in emissions in North America and Europe, and the last period after 1970 are related mainly to increasing emissions in East Asia. Although the global burden of BC from fossil fuel and biofuel increases, in the Arctic the maximum atmospheric BC burden as well as in the snow was reached in 1960s, with a slight reduction thereafter. The global mean burden of BC from open biomass burning sources has not changed significantly since 1900. With current inventories of emissions from open biomass sources, the modelled burden of BC in snow and in the atmosphere north of 65° N is small compared to the BC burden of fossil fuel and biofuel origin. From the concentration changes radiative forcing time series due to the direct aerosol effect as well as the snow-albedo effect is calculated for BC from fossil fuel and biofuel. The calculated radiative forcing in 2000 for the direct aerosol effect is 0.35 W m−2 and for the snow-albedo effect 0.016 W m−2 in this study. Due to a southward shift in the emissions there is an increase in the lifetime of BC as well as an increase in normalized radiative forcing, giving a change in forcing per unit of emissions of 26 % since 1950.

  7. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries

    Science.gov (United States)

    Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E.

    2013-01-01

    Core-shell, nanosized LiFePO4-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO4 particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C2H2 in an O2-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0 < EQR < 1.07) whereas segregated ACB and LiFePO4 particles were formed at fuel-lean conditions (0.8 < EQR < 1). Post-annealing of core-shell particles in reducing environment (5 vol% H2 in argon) at 700 °C for up to 4 hours established phase pure, monocrystalline LiFePO4 with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO4 or segregated LiFePO4-ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO4 to Fe2P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO4 and even slight LiFePO4 crystal growth but better electrochemical performance. The present carbon-coated LiFePO4 showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO4. PMID:23407817

  8. Comparative studies of industrial grade carbon black powders

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Komal, E-mail: komalchawla.rs@gmail.com; Chauhan, Alok P. S., E-mail: chauhan.alok@gmail.com, E-mail: alok.chauhan@alumni.stonybrook.edu [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida-201307, UP, India. (India)

    2016-05-06

    Comparative studies of two dissimilar industrial grade Carbon Black (CB) powders (N375 and N405) were conducted. The structure, surface area and particle size are the three important characteristics of CB powder that determine their processability and application as filler in preparing rubber compounds. The powders were characterized for their structure using dibutyl phthalate absorption (DBPA), particle size via laser particle size analyzer and surface area by nitrogen adsorption method. The structural characterization showed that N405 had lower DBPA in comparison to N375, confirming low structure of N405 grade CB powder. It was observed from the particle size analysis that N375 was coarser than N405 grade CB. The total surface area values were determined by the BET method based on the cross sectional area of the nitrogen molecule. N375, a coarse grade CB powder with high structure, depicted less surface area as compared to N405.

  9. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and

  10. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    Science.gov (United States)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Bernsten, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; DeLuca, N.; hide

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng/g for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng/g for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng/g. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model-measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90degN) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates

  11. An AeroCom assessment of black carbon in Arctic snow and sea ice

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; De Luca, N.; Diehl, T.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Koch, D.; Liu, X.; Mann, G. W.; Penner, J. E.; Pitari, G.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Steenrod, S. D.; Stier, P.; Takemura, T.; Tsigaridis, K.; van Noije, T.; Yun, Y.; Zhang, K.

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. In this paper, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g-1 for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng g-1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g-1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with

  12. Enhancement of micropore filling of water on carbon black by platinum loading

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Naoya, E-mail: miyajima@yamanashi.ac.jp [Interdisciplinary Graduate School of Medicine and Engineering, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Hatori, Hiroaki [Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Radovic, Ljubisa R. [Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Yamada, Yoshio [Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)

    2010-10-15

    Two kinds of typical carbons, carbon black and activated carbon fibers, were modified with platinum nanoparticles without changing their original pore structures. The surface properties of the modified carbons were investigated by measuring of water adsorption isotherms. Micropore filling of water was facilitated by the presence of platinum nanoparticles on the surface of the carbon black. On the other hand, such a filling effect was not observed in the case of the activated carbon fibers. A critical content and/or size of platinum nanoparticles could be required to promote efficiently the water adsorption.

  13. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2013-09-01

    Full Text Available Arctic haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. Chemistry transport models and climate chemistry models struggle to reproduce this phenomenon, and this has recently prompted changes in aerosol removal schemes to remedy the modeling problems. In this paper, we show that shortcomings in current emission data sets are at least as important. We perform a 3 yr model simulation of black carbon (BC with the Lagrangian particle dispersion model FLEXPART. The model is driven with a new emission data set ("ECLIPSE emissions" which includes emissions from gas flaring. While gas flaring is estimated to contribute less than 3% of global BC emissions in this data set, flaring dominates the estimated BC emissions in the Arctic (north of 66° N. Putting these emissions into our model, we find that flaring contributes 42% to the annual mean BC surface concentrations in the Arctic. In March, flaring even accounts for 52% of all Arctic BC near the surface. Most of the flaring BC remains close to the surface in the Arctic, so that the flaring contribution to BC in the middle and upper troposphere is small. Another important factor determining simulated BC concentrations is the seasonal variation of BC emissions from residential combustion (often also called domestic combustion, which is used synonymously in this paper. We have calculated daily residential combustion emissions using the heating degree day (HDD concept based on ambient air temperature and compare results from model simulations using emissions with daily, monthly and annual time resolution. In January, the Arctic-mean surface concentrations of BC due to residential combustion emissions are 150% higher when using daily emissions than when using annually constant emissions. While there are concentration reductions in summer, they are smaller than the winter increases, leading to a systematic increase of

  14. Characterization of black carbon in the ambient air of Agra, India: Seasonal variation and meteorological influence

    Science.gov (United States)

    Gupta, Pratima; Singh, Shalendra Pratap; Jangid, Ashok; Kumar, Ranjit

    2017-09-01

    This study characterizes the black carbon in Agra, India home to the Taj Mahal—and situated in the Indo-Gangetic basin. The mean black carbon concentration is 9.5 μg m-3 and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter (December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate (1-2 m s-1) wind speed, as compared to calm or turbulent atmospheric conditions.

  15. Comparative Proteomics and Pulmonary Toxicity of Instilled Single-Walled Carbon Nanotubes, Crocidolite Asbestos, and Ultrafine Carbon Black in Mice

    Science.gov (United States)

    Teeguarden, Justin G.; Webb-Robertson, Bobbie-Jo; Waters, Katrina M.; Murray, Ashley R.; Kisin, Elena R.; Varnum, Susan M.; Jacobs, Jon M.; Pounds, Joel G.; Zanger, Richard C.; Shvedova, Anna A.

    2011-01-01

    Reflecting their exceptional potential to advance a range of biomedical, aeronautic, and other industrial products, carbon nanotube (CNT) production and the potential for human exposure to aerosolized CNTs are increasing. CNTs have toxicologically significant structural and chemical similarities to asbestos (AB) and have repeatedly been shown to cause pulmonary inflammation, granuloma formation, and fibrosis after inhalation/instillation/aspiration exposure in rodents, a pattern of effects similar to those observed following exposure to AB. To determine the degree to which responses to single-walled CNTs (SWCNT) and AB are similar or different, the pulmonary response of C57BL/6 mice to repeated exposures to SWCNTs, crocidolite AB, and ultrafine carbon black (UFCB) were compared using high-throughput global high performance liquid chromatography fourier transform ion cyclotron resonance mass spectrometry (HPLC-FTICR-MS) proteomics, histopathology, and bronchoalveolar lavage cytokine analyses. Mice were exposed to material suspensions (40 micrograms per mouse) twice a week for 3 weeks by pharyngeal aspiration. Histologically, the incidence and severity of inflammatory and fibrotic responses were greatest in mice treated with SWCNTs. SWCNT treatment affected the greatest changes in abundance of identified lung tissue proteins. The trend in number of proteins affected (SWCNT [376] > AB [231] > UFCB [184]) followed the potency of these materials in three biochemical assays of inflammation (cytokines). SWCNT treatment uniquely affected the abundance of 109 proteins, but these proteins largely represent cellular processes affected by AB treatment as well, further evidence of broad similarity in the tissue-level response to AB and SWCNTs. Two high-sensitivity markers of inflammation, one (S100a9) observed in humans exposed to AB, were found and may be promising biomarkers of human response to SWCNT exposure. PMID:21135415

  16. Accounting for black carbon lowers estimates of blue carbon storage services.

    Science.gov (United States)

    Chew, Swee Theng; Gallagher, John B

    2018-02-07

    The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO 2 , is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.

  17. Black carbon semi-direct effects on cloud cover: review and synthesis

    Directory of Open Access Journals (Sweden)

    D. Koch

    2010-08-01

    Full Text Available Absorbing aerosols (AAs such as black carbon (BC or dust absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and influence cloud cover. Previous studies have described conditions under which AAs either increase or decrease cloud cover. The effect depends on several factors, including the altitude of the AA relative to the cloud and the cloud type. We attempt to categorize the effects into several likely regimes. Cloud cover is decreased if the AAs are embedded in the cloud layer. AAs below cloud may enhance convection and cloud cover. AAs above cloud top stabilize the underlying layer and tend to enhance stratocumulus clouds but may reduce cumulus clouds. AAs can also promote cloud cover in convergent regions as they enhance deep convection and low level convergence as it draws in moisture from ocean to land regions. Most global model studies indicate a regional variation in the cloud response but generally increased cloud cover over oceans and some land regions, with net increased low-level and/or reduced upper level cloud cover. The result is a net negative semi-direct effect feedback from the cloud response to AAs. In some of these climate model studies, the cooling effect of BC due to cloud changes is strong enough to essentially cancel the warming direct effects.

  18. Black Carbon Absorption at the Global Scale Is Affected by Particle-Scale Diversity in Composition

    Science.gov (United States)

    Fierce, Laura; Bond, Tami C.; Bauer, Susanne E.; Mena, Francisco; Riemer, Nicole

    2016-01-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (E(sub abs)) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find E(sub abs) = 1 - 1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.

  19. RICE ice core: Black Carbon reflects climate variability at Roosevelt Island, West Antarctica

    Science.gov (United States)

    Ellis, Aja; Edwards, Ross; Bertler, Nancy; Winton, Holly; Goodwin, Ian; Neff, Peter; Tuohy, Andrea; Proemse, Bernadette; Hogan, Chad; Feiteng, Wang

    2015-04-01

    The Roosevelt Island Climate Evolution (RICE) project successfully drilled a deep ice core from Roosevelt Island during the 2011/2012 and 2012/2013 seasons. Located in the Ross Ice Shelf in West Antarctica, the site is an ideal location for investigating climate variability and the past stability of the Ross Ice Shelf. Black carbon (BC) aerosols are emitted by both biomass burning and fossil fuels, and BC particles emitted in the southern hemisphere are transported in the atmosphere and preserved in Antarctic ice. The past record of BC is expected to be sensitive to climate variability, as it is modulated by both emissions and transport. To investigate BC variability over the past 200 years, we developed a BC record from two overlapping ice cores (~1850-2012) and a high-resolution snow pit spanning 2010-2012 (cal. yr). Consistent results are found between the snow pit profiles and ice core records. Distinct decadal trends are found with respect to BC particle size, and the record indicates a steady rise in BC particle size over the last 100 years. Differences in emission sources and conditions may be a possible explanation for changes in BC size. These records also show a significant increase in BC concentration over the past decade with concentrations rising over 1.5 ppb (1.5*10^-9 ng/g), suggesting a fundamental shift in BC deposition to the site.

  20. Improved technique for measuring the size distribution of black carbon particles in rainwater and snow samples

    Science.gov (United States)

    Mori, T.; Moteki, N.; Ohata, S.; Koike, M.; Azuma, K. G.; Miyazaki, Y.; Kondo, Y.

    2015-12-01

    Black carbon (BC) is the strongest contributor to sunlight absorption among atmospheric aerosols. Quantitative understanding of wet deposition of BC, which strongly affects the spatial distribution of BC, is important to improve our understandings on climate change. We have devised a technique for measuring the masses of individual BC particles in rainwater and snow samples, as a combination of a nebulizer and a single-particle soot photometer (SP2) (Ohata et al. 2011, 2013; Schwarz et al. 2012; Mori et al. 2014). We show two important improvements in this technique: 1)We have extended the upper limit of detectable BC particle diameter from 0.9 μm to about 4.0 μm by modifying the photodetector for measuring the laser-induced incandescence signal. 2)We introduced a pneumatic nebulizer Marin-5 (Cetac Technologies Inc., Omaha, NE, USA) and experimentally confirmed its high extraction efficiency (~50%) independent of particle diameter up to 2.0 μm. Using our improved system, we simultaneously measured the size distribution of BC particles in air and rainwater in Tokyo. We observed that the size distribution of BC in rainwater was larger than that in air, indicating that large BC particles were effectively removed by precipitation. We also observed BC particles with diameters larger than 1.0 μm, indicating that further studies of wet deposition of BC will require the use of the modified SP2.

  1. Characterization of long-term and seasonal variations of black carbon (BC concentrations at Neumayer, Antarctica

    Directory of Open Access Journals (Sweden)

    R. Weller

    2013-02-01

    Full Text Available Continuous black carbon (BC observations were conducted from 1999 through 2009 by an Aethalometer (AE10 and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP at Neumayer Station (NM under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng m−3 compared to the AE10 results (1.6 ± 2.1 ng m−3. Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of ω550 = 0.992 ± 0.0090 (median: 0.994 at a wavelength of 550 nm with a range of values from 0.95 to 1.0.

  2. Black carbon emissions in Russia: A critical review

    Science.gov (United States)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; Denysenko, Artur; Smith, Steven J.; Staniszewski, Aaron; Hao, Wei Min; Liu, Liang; Bond, Tami C.

    2017-08-01

    This study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.

  3. Uptake mechanism for iodine species to black carbon.

    Science.gov (United States)

    Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu

    2013-09-17

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  4. Light absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: impact of biomass burning emissions

    International Nuclear Information System (INIS)

    Srinivas, Bikkina; Sarin, M M

    2013-01-01

    The first field measurements of light absorbing water-soluble organic carbon (WSOC), referred as brown carbon (BrC), have been made in the marine atmospheric boundary layer (MABL) during the continental outflow to the Bay of Bengal (BoB) and the Arabian Sea (ARS). The absorption signal measured at 365 nm in aqueous extracts of aerosols shows a systematic linear increase with WSOC concentration, suggesting a significant contribution from BrC to the absorption properties of organic aerosols. The mass absorption coefficient (b abs ) of BrC shows an inverse hyperbolic relation with wavelength (from ∼300 to 700 nm), providing an estimate of the Angstrom exponent (α P , range: 3–19; Av: 9 ± 3). The mass absorption efficiency of brown carbon (σ abs−BrC ) in the MABL varies from 0.17 to 0.72 m 2  g −1 (Av: 0.45 ± 0.14 m 2  g −1 ). The α P and σ abs−BrC over the BoB are quite similar to that studied from a sampling site in the Indo-Gangetic Plain (IGP), suggesting the dominant impact of organic aerosols associated with the continental outflow. A comparison of the mass absorption efficiency of BrC and elemental carbon (EC) brings to focus the significant role of light absorbing organic aerosols (from biomass burning emissions) in atmospheric radiative forcing over oceanic regions located downwind of the pollution sources. (letter)

  5. Probabilistic estimates of 1.5-degree carbon budgets based on uncertainty in transient climate response and aerosol forcing

    Science.gov (United States)

    Partanen, A. I.; Mengis, N.; Jalbert, J.; Matthews, D.

    2017-12-01

    Nations agreed to limit the increase in global mean surface temperature relative to the preindustrial era below 2 degrees Celsius and pursue efforts to a more ambitious goal of 1.5 degrees Celsius. To achieve these goals, it is necessary to assess the amount of cumulative carbon emissions compatible with these temperature targets, i.e. so called carbon budgets. In this work, we use the intermediate complexity University of Victoria Earth System Climate Model (UVic ESCM) to assess how uncertainty in aerosol forcing and transient climate response transfers to uncertainty in future carbon budgets for burning fossil fuels. We create a perturbed parameter ensemble of model simulations by scaling aerosol forcing and transient climate response, and assess the likelihood of each simulation by comparing the simulated historical cumulative carbon emissions, CO2 concentration and radiative balance to observations. By weighting the results of each simulation with the likelihood of the simulation, the preliminary results give a carbon budget of 48 Pg C to reach 1.5 degree Celsius temperature increase. The small weighted mean is due to large fraction of simulations with strong aerosol forcing and transient climate response giving negative carbon budgets for this time period. The probability of the carbon budget being over 100 Pg C was 38% and 23% for over 200 Pg carbon budget. The carbon budgets after temperature stabilization at 1.5 degrees are even smaller with a weighted mean of -100 Pg C until the year 2200. The main reason for the negative carbon budgets after temperature stabilization is an assumed strong decrease in aerosol forcing in the 21st century. Conversely, simulations with weak aerosol forcing and transient climate response give positive carbon budgets. Our results highlight both the importance of reducing uncertainty in aerosol forcing and transient climate response, and of taking the non-CO2 forcers into account when estimating carbon budgets.

  6. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-05-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their

  7. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung; Islam, Mohammad A.; Robinson, Richard D.

    2012-01-01

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating

  8. Structure aggregation of carbon black in ethylene-propylene diene polymer

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The modulus of filled and unfilled Ethylene-propylene diene rubber (EPDM vulcanizates was used to predict the shape-factor of carbon black aggregation in the polymer. Four types of carbon black that vary in particle size and structure were used in this study. Quadratic curves relating the carbon black volume concentration and the modulus ratio of filled and unfilled rubber vulcanizates were used to adopt the shape factor of certain carbon black type. The shape factor of MT, HAF, SRF and Lampblack were 3, 3.75, 4 and 4.25 respectively. X-ray diffraction technique (XRD was also used to evaluate the relative size of crystallite on the filler surface to that of the rubber and correlating it to the shape factor of carbon black aggregation in the polymer. Effect of the pH values and structure of carbon blacks used on the shape factor of filler aggregates were also studied. It was found that the shape factor is independent on the particle size while it is dependent on the pH value and structure of carbon black. Also the crystallites size of the filler is proportional to the shape factor.

  9. Historical and Future Black Carbon Deposition on the Three Ice Caps: Ice Core Measurements and Model Simulations from 1850 to 2100

    Science.gov (United States)

    Bauer, Susanne E.; Bausch, Alexandra; Nazarenko, Larissa; Tsigaridis, Kostas; Xu, Baiqing; Edwards. Ross; Bisiaux, Marion; McConnell, Joe

    2013-01-01

    Ice core measurements in conjunction with climate model simulations are of tremendous value when examining anthropogenic and natural aerosol loads and their role in past and future climates. Refractory black carbon (BC) records from the Arctic, the Antarctic, and the Himalayas are analyzed using three transient climate simulations performed with the Goddard Institute for Space Studies ModelE. Simulations differ in aerosol schemes (bulk aerosols vs. aerosol microphysics) and ocean couplings (fully coupled vs. prescribed ocean). Regional analyses for past (1850-2005) and future (2005-2100) carbonaceous aerosol simulations focus on the Antarctic, Greenland, and the Himalayas. Measurements from locations in the Antarctic show clean conditions with no detectable trend over the past 150 years. Historical atmospheric deposition of BC and sulfur in Greenland shows strong trends and is primarily influenced by emissions from early twentieth century agricultural and domestic practices. Models fail to reproduce observations of a sharp eightfold BC increase in Greenland at the beginning of the twentieth century that could be due to the only threefold increase in the North American emission inventory. BC deposition in Greenland is about 10 times greater than in Antarctica and 10 times less than in Tibet. The Himalayas show the most complicated transport patterns, due to the complex terrain and dynamical regimes of this region. Projections of future climate based on the four CMIP5 Representative Concentration Pathways indicate further dramatic advances of pollution to the Tibetan Plateau along with decreasing BC deposition fluxes in Greenland and the Antarctic.

  10. Long-range transported dissolved organic matter, ions and black carbon deposited on Central Asian snow covered glaciers

    Science.gov (United States)

    Schmale, Julia; Kang, Shichang; Peltier, Richard

    2014-05-01

    Ninety percent of the Central Asian population depend on water precipitated in the mountains stored in glaciers and snow cover. Accelerated melting of the snow and ice can be induced by the deposition of airborne impurities such as mineral dust, black carbon and co-emitted species leading to significant reductions of the surface albedo. However, Central Asia is a relatively understudied region and data on the source regions, chemical and microphysical characteristics as well as modelling studies of long-range transported air pollution and dust to the Tien Shan mountains is very scarce. We studied the atmospheric aerosol deposited most likely between summer 2012 and summer 2013on three different glaciers in the Kyrgyz Republic. Samples were taken from four snow pits on the glaciers Abramov (2 pits, 39.59 °N, 71.56 °E, 4390 m elevation, 240 cm deep, and 39.62°N, 71.52 °E, 4275 m elevation, 125 cm deep), Ak-Shiirak (41.80 °N, 78.18 °E, 4325 m elevation, 75 cm deep) and Suek (41.78 °N, 77.75 °E, 4341 m elevation, 200 cm deep). The latter two glaciers are located roughly within 6 and 38 km of an operating gold mine. The snow was analyzed for black carbon, ions, metals and organic carbon. We here focus on the results of inorganic ion measurements and organic carbon speciation based on analysis with an Aerodyne high-resolution time-of-flight aerosol spectrometer (HR-ToF-AMS) and potential pollution sources that can be deduced from the chemical information as well as back trajectories. Average contributions of snow impurities measured by the HR-ToF-AMS were dominated by organic carbon. Relative concentrations of organic carbon, sulfate, nitrate and ammonium in snow were 86 %, 3 %, 9 % and 2 % respectively for Abramov, 92 %, 1 %, 5 % and 1 % for Suek, and 95 %, 1 %, 3 % and 1 % for Ak-Shiirak. Generally, impurities on Suek and Ak-Shiirak were three and five times higher than on Abramov. Mass concentrations of organic carbon were on average 6 times higher in samples

  11. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  12. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs

    Science.gov (United States)

    Kim, Seok; Cho, Mi-Hwa; Lee, Jae-Rock; Park, Soo-Jin

    In this work, in order to improve the dispersion of platinum catalysts deposited on carbon materials, the effects of surface plasma treatment of carbon blacks (CBs) were investigated. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. The electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by linear sweep voltammetry (LSV) experiments. From the results of FT-IR and acid-base values, N 2-plasma treatment of the CBs at 300 W intensity led to a formation of a free radical on the CBs. The peak intensity increased with increase of the treatment time, due to the formation of new basic functional groups (such as C-N, C dbnd N, -NH 3 +, -NH, and dbnd NH) by the free radical on the CBs. Accordingly, the basic values were enhanced by the basic functional groups. However, after a specific reaction time, N 2-plasma treatment could hardly influence on change of the surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 s for the best electro activity of Pt/CBs catalysts and the N 2-plasma treated Pt/CBs possessed the better electrochemical properties than the pristine Pt/CBs.

  13. Effect of sulfur and Nano- carbon black on the mechanical properties of hard rubber

    Directory of Open Access Journals (Sweden)

    Mohamed Hamza Al-Maamori

    2018-01-01

    Full Text Available To improve the properties of hard rubber(Ebonite from natural rubber, added Nano-Carbon black, where measured the properties of tensile, density, hardness and the properties of the vulcanization of a group of samples with different amount of sulfur from 18-36 pphr and different of carbon black (18-26-30 pphr. The results showed that the best carbon black ratio is 30 pphr, where it gives a balance between tensile properties of hand and toughness and flexibility of on the other hand and reduce brittleness in hard rubber.

  14. Black carbon and mineral dust in snow cover on the Tibetan Plateau

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Sprenger, Michael; Cong, Zhiyuan; Gao, Tanguang; Li, Chaoliu; Tao, Shu; Li, Xiaofei; Zhong, Xinyue; Xu, Min; Meng, Wenjun; Neupane, Bigyan; Qin, Xiang; Sillanpää, Mika

    2018-02-01

    Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g-1, 491 to 13 880 ng g-1, and 22 to 846 µg g-1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ˜ 50 % in the southern TP to ˜ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.

  15. Ensemble mean climatology of snow darkening effect due to deposition of dust, black carbon, and organic carbon as simulated with the NASA GEOS-5 Earth System Model

    Science.gov (United States)

    Yasunari, T. J.; Lau, W. K.; Mahanama, S. P.; Colarco, P. R.; Koster, R. D.; Kim, K.; da Silva, A.

    2013-12-01

    The importance of the snow darkening effect (SDE) caused by solar absorbing aerosols such as dust and black carbon (BC) on climate has been discussed in previous studies. We have developed a snow darkening package for the catchment land surface model coupled to the NASA Goddard Earth Observing System, version 5 (GEOS-5), Earth System Model. Our snow darkening package includes the schemes for snow albedo and mass concentration calculations in polluted snow by dust, BC, and organic carbon (OC) depositions. The snow darkening package is currently available for seasonal snowpack over the model-defined land areas, excluding sea ice and inland of the ice sheets. The depositions of the solar absorbing aerosols are obtained from the GOCART aerosol module in the GEOS-5. Here we show the preliminary results of ensemble mean climatology (EMC) of the full SDE (i.e., dust+BC+OC). Ensemble simulations covering 10-year of 2002-2011 were carried out with the GEOS-5 including and excluding the full SDE for which each has 10 ensemble members. Shortwave radiative forcing (RF) at the top of atmosphere under all-sky condition for the 10-member EMC of the full SDE was relatively larger over Europe, Central Asia (CA), the Himalayas, the Tibetan Plateau (TP), East Asia (EA), Eastern Siberia (ES), the US, and Canadian Arctic. The RF was the strongest over the Himalayas and the TP in the northern hemisphere. The increases of surface air temperature also well correspond to the RF pattern. Larger reductions of snow water equivalent in seasonal snowpack were seen over the Himalayas, the TP, Alaska, Western Canada, and Arctic regions. We will discuss more on the day of the presentation.

  16. Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum

    International Nuclear Information System (INIS)

    Novick, V.J.; Brodrick, C.J.; Crawford, S.; Nasiatka, J.; Pierucci, K.; Reyes, V.; Sambrook, J.; Wrobel, S.; Yeary, J.

    1996-01-01

    The main purpose of this project is to quantify aerosol particle size and generation rates produced by a plasma torch whencutting stainless steel, carbon steel and aluminum. the plasma torch is a common cutting tool used in the dismantling of nuclear facilities. Eventually, other cutting tools will be characterized and the information will be compiled in a user guide to aid in theplanning of both D ampersand D and other cutting operations. The data will be taken from controlled laboratory experiments on uncontaminated metals and field samples taken during D ampersand D operations at ANL nuclear facilities. The plasma torch data was collected from laboratory cutting tests conducted inside of a closed, filtered chamber. The particle size distributions were determined by isokinetically sampling the exhaust duct using a cascade impactor. Cuts on different thicknesses showed there was no observable dependence of the aerosol quantity produced as a function of material thickness for carbon steel. However, data for both stainless steel and aluminum revealed that the aerosol mass produced for these materials appear to have some dependance on thickness, with thinner materials producing tmore aerosols. The results of the laboratory cutting tests show that most measured particle size distributions are bimodal with one mode at about 0.2 μm and the other at about 10 μm. The average Mass Median Aerodynamic Diameters (MMAD's) for these tests are 0.36 ±0.08 μm for stainless steel, 0.48 ±0.17μm for aluminum and 0.52±0.12 μm for carbon steel

  17. Cassini CAPS-ELS observations of carbon-based anions and aerosol growth in Titan's ionosphere

    Science.gov (United States)

    Desai, Ravindra; Coates, Andrew; Wellbrock, Anne; Kataria, Dhiren; Jones, Geraint; Lewis, Gethyn; Waite, J.

    2016-06-01

    Cassini observations of Titans ionosphere revealed an atmosphere rich in positively charged ions with masses up to > 350 amu and negatively charged ions and aerosols with mass over charge ratios as high as 13,800 amu/q. The detection of negatively charged molecules by the Cassini CAPS Electron Spectrometer (CAPS-ELS) was particularly surprising and showed how the synthesis of large aerosol-size particles takes place at altitudes much greater than previously thought. Here, we present further analysis into this CAPS-ELS dataset, through an enhanced understanding of the instrument's response function. In previous studies the intrinsic E/E energy resolution of the instrument did not allow specific species to be identified and the detections were classified into broad mass ranges. In this study we use an updated fitting procedure to show how the ELS mass spectrum can be resolved into specific peaks at multiples of carbon-based anions up to > 100 amu/q. The negatively charged ions and aerosols in Titans ionosphere increase in mass with decreasing altitude, the lightest species being observed close to Titan's exobase of ˜1,450km and heaviest species observed at altitudes < 950km. We identify key stages in this apparent growth process and report on key intermediaries which appear to trigger the rapid growth of the larger aerosol-size particles.

  18. 403 nm cavity ring-down measurements of brown carbon aerosol

    Science.gov (United States)

    Kwon, D.; Grassian, V. H.; Kleiber, P.; Young, M. A.

    2017-12-01

    Atmospheric aerosol influences Earth's climate by absorbing and scattering incoming solar radiation and outgoing terrestrial radiation. One class of secondary organic aerosol (SOA), called brown carbon (BrC), has attracted attention for its wavelength dependent light absorbing properties with absorption coefficients that generally increase from the visible (Vis) to ultraviolet (UV) regions. Here we report results from our investigation of the optical properties of BrC aerosol products from the aqueous phase reaction of ammonium sulfate (AS) with methylglyoxal (MG) using cavity ring-down spectroscopy (CRDS) at 403 nm wavelength. We have measured the optical constants of BrC SOA from the AS/MG reaction as a function of reaction time. Under dry flow conditions, we observed no apparent variation in the BrC refractive index with aging over the course of 22 days. The retrieved BrC optical constants are similar to those of AS with n = 1.52 for the real component. Despite significant UV absorption observed from the bulk BrC solution, the imaginary index value at 403 nm is below our minimum detection limit which puts an upper bound of k as 0.03. These observations are in agreement with results from our recent studies of the light scattering properties of this BrC aerosol.

  19. Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic

    Directory of Open Access Journals (Sweden)

    J. R. Spackman

    2010-10-01

    Full Text Available Understanding the processes controlling black carbon (BC in the Arctic is crucial for evaluating the impact of anthropogenic and natural sources of BC on Arctic climate. Vertical profiles of BC mass loadings were observed from the surface to near 7-km altitude in April 2008 using a Single-Particle Soot Photometer (SP2 during flights on the NOAA WP-3D research aircraft from Fairbanks, Alaska. These measurements were conducted during the NOAA-sponsored Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project. In the free troposphere, the Arctic air mass was influenced by long-range transport from biomass-burning and anthropogenic source regions at lower latitudes especially during the latter part of the campaign. Average BC mass mixing ratios peaked at about 150 ng BC (kg dry air −1 near 5.5 km altitude in the aged Arctic air mass and 250 ng kg−1 at 4.5 km in biomass-burning influenced air. BC mass loadings were enhanced by up to a factor of 5 in biomass-burning influenced air compared to the aged Arctic air mass. At the bottom of some of the profiles, positive vertical gradients in BC were observed over the sea-ice. The vertical profiles generally occurred in the vicinity of open leads in the sea-ice. In the aged Arctic air mass, BC mass loadings more than doubled with increasing altitude within the ABL and across the boundary layer transition while carbon monoxide (CO remained constant. This is evidence for depletion of BC mass in the ABL. BC mass loadings were positively correlated with O3 in ozone depletion events (ODEs for all the observations in the ABL. Since bromine catalytically destroys ozone in the ABL after being released as molecular bromine in regions of new sea-ice formation at the surface, the BC–O3 correlation suggests that BC particles were removed by a surface process such as dry deposition. We develop a box model to estimate the dry deposition flux of BC

  20. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    Science.gov (United States)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  1. Effects of wet deposition on the abundance and size distribution of black carbon in East Asia

    Science.gov (United States)

    Kondo, Y.; Moteki, N.; Oshima, N.; Ohata, S.; Koike, M.; Shibano, Y.; Takegawa, N.; Kita, K.

    2016-05-01

    An improved understanding of the variations in the mass concentration and size distribution of black carbon (BC) in the free troposphere (FT) over East Asia, where BC emissions are very high, is needed to reliably estimate the radiative forcing of BC in climate models. We measured these parameters and the carbon monoxide (CO) concentration by conducting the Aerosol Radiative Forcing in East Asia (A-FORCE) 2013W aircraft campaign in East Asia in winter 2013 and compared these data with measurements made in the same region in spring 2009. The median BC concentrations in the FT originating from North China (NC) and South China (SC) showed different seasonal variations, which were primarily caused by variations in meteorological conditions. CO concentrations above the background were much higher in SC than in NC in both seasons, suggesting a more active upward transport of CO. In SC, precipitation greatly increased from winter to spring, leading to an increased wet deposition of BC. As a result, the median BC concentration in the FT was highest in SC air in winter. This season and region were optimal for the effective transport of BC from the planetary boundary layer to the FT. The count median diameters of the BC size distributions generally decreased with altitude via wet removal during upward transport. The altitude dependence of the BC size distributions was similar in winter and spring, in accord with the similarity in the BC mixing state. The observed BC concentrations and microphysical properties will be useful for evaluating the performance of climate models.

  2. Grafting the surface of carbon nanotubes and carbon black with the chemical properties of hyperbranched polyamines

    Science.gov (United States)

    Morales-Lara, Francisco; Domingo-García, María; López-Garzón, Rafael; Luz Godino-Salido, María; Peñas-Sanjuán, Antonio; López-Garzón, F. Javier; Pérez-Mendoza, Manuel; Melguizo, Manuel

    2016-01-01

    Controlling the chemistry on the surface of new carbon materials is a key factor to widen the range of their applicability. In this paper we show a grafting methodology of polyalkylamines to the surface of carbon nanomaterials, in particular, carbon nanotubes and a carbon black. The aim of this work is to reach large degrees of covalent functionalization with hyperbranched polyethyleneimines (HBPEIs) and to efficiently preserve the strong chelating properties of the HBPEIs when they are fixed to the surface of these carbon materials. This functionalization opens new possibilities of using these carbon nanotubes-based hybrids. The results show that the HBPEIs are covalently attached to the carbon materials, forming hybrids. These hybrids emerge from the reaction of amine functions of the HBPEIs with carbonyls and carboxylic anhydrides of the carbon surface which become imine and imide bonds. Thus, due to the nature of these bonds, the pre-oxidized samples with relevant number of C=O groups showed an increase in the degree of functionalization with the HBPEIs. Furthermore, both the acid-base properties and the coordination capacity for metal ions of the hybrids are equivalent to that of the free HBPEIs in solution. This means that the chemical characteristics of the HBPEIs have been efficiently transferred to the hybrids. To reach this conclusion we have developed a novel procedure to assess the acid-base and the coordination properties of the hybrids (solids) by means of potentiometric titration. The good agreement of the values obtained for the hybrids and for the free HBPEIs in aqueous solution supports the reliability of the procedure. Moreover, the high capacity of the hybrids to capture Ni2+ by complexation opens new possibilities of using these hybrids to capture high-value metal ions such as Pd2+ and Pt2+.

  3. Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea, Gdynia).

    Science.gov (United States)

    Lewandowska, Anita; Falkowska, Lucyna; Murawiec, Dominika; Pryputniewicz, Dorota; Burska, Dorota; Bełdowska, Magdalena

    2010-09-15

    Studies on PM 10, total particulate matter (TSP), elemental carbon (EC) and organic carbon (OC) concentrations were carried out in the Polish coastal zone of the Baltic Sea, in urbanized Gdynia. The interaction between the land, the air and the sea was clearly observed. The highest concentrations of PM 10, TSP and both carbon fractions were noted in the air masses moving from southern and western Poland and Europe. The EC was generally of primary origin and its contribution to TSP and PM 10 mass was on average 2.3% and 3.7% respectively. Under low wind speed conditions local sources (traffic and industry) influenced increases in elemental carbon and PM 10 concentrations in Gdynia. Elemental carbon demonstrated a pronounced weekly cycle, yielding minimum values at the weekend and maximum values on Thursdays. The role of harbors and ship yards in creating high EC concentrations was clearly observed. Concentration of organic carbon was ten times higher than that of elemental carbon, and the average OC contribution to PM 10 mass was very high (31.6%). An inverse situation was observed when air masses were transported from over the Atlantic Ocean, the North Sea and the Baltic Sea. These clean air masses were characterized by the lowest concentrations of all analysed compounds. Obtained results for organic and elemental carbon fluxes showed that atmospheric aerosols can be treated, along with water run-off, as a carbon source for the coastal waters of the Baltic Sea. The enrichment of surface water was more effective in the case of organic carbon (0.27+/-0.19 mmol m(-2) d(-1)). Elemental carbon fluxes were one order of magnitude smaller, on average 0.03+/-0.04 mmol m(-2) d(-1). We suggest that in some situations atmospheric carbon input can explain up to 18% of total carbon fluxes into the Baltic coastal waters. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    , Ce1-xREExO2-δ (REE = Pr, Sm)) and metal oxides (LiMn2O4, Ag2O). Materials showing the highest activity in carbon black (Mn2O3, CeO2, Ce0.6Pr0.4O2-δ, Ag2O) were subsequently tested for catalytic activity toward bituminous coal, as revealed by both I-V-P curves and electrochemical impedance...... spectroscopy (EIS). Catalytic activity was evaluated as a function of various physical characteristics of doped ceria and manganese-based materials....

  5. Russia's black carbon emissions: focus on diesel sources

    Directory of Open Access Journals (Sweden)

    N. Kholod

    2016-09-01

    Full Text Available Black carbon (BC is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder. Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  6. The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa

    DEFF Research Database (Denmark)

    Oelofse, Myles; Birch-Thomsen, Torben; Magid, Jakob

    2016-01-01

    adverse environmental impacts in South Africa. Little is known about the effects of black wattle encroachment on soil carbon, therefore the aim of this study was to investigate the impact of black wattle encroachment of natural grassland on soil carbon stocks and dynamics. Focussing on two sites...... in the Eastern Cape, South Africa, the study analysed carbon stocks in soil and litter on a chronosequence of black wattle stands of varying ages (up to >50 years) and compared these with adjacent native grassland. The study found that woody encroachment of grassland at one site had an insignificant effect...... on soil and litter carbon stocks. The second site showed a clear decline in combined soil and litter carbon stocks following wattle encroachment. The lowest stock was in the oldest wattle stand, meaning that carbon stocks are still declining after 50 years of encroachment. The results from the two sites...

  7. Black carbon emissions from biomass and coal in rural China

    Science.gov (United States)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640 ± 245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42 ± 13%, 36 ± 15%, and 22 ± 10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households.

  8. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lijun; Lu Yonglai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Yiqing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China); Zhang Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China)

    2012-05-01

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  9. Daily personal exposure to black carbon: A pilot study

    Science.gov (United States)

    Williams, Ryan D.; Knibbs, Luke D.

    2016-05-01

    Continuous personal monitoring is the benchmark for air pollution exposure assessment. Black carbon (BC) is a strong marker of primary combustion like vehicle and biomass emissions. There have been few studies that quantified daily personal BC exposure and the contribution that different microenvironments make to it. In this pilot study, we used a portable aethalometer to measure BC concentrations in an individual's breathing zone at 30-s intervals while he performed his usual daily activities. We used a GPS and time-activity diary to track where he spent his time. We performed twenty 24-h measurements, and observed an arithmetic mean daily exposure concentration of 603 ng/m3. We estimated that changing commute modes from bus to train reduced the 24-h mean BC exposure concentration by 29%. Switching from open windows to closed windows and recirculated air in a car led to a reduction of 32%. Living in a home without a wood-fired heater caused a reduction of 50% compared with a wood-heated home. Our preliminary findings highlight the potential utility of simple approaches to reduce a person's daily BC exposure.

  10. Black carbon emissions from biomass and coal in rural China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640±245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42±13%, 36±15%, and 22±10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households

  11. Field Measurements of Black Carbon Yields from Gas Flaring.

    Science.gov (United States)

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  12. Black Carbon Inclusive Multichemical Modeling of PBDE and PCB Biomagnification and -Transformation in Estuarine Food Webs

    NARCIS (Netherlands)

    Paolo, C.; Gandhi, N.; Bhavsar, S.; Heuvel-Greve, van den M.J.; Koelmans, A.A.

    2010-01-01

    Bioavailability and bioaccumulation of polybrominated diphenylethers (PBDEs) are affected by adsorption on black carbon (BC) and metabolism in biota, respectively. Recent studies have addressed these two processes separately, illustrating their importance in assessing contaminant dynamics. In order

  13. Self-sensing piezoresistive cement composite loaded with carbon black particles

    KAUST Repository

    Monteiro, André O.; Cachim, Paulo B.; Da Costa, Pedro M. F. J.

    2017-01-01

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several

  14. Thermal conductivity and stability of nano size carbon black filled PDMS: Fuel cell perspective

    CSIR Research Space (South Africa)

    Chen, H

    2011-01-01

    Full Text Available Carbon black filled Polydimethylsiloxane (PDMS) was considered as a prospective bipolar plate material candidate for a Fuel Cell. In this perspective, thermal conductivity and stability of the composites were investigated. Samples with filler weight...

  15. Impact of Idealized Stratospheric Aerosol Injection on the Future Ocean and Land Carbon Cycles

    Science.gov (United States)

    Tjiputra, J.; Lauvset, S.

    2017-12-01

    Using a state-of-the-art Earth system model, we simulate stratospheric aerosol injection (SAI) on top of the Representative Concentration Pathways 8.5 future scenario. Our idealized method prescribes aerosol concentration, linearly increasing from 2020 to 2100, and thereafter remaining constant until 2200. In one of the scenarios, the model able to project future warming below 2 degree toward 2100, despite greatier warming persists in the high latitudes. When SAI is terminated in 2100, a rapid global warming of 0.35 K yr-1 (as compared to 0.05 K yr-1 under RCP8.5) is simulated in the subsequent 10 years, and the global mean temperature rapidly returns to levels close to the reference state. In contrast to earlier findings, we show a weak response in the terrestrial carbon sink during SAI implementation in the 21st century, which we attribute to nitrogen limitation. The SAI increases the land carbon uptake in the temperate forest-, grassland-, and shrub-dominated regions. The resultant lower temperatures lead to a reduction in the heterotrophic respiration rate and increase soil carbon retention. Changes in precipitation patterns are key drivers for variability in vegetation carbon. Upon SAI termination, the level of vegetation carbon storage returns to the reference case, whereas the soil carbon remains high. The ocean absorbs nearly 10% more carbon in the geoengineered simulation than in the reference simulation, leading to a ˜15 ppm lower atmospheric CO2 concentration in 2100. The largest enhancement in uptake occurs in the North Atlantic. In both hemispheres' polar regions, SAI delays the sea ice melting and, consequently, export production remains low. Despite inducing little impact on surface acidification, in the deep water of North Atlantic, SAI-induced circulation changes accelerate the ocean acidification rate and broaden the affected area. Since the deep ocean provides vital ecosystem function and services, e.g., fish stocks, this accelerated changes

  16. Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations

    Science.gov (United States)

    Garland, Charity; Delapena, Samantha; Prasad, Rajendra; L'Orange, Christian; Alexander, Donee; Johnson, Michael

    2017-11-01

    Black carbon (BC) emissions from household cookstoves consuming solid fuel produce approximately 25 percent of total anthropogenic BC emissions. The short atmospheric lifetime of BC means that reducing BC emissions would result in a faster climate response than mitigating CO2 and other long-lived greenhouse gases. This study presents the results of optical BC measurements of two new cookstove emissions field assessments and 17 archived cookstove datasets. BC was determined from attenuation of 880 nm light, which is strongly absorbed by BC, and linearly related between 1 and 125 attenuation units. A relationship was experimentally determined correlating BC mass deposition on quartz filters determined via thermal optical analysis (TOA) and on PTFE and quartz filters using transmissometry, yielding an attenuation cross-section (σATN) for both filter media types. σATN relates TOA measurements to optical measurements on PTFE and quartz (σATN(PTFE) = 13.7 cm-2 μg, R2 = 0.87, σATN(Quartz) = 15.6 cm-2 μg, R2 = 0.87). These filter-specific σATN, optical measurements of archived filters were used to determine BC emission factors and the fraction of particulate matter (PM) in the form of black carbon (BC/PM). The 19 stoves measured fell into five stove classes; simple wood, rocket, advanced biomass, simple charcoal, and advanced charcoal. Advanced biomass stoves include forced- and natural-draft gasifiers which use wood or biomass pellets as fuel. Of these classes, the simple wood and rocket stoves demonstrated the highest median BC emission factors, ranging from 0.051 to 0.14 g MJ-1. The lowest BC emission factors were seen in charcoal stoves, which corresponds to the generally low PM emission factors observed during charcoal combustion, ranging from 0.0084 to 0.014 g MJ-1. The advanced biomass stoves generally showed an improvement in BC emissions factors compared to simple wood and rocket stoves, ranging from 0.0031 to 0.071 g MJ-1. BC/PM ratios were highest for the

  17. Changes in Snow Albedo Resulting from Snow Darkening Caused by Black Carbon

    Science.gov (United States)

    Engels, J.; Kloster, S.; Bourgeois, Q.

    2014-12-01

    We investigate the potential impact of snow darkening caused by pre-industrial and present-day black carbon (BC) emissions on snow albedo and subsequently climate. To assess this impact, we implemented the effect of snow darkening caused by BC emitted from natural as well as anthropogenic sources into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM). Considerable amounts of BC are emitted e.g. from fires and are transported through the atmosphere for several days before being removed by rain or snow precipitation in snow covered regions. Already very small quantities of BC reduce the snow reflectance significantly, with consequences for snow melting and snow spatial coverage. We implemented the snow albedo reduction caused by BC contamination and snow aging in the one layer land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at MPI-M. For this we used the single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online (Flanner et al., 2007); http://snow.engin.umich.edu) model to derive snow albedo values for BC in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) for different snow grain sizes for the visible (0.3 - 0.7 μm) and near infrared range (0.7 - 1.5 μm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 μm). Here, a radius of 50 μm corresponds to new snow, whereas a radius of 1000 μm corresponds to old snow. The deposition rates of BC on snow are prescribed from previous ECHAM6-HAM simulations for two time periods, pre-industrial (1880-1889) and present-day (2000-2009), respectively. We perform a sensitivity study regarding the scavenging of BC by snow melt. To evaluate the newly implemented albedo scheme we will compare the modeled black carbon in snow concentrations to observed ones. Moreover, we will show the impact of the BC contamination and snow aging on the simulated snow albedo. The

  18. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    m, PM10=1.1 μg m-3; estimated coefficient of light scattering by particulate matter, σep, at 570 nm=12 Mm-1). (b) High aerosol concentration (PM2.5=43.9 μg m-3; PM10=83.4 μg m-3; estimated σep at 570 nm=245 Mm-1) (reproduced by permission of National Park Service, 2002). Although comprising only a small fraction of the mass of Earth's atmosphere, aerosol particles are highly important constituents of the atmosphere. Special interest has focused on aerosols in the troposphere, the lowest part of the atmosphere, extending from the land or ocean surface typically to ˜8 km at high latitudes, ˜12 km in mid-latitudes, and ˜16 km at low latitudes. That interest arises in large part because of the importance of aerosol particles in geophysical processes, human health impairment through inhalation, environmental effects through deposition, visibility degradation, and influences on atmospheric radiation and climate.Anthropogenic aerosols are thought to exert a substantial influence on Earth's climate, and the need to quantify this influence has sparked much of the current interest in and research on tropospheric aerosols. The principal mechanisms by which aerosols influence the Earth radiation budget are scattering and absorbing solar radiation (the so-called "direct effects") and modifying clouds and precipitation, thereby affecting both radiation and hydrology (the so-called "indirect effects"). Light scattering by aerosols increases the brightness of the planet, producing a cooling influence. Light-absorbing aerosols such as black carbon exert a warming influence. Aerosols increase the reflectivity of clouds, another cooling influence. These radiative influences are quantified as forcings, where a forcing is a perturbation to the energy balance of the atmosphere-Earth system, expressed in units of watts per square meter, W m-2. A warming influence is denoted a positive forcing, and a cooling influence, negative. The radiative direct and indirect forcings by

  19. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or

  20. Aging of Black Carbon during Atmospheric Transport: Understanding Results from the DOE's 2010 CARES and 2012 ClearfLo Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, R. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mazzoleni, Claudio [Michigan Technological Univ., Houghton, MI (United States)

    2016-08-31

    Over the course of this project, we have analyzed data and samples from the CARES and ClearfLo campaigns, as well as conducted or participated in laboratory experiments designed to better understand black carbon mixing state and climate-relevant properties. The laboratory campaigns took place at PNNL and CMU to study various climate-relevant aerosol properties of different sources of soot mixing with secondary organic aerosol precursors. The DMT photoacoustic extinctiometers (PAXs) procured by CMU through this grant were deployed for these experiments, as well as experiments characterizing the optical properties of cookstove soot emissions at Colorado State University (CSU). Results from some of these activities were summarized in the previous progress report. This final report presents the manuscripts that have been published (many in the period since the last progress report), lists presentations at different conferences based on grant-related activities, and presents some results that are likely to be submitted for publication in 2016.

  1. The Toxicological Mechanisms of Environmental Soot (Black Carbon and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Rituraj Niranjan

    2017-06-01

    Full Text Available The environmental soot and carbon blacks (CBs cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br− dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.

  2. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  3. Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau.

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Li, Chaoliu; Gao, Tanguang; Cong, Zhiyuan; Sprenger, Michael; Liu, Yajun; Li, Xiaofei; Guo, Junming; Sillanpää, Mika; Wang, Kun; Chen, Jizu; Li, Yang; Sun, Shiwei

    2017-12-31

    Black carbon (BC) emitted from the incomplete combustion of biomass and fossil fuel impacts the climate system, cryospheric change, and human health. This study documents black carbon deposition in snow from a benchmark glacier on the northern Tibetan Plateau. Significant seasonality of BC concentrations indicates different input or post-depositional processes. BC particles deposited in snow had a mass volume median diameter slightly larger than that of black carbon particles typically found in the atmosphere. Also, unlike black carbon particles in the atmosphere, the particles deposited in snow did not exhibit highly fractal morphology by Scanning Transmission Electron Microscope. Footprint analysis indicated BC deposited on the glacier in summer originated mainly from Central Asia; in winter, the depositing air masses generally originated from Central Asia and Pakistan. Anthropogenic emissions play an important role on black carbon deposition in glacial snow, especially in winter. The mass absorption efficiency of BC in snow at 632nm exhibited significantly seasonality, with higher values in summer and lower values in winter. The information on black carbon deposition in glacial snow provided in this study could be used to help mitigate the impacts of BC on glacier melting on the northern Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Advantage of SBR/carbon black masterbatch for tire tread application

    Energy Technology Data Exchange (ETDEWEB)

    Sone, K.; Ishiguro, M.; Akimoto, H.; Ishida, M.

    1992-04-01

    The performance required of tire tread is becoming more severe and more various year by year, as social demands on tires have been changing. To improve wear resistance, driving safety and good drive feeling, new HP tires (high performance passenger car tires) are developed intensively. In addition, good fuel efficiency is required to satisfy the CAFE rule, which was proposed for a better global environment. To support this movement of the tire industry, material suppliers are making an effort to supply better materials. Mitsubishi Kasei has been improving the quality and production process of WMB, a SBR/carbon black master-batch produced by co-coagulation of SBR latex, carbon black and extender oil under the wet dispersion process. Compared to the tire tread made from dry-mixing compounds, that made from the WMB shows the following characteristics: (1) the abrasion resistance and the durability are higher; (2) from the viscoelastic properties, skid performance and driving stability are expected to be improved. These characteristics are remarkable when WMB is compounded in the recipes for HP and racing tires using fine carbon black. In this article, these features of WMB are studied from the view point of carbon black dispersion and polymer-carbon black interaction. Furthermore, the changes of carbon black structure during abrasion and fatigue process are analyzed and the mechanisms of these processes are discussed.

  5. Preparation of carbon black masterbatch for PET using polymeric dispersing agents

    Energy Technology Data Exchange (ETDEWEB)

    Oh, D.H. [Kyungpook National University, Taegu (Korea, Republic of); Lim, J.C. [Pukyong National University, Pusan (Korea, Republic of); Seo, K.H. [Yeungnam College of Science and Technology, Taegu (Korea, Republic of)

    1999-03-01

    Three kinds of copolyesters, dispersing agents, were synthesized from the polycondensation reaction of dimethylterephthalate (DMT), dimethylisophthalate (DMI), sebacic acid (SA), and 1,4-butanediol (BD). Carbon black masterbatches were prepared by mixing carbon black into the dispersing agents (1 : 1.3 weight ratio) in a Brabender Plasticorder Using single screw extruder, masterbatches were compounded with poly(ethylene terephthalate) in 3 wt% concentration and mechanical properties of the compounds were investigated Gel permeation chromatography data implied that thermal degradation of polymeric dispersing agents was not significant through dispersion. Capillary rheometer test showed that PBTI has the highest viscosity and shear sensitivity among the there dispersing agents. Volume resistivities of masterbatch and transmission electron micrographs showed that dispersity of carbon black was improved with increasing melt viscosity of dispersing agent. The ultimate performance and mechanical characteristics of carbon black filled PET compounds depended directly on dispersion quality of the carbon black in masterbatch. Mechanical properties of compounds were improved with increasing dispersity of carbon black and with increasing content of rigid aromatic group in the copolyester dispersing agent. 30 refs., 9 figs., 5 tabs.

  6. Analyzing 20 years of Black Carbon measurements in Germany

    Science.gov (United States)

    Kutzner, R. D.; Quedenau, J.; Kuik, F.; von Schneidemesser, E.; Schmale, J.

    2016-12-01

    Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. In addition, BC, as a component of particulate matter (PM) exerts adverse health effects. Anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, and the dominant natural emission source is wildfires. Despite the adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union (EU). Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (PM with a diameter smaller 10 µm and 2.5 µm, respectively). Before the introduction of mandatory PM10 and PM2.5 monitoring in the EU in 2005 and 2015, respectively, `black smoke' (BS), a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 µg/m3 from 1995 and 8 µg/m³ from 1998. In 2004, many measurements were stopped, with the repeal of the regulations. In most German federal states a limited number BC monitoring stations continued to operate. We present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include, among others, urban background, traffic and rural. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 28 stations. Further, we calculated trends in BC concentrations for 13 stations with at least 10 years of data, for median concentrations, as well as 5th percentile (background) and 95th percentile (peak episodes). Preliminary results suggest that concentrations have generally declined, with a larger trend at traffic stations compared to urban

  7. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Zhao, Shuhui; Zheng, Mei; Mu, Chao; Du, Ke

    2016-03-15

    Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2011-09-01

    Full Text Available Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = −77 % unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52–64 % of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of −0.34 W m−2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of −0.23 W m−2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  9. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    OpenAIRE

    F. Inam; B. R. Bhat; N. Luhyna; T. Vo

    2014-01-01

    A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB) and epoxy – 0.2 vol% carbon nanotube (CNT) nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by...

  10. 20 years of Black Carbon measurements in Germany

    Science.gov (United States)

    Kutzner, Rebecca; Quedenau, Jörn; Kuik, Friderike; von Schneidemesser, Erika; Schmale, Julia

    2016-04-01

    Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. At the same time, BC, as a component of particulate matter (PM) exerts adverse health effects, like decreased lung function and exacerbated asthma. Globally, anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, while the dominant natural emission sources are wildfires. Despite the various adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union. Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (particulate matter with a diameter smaller 10 μm and 2.5 μm). Before the introduction of mandatory PM10 and PM2.5 monitoring in the European Union in 2005 and 2015, respectively, 'black smoke', a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 μg m-3 from 1995 and 8 μg m-3 from 1998 onwards. Many 'black smoke' measurements were stopped in 2004, with the repeal of the regulations obtaining at the time. However, in most German federal states a limited number BC monitoring stations continued to operate. Here we present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include locations classified as background, urban-background, industrial and traffic among other types. Raw data in many different formats has been modelled and integrated in a relational database, allowing various options for further data analysis. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 30 stations. In

  11. Impacts of black carbon and co-pollutant emissions from transportation sector in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Almanza, Victor; Garcia, Agustin; Jazcilevich, Aron; Lei, Wenfang; Molina, Luisa

    2016-04-01

    Black carbon is one of the most important short-lived climate-forcing agents, which is harmful to human health and also contributes significantly to climate change. Transportation is one of the largest sources of black carbon emissions in many megacities and urban complexes, with diesel vehicles leading the way. Both on-road and off-road vehicles can emit substantial amounts of harmful BC-containing particulate matter (PM) and are also responsible for large emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and many other co-emitted volatile organic compounds (VOCs). Regionally, black carbon emissions contributions from mobile sources may vary widely depending on the technical characteristics of the vehicle fleet, the quality and chemical properties of the fuels consumed, and the degree of local development and economic activities that foster wider and more frequent or intensive use of vehicles. This presentation will review and assess the emissions of black carbon from the on-road and off-road transportation sector in the Mexico City Metropolitan Area. Viable mitigation strategies, including innovative technological alternatives to reduce black carbon and co-pollutants in diesel vehicles and their impacts on climate, human health and ecosystems will be described.

  12. Aerosol formation of Sea-Urchin-like nanostructures of carbon nanotubes on bimetallic nanocomposite particles

    International Nuclear Information System (INIS)

    Kim, S. H.; Wang, C.; Zachariah, M. R.

    2011-01-01

    With the advantage of continuous production of pure carbon nanotubes (CNTs), a new simple aerosol process for the formation of CNTs was developed. A combination of conventional spray pyrolysis and thermal chemical vapor deposition enabled the formation unusual sea-urchin-like carbon nanostructures composed of multi-walled CNTs and metal composite nanoparticles. The CNTs formed were relatively untangled and uniform with a diameter of less than∼10 nm. The key to the formation of CNTs in this way was to create a substrate particle containing both a catalytic and non-catalytic component, which prevented coking. The density of the CNTs grown on the spherical metal nanoparticles could be controlled by perturbing the density of the metal catalysts (Fe) in the host non-catalytic metal particle matrix (Al). Mobility size measurement was identified as a useful technique to real-time characterization of either the catalytic formation of thin carbon layer or CNTs on the surface of the metal aerosol. These materials have shown unique properties in enhancing the thermal conductivity of fluids. Other potential advantages are that the as-produced material can be manipulated easily without the concern of high mobility of conventional nanowires, and then subsequently released at the desired time in an unagglomerated state.

  13. Effects of airborne black carbon pollution on maize

    Science.gov (United States)

    Illes, Bernadett; Anda, Angela; Soos, Gabor

    2013-04-01

    The black carbon (BC) changes the radiation balance of the Earth and contributes to global warming. The airborne BC deposited on the surface of plant, changing the radiation balance, water balance and the total dry matter (TDM) content of plant. The objective of our study was to investigate the impact of soot originated from motor vehicle exhaust on maize. The field experiment was carried out in Keszthely Agrometeorological Research Station (Hungary) in three consecutive years (2010, 2011, 2012) of growing season. The test plant was the maize hybrid Sperlona (FAO 340) with short growing season. The BC was chemically "pure", which means that it is free any contaminants (e.g. heavy metals). The BC was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where used that for improve the wear resistance of tires. We used a motorised sprayer of SP 415 type to spray the BC onto the leaf surface. The leaf area index (LAI) was measured each week on the same 12 sample maize in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). Albedo was measured by pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala), what we placed the middle of the plot of 0.3 ha. The effects of BC were studied under two different water supplies: evapotranspirometers of Thornthwaite type were used for "ad libitum" treatment and rainfed treatment in field plots. In 2010 and 2012, a big difference was not observed in the case of LAI in the effects of BC. However, in 2011 there was a significant difference. The LAI of the BC polluted maize was higher (10-15%, P<0.05), than the LAI of the control maize in the rainfed plot and in the ET chambers, respectively. The albedo of the BC contaminated maize decreased (15-30%, P<0.05) in all three years. We also detected that the green plant surface of maize increased on BC contaminated treatment. These results may suggest that the plant is able to absorb the additional carbon source through the leaves. The albedo decreased

  14. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Science.gov (United States)

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC

  15. Enhanced solar energy absorption by internally-mixed black carbon in snow grains

    Directory of Open Access Journals (Sweden)

    M. G. Flanner

    2012-05-01

    Full Text Available Here we explore light absorption by snowpack containing black carbon (BC particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0.05–109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA (Chýlek and Srivastava, 1983 is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8–2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only ~2% of the atmospheric BC burden is cloud-borne, 71–83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32–73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43–86%, relative to scenarios that apply external optical properties to all BC. We

  16. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    Energy Technology Data Exchange (ETDEWEB)

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng; Penner, Joyce E.; Jiao, C.

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism

  17. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  18. Black (pyrogenic carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions

    Directory of Open Access Journals (Sweden)

    C. M. Preston

    2006-01-01

    Full Text Available The carbon (C cycle in boreal regions is strongly influenced by fire, which converts biomass and detrital C mainly to gaseous forms (CO2 and smaller proportions of CO and CH4, and some 1–3% of mass to pyrogenic C (PyC. PyC is mainly produced as solid charred residues, including visually-defined charcoal, and a black carbon (BC fraction chemically defined by its resistance to laboratory oxidation, plus much lower proportions of volatile soot and polycyclic aromatic hydrocarbons (PAHs. All PyC is characterized by fused aromatic rings, but varying in cluster sizes, and presence of other elements (N, O and functional groups. The range of PyC structures is often described as a continuum from partially charred plant materials, to charcoal, soot and ultimately graphite which is formed by the combination of heat and pressure. There are several reasons for current interest in defining more precisely the role of PyC in the C cycle of boreal regions. First, PyC is largely resistant to decomposition, and therefore contributes to very stable C pools in soils and sediments. Second, it influences soil processes, mainly through its sorption properties and cation exchange capacity, and third, soot aerosols absorb solar radiation and may contribute to global warming. However, there are large gaps in the basic information needed to address these topics. While charcoal is commonly defined by visual criteria, analytical methods for BC are mainly based on various measures of oxidation resistance, or on yield of benzenepolycarboxylic acids. These methods are still being developed, and capture different fractions of the PyC structural continuum. There are few quantitative reports of PyC production and stocks in boreal forests (essentially none for boreal peatlands, and results are difficult to compare due to varying experimental goals and methods, as well as inconsistent terminology. There are almost no direct field measurements of BC aerosol production from boreal

  19. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

    Directory of Open Access Journals (Sweden)

    T. C. Bond

    2011-02-01

    Full Text Available Climatic effects of short-lived climate forcers (SLCFs differ from those of long-lived greenhouse gases, because they occur rapidly after emission and because they depend upon the region of emission. The distinctive temporal and spatial nature of these impacts is not captured by measures that rely on global averages or long time integrations. Here, we propose a simple measure, the Specific Forcing Pulse (SFP, to quantify climate warming or cooling by these pollutants, where we define "immediate" as occurring primarily within the first year after emission. SFP is the amount of energy added to or removed from a receptor region in the Earth-atmosphere system by a chemical species, per mass of emission in a source region. We limit the application of SFP to species that remain in the atmosphere for less than one year. Metrics used in policy discussions, such as total forcing or global warming potential, are easily derived from SFP. However, SFP conveys purely physical information without incurring the policy implications of choosing a time horizon for the global warming potential.

    Using one model (Community Atmosphere Model, or CAM, we calculate values of SFP for black carbon (BC and organic matter (OM emitted from 23 source-region combinations. Global SFP for both atmosphere and cryosphere impacts is divided among receptor latitudes. SFP is usually greater for open-burning emissions than for energy-related (fossil-fuel and biofuel emissions because of the timing of emission. Global SFP for BC varies by about 45% for energy-related emissions from different regions. This variation would be larger except for compensating effects. When emitted aerosol has larger cryosphere forcing, it often has lower atmosphere forcing because of less deep convection and a shorter atmospheric lifetime.

    A single model result is insufficient to capture uncertainty. We develop a best estimate and uncertainties for SFP by combining forcing results from

  20. Air pollution studies in terms of PM2.5, PM2.5-10, PM10, lead and black carbon in urban areas of Antananarivo-Madagascar

    International Nuclear Information System (INIS)

    Rasoazanany, E. O.; Andriamahenina, N. N.; Ravoson, H. N.; Raoelina Andriambololona; Randriamanivo, L. V.; Ramaherison, H.; Ahmed, H.; Harinoely, M.

    2011-01-01

    Atmospheric aerosols or particulate matters are chemically complex and dynamic mixtures of solid and liquid particles. Sources of particulate matters include both natural and anthropogenic processes. The present work consists in determining the concentrations of existing elements in the aerosols collected in Andravoahangy and in Ambodin Isotry in Antananarivo city (Madagascar). The size distribution of these elements and their main sources are also studied.The Total Reflection X-Ray Fluorescence spectrometer is used for the qualitative and quantitative analyses. The results show that the concentrations of the airborne particulate matters PM 2.5-10 are higher than those of PM 2.5 .The identified elements in the aerosol samples are Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The calculation of the enrichment factors by Mason's model shows that Cr, Ni, Cu, Zn, Br and Pb are of anthropogenic origins. The average concentrations of lead (2.8 ng.m -3 , 31.3 ng.m -3 and 19.6 ng.m -3 respectively in aerosols collected in Andravoahangy in 2007 and in 2008 and in Ambodin Isotry in 2008) are largely lower than the average concentration of 1.8 μg.m -3 obtained in 2000 in the Antananarivo urban areas. The concentration of black carbon is higher in the fine particles. The Air Quality Index category is variable in the two sites.

  1. In Situ Observations of Snow Metamorphosis Acceleration Induced by Dust and Black Carbon

    Science.gov (United States)

    Schneider, A. M.; Flanner, M.

    2017-12-01

    Previous studies demonstrate the dependence of shortwave infrared (SWIR) reflectance on snow specific surface area (SSA) and others examine the direct darkening effect dust and black carbon (BC) deposition has on snow and ice-covered surfaces. The extent to which these light absorbing aerosols (LAAs) accelerate snow metamorphosis, however, is challenging to assess in situ as measurement techniques easily disturb snowpack. Here, we use two Near-Infrared Emitting Reflectance Domes (NERDs) to measure 1300 and 1550nm bidirectional reflectance factors (BRFs) of natural snow and experimental plots with added dust and BC. We obtain NERD measurements and subsequently collect and transport snow samples to the nearby U.S. Army Corps of Engineers' Cold Regions Research and Engineering Lab for micro computed tomography (micro-CT) analysis. Snow 1300 (1550) nm BRFs evolve from 0.6 (0.15) in fresh snow to 0.2 (0.03) after metamorphosis. Hourly-scale time evolving snow surface BRFs and SSA estimates from micro-CT reveal more rapid SWIR darkening and snow metamorphosis in contaminated versus natural plots. Cloudiness and high wind speeds can completely obscure these results if LAAs mobilize before absorbing enough radiant energy. These findings verify experimentally that dust and BC deposition can accelerate snow metamorphosis and enhance snow albedo feedback in sunny, calm weather conditions. Although quantifying the enhancement of snow albedo feedback induced by LAAs requires further surface temperature, solar irradiance, and impurity concentration measurements, this study provides experimental verification of positive feedback occurring where dust and BC accelerate snow metamorphosis.

  2. Seasonal Progression of the Deposition of Black Carbon by Snowfall at Ny-Ålesund, Spitsbergen

    Science.gov (United States)

    Sinha, P. R.; Kondo, Y.; Goto-Azuma, K.; Tsukagawa, Y.; Fukuda, K.; Koike, M.; Ohata, S.; Moteki, N.; Mori, T.; Oshima, N.; Førland, E. J.; Irwin, M.; Gallet, J.-C.; Pedersen, C. A.

    2018-01-01

    Deposition of black carbon (BC) aerosol in the Arctic lowers snow albedo, thus contributing to warming in the region. However, the processes and impacts associated with BC deposition are poorly understood because of the scarcity and uncertainties of measurements of BC in snow with adequate spatiotemporal resolution. We sampled snowpack at two sites (11 m and 300 m above sea level) at Ny-Ålesund, Spitsbergen, in April 2013. We also collected falling snow near the surface with a windsock from September 2012 to April 2013. The size distribution of BC in snowpack and falling snow was measured using a single-particle soot photometer combined with a characterized nebulizer. The BC size distributions did not show significant variations with depth in the snowpack, suggesting stable size distributions in falling snow. The BC number and mass concentrations (CNBC and CMBC) at the two sites agreed to within 19% and 10%, respectively, despite the sites' different snow water equivalent (SWE) loadings. This indicates the small influence of the amount of SWE (or precipitation) on these quantities. Average CNBC and CMBC in snowpack and falling snow at nearly the same locations agreed to within 5% and 16%, after small corrections for artifacts associated with the sampling of the falling snow. This comparison shows that the dry deposition was a small contributor to the total BC deposition. CMBC were highest (2.4 ± 3.0 μg L-1) in December-February and lowest (1.2 ± 1.2 μg L-1) in September-November.

  3. Dynamac molecular structure of plant biomass-derived black carbon (Biochar)

    Science.gov (United States)

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration (“biochar”). Here we present a molecular-level assessment o...

  4. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    NARCIS (Netherlands)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to

  5. Black carbon physical properties and mixing state in the European megacity Paris

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2013-06-01

    Full Text Available Aerosol hygroscopicity and refractory black carbon (rBC properties were characterised during wintertime at a suburban site in Paris, one of the biggest European cities. Hygroscopic growth factor (GF frequency distributions, characterised by distinct modes of more-hygroscopic background aerosol and non- or slightly hygroscopic aerosol of local (or regional origin, revealed an increase of the relative contribution of the local sources compared to the background aerosol with decreasing particle size. BC-containing particles in Paris were mainly originating from fresh traffic emissions, whereas biomass burning only gave a minor contribution. The mass size distribution of the rBC cores peaked on average at an rBC core mass equivalent diameter of DMEV ~ 150 nm. The BC-containing particles were moderately coated (coating thickness Δcoat ~ 33 nm on average for rBC cores with DMEV = 180–280 nm and an average mass absorption coefficient (MAC of ~ 8.6 m2 g−1 at the wavelength λ = 880 nm was observed. Different time periods were selected to investigate the properties of BC-containing particles as a function of source and air mass type. The traffic emissions were found to be non-hygroscopic (GF ≈ 1.0, and essentially all particles with a dry mobility diameter (D0 larger than D0 = 110 nm contained an rBC core. rBC from traffic emissions was further observed to be uncoated within experimental uncertainty (Δcoat ~ 2 nm ± 10 nm, to have the smallest BC core sizes (maximum of the rBC core mass size distribution at DMEV ~ 100 nm and to have the smallest MAC (~ 7.3 m2g−1 at λ = 880 nm. The biomass burning aerosol was slightly more hygroscopic than the traffic emissions (with a distinct slightly-hygroscopic mode peaking at GF ≈ 1.1–1.2. Furthermore, only a minor fraction (≤ 10% of the slightly-hygroscopic particles with 1.1 ≤ GF ≤ 1.2 (and D0 = 265 nm contained a detectable rBC core. The BC-containing particles from biomass burning were

  6. Low-temperature atmospheric oxidation of mixtures of titanium and carbon black or brown

    International Nuclear Information System (INIS)

    Elizarova, V.A.; Babaitsev, I.V.; Barzykin, V.V.; Gerusova, V.P.; Rozenband, V.I.

    1984-01-01

    This article reports on the thermogravimetric investigation of mixtures of titanium no. 2 and carbon black with various mass carbon contents. Adding carbon black (as opposed to boron) to titanium leads to an increase in the rate of heat release of the oxidation reaction. An attempt is made to clarify the low-temperature oxidation mechanism of titanium mixtures in air. An x-ray phase and chemical (for bound carbon) analysis of specimens of a stoichiometric Ti + C mixture after heating in air to a temperature of 650 0 C at the rate of 10 0 /min was conducted. The results indicate that the oxidation of the titanium-carbon mixture probably proceeds according to a more complex mechanism associated with the transport of the gaseous carbon oxidation products and their participation in the titanium oxidation

  7. Combustion characteristics of water-insoluble elemental and organic carbon in size selected ambient aerosol particles

    Directory of Open Access Journals (Sweden)

    K. Wittmaack

    2005-01-01

    Full Text Available Combustion of elemental carbon (EC and organic carbon (OC contained in ambient aerosol matter was explored using scanning electron microscopy (SEM in combination with energy dispersive X-ray analysis (EDX. To ease identification of the particles of interest and to avoid or at least reduce interaction with simultaneously sampled inorganic oxides and salts, the approach used in this work differed in two ways from commonly applied procedures. First, rather than using a mixture of particles of vastly different sizes, as in PM10 or PM2.5, aerosol matter was collected in a 5-stage impactor. Second, the water soluble fraction of the collected matter was removed prior to analysis. Diesel soot particles, which appeared in the well-known form of chain-type aggregates, constituted the major fraction of EC. In contrast, OC containing particles were observed in a variety of shapes, including a sizable amount of bioaerosol matter appearing mostly in the size range above about 1 µm. During heating in ambient air for 1h, diesel soot particles were found to be stable up to 470°C, but complete combustion occurred in a narrow temperature interval between about 480 and 510°C. After diesel soot combustion, minute quantities of 'ash' were observed in the form of aggregated tiny particles with sizes less than 10 nm. These particles could be due to elemental or oxidic contaminants of diesel soot. Combustion of OC was observed over a wide range of temperatures, from well below 200°C to at least 500°C. Incompletely burnt bioaerosol matter was still found after heating to 600°C. The results imply that the EC fraction in aerosol matter can be overestimated significantly if the contribution of OC to a thermogram is not well separated.

  8. Bacterial-viral interactions in the sea surface microlayer of a black carbon-dominated tropical coastal ecosystem (Halong Bay, Vietnam

    Directory of Open Access Journals (Sweden)

    A. S. Pradeep Ram

    2018-02-01

    Full Text Available Increasing human activity has raised concerns about the impact of deposition of anthropogenic combustion aerosols (i.e., black carbon; BC on marine processes. The sea surface microlayer (SML is a key gate for the introduction of atmospheric BC into the ocean; however, relatively little is known of the effects of BC on bacteria-virus interactions, which can strongly influence microbially mediated processes. To study the impact of BC on bacteria-virus interactions, field investigations involving collection from the SML and underlying water were carried out in Halong Bay (Vietnam. Most inorganic nutrient concentrations, as well as dissolved organic carbon, were modestly but significantly higher ('p' = 0.02–0.05 in the SML than in underlying water. The concentrations of particulate organic carbon (though not chlorophyll 'a' and of total particulate carbon, which was composed largely of particulate BC (mean = 1.7 ± 6.4 mmol L–1, were highly enriched in the SML, and showed high variability among stations. On average, microbial abundances (both bacteria and viruses and bacterial production were 2- and 5fold higher, respectively, in the SML than in underlying water. Significantly lower bacterial production ('p' 3 μm compared to the bulk sample, but our data overall suggest that bacterial production in the SML was stimulated by particulate BC. Higher bacterial production in the SML than in underlying water supported high viral lytic infection rates (from 5.3 to 30.1% which predominated over percent lysogeny (from undetected to 1.4%. The sorption of dissolved organic carbon by black carbon, accompanied by the high lytic infection rate in the black carbon-enriched SML, may modify microbially mediated processes and shift the net ecosystem metabolism (ratio of production and respiration to net heterotrophy and CO2 production in this critical layer between ocean and atmosphere.

  9. Equivalent Black Carbon measurements and spectral analysis of absorption coefficient during a biomass burning episode in the city of Bogotá, Colombia.

    Science.gov (United States)

    Quirama, M.; Morales, R.

    2016-12-01

    Light-absorbing carbonaceous aerosol is recognized as a significant short lived climate pollutant that can contribute to direct and indirect radiative forcing. In urban environments, black carbon is an important contributor to the deterioration of local air quality. In this study, we report measurements of equivalent Black Carbon performed during the months of January, February, and March 2016 in the city of Bogotá, Colombia. During this period, a persistent condition of atmospheric stability lead to high concentrations of particulate matter throughout the city. During the month of February, the city was further impacted by a series of small-scale forest fires that took place on hills neighboring the city center. Equivalent Black Carbon (eBC) concentrations were monitored before, during, and after a mayor forest fire episode with a 7-wavelength Aethalometer. The monitoring instruments were located at a traffic impacted site, 18.3 km from the forest fire. To evaluate the contribution of biomass burning to the light-absorbing aerosol particle concentration, spectral analysis of the absorption coefficient of the sampled aerosol particles was performed. When the biomass burning plume directly impacted the monitoring station during the night of February 4, eBC concentrations of up to 40 µg/m3 were observed at nighttime. This concentration was significantly higher than average nighttime concentrations of eBC, observed to be 4 µg/m3 at the site. However, during the period most intensely affected by the biomass burning plume, the angstrom exponent computed between the 450nm and the 970 nm channel, was found to be close to 1. Angstrom exponent close to 1 is an indication that the contribution from traffic generated black carbon is dominant compared to the contribution of biomass burning. The data set collected during this period suggests that despite the significant contribution of the fresh biomass burning plume to the particulate matter concentration in the city, the

  10. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  11. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  12. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    Science.gov (United States)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  13. Linking remotely sensed aerosol types to their chemical composition

    Science.gov (United States)

    Dawson, K. W.; Kacenelenbogen, M. S.; Johnson, M. S.; Burton, S. P.; Hostetler, C. A.; Meskhidze, N.

    2016-12-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% ± 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into `dark' and `light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold

  14. Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles

    Science.gov (United States)

    Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

    2013-04-01

    On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 μg/m3-12.6 μg/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 μg/m3 to 9.3 μg/m3 and 3.1 μg/m3 to 6.4 μg /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these

  15. Estimation of Black Carbon Emissions from Dry Dipterocarp Forest Fires in Thailand

    Directory of Open Access Journals (Sweden)

    Ubonwan Chaiyo

    2014-12-01

    Full Text Available This study focused on the estimation of black carbon emissions from dry dipterocarp forest fires in Thailand. Field experiments were set up at the natural forest, Mae Nam Phachi wildlife sanctuary, Ratchaburi Province, Thailand. The dead leaves were the main component consumed of the surface biomass with coverage higher than 90% in volume and mass. The dead leaves load was 342 ± 190 g∙m−2 and followed by a little mass load of twig, 100 g∙m−2. The chemical analysis of the dead leaves showed that the carbon content in the experimental biomass fuel was 45.81 ± 0.04%. From the field experiments, it was found that 88.38 ± 2.02% of the carbon input was converted to carbon released to the atmosphere, while less than 10% were left in the form of residues, and returned to soil. The quantity of dead leaves consumed to produce each gram of carbon released was 2.40 ± 0.02 gdry biomass burned. From the study, the emissions factor of carbon dioxide, carbon monoxide, particulate matter (PM2.5 and black carbon amounted 1329, 90, 26.19 and 2.83 g∙kg−1dry biomass burned, respectively. In Thailand, the amount of black carbon emissions from dry dipterocarp forest fires amounted 17.43 tonnes∙y−1.

  16. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  17. Evaluation of preindustrial to present-day black carbon and its albedo forcing from ACCMIP

    Science.gov (United States)

    LEE, Y.; Lamarque, J.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Berntsen, T.; Bisiaux, M. M.; Cao, J.; Collins, B.; Curran, M. A.; Edwards, R.; Faluvegi, G.; Ghan, S. J.; Horowitz, L. W.; McConnell, J. R.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Thevenon, F.

    2012-12-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluated the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Jungfraujoch and Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to capture both the observed temporal trends and the magnitudes well at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores and the overall temporal trends in the Alps ice core. The

  18. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2018-02-01

    Urban soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion and regard to be a pool of BC. BC in urban soils has multiple effects on environmental processes in urban system, such as global climate change, air quality, and public health. Urban topsoil samples (0-10 cm) were collected from Anshan, Liaoning Province, northeast China, which is one of the most important old steel industrial bases in China. The BC in urban topsoils was extracted using the density method. Their chemical composition, morphology, molecular structure, and stable carbon isotopic composition were examined using elemental analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and stable carbon isotope (δ 13 C). Elemental analysis shows that carbon content in the BC of studied soils ranged from 64.5 to 78.4%, with the average more than 70%. The O/C atomic ratio of BC is on average 0.18. The BC particle displays different morphology, including porous spherical, irregular porous fragmentary, and blocky shapes. The porous spherical BC particles has atomic molar O/C ratio determined by SEM-EDS ranging from 0.04 to 0.37. XRD indicates that BC exists in mainly combining with mineral phases hematite (Fe 2 O 3 ), kaolinite (Al 2 Si 2 O 5 (OH) 4 ), quartz (SiO 2 ), and calcite (CaCO 3 ). The FTIR spectra of BC particles show major bands at approximately 3400 cm -1 (O-H), 2920 cm -1 (C = H), 1600 cm -1 (C = C), 1230 cm -1 (C = O), and 1070 cm -1 (C = O). The stable carbon isotope (δ 13 C) of BC ranges from -24.48 to -23.18‰ with the average of -23.79 ± 0.39‰. The concentration of BC in the industrial area is significantly (p fuel combustion. Results indicated that a combination of atomic O/C ratio, porous structure, and stable carbon isotopic (δ 13 C) of BC could reflect effectively the origin of BC

  19. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers

    Science.gov (United States)

    Harea, Evghenii; Stoček, Radek; Storozhuk, Liudmyla; Sementsov, Yurii; Kartel, Nikolai

    2018-04-01

    Dry friction and wear properties of natural rubber (NR), containing multi-walled carbon nanotubes (MWCNT) and carbon black (CB), were investigated. Natural rubber (NR)-based composites containing all common additives and curatives, and a fixed amount (30 phr—parts per 100 rubber by weight) of hybrid fillers (MWCNT x + CB30-x ) were prepared by simple mixing procedure and tested. The main goal was to study the behaviours of composites at different tribological testing conditions, such as friction speed and normal load. It was found that with an increase of concentration of MWCNT from x = 0 phr to x = 5 phr in studied composites, there was a decrease in the coefficient of friction (COF) with no significant change in wear in the framework of each used combination of testing parameters. Generally, higher friction speed at certain normal force led to the increase of COF of all the samples and wear reflected deliberate value fluctuation. Also, it was established that considerable growth of wear and unexpected reducing of friction coefficient ensued from increasing of applied load for every fixed sliding speed.

  20. Interplay between black carbon and minerals contributes to long term carbon stabilization and mineral transformation

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.

    2017-12-01

    Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.

  1. Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Robert

    2016-04-01

    The purpose of this study was to measure the organic carbon (OC) and elemental carbon (EC) fractions of PM2.5 particulate matter at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) sampling site for a 6-month period during the summer of 2013. The site is in a rural location remote from any populated areas, so it would be expected to reflect carbon concentration over long-distance transport patterns. During the same period in 2012, a number of prairie fires in Oklahoma and Texas had produced large plumes of smoke particles, but OC and EC particles had not been quantified. In addition, during the summer months, other wild fires, such as forest fires in the Rocky Mountain states and other areas, can produce carbon aerosols that are transported over long distances. Both of these source types would be expected to contain mixtures of both OC and EC.

  2. Black carbon and polycyclic aromatic hydrocarbon emissions from vehicles in the United States-Mexico border region: pilot study.

    Science.gov (United States)

    Kelly, Kerry; Wagner, David; Lighty, JoAnn; Quintero Núñez, Margarito; Vazquez, F Adrian; Collins, Kimberly; Barud-Zubillaga, Alberto

    2006-03-01

    The investigators developed a system to measure black carbon (BC) and particle-bound polycyclic aromatic hydrocarbon (PAH) emission factors during roadside sampling in four cities along the United States-Mexico border, Calexico/Mexicali and El Paso/Juarez. The measurement system included a photoacoustic analyzer for BC, a photoelectric aerosol sensor for particle-bound PAHs, and a carbon dioxide (CO2) analyzer. When a vehicle with measurable emissions passed the system probe, corresponding BC, PAH, and CO2 peaks were evident, and a fuel-based emission factor was estimated. A picture of each vehicle was also recorded with a digital camera. The advantage of this system, compared with other roadside methods, is the direct measurement of particulate matter components and limited interference from roadside dust. The study revealed some interesting trends: Mexican buses and all medium-duty trucks were more frequently identified as high emitters of BC and PAH than heavy-duty trucks or passenger vehicles. In addition, because of the high daily mileage of buses, they are good candidates for additional study. Mexican trucks and buses had higher average emission factors compared with U.S. trucks and buses, but the differences were not statistically significant. Few passenger vehicles had measurable BC and PAH emissions, although the highest emission factor came from an older model passenger vehicle licensed in Baja California.

  3. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    Science.gov (United States)

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Wildland fire emissions, carbon, and climate: Emission factors

    Science.gov (United States)

    Shawn Urbanski

    2014-01-01

    While the vast majority of carbon emitted by wildland fires is released as CO2, CO, and CH4, wildland fire smoke is nonetheless a rich and complex mixture of gases and aerosols. Primary emissions include significant amounts of CH4 and aerosol (organic aerosol and black carbon), which are short-lived climate forcers. In addition to CO2 and short-lived climate forcers,...

  5. Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties

    International Nuclear Information System (INIS)

    Abdul Khalil, H.P.S.; Firoozian, P.; Bakare, I.O.; Akil, Hazizan Md.; Noor, Ahmad Md.

    2010-01-01

    Carbon blacks (CB), derived from bamboo stem (BS-CB), coconut shells (CNS-CB) and oil palm empty fiber bunch (EFB-CB), were obtained by pyrolysis of fibers at 700 o C, characterized and used as filler in epoxy composites. The results obtained showed that the prepared carbon black possessed well-developed porosities and are predominantly made up of micropores. The BS-CB, CNS-CB and EFB-CB filled composites were prepared and characterized using scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). The SEM showed that the fractured surface of the composite indicates its high resistance to fracture. The CBs-epoxy composites exhibited better flexural properties than the neat epoxy, which was attributed to better adhesion between the CBs and the epoxy resin. TGA showed that there was improvement in thermal stability of the carbon black filled composites compared to the neat epoxy resin.

  6. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®.

    Science.gov (United States)

    Cinti, Stefano; Mazzaracchio, Vincenzo; Cacciotti, Ilaria; Moscone, Danila; Arduini, Fabiana

    2017-10-03

    Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M ® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  7. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2017-10-01

    Full Text Available Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  8. Sonoelectrochemical one-pot synthesis of Pt - Carbon black nanocomposite PEMFC electrocatalyst.

    Science.gov (United States)

    Karousos, Dionysios S; Desdenakis, Kostantinos I; Sakkas, Petros M; Sourkouni, Georgia; Pollet, Bruno G; Argirusis, Christos

    2017-03-01

    Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effect of part replacement of silica sand with carbon black on composite properties

    International Nuclear Information System (INIS)

    Adeosun, B.F.; Olaofe, O.

    2003-01-01

    We have reported the properties of natural rubber filled with locally available materials (Adu et al 2000). The effect of local clay, limestone, silica sand and charcoal on the properties of natural rubber has been examined. Results have shown detrimental effects of silica sand on the properties of natural rubber compound. It has been reported that when silica is used as a part for part replacement of carbon black, the heat build up the composite decreased whilst tear resistance improved. Results revealed that within the filler content range used in the present work, the hardness, modulus, and tensile strength of composites loaded with silica sand/carbon black showed enhanced magnitude over the composite loaded singly with silica sand. These parameters generally increased with increasing carbon black content in the composite. New area of use requiring moderate level of tensile strength, hardness and modulus (as in soles of shoes and engine mounts) is therefore opened up for silica sand.(author)

  10. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Lopez, S; Vigueras-Santiago, E [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA) Facultad de Quimica, Paseo Colon Esquina con Paseo Tollocan, s/n, CP 50000, Toluca (Mexico); Mayorga-Rojas, M; Reyes-Contreras, D, E-mail: eviguerass@uaemex.m [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. Av. Instituto Literario 100 Ote. C. P. 50000, Toluca (Mexico)

    2009-05-01

    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30{mu}m, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T{sub g} of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T{sub g}, producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 mu m thickness sample the hysteresis loop was lost after four cycles.

  11. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Vigueras-Santiago, E; Hernandez-Lopez, S; Camacho-Lopez, M A; Lara-Sanjuan, O, E-mail: eviguerass@uaemex.m [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, UAEM. Paseo Colon esq. con Paseo Tollocan, s/n. C.P. 50000, Toluca (Mexico)

    2009-05-01

    High density polyethylene + carbon black composites with electrical anisotropy was studied. Electrical anisotropy was induced by uniaxial mechanical deformation and injection moulding. We show that anisotropy depends on the carbon black concentration and percentage deformation. Resistivity had the highest anisotropy resistivity around the percolation threshold. Perpendicular resistivity showed two magnitude orders higher than parallel resistivity for injected samples, whereas resistivity showed an inverse behaviour for 100% tensile samples. Both directions were set respect to the deformation axe. Anisotropy could be explained in terms of the molecular deformation (alignment) of the polymer chains as a response of the deformation process originating a redistribution of the carbon black particles in both directions. Alignment of the polymer chains was evidenced by polarized Raman spectroscopy.

  12. Study of black carbon levels in city centers and industrial centers in Jordan

    International Nuclear Information System (INIS)

    Hamasha, K.M.; Almomani, M.S.; Abu-Allaban, M.; Arnott, W. P.

    2010-01-01

    Light absorption coefficients of black carbon (B abc ) were measured at serveral urban and industrial locations in Jordan during summer of 2007 and winter of 2008 using the photoacoustic instrument at a wavelength of 870 nm. Black carbon mass concentration (BC) was calculated using B abc .Black carbon levels at urban locations in the summer of 2007 were higher than those obtained at industrial centers.Zarqa had the highest value of BC in summer (29.24μg/m 3 ) and in winter (13.27μg/m 3 ). Ibbeen and Irbid city center had relatively high values of BC in winter: 11.75μg/m 3 and 12.48μg/m 3 , respectively. (authors).

  13. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand

    Science.gov (United States)

    Ziegler, A. D.; Velasco, E.; Ho, K. J.

    2013-12-01

    Khlong (canal) boats are a unique mass transport alternative in the congested city of Bangkok. Canals and rivers provide exclusive transit-ways for reducing the commuting time of thousands of city residents daily. However, as a consequence of the service characteristics and boats design and state of repair, they can represent a potential public health risk and an important source of black carbon and greenhouse gases. This work quantifies commuter exposure to black carbon, CO and noise when waiting for and travelling in these diesel fueled boats. Exposure to toxic pollutants and acute noise is similar or worse than for other transportation modes. Mean black carbon concentrations observed at one busy pier and along the main canal were much higher than ambient concentrations at sites impacted by vehicular traffic. Concentrations of CO were similar to those reported for roadside areas of Bangkok. The equivalent continuous sound levels registered at the landing pier were similar to those reported for roadsides, but values recorded inside the boats were significantly higher. We believe that the boat service is a viable alternative mode of mass transport, but public safety could be improved to provide a high quality service, comparable to modern rail systems or emerging bus rapid transit systems. These investments would also contribute to reduce the emission of black carbon and other greenhouse and toxic pollutants.

  14. Carbon distribution in char residue from gasification of kraft black liquor

    International Nuclear Information System (INIS)

    Sricharoenchaikul, Viboon; Frederick, W.J.; Agrawal, Pradeep

    2003-01-01

    The char residue yields and the total carbon and carbonate content were measured for dry black liquor solids after pyrolysis or gasification in a laminar entrained-flow reactor. The experimental conditions were 700-1000 deg. C in N 2 ,CO 2 /N 2 or water vapor/N 2 at 1 bar total pressure, for residence times from 0.3 to 1.7 s. Fixed carbon yields, when measured at the same particle residence time, decreased with increasing reactor temperature. CO 2 and water vapor diminished the char carbon significantly at temperatures above 800 deg. C, compared with pyrolysis in N 2 . Water vapor oxidized the char carbon more rapidly than did CO 2 . At 1000 deg. C, the reactions of carbon with sulfate and carbonate became faster, resulting in a smaller difference between carbon conversion rates in the different gas environments. By the end of devolatilization, the amount of carbonate in the char had changed very little at 700-800 deg. C. After devolatilization, carbonate was formed more rapidly at higher temperatures. The presence of CO 2 or water vapor increased the formation of carbonate. In the presence of these gases, more carbonate was measured at all temperatures and residence times. The maximum carbonate measured in the char was 16% of the carbon in the black liquor solids, as compared to 4.4% in the original dry liquor solids. Under most conditions, the carbonate, as a fraction of carbon input, first increased to a constant, temperature-independent value and then decreased

  15. Relating black carbon content to reduction of snow albedo

    Science.gov (United States)

    Brandt, R. E.; Warren, S. G.; Clarke, A. D.

    2011-12-01

    In remote snow of the Northern Hemisphere, the levels of soot pollution are in the parts-per-billion (ppb) range, where the effect on albedo is at the level of a few percent. A reduction of albedo by 1-2% is significant for climate but is difficult to detect experimentally, because snow albedo depends on several other variables. In our work to quantify the climatic effect of black carbon (BC) in snow, we therefore do not directly measure the albedo reduction. Instead, we use a two-step procedure: (1) We collect snow samples, melt and filter them, and analyze the filters spectrophotometrically for BC concentration. (2) We use the BC amount from the filter measurement, together with snow grain size, in a radiative transfer model to compute the albedo reduction. Our radiative transfer model uses the discrete ordinates algorithm DISORT 2.0. We have chosen a representative BC size distribution and optical constants, and have incorporated those of mineral dust as well. While a given mass of BC causes over an order of magnitude more snow albedo reduction compared to dust, a snowpack containing dust mutes the albedo-reducing effect of BC. Because the computed reduction of snow albedo is model-based, it requires experimental verification. We doubt that direct measurement of albedo-reduction will be feasible in nature, because of the vertical variation of both snow grain size and soot content, and because the natural soot content is small. We conclude that what is needed is an artificial snowpack, with uniform grain size and large uniform soot content (ppm not ppb), to produce a large signal on albedo. We have chosen to pursue this experiment outdoors rather than in the laboratory, for the following reasons: (1) The snowpack in the field of view is uniformly illuminated if the source of radiation is the Sun. (2) Visible radiation penetrates into the snow, so photons emerge horizontally distant from where they entered. In the limited width of a laboratory snowpack, radiation

  16. Factors controlling black carbon distribution in the Arctic

    Science.gov (United States)

    Qi, Ling; Li, Qinbin; Li, Yinrui; He, Cenlin

    2017-01-01

    We investigate the sensitivity of black carbon (BC) in the Arctic, including BC concentration in snow (BCsnow, ng g-1) and surface air (BCair, ng m-3), as well as emissions, dry deposition, and wet scavenging using the global three-dimensional (3-D) chemical transport model (CTM) GEOS-Chem. We find that the model underestimates BCsnow in the Arctic by 40 % on average (median = 11.8 ng g-1). Natural gas flaring substantially increases total BC emissions in the Arctic (by ˜ 70 %). The flaring emissions lead to up to 49 % increases (0.1-8.5 ng g-1) in Arctic BCsnow, dramatically improving model comparison with observations (50 % reduction in discrepancy) near flaring source regions (the western side of the extreme north of Russia). Ample observations suggest that BC dry deposition velocities over snow and ice in current CTMs (0.03 cm s-1 in the GEOS-Chem) are too small. We apply the resistance-in-series method to compute a dry deposition velocity (vd) that varies with local meteorological and surface conditions. The resulting velocity is significantly larger and varies by a factor of 8 in the Arctic (0.03-0.24 cm s-1), which increases the fraction of dry to total BC deposition (16 to 25 %) yet leaves the total BC deposition and BCsnow in the Arctic unchanged. This is largely explained by the offsetting higher dry and lower wet deposition fluxes. Additionally, we account for the effect of the Wegener-Bergeron-Findeisen (WBF) process in mixed-phase clouds, which releases BC particles from condensed phases (water drops and ice crystals) back to the interstitial air and thereby substantially reduces the scavenging efficiency of clouds for BC (by 43-76 % in the Arctic). The resulting BCsnow is up to 80 % higher, BC loading is considerably larger (from 0.25 to 0.43 mg m-2), and BC lifetime is markedly prolonged (from 9 to 16 days) in the Arctic. Overall, flaring emissions increase BCair in the Arctic (by ˜ 20 ng m-3), the updated vd more than halves BCair (by ˜ 20 ng m-3

  17. ESR study on the interaction between carbon blacks and oxygen molecules; ESR ho ni yoru carbon black to sanso bunshi tono sogo sayo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, M.; Toriyama, K.; Konishi, Y. [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    2000-02-24

    Interaction between carbon blacks and oxygen molecules has been studied by means of electron spin resonance (ESR) spectroscopy. The ESR spectra of the carbon blacks appears at the g-value of free spin, which are contributed by both isolated electrons and conduction electrons. Upon introducing oxygen to the system the ESR linewidth was broadened in proportion to the partial pressure of oxygen. In case of lampblack (LB 101, Degussa) the interaction was not so strong that it took a tong time at 77K for the linewidth to reach the maxmum value. In case of gassblack (P 140 V, Degussa), on the other hand, the oxygen was easily adsorbed at 298K and the linewidth at 77K became its maximum immediately after cooling. The number of unpaired electrons decreased when the system was kept at 298 K and the decrease was prominent for the local spins. These phenomena have been explained with a simple band model for the electron. (author)

  18. The chemical composition of aerosols from Wildland fires: Current state of the science and possible new directions.

    Science.gov (United States)

    Wildland fire emits a substantial quantity of aerosol to the atmosphere. These aerosols typically comprise a complex mixture of organic matter and refractory elemental or black carbon with a relatively minor contribution of inorganic matter from soils and plant micronutrients. Id...

  19. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars).

    Science.gov (United States)

    Harvey, Omar R; Kuo, Li-Jung; Zimmerman, Andrew R; Louchouarn, Patrick; Amonette, James E; Herbert, Bruce E

    2012-02-07

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.

  20. Study of the effect of gamma irradiation on carbon black loaded low-density polyethylene films

    International Nuclear Information System (INIS)

    Salem, M.A.; Hussein, A.; El-Ahdal, M.A.

    2003-01-01

    The effect of gamma irradiation on the tensile and physico-chemical properties of low-density polyethylene (LDPE) films loaded with different concentrations of carbon black (C.B) has been studied. The results showed that the behavior of the samples during gamma irradiation is complicated and this may be due to scission and the interaction between oxidation and crosslinking processes. The tensile properties are modified by the presence of carbon black. Film sample containing 7% C.B was found to exhibit a nearly stabilized tensile behavior with radiation dose, which allows to use this formulation in packaging for food sterilization and in preservation of weak cobalt-gamma sources. (author)

  1. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites

    International Nuclear Information System (INIS)

    Zhang Wei; Blackburn, Richard S.; Dehghani-Sanij, Abbas A.

    2007-01-01

    Electrical properties of nanocomposites are determined by the conductive paths of carbon black and influenced by a 'network' of silica. With increasing content of silica, carbon black (CB) particles are optimally dispersed, contributing to the generation of a conductive network between CB particles via direct particle contact and a tunneling effect; maximum conductivity for the epoxy resin-CB-silica nanocomposite described herein occurs at a ratio of 0.6:1.0 (SiO 2 :CB). As a non-conductive component, excessive silica will prevent electron flow, giving rise to low conductivity

  2. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    Science.gov (United States)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  3. End of the Little Ice Age in the Alps forced by industrial black carbon

    OpenAIRE

    Painter, Thomas H.; Flanner, Mark G.; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A.; Abdalati, Waleed

    2013-01-01

    The end of the Little Ice Age in the European Alps has long been a paradox to glaciology and climatology. Glaciers in the Alps began to retreat abruptly in the mid-19th century, but reconstructions of temperature and precipitation indicate that glaciers should have instead advanced into the 20th century. We observe that industrial black carbon in snow began to increase markedly in the mid-19th century and show with simulations that the associated increases in absorbed sunlight by black carbon...

  4. Hydrogen and Carbon Black Production from Thermal Decomposition of Sub-Quality Natural Gas

    Directory of Open Access Journals (Sweden)

    M. Javadi

    2010-03-01

    Full Text Available The objective of this paper is computational investigation of the hydrogen and carbon black production through thermal decomposition of waste gases containing CH4 and H2S, without requiring a H2S separation process. The chemical reaction model, which involves solid carbon, sulfur compounds and precursor species for the formation of carbon black, is based on an assumed Probability Density Function (PDF parameterized by the mean and variance of mixture fraction and β-PDF shape. The effects of feedstock mass flow rate and reactor temperature on hydrogen, carbon black, S2, SO2, COS and CS2 formation are investigated. The results show that the major factor influencing CH4 and H2S conversions is reactor temperature. For temperatures higher than 1100° K, the reactor CH4 conversion reaches 100%, whilst H2S conversion increases in temperatures higher than 1300° K. The results reveal that at any temperature, H2S conversion is less than that of CH4. The results also show that in the production of carbon black from sub-quality natural gas, the formation of carbon monoxide, which is occurring in parallel, play a very significant role. For lower values of feedstock flow rate, CH4 mostly burns to CO and consequently, the production of carbon black is low. The results show that the yield of hydrogen increases with increasing feedstock mass flow rate until the yield reaches a maximum value, and then drops with further increase in the feedstock mass flow rate.

  5. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black.

    Science.gov (United States)

    Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Küttler, Karin; Wohlleben, Wendel; Hofmann, Thomas; Gröters, Sibylle; Wiench, Karin; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-06-17

    Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select

  6. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black

    Science.gov (United States)

    2013-01-01

    Background Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. Methods In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. Results No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. Conclusions The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in

  7. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    allows maskless definition of carbon nanotube forests with control of their density, nanotube diameter and height. Four nanograss reactive ion etching recipes are investigated and their wafer-to-wafer repeatability, wafer uniformity, and density control is discussed. Evaluation of carbon nanotube forests...

  8. Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The effects of carbon blacks on vulcanization and mechanical properties of filled ethylene-propylene-diene rubber (EPDM are investigated, by comparing with five types of rubber-grade carbon blacks. Curing kinetics is studied by rheometer and the results indicate that the curing characteristics are influenced by combination of surface area of carbon black and sulphur content on the filler surface, because the former one enhances the physical cross-linking and the latter one introduces the additional chemical cross-linking. Both the degree of cross-linking and cure rate increase with increasing surface area and sulphur content, whereas the optimum cure time and scorch time decrease. The reinforcing nature of the carbon black is assessed from mechanical measurements. It is suggested that the surface area of carbon blacks strongly affects the physical properties of EPDM/carbon black composites. Conductive carbon black (N472 can be used as desirable reinforcing filler due to the higher degree of cross-linking of EPDM with N472 than other EPDM/carbon black composites. The morphology and distribution of particles are studied by using scanning electron microscope. The sound reinforcing ability of N472 is also supported by scanning electron microscope due to the notable dispersibility of N472 within EPDM matrix. N472 ensures the EPDM/N472 composite the most conductive sample among the five composites.

  9. O2 electrocatalysis in acid media on iron naphthalocyanine impregnations. Effect of nitric acid treatment on different carbon black supports

    NARCIS (Netherlands)

    Coowar, F.; Contamin, O.; Savy, M.; Scarbeck, G.; van den Ham, D.; Riga, J.; Verbist, J.J.

    1991-01-01

    O2 electrocatalysis on (2,3)FeNPc impregnations on different carbon blacks was investigated in H2SO4 medium. The effect of nitric acid treatment on the carbon black support is to enhance both the activity and stability of the catalyst. Moreover, as seen by XPS, the dissolution of iron is impeded by

  10. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-12-01

    Full Text Available There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon black4. mass flow rate of hydrocarbon oil feedstock5. type and quantity of additive for adjustment the structure of oil-furnace carbon black6. quantity and position of the quench water for cooling the reaction of oil-furnace carbon black.The control of oil-furnace carbon black adsorption capacity is made with mass flow rate of hydrocarbon feedstock, which is the most important inlet process factor. Oil-furnace carbon black adsorption capacity in industrial process is determined with laboratory analyze of iodine adsorption number. It is shown continuously and automatically method for controlling iodine adsorption number in carbon black oil-furnaces to get as much as possible efficient control of adsorption capacity. In the proposed method it can be seen the correlation between qualitatively-quantitatively composition of the process tail gasses in the production of oil-furnace carbon black and relationship between air for combustion and hydrocarbon feedstock. It is shown that the ratio between air for combustion and hydrocarbon oil feedstock is depended of adsorption capacity summarized by iodine adsorption number, regarding to BMCI index of hydrocarbon oil feedstock.The mentioned correlation can be seen through the figures from 1. to 4. From the whole composition of the process tail gasses the best correlation for continuously and automatically control of iodine adsorption number is show the volume fraction of methane. The volume fraction of methane in the

  11. Black Ink of Activated Carbon Derived From Palm Kernel Cake (PKC)

    Science.gov (United States)

    Selamat, M. H.; Ahmad, A. H.

    2009-06-01

    Recycling the waste from natural plant to produce useful end products will benefit many industries and help preserve the environment. The research reported in this paper is an investigation on the use of the natural waste of palm kernel cake (PKC) to produce carbon residue as a black carbon for pigment source by using pyrolysis process. The activated carbons (AC) is produced in powder form using ball milling process. Rheological spectra in ink is one of quality control process in determining its performance properties. Findings from this study will help expand the scientific knowledge-base for black ink production and formulation base on PKC. Various inks with different weight percentage compositions of AC will be made and tested against its respective rheological properties in order to determine ideal ink printing system. The items in the formulation used comprised of organic and bio-waste materials with added additive to improve the quality of the black ink. Modified Polyurethane was used as binder. The binder's properties highlighted an ideal vehicle to be applied for good black ink opacity performance. The rheological behaviour is a general foundation for ink characterization where the wt% of AC-PKC resulted in different pseudoplastic behaviors, including the Newtonian behavior. The result found that Newtonian field was located in between 2 wt% and 10 wt% of AC-PKC composition with binder. Mass spectroscopy results shown that the carbon content in PKC is high and very suitable for black performance. In the ageing test, the pigment of PKC perform fairly according to the standard pigment of Black carbon (CB) of ferum oxide pigment. The contact angle for substrate's wettability of the ink system shown a good angle proven to be a water resistive coating on paper subtrates; an advantage of the PKC ink pigment performance.

  12. SCIAMACHY WFM-DOAS XCO2: comparison with CarbonTracker XCO2 focusing on aerosols and thin clouds

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-08-01

    Full Text Available Carbon dioxide (CO2 is the most important greenhouse gas whose atmospheric loading has been significantly increased by anthropogenic activity leading to global warming. Accurate measurements and models are needed in order to reliably predict our future climate. This, however, has challenging requirements. Errors in measurements and models need to be identified and minimised. In this context, we present a comparison between satellite-derived column-averaged dry air mole fractions of CO2, denoted XCO2, retrieved from SCIAMACHY/ENVISAT using the WFM-DOAS (weighting function modified differential optical absorption spectroscopy algorithm, and output from NOAA's global CO2 modelling and assimilation system CarbonTracker. We investigate to what extent differences between these two data sets are influenced by systematic retrieval errors due to aerosols and unaccounted clouds. We analyse seven years of SCIAMACHY WFM-DOAS version 2.1 retrievals (WFMDv2.1 using CarbonTracker version 2010. We investigate to what extent the difference between SCIAMACHY and CarbonTracker XCO2 are temporally and spatially correlated with global aerosol and cloud data sets. For this purpose, we use a global aerosol data set generated within the European GEMS project, which is based on assimilated MODIS satellite data. For clouds, we use a data set derived from CALIOP/CALIPSO. We find significant correlations of the SCIAMACHY minus CarbonTracker XCO2 difference with thin clouds over the Southern Hemisphere. The maximum temporal correlation we find for Darwin, Australia (r2 = 54%. Large temporal correlations with thin clouds are also observed over other regions of the Southern Hemisphere (e.g. 43% for South America and 31% for South Africa. Over the Northern Hemisphere the temporal correlations are typically much lower. An exception is India, where large temporal correlations with clouds and aerosols have also been found. For all other regions the temporal correlations with

  13. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan; Xia, Xue; Ivanov, Ivan; Huang, Xia; Logan, Bruce E.

    2014-01-01

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  14. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  15. Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements

    Science.gov (United States)

    Zhao, C.; Hu, Z.; Qian, Y.; Leung, L. Ruby; Huang, J.; Huang, M.; Jin, J.; Flanner, M. G.; Zhang, R.; Wang, H.; Yan, H.; Lu, Z.; Streets, D. G.

    2014-10-01

    A state-of-the-art regional model, the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) coupled with a chemistry component (Chem) (Grell et al., 2005), is coupled with the snow, ice, and aerosol radiative (SNICAR) model that includes the most sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are consistent with observations. The model generally moderately underestimates BCS in the clean regions but significantly overestimates BCS in some polluted regions. Most model results fall within the uncertainty ranges of observations. The simulated BCS and DSTS are highest with > 5000 ng g-1 and up to 5 mg g-1, respectively, over the source regions and reduce to dust in the atmosphere. This study represents an effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snowpack. Although a variety of observational data sets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.

  16. Effect of carbon black on electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate composites

    Directory of Open Access Journals (Sweden)

    H. Oxfall

    2015-01-01

    Full Text Available The effect of adding carbon black on the electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate copolymer composites produced via melt or solution mixing was studied. By adding a small amount of low- or high-structured carbon black to the nanocomposite, the electrical percolation threshold decreased and the final conductivity (at higher filler contents increased. The effect on the percolation threshold was significantly stronger in case of the high-structured carbon black where replacing 10 wt% of the total filler content with carbon black instead of graphite nanoplatelets reduced the electrical percolation threshold from 6.9 to 4.6 vol%. Finally, the solution mixing process was found to be more efficient leading to a lower percolation threshold. For the composites containing high-structured carbon black, graphite nanoplatelets and their hybrids there was a quite reasonable correlation between the electrical and rheological percolation thresholds.

  17. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T)

    OpenAIRE

    Karim Asadpour-Zeynali; Venus Baghalabadi

    2017-01-01

    In this work poly eriochrome black T (EBT) was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH) was investigated. The poly (EBT)-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak ...

  18. Spinning, structure and properties of PP/CNTs and PP/carbon black composite fibers

    Science.gov (United States)

    Marcincin, A.; Hricova, M.; Ujhelyiova, A.

    2014-08-01

    In this paper, the effect of the compatibilisers-dispersants and other nanofillers on melt spinning of the polypropylene (PP) composites, containing carbon nanotubes (CNTs), and carbon black pigment (CBP) has been investigated. Further, the structure and selected properties of composite fibers, such as mechanical and electrical have been studied. The results revealed, that percolation threshold for PP/CBP composite fibres was situated within the concentration of 15 - 20 wt%, what is several times higher than for PP/CNTs fibers.

  19. Brown Carbon Production in Ammonium- or Amine-Containing Aerosol Particles by Reactive Uptake of Methylglyoxal and Photolytic Cloud Cycling.

    Science.gov (United States)

    De Haan, David O; Hawkins, Lelia N; Welsh, Hannah G; Pednekar, Raunak; Casar, Jason R; Pennington, Elyse A; de Loera, Alexia; Jimenez, Natalie G; Symons, Michael A; Zauscher, Melanie; Pajunoja, Aki; Caponi, Lorenzo; Cazaunau, Mathieu; Formenti, Paola; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François

    2017-07-05

    The effects of methylglyoxal uptake on the physical and optical properties of aerosol containing amines or ammonium sulfate were determined before and after cloud processing in a temperature- and RH-controlled chamber. The formation of brown carbon was observed upon methylglyoxal addition, detected as an increase in water-soluble organic carbon mass absorption coefficients below 370 nm and as a drop in single-scattering albedo at 450 nm. The imaginary refractive index component k 450 reached a maximum value of 0.03 ± 0.009 with aqueous glycine aerosol particles. Browning of solid particles occurred at rates limited by chamber mixing (cloud events with chamber lights on, suggesting photosensitized brown carbon formation. Despite these changes in optical aerosol characteristics, increases in dried aerosol mass were rarely observed (<1 μg/m 3 in all cases), consistent with previous experiments on methylglyoxal. Under dry, particle-free conditions, methylglyoxal reacted (presumably on chamber walls) with methylamine with a rate constant k = (9 ± 2) × 10 -17 cm 3 molecule -1 s -1 at 294 K and activation energy E a = 64 ± 37 kJ/mol.

  20. Black carbon emission reduction strategies in healthcare industry for effective global climate change management.

    Science.gov (United States)

    Raila, Emilia Mmbando; Anderson, David O

    2017-04-01

    Climate change remains one of the biggest threats to life on earth to date with black carbon (BC) emissions or smoke being the strongest cause after carbon dioxide (CO 2 ). Surprisingly, scientific evidence about black carbon emissions reduction in healthcare settings is sparse. This paper presents new research findings on the reduction of black carbon emissions from an observational study conducted at the UN Peacekeeping Operations (MINUSTAH) in Haiti in 2014. Researchers observed 20 incineration cycles, 30 minutes for each cycle of plastic and cardboard sharps healthcare waste (HCW) containers ranged from 3 to 14.6 kg. The primary aim was to determine if black carbon emissions from healthcare waste incineration can be lowered by mainstreaming the use of cardboard sharps healthcare waste containers instead of plastic sharps healthcare waste containers. Similarly, the study looks into whether burning temperature was associated with the smoke levels for each case or not. Independent samples t-tests demonstrated significantly lower black carbon emissions during the incineration of cardboard sharps containers (6.81 ± 4.79% smoke) than in plastic containers (17.77 ± 8.38% smoke); a statistically significant increase of 10.96% smoke (95% Confidence Interval ( CI) [4.4 to 17.5% smoke], p = 0.003). Correspondingly, lower bottom burner temperatures occurred during the incineration of cardboard sharps containers than in plastic (95% Cl [16 to 126°C], p = 0.014). Finally, we expect the application of the new quantitative evidence to form the basis for policy formulation, mainstream the use of cardboard sharps containers and opt for non-incineration disposal technologies as urgent steps for going green in healthcare waste management.

  1. Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China.

    Science.gov (United States)

    Baumgartner, Jill; Zhang, Yuanxun; Schauer, James J; Huang, Wei; Wang, Yuqin; Ezzati, Majid

    2014-09-09

    Air pollution in China and other parts of Asia poses large health risks and is an important contributor to global climate change. Almost half of Chinese homes use biomass and coal fuels for cooking and heating. China's economic growth and infrastructure development has led to increased emissions from coal-fired power plants and an expanding fleet of motor vehicles. Black carbon (BC) from incomplete biomass and fossil fuel combustion is the most strongly light-absorbing component of particulate matter (PM) air pollution and the second most important climate-forcing human emission. PM composition and sources may also be related to its human health impact. We enrolled 280 women living in a rural area of northwestern Yunnan where biomass fuels are commonly used. We measured their blood pressure, distance from major traffic routes, and daily exposure to BC (pyrolytic biomass combustion), water-soluble organic aerosol (organic aerosol from biomass combustion), and, in a subset, hopane markers (motor vehicle emissions) in winter and summer. BC had the strongest association with systolic blood pressure (SBP) (4.3 mmHg; P water-soluble organic mass. The effect of BC on SBP was almost three times greater in women living near the highway [6.2 mmHg; 95% confidence interval (CI), 3.6 to 8.9 vs. 2.6 mmHg; 95% CI, 0.1 to 5.2]. Our findings suggest that BC from combustion emissions is more strongly associated with blood pressure than PM mass, and that BC's health effects may be larger among women living near a highway and with greater exposure to motor vehicle emissions.

  2. Equilibrium climate response of the East Asian summer monsoon to forcing of anthropogenic aerosol species

    Science.gov (United States)

    Wang, Zhili; Wang, Qiuyan; Zhang, Hua

    2017-12-01

    We used an online aerosol-climate model to study the equilibrium climate response of the East Asian summer monsoon (EASM) to increases in anthropogenic emissions of sulfate, organic carbon, and black carbon aerosols from 1850 to 2000. Our results show that each of these aerosol species has a different effect on the EASM as a result of changes in the local sea-land thermal contrast and atmospheric circulation. The increased emission of sulfate aerosol leads to a decrease in the thermal contrast between the land and ocean, a southward shift of the East Asian subtropical jet, and significant northerly wind anomalies at 850 hPa over eastern China and the ambient oceans, markedly dampening the EASM. An increase in organic carbon aerosol results in pronounced surface cooling and the formation of an anomalous anticyclone over the oceans north of 30°N. These effects cause a slight increase in the sea-land thermal contrast and southerly flow anomalies to the west of the anticyclonic center, strengthening the northern EASM. An increase in organic carbon emission decreases the sea-land thermal contrast over southern China, which weakens the southern EASM. The response of the summer 850-hPa winds and rainfall over the East Asian monsoon region to an increase in black carbon emission is generally consistent with the response to an increase in organic carbon. The increase in black carbon emission leads to a strengthening of the northern EASM north of 35°N and a slight weakening of the southern EASM south of 35°N. The simulated response of the EASM to the increase in black carbon emission is unchanged when the emission of black carbon is scaled up by five times its year 2000 levels, although the intensities of the response is enhanced. The increase in sulfate emission primarily weakens the EASM, whereas the increases in black carbon and organic carbon emissions mitigate weakening of the northern EASM.

  3. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Directory of Open Access Journals (Sweden)

    J. Gao

    2018-05-01

    Full Text Available As an important solar radiation absorbing aerosol, the effect of black carbon (BC on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC–boundary layer (BL interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC–BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection. For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the

  4. Enhanced light absorptivity of black carbon with air pollution development in urban Beijing, China

    Science.gov (United States)

    Zhang, Y.; Zhang, Q.; Cheng, Y.; Su, H.; He, K.

    2017-12-01

    The impacts of black carbon (BC) aerosols on air quality and climate are dependent on BC light absorptivity. However, the light absorptivity of ambient BC-containing particles remains conflicting. In this work, we investigated the evolution of BC light absorptivity with pollution development in urban Beijing, China. We found that the mass absorption cross-section (MAC) of ambient BC-containing particles measured during the campaign increased with BC mass concentration, which can be attributed to more coating materials on BC surface with pollution development. A single-particle soot photometer (SP2) measurement showed that the coating thickness (CT) of BC-containing particles increased by 48% with PM1 and BC mass concentration increasing from 10 μg m-3 and 0.3 μg m-3 to 230 μg m-3 and 12 μg m-3. Based on Mie calculation, the CT increase could led to light absorption enhancement (Eab) of BC-containing particles increasing by 22%, consistent with the increase of measured MAC. The relationship between growth rate of BC light absorptivity (kEab) and that of PM1 or rBC concentration (kPM1 or krBC) showed that kEab ≈ 4.8% kPM1 or kEab ≈ 2.5% krBC. The analysis of effective emission intensity (EEI) for BC revealed that the enhancement of BC light absorptivity with increasing pollution levels was dominated by regional transport. During the pollution period, 63% of BC over Beijing originated from regional sources. The aging of these regional BC during atmospheric transport controlled the increase of coating materials for BC-containing particles observed in Beijing. As a result of enhanced light absorptivity with pollution development, BC forcing efficiency could increase by 20% during polluted period. Our work identified the importance of BC on radiative forcing under polluted environment, which is determined by not only the increase of BC mass concentration, but also the enhancement of BC forcing efficiency due to more coating materials.

  5. Atmospheric profiles of Black Carbon at remote locations using light-weight airborne Aethalometers

    Science.gov (United States)

    Hansen, A. D.; Močnik, G.; Drinovec, L.; Lenarcic, M.

    2012-12-01

    While measurements of atmospheric aerosols are routinely performed at ground-level around the world, there is far less knowledge of their concentrations at altitude: yet this data is a crucial requirement for our understanding of the dispersion of pollutants of anthropogenic origin, with their associated effects on radiative forcing, cloud condensation, and other adverse phenomena. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Recent technical advances have developed light-weight miniaturized instruments which can be operated on light aircraft or carried aboard commercial passenger flights. From January to April 2012, a single-seat ultra-light aircraft flew around the world on a scientific, photographic and environmental-awareness mission. The flight track crossed all seven continents and all major oceans, with altitudes up to 8.9 km ASL. The aircraft carried a custom-developed high-sensitivity dual-wavelength light-weight Aethalometer, operating at 370 and 880 nm with special provision to compensate for the effects of changing pressure, temperature and humidity. The instrument recorded BC concentrations with high temporal resolution and sensitivity better than 5 ng/m3. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas, analyzing the spectral dependence of absorption to infer the contributions to BC from fossil fuel vs. biomass combustion, and aggregating the data into vertical profiles. The regional and long range transport of BC may be investigated using back-trajectories. We have also operated miniature instruments in the passenger cabins of long-distance commercial aircraft. Since there are no combustion sources within the cabin, any BC in the ventilation air must necessarily have originated from the outside

  6. Effects of Wegener-Bergeron-Findeisen Process on Global Black Carbon Distribution

    Science.gov (United States)

    Qi, L.

    2016-12-01

    In mixed-phase clouds, the Wegener-Bergeron-Findeisen (WBF) process (ice crystals may grow while water drops evaporate, thereby releasing black carbon (BC) particles into the interstitial air) slows down wet scavenging of BC. Rimming (snowflakes fall and collect cloud water drops and the BC in them along their pathways), in contrast, results in more efficient wet scavenging. We systematically investigate the effects of WBF on BC scavenging efficiency, surface BCair, deposition flux, concentration in snow, and washout ratio using a global 3D chemical transport model. We differentiate riming- vs WBF-dominated in-cloud scavenging based on liquid water content and temperature. Specifically, we relate WBF to either temperature or ice mass fraction in mixed-phase clouds. We find that at Jungfraujoch, Switzerland and Abisko, Sweden, where WBF dominates, the discrepancies of simulated BC scavenging efficiency and washout ratio are significantly reduced (from a factor of 3 to 10% and from a factor of 4-5 to a factor of two). However, at Zeppelin, Norway, where riming dominates, simulation of BC scavenging efficiency, BCair, and washout ratio become worse (relative to observations) when WBF is included. There is thus an urgent need for extensive observations to distinguish and characterize riming- versus WBF-dominated aerosol scavenging in mixed-phase clouds and the associated BC scavenging efficiency. We find the reduction resulting from WBF to global BC scavenging efficiency varies substantially, from 8% in the tropics to 76% in the Arctic. The resulting annual mean BCair increases by up to 156% at high altitudes and at northern high latitudes. Overall, WBF halves the model-observation discrepancy (from -65% to -30%) of BCair across North America, Europe, China and the Arctic. Globally WBF increases BC burden from 0.22 to 0.29-0.35 mg m-2 yr-1, which partially explains the gap between observed and previous model simulated BC burdens over land (Bond et al., 2013). In

  7. Distribution and Sources of Black Carbon in the Arctic

    Science.gov (United States)

    Qi, Ling

    The Arctic is warming at twice the global rate over recent decades. To slow down this warming trend, there is growing interest in reducing the impact from short-lived climate forcers, such as black carbon (BC), because the benefits of mitigation are seen more quickly relative to CO2 reduction. To propose efficient mitigation policies, it is imperative to improve our understanding of BC distribution in the Arctic and to identify the sources. In this dissertation, we investigate the sensitivity of BC in the Arctic, including BC concentrations in snow (BCsnow) and BC concentrations in air (BCair), to emissions, dry deposition and wet scavenging using a global 3-D chemical transport model (CTM) GEOS-Chem. By including flaring emissions, estimating dry deposition velocity using resistance-in-series method, and including Wegener-Bergeron-Findeisen (WBF) in wet scavenging, simulated BCsnow in the eight Arctic sub-regions agree with the observations within a factor of two, and simulated BCair fall within the uncertainty range of observations. Specifically, we find that natural gas flaring emissions in Western Extreme North of Russia (WENR) strongly enhance BCsnow (by up to ?50%) and BCair (by 20-32%) during snow season in the so-called 'Arctic front', but has negligible impact on BC in the free troposphere. The updated dry deposition velocity over snow and ice is much larger than those used in most of global CTMs and agrees better with observation. The resulting BCsnow changes marginally because of the offsetting of higher dry and lower wet deposition fluxes. In contrast, surface BCair decreases strongly due to the faster dry deposition (by 27-68%). WBF occurs when the environmental vapor pressure is in between the saturation vapor pressure of ice crystals and water drops in mixed-phase clouds. As a result, water drops evaporate and releases BC particles in them back into the interstitial air. In most CTMs, WBF is either missing or represented by a uniform and low BC

  8. A black body absorber from vertically aligned single-walled carbon nanotubes

    Science.gov (United States)

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  9. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    Science.gov (United States)

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  10. Projection of SO2, NOx, NMVOC, particulate matter and black carbon emissions - 2015-2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Hjelgaard, Katja Hossy

    This report contains a description of models and background data for projection of SO2, NOX, NMVOC, PM2.5 and black carbon for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts...

  11. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice

    DEFF Research Database (Denmark)

    Modrzynska, Justyna; Berthing, Trine; Ravn-Haren, Gitte

    2018-01-01

    Background Little is known about the mechanism underlying the genotoxicity observed in the liver following pulmonary exposure to carbon black (CB) nanoparticles (NPs). The genotoxicity could be caused by the presence of translocated particles or by circulating inflammatory mediators released during...

  12. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

    NARCIS (Netherlands)

    Margolin, A.R.; Gerringa, L.J.A.; Hansell, D.A.; Rijkenberg, M.J.A.

    2016-01-01

    Dissolved organic carbon (DOC) concentrations in the deep Black Sea are ~2.5 times higher than found in the globalocean. The two major external sources of DOC are rivers and the Sea of Marmara, a transit point for waters from theMediterranean Sea. In addition, expansive phytoplankton blooms

  13. The vacuum pyrolysis of used tires. End-uses for oil and carbon black products

    Energy Technology Data Exchange (ETDEWEB)

    Roy, C.; Chaala, A.; Darmstadt, H. [Institut Pyrovac Inc., Parc Technologique du Quebec Metropolitain, rue Franquet, Sainte-Foy (Canada)

    1999-07-01

    By vacuum pyrolysis, the rubber portion of used tires is transformed into oil and gas and the carbon black filler is recovered as pyrolytic carbon black (CB{sub P}). Several commercial applications for the different products have been investigated and are reported in this article. CB{sub P} surface chemistry and activity are similar to those of commercial carbon blacks. Therefore, CB{sub P} has the potential to replace commercial carbon black grades in certain rubber applications. CB{sub P} was successfully tested as a filler in road pavement. The total pyrolytic oil can be used as a liquid fuel. The oil can also be distilled into different fractions: a light, a middle distillate and a heavy fraction. The light fraction was positively tested as a gasoline additive. Furthermore, this fraction contains valuable chemicals such as d,l-limonene. The middle fraction was successfully tested as a plasticizer in rubbers. The heavy fraction represents a good-quality feedstock for the production of coke and can also be used in road pavements. The pyrolytic gas can be used as a make-up heat source for the pyrolysis process

  14. Effects of black carbon on bioturbination-induced benthic fluxes of polychlorinated biphenyls

    NARCIS (Netherlands)

    Koelmans, A.A.; Jonker, M.T.O.

    2011-01-01

    It is unknown whether carbonaceous geosorbents, such as black carbon (BC) affect bioturbation by benthic invertebrates, thereby possibly affecting sediment–water exchange of sediment-bound contaminants. Here, we assess the effects of oil soot on polychlorinated biphenyl (PCB) mass transfer from

  15. Top-down estimates of biomass burning emissions of black carbon in the western United States

    Science.gov (United States)

    Y. H. Mao; Q. B. Li; D. Chen; L. Zhang; W. -M. Hao; K.-N. Liou

    2014-01-01

    We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May-October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS...

  16. Thermal and bonding properties of nano size carbon black filled PDMS

    CSIR Research Space (South Africa)

    Chen, H

    2009-12-01

    Full Text Available is varied from 10% to 25%. The mechanical property is characterized by testing the bond strength of the bond between pure PDMS and PDMS-CB composite. The bond between pure PDMS and 10% carbon black filled PDMS broke at 0.72 MPa. The bond has become very...

  17. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods

    NARCIS (Netherlands)

    Poot, A.; Quik, J.T.K.; Veld, H.; Koelmans, A.A.

    2009-01-01

    Black Carbon (BC) quantification methods are reviewed, including new Rock-Eval 6 data on BC reference materials. BC has been reported to have major impacts on climate, human health and environmental quality. Especially for risk assessment of persistent organic pollutants (POPs) it is important to

  18. Study of positron annihilation lifetime spectroscopy in carbon black-filled HDPE composite

    CERN Document Server

    Zhang Xian Feng; Zhou Xian Yi; Weng Hu Imin; Ye Bang Jiao; Han Rong Dian; Jia Shao Jin; Zhang Zhi Cheng

    2002-01-01

    The variation of the electrical conductivity of high density polyethylene (HDPE) with the carbon black (CB) content was studied using positron annihilation lifetime spectroscopy (PALS) and free-volume model, the crystallinity of HDPE/CB composite and 'percolation' effect were discussed with measurements of conductivity and DSC test

  19. Nanoscale Interactions between Engineered Nanomaterials and Black Carbon (Biochar) in Soil

    Science.gov (United States)

    An understanding of the interactions between engineered nanomaterials (NMs) and soil constituents, and a comprehension of how these interactions may affect biological uptake and toxicity are currently lacking. Charcoal black carbon is a normal constituent of soils due to fire history, and can be pre...

  20. Effects of occupational exposure to carbon black on peripheral white blood cell counts and lymphocyte subsets

    NARCIS (Netherlands)

    Dai, Yufei; Niu, Yong; Duan, Huawei; Bassig, Bryan A; Ye, Meng; Zhang, Xiao; Meng, Tao; Bin, Ping; Jia, Xiaowei; Shen, Meili; Zhang, Rong; Hu, Wei; Yang, Xiaofa; Vermeulen, Roel; Silverman, Debra; Rothman, Nathaniel; Lan, Qing; Yu, Shanfa; Zheng, Yuxin

    2016-01-01

    The International Agency for Research on Cancer has classified carbon black (CB) as a possible (Group 2B) human carcinogen. Given that most CB manufacturing processes result in the emission of various types of chemicals, it is uncertain if the adverse health effects that have been observed in

  1. Robust Means for Estimating Black Carbon-Water Sorption Coefficients of Organic Contaminants in Sediments

    Science.gov (United States)

    2015-07-01

    compounds by black carbon, Springer, Dordrecht. Plata, D.L., Hemingway , J.D. and Gschwend, P.M. (2015) Polyparameter linear free energy relationship for...1320-1331. 32 8. Appendices Scientific/Technical Publications Plata, D.L., J.D. Hemingway , and P.M. Gschwend. Polyparameter linear free energy

  2. Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21st century

    Directory of Open Access Journals (Sweden)

    M. Ménégoz

    2013-03-01

    Full Text Available We used a coupled climate-chemistry model to quantify the impacts of aerosols on snow cover north of 30° N both for the present-day and for the middle of the 21st century. Black carbon (BC deposition over continents induces a reduction in the mean number of days with snow at the surface (MNDWS that ranges from 0 to 10 days over large areas of Eurasia and Northern America for the present-day relative to the pre-industrial period. This is mainly due to BC deposition during the spring, a period of the year when the remaining of snow accumulated during the winter is exposed to both strong solar radiation and a large amount of aerosol deposition induced themselves by a high level of transport of particles from polluted areas. North of 30° N, this deposition flux represents 222 Gg BC month−1 on average from April to June in our simulation. A large reduction in BC emissions is expected in the future in all of the Representative Concentration Pathway (RCP scenarios. In particular, considering the RCP8.5 in our simulation leads to a decrease in the spring BC deposition down to 110 Gg month−1 in the 2050s. However, despite the reduction of the aerosol impact on snow, the MNDWS is strongly reduced by 2050, with a decrease ranging from 10 to 100 days from present-day values over large parts of the Northern Hemisphere. This reduction is essentially due to temperature increase, which is quite strong in the RCP8.5 scenario in the absence of climate mitigation policies. Moreover, the projected sea-ice retreat in the next decades will open new routes for shipping in the Arctic. However, a large increase in shipping emissions in the Arctic by the mid-21st century does not lead to significant changes of BC deposition over snow-covered areas in our simulation. Therefore, the MNDWS is clearly not affected through snow darkening effects associated with these Arctic ship emissions. In an experiment without nudging toward atmospheric reanalyses, we simulated

  3. Sensitivity of the Single Particle Soot Photometer to different black carbon types

    Science.gov (United States)

    Laborde, M.; Mertes, P.; Zieger, P.; Dommen, J.; Baltensperger, U.; Gysel, M.

    2012-05-01

    Black carbon (BC) is now mainly of anthropogenic origin. It is the dominant light absorbing component of atmospheric aerosols, playing an important role in the earth's radiative balance and therefore relevant to climate change studies. In addition, BC is known to be harmful to human beings making it relevant to policy makers. Nevertheless, the measurement of BC remains biased by the instrument-based definition of BC. The Single Particle Soot Photometer (SP2), allows the measurement of the refractory BC (rBC) mass of individual particles using laser-induced incandescence. However, the SP2 needs an empirical calibration to retrieve the rBC mass from the incandescence signal and the sensitivity of the SP2 differs between different BC types. Ideally, for atmospheric studies, the SP2 should be calibrated using ambient particles containing a known mass of ambient rBC. However, such "ambient BC" calibration particles cannot easily be obtained and thus commercially available BC particles are commonly used for SP2 calibration instead. In this study we tested the sensitivity of the SP2 to different BC types in order to characterize the potential error introduced by using non-ambient BC for calibration. The sensitivity of the SP2 was determined, using an aerosol particle mass analyzer, for rBC from thermodenuded diesel exhaust, wood burning exhaust and ambient particles as well as for commercially available products: Aquadag® and fullerene soot. Thermodenuded, fresh diesel exhaust has been found to be ideal for SP2 calibration for two reasons. First, the small amount of non-BC matter upon emission reduces the risk of bias due to incomplete removal of non-BC matter and second, it is considered to represent atmospheric rBC in urban locations where diesel exhaust is the main source of BC. The SP2 was found to be up to 16% less sensitive to rBC from thermodenuded ambient particles (≤15 fg) than rBC from diesel exhaust, however, at least part of this difference can be explained

  4. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    Science.gov (United States)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  5. Sensitivity of the Single Particle Soot Photometer to different black carbon types

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-05-01

    Full Text Available Black carbon (BC is now mainly of anthropogenic origin. It is the dominant light absorbing component of atmospheric aerosols, playing an important role in the earth's radiative balance and therefore relevant to climate change studies. In addition, BC is known to be harmful to human beings making it relevant to policy makers. Nevertheless, the measurement of BC remains biased by the instrument-based definition of BC. The Single Particle Soot Photometer (SP2, allows the measurement of the refractory BC (rBC mass of individual particles using laser-induced incandescence. However, the SP2 needs an empirical calibration to retrieve the rBC mass from the incandescence signal and the sensitivity of the SP2 differs between different BC types. Ideally, for atmospheric studies, the SP2 should be calibrated using ambient particles containing a known mass of ambient rBC. However, such "ambient BC" calibration particles cannot easily be obtained and thus commercially available BC particles are commonly used for SP2 calibration instead. In this study we tested the sensitivity of the SP2 to different BC types in order to characterize the potential error introduced by using non-ambient BC for calibration. The sensitivity of the SP2 was determined, using an aerosol particle mass analyzer, for rBC from thermodenuded diesel exhaust, wood burning exhaust and ambient particles as well as for commercially available products: Aquadag® and fullerene soot.

    Thermodenuded, fresh diesel exhaust has been found to be ideal for SP2 calibration for two reasons. First, the small amount of non-BC matter upon emission reduces the risk of bias due to incomplete removal of non-BC matter and second, it is considered to represent atmospheric rBC in urban locations where diesel exhaust is the main source of BC. The SP2 was found to be up to 16% less sensitive to rBC from thermodenuded ambient particles (≤15 fg than rBC from diesel exhaust, however, at least part

  6. Effect of carbon black nanoparticles on methane/air explosions: Influence at low initial turbulence

    Science.gov (United States)

    Torrado, David; Glaude, Pierre-Alexandre; Dufaud, Olivier

    2017-06-01

    Nanoparticles are widely used in industrial applications as additives to modify materials properties such as resistance, surface, rheology or UV-radiation. As a consequence, the quantification and characterization of nanoparticles have become almost compulsory, including the understanding of the risks associated to their use. Since a few years ago, several studies of dust explosion properties involving nano-sized powder have been published. During the production and industrial use of nanoparticles, simultaneous presence of gas / vapor / solvents and dispersed nanoparticles mixtures might be obtained, increasing the risk of a hybrid mixture explosion. The aim of this work is to study the severity of the explosion of carbon black nanoparticles/methane mixtures and understand the influence of adding nanopowders on the behavior of the gas explosions. These results are also useful to understand the influence of soot on the efficiency of the gas combustion. Two grades of carbon black nanoparticles (ranging from 20 to 300 nm average diameter) have been mixed with methane. Tests have been performed on these mixtures in a standard 20 L explosion sphere. Regarding the scale precision, the lowest concentration of carbon black nanoparticles was set at 0.5 g.m-3. Tests were also performed at 2.5 g.m-3, which is still far below 60 g.m-3, the minimum explosive concentration of such powders previously determined in our laboratory. The influence of carbon black particles on the severity of the explosions has been compared to that of pure gas. It appears that the use of carbon black nanoparticles increases the explosion overpressure for lean methane mixtures at low initial turbulences by c. 10%. Similar results were obtained for high initial turbulent systems. Therefore, it seems that carbon black nanoparticles have an impact on the severity of the explosion even for quiescent systems, as opposed to systems involving micro-sized powders that require dispersion at high turbulence

  7. Comparing black carbon types in sequestering polybrominated diphenyl ethers (PBDEs) in sediments

    International Nuclear Information System (INIS)

    Jia, Fang; Gan, Jay

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely found in sediments, especially congeners from the penta-BDE formula. Due to their strong affinity for black carbon (BC), bioavailability of PBDEs may be decreased in BC-amended sediments. In this study, we used a matrix-SPME method to measure the freely dissolved concentration (C free ) of PBDEs as a parameter of their potential bioavailability and evaluated the differences among biochar, charcoal, and activated carbon. Activated carbon displayed a substantially greater sequestration capacity than biochar or charcoal. At 1% amendment rate in sediment with low organic carbon (OC) content (0.12%), C free of six PBDEs was reduced by 47.5–78.0%, 47.3–77.5%, and 94.1–98.3% with biochar, charcoal, and activated carbon, respectively, while the sequestration was more limited in sediment with high OC content (0.87%). Therefore, it is important to consider the type and properties of the BC and the sediment in BC-based remediation or mitigation. -- Highlights: • A matrix-SPME method was developed for measuring C free of PBDEs in sediment porewater. • Different black carbon types differed greatly in their ability to decrease C free of PBDEs in sediments. • Activated carbon was much more efficient in sequestering PBDEs than biochar or charcoal. • The effect of black carbon was more pronounced in sediment with lower indigenous OC content. -- Biochar, charcoal, and activated carbon have been compared for their efficacy in sequestering PBDEs in sediments by using a matrix-SPME method

  8. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  9. Mixing states of aerosols over four environmentally distinct atmospheric regimes in Asia: coastal, urban, and industrial locations influenced by dust.

    Science.gov (United States)

    Ramachandran, S; Srivastava, Rohit

    2016-06-01

    Mixing can influence the optical, physical, and chemical characteristics of aerosols, which in turn can modify their life cycle and radiative effects. Assumptions on the mixing state can lead to uncertain estimates of aerosol radiative effects. To examine the effect of mixing on the aerosol characteristics, and their influence on radiative effects, aerosol mixing states are determined over four environmentally distinct locations (Karachi, Gwangju, Osaka, and Singapore) in Asia, an aerosol hot spot region, using measured spectral aerosol optical properties and optical properties model. Aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (g) exhibit spectral, spatial, and temporal variations. Aerosol mixing states exhibit large spatial and temporal variations consistent with aerosol characteristics and aerosol type over each location. External mixing of aerosol species is unable to reproduce measured SSA over Asia, thus providing a strong evidence that aerosols exist in mixed state. Mineral dust (MD) (core)-Black carbon (BC) (shell) is one of the most preferred aerosol mixing states. Over locations influenced by biomass burning aerosols, BC (core)-water soluble (WS, shell) is a preferred mixing state, while dust gets coated by anthropogenic aerosols (BC, WS) over urban regions influenced by dust. MD (core)-sea salt (shell) mixing is found over Gwangju corroborating the observations. Aerosol radiative forcing exhibits large seasonal and spatial variations consistent with features seen in aerosol optical properties and mixing states. TOA forcing is less negative/positive for external mixing scenario because of lower SSA. Aerosol radiative forcing in Karachi is a factor of 2 higher when compared to Gwangju, Osaka, and Singapore. The influence of g on aerosol radiative forcing is insignificant. Results emphasize that rather than prescribing one single aerosol mixing state in global climate models regionally and temporally varying aerosol

  10. Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China

    Directory of Open Access Journals (Sweden)

    Y.-L. Zhang

    2018-03-01

    Full Text Available Water-soluble organic carbon (WSOC is a large fraction of organic aerosols (OA globally and has significant impacts on climate and human health. The sources of WSOC remain very uncertain in polluted regions. Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C and offline high-resolution time-of-flight aerosol mass spectrometer measurements. Fossil emissions on average accounted for 32–47 % of WSOC. Secondary organic carbon (SOC dominated both the non-fossil and fossil derived WSOC, highlighting the importance of secondary formation to WSOC in severe winter haze episodes. Contributions from fossil emissions to SOC were 61 ± 4 and 50 ± 9 % in Shanghai and Beijing, respectively, significantly larger than those in Guangzhou (36 ± 9 % and Xi'an (26 ± 9 %. The most important primary sources were biomass burning emissions, contributing 17–26 % of WSOC. The remaining primary sources such as coal combustion, cooking and traffic were generally very small but not negligible contributors, as coal combustion contribution could exceed 10 %. Taken together with earlier 14C source apportionment studies in urban, rural, semi-urban and background regions in Asia, Europe and the USA, we demonstrated a dominant contribution of non-fossil emissions (i.e., 75 ± 11 % to WSOC aerosols in the Northern Hemisphere; however, the fossil fraction is substantially larger in aerosols from East Asia and the eastern Asian pollution outflow, especially during winter, due to increasing coal combustion. Inclusion of our findings can improve a modelling of effects of WSOC aerosols on climate, atmospheric chemistry and public health.

  11. Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China

    Science.gov (United States)

    Zhang, Yan-Lin; El-Haddad, Imad; Huang, Ru-Jin; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Zotter, Peter; Bozzetti, Carlo; Daellenbach, Kaspar R.; Slowik, Jay G.; Salazar, Gary; Prévôt, André S. H.; Szidat, Sönke

    2018-03-01

    Water-soluble organic carbon (WSOC) is a large fraction of organic aerosols (OA) globally and has significant impacts on climate and human health. The sources of WSOC remain very uncertain in polluted regions. Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C) and offline high-resolution time-of-flight aerosol mass spectrometer measurements. Fossil emissions on average accounted for 32-47 % of WSOC. Secondary organic carbon (SOC) dominated both the non-fossil and fossil derived WSOC, highlighting the importance of secondary formation to WSOC in severe winter haze episodes. Contributions from fossil emissions to SOC were 61 ± 4 and 50 ± 9 % in Shanghai and Beijing, respectively, significantly larger than those in Guangzhou (36 ± 9 %) and Xi'an (26 ± 9 %). The most important primary sources were biomass burning emissions, contributing 17-26 % of WSOC. The remaining primary sources such as coal combustion, cooking and traffic were generally very small but not negligible contributors, as coal combustion contribution could exceed 10 %. Taken together with earlier 14C source apportionment studies in urban, rural, semi-urban and background regions in Asia, Europe and the USA, we demonstrated a dominant contribution of non-fossil emissions (i.e., 75 ± 11 %) to WSOC aerosols in the Northern Hemisphere; however, the fossil fraction is substantially larger in aerosols from East Asia and the eastern Asian pollution outflow, especially during winter, due to increasing coal combustion. Inclusion of our findings can improve a modelling of effects of WSOC aerosols on climate, atmospheric chemistry and public health.

  12. The chlorination kinetics of zirconium dioxide mixed with carbon black

    International Nuclear Information System (INIS)

    Movahedian, A.; Raygan, Sh.; Pourabdoli, M.

    2011-01-01

    In this research, the effects of chlorine gas at different chlorine partial pressures and carbon concentrations on the carbochlorination of zirconia were studied. It was found that in briquettes containing 18.7 %wt carbon, in a chlorine partial pressure range of 0.25-0.75 atm and for a reacted fraction of less than 0.7, the chemical reaction model was dominant for the carbochlorination process of zirconia. The order of reaction into chlorine gas (n) in this situation was 0.57. Moreover, the best weight ratio of carbon to zirconia was 40/60. In this case, the activation energy of the reaction was 209.9 kJ mol -1 in a temperature range of 1023-1223 K, and the dominant model was the chemical reaction model.

  13. An experimental and numerical study of the light scattering properties of ice crystals with black carbon inclusions

    Science.gov (United States)

    Arienti, Marco; Geier, Manfred; Yang, Xiaoyuan; Orcutt, John; Zenker, Jake; Brooks, Sarah D.

    2018-05-01

    We investigate the optical properties of ice crystals nucleated on atmospheric black carbon (BC). The parameters examined in this study are the shape of the ice crystal, the volume fraction of the BC inclusion, and its location inside the crystal. We report on new spectrometer measurements of forward scattering and backward polarization from ice crystals nucleated on BC particles and grown under laboratory-controlled conditions. Data from the Cloud and Aerosol Spectrometer with Polarization (CASPOL) are used for direct comparison with single-particle calculations of the scattering phase matrix. Geometrical optics and discrete dipole approximation techniques are jointly used to provide the best compromise of flexibility and accuracy over a broad range of size parameters. Together with the interpretation of the trends revealed by the CASPOL measurements, the numerical results confirm previous reports on absorption cross-section magnification in the visible light range. Even taking into account effects of crystal shape and inclusion position, the ratio between absorption cross-section of the compound particle and the absorption cross-section of the BC inclusion alone (the absorption magnification) has a lower bound of 1.5; this value increases to 1.7 if the inclusion is centered with respect to the crystal. The simple model of BC-ice particle presented here also offers new insights on the effect of the relative position of the BC inclusion with respect to the crystal's outer surfaces, the shape of the crystal, and its size.

  14. Soot on snow in Iceland: First results on black carbon and organic carbon in Iceland 2016 snow and ice samples, including the glacier Solheimajökull

    Science.gov (United States)

    Meinander, Outi; Dagsson-Waldhauserova, Pavla; Gritsevich, Maria; Aurela, Minna; Arnalds, Olafur; Dragosics, Monika; Virkkula, Aki; Svensson, Jonas; Peltoniemi, Jouni; Kontu, Anna; Kivekäs, Niku; Leppäranta, Matti; de Leeuw, Gerrit; Laaksonen, Ari; Lihavainen, Heikki; Arslan, Ali N.; Paatero, Jussi

    2017-04-01

    New results on black carbon (BC) and organic carbon (OC) on snow and ice in Iceland in 2016 will be presented in connection to our earlier results on BC and OC on Arctic seasonal snow surface, and in connection to our 2013 and 2016 experiments on effects of light absorbing impurities, including Icelandic dust, on snow albedo, melt and density. Our sampling included the glacier Solheimajökull in Iceland. The mass balance of this glacier is negative and it has been shrinking during the last 20 years by 900 meters from its southwestern corner. Icelandic snow and ice samples were not expected to contain high concentrations of BC, as power generation with domestic renewable water and geothermal power energy sources cover 80 % of the total energy consumption in Iceland. Our BC results on filters analyzed with a Thermal/Optical Carbon Aerosol Analyzer (OC/EC) confirm this assumption. Other potential soot sources in Iceland include agricultural burning, industry (aluminum and ferroalloy production and fishing industry), open burning, residential heating and transport (shipping, road traffic, aviation). On the contrary to low BC, we have found high concentrations of organic carbon in our Iceland 2016 samples. Some of the possible reasons for those will be discussed in this presentation. Earlier, we have measured and reported unexpectedly low snow albedo values of Arctic seasonally melting snow in Sodankylä, north of Arctic Circle. Our low albedo results of melting snow have been confirmed by three independent data sets. We have explained these low values to be due to: (i) large snow grain sizes up to 3 mm in diameter (seasonally melting snow); (ii) meltwater surrounding the grains and increasing the effective grain size; (iii) absorption caused by impurities in the snow, with concentration of elemental carbon (black carbon) in snow of 87 ppb, and organic carbon 2894 ppb. The high concentrations of carbon were due to air masses originating from the Kola Peninsula, Russia

  15. Reactivity of liquid and semisolid secondary organic carbon with chloride and nitrate in atmospheric aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingbing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Brien, Rachel E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of the Pacific, Stockton, CA (United States); Kelly, Stephen T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shilling, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moffet, Ryan C. [Univ. of the Pacific, Stockton, CA (United States); Gilles, Mary K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Laskin, Alexander [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-14

    Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semi-solid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary micro-spectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO₃ particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO₃ from reacted aerosol particles may have important implications for atmospheric chemistry.

  16. Effect of carbon black on thermal properties of charcoal and salacca leafstalk briquettes

    Science.gov (United States)

    Thassana, Chewa; Nuleg, Witoon

    2017-08-01

    In this work, the effect of a carbon black (CB) on the thermal properties of briquettes produced from the charcoal and the salacca leafstalk with and without CB have been investigated. Four thermal properties of a briquettes compose of the burning time, the calorific value, the percentage moisture (PMC) and an percentage ash content (PAC) were analyzed using standard laboratory methods. Our results were indicated that the sallacca leafstalk mix a carbon black is the long burning times, high heating but a few ash content. Results shown that the burning time and the calorific value of a charcoal, a charcoal with CB, the salacca leafstalk and the salacca leafstalk with carbon black particles is about 58, 63, 76, 81 minutes, and 10.33, 12.96, 13.12, 14.63 MJ/kg, respectively. In addition, the PMC and PAC were in range of 11.6 - 8.14% and 9.33 - 5.42%. So, we can conclude that a cabon black affect on the thermal properties of a briquettes and salacca leaftstalk mixed CB has been most suited for briquetting.

  17. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  18. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores: OPTICAL AND CHEMICAL PROPERTIES OF BROWN CARBON AEROSOLS

    Energy Technology Data Exchange (ETDEWEB)

    Bluvshtein, Nir [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Lin, Peng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Flores, J. Michel [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Segev, Lior [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Mazar, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Tas, Eran [The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot Israel; Snider, Graydon [Department of Physics and Atmospheric Science, Dalhousie University, Halifax Nova Scotia Canada; Weagle, Crystal [Department of Chemistry, Dalhousie University, Halifax Nova Scotia Canada; Brown, Steven S. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Laskin, Alexander [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Rudich, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel

    2017-05-23

    The radiative effects of biomass burning aerosols on regional and global scale is substantial. Accurate modeling of the radiative effects of smoke aerosols require wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols between 300 and 650 nm wavelength during a regional bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders of magnitude, changing the size-weighted single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and aged biomass burning aerosols. In addition, PM2.5 filter samples were collected for detailed off-line chemical analysis of the water soluble organics that contribute to light absorption. Nitrophenols were identified as the main organic species responsible for the increased absorption at 400-500 nm. These include species such as 4- nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosol from biomass burning in absorption of solar radiation and in effective radiative forcing.

  19. Effect of sterilization on mineralization of straw and black carbon

    DEFF Research Database (Denmark)

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    vulgare) with a specific activity 2.9 MBq g C. Production of BC was implemented at 300 °C for 24 h in a muffle oven, incubated in soil and C in the evolved CO was measured after 0.5, 1, 2, 4, 8, 16, 26 and 40 days. BC showed much lower and slow evolution of CO than the plant material which refers to high...... the plant material proceeded with a lag phase while CO evolution from the charcoals showed no lag phase. This indicates that microorganisms are not involved in the initial flush of carbon emitted from the BC. We suggest that an alternative source may be carbonates on the surfaces of the BC, but another...

  20. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of