WorldWideScience

Sample records for bivalvia current taxonomy

  1. Vesicomyidae (bivalvia: current taxonomy and distribution.

    Directory of Open Access Journals (Sweden)

    Elena M Krylova

    Full Text Available Vesicomyid bivalves are a consistent component of communities of sulphide-rich reducing environments distributed worldwide from 77 degrees N to 70 degrees S at depths from 100 to 9050 m. Up-to-now the taxonomy of the family has been uncertain. In this paper, the current state of vesicomyid taxonomy and distribution at the generic rank are considered. This survey is founded on a database including information both from literature sources and also unpublished data of the authors on all recent species of vesicomyids. We suggest that the Vesicomyidae is not a synonym of Kelliellidae, and is therefore a valid family name. We propose to divide the family Vesicomyidae into two subfamilies: Vesicomyinae and Pliocardiinae. The Vesicomyinae includes one genus, Vesicomya, which comprises small-sized bivalves characterized by non-reduced gut and the absence of subfilamental tissue in gills. Symbiosis with chemoautotrophic bacteria has, so far, not been proved for Vesicomya and the genus is not restricted to sulphide-rich reducing habitats. The subfamily Pliocardiinae currently contains about 15 genera with mostly medium or large body size, characterized by the presence of subfilamental tissue in the gills. The Pliocardiinae are highly specialized for sulphide-rich reducing environments, harbouring chemoautrophic bacteria in their gills. This is the first summary of the generic structure of the family Vesicomyidae that allow us to analyze the distribution of vesicomyids at the generic level. We recognize here five different distribution patterns that are related to the specific environmental demands. The general trends in the distribution patterns of the vesicomyids are an occurrence of the majority of genera in broad geographical ranges and the prevalence of near continental type of distribution.

  2. [On the controversial questions of the taxonomy of Bivalvia (Mollusca): too many species or too few characters?].

    Science.gov (United States)

    Rizhinashvili, A L

    2011-01-01

    Problems emerging in the course of taxonomic studies and species diagnostics of freshwater bivalves are discussed by the example of one of the bivalve groups (the family Unionidae). It is shown that one of the causes of the current, diametrically opposing views on specific and generic systematics of Bivalvia is the fact that researchers revising taxonomic groups ignore complex analysis of several independent characters (conchological, anatomical, biochemical, genetic, etc.).

  3. Current and pending taxonomy of the Pasteurellaceae

    DEFF Research Database (Denmark)

    Angen, Øystein

    Since the family Pasteurellaceae was established in 1981 the taxonomy of this group of bacteria has undergone significant changes. 16S DNA sequencing showed in the early 1990-ties, that the three original genera were genetically heterogeneous. Presently, the family consists of 13 genetically...

  4. Fauna Europaea: Mollusca - Bivalvia.

    Science.gov (United States)

    Araujo, Rafael; de Jong, Yde

    2015-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. For the Mollusca-Bivalvia, data from 5 families (Margaritiferidae, Unionidae, Sphaeriidae, Cyrenidae, Dreissenidae) containing 55 species are included in this paper. European freshwater bivalves belong to the Orders Unionoida and Cardiida. All the European unionoids are included in the superfamily Unionoidea, the freshwater mussels or naiads. The European cardiids belong to the following three superfamilies: Cardioidea, Cyrenoidea and Dreissenoidea. Among the Unionoidea there are the most imperilled animal groups on the planet while the Cardioidea includes the cosmopolitan genus Pisidium, the Cyrenoidea the Asiatic clam (Corbiculafluminea) and the Dreissenoidea the famous invasive zebra mussel (Dreissenapolymorpha). Basic information is summarized on their taxonomy and biology. Tabulations include a complete list of the current estimated families, genera and species.

  5. Current taxonomy of phages infecting lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Jennifer eMahony

    2014-01-01

    Full Text Available Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp. and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.

  6. Bad taxonomy can kill : molecular reevaluation of Unio mancus Lamarck, 1819 (Bivalvia : Unionidae) and its accepted subspecies

    OpenAIRE

    Prie V.; Puillandre N.; Bouchet P.

    2012-01-01

    The conservation status of European unionid species rests on the scientific knowledge of the 1980s, before the current revival of taxonomic reappraisals based on molecular characters. The taxonomic status of Unio mancus Lamarck, 1819, superficially similar to Unio pictorum (Linnaeus, 1758) and often synonymized with it, is re-evaluated based on a random sample of major French drainages and a systematic sample of historical type localities. We confirm the validity of U. mancus as a distinct sp...

  7. Bad taxonomy can kill : molecular reevaluation of Unio mancus Lamarck, 1819 (Bivalvia : Unionidae and its accepted subspecies

    Directory of Open Access Journals (Sweden)

    Prie V.

    2012-07-01

    Full Text Available The conservation status of European unionid species rests on the scientific knowledge of the 1980s, before the current revival of taxonomic reappraisals based on molecular characters. The taxonomic status of Unio mancus Lamarck, 1819, superficially similar to Unio pictorum (Linnaeus, 1758 and often synonymized with it, is re-evaluated based on a random sample of major French drainages and a systematic sample of historical type localities. We confirm the validity of U. mancus as a distinct species occurring in France and Spain, where it is structured into three geographical units here ranked as subspecies: U. m. mancus [Atlantic drainages, eastern Pyrenees, Spanish Mediterranean drainages], U. m. turtonii Payraudeau, 1826 [coastal drainages East of the Rhône and Corsica] and U. m. requienii Michaud, 1831 [Seine, Saône-Rhône, and coastal drainages West of the Rhône]. Many populations of Unio mancus have been extirpated during the 20th century and the remaining populations continue to be under pressure; U. mancus satisfies the criteria to be listed as «Endangered» in the IUCN Red List.

  8. Plant taxonomy: a historical perspective, current challenges, and perspectives.

    Science.gov (United States)

    Rouhan, Germinal; Gaudeul, Myriam

    2014-01-01

    Taxonomy is the science that explores, describes, names, and classifies all organisms. In this introductory chapter, we highlight the major historical steps in the elaboration of this science that provides baseline data for all fields of biology and plays a vital role for society but is also an independent, complex, and sound hypothesis-driven scientific discipline.In a first part, we underline that plant taxonomy is one of the earliest scientific disciplines that emerged thousands of years ago, even before the important contributions of Greeks and Romans (e.g., Theophrastus, Pliny the Elder, and Dioscorides). In the fifteenth to sixteenth centuries, plant taxonomy benefited from the Great Navigations, the invention of the printing press, the creation of botanic gardens, and the use of the drying technique to preserve plant specimens. In parallel with the growing body of morpho-anatomical data, subsequent major steps in the history of plant taxonomy include the emergence of the concept of natural classification, the adoption of the binomial naming system (with the major role of Linnaeus) and other universal rules for the naming of plants, the formulation of the principle of subordination of characters, and the advent of the evolutionary thought. More recently, the cladistic theory (initiated by Hennig) and the rapid advances in DNA technologies allowed to infer phylogenies and to propose true natural, genealogy-based classifications.In a second part, we put the emphasis on the challenges that plant taxonomy faces nowadays. The still very incomplete taxonomic knowledge of the worldwide flora (the so-called taxonomic impediment) is seriously hampering conservation efforts that are especially crucial as biodiversity enters its sixth extinction crisis. It appears mainly due to insufficient funding, lack of taxonomic expertise, and lack of communication and coordination. We then review recent initiatives to overcome these limitations and to anticipate how taxonomy

  9. Taxonomy of Campylobacter, Arcobacter, Helicobacter and related bacteria: current status, future prospects and immediate concerns

    DEFF Research Database (Denmark)

    On, Stephen L.W.

    2001-01-01

    The taxonomy of the genus Campylobacter has changed dramatically since its inception in 1963. At that time the genus comprised just two species. At present, taxa that were once assigned to Campylobacter may belong to one of over 50 species distributed among six genera. Most of these taxa belong...... and taxonomists. The purpose of this article is briefly to review the major developments in the taxonomy of Campylobacter from its inception to the present day; summarize the most recent changes in the field; analyse current topical issues of special relevance to applied microbiologists, including identification...... of the bacteria; and speculate on future prospects for campylobacterial taxonomy....

  10. The complete maternally and paternally inherited mitochondrial genomes of the endangered freshwater mussel Solenaia carinatus (Bivalvia: Unionidae and implications for Unionidae taxonomy.

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Huang

    Full Text Available Doubly uniparental inheritance (DUI is an exception to the typical maternal inheritance of mitochondrial (mt DNA in Metazoa, and found only in some bivalves. In species with DUI, there are two highly divergent gender-associated mt genomes: maternal (F and paternal (M, which transmit independently and show different tissue localization. Solenaia carinatus is an endangered freshwater mussel species exclusive to Poyang Lake basin, China. Anthropogenic events in the watershed greatly threaten the survival of this species. Nevertheless, the taxonomy of S. carinatus based on shell morphology is confusing, and the subfamilial placement of the genus Solenaia remains unclear. In order to clarify the taxonomic status and discuss the phylogenetic implications of family Unionidae, the entire F and M mt genomes of S. carinatus were sequenced and compared with the mt genomes of diverse freshwater mussel species. The complete F and M mt genomes of S. carinatus are 16716 bp and 17102 bp in size, respectively. The F and M mt genomes of S. carinatus diverge by about 40% in nucleotide sequence and 48% in amino acid sequence. Compared to F counterparts, the M genome shows a more compact structure. Different gene arrangements are found in these two gender-associated mt genomes. Among these, the F genome cox2-rrnS gene order is considered to be a genome-level synapomorphy for female lineage of the subfamily Gonideinae. From maternal and paternal mtDNA perspectives, the phylogenetic analyses of Unionoida indicate that S. carinatus belongs to Gonideinae. The F and M clades in freshwater mussels are reciprocal monophyly. The phylogenetic trees advocate the classification of sampled Unionidae species into four subfamilies: Gonideinae, Ambleminae, Anodontinae, and Unioninae, which is supported by the morphological characteristics of glochidia.

  11. The complete maternally and paternally inherited mitochondrial genomes of the endangered freshwater mussel Solenaia carinatus (Bivalvia: Unionidae) and implications for Unionidae taxonomy.

    Science.gov (United States)

    Huang, Xiao-Chen; Rong, Jun; Liu, Yong; Zhang, Ming-Hua; Wan, Yuan; Ouyang, Shan; Zhou, Chun-Hua; Wu, Xiao-Ping

    2013-01-01

    Doubly uniparental inheritance (DUI) is an exception to the typical maternal inheritance of mitochondrial (mt) DNA in Metazoa, and found only in some bivalves. In species with DUI, there are two highly divergent gender-associated mt genomes: maternal (F) and paternal (M), which transmit independently and show different tissue localization. Solenaia carinatus is an endangered freshwater mussel species exclusive to Poyang Lake basin, China. Anthropogenic events in the watershed greatly threaten the survival of this species. Nevertheless, the taxonomy of S. carinatus based on shell morphology is confusing, and the subfamilial placement of the genus Solenaia remains unclear. In order to clarify the taxonomic status and discuss the phylogenetic implications of family Unionidae, the entire F and M mt genomes of S. carinatus were sequenced and compared with the mt genomes of diverse freshwater mussel species. The complete F and M mt genomes of S. carinatus are 16716 bp and 17102 bp in size, respectively. The F and M mt genomes of S. carinatus diverge by about 40% in nucleotide sequence and 48% in amino acid sequence. Compared to F counterparts, the M genome shows a more compact structure. Different gene arrangements are found in these two gender-associated mt genomes. Among these, the F genome cox2-rrnS gene order is considered to be a genome-level synapomorphy for female lineage of the subfamily Gonideinae. From maternal and paternal mtDNA perspectives, the phylogenetic analyses of Unionoida indicate that S. carinatus belongs to Gonideinae. The F and M clades in freshwater mussels are reciprocal monophyly. The phylogenetic trees advocate the classification of sampled Unionidae species into four subfamilies: Gonideinae, Ambleminae, Anodontinae, and Unioninae, which is supported by the morphological characteristics of glochidia.

  12. Orobanche caryophyllacea Sm. (Orobanchaceae in Poland: current distribution, taxonomy, plant communities and hosts

    Directory of Open Access Journals (Sweden)

    Renata Piwowarczyk

    2014-09-01

    Full Text Available The paper presents the current distribution of Orobanche caryophyllacea Sm. in Poland based on a critical revision of herbarium and literature data as well as the results of my field studies. The majority of localities are in south and south-eastern Poland: Małopolska Upland, Lublin Upland, Roztocze, Przemyśl Foothills, Pieniny Mts, rarely in the valleys of the Lower Vistula and Oder rivers or Wolin island. The distribution map in Poland is included. The taxonomy, biology and ecology of the species are discussed.

  13. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Triceratops+horridus&t=L http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Triceratops+horridus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Triceratops+horridus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Triceratops+horridus&t=NS ...

  14. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available iosciencedbc.jp/taxonomy_icon/icon.cgi?i=Stegosaurus+stenops&t=L http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Stegosaurus+stenops&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=S...tegosaurus+stenops&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Stegosaurus+stenops&t=NS ...

  15. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available mphii_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cycas+rumphii&t=L http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Cycas+rumphii&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cycas+rumphii&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cycas+rumphii&t=NS ...

  16. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ltithorax_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brachiosaurus+altithorax&t=L http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Brachiosaurus+altithorax&t=NL http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Brachiosaurus+altithorax&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brachiosaurus+altithorax&t=NS ...

  17. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pteranodon+longiceps&t=L http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Pteranodon+longiceps&t=NL http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Pteranodon+longiceps&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pteranodon+longiceps&t=NS ...

  18. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Hydra_magnipapillata_S.png Hydra_magnipapillata_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hy...dra+magnipapillata&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hydra+magnipapillata&t=NL http://bio...sciencedbc.jp/taxonomy_icon/icon.cgi?i=Hydra+magnipapillata&t=S http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Hydra+magnipapillata&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=159 ...

  19. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Schistosoma_mansoni_S.png Schistosoma_mansoni_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=...Schistosoma+mansoni&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+mansoni&t=NL http://bio...sciencedbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+mansoni&t=S http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Schistosoma+mansoni&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=185 ...

  20. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Trichoplax_adhaerens_S.png Trichoplax_adhaerens_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tr...ichoplax+adhaerens&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trichoplax+adhaerens&t=NL http://bio...sciencedbc.jp/taxonomy_icon/icon.cgi?i=Trichoplax+adhaerens&t=S http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Trichoplax+adhaerens&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=95 ...

  1. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NL.png Caenorhabditis_elegans_S.png Caenorhabditis_elegans_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Caenorhabditis+elegans&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Caenorhabditis+elegans&t...=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Caenorhabditis+elegans&t=S h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Caenorhabditis+elegans&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=94 ...

  2. My Home is my Bazaar - A Taxonomy and Classification of Current Wireless Home Network Protocols

    DEFF Research Database (Denmark)

    Hjorth, Theis S.

    2011-01-01

    Recent advances in wireless communication have produced a multitude of related protocols, leading to a growing market of products for home automation systems within energy management, elder care, etc. These systems are different from wired ones in terms of architectures and qualities, which leads......, cost, security, etc. Third, a classification based on the taxonomy and the collected data is presented. In the final discussion, we identify a number of key aspects that could be important technology criteria for future development of home automation protocols....

  3. Current status of the genetics and molecular taxonomy of Echinococcus species.

    Science.gov (United States)

    McManus, D P

    2013-11-01

    The taxonomy of Echinococcus has long been controversial. Based mainly on differences in morphology and host-parasite specificity characteristics, 16 species and 13 subspecies were originally described. Subsequently, most of these taxa were regarded as synonyms for Echinococcus granulosus and only 4 valid species were recognised: E. granulosus; E. multilocularis; E. oligarthrus and E. vogeli. But, over the past 50 years, laboratory and field observations have revealed considerable phenotypic variability between isolates of Echinococcus, particularly those of E. granulosus, which include differences in: morphology in both larval and adult stages, development in vitro and in vivo, host infectivity and specificity, chemical composition, metabolism, proteins and enzymes, pathogenicity and antigenicity. The application of molecular tools has revealed differences in nucleic acid sequences that reflect this phenotypic variation and the genetic and phenotypic characteristics complement the previous observations made by the descriptive parasitologists many years ago. The fact that some of these variants or strains are poorly or not infective to humans has resulted in a reappraisal of the public health significance of Echinococcus in areas where such variants occur. A revised taxonomy for species in the Echinococcus genus has been proposed that is generally accepted, and is based on the new molecular data and the biological and epidemiological characteristics of host-adapted species and strains.

  4. The Taxonomy for Learning, Teaching and Assessing: Current Practices at Polytechnics in Bangladesh and its Effects in Developing Students’ Competences

    Directory of Open Access Journals (Sweden)

    Faruque A. Haolader

    2015-09-01

    Full Text Available Polytechnics in Bangladesh endeavour to produce quality graduates for national and international job markets. The quality of graduates depends on several factors. This study examines the implementation process of the polytechnic curriculum with the objectives of determining the current level of practices in learning/ teaching material design, in delivering curriculum content, in assessing students and its effect on students’ competence development. Data was collected through observation, opinion survey and competence test. Qualitative and quantitative methodologies were used for data interpretation and analysis in this descriptive type of research study. Findings revealed that the learning materials are mainly theory oriented and mostly cover those contents usually common in exams. About half of teachers are aware of the taxonomy for learning, teaching and assessing, but they rarely put importance on it. In the classroom, teachers spend only a little time for delivering content at the level of apply/analyse. However, a significant number of tasks performed in labs are practical and occupation relevant and can be classified at higher levels of the taxonomy. In student assessment, the test-items assess mainly theoretical knowledge at the level of remember. The effect of these practices is reflected in demonstrating student performance in a competence test. The study concludes with some recommendations.

  5. Numerical taxonomy

    OpenAIRE

    Inger, Robert F.

    2012-01-01

    For some strange reason the attitudes of taxonomists and systematists towards the phrase "numerical taxonomy" fall into two extreme positions. On the one hand are those who think numerical taxonomy provides the only means of reaching objective conclusions, that any other approach to taxonomy is sterile, subjective, and really not quite scientific. At the other extreme are those taxonomists who think numerical taxonomy has no place in their science, that it is unclean or is likely to be ...

  6. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NL.png Phaeodactylum_tricornutum_S.png Phaeodactylum_tricornutum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Phaeodactylum+tricornutum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Phaeodactylum+t...ricornutum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Phaeodactylum+tr...icornutum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Phaeodactylum+tricornutum&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=213 ...

  7. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available aurus_rex_L.png Tyrannosaurus_rex_NL.png Tyrannosaurus_rex_S.png Tyrannosaurus_rex_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Tyrannosaurus+rex&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tyrann...osaurus+rex&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tyrannosaurus+r...ex&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tyrannosaurus+rex&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=109 ...

  8. Fauna Europaea: Mollusca – Bivalvia

    Directory of Open Access Journals (Sweden)

    Rafael Araujo

    2015-07-01

    European freshwater bivalves belong to the Orders Unionoida and Cardiida. All the European unionoids are included in the superfamily Unionoidea, the freshwater mussels or naiads. The European cardiids belong to the following three superfamilies: Cardioidea, Cyrenoidea and Dreissenoidea. Among the Unionoidea there are the most imperilled animal groups on the planet while the Cardioidea includes the cosmopolitan genus Pisidium, the Cyrenoidea the Asiatic clam (Corbicula fluminea and the Dreissenoidea the famous invasive zebra mussel (Dreissena polymorpha. Basic information is summarized on their taxonomy and biology. Tabulations include a complete list of the current estimated families, genera and species.

  9. Taxonomy Icon Data: [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Amborella trichopoda Amborella_trichopoda_L.png Amborella_trichopoda_NL.png Amborella_trichopoda..._S.png Amborella_trichopoda_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Amborella+trichopoda...&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Amborella+trichopoda&t=NL http://biosciencedb...c.jp/taxonomy_icon/icon.cgi?i=Amborella+trichopoda&t=S http://biosciencedbc.jp/ta...xonomy_icon/icon.cgi?i=Amborella+trichopoda&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=13 ...

  10. Taxonomy Icon Data: dog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available s_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Canis+lupus+familiaris&t=L http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Canis+lupus+familiaris&t=NL http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Canis+lupus+familiaris&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Canis+lupus+familiaris&t=NS ...

  11. Taxonomy Icon Data: lemon damsel [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pomacentrus+moluccensis&t=L http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Pomacentrus+moluccensis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Pomacentrus+moluccensis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pomacentrus+moluccensis&t=NS ...

  12. Taxonomy Icon Data: barley [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _S.png Hordeum_vulgare_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=L http://bi...osciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?...i=Hordeum+vulgare&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hordeum+vulgare&t=NS ...

  13. Taxonomy Icon Data: Arabian camel [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Camelus+dromedarius&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Camelus+dromedarius&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Camelus+dromedarius&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Camelus+dromedarius&t=NS ...

  14. Taxonomy Icon Data: Japanese serow [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capricornis+crispus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Capricornis+crispus&t=NL http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Capricornis+crispus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capricornis+crispus&t=NS ...

  15. Taxonomy Icon Data: rice [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ativa_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryza+sativa&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Oryza+sativa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryza+sativa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryza+sativa&t=NS ...

  16. Taxonomy Icon Data: onion [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available a_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Allium+cepa&t=L http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Allium+cepa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Allium+cepa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Allium+cepa&t=NS ...

  17. Taxonomy Icon Data: valencia orange [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _sinensis_S.png Citrus_sinensis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+sinensis&t=L ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+sinensis&t=NL http://biosciencedbc.jp/taxonomy_icon/...icon.cgi?i=Citrus+sinensis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+sinensis&t=NS ...

  18. Taxonomy Icon Data: field mustard [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available S.png Brassica_rapa_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+rapa&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Brassica+rapa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brass...ica+rapa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+rapa&t=NS ...

  19. Taxonomy Icon Data: rabbit [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryctolagus+cuniculus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Oryctolagus+cuniculus&t=NL http://biosciencedbc.jp/taxonomy_ico...n/icon.cgi?i=Oryctolagus+cuniculus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryctolagus+cuniculus&t=NS ...

  20. Taxonomy Icon Data: rape [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Brassica_napus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+napus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Brassica+napus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassic...a+napus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+napus&t=NS ...

  1. Taxonomy Icon Data: white rhinoceros [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ceratotherium+simum&t=L http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Ceratotherium+simum&t=NL http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Ceratotherium+simum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ceratotherium+simum&t=NS ...

  2. Taxonomy Icon Data: loblolly pine [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available nus_taeda_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pinus+taeda&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Pinus+taeda&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pinus+taeda&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pinus+taeda&t=NS ...

  3. Taxonomy Icon Data: white spruce [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Picea_glauca_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+glauca&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Picea+glauca&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+glauca&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+glauca&t=NS ...

  4. Taxonomy Icon Data: blue whale [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available s_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Balaenoptera+musculus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Balaenoptera+musculus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Balaenoptera+musculus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Balaenoptera+musculus&t=NS ...

  5. Taxonomy Icon Data: potato [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available uberosum_S.png Solanum_tuberosum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+tuberosum&t...=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+tuberosum&t=NL http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Solanum+tuberosum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+tuberosum&t=NS ...

  6. Taxonomy Icon Data: sperm whale [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ephalus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physeter+macrocephalus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Physeter+macrocephalus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Physeter+macrocephalus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physeter+macrocephalus&t=NS ...

  7. Taxonomy Icon Data: soybean [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available max_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glycine+max&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Glycine+max&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glycine+max&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glycine+max&t=NS ...

  8. Taxonomy Icon Data: domestic cat [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available tris_catus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Felis+silvestris+catus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Felis+silvestris+catus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Felis+silvestris+catus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Felis+silvestris+catus&t=NS ...

  9. Taxonomy Icon Data: cabbage [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _oleracea_S.png Brassica_oleracea_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+oleracea&...t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+oleracea&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Brassica+oleracea&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+oleracea&t=NS ...

  10. Taxonomy Icon Data: raccoon dog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available reutes_procyonoides_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nyctereutes+procyonoides&t=L htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nyctereutes+procyonoides&t=NL http:...//biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nyctereutes+procyonoides&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nyctereutes+procyonoides&t=NS ...

  11. Taxonomy Icon Data: platypus [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available us_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ornithorhynchus+anatinus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ornithorhynchus+anatinus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ornithorhynchus+anatinus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ornithorhynchus+anatinus&t=NS ...

  12. Taxonomy Icon Data: apple [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available pumila_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Malus+pumila&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Malus+pumila&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Malus+pumila&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Malus+pumila&t=NS ...

  13. Taxonomy Icon Data: giraffe [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available pardalis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Giraffa+camelopardalis&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Giraffa+camelopardalis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Giraffa+camelopardalis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Giraffa+camelopardalis&t=NS ...

  14. Taxonomy Icon Data: peach [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Prunus_persica_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Prunus+persica&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Prunus+persica&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Prunus...+persica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Prunus+persica&t=NS ...

  15. Taxonomy Icon Data: wine grape [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _S.png Vitis_vinifera_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vitis+vinifera&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Vitis+vinifera&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=V...itis+vinifera&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vitis+vinifera&t=NS ...

  16. Taxonomy Icon Data: oat [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available tiva_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Avena+sativa&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Avena+sativa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Avena+sativa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Avena+sativa&t=NS ...

  17. Taxonomy Icon Data: Grey heron [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NL.png Ardea_cinerea_S.png Ardea_cinerea_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ardea+cine...rea&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ardea+cinerea&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ardea+cinerea&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Ardea+cinerea&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=2 ...

  18. Taxonomy Icon Data: Planaria [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Dugesia_japonica_S.png Dugesia_japonica_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dugesi...a+japonica&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dugesia+japonica&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Dugesia+japonica&t=S http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Dugesia+japonica&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=124 ...

  19. Taxonomy Icon Data: Common mormon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ng Papilio_polytes_S.png Papilio_polytes_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papilio+pol...ytes&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papilio+polytes&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Papilio+polytes&t=S http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Papilio+polytes&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=80 ...

  20. Taxonomy Icon Data: Asian Swallowtail [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available png Papilio_xuthus_S.png Papilio_xuthus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papilio+xuth...us&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papilio+xuthus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Papilio+xuthus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Papilio+xuthus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=123 ...

  1. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Bacillus_subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=214 ...

  2. Taxonomy Icon Data: koji mold [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ergillus_oryzae_S.png Aspergillus_oryzae_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aspergillus...+oryzae&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aspergillus+oryzae&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Aspergillus+oryzae&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Aspergillus+oryzae&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=63 ...

  3. Taxonomy Icon Data: Ramazzottius [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ttius_S.png Ramazzottius_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ramazzottius&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ramazzottius&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ra...mazzottius&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ramazzottius&t=NS... http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=203 ...

  4. Taxonomy Icon Data: Danio rerio [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available io_NL.png Danio_rerio_S.png Danio_rerio_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Danio+rerio&...t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Danio+rerio&t=NL http://biosciencedbc.jp/taxonomy_icon/...icon.cgi?i=Danio+rerio&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Danio...+rerio&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=92 ...

  5. Taxonomy Icon Data: mallard [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available latyrhynchos_NL.png Anas_platyrhynchos_S.png Anas_platyrhynchos_NS.png http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Anas+platyrhynchos&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anas+platyrhynchos&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anas+platyrhynchos&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Anas+platyrhynchos&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=180 ...

  6. Evolutionary Patterns in Pearl Oysters of the Genus Pinctada (Bivalvia: Pteriidae)

    OpenAIRE

    Cunha, Regina L.; Blanc, Francoise; Bonhomme, Francois; Arnaud-Haond, Sophie

    2011-01-01

    Pearl oysters belonging to the genus Pinctada (Bivalvia: Pteriidae) are widely distributed between the Indo-Pacific and western Atlantic. The existence of both widely distributed and more restricted species makes this group a suitable model to study diversification patterns and prevailing modes of speciation. Phylogenies of eight out of the 11 currently recognised Pinctada species using mitochondrial (cox1) and nuclear (18S rRNA) data yielded two monophyletic groups that correspond to shell s...

  7. Molecular phylogeny of Arcoidea with emphasis on Arcidae species (Bivalvia: Pteriomorphia) along the coast of China: challenges to current classification of arcoids.

    Science.gov (United States)

    Feng, Yanwei; Li, Qi; Kong, Lingfeng

    2015-04-01

    The current classifications of arcoids are based on phenetic similarity, which display considerable convergence in several shell and anatomical characters, challenging phylogenetic analysis. Independent molecular analysis of DNA sequences is often necessary for accurate taxonomic assignments of arcoids, especially when morphological characters are equivocal. Here we present molecular evidence of the phylogenetic relationships among arcoid species based on Bayesian inference and Maximum Likelihood analyses of three nuclear genes (18SrRNA, 28SrRNA, and histone H3) and two mitochondrial genes (COI and 12S). Tree topologies are discussed by considering traditional arrangements of taxonomic units and previous molecular studies. The results confirm the monophyly of the order Arcoida, the family Noetiidae, and the subfamilies Anadarinae and Striarcinae, with support for the inclusion of the Glycymerididae in the Arcoidea. The subfamily Arcinae and the genera Arca, Barbatia, Scapharca, Anadara, and Glycymeris are non-monophyletic, suggesting that taxonomic issues still remain. The families Noetiidae, Cucullaeidae, and Glycymerididae appear as subgroups within, rather than sister groups to, the Arcidae. This study strongly suggests the need to carry out a taxonomic revision of the Arcoidea, especially the Arcidae, through combined analysis of morphological, paleontological, and molecular data.

  8. Company Taxonomy development

    DEFF Research Database (Denmark)

    Lund, Haakon; Ørnager, Susanne

    2016-01-01

    and knowledge, greater internal collaborations and stronger links with various sources of knowledge. Staff participating in the various workshops pointed out that work processes as well as the human resources component cannot be left out of a solution development. Originality/value – There has been little...... research carried out on current taxonomy projects in corporate environments and international emergency response organizations and few has touched on how knowledge organization systems can enhance or constrain staff’s ability to access online content....

  9. Asteroid taxonomy

    Science.gov (United States)

    Tholen, David J.; Barucci, M. Antonietta

    1989-01-01

    The spectral reflectivity of asteroid surfaces over the wavelength range of 0.3 to 1.1 micron can be used to classify these objects into several broad groups with similar spectral characteristics. The three most recently developed taxonomies group the asteroids into 9, 11, or 14 different clases, depending on the technique used to perform the analysis. The distribution of the taxonomic classes shows that darker and redder objects become more dominant at larger heliocentric distances, while the rare asteroid types are found more frequently among the small objects of the planet-crossing population.

  10. Taxonomy Icon Data: pea aphid [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available pea aphid Acyrthosiphon pisum Arthropoda Acyrthosiphon_pisum_L.png Acyrthosiphon_pisum_NL.png Acyrthosiph...on_pisum_S.png Acyrthosiphon_pisum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acyrthosiph...on+pisum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acyrthosiphon+pisum&t=NL http:...//biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acyrthosiphon+pisum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acyrthosiphon+pisum&t=NS ...

  11. Taxonomy Icon Data: southern cassowary [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available southern cassowary Casuarius casuarius Chordata/Vertebrata/Aves Casuarius_casuarius_L.png Casuarius..._casuarius_NL.png Casuarius_casuarius_S.png Casuarius_casuarius_NS.png http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Casuarius+casuarius&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Casuarius+casuarius...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Casuarius+casuarius...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Casuarius+casuarius&t=NS ...

  12. Taxonomy Icon Data: Lotus corniculatus [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Lotus corniculatus Lotus corniculatus Lotus_corniculatus_L.png Lotus_corniculatus_NL.png Lotus_cornic...ulatus_S.png Lotus_corniculatus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+cornic...ulatus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+corniculatus&t=NL http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+corniculatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lotus+corniculatus&t=NS ...

  13. Taxonomy Icon Data: honey bee [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available honey bee Apis mellifera Arthropoda Apis_mellifera_L.png Apis_mellifera_NL.png Apis_mellife...ra_S.png Apis_mellifera_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=L h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellife...ra&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=NS ...

  14. Taxonomy Icon Data: Aquilegia formosa [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Aquilegia formosa Aquilegia formosa Aquilegia_formosa_L.png Aquilegia_formosa_NL.png Aquilegia..._formosa_S.png Aquilegia_formosa_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aquilegia...+formosa&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aquilegia+formosa&t=NL http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Aquilegia+formosa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aquilegia+formosa&t=NS ...

  15. Taxonomy Icon Data: Cryptococcus neoformans [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Cryptococcus neoformans Filobasidiella neoformans Filobasidiella_neoformans_L.png Filobasidiella_neoforman...s_NL.png Filobasidiella_neoformans_S.png Filobasidiella_neoformans_NS.png http://bios...ciencedbc.jp/taxonomy_icon/icon.cgi?i=Filobasidiella+neoformans&t=L http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Filobasidiella+neoformans&t=NL http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Filobasidiella+neoformans&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Filobasidiella+neoforman

  16. Taxonomy Icon Data: turkey [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available turkey Meleagris gallopavo Chordata/Vertebrata/Aves Meleagris_gallopavo_L.png Meleagris_gallopavo_NL.png Mel...eagris_gallopavo_S.png Meleagris_gallopavo_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Meleagris...+gallopavo&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Meleagris+gallopavo...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Meleagris+gallopavo&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Meleagris+gallopavo&t=NS ...

  17. Taxonomy Icon Data: sorghum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available r_S.png Sorghum_bicolor_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=L http://b...iosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Sorghum+bicolor&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=NS ...

  18. Taxonomy Icon Data: emu [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Dromaius_novaehollandiae_NL.png Dromaius_novaehollandiae_S.png Dromaius_novaehollandiae_NS.png http://bios...ciencedbc.jp/taxonomy_icon/icon.cgi?i=Dromaius+novaehollandiae&t=L http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Dromaius+novaehollandiae&t=NL http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Dromaius+novaehollandiae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dromaius+novaehollandiae&t=NS ...

  19. Taxonomy Icon Data: Guinea baboon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available o_papio_L.png Papio_papio_NL.png Papio_papio_S.png Papio_papio_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Papio+papio&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+papio&t=NL http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Papio+papio&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+papio&t=NS ...

  20. Taxonomy Icon Data: chimpanzee [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _troglodytes_L.png Pan_troglodytes_NL.png Pan_troglodytes_S.png Pan_troglodytes_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Pan+troglodytes&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+troglod...ytes&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+troglodytes&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+troglodytes&t=NS ...

  1. Taxonomy Icon Data: phylum Xenoturbellida [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available phylum Xenoturbellida Xenoturbella bocki Xenoturbellida Xenoturbella_bocki_L.png Xenoturbell...a_bocki_NL.png Xenoturbella_bocki_S.png Xenoturbella_bocki_NS.png http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Xenoturbella+bocki&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenoturbella+bocki&t...=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenoturbella+bocki&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenoturbella+bocki&t=NS ...

  2. Taxonomy Icon Data: Acytostelium subglobosum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Acytostelium subglobosum Acytostelium subglobosum Acytostelium_subglobosum_L.png Acytosteliu...m_subglobosum_NL.png Acytostelium_subglobosum_S.png Acytostelium_subglobosum_NS.png http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Acytostelium+subglobosum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acytosteliu...m+subglobosum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acytosteliu...m+subglobosum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Acytostelium+subglobosum&t=N

  3. Taxonomy Icon Data: Dictyostelium discoideum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Dictyostelium discoideum Dictyostelium discoideum Dictyostelium_discoideum_L.png Dictyosteliu...m_discoideum_NL.png Dictyostelium_discoideum_S.png Dictyostelium_discoideum_NS.png http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Dictyostelium+discoideum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dictyosteliu...m+discoideum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dictyosteliu...m+discoideum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dictyostelium+discoideum&t=N

  4. Taxonomy Icon Data: Polysphondylium pallidum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Polysphondylium pallidum Polysphondylium pallidum Polysphondylium_pallidum_L.png Polysphondylium_pallidum..._NL.png Polysphondylium_pallidum_S.png Polysphondylium_pallidum_NS.png http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Polysphondylium+pallidum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Polysphondylium+pallidum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?...i=Polysphondylium+pallidum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Polysphondylium+pallidum&t=N

  5. Taxonomy Icon Data: mandrill [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available drillus_sphinx_L.png Mandrillus_sphinx_NL.png Mandrillus_sphinx_S.png Mandrillus_sphinx_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Mandrillus+sphinx&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=M...andrillus+sphinx&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mandrillus...+sphinx&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mandrillus+sphinx&t=NS ...

  6. Taxonomy Icon Data: black cottonwood [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available NL.png Populus_trichocarpa_S.png Populus_trichocarpa_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i...=Populus+trichocarpa&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+trichocarpa&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Populus+trichocarpa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+trichocarpa&t=NS ...

  7. Taxonomy Icon Data: Atlantic hagfish [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Myxine_glutinosa_NL.png Myxine_glutinosa_S.png Myxine_glutinosa_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Myxine+glutinosa&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Myxine+glutinosa&t=N...L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Myxine+glutinosa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Myxine+glutinosa&t=NS ...

  8. Taxonomy Icon Data: Japanese weasel [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ra Mustela_itatsi_L.png Mustela_itatsi_NL.png Mustela_itatsi_S.png Mustela_itatsi_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Mustela+itatsi&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mustela+it...atsi&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mustela+itatsi&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mustela+itatsi&t=NS ...

  9. Taxonomy Icon Data: sea urchin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available rotus_lividus_NL.png Paracentrotus_lividus_S.png Paracentrotus_lividus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Paracentrotus+lividus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paracentrotus+...lividus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paracentrotus+livid...us&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paracentrotus+lividus&t=NS ...

  10. Taxonomy Icon Data: Japanese macaque [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available e Macaca_fuscata_L.png Macaca_fuscata_NL.png Macaca_fuscata_S.png Macaca_fuscata_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Macaca+fuscata&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+fusc...ata&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+fuscata&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+fuscata&t=NS ...

  11. Taxonomy Icon Data: wild radish [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NL.png Raphanus_raphanistrum_S.png Raphanus_raphanistrum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Raphanus+raphanistrum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Raphanus+raphanistrum&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Raphanus+raphanistrum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Raphanus+raphanistrum&t=NS ...

  12. Taxonomy Icon Data: chicken [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png Gallus_gallus_S.png Gallus_gallus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gallus+gallus...&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gallus+gallus&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Gallus+gallus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gallus+gallus&t=NS ...

  13. Taxonomy Icon Data: water bears [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ng Echiniscus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Echiniscus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Echiniscus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Echiniscus&t=S http://biosciencedbc.jp/tax...onomy_icon/icon.cgi?i=Echiniscus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=58 ...

  14. Taxonomy Icon Data: thale cress [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png Arabidopsis_thaliana_S.png Arabidopsis_thaliana_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i...=Arabidopsis+thaliana&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Arabidopsis+thaliana&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Arabidopsis+thaliana&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Arabidopsis+thaliana&t=NS ...

  15. Taxonomy Icon Data: tiger [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ra_tigris_L.png Panthera_tigris_NL.png Panthera_tigris_S.png Panthera_tigris_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Panthera+tigris&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Panthera+tigri...s&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Panthera+tigris&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Panthera+tigris&t=NS ...

  16. Taxonomy Icon Data: Escherichia coli [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available cherichia_coli_S.png Escherichia_coli_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+co...li&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+coli&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Escherichia+coli&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+coli&t=NS ...

  17. Taxonomy Icon Data: emperor penguin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Aptenodytes_forsteri_NL.png Aptenodytes_forsteri_S.png Aptenodytes_forsteri_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Aptenodytes+forsteri&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apte...nodytes+forsteri&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aptenodyte...s+forsteri&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aptenodytes+forsteri&t=NS ...

  18. Taxonomy Icon Data: wild goat [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Capra_aegagrus_L.png Capra_aegagrus_NL.png Capra_aegagrus_S.png Capra_aegagrus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Capra+aegagrus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capra+aegagru...s&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capra+aegagrus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capra+aegagrus&t=NS ...

  19. Taxonomy Icon Data: Comb jelly [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available cucumis_S.png Beroe_cucumis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Beroe+cucumis&t=L http://biosciencedbc.jp/taxonom...y_icon/icon.cgi?i=Beroe+cucumis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Beroe+cucumis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Beroe+cucum...is&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=30 ...

  20. Taxonomy Icon Data: Atlantic salmon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _salar_NL.png Salmo_salar_S.png Salmo_salar_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Salmo+sa...lar&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Salmo+salar&t=NL http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Salmo+salar&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Salmo+salar&t=NS ...

  1. Taxonomy Icon Data: crested porcupine [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available . Hystrix_cristata_L.png Hystrix_cristata_NL.png Hystrix_cristata_S.png Hystrix_cristata_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Hystrix+cristata&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=H...ystrix+cristata&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cri...stata&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata&t=NS ...

  2. Taxonomy Icon Data: Peanut [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available gaea_S.png Arachis_hypogaea_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Arachis+hypogaea&t=L http://biosciencedbc.jp/taxo...nomy_icon/icon.cgi?i=Arachis+hypogaea&t=NL http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Arachis+hypogaea&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ar...achis+hypogaea&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=207 ...

  3. Taxonomy Icon Data: moose [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available lces_L.png Alces_alces_NL.png Alces_alces_S.png Alces_alces_NS.png http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Alces+alces&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Alces+alces&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Alces+alces&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Alces+alces&t=NS ...

  4. Taxonomy Icon Data: rat [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available egicus_L.png Rattus_norvegicus_NL.png Rattus_norvegicus_S.png Rattus_norvegicus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Rattus+norvegicus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Rattus+no...rvegicus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Rattus+norvegicus&...t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Rattus+norvegicus&t=NS ...

  5. Taxonomy Icon Data: brown bear [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available s_arctos_L.png Ursus_arctos_NL.png Ursus_arctos_S.png Ursus_arctos_NS.png http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Ursus+arctos&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ursus+arctos&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ursus+arctos&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ursus+arctos&t=NS ...

  6. Taxonomy Icon Data: reindeer [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available a Rangifer_tarandus_L.png Rangifer_tarandus_NL.png Rangifer_tarandus_S.png Rangifer_tarandus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Rangifer+tarandus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Rangifer+tarandus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Rangi...fer+tarandus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Rangifer+tarandus&t=NS ...

  7. Taxonomy Icon Data: ostrich [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available amelus_NL.png Struthio_camelus_S.png Struthio_camelus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?...i=Struthio+camelus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Struthio+camelus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Struthio+camelus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Struthio+camelus&t=NS ...

  8. Taxonomy Icon Data: rhesus monkey [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available acaca_mulatta_L.png Macaca_mulatta_NL.png Macaca_mulatta_S.png Macaca_mulatta_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Macaca+mulatta&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+mulatta...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+mulatta&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+mulatta&t=NS ...

  9. Taxonomy Icon Data: wapiti [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Cervus_canadensis_L.png Cervus_canadensis_NL.png Cervus_canadensis_S.png Cervus_canadensis_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Cervus+canadensis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?...i=Cervus+canadensis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cervus+...canadensis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cervus+canadensis&t=NS ...

  10. Taxonomy Icon Data: tomato [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Solanum_lycopersicum_S.png Solanum_lycopersicum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sola...num+lycopersicum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+lycopersicum&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Solanum+lycopersicum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Solanum+lycopersicum&t=NS ...

  11. Taxonomy Icon Data: barrel medic [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ng Medicago_truncatula_S.png Medicago_truncatula_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Med...icago+truncatula&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Medicago+truncatula&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Medicago+truncatula&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Medicago+truncatula&t=NS ...

  12. Taxonomy Icon Data: tobacco [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available a_tabacum_S.png Nicotiana_tabacum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nicotiana+tabacum&...t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nicotiana+tabacum&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Nicotiana+tabacum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Nicotiana+tabacum&t=NS ...

  13. Taxonomy Icon Data: Sea anemone [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available nia_equina_S.png Actinia_equina_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Actinia+equina&t=L h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Actinia+equina&t=NL http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Actinia+equina&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Actinia+equina&t=NS ...

  14. Taxonomy Icon Data: upland cotton [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Gossypium_hirsutum_S.png Gossypium_hirsutum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypi...um+hirsutum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+hirsutum&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Gossypium+hirsutum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+hirsutum&t=NS ...

  15. Taxonomy Icon Data: Sugarcane [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Saccharum_officinarum_S.png Saccharum_officinarum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Saccharum+officinarum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharum+officinarum&t=NL ht...tp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharum+officinarum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharum+officinarum&t=NS ...

  16. Taxonomy Icon Data: alpaca [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available gna_pacos_L.png Vicugna_pacos_NL.png Vicugna_pacos_S.png Vicugna_pacos_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Vicugna+pacos&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vicugna+pacos&t=NL htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vicugna+pacos&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vicugna+pacos&t=NS ...

  17. Taxonomy Icon Data: dugong [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Dugong_dugon_NL.png Dugong_dugon_S.png Dugong_dugon_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Dugong+dugon&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dugong+dugon&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Dugong+dugon&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Dugong+dugon&t=NS ...

  18. Taxonomy Icon Data: sika deer [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ervus_nippon_L.png Cervus_nippon_NL.png Cervus_nippon_S.png Cervus_nippon_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Cervus+nippon&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cervus+nippon&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cervus+nippon&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cervus+nippon&t=NS ...

  19. Taxonomy Icon Data: Sitka spruce [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available sitchensis_S.png Picea_sitchensis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+sitchensis&t...=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+sitchensis&t=NL http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Picea+sitchensis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Picea+sitchensis&t=NS ...

  20. Taxonomy Icon Data: white shark [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available harias_L.png Carcharodon_carcharias_NL.png Carcharodon_carcharias_S.png Carcharodon_carcharias_NS.png http:/.../biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Carcharodon+carcharias&t=L http://biosciencedbc.jp/taxonomy_icon/...icon.cgi?i=Carcharodon+carcharias&t=NL http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Carcharodon+carcharias&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Carcharodon+carcharias&t=NS ...

  1. Taxonomy Icon Data: Chile pepper [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available annuum_S.png Capsicum_annuum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capsicum+annuum&t=L htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capsicum+annuum&t=NL http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Capsicum+annuum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Capsicum+annuum&t=NS ...

  2. Taxonomy Icon Data: tiger puffer [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available png Takifugu_rubripes_NL.png Takifugu_rubripes_S.png Takifugu_rubripes_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Takifugu+rubripes&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Takifugu+rubripes&...t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Takifugu+rubripes&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Takifugu+rubripes&t=NS ...

  3. Taxonomy Icon Data: Asiatic tapir [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available irus_indicus_L.png Tapirus_indicus_NL.png Tapirus_indicus_S.png Tapirus_indicus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Tapirus+indicus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tapirus+ind...icus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tapirus+indicus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tapirus+indicus&t=NS ...

  4. Taxonomy Icon Data: fruit fly [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available la_melanogaster_NL.png Drosophila_melanogaster_S.png Drosophila_melanogaster_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Drosophila+melanogaster&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Drosop...hila+melanogaster&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Drosophil...a+melanogaster&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Drosophila+melanogaster&t=NS ...

  5. Taxonomy Icon Data: sunflower [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available thus_annuus_S.png Helianthus_annuus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Helianthus+annuu...s&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Helianthus+annuus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Helianthus+annuus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Helianthus+annuus&t=NS ...

  6. Taxonomy Icon Data: tuatara [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available png Sphenodon_punctatus_NL.png Sphenodon_punctatus_S.png Sphenodon_punctatus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Sphenodon+punctatus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sphenodon+...punctatus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sphenodon+punctat...us&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sphenodon+punctatus&t=NS ...

  7. Taxonomy Icon Data: Aardvark [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available opus_afer_L.png Orycteropus_afer_NL.png Orycteropus_afer_S.png Orycteropus_afer_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Orycteropus+afer&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Orycteropu...s+afer&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Orycteropus+afer&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Orycteropus+afer&t=NS ...

  8. Taxonomy Icon Data: bread wheat [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available icum_aestivum_S.png Triticum_aestivum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Triticum+aesti...vum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Triticum+aestivum&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Triticum+aestivum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Triticum+aestivum&t=NS ...

  9. Taxonomy Icon Data: mummichog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available us_L.png Fundulus_heteroclitus_NL.png Fundulus_heteroclitus_S.png Fundulus_heteroclitus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Fundulus+heteroclitus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Fundulus+heteroclitus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Fu...ndulus+heteroclitus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Fundulus+heteroclitus&t=NS ...

  10. Taxonomy Icon Data: Clementine [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available s_clementina_S.png Citrus_clementina_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+clementi...na&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+clementina&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Citrus+clementina&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Citrus+clementina&t=NS ...

  11. Taxonomy Icon Data: oriental silverfish [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available olepisma_villosa_NL.png Ctenolepisma_villosa_S.png Ctenolepisma_villosa_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ctenolepisma+villosa&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ctenolepisma+v...illosa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ctenolepisma+villosa...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ctenolepisma+villosa&t=NS ...

  12. Taxonomy Icon Data: Bornean orangutan [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available te Pongo_pygmaeus_L.png Pongo_pygmaeus_NL.png Pongo_pygmaeus_S.png Pongo_pygmaeus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Pongo+pygmaeus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pongo+pygm...aeus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pongo+pygmaeus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pongo+pygmaeus&t=NS ...

  13. Taxonomy Icon Data: Japanese squirrel [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available urus_lis_L.png Sciurus_lis_NL.png Sciurus_lis_S.png Sciurus_lis_NS.png http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Sciurus+lis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sciurus+lis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Sciurus+lis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sciurus+lis&t=NS ...

  14. Taxonomy Icon Data: quaking aspen [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available quaking aspen Populus tremuloides Populus_tremuloides_L.png Populus_tremuloides_NL.png Populus_trem...uloides_S.png Populus_tremuloides_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+trem...uloides&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+tremuloides&t=NL http://biosc...iencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+tremuloides&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+tremuloides&t=NS ...

  15. Taxonomy Icon Data: Trypanosoma brucei [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Trypanosoma brucei Trypanosoma brucei Trypanosoma_brucei_L.png Trypanosoma_brucei_NL.png Trypanosoma_bruce...i_S.png Trypanosoma_brucei_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+bruce...i&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NL http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=S http://biosciencedbc.jp.../taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=121 ...

  16. Taxonomy Icon Data: Haliclona permollis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Haliclona permollis Haliclona permollis Porifera Haliclona_permollis_L.png Haliclona_permolli...s_NL.png Haliclona_permollis_S.png Haliclona_permollis_NS.png http://biosciencedbc.jp/taxonomy_ico...n/icon.cgi?i=Haliclona+permollis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Haliclona+permollis&t=...NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Haliclona+permollis&t=S http:...//biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Haliclona+permollis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=194 ...

  17. Taxonomy Icon Data: spotted seal [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available oca_largha_L.png Phoca_largha_NL.png Phoca_largha_S.png Phoca_largha_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Phoca+largha&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Phoca+largha&t=NL http://...biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Phoca+largha&t=S http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Phoca+largha&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=66 ...

  18. Taxonomy Icon Data: Diplazium hachijoense [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Diplazium hachijoense Diplazium hachijoense Diplazium_hachijoense_L.png Diplazium_hachijoe...nse_NL.png Diplazium_hachijoense_S.png Diplazium_hachijoense_NS.png http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Diplazium+hachijoense&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+hachijoe...nse&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+hachijoense&...t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+hachijoense&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=84 ...

  19. Taxonomy Icon Data: Toxoplasma gondii [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Toxoplasma gondii Toxoplasma gondii Toxoplasma_gondii_L.png Toxoplasma_gondii_NL.png Toxoplasma..._gondii_S.png Toxoplasma_gondii_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Toxoplasma...+gondii&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Toxoplasma+gondii&t=NL http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Toxoplasma+gondii&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Toxoplasma+gondii&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=113 ...

  20. Taxonomy Icon Data: Japanese Ratsnake [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese Ratsnake Elaphe climacophora Chordata/Vertebrata/Reptilia/etc Elaphe_climacophora_L.png Elaphe_clim...acophora_NL.png Elaphe_climacophora_S.png Elaphe_climacophora_NS.png http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Elaphe+climacophora&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Elaphe+clima...cophora&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Elaphe+clima...cophora&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Elaphe+climacophora&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=3 ...

  1. Taxonomy Icon Data: slipper animalcule [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available slipper animalcule Paramecium tetraurelia Paramecium_tetraurelia_L.png Paramecium_tetraurelia_NL.png Parame...cium_tetraurelia_S.png Paramecium_tetraurelia_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Parame...cium+tetraurelia&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paramecium+tet...raurelia&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paramecium+tetraur...elia&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Paramecium+tetraurelia&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=204 ...

  2. Taxonomy Icon Data: hamadryas baboon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available te Papio_hamadryas_L.png Papio_hamadryas_NL.png Papio_hamadryas_S.png Papio_hamadryas_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Papio+hamadryas&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio...+hamadryas&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+hamadryas&...t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+hamadryas&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=186 ...

  3. Taxonomy Icon Data: fission yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available aromyces_pombe_NL.png Schizosaccharomyces_pombe_S.png Schizosaccharomyces_pombe_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Schizosaccharomyces+pombe&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=S...chizosaccharomyces+pombe&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sc...hizosaccharomyces+pombe&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomyces+pombe&t=NS ...http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=219 ...

  4. Taxonomy Icon Data: house mouse [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ulus_L.png Mus_musculus_NL.png Mus_musculus_S.png Mus_musculus_NS.png http://biosciencedbc.jp/taxonomy_icon/...icon.cgi?i=Mus+musculus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mus+musculus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Mus+musculus&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Mus+musculus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=146 ...

  5. Taxonomy Icon Data: cattle [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available rus_L.png Bos_taurus_NL.png Bos_taurus_S.png Bos_taurus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Bos+taurus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bos+taurus&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bos+taurus&t=S http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Bos+taurus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=28 ...

  6. Taxonomy Icon Data: Human [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available s_L.png Homo_sapiens_NL.png Homo_sapiens_S.png Homo_sapiens_NS.png http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Homo+sapiens&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Homo+sapiens&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Homo+sapiens&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Homo+sapiens&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=157 ...

  7. Taxonomy Icon Data: sheep [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available es_L.png Ovis_aries_NL.png Ovis_aries_S.png Ovis_aries_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Ovis+aries&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ovis+aries&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ovis+aries&t=S http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Ovis+aries&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=156 ...

  8. Taxonomy Icon Data: Budding yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Budding yeast Saccharomyces cerevisiae Saccharomyces_cerevisiae_L.png Saccharomyces..._cerevisiae_NL.png Saccharomyces_cerevisiae_S.png Saccharomyces_cerevisiae_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Saccharomyces+cerevisiae&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomy...ces+cerevisiae&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomy...ces+cerevisiae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomyces+cerevisiae&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=216 ...

  9. Taxonomy Icon Data: Beetles [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available oilus_inclinatus_NL.png Prosopocoilus_inclinatus_S.png Prosopocoilus_inclinatus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Prosopocoilus+inclinatus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pr...osopocoilus+inclinatus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pros...opocoilus+inclinatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Prosopocoilus+inclinatus&t=NS http...://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=139 ...

  10. Taxonomy Icon Data: Japanese hare [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available pus_brachyurus_L.png Lepus_brachyurus_NL.png Lepus_brachyurus_S.png Lepus_brachyurus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Lepus+brachyurus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lepus...+brachyurus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lepus+brachyuru...s&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lepus+brachyurus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=138 ...

  11. Taxonomy Icon Data: Schistosoma japonicum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Schistosoma japonicum Schistosoma japonicum Platyhelminthes Schistosoma_japonicum_L.png Schistosoma_japonic...um_NL.png Schistosoma_japonicum_S.png Schistosoma_japonicum_NS.png http://bioscience...dbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+japonicum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+japonic...um&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+japonic...um&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schistosoma+japonicum&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=132 ...

  12. Taxonomy Icon Data: Anopheles stephensi [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Anopheles stephensi Anopheles stephensi Arthropoda Anopheles_stephensi_L.png Anopheles_stephen...si_NL.png Anopheles_stephensi_S.png Anopheles_stephensi_NS.png http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Anopheles+stephensi&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&...t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&t=S htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=149 ...

  13. Taxonomy for Assessing Evaluation Competencies in Extension

    Science.gov (United States)

    Rodgers, Michelle S.; Hillaker, Barbara D.; Haas, Bruce E.; Peters, Cheryl

    2012-01-01

    Evaluation of public service programming is becoming increasingly important with current funding realities. The taxonomy of evaluation competencies compiled by Ghere et al. (2006) provided the starting place for Taxonomy for Assessing Evaluation Competencies in Extension. The Michigan State University Extension case study described here presents a…

  14. Taxonomy Icon Data: Guillardia theta [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Guillardia theta Guillardia theta Guillardia_theta_L.png Guillardia_theta_NL.png Guillardia..._theta_S.png Guillardia_theta_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Guillardia+the...ta&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Guillardia+theta&t=NL http://biosciencedbc.jp/taxono...my_icon/icon.cgi?i=Guillardia+theta&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Guillardia

  15. Taxonomy Icon Data: saddleback dolphin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available nomy_icon/icon.cgi?i=Delphinus+delphis&t=L http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Delphinus+delphis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=...Delphinus+delphis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Delphinus+delphis&t=NS ... ...etacea Delphinus_delphis_L.png Delphinus_delphis_NL.png Delphinus_delphis_S.png Delphinus_delphis_NS.png http://biosciencedbc.jp/taxo

  16. Taxonomy Icon Data: horse [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available us_L.png Equus_caballus_NL.png Equus_caballus_S.png Equus_caballus_NS.png http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Equus+caballus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Equus+caballus&t=NL http://biosciencedbc.jp/taxono...my_icon/icon.cgi?i=Equus+caballus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Equus+caballus&t=NS ...

  17. Taxonomy Icon Data: maize [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available maize Zea mays Zea_mays_L.png Zea_mays_NL.png Zea_mays_S.png Zea_mays_NS.png http://biosciencedbc.jp/taxonom...y_icon/icon.cgi?i=Zea+mays&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zea...+mays&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zea+mays&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zea+mays&t=NS ...

  18. Taxonomy Icon Data: Sympetrum frequens [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _frequens_NL.png Sympetrum_frequens_S.png Sympetrum_frequens_NS.png http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Sympetrum+frequens&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sympetrum+frequens&t=NL http://biosciencedbc.jp/taxo...nomy_icon/icon.cgi?i=Sympetrum+frequens&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sympetrum+frequens&t=NS ...

  19. Taxonomy Icon Data: pygmy chimpanzee [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Pan_paniscus_L.png Pan_paniscus_NL.png Pan_paniscus_S.png Pan_paniscus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Pan+paniscus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+paniscus&t=NL http://biosciencedbc.jp/taxono...my_icon/icon.cgi?i=Pan+paniscus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pan+paniscus&t=NS ...

  20. Taxonomy Icon Data: Aegilops speltoides [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available es_NL.png Aegilops_speltoides_S.png Aegilops_speltoides_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Aegilops+speltoides&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aegilops+speltoides&t=NL http://biosciencedbc.jp/taxonom...y_icon/icon.cgi?i=Aegilops+speltoides&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aegilops+speltoides&t=NS ...

  1. Taxonomy Icon Data: red fox [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _vulpes_L.png Vulpes_vulpes_NL.png Vulpes_vulpes_S.png Vulpes_vulpes_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Vulpes+vulpes&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vulpes+vulpes&t=NL http://biosciencedbc.jp/taxono...my_icon/icon.cgi?i=Vulpes+vulpes&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Vulpes+vulpes&t=NS ...

  2. Taxonomy Icon Data: Magellanic penguin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Magellanic penguin Spheniscus magellanicus Chordata/Vertebrata/Aves Spheniscus_magellanic...us_L.png Spheniscus_magellanicus_NL.png Spheniscus_magellanicus_S.png Spheniscus_magellanicus_NS.png h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Spheniscus+magellanicus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Spheniscus+magellanicus&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Spheniscus+magellanicus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Spheniscus+magellanic

  3. Taxonomy Icon Data: okapi [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available okapi Okapia johnstoni Chordata/Vertebrata/Mammalia/Theria/Eutheria/Artiodactyla Okapia_john...stoni_L.png Okapia_johnstoni_NL.png Okapia_johnstoni_S.png Okapia_johnstoni_NS.png http://bioscienc...edbc.jp/taxonomy_icon/icon.cgi?i=Okapia+johnstoni&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Okapia+john...stoni&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Okapia+johnston...i&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Okapia+johnstoni&t=NS ...

  4. Taxonomy Icon Data: pig [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available pig Sus scrofa domestica Chordata/Vertebrata/Mammalia/Theria/Eutheria/Artiodactyla Sus_scrofa_domestic...a_L.png Sus_scrofa_domestica_NL.png Sus_scrofa_domestica_S.png Sus_scrofa_domestica_NS.pn...g http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sus+scrofa+domestica&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Sus+scrofa+domestica&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sus+scrofa+dom...estica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sus+scrofa+domestica&t=

  5. Taxonomy Icon Data: Doguera baboon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Doguera baboon Papio anubis Chordata/Vertebrata/Mammalia/Theria/Eutheria/Primate Papio_anub...is_L.png Papio_anubis_NL.png Papio_anubis_S.png Papio_anubis_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Papio+anubis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+anubis&t=NL http://...biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+anubis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papio+anubis&t=NS ...

  6. Taxonomy Icon Data: Nile crocodile [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Nile crocodile Crocodylus niloticus Chordata/Vertebrata/Reptilia/etc Crocodylus_nil...oticus_L.png Crocodylus_niloticus_NL.png Crocodylus_niloticus_S.png Crocodylus_niloticus_NS.png http://biosc...iencedbc.jp/taxonomy_icon/icon.cgi?i=Crocodylus+niloticus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Crocodylus+ni...loticus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Crocodylus+ni...loticus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Crocodylus+niloticus&t=NS ...

  7. Taxonomy Icon Data: Chinchilla [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Chinchilla Chinchilla lanigera Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Chinchi...lla_lanigera_L.png Chinchilla_lanigera_NL.png Chinchilla_lanigera_S.png Chinchilla_lanigera_NS.png http...://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinchilla+lanigera&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinchi...lla+lanigera&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinchi...lla+lanigera&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinchilla+lanigera&t=NS ...

  8. Taxonomy Icon Data: giant panda [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available giant panda Ailuropoda melanoleuca Chordata/Vertebrata/Mammalia/Theria/Eutheria/Carnivora Ailuropoda..._melanoleuca_L.png Ailuropoda_melanoleuca_NL.png Ailuropoda_melanoleuca_S.png Ailuropoda_me...lanoleuca_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=L http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=NL http://biosciencedb...c.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=NS ...

  9. Taxonomy Icon Data: purple urchin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available purple urchin Strongylocentrotus purpuratus Echinodermata Strongylocentrotus_purpuratus_L.png Strongylocentr...otus_purpuratus_NL.png Strongylocentrotus_purpuratus_S.png Strongylocentrotus_purpu...ratus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Strongylocentrotus+purpuratus&t=L http://biosc...iencedbc.jp/taxonomy_icon/icon.cgi?i=Strongylocentrotus+purpuratus&t=NL http://bi...osciencedbc.jp/taxonomy_icon/icon.cgi?i=Strongylocentrotus+purpuratus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Strongylocentrotus+purpuratus&t=NS ...

  10. Taxonomy Icon Data: coelacanth [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available coelacanth Latimeria chalumnae Chordata/Vertebrata/Pisciformes Latimeria_chalumnae_L.png Latime...ria_chalumnae_NL.png Latimeria_chalumnae_S.png Latimeria_chalumnae_NS.png http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Latimeria+chalumnae&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Latimeri...a+chalumnae&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Latimeria+chalu...mnae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Latimeria+chalumnae&t=NS ...

  11. Taxonomy Icon Data: domestic pigeon [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available domestic pigeon Columba livia Chordata/Vertebrata/Aves Columba_livia_L.png Columba_livia_NL.png Columba..._livia_S.png Columba_livia_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Columba...+livia&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Columba+livia&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Col...umba+livia&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Columba+livia&t=NS ...

  12. Taxonomy Icon Data: chinese pangolin [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available nomy_icon/icon.cgi?i=Manis+pentadactyla&t=L http://biosciencedbc.jp/taxonomy_icon/i...con.cgi?i=Manis+pentadactyla&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?...i=Manis+pentadactyla&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Manis+pentadactyla&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=190 ... ...c. Manis_pentadactyla_L.png Manis_pentadactyla_NL.png Manis_pentadactyla_S.png Manis_pentadactyla_NS.png http://biosciencedbc.jp/taxo

  13. Taxonomy Icon Data: moss [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available sp_patens_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physcomitrella+patens+subsp%2e+patens%2e&t...=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physcomitrella+patens+subsp%2...e+patens%2e&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physcomitrella+patens+subsp%2e+patens%2e&t...=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Physcomitrella+patens+subsp%2e+patens%2e&t=NS ...

  14. Taxonomy Icon Data: rainbow trout [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available rainbow trout Oncorhynchus mykiss Chordata/Vertebrata/Pisciformes Oncorhynchus_mykiss_L.png Oncorhynchus_my...kiss_NL.png Oncorhynchus_mykiss_S.png Oncorhynchus_mykiss_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Oncorhynchus+mykiss&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oncorhynchus+my...kiss&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oncorhynchus+my...kiss&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oncorhynchus+mykiss&t=NS ...

  15. Taxonomy Icon Data: fathead minnow [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available fathead minnow Pimephales promelas Chordata/Vertebrata/Pisciformes Pimephales_promelas..._L.png Pimephales_promelas_NL.png Pimephales_promelas_S.png Pimephales_promelas_NS.png http://bioscienced...bc.jp/taxonomy_icon/icon.cgi?i=Pimephales+promelas&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pimephales+promelas...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pimephales+promelas...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pimephales+promelas&t=NS ...

  16. Taxonomy Icon Data: Oryzias javanicus [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Oryzias javanicus Oryzias javanicus Chordata/Vertebrata/Pisciformes Oryzias_javanicus_L.png Oryzias_java...nicus_NL.png Oryzias_javanicus_S.png Oryzias_javanicus_NS.png http://biosciencedbc.jp/t...axonomy_icon/icon.cgi?i=Oryzias+javanicus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryzias+javan...icus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryzias+javanicus&t=S ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Oryzias+javanicus&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=77 ...

  17. Taxonomies of Educational Objective Domain

    Directory of Open Access Journals (Sweden)

    Eman Ghanem Nayef

    2013-09-01

    Full Text Available This paper highlights an effort to study the educational objective domain taxonomies including Bloom’s taxonomy, Lorin Anderson’s taxonomy, and Wilson’s taxonomy. In this study a comparison among these three taxonomies have been done. Results show that Bloom’s taxonomy is more suitable as an analysis tool to Educational Objective domain.

  18. Taxonomies of Educational Objective Domain

    OpenAIRE

    Eman Ghanem Nayef; Nik Rosila Nik Yaacob; Hairul Nizam Ismail

    2013-01-01

    This paper highlights an effort to study the educational objective domain taxonomies including Bloom’s taxonomy, Lorin Anderson’s taxonomy, and Wilson’s taxonomy. In this study a comparison among these three taxonomies have been done. Results show that Bloom’s taxonomy is more suitable as an analysis tool to Educational Objective domain.

  19. Software Vulnerability Taxonomy Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Polepeddi, S

    2004-12-08

    In today's environment, computers and networks are increasing exposed to a number of software vulnerabilities. Information about these vulnerabilities is collected and disseminated via various large publicly available databases such as BugTraq, OSVDB and ICAT. Each of these databases, individually, do not cover all aspects of a vulnerability and lack a standard format among them, making it difficult for end-users to easily compare various vulnerabilities. A central database of vulnerabilities has not been available until today for a number of reasons, such as the non-uniform methods by which current vulnerability database providers receive information, disagreement over which features of a particular vulnerability are important and how best to present them, and the non-utility of the information presented in many databases. The goal of this software vulnerability taxonomy consolidation project is to address the need for a universally accepted vulnerability taxonomy that classifies vulnerabilities in an unambiguous manner. A consolidated vulnerability database (CVDB) was implemented that coalesces and organizes vulnerability data from disparate data sources. Based on the work done in this paper, there is strong evidence that a consolidated taxonomy encompassing and organizing all relevant data can be achieved. However, three primary obstacles remain: lack of referencing a common ''primary key'', un-structured and free-form descriptions of necessary vulnerability data, and lack of data on all aspects of a vulnerability. This work has only considered data that can be unambiguously extracted from various data sources by straightforward parsers. It is felt that even with the use of more advanced, information mining tools, which can wade through the sea of unstructured vulnerability data, this current integration methodology would still provide repeatable, unambiguous, and exhaustive results. Though the goal of coalescing all available data

  20. Software Vulnerability Taxonomy Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Polepeddi, Sriram S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2004-12-07

    In today's environment, computers and networks are increasing exposed to a number of software vulnerabilities. Information about these vulnerabilities is collected and disseminated via various large publicly available databases such as BugTraq, OSVDB and ICAT. Each of these databases, individually, do not cover all aspects of a vulnerability and lack a standard format among them, making it difficult for end-users to easily compare various vulnerabilities. A central database of vulnerabilities has not been available until today for a number of reasons, such as the non-uniform methods by which current vulnerability database providers receive information, disagreement over which features of a particular vulnerability are important and how best to present them, and the non-utility of the information presented in many databases. The goal of this software vulnerability taxonomy consolidation project is to address the need for a universally accepted vulnerability taxonomy that classifies vulnerabilities in an unambiguous manner. A consolidated vulnerability database (CVDB) was implemented that coalesces and organizes vulnerability data from disparate data sources. Based on the work done in this paper, there is strong evidence that a consolidated taxonomy encompassing and organizing all relevant data can be achieved. However, three primary obstacles remain: lack of referencing a common ''primary key'', un-structured and free-form descriptions of necessary vulnerability data, and lack of data on all aspects of a vulnerability. This work has only considered data that can be unambiguously extracted from various data sources by straightforward parsers. It is felt that even with the use of more advanced, information mining tools, which can wade through the sea of unstructured vulnerability data, this current integration methodology would still provide repeatable, unambiguous, and exhaustive results. Though the goal of coalescing all available data

  1. Molecular phylogenetics in 2D: ITS2 rRNA evolution and sequence-structure barcode from Veneridae to Bivalvia.

    Science.gov (United States)

    Salvi, Daniele; Mariottini, Paolo

    2012-11-01

    In this study, we analyzed the nuclear ITS2 rRNA primary sequence and secondary structure in Veneridae and comparatively with 20 Bivalvia taxa to test the phylogenetic resolution of this marker and its suitability for molecular diagnosis at different taxonomic levels. Maximum likelihood and Bayesian trees based on primary sequences were congruent with (profile-) neighbor-joining trees based on a combined model of sequence-structure evolution. ITS2 showed higher resolution below the subfamily level, providing a phylogenetic signal comparable to (mitochondrial/nuclear) gene fragments 2-5 times longer. Structural elements of the ITS2 folding, such as specific mismatch pairing and compensatory base changes, provided further support for the monophyly of some groups and for their phylogenetic relationships. Veneridae ITS2 folding is structured in six domains (DI-VI) and shows five striking sequence-structure features. Two of them, the Basal and Apical STEMs, are common to Bivalvia, while the presence of both the Branched STEM and the Y/R stretches occurs in five superfamilies of the two Heterodonta orders Myoida and Veneroida, thus questioning their reciprocal monophyly. Our results validated the ITS2 as a suitable marker for venerids phylogenetics and taxonomy, and underlined the significance of including secondary structure information for both applications at several systematic levels within bivalves.

  2. Constructing a Business Model Taxonomy

    DEFF Research Database (Denmark)

    Groth, Pernille; Nielsen, Christian

    2015-01-01

    Abstract Purpose: The paper proposes a research design recipe capable of leading to future business model taxonomies and discusses the potential benefits and implications of achieving this goal. Design/Methodology/Approach: The paper provides a review of relevant scholarly literature about business...... models to clarify the subject as well as highlighting the importance of past studies of business model classifications. In addition it reviews the scholarly literature on relevant methodological approaches, such as cluster analysis and latent class analysis, for constructing a business model taxonomy....... The two literature streams combined to form the basis for the suggested recipe. Findings: The paper highlights the need for further large-scale empirical studies leading to a potential business model taxonomy, a topic that is currently under-exposed even though its merits are highlighted continuously...

  3. The Taxonomy for Learning, Teaching and Assessing: Current Practices at Polytechnics in Bangladesh and Its Effects in Developing Students' Competences.

    Science.gov (United States)

    Haolader, Faruque A.; Ali, Md Ramjan; Foysol, Khan Md

    2015-01-01

    Polytechnics in Bangladesh endeavour to produce quality graduates for national and international job markets. The quality of graduates depends on several factors. This study examines the implementation process of the polytechnic curriculum with the objectives of determining the current level of practices in learning/teaching material design, in…

  4. Taxonomy Icon Data: Australian echidna [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Australian echidna Tachyglossus aculeatus Chordata/Vertebrata/Mammalia/Prototheria Tachygloss...us_aculeatus_L.png Tachyglossus_aculeatus_NL.png Tachyglossus_aculeatus_S.png Tachyglossus_aculeat...us_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tachyglossus+aculeatus&t=L http://biosciencedbc.j...p/taxonomy_icon/icon.cgi?i=Tachyglossus+aculeatus&t=NL http://biosciencedbc.jp/ta...xonomy_icon/icon.cgi?i=Tachyglossus+aculeatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tachyglossus+aculeatus&t=NS ...

  5. Taxonomy Icon Data: llama [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available llama Lama glama Chordata/Vertebrata/Mammalia/Theria/Eutheria/Artiodactyla Lama_glama_L.png Lam...a_glama_NL.png Lama_glama_S.png Lama_glama_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lam...a+glama&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lama+glama&t=NL http://biosciencedbc.jp/t...axonomy_icon/icon.cgi?i=Lama+glama&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Lama+glama&t=NS ...

  6. Taxonomy Icon Data: pronghorn [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available pronghorn Antilocapra americana Chordata/Vertebrata/Mammalia/Theria/Eutheria/Artiodactyla Antilocapra_americ...ana_L.png Antilocapra_americana_NL.png Antilocapra_americana_S.png Antilocapra_america...na_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Antilocapra+americana&t=L http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Antilocapra+americana&t=NL http://biosciencedbc.jp/t...axonomy_icon/icon.cgi?i=Antilocapra+americana&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Antilocapra+americana&t=NS ...

  7. Taxonomy Icon Data: zebra finch [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available zebra finch Taeniopygia guttata Chordata/Vertebrata/Aves Taeniopygia_guttata_L.png Taeniopygia_gut...tata_NL.png Taeniopygia_guttata_S.png Taeniopygia_guttata_NS.png http://biosciencedbc.jp/taxo...nomy_icon/icon.cgi?i=Taeniopygia+guttata&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Taeniopygia+gut...tata&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Taeniopygia+guttata&t...=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Taeniopygia+guttata&t=NS ...

  8. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships.

    Science.gov (United States)

    Wilkerson, Richard C; Linton, Yvonne-Marie; Fonseca, Dina M; Schultz, Ted R; Price, Dana C; Strickman, Daniel A

    2015-01-01

    The tribe Aedini (Family Culicidae) contains approximately one-quarter of the known species of mosquitoes, including vectors of deadly or debilitating disease agents. This tribe contains the genus Aedes, which is one of the three most familiar genera of mosquitoes. During the past decade, Aedini has been the focus of a series of extensive morphology-based phylogenetic studies published by Reinert, Harbach, and Kitching (RH&K). Those authors created 74 new, elevated or resurrected genera from what had been the single genus Aedes, almost tripling the number of genera in the entire family Culicidae. The proposed classification is based on subjective assessments of the "number and nature of the characters that support the branches" subtending particular monophyletic groups in the results of cladistic analyses of a large set of morphological characters of representative species. To gauge the stability of RH&K's generic groupings we reanalyzed their data with unweighted parsimony jackknife and maximum-parsimony analyses, with and without ordering 14 of the characters as in RH&K. We found that their phylogeny was largely weakly supported and their taxonomic rankings failed priority and other useful taxon-naming criteria. Consequently, we propose simplified aedine generic designations that 1) restore a classification system that is useful for the operational community; 2) enhance the ability of taxonomists to accurately place new species into genera; 3) maintain the progress toward a natural classification based on monophyletic groups of species; and 4) correct the current classification system that is subject to instability as new species are described and existing species more thoroughly defined. We do not challenge the phylogenetic hypotheses generated by the above-mentioned series of morphological studies. However, we reduce the ranks of the genera and subgenera of RH&K to subgenera or informal species groups, respectively, to preserve stability as new data become

  9. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships.

    Directory of Open Access Journals (Sweden)

    Richard C Wilkerson

    Full Text Available The tribe Aedini (Family Culicidae contains approximately one-quarter of the known species of mosquitoes, including vectors of deadly or debilitating disease agents. This tribe contains the genus Aedes, which is one of the three most familiar genera of mosquitoes. During the past decade, Aedini has been the focus of a series of extensive morphology-based phylogenetic studies published by Reinert, Harbach, and Kitching (RH&K. Those authors created 74 new, elevated or resurrected genera from what had been the single genus Aedes, almost tripling the number of genera in the entire family Culicidae. The proposed classification is based on subjective assessments of the "number and nature of the characters that support the branches" subtending particular monophyletic groups in the results of cladistic analyses of a large set of morphological characters of representative species. To gauge the stability of RH&K's generic groupings we reanalyzed their data with unweighted parsimony jackknife and maximum-parsimony analyses, with and without ordering 14 of the characters as in RH&K. We found that their phylogeny was largely weakly supported and their taxonomic rankings failed priority and other useful taxon-naming criteria. Consequently, we propose simplified aedine generic designations that 1 restore a classification system that is useful for the operational community; 2 enhance the ability of taxonomists to accurately place new species into genera; 3 maintain the progress toward a natural classification based on monophyletic groups of species; and 4 correct the current classification system that is subject to instability as new species are described and existing species more thoroughly defined. We do not challenge the phylogenetic hypotheses generated by the above-mentioned series of morphological studies. However, we reduce the ranks of the genera and subgenera of RH&K to subgenera or informal species groups, respectively, to preserve stability as new

  10. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships.

    Science.gov (United States)

    Wilkerson, Richard C; Linton, Yvonne-Marie; Fonseca, Dina M; Schultz, Ted R; Price, Dana C; Strickman, Daniel A

    2015-01-01

    The tribe Aedini (Family Culicidae) contains approximately one-quarter of the known species of mosquitoes, including vectors of deadly or debilitating disease agents. This tribe contains the genus Aedes, which is one of the three most familiar genera of mosquitoes. During the past decade, Aedini has been the focus of a series of extensive morphology-based phylogenetic studies published by Reinert, Harbach, and Kitching (RH&K). Those authors created 74 new, elevated or resurrected genera from what had been the single genus Aedes, almost tripling the number of genera in the entire family Culicidae. The proposed classification is based on subjective assessments of the "number and nature of the characters that support the branches" subtending particular monophyletic groups in the results of cladistic analyses of a large set of morphological characters of representative species. To gauge the stability of RH&K's generic groupings we reanalyzed their data with unweighted parsimony jackknife and maximum-parsimony analyses, with and without ordering 14 of the characters as in RH&K. We found that their phylogeny was largely weakly supported and their taxonomic rankings failed priority and other useful taxon-naming criteria. Consequently, we propose simplified aedine generic designations that 1) restore a classification system that is useful for the operational community; 2) enhance the ability of taxonomists to accurately place new species into genera; 3) maintain the progress toward a natural classification based on monophyletic groups of species; and 4) correct the current classification system that is subject to instability as new species are described and existing species more thoroughly defined. We do not challenge the phylogenetic hypotheses generated by the above-mentioned series of morphological studies. However, we reduce the ranks of the genera and subgenera of RH&K to subgenera or informal species groups, respectively, to preserve stability as new data become

  11. A taxonomy of automatic differentiation tools

    Energy Technology Data Exchange (ETDEWEB)

    Juedes, D.W. (Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Computer Science)

    1991-01-01

    Many of the current automatic differentiation (AD) tools have similar characteristics. Unfortunately, the similarities between these various AD tools often cannot be easily ascertained by reading the corresponding documentation. To clarify this situation, a taxonomy of AD tools is presented. The taxonomy places AD tools into the Elemental, Extensional, Integral, Operational, and Symbolic classes. This taxonomy is used to classify twenty-nine AD tools. Each tool is examined individually with respect to the mode of differentiation used and the degree of derivatives computed. A list detailing the availability of the surveyed AD tools is provided in the Appendix. 54 refs., 3 figs., 1 tab.

  12. Connectionist Taxonomy Learning

    OpenAIRE

    Frey, Miloslaw

    2004-01-01

    The paper at hand describes an approach to automatise the creation of a class taxonomy. Information about objects, e.g. "a tank is armored and moves by track", but no prior knowledge about taxonomy structure is presented to a connectionist system which organizes itself by means of activation spreading (McClelland and Rumelhart, 1981) and weight adjustments. The resulting connectionist network has a form of a taxonomy sought-after.

  13. Taxonomy Icon Data: gray slender loris [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Loris+lydekkerianus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Loris+lydekkerianus&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Loris+lydekkerianus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Loris+lydekkerianus&t=NS ...

  14. Taxonomy Icon Data: crab-eating macaque [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+fascicularis&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Macaca+fascicularis&t=NL http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Macaca+fascicularis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Macaca+fascicularis&t=NS ...

  15. Taxonomy Icon Data: African savanna elephant [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Loxodonta+africana&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Loxodonta+africana&t=NL http://biosciencedbc.jp/taxonomy_icon/i...con.cgi?i=Loxodonta+africana&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Loxodonta+africana&t=NS ...

  16. Taxonomy Icon Data: North Pacific right whale [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available a_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Eubalaena+japonica&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Eubalaena+japonica&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Eubalaena+japonica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Eubalaena+japonica&t=NS ...

  17. Taxonomy Icon Data: northern fur seal [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Callorhinus+ursinus&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Callorhinus+ursinus&t=NL http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Callorhinus+ursinus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Callorhinus+ursinus&t=NS ...

  18. Early stage morphogenesis: an approach to problems of taxonomy, phylogeny and evolution in the Mytilidae (Mollusca: Bivalvia)%早期形态发生:一种解决贻贝科(软体动物门:双壳纲)分类、系统发育和进化问题的方法

    Institute of Scientific and Technical Information of China (English)

    George A. EVSEEV; Olga Ya. SEMENIKHINA; Natalya K. KOLOTUKHINA

    2005-01-01

    Sequence of appearance and transformations of morphological structures during larval and juvenile mytilids life histories have been examined. Ontogenies of about 60 taxa were typified into 4 morphogenetic patterns, or modes. Origin, developmental changes and homologies of the stage morphostructures were considered according to their location in three morphogenetic fields. The first, or central, field forms at the prodissoconch Ⅰ stage (PD-Ⅰ). It can be inherited by prodissoconch Ⅱ (PD-Ⅱ) and nepioconch (N) stages in one taxa, or PD-Ⅱ, N and dissoconch (D) stages in others. The second, or postero-dorsal, field appears at the N stage, and the third field, or antero-dorsal, at the D stage. The postero-dorsal field of the stage D inherits the N-morphostructures in one taxa, or D-stage in others. Central and postero-dorsal field morphostructures exhibit developmental sequences, or a system of characters which possess polarity, in contrast to adult characters applied in mytilid taxonomy. Based on early stage morphological characters of and well-known features studied previously but not used in taxonomy and phylogeny, a revaluation Soot-Ryen's system of supraspecific taxa and reconstruction of phylogenetic relationships among the Recent Mytilidae have been attempted. In the presented scheme, the subfamilies of Scarlato and Starobogatov (1984) form four phylogenetic lines beginning with the Modiolinae.%作者对贻贝科贝类的幼虫和幼贝期发育阶段形态结构的出现和变化顺序进行了研究,其约60个不同分类单元的个体发生可归纳为4种形态发生类型或模式.主要对3个形态发生区域的阶段形态结构的起源、发育变化和同源性做了研究.其一,即中央区域,开始形成于前双壳Ⅰ期(PD-Ⅰ),在某个分类单元它可以在前双壳Ⅱ期(PD-Ⅱ)和幼贝期(N)形成,而在其它分类单元则在前双壳Ⅱ期、幼贝期和双壳期(D)形成;第二区域,即背部后区,在幼贝期出现;第

  19. Taxonomy Icon Data: Florida lancelet (amphioxus) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available floridae_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Branchiostoma+floridae&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Branchiostoma+floridae&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Branchiostoma+floridae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bra...nchiostoma+floridae&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=125 ...

  20. Taxonomy Icon Data: Kuroda's sea hare [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png Aplysia_kurodai_S.png Aplysia_kurodai_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aplysia+k...urodai&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aplysia+kurodai&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Aplysia+kurodai&t=S http://biosciencedbc.jp/taxonomy_icon/i...con.cgi?i=Aplysia+kurodai&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=14 ...

  1. Taxonomy Icon Data: Halocynthia roretzi (Sea squirt) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Halocynthia+roretzi&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Halocynthia+roretzi&t=NL http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Halocynthia+roretzi&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Halocynthia+roretzi&t=N...S http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=183 ...

  2. Taxonomy Icon Data: common brandling worm [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available L.png Eisenia_fetida_S.png Eisenia_fetida_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Eisenia+fe...tida&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Eisenia+fetida&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Eisenia+fetida&t=S http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Eisenia+fetida&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=73 ...

  3. Taxonomy Icon Data: aye-aye [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png Daubentonia_madagascariensis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Daubentonia+madaga...scariensis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Daubentonia+madag...ascariensis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Daubentonia+madagascariensis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Daubentonia+madagascariensis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=1 ...

  4. A Taxonomy for Conceptualizing Teaching.

    Science.gov (United States)

    Seda, E. Elliott

    This paper details the development of a taxonomy for conceptualizing teaching. This taxonomy is presented as a means to help educators understand and interpret what it is they do and continue in the process of searching and understanding. The purpose of developing a taxonomy, the basis for the dimensions--or subject matter--for the taxonomy, and…

  5. Public health workforce taxonomy.

    Science.gov (United States)

    Boulton, Matthew L; Beck, Angela J; Coronado, Fátima; Merrill, Jacqueline A; Friedman, Charles P; Stamas, George D; Tyus, Nadra; Sellers, Katie; Moore, Jean; Tilson, Hugh H; Leep, Carolyn J

    2014-11-01

    Thoroughly characterizing and continuously monitoring the public health workforce is necessary for ensuring capacity to deliver public health services. A prerequisite for this is to develop a standardized methodology for classifying public health workers, permitting valid comparisons across agencies and over time, which does not exist for the public health workforce. An expert working group, all of whom are authors on this paper, was convened during 2012-2014 to develop a public health workforce taxonomy. The purpose of the taxonomy is to facilitate the systematic characterization of all public health workers while delineating a set of minimum data elements to be used in workforce surveys. The taxonomy will improve the comparability across surveys, assist with estimating duplicate counting of workers, provide a framework for describing the size and composition of the workforce, and address other challenges to workforce enumeration. The taxonomy consists of 12 axes, with each axis describing a key characteristic of public health workers. Within each axis are multiple categories, and sometimes subcategories, that further define that worker characteristic. The workforce taxonomy axes are occupation, workplace setting, employer, education, licensure, certification, job tasks, program area, public health specialization area, funding source, condition of employment, and demographics. The taxonomy is not intended to serve as a replacement for occupational classifications but rather is a tool for systematically categorizing worker characteristics. The taxonomy will continue to evolve as organizations implement it and recommend ways to improve this tool for more accurate workforce data collection.

  6. Genomic taxonomy of vibrios

    DEFF Research Database (Denmark)

    Thompson, Cristiane C.; Vicente, Ana Carolina P.; Souza, Rangel C.;

    2009-01-01

    BACKGROUND: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety...... analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web...

  7. New records of Protobranchia (Mollusca: Bivalvia in the Peruvian Sea

    Directory of Open Access Journals (Sweden)

    Carlos Paredes

    2014-06-01

    Full Text Available The following species of Bivalvia have been recorded for the first time for Peruvian waters: Nucula (Nucula iphigenia (Dall, 1908; Ennucula cardara (Dall, 1916; Nuculana (Nuculana extenuata (Dall, 1897; Orthoyoldia panamensis (Dall, 1908. These bivalves were collected in the platform and continental slope down to depths of 864 meters.

  8. EPA Web Taxonomy

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA's Web Taxonomy is a faceted hierarchical vocabulary used to tag web pages with terms from a controlled vocabulary. Tagging enables search and discovery of EPA's...

  9. [Concepts of rational taxonomy].

    Science.gov (United States)

    Pavlinov, I Ia

    2011-01-01

    The problems are discussed related to development of concepts of rational taxonomy and rational classifications (taxonomic systems) in biology. Rational taxonomy is based on the assumption that the key characteristic of rationality is deductive inference of certain partial judgments about reality under study from other judgments taken as more general and a priory true. Respectively, two forms of rationality are discriminated--ontological and epistemological ones. The former implies inference of classifications properties from general (essential) properties of the reality being investigated. The latter implies inference of the partial rules of judgments about classifications from more general (formal) rules. The following principal concepts of ontologically rational biological taxonomy are considered: "crystallographic" approach, inference of the orderliness of organismal diversity from general laws of Nature, inference of the above orderliness from the orderliness of ontogenetic development programs, based on the concept of natural kind and Cassirer's series theory, based on the systemic concept, based on the idea of periodic systems. Various concepts of ontologically rational taxonomy can be generalized by an idea of the causal taxonomy, according to which any biologically sound classification is founded on a contentwise model of biological diversity that includes explicit indication of general causes responsible for that diversity. It is asserted that each category of general causation and respective background model may serve as a basis for a particular ontologically rational taxonomy as a distinctive research program. Concepts of epistemologically rational taxonomy and classifications (taxonomic systems) can be interpreted in terms of application of certain epistemological criteria of substantiation of scientific status of taxonomy in general and of taxonomic systems in particular. These concepts include: consideration of taxonomy consistency from the

  10. Exploring and Upgrading the Educational Business-Game Taxonomy

    Science.gov (United States)

    Jerman Blažic, Andrej; Džonova Jerman Blažic, Borka

    2015-01-01

    This article explores existing attempts to design a comprehensive and complex taxonomy framework for an educational business game intended to categorize and evaluate various properties. The identified missing elements in the current proposed taxonomies were used as a starting point for the design of a new category that addresses the game's…

  11. Taxonomy Icon Data: yellow fever mosquito [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available yellow fever mosquito Aedes aegypti Arthropoda Aedes_aegypti_L.png Aedes_aegypti_NL.png Aedes_aegypt...i_S.png Aedes_aegypti_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aedes+aegypti...&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aedes+aegypti&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aedes+aegyp...ti&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Aedes+aegypti&t=NS ...

  12. Taxonomy Icon Data: red flour beetle [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available red flour beetle Tribolium castaneum Arthropoda Tribolium_castaneum_L.png Tribolium_castaneum_NL.png Triboli...um_castaneum_S.png Tribolium_castaneum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium...+castaneum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium+castaneum&t=N...L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium+castaneum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium+castaneum&t=NS ...

  13. Taxonomy Icon Data: hemichordates (Acorn worm) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available hemichordates (Acorn worm) Glandiceps hacksi Hemichordata Glandiceps_hacksi_L.png Glandiceps_hack...si_NL.png Glandiceps_hacksi_S.png Glandiceps_hacksi_NS.png http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Glandiceps+hacksi&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glandiceps+hacksi&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glandiceps+hacksi&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Glandiceps+hacksi&t=NS ...

  14. Taxonomy Icon Data: Reeve's pond turtle [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available vesii_L.png Chinemys_reevesii_NL.png Chinemys_reevesii_S.png Chinemys_reevesii_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Chinemys+reevesii&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinemys+r...eevesii&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinemys+reevesii&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Chinemys+reevesii&t=NS ...

  15. Taxonomy Icon Data: wild Bactrian camel [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available odactyla Camelus_ferus_L.png Camelus_ferus_NL.png Camelus_ferus_S.png Camelus_ferus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Camelus+ferus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Camelus+f...erus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Camelus+ferus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Camelus+ferus&t=NS ...

  16. Taxonomy Icon Data: Gossypium raimondii Ulbr. [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available aimondii_NL.png Gossypium_raimondii_S.png Gossypium_raimondii_NS.png http://biosciencedbc.jp/taxonomy_icon/i...con.cgi?i=Gossypium+raimondii&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+raimondii&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+raimondii&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+raimondii&t=NS ...

  17. Taxonomy Icon Data: Japanese giant salamander [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ponicus_L.png Andrias_japonicus_NL.png Andrias_japonicus_S.png Andrias_japonicus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Andrias+japonicus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+...japonicus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus&t=NS ...

  18. Taxonomy Icon Data: cape rock hyrax [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Procavia_capensis_L.png Procavia_capensis_NL.png Procavia_capensis_S.png Procavia_capensis_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Procavia+capensis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi...?i=Procavia+capensis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Procav...ia+capensis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Procavia+capensis&t=NS ...

  19. Taxonomy Icon Data: Ciona intestinalis (Sea squirt) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ciona+intestinalis&t=L http://biosciencedbc.jp/taxonomy_icon.../icon.cgi?i=Ciona+intestinalis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Ciona+intestinalis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ciona+intestinalis&t=NS ... ...data Ciona_intestinalis_L.png Ciona_intestinalis_NL.png Ciona_intestinalis_S.png Ciona_intestinalis_NS.png h

  20. Taxonomy Icon Data: Striped bark scorpion [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Centruroides_vittatus_NL.png Centruroides_vittatus_S.png Centruroides_vittatus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Centruroides+vittatus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Centru...roides+vittatus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Centruroide...s+vittatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Centruroides+vittatus&t=NS ...

  1. Taxonomy Icon Data: Formosan subterranean termite [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available nus_L.png Coptotermes_formosanus_NL.png Coptotermes_formosanus_S.png Coptotermes_formosanus_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Coptotermes+formosanus&t=L http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Coptotermes+formosanus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cg...i?i=Coptotermes+formosanus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Coptotermes+formosanus&t=NS ...

  2. Teaching Taxonomy: How Many Kingdoms?

    Science.gov (United States)

    Case, Emily

    2008-01-01

    Taxonomy, the identification, naming, and classification of living things, is an indispensable unit in any biology curriculum and indeed, an integral part of biological science. Taxonomy catalogues life's diversity and is an essential tool for communication. Textbook discussions of taxonomy range anywhere from three to eight domains of kingdoms.…

  3. Taxonomy Icon Data: malaria parasite P. falciparum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available malaria parasite P. falciparum Plasmodium falciparum Plasmodium_falciparum_L.png Plasmodium..._falciparum_NL.png Plasmodium_falciparum_S.png Plasmodium_falciparum_NS.png http://biosciencedbc.jp/...taxonomy_icon/icon.cgi?i=Plasmodium+falciparum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Plasmodium...+falciparum&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Plasmodium+fa...lciparum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Plasmodium+falciparum&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=218 ...

  4. Taxonomy Icon Data: Japanese Bush Warbler [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Cettia_diphone_NL.png Cettia_diphone_S.png Cettia_diphone_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Cettia+diphone&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cettia+diphone&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Cettia+diphone&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Cettia+diphone&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=26 ...

  5. Taxonomy Icon Data: Old world swallowtail [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available aon_NL.png Papilio_machaon_S.png Papilio_machaon_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Pap...ilio+machaon&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Papilio+machaon&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Papilio+machaon&t=S http://biosciencedbc.jp/taxonomy_...icon/icon.cgi?i=Papilio+machaon&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=47 ...

  6. Taxonomy Icon Data: African clawed frog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Xenopus_laevis_NL.png Xenopus_laevis_S.png Xenopus_laevis_NS.png http://biosciencedbc.jp/taxonomy_icon/ico...n.cgi?i=Xenopus+laevis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenopus+laevis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Xenopus+laevis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Xenopus+laevis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=11 ...

  7. Taxonomy Icon Data: Japanese tree frog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available yla_japonica_NL.png Hyla_japonica_S.png Hyla_japonica_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?...i=Hyla+japonica&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hyla+japonica&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Hyla+japonica&t=S http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Hyla+japonica&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=12 ...

  8. Taxonomy Icon Data: Western clawed frog [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Western clawed frog Xenopus tropicalis Chordata/Vertebrata/Amphibia Xenopus_tropicalis_L.png Xenopus_tropica...lis_NL.png Xenopus_tropicalis_S.png Xenopus_tropicalis_NS.png http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Xenopus+tropicalis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenopus+tropical...is&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenopus+tropical...is&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Xenopus+tropicalis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=137 ...

  9. Comment: 61 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available .png Taxonomy icon (c) Database Center for Life Science licensed under CC Attribution2.1 Japan イメージを差し替えました(添付は旧イメージ) ttamura 2009/04/21 12:50:03 ...

  10. Comment: 13 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Life Science licensed under CC Attribution2.1 Japan ヒトアイコンの別候補を作成してみました。 ttamura 2008/11/06 17:14:44 ... ...Human Homo sapiens Homo_sapiens_L.png 13.png Taxonomy icon (c) Database Center for

  11. Comment: 2 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available bottlenosed dolphin Tursiops truncatus Tursiops_truncatus_L.png 2.png Taxonomy icon (c) Database Cen...ter for Life Science licensed under CC Attribution2.1 Japan サンプルの投稿です ttamura 2008/10/29 11:43:57 ...

  12. Taxonomy in Epistemology

    Science.gov (United States)

    Galloway, Jerry P.

    2011-01-01

    This paper outlines a theoretical paradigm for distinguishing thinking, knowing and believing. A new taxonomy is presented for categorizing levels of knowing and outlines a structure of justification for each level. The paper discusses and explains the importance of such distinctions in decision making and thinking in general.

  13. Comment: 215 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available 215.png Taxonomy icon (c) Database Center for Life Science licensed under CC Attribution2.1 Japan アイコン:電子顕微鏡バージョン bando 2010/02/15 15:30:03 2010/02/15 15:30:03 ...

  14. Taxonomy Icon Data: Southern elephant seal [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available onomy_icon/icon.cgi?i=Mirounga+leonina&t=L http://biosciencedbc.jp/taxonomy_icon/ic...on.cgi?i=Mirounga+leonina&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=M...irounga+leonina&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Mirounga+leonina&t=NS ... ...a/Carnivora Mirounga_leonina_L.png Mirounga_leonina_NL.png Mirounga_leonina_S.png Mirounga_leonina_NS.png http://biosciencedbc.jp/tax

  15. Taxonomy Icon Data: Diplazium tomitaroanum Masam [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Diplazium tomitaroanum Masam Diplazium tomitaroanum Masam Diplazium_tomitaroanum_Masam_L.png Diplazium_tomit...aroanum_Masam_NL.png Diplazium_tomitaroanum_Masam_S.png Diplazium_tomitaroanum_Masa...m_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+tomitaroanum+Masam&t=L http://bioscience...dbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+tomitaroanum+Masam&t=NL http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+tomitaroanum+Masam&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Diplazium+tomitaroanum+Masam&t=NS ...

  16. Taxonomy Icon Data: gray short-tailed opossum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available gray short-tailed opossum Monodelphis domestica Chordata/Vertebrata/Mammalia/Theria.../Metatheria Monodelphis_domestica_L.png Monodelphis_domestica_NL.png Monodelphis_domestica_S.png Monodelphis_domestic...a_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Monodelphis+domestica&t=L http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Monodelphis+domestica&t=NL http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Monodelphis+domestica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Monodelphis+domestica&t=NS ...

  17. Taxonomy Icon Data: Pacific electric ray [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Pacific electric ray Torpedo californica Chordata/Vertebrata/Pisciformes Torpedo_californica_L.png Torpedo..._californica_NL.png Torpedo_californica_S.png Torpedo_californica_NS.png http://biosc...iencedbc.jp/taxonomy_icon/icon.cgi?i=Torpedo+californica&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Torpedo...+californica&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Torpedo...+californica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Torpedo+californica&t=NS ...

  18. Taxonomy Icon Data: California sea lion [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available California sea lion Zalophus californianus Chordata/Vertebrata/Mammalia/Theria/Euth...eria/Carnivora Zalophus_californianus_L.png Zalophus_californianus_NL.png Zalophus_californianus_S.png Zalophus_california...nus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zalophus+californianus&t=L http://...biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zalophus+californianus&t=NL http://bios...ciencedbc.jp/taxonomy_icon/icon.cgi?i=Zalophus+californianus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Zalophus+californianus&t=NS ...

  19. Taxonomy Icon Data: gold crucian carp [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available gold crucian carp Carassius auratus auratus Chordata/Vertebrata/Pisciformes Carassius_auratus_aura...tus_L.png Carassius_auratus_auratus_NL.png Carassius_auratus_auratus_S.png Carassius_auratus_aura...tus_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Carassius+auratus+auratus&t=L http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Carassius+auratus+auratus&t=NL http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Carassius+auratus+auratus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Carassius+auratus+auratus&t=NS ...

  20. Taxonomy Icon Data: Ptychodera flava Eschscholtz (Acorn worm) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available flava_L.png Ptychodera_flava_NL.png Ptychodera_flava_S.png Ptychodera_flava_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Ptychodera+flava&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ptychodera+fla...va&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ptychodera+flava&t=S http://biosciencedbc.jp/taxo...nomy_icon/icon.cgi?i=Ptychodera+flava&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=161 ...

  1. Taxonomy Icon Data: silver-gray brushtail possum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available silver-gray brushtail possum Trichosurus vulpecula Chordata/Vertebrata/Mammalia/Theria/Metatheria Trichosur...us_vulpecula_L.png Trichosurus_vulpecula_NL.png Trichosurus_vulpecula_S.png Trichosur...us_vulpecula_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trichosurus+vulpecula&t=L http://biosc...iencedbc.jp/taxonomy_icon/icon.cgi?i=Trichosurus+vulpecula&t=NL http://bioscience...dbc.jp/taxonomy_icon/icon.cgi?i=Trichosurus+vulpecula&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trichosurus+vulpecula&t=NS ...

  2. Taxonomy Icon Data: Javan tree shrew [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Javan tree shrew Tupaia javanica Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Tupaia_java...nica_L.png Tupaia_javanica_NL.png Tupaia_javanica_S.png Tupaia_javanica_NS.png http://bioscienced...bc.jp/taxonomy_icon/icon.cgi?i=Tupaia+javanica&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tupaia+java...nica&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tupaia+javanica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tupaia+javanica&t=NS ...

  3. Comment: 219 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese medaka Oryzias latipes Oryzias_latipes_L.png 219.png Taxonomy icon (c) Database Center for Life Sci...ence licensed under CC Attribution2.1 Japan アイコン:メダカ HNI-Ⅱ系統バージョン bando 2010/02/15 15:31:07 2010/02/16 09:53:27 ...

  4. Reflection and teaching: a taxonomy

    OpenAIRE

    Vos, Henk; Cowan, John

    2009-01-01

    A major problem in teaching reflection is that educational objectives for reflection in terms of student behaviour are lacking. Therefore a taxonomy of reflection has been developed based on Bloom’s taxonomy. Reflective assignments can then be better focused on any chosen educational objectives. The act of reflection has been analysed and abstracted from goal, content, context, means, and moment of reflecting. Reflection was operationalised as answering reflective questions. Bloom’s taxonomy ...

  5. Taxonomy Icon Data: Synechocystis sp.PCC 6803 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Synechocystis_sp_PCC_6803_NL.png Synechocystis_sp_PCC_6803_S.png Synechocystis_sp_PCC_6803_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Synechocystis+sp%2ePCC+6803&t=L http://biosciencedbc.jp/taxonomy_ico...n/icon.cgi?i=Synechocystis+sp%2ePCC+6803&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Synechocystis+sp%2ePCC+6803&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Synechocystis...+sp%2ePCC+6803&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=69 ...

  6. Faceted Taxonomy-Based Sources

    Science.gov (United States)

    Tzitzikas, Yannis

    The objective of this chapter is to explain the underlying mathematical structure of faceted taxonomy-based sources and to provide some common notions and notations that are used in some parts of the book. Subsequently, and on the basis of the introduced formalism, this chapter describes the interaction between a user and an information source that supports dynamic taxonomies and faceted search.

  7. Application of Bloom´s taxonomy of learning objectives in vocational subjects

    OpenAIRE

    Procházka, Miloslav

    2012-01-01

    Bachelor thesis with entitle "Application of Bloom's taxonomy of objectives in teaching vocational subjects" is focused on analyzing the current taxonomy of educational aims in education, the goal is to find out what is the final function in education process and what is the experience with the use of taxonomy targets among secondary school teachers. For the research were used three methods and tools for educational research. Firstly, content analysis of curriculum documents. Secondly, obser...

  8. Taxonomy as a contextualist views it.

    Science.gov (United States)

    Hayes, Steven C

    2004-12-01

    The Henriques' article, "Psychology Defined" (this issue), reflects an underlying philosophy of science that emphasizes coherence as its truth criterion. The taxonomic efforts that result are of unknown value when viewed from other philosophical positions. From the point of view of functional contextualism, the primary metric of successful science is not coherence per se, but the precision, scope, and depth of the analysis as a means of predicting and influencing psychological phenomena. Henriques presents neither data nor specific research proposals that would allow even the beginning application of such a metric. Thus, the proposed taxonomy has no known value when viewed contextualistically. Since the practical goals of clinical psychology are very similar to those of functional contextualism, clinical psychologists interested in making a practical difference will have few current empirical reasons to be attracted to this taxonomy. PMID:15470734

  9. The Taxonomy for Learning, Teaching and Assessing: Current Practices at Polytechnics in Bangladesh and its Effects in Developing Studentsâ Competences

    OpenAIRE

    Haolader, Faruque A.

    2015-01-01

    Polytechnics in Bangladesh endeavor to produce quality graduates for national and international job markets. Quality of graduates depends on several factors. This study examines the implementation process of the polytechnic curriculum with the objectives of determining the current level of practices in learn-ing/teaching material design, in delivering curriculum content, in assessing stu-dents and its effect on studentsâ competence development. Data was collected through observation, opinion ...

  10. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy.

    Science.gov (United States)

    Glaeser, Stefanie P; Kämpfer, Peter

    2015-06-01

    To obtain a higher resolution of the phylogenetic relationships of species within a genus or genera within a family, multilocus sequence analysis (MLSA) is currently a widely used method. In MLSA studies, partial sequences of genes coding for proteins with conserved functions ('housekeeping genes') are used to generate phylogenetic trees and subsequently deduce phylogenies. However, MLSA is not only suggested as a phylogenetic tool to support and clarify the resolution of bacterial species with a higher resolution, as in 16S rRNA gene-based studies, but has also been discussed as a replacement for DNA-DNA hybridization (DDH) in species delineation. Nevertheless, despite the fact that MLSA has become an accepted and widely used method in prokaryotic taxonomy, no common generally accepted recommendations have been devised to date for either the whole area of microbial taxonomy or for taxa-specific applications of individual MLSA schemes. The different ways MLSA is performed can vary greatly for the selection of genes, their number, and the calculation method used when comparing the sequences obtained. Here, we provide an overview of the historical development of MLSA and critically review its current application in prokaryotic taxonomy by highlighting the advantages and disadvantages of the method's numerous variations. This provides a perspective for its future use in forthcoming genome-based genotypic taxonomic analyses.

  11. Taxonomy Icon Data: Philippine flying lemur [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Philippine flying lemur Cynocephalus volans Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Cynoceph...alus_volans_L.png Cynocephalus_volans_NL.png Cynocephalus_volans_S.png Cynocephalus_volan...s_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cynocephalus+volans&t=L http://biosciencedbc.jp/ta...xonomy_icon/icon.cgi?i=Cynocephalus+volans&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cynoceph...alus+volans&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Cynocephalus+volans&t=NS ...

  12. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  13. NEWT, a new taxonomy portal

    OpenAIRE

    Phan, Isabelle; Pilbout, Sandrine; Fleischmann, Wolfgang; Bairoch, Amos Marc

    2003-01-01

    NEWT is a new taxonomy portal to the SWISS-PROT protein sequence knowledgebase. It contains taxonomy data, which is updated daily, for the complete set of species represented in SWISS-PROT, as well as those stored at the NCBI. Users can navigate through the taxonomy tree and access corresponding SWISS-PROT protein entries. In addition, a manually curated selection of external links allows access to specific information on selected species. NEWT is available at http://www.ebi.ac.uk/newt/.

  14. TAXONOMY CONSTRUCTION TECHNIQUES – ISSUES AND CHALLENGES

    OpenAIRE

    Sujatha R; Bandaru Rama krishna Rao

    2011-01-01

    For any information to be organized, taxonomy is essential. Taxonomy plays a very important role for information and content management. Also it helps in searching of content. The most common method forconstructing taxonomy was the manual construction. As the information available today is huge, constructing taxonomy for such information manually was time consuming and maintenance was difficult. This paperpresents an overview of various taxonomy construction techniques available for easier co...

  15. Overview of the taxonomy of zooxanthellate Scleractinia.

    Science.gov (United States)

    Veron, John

    2013-11-01

    Coral taxonomy has entered a historical phase where nomenclatorial uncertainty is rapidly increasing. The fundamental cause is mandatory adherence to historical monographs that lack essential information of all sorts, and also to type specimens, if they exist at all, that are commonly unrecognizable fragments or are uncharacteristic of the species they are believed to represent. Historical problems, including incorrect subsequent type species designations, also create uncertainty for many well-established genera. The advent of in situ studies in the 1970s revealed these issues; now molecular technology is again changing the taxonomic landscape. The competing methodologies involved must be seen in context if they are to avoid becoming an additional basis for continuing nomenclatorial instability. To prevent this happening, the International Commission on Zoological Nomenclature (ICZN) will need to focus on rules that consolidate well-established nomenclature and allow for the designation of new type specimens that are unambiguous, and which include both skeletal material and soft tissue for molecular study. Taxonomic and biogeographic findings have now become linked, with molecular methodologies providing the capacity to re-visit past taxonomic decisions, and to extend both taxonomy and biogeography into the realm of evolutionary theory. It is proposed that most species will ultimately be seen as operational taxonomic units that are human rather than natural constructs, which in consequence will always have fuzzy morphological, genetic, and distribution boundaries. The pathway ahead calls for the integration of morphological and molecular taxonomies, and for website delivery of information that crosses current discipline boundaries.

  16. A taxonomy of inductive problems.

    Science.gov (United States)

    Kemp, Charles; Jern, Alan

    2014-02-01

    Inductive inferences about objects, features, categories, and relations have been studied for many years, but there are few attempts to chart the range of inductive problems that humans are able to solve. We present a taxonomy of inductive problems that helps to clarify the relationships between familiar inductive problems such as generalization, categorization, and identification, and that introduces new inductive problems for psychological investigation. Our taxonomy is founded on the idea that semantic knowledge is organized into systems of objects, features, categories, and relations, and we attempt to characterize all of the inductive problems that can arise when these systems are partially observed. Recent studies have begun to address some of the new problems in our taxonomy, and future work should aim to develop unified theories of inductive reasoning that explain how people solve all of the problems in the taxonomy.

  17. Phylogenetic analysis of Pectinidae (Bivalvia) based on the ribosomal DNA internal transcribed spacer region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The ribosomal DNA internal transcribed spacer (ITS) region is a useful genomic region for understanding evolutionary and genetic relationships. In the current study, the molecular phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) was performed using the nucleotide sequences of the nuclear ITS region in nine species of this family. The sequences were obtained from the scallop species Argopecten irradians, Mizuhopecten yessoensis, Amusium pleuronectes and Mimachlamys nobilis, and compared with the published sequences of Aequipecten opercularis, Chlamys farreri, C. distorta, M. varia, Pecten maximus, and an outgroup species Perna viridis. The molecular phylogenetic tree was constructed by the neighbor-joining and maximum parsimony methods. Phylogenetic analysis based on ITS1, ITS2, or their combination always yielded trees of similar topology. The results support the morphological classifications of bivalve and are nearly consistent with classification of two subfamilies (Chlamydinae and Pectininae) formulated by Waller. However, A. irradians, together with A. opercularis made up of genera Amusium, evidences that they may belong to the subfamily Pectinidae. The data are incompatible with the conclusion of Waller who placed them in Chlamydinae by morphological characteristics. These results provide new insights into the evolutionary relationships among scallop species and contribute to the improvement of existing classification systems.

  18. Taxonomy of Stock Market Indices

    OpenAIRE

    Giovanni Bonanno; Nicolas Vandewalle; Mantegna, Rosario N.

    2000-01-01

    We investigate sets of financial non-redundant and nonsynchronously recorded time series. The sets are composed by a number of stock market indices located all over the world in five continents. By properly selecting the time horizon of returns and by using a reference currency we find a meaningful taxonomy. The detection of such a taxonomy proves that interpretable information can be stored in a set of nonsynchronously recorded time series.

  19. Taxonomy of cloud computing services

    OpenAIRE

    Hoefer, C.N.; Karagiannis, G.

    2010-01-01

    Cloud computing is a highly discussed topic, and many big players of the software industry are entering the development of cloud services. Several companies want to explore the possibilities and benefits of cloud computing, but with the amount of cloud computing services increasing quickly, the need for a taxonomy framework rises. This paper describes the available cloud computing services, and proposes a treestructured taxonomy based on their characteristics, to easily classify cloud computi...

  20. Taxonomy and Notation of Spatialization

    OpenAIRE

    Ellberger, Emile Benjamin; Pérez, Germán Toro; Cavaliero, Linda; Schütt, Johannes; Zoia, Giorgio; Zimmermann, Basile

    2016-01-01

    The SSMN Spatial Taxonomy and its symbols libraries, which are the corner stone of the Spatialization Symbolic Music Notation (SSMN) project, emanates from research into composers’ attitudes in this domain. It was conceived as the basis for the development of dedicated notation and rendering tools within the SSMN project. The taxonomy is a systematic representation of all relevant features necessary to specify sound spatiality: shape and acoustic quality of the space, structure, position and ...

  1. Taxonomy of stock market indices

    Science.gov (United States)

    Bonanno, Giovanni; Vandewalle, Nicolas; Mantegna, Rosario N.

    2000-12-01

    We investigate sets of financial nonredundant and nonsynchronously recorded time series. The sets are composed by a number of stock market indices located all over the world in five continents. By properly selecting the time horizon of returns and by using a reference currency we find a meaningful taxonomy. The detection of such a taxonomy proves that interpretable information can be stored in a set of nonsynchronously recorded time series.

  2. Taxonomy Working Group Final Report

    Science.gov (United States)

    Parsons, Vickie S.; Beil, Robert J.; Terrone, Mark; Barth, Timothy S.; Panontin, Tina L.; Wales, Roxana; Rackley, Michael W.; Milne, James S.; McPherson, John W.; Dutra, Jayne E.; Shaw, Larry C.

    2009-01-01

    The purpose of the Taxonomy Working Group was to develop a proposal for a common taxonomy to be used by all NASA projects in the classifying of nonconformances, anomalies, and problems. Specifically, the group developed a recommended list of data elements along with general suggestions for the development of a problem reporting system to better serve NASA's need for managing, reporting, and trending project aberrant events. The Group's recommendations are reported in this document.

  3. Construction of Cubic Dynamic and User-oriented Taxonomy forAutomatic Classification of Internet Information

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the requirements of the development of Internet, thenecessity of establishing cubic dynamic and user-oriented taxonomy for automatic classification is presented. Then the basic algorithm to construct such taxonomy is discussed. The view is up to date in current world.

  4. The integrative future of taxonomy

    Directory of Open Access Journals (Sweden)

    Vences Miguel

    2010-05-01

    Full Text Available Abstract Background Taxonomy is the biological discipline that identifies, describes, classifies and names extant and extinct species and other taxa. Nowadays, species taxonomy is confronted with the challenge to fully incorporate new theory, methods and data from disciplines that study the origin, limits and evolution of species. Results Integrative taxonomy has been proposed as a framework to bring together these conceptual and methodological developments. Here we review perspectives for an integrative taxonomy that directly bear on what species are, how they can be discovered, and how much diversity is on Earth. Conclusions We conclude that taxonomy needs to be pluralistic to improve species discovery and description, and to develop novel protocols to produce the much-needed inventory of life in a reasonable time. To cope with the large number of candidate species revealed by molecular studies of eukaryotes, we propose a classification scheme for those units that will facilitate the subsequent assembly of data sets for the formal description of new species under the Linnaean system, and will ultimately integrate the activities of taxonomists and molecular biologists.

  5. Taxonomic implications of molecular studies on Northern Brazilian Teredinidae (Mollusca: Bivalvia) specimens

    OpenAIRE

    Sonia Maria Lima Santos; Claudia Helena Tagliaro; Colin Robert Beasley; Horacio Schneider; Iracilda Sampaio; Carlos Santos Filho; Ana Cláudia de Paula Müller

    2005-01-01

    The current taxonomy of the Teredinidae (shipworms) is wholly based on morphology and up to now no molecular studies of the phylogeny of this group have been published. In the present study the relationships between four genera of the subfamilies Teredininae and Bankiinae were established and the efficiency of the 16S rRNA gene in characterizing four Teredinidae species was tested. Phylogenetic trees support the grouping of Bankia fimbriatula with Nausitora fusticula and of Neoteredo reynei w...

  6. Taxonomy Icon Data: three-spined stickleback [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available three-spined stickleback Gasterosteus aculeatus Chordata/Vertebrata/Pisciformes Gasteros...teus_aculeatus_L.png Gasterosteus_aculeatus_NL.png Gasterosteus_aculeatus_S.png Gasterosteus_aculeatus_...NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gasterosteus+aculeatus&t=L http://biosciencedbc.jp/t...axonomy_icon/icon.cgi?i=Gasterosteus+aculeatus&t=NL http://biosciencedbc.jp/taxon...omy_icon/icon.cgi?i=Gasterosteus+aculeatus&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gasterosteus+aculeatus&t=NS ...

  7. Expanding the taxonomy of the diagnostic criteria for temporomandibular disorders.

    Science.gov (United States)

    Peck, C C; Goulet, J-P; Lobbezoo, F; Schiffman, E L; Alstergren, P; Anderson, G C; de Leeuw, R; Jensen, R; Michelotti, A; Ohrbach, R; Petersson, A; List, T

    2014-01-01

    There is a need to expand the current temporomandibular disorders' (TMDs) classification to include less common but clinically important disorders. The immediate aim was to develop a consensus-based classification system and associated diagnostic criteria that have clinical and research utility for less common TMDs. The long-term aim was to establish a foundation, vis-à-vis this classification system, that will stimulate data collection, validity testing and further criteria refinement. A working group [members of the International RDC/TMD Consortium Network of the International Association for Dental Research (IADR), members of the Orofacial Pain Special Interest Group (SIG) of the International Association for the Study of Pain (IASP), and members from other professional societies] reviewed disorders for inclusion based on clinical significance, the availability of plausible diagnostic criteria and the ability to operationalise and study the criteria. The disorders were derived from the literature when possible and based on expert opinion as necessary. The expanded TMDs taxonomy was presented for feedback at international meetings. Of 56 disorders considered, 37 were included in the expanded taxonomy and were placed into the following four categories: temporomandibular joint disorders, masticatory muscle disorders, headache disorders and disorders affecting associated structures. Those excluded were extremely uncommon, lacking operationalised diagnostic criteria, not clearly related to TMDs, or not sufficiently distinct from disorders already included within the taxonomy. The expanded TMDs taxonomy offers an integrated approach to clinical diagnosis and provides a framework for further research to operationalise and test the proposed taxonomy and diagnostic criteria.

  8. The remote experiment position in actual taxonomy

    OpenAIRE

    Samoila, Cornel; Ursutiu, Doru; Cotfas, Petru; Zamfira, Sorin

    2007-01-01

    Taxonomy is a classification effort for establishment of learning/teaching operational objectives. There are some famous taxonomies, Bloom's being the most quoted. In spite of the fact that some researchers have tried to explain the position of elearning in already known taxonomies, this subject was not too much in the general attention. In the paper the authors intend to go deeply and to analyze the position of the new methodology-remote experiment-in the actual taxonomies. In addition they ...

  9. A knowledge network for a dynamic taxonomy of psychiatric disease.

    Science.gov (United States)

    Krishnan, Ranga R

    2015-03-01

    Current taxonomic approaches in medicine and psychiatry are limited in validity and utility. They do serve simple communication purposes for medical coding, teaching, and reimbursement, but they are not suited for the modern era with its rapid explosion of knowledge from the "omics" revolution. The National Academy of Sciences published a report entitled Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. The authors advocate a new taxonomy that would integrate molecular data, clinical data, and health outcomes in a dynamic, iterative fashion, bringing together research, public health, and health-care delivery with the interlinked goals of advancing our understanding of disease pathogenesis and thereby improving health. As the need for an information hub and a knowledge network with a dynamic taxonomy based on integration of clinical and research data is vital, and timely, this proposal merits consideration.

  10. Towards a taxonomy of spatial scale-dependence

    DEFF Research Database (Denmark)

    Sandel, Brody Steven

    2015-01-01

    , and why? I argue that this is likely to be a productive way forward for ecology, but that progress in this direction is currently hindered by the conflation of a set of distinct concepts under the category of ‘scale-dependence’. Here, I propose a taxonomy of spatial scale-dependence that categorizes its......-dependence (the class). I illustrate the need for these distinctions with a set of examples demonstrating causes of different types of scale-dependence. I then describe how this taxonomy relates to an array of scale-related concepts from other fields. Finally, I discuss the generalization that biotic interactions...... are most important at small scales in light of this taxonomy....

  11. From Genome Sequence to Taxonomy - A Skeptic’s View

    DEFF Research Database (Denmark)

    Özen, Asli Ismihan; Vesth, Tammi Camilla; Ussery, David

    2012-01-01

    many commonly used methods and also describes potential pitfalls if used inappropriately, as well as which questions are best addressed by particular methods. After a brief introduction to the classical methods of taxonomy, a description of the bacterial genomes currently available is given, and then...

  12. A Taxonomy for Radio Location Fingerprinting

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2007-01-01

    good frameworks for understanding different options when building LF systems. This paper proposes a taxonomy to address both of these problems. The proposed taxonomy has been constructed from a literature study of 51 papers and articles about LF. For researchers the taxonomy can also be used as an aid...

  13. Building a taxonomy of GI knowledge

    DEFF Research Database (Denmark)

    Arleth, Mette

    2004-01-01

    of this project is to investigate how and how well non-professional users actually understand GI. For that purpose a taxonomy of GI knowledge is built, drawing on Bloom`s taxonomy. The elements of this taxonomy are described after a presentation of the main research question of the study, the applications chosen...

  14. Molecular phylogeny of pearl oysters and their relatives (Mollusca, Bivalvia, Pterioidea)

    OpenAIRE

    Tëmkin Ilya

    2010-01-01

    Abstract Background The superfamily Pterioidea is a morphologically and ecologically diverse lineage of epifaunal marine bivalves distributed throughout the tropical and subtropical continental shelf regions. This group includes commercially important pearl culture species and model organisms used for medical studies of biomineralization. Recent morphological treatment of selected pterioideans and molecular phylogenetic analyses of higher-level relationships in Bivalvia have challenged the tr...

  15. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology.

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); M. Struelens; A. de Visser (Arjan); H.A. Verbrugh (Henri); M. Tibayrench

    2001-01-01

    textabstractCurrently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbi

  16. A Taxonomy of Technical Animation

    Directory of Open Access Journals (Sweden)

    D. Vaněček

    2011-01-01

    Full Text Available The age in which we are living nowadays is characterized by rapid innovation in the development of information and communication technologies (ICT. This innovation has a significant influence on the education process. This article deals with computer animation in technical education. Our aim is to show the taxonomy of education animation. The paper includes practical examples of animation.

  17. Reflections on Bloom's Revised Taxonomy

    Science.gov (United States)

    Amer, Aly

    2006-01-01

    In the application of the "Original" Bloom's taxonomy since its publication in 1956, several weaknesses and practical limitations have been revealed. Besides, psychological and educational research has witnessed the introduction of several theories and approaches to learning which make students more knowledgeable of and responsible for their own…

  18. Taxonomy of the extrasolar planet

    CERN Document Server

    Plávalová, E

    2011-01-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun.We know its approximate mass, temperature, age and size. In our work with extrasolar planets database, it is very useful to have a taxonomy scale (classification), for example, like the Harvard classification for stars. This new taxonomy has to be comprehensible and present the important information about extrasolar planets. The important information of extrasolar planets are their mass, radius, period, density, eccentricity, temperature, and their distance from the parent star. There are too many parameters, that is, taxonomy with six parameters would be complicated and difficult to apply. We propose following the extrasolar planet taxonomy scale with only four parameters. The first parameter is the information about the mass of an extrasolar planet in the form of the units of the mass of other known planets, where M - Mercury, E - Earth, N - Neptune, and J - Jupiter. The second parameter is the distance from its pa...

  19. A phylogenetic backbone for Bivalvia: an RNA-seq approach.

    Science.gov (United States)

    González, Vanessa L; Andrade, Sónia C S; Bieler, Rüdiger; Collins, Timothy M; Dunn, Casey W; Mikkelsen, Paula M; Taylor, John D; Giribet, Gonzalo

    2015-02-22

    Bivalves are an ancient and ubiquitous group of aquatic invertebrates with an estimated 10 000-20 000 living species. They are economically significant as a human food source, and ecologically important given their biomass and effects on communities. Their phylogenetic relationships have been studied for decades, and their unparalleled fossil record extends from the Cambrian to the Recent. Nevertheless, a robustly supported phylogeny of the deepest nodes, needed to fully exploit the bivalves as a model for testing macroevolutionary theories, is lacking. Here, we present the first phylogenomic approach for this important group of molluscs, including novel transcriptomic data for 31 bivalves obtained through an RNA-seq approach, and analyse these data with published genomes and transcriptomes of other bivalves plus outgroups. Our results provide a well-resolved, robust phylogenetic backbone for Bivalvia with all major lineages delineated, addressing long-standing questions about the monophyly of Protobranchia and Heterodonta, and resolving the position of particular groups such as Palaeoheterodonta, Archiheterodonta and Anomalodesmata. This now fully resolved backbone demonstrates that genomic approaches using hundreds of genes are feasible for resolving phylogenetic questions in bivalves and other animals.

  20. Comparative genomics of vesicomyid clam (Bivalvia: Mollusca chemosynthetic symbionts

    Directory of Open Access Journals (Sweden)

    Girguis Peter R

    2008-12-01

    Full Text Available Abstract Background The Vesicomyidae (Bivalvia: Mollusca are a family of clams that form symbioses with chemosynthetic gamma-proteobacteria. They exist in environments such as hydrothermal vents and cold seeps and have a reduced gut and feeding groove, indicating a large dependence on their endosymbionts for nutrition. Recently, two vesicomyid symbiont genomes were sequenced, illuminating the possible nutritional contributions of the symbiont to the host and making genome-wide evolutionary analyses possible. Results To examine the genomic evolution of the vesicomyid symbionts, a comparative genomics framework, including the existing genomic data combined with heterologous microarray hybridization results, was used to analyze conserved gene content in four vesicomyid symbiont genomes. These four symbionts were chosen to include a broad phylogenetic sampling of the vesicomyid symbionts and represent distinct chemosynthetic environments: cold seeps and hydrothermal vents. Conclusion The results of this comparative genomics analysis emphasize the importance of the symbionts' chemoautotrophic metabolism within their hosts. The fact that these symbionts appear to be metabolically capable autotrophs underscores the extent to which the host depends on them for nutrition and reveals the key to invertebrate colonization of these challenging environments.

  1. Phishing Detection Taxonomy for Mobile Device

    Directory of Open Access Journals (Sweden)

    Cik Feresa Mohd Foozy

    2013-01-01

    Full Text Available Phishing is one of the social engineering attacks and currently hit on mobile devices. Based on security report by Lookout, 30% of Lookout users clicking on an unsafe link per year by using mobile device. Few phishing detection techniques have been applied on mobile device. However, review on phishing detection technique on the detection technique redundant is still need. This paper addresses the current trend phishing detection for mobile device and identifies significant criterion to improve phishing detection techniques on mobile device. Thus, existing research on phishing detection technique for computer and mobile device will be compared and analysed. Hence, outcome of the analysis becomes a guideline in proposing generic phishing detection taxonomy for mobile device

  2. Comment: 235 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available koji mold Aspergillus oryzae Aspergillus_oryzae_L.png 235.png Osamu Mizutani (Tohoku University (curren...tly National Research Institute of Brewing)) licensed under CC Attribution2.1 Japan 撮影: ...水谷治(東北大学(現 酒類総研)) Photo: Osamu Mizutani (Tohoku University (currently National Research Institute of Brewing)) bando 2010/08/04 09:28:07 2010/08/04 11:18:35 ...

  3. Algal taxonomy: a road to nowhere?

    Science.gov (United States)

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  4. Solar and Extrasolar Planet Taxonomy

    OpenAIRE

    Russell, David

    2013-01-01

    A mass-based definition for planets is proposed with dynamical circumstances and compositional characteristics used to define types of planets. Dynamical planet classes include Principal planets, Belt planets, Moons, and Rogue planets. Compositional classes include rock, ice, and gas planets with refined classes when sufficient data is available. The dynamical and compositional definitions are combined with a six class planetary mass scale into a taxonomy that can be used to classify both Sol...

  5. Taxonomy of the extrasolar planet.

    Science.gov (United States)

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1. PMID:22506608

  6. LEADERSHIP BEHAVIORAL TAXONOMIES IN UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    Riaz Ahmed Mangi

    2011-10-01

    Full Text Available The study was intended to recognize and replicate the Yukl’s (1989-2004 behavioral taxonomies in the university settings in Sindh. A comprehensive questionnaire based on the items in taxonomies was developed, face validity of the questionnaire was test and found suitable. A total of 90 university Deans and head of Departments were randomly selected from public and private universities of Sindh. Categorical reliability of the data was checked and found highly reliable. The majority of the respondents were male, post graduate, above 50 years of age, married and had more than 15 years of experience. The statistical analysis describes the typical Sindhi culture among the respondents. A large number of university leadership focused on the relation as compared to task and change at the universities. This research also supports partial replication of three dimensions i.e., Relation, Task and Change as Yukl’s behavioral taxonomies with first order factor analysis. Relation factor was replicated completely, while other two were replicated in two different facets each i.e., Change was replicated in two facets – Improvement and Process and Task was also replicated in two facets – Improvement and Process. Making a second order factor analysis assured these two factors were replicated completely.

  7. A taxonomy fuzzy filtering approach

    Directory of Open Access Journals (Sweden)

    Vrettos S.

    2003-01-01

    Full Text Available Our work proposes the use of topic taxonomies as part of a filtering language. Given a taxonomy, a classifier is trained for each one of its topics. The user is able to formulate logical rules combining the available topics, e.g. (Topic1 AND Topic2 OR Topic3, in order to filter related documents in a stream. Using the trained classifiers, every document in the stream is assigned a belief value of belonging to the topics of the filter. These belief values are then aggregated using logical operators to yield the belief to the filter. In our study, Support Vector Machines and Naïve Bayes classifiers were used to provide topic probabilities. Aggregation of topic probabilities based on fuzzy logic operators was found to improve filtering performance on the Renters text corpus, as compared to the use of their Boolean counterparts. Finally, we deployed a filtering system on the web using a sample taxonomy of the Open Directory Project.

  8. Target-driven merging of Taxonomies

    CERN Document Server

    Raunich, Salvatore

    2010-01-01

    The proliferation of ontologies and taxonomies in many domains increasingly demands the integration of multiple such ontologies. The goal of ontology integration is to merge two or more given ontologies in order to provide a unified view on the input ontologies while maintaining all information coming from them. We propose a new taxonomy merging algorithm that, given as input two taxonomies and an equivalence matching between them, can generate an integrated taxonomy in a fully automatic manner. The approach is target-driven, i.e. we merge a source taxonomy into the target taxonomy and preserve the structure of the target ontology as much as possible. We also discuss how to extend the merge algorithm providing auxiliary information, like additional relationships between source and target concepts, in order to semantically improve the final result. The algorithm was implemented in a working prototype and evaluated using synthetic and real-world scenarios.

  9. Breast cancer pathology: the impact of molecular taxonomy on morphological taxonomy.

    Science.gov (United States)

    Masuda, Shinobu

    2012-05-01

    The concept of having an 'intrinsic subtype,' or a molecular taxonomy, lets us clearly recognize that breast cancers have characteristically different patterns of gene expression, thus giving newfound significance to morphological taxonomy. In this review, the concept of the 'intrinsic subtype' is discussed, research questions are introduced to refine the significance of morphological taxonomy, and a corresponding example is presented between microarray analysis and 'immunohistochemical subtype,' or histological taxonomy.

  10. A Proposed Taxonomy of Software Weapons

    OpenAIRE

    Karresand, Martin

    2002-01-01

    The terms and classification schemes used in the computer security field today are not standardised. Thus the field is hard to take in, there is a risk of misunderstandings, and there is a risk that the scientific work is being hampered. Therefore this report presents a proposal for a taxonomy of software based IT weapons. After an account of the theories governing the formation of a taxonomy, and a presentation of the requisites, seven taxonomies from different parts of the computer securit...

  11. A taxonomy of integral reaction path analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grcar, Joseph F.; Day, Marcus S.; Bell, John B.

    2004-12-23

    W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.

  12. Scanning electron microscopic structure of the prismatic layer in the Bivalvia

    Institute of Scientific and Technical Information of China (English)

    Iwao KOBAYASHI

    2008-01-01

    The shell structure of the Bivalvia has been observed with the use of optical and electron microscopes since the early 1900's. The prismatic structure is one of the more attractive shell structures in bivalved mollusks. This structure is composed of the aggregation of polygonal prisms arranged densely. Each prism is made of small calcite crystallites arranged perpendicular to a growth shell surface. Organic materials, named organic sheaths, accumulate around prisms and stain well with heamatox-ylin-eosin.The Bivalvia, which make prismatic structures, are divided into two groups. One group has the inner shell layer made up of a nacreous structure, and the other has the inner shell layer made up of a foliated structure. The aragonite prismatic layer and the prismatic layer are clo-sely related to each other, as is the aragonite prismatic layer to the composite prismatic one.

  13. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.

    Science.gov (United States)

    McDonald, Daniel; Price, Morgan N; Goodrich, Julia; Nawrocki, Eric P; DeSantis, Todd Z; Probst, Alexander; Andersen, Gary L; Knight, Rob; Hugenholtz, Philip

    2012-03-01

    Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a 'taxonomy to tree' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408,315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.

  14. When taxonomy meets genomics: lessons from a common songbird.

    Science.gov (United States)

    Lifjeld, Jan T

    2015-06-01

    Taxonomy is being increasingly informed by genomics. Traditionally, taxonomy has relied extensively on phenotypic traits for the identification and delimitation of species, though with a growing influence from molecular phylogenetics in recent decades. Now, genomics opens up new and more powerful tools for analysing the evolutionary history and relatedness among species, as well as understanding the genetic basis for phenotypic traits and their role in reproductive isolation. New insights gained from genomics will therefore have major effects on taxonomic classifications and species delimitation. How a genomics approach can inform a flawed taxonomy is nicely exemplified by Mason & Taylor () in this issue of Molecular Ecology. They studied redpolls, which comprise a genus (Acanthis) of fringillid finches with a wide distribution in the Holarctic region, and whose species taxonomy has been a matter of much controversy for decades (Fig. ). Current authoritative checklists classify them into one, two or three species, and five or six subspecies, based largely on geographical differences in phenotypic traits. Previous studies, including a recent one of the subspecies on Iceland (Amouret et al. ), have found no evidence of differentiation between these taxa in conventional molecular markers. The lack of genetic structure has been interpreted as incomplete lineage sorting among rapidly evolving lineages. Now Mason & Taylor (), using a large data set of genomewide SNPs, verify that they all belong to a single gene pool with a common evolutionary history, and with little or no geographical structuring. They also show that phenotypic traits used in taxonomic classifications (plumage and bill morphology) are closely associated with polygenic patterns of gene expression, presumably driven by ecological selection on a few regulatory genes. Several lessons can be learned from this study. Perhaps the most important one for taxonomy is the risk of taxonomic inflation resulting

  15. The Rho GTPase Family Genes in Bivalvia Genomes: Sequence, Evolution and Expression Analysis

    OpenAIRE

    Xue Li; Ruijia Wang; Xiaogang Xun; Wenqian Jiao; Mengran Zhang; Shuyue Wang; Shi Wang; Lingling Zhang; Xiaoting Huang; Xiaoli Hu; Zhenmin Bao

    2015-01-01

    Background Rho GTPases are important members of the Ras superfamily, which represents the largest signaling protein family in eukaryotes, and function as key molecular switches in converting and amplifying external signals into cellular responses. Although numerous analyses of Rho family genes have been reported, including their functions and evolution, a systematic analysis of this family has not been performed in Mollusca or in Bivalvia, one of the most important classes of Mollusca. Result...

  16. GENETIC DIVERSITY OF FIVE FRESHWATER MUSSELS IN GENUS ANODONTA (MOLLUSCA: BIVALVIA) REVEALED BY RAPD ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Unionidae(Bivalvia)are distributed infreshwaters,and represent a significanttaxonof benthic community[1].In China,freshwater mussels are abundant resources[2].Since1949,substantial investigations onthe unionidfau-na had been undertakenin China[3—8].Withreference tooverseas research[9,10],a preliminary reorganization onthe Unionidae was performed accordingtosome classifica-tion characteristics such as shell shape,larvae character-istics,and breeding habit[11].Due tothe serious conver-gence of freshwater muss...

  17. Managing risk: a taxonomy of error in health policy.

    Science.gov (United States)

    Joyce, Paul; Boaden, Ruth; Esmail, Aneez

    2005-12-01

    This paper discusses the current initiatives on error and adverse events within healthcare, with a particular focus on the NHS, within the context of health policy. One of the key features of the paper is the proposal for an emergent taxonomy of the medical error literature, developed from the ideologies and rationales that underpin their approaches. This taxonomy provides details of three categories--empiricists, organisational rationalists and reformers of professional culture--and these act as an organising framework for the exploration of the potential consequences of current policy on errors and adverse events. This discussion highlights the tension between optimising health outcomes for patients and managing the health system as effectively as possible. In particular, the inherent tension between explicit managerial formulations of risk and implicit risk management strategies associated with medical professionalism are considered. PMID:16435469

  18. Expanding the taxonomy of the diagnostic criteria for temporomandibular disorders

    DEFF Research Database (Denmark)

    Peck, C C; Goulet, J-P; Lobbezoo, F;

    2014-01-01

    in the expanded taxonomy and were placed into the following four categories: temporomandibular joint disorders, masticatory muscle disorders, headache disorders and disorders affecting associated structures. Those excluded were extremely uncommon, lacking operationalised diagnostic criteria, not clearly related......There is a need to expand the current temporomandibular disorders' (TMDs) classification to include less common but clinically important disorders. The immediate aim was to develop a consensus-based classification system and associated diagnostic criteria that have clinical and research utility...

  19. A taxonomy of virtual worlds usage in education

    OpenAIRE

    Duncan, Ishbel Mary Macdonald; Miller, Alan Henry David; Jiang, Shangyi

    2012-01-01

    Virtual worlds are an important tool in modern education practices as well as providing socialisation, entertainment and a laboratory for collaborative work. This paper focuses on the uses of virtual worlds for education and synthesises over 100 published academic papers, reports and educational websites from around the world. A taxonomy is then derived from these papers, delineating current theoretical and practical work on virtual world usage, specifically in the field of education. The tax...

  20. An Evaluation Taxonomy For Congestion Pricing

    OpenAIRE

    H. Lo; Hickman, M.; Walstad, M.

    1996-01-01

    In this paper, the authors formulate an evaluation taxonomy to identify a broad range of factors that would be important for a comprehensive assessment of congestion pricing. The evaluation taxonomy consists of three dimensions: road pricing strategies, impacted groups and impacts. The paper also includes a literature review of previous research in road pricing, especially regarding modeling tools and methods for conducting evaluation.

  1. A Taxonomy of Systems of Corporate Governance

    NARCIS (Netherlands)

    Weimer, Jeroen; Pape, Joost C.

    1999-01-01

    This paper argues that debate on corporate governance in an international context is hampered by the lack of a coherent framework. A taxonomy of systems of corporate governance is proposed as a remedy. The taxonomy is based upon eight characteristics: the prevailing concept of the firm, the board sy

  2. TAXONOMIES OF PHYSICS PROBLEMS IN PHYSICS EDUCATION

    Directory of Open Access Journals (Sweden)

    Monika Hanáková

    2016-09-01

    Full Text Available Taxonomies of physics problems serve as useful tools to define and analyze the requirements of pupils and students in solving physics problems and tasks. The connection between taxonomies of educational objectives is important, and these were considered in selecting taxonomies of physics problems. Different approaches to classification are briefly described in this article, as well as the importance of a balance of physics problems in instruction, according to the selected taxonomy. Two taxonomies of physics problems were chosen according to our criteria and then analyzed and described in detail. A strength, weakness, opportunity, and threat SWOT analysis was performed on the tools as well as an example of the use of the tools on a particular physics problem.

  3. GEM Building Taxonomy (Version 2.0)

    Science.gov (United States)

    Brzev, S.; Scawthorn, C.; Charleson, A.W.; Allen, L.; Greene, M.; Jaiswal, Kishor; Silva, V.

    2013-01-01

    This report documents the development and applications of the Building Taxonomy for the Global Earthquake Model (GEM). The purpose of the GEM Building Taxonomy is to describe and classify buildings in a uniform manner as a key step towards assessing their seismic risk, Criteria for development of the GEM Building Taxonomy were that the Taxonomy be relevant to seismic performance of different construction types; be comprehensive yet simple; be collapsible; adhere to principles that are familiar to the range of users; and ultimately be extensible to non-buildings and other hazards. The taxonomy was developed in conjunction with other GEM researchers and builds on the knowledge base from other taxonomies, including the EERI and IAEE World Housing Encyclopedia, PAGER-STR, and HAZUS. The taxonomy is organized as a series of expandable tables, which contain information pertaining to various building attributes. Each attribute describes a specific characteristic of an individual building or a class of buildings that could potentially affect their seismic performance. The following 13 attributes have been included in the GEM Building Taxonomy Version 2.0 (v2.0): 1.) direction, 2.)material of the lateral load-resisting system, 3.) lateral load-resisting system, 4.) height, 5.) date of construction of retrofit, 6.) occupancy, 7.) building position within a block, 8.) shape of the building plan, 9.) structural irregularity, 10.) exterior walls, 11.) roof, 12.) floor, 13.) foundation system. The report illustrates the pratical use of the GEM Building Taxonomy by discussing example case studies, in which the building-specific characteristics are mapped directly using GEM taxonomic attributes and the corresponding taxonomic string is constructed for that building, with "/" slash marks separating attributes. For example, for the building shown to the right, the GEM Taxonomy string is: DX1/MUR+CLBRS+MOCL2/LWAL3/

  4. Generalized metamaterials: Definitions and taxonomy.

    Science.gov (United States)

    Kim, Noori; Yoon, Yong-Jin; Allen, Jont B

    2016-06-01

    This article reviews the development of metamaterials (MM), starting from Newton's discovery of the wave equation, and ends with a discussion of the need for a technical taxonomy (classification) of these materials, along with a better defined definition of metamaterials. It is intended to be a technical definition of metamaterials, based on a historical perspective. The evolution of MMs began with the discovery of the wave equation, traceable back to Newton's calculation of the speed of sound. The theory of sound evolved to include quasi-statics (Helmholtz) and the circuit equations of Kirchhoff's circuit laws, leading to the ultimate development of Maxwell's equations and the equation for the speed of light. Be it light, or sound, the speed of the wave-front travel defines the wavelength, and thus the quasi-static (QS) approximation. But there is much more at stake than QSs. Taxonomy requires a proper statement of the laws of physics, which includes at least the six basic network postulates: (P1) causality (non-causal/acausal), (P2) linearity (non-linear), (P3) real (complex) time response, (P4) passive (active), (P5) time-invariant (time varying), and (P6) reciprocal (non-reciprocal). These six postulates are extended to include MMs.

  5. Generalized metamaterials: Definitions and taxonomy.

    Science.gov (United States)

    Kim, Noori; Yoon, Yong-Jin; Allen, Jont B

    2016-06-01

    This article reviews the development of metamaterials (MM), starting from Newton's discovery of the wave equation, and ends with a discussion of the need for a technical taxonomy (classification) of these materials, along with a better defined definition of metamaterials. It is intended to be a technical definition of metamaterials, based on a historical perspective. The evolution of MMs began with the discovery of the wave equation, traceable back to Newton's calculation of the speed of sound. The theory of sound evolved to include quasi-statics (Helmholtz) and the circuit equations of Kirchhoff's circuit laws, leading to the ultimate development of Maxwell's equations and the equation for the speed of light. Be it light, or sound, the speed of the wave-front travel defines the wavelength, and thus the quasi-static (QS) approximation. But there is much more at stake than QSs. Taxonomy requires a proper statement of the laws of physics, which includes at least the six basic network postulates: (P1) causality (non-causal/acausal), (P2) linearity (non-linear), (P3) real (complex) time response, (P4) passive (active), (P5) time-invariant (time varying), and (P6) reciprocal (non-reciprocal). These six postulates are extended to include MMs. PMID:27369168

  6. Morphological and molecular diversity of Unionidae (Mollusca, Bivalvia from Portugal

    Directory of Open Access Journals (Sweden)

    Reis, J.

    2013-06-01

    Full Text Available Freshwater mussels from the family Unionidae are known to exhibit a high level of ecological phenotypic plasticity that is reflected in their shell shape. This variation has caused uncertainty on systematics and taxonomy of the group. Several naiad populations from nine river basins from Portugal were analyzed genetically, using two mitochondrial gene fragments (16SrRNA and Cytochrome Oxidase I and morphologically, using ANOVA analyses of shell dimmensions. Molecular phylogenetic analyses were used to revise the systematics and to infer an evolutionary hypothesis for the family at the western-most Atlantic Iberian Peninsula. Genetic and morphological data were in agreement and supported the occurrence of 5 species in the region: Anodonta anatina, Anodonta cygnea, Potomida littoralis, Unio tumidiformis and Unio delphinus. The differentiation of all these species, except A. cygnea, is thought to have taken place during the isolation of the Iberian Peninsula and formation of the current river basins in the Tertiary. The possibility of A. cygnea being a relatively recent introduction is discussed. Basic morphometric measures of the shell proved to be useful to separate Unio species, but also seem to be strongly affected by environmental conditions. The high intra-specific morphologic variation was partially related to the species’ high level of phenotypic plasticity, but seems to have an important role in evolutionary processes.Las náyades de la familia Unionidae tienen gran plasticidad fenotípica, lo que se refleja en la forma de su concha. Esta variabilidad morfológica ha sido causa de gran confusión en la taxonomía y sistemática del grupo. Se han estudiado, genética y morfológicamente, numerosas poblaciones de náyades provenientes de nueve cuencas hidrográficas portuguesas. Para ello se han analizando dos fragmentos de genes mitocondriales (ARNr 16S y Citocromo Oxidasa I así como diferentes variables morfológicas de la concha. Se

  7. TOWARDS A FACETED TAXONOMY TO STRUCTURE WEBGENRE CORPORA

    Directory of Open Access Journals (Sweden)

    Joseba Ezeiza Ramos

    2011-10-01

    Full Text Available The purpose of this paper is to contribute to the analysis of cyberjournalistic documents by proposing a taxonomy to structure web-genre corpora. It takes into account the peculiarities of this field, the new genres, their hybridization and complexness. In this sense, the taxonomy presented in this paper does not match a single theoretical framework, but it tries to gather the guidelines of various works intended to study online journalism and its genres. This theoretical flexibility is needed to set up a proposal good enough to suit the current needs of the area. The paper also describes the main axes of the taxonomy, defines its communication unit and remarks the values and limitations of such a work. Its result is a highly structured and document-oriented database, a tool that will enable users to understand the current trends, to create new hybrids, and to detect the changes that happen within this field that is widening the horizons of the usage of language.

  8. A taxonomy for mechanical ventilation: 10 fundamental maxims.

    Science.gov (United States)

    Chatburn, Robert L; El-Khatib, Mohamad; Mireles-Cabodevila, Eduardo

    2014-11-01

    The American Association for Respiratory Care has declared a benchmark for competency in mechanical ventilation that includes the ability to "apply to practice all ventilation modes currently available on all invasive and noninvasive mechanical ventilators." This level of competency presupposes the ability to identify, classify, compare, and contrast all modes of ventilation. Unfortunately, current educational paradigms do not supply the tools to achieve such goals. To fill this gap, we expand and refine a previously described taxonomy for classifying modes of ventilation and explain how it can be understood in terms of 10 fundamental constructs of ventilator technology: (1) defining a breath, (2) defining an assisted breath, (3) specifying the means of assisting breaths based on control variables specified by the equation of motion, (4) classifying breaths in terms of how inspiration is started and stopped, (5) identifying ventilator-initiated versus patient-initiated start and stop events, (6) defining spontaneous and mandatory breaths, (7) defining breath sequences (8), combining control variables and breath sequences into ventilatory patterns, (9) describing targeting schemes, and (10) constructing a formal taxonomy for modes of ventilation composed of control variable, breath sequence, and targeting schemes. Having established the theoretical basis of the taxonomy, we demonstrate a step-by-step procedure to classify any mode on any mechanical ventilator.

  9. Organising knowledge taxonomies, knowledge and organisational effectiveness

    CERN Document Server

    Lambe, Patrick

    2007-01-01

    Taxonomies are often thought to play a niche role within content-oriented knowledge management projects. They are thought to be 'nice to have' but not essential. In this ground-breaking book, Patrick Lambe shows how they play an integral role in helping organizations coordinate and communicate effectively. Through a series of case studies, he demonstrates the range of ways in which taxonomies can help organizations to leverage and articulate their knowledge. A step-by-step guide in the book to running a taxonomy project is full of practical advice for knowledge managers and business owners ali

  10. Molecular phylogeny and shell microstructure of Fungiacava eilatensis Goreau et al. 1968, boring into mushroom corals (Scleractinia: Fungiidae), in relation to other mussels (Bivalvia: Mytilidae)

    NARCIS (Netherlands)

    Owada, M.; Hoeksema, B.W.

    2011-01-01

    Research on the evolution of the symbiosis between the boring mussel Fungiacava eilatensis (Bivalvia: Mytilidae) and its mushroom coral hosts (Scleractinia: Fungiidae), which requires phylogenetic reconstructions of both the Mytilidae and the Fungiidae, contributes to the understanding of the comple

  11. TAXONOMY DEVELOPMENT IN INFORMATION SYSTEMS: DEVELOPING A TAXONOMY OF MOBILE APPLICATIONS

    OpenAIRE

    Nickerson, Robert; Muntermann, Jan; Varshney, Upkar; Isaac, Henri

    2009-01-01

    International audience The complexity of the information systems field often lends itself to classification schemes, or taxonomies, which provide ways to understand the similarities and differences among objects under study. Developing a taxonomy, however, is a complex process that is often done in an ad hoc way. This research-in-progress paper uses the design science paradigm to develop a systematic method for taxonomy development in information systems. The method we propose uses an indi...

  12. A Taxonomy of Vision Systems for Ground Mobile Robots

    Directory of Open Access Journals (Sweden)

    Jesus Martínez-Gómez

    2014-07-01

    Full Text Available This paper introduces a taxonomy of vision systems for ground mobile robots. In the last five years, a significant number of relevant papers have contributed to this subject. Firstly, a thorough review of the papers is proposed to discuss and classify both past and the most current approaches in the field. As a result, a global picture of the state of the art of the last five years is obtained. Moreover, the study of the articles is used to put forward a comprehensive taxonomy based on the most up-to-date research in ground mobile robotics. In this sense, the paper aims at being especially helpful to both budding and experienced researchers in the areas of vision systems and mobile ground robots. The taxonomy described is devised from a novel perspective, namely in order to respond to the main questions posed when designing robotic vision systems: why?, what for?, what with?, how?, and where? The answers are derived from the most relevant techniques described in the recent literature, leading in a natural way to a series of classifications that are discussed and contextualized. The article offers a global picture of the state of the art in the area and discovers some promising research lines.

  13. Exotic molluscs (Mollusca, Gastropoda et Bivalvia in Santa Catarina State, Southern Brazil region: check list and regional spatial distribution

    Directory of Open Access Journals (Sweden)

    A. Ignacio Agudo-Padrón

    2011-06-01

    Full Text Available A total of twenty-one exotic mollusc taxa were assessed for Santa Catarina State (SC, fifteen Gastropoda andsix Bivalvia (twelve terrestrial, five limnic/freshwater - three gastropods and two bivalves, and four marinebivalves. Of these, fourteen are confirmed as invasive species (nine terrestrial, three limnic/freshwater, andtwo marine.

  14. Mobile learning: a meta-ethical taxonomy

    OpenAIRE

    Farrow, Robert

    2011-01-01

    In this paper I discuss some of the ethical issues relating to the use of mobile technologies in education. I argue that the frames of reference used by educators and technologists fail to capture the nature, scope and impact of ethical issues in mobile learning. A taxonomy of ethical issues based on dominant positions in meta-ethical moral theory is proposed. Using categories from the Mobile Technologies in Lifelong Learning (MOTILL) project, I show how this taxonomy can be applied in suc...

  15. Is Bloom's Taxonomy Appropriate for Computer Science?

    OpenAIRE

    Johnson, Colin G.; Fuller, Ursula

    2007-01-01

    Bloom's taxonomy attempts to provide a set of levels of cognitive engagement with material being learned. It is usually presented as a generic framework. In this paper we outline some studies which examine whether the taxonomy is appropriate for computing, and how its application in computing might differ from its application elsewhere. We place this in the context of ongoing debates concerning graduateness and attempts to benchmark the content of a computing degree.

  16. Bloom's taxonomy of cognitive learning objectives.

    Science.gov (United States)

    Adams, Nancy E

    2015-07-01

    Information professionals who train or instruct others can use Bloom's taxonomy to write learning objectives that describe the skills and abilities that they desire their learners to master and demonstrate. Bloom's taxonomy differentiates between cognitive skill levels and calls attention to learning objectives that require higher levels of cognitive skills and, therefore, lead to deeper learning and transfer of knowledge and skills to a greater variety of tasks and contexts.

  17. Taxonomy of the order Mononegavirales: update 2016

    Science.gov (United States)

    Afonso, C.L.; Kurath, Gael; 82 Additional Authors,

    2016-01-01

    In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).

  18. Taxonomic implications of molecular studies on Northern Brazilian Teredinidae (Mollusca: Bivalvia specimens

    Directory of Open Access Journals (Sweden)

    Sonia Maria Lima Santos

    2005-03-01

    Full Text Available The current taxonomy of the Teredinidae (shipworms is wholly based on morphology and up to now no molecular studies of the phylogeny of this group have been published. In the present study the relationships between four genera of the subfamilies Teredininae and Bankiinae were established and the efficiency of the 16S rRNA gene in characterizing four Teredinidae species was tested. Phylogenetic trees support the grouping of Bankia fimbriatula with Nausitora fusticula and of Neoteredo reynei with Psiloteredo healdi, but the genetic distances do not justify the classification of these species into two distinct subfamilies. The results show that B. fimbriatula, N. reynei and P. healdi specimens from the coast of the Brazilian state of Pará have five distinct 16S rRNA haplotypes, with one N. reynei haplotype differing from the other haplotypes in respect to at least seven sequences sites, indicating the existence of two very distinct sympatric lineages.

  19. The taxobook principles and practices of building taxonomies

    CERN Document Server

    Hlava, Marjorie

    2014-01-01

    This book outlines the basic principles of creation and maintenance of taxonomies and thesauri. It also provides step by step instructions for building a taxonomy or thesaurus and discusses the various ways to get started on a taxonomy construction project.Often, the first step is to get management and budgetary approval, so I start this book with a discussion of reasons to embark on the taxonomy journey. From there I move on to a discussion of metadata and how taxonomies and metadata are related, and then consider how, where, and why taxonomies are used.Information architecture has its corner

  20. De novo assembly and characterization of two transcriptomes reveal multiple light-mediated functions in the scallop eye (Bivalvia: Pectinidae.

    Directory of Open Access Journals (Sweden)

    Autum N Pairett

    Full Text Available BACKGROUND: The eye has evolved across 13 separate lineages of molluscs. Yet, there have been very few studies examining the molecular machinary underlying eye function of this group, which is due, in part, to a lack of genomic resources. The scallop (Bivalvia: Pectinidae represents a compeling molluscan model to study photoreception due to its morphologically novel and separately evolved mirror-type eye. We sequenced the adult eye transcriptome of two scallop species to: 1 identify the phototransduction pathway components; 2 identify any additional light detection functions; and 3 test the hypothesis that molluscs possess genes not found in other animal lineages. RESULTS: A total of 3,039 contigs from the bay scallop, Argopecten irradians and 26,395 contigs from the sea scallop, Placopecten magellanicus were produced by 454 sequencing. Targeted BLAST searches and functional annotation using Gene Ontology (GO terms and KEGG pathways identified transcripts from three light detection systems: two phototransduction pathways and the circadian clock, a previously unrecognized function of the scallop eye. By comparing the scallop transcriptomes to molluscan and non-molluscan genomes, we discovered that a large proportion of the transcripts (7,776 sequences may be specific to the scallop lineage. Nearly one-third of these contain transmembrane protein domains, suggesting these unannotated transcripts may be sensory receptors. CONCLUSIONS: Our data provide the most comprehensive transcriptomic resource currently available from a single molluscan eye type. Candidate genes potentially involved in sensory reception were identified, and are worthy of further investigation. This resource, combined with recent phylogenetic and genomic data, provides a strong foundation for future investigations of the function and evolution of molluscan photosensory systems in this morphologically and taxonomically diverse phylum.

  1. Population dynamics of freshwater oyster Etheria elliptica (Bivalvia: Etheriidae in the Pendjari River (Benin-Western Africa

    Directory of Open Access Journals (Sweden)

    Akélé G.D.

    2015-01-01

    Full Text Available Etheria elliptica (Bivalvia: Etheriidae is the only freshwater oyster occurring in Africa. The current study provides the first data on the population structure, growth, age, mortality and exploitation status of this species in the Pendjari River. E. elliptica length-frequency data were collected monthly from January to December 2009 and analyzed with FiSAT software. Population parameters including the asymptotic length (L∞ and growth coefficient (K were assessed to evaluate the stock status. The recruitment pattern was modeled with a FiSAT routine. The asymptotic length (L∞ was 14.75 cm, while the growth coefficient (K was 0.38 year-1. The growth performance index (ø′ reached 1.92. Specimens of Etheria elliptica reached a mean size of 4.66 cm and 6.41 cm at the end of one year and 1.5 years, respectively. We estimated total mortality (Z, natural mortality (M and fishing mortality (F to be 2.90 year-1, 1.16 year-1 and 1.74 year-1, respectively. The recruitment pattern was continuous over the year with one major peak event during the rainy season (July. The exploitation rate (E = 0.60 revealed that the freshwater oyster was probably facing overexploitation due to lack of a minimum limit size and also due to an increase in the harvesting effort. Therefore, efficient management methods were urgently required to conserve the species. The return of empty shells into the water to increase the recruitment surface, rotation planning among harvesting sites and the imposition of a minimum limit size were recommendations made in order to ensure the sustainable exploitation of wild stocks.

  2. Molecular Taxonomy and Tumourigenesis of Colorectal Cancer.

    Science.gov (United States)

    Biswas, S; Holyoake, D; Maughan, T S

    2016-02-01

    Over the last 5 years there has been a surge in interest in the molecular classification of colorectal cancer. The effect of molecular subtyping on current treatment decisions is limited to avoidance of adjuvant 5-fluorouracil chemotherapy in stage II microsatellite unstable-high disease and avoidance of epidermal growth factor receptor-targeted antibodies in extended RAS mutant tumours. The emergence of specific novel combination therapy for the BRAF-mutant cohort and of the microsatellite unstable-high cohort as a responsive group to immune checkpoint inhibition shows the growing importance of a clinically relevant molecular taxonomy. Clinical trials such as the Medical Research Council FOCUS4 trial using biomarkers to select patients for specific therapies are currently open and testing such approaches. The integration of mutation, gene expression and pathological analyses is refining our understanding of the biological subtypes within colorectal cancer. Sharing of data sets of parallel sequencing and gene expression of thousands of cancers among independent groups has allowed the description of disease subsets and the need for a validated consensus classification has become apparent. This biological understanding of the disease is a key step forward in developing a stratified approach to patient management. The discovery of stratifiers that predict a response to existing and emerging therapies will enable better use of these treatments. Improved scientific understanding of the biological characteristics of poorly responsive subgroups will facilitate the design of novel biologically rational combinations. Novel treatment regimens, including the combination of new drugs with radiation, and the discovery and validation of their associated predictive biomarkers will gradually lead to improved outcomes from therapy.

  3. Taxonomies of networks from community structure

    Science.gov (United States)

    Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  4. Constructing a working taxonomy of functional Ada software components for real-time embedded system applications

    Science.gov (United States)

    Wallace, Robert

    1986-01-01

    A major impediment to a systematic attack on Ada software reusability is the lack of an effective taxonomy for software component functions. The scope of all possible applications of Ada software is considered too great to allow the practical development of a working taxonomy. Instead, for the purposes herein, the scope of Ada software application is limited to device and subsystem control in real-time embedded systems. A functional approach is taken in constructing the taxonomy tree for identified Ada domain. The use of modular software functions as a starting point fits well with the object oriented programming philosophy of Ada. Examples of the types of functions represented within the working taxonomy are real time kernels, interrupt service routines, synchronization and message passing, data conversion, digital filtering and signal conditioning, and device control. The constructed taxonomy is proposed as a framework from which a need analysis can be performed to reveal voids in current Ada real-time embedded programming efforts for Space Station.

  5. Taxonomy grounded aggregation of classifiers with different label sets

    OpenAIRE

    SAHA, AMRITA; Indurthi, Sathish; Godbole, Shantanu; Rongali, Subendhu; Raykar, Vikas C.

    2015-01-01

    We describe the problem of aggregating the label predictions of diverse classifiers using a class taxonomy. Such a taxonomy may not have been available or referenced when the individual classifiers were designed and trained, yet mapping the output labels into the taxonomy is desirable to integrate the effort spent in training the constituent classifiers. A hierarchical taxonomy representing some domain knowledge may be different from, but partially mappable to, the label sets of the individua...

  6. Revisiting the Panko-Halverson Taxonomy of Spreadsheet Errors

    OpenAIRE

    Panko, Raymond R.

    2008-01-01

    The purpose of this paper is to revisit the Panko-Halverson taxonomy of spreadsheet errors and suggest revisions. There are several reasons for doing so: First, the taxonomy has been widely used. Therefore, it should have scrutiny; Second, the taxonomy has not been widely available in its original form and most users refer to secondary sources. Consequently, they often equate the taxonomy with the simplified extracts used in particular experiments or field studies; Third, perhaps as a consequ...

  7. Developing a Computer Science-specific Learning Taxonomy

    OpenAIRE

    Fuller, Ursula; Johnson, Colin G.; Ahoniemi, Tuukka; Cukierman, Diana; Hernán-Losada, Isidoro; Jackova, Jana; Lahtinen, Essi; Lewis, Tracy L.; McGee Thompson, Donna; Riesdel, Charles; Thompson, Errol

    2007-01-01

    Bloom's taxonomy of the cognitive domain and the SOLO taxonomy are being increasingly widely used in the design and assessment of courses, but there are some drawbacks to their use in computer science. This paper reviews the literature on educational taxonomies and their use in computer science education, identifies some of the problems that arise, proposes a new taxonomy and discusses how this can be used in application-oriented courses such as programming.

  8. Rehabilitation treatment taxonomy: implications and continuations.

    Science.gov (United States)

    P Dijkers, Marcel; Hart, Tessa; Whyte, John; M Zanca, Jeanne; Packel, Andrew; Tsaousides, Theodore

    2014-01-01

    In relation to the conceptual framework for a rehabilitation treatment taxonomy (RTT), which has been proposed in other articles in this supplement, this article discusses a number of issues relevant to its further development, including creating distinctions within the major target classes; the nature and quantity of allowable targets of treatment; and bracketing as a way of specifying (1) the skill or knowledge taught; (2) the nature of compensation afforded by changes in the environment, assistive technology, and orthotics/prosthetics; and (3) the ingredients in homework a clinician assigns. Clarification is provided regarding the role of the International Classification of Functioning, Disability and Health, focusing a taxonomy on ingredients versus other observable aspects of treatment, and regarding our lack of knowledge and its impact on taxonomy development. Finally, this article discusses the immediate implications of the work to date and presents the need for rehabilitation stakeholders of all disciplines to be involved in further RTT development.

  9. Towards an Artificial Space Object Taxonomy

    Science.gov (United States)

    Wilkins, M.; Schumacher, P.; Jah, M.; Pfeffer, A.

    2013-09-01

    Object recognition is the first step in positively identifying a resident space object (RSO), i.e. assigning an RSO to a category such as GPS satellite or space debris. Object identification is the process of deciding that two RSOs are in fact one and the same. Provided we have appropriately defined a satellite taxonomy that allows us to place a given RSO into a particular class of object without any ambiguity, one can assess the probability of assignment to a particular class by determining how well the object satisfies the unique criteria of belonging to that class. Ultimately, tree-based taxonomies delineate unique signatures by defining the minimum amount of information required to positively identify a RSO. Therefore, taxonomic trees can be used to depict hypotheses in a Bayesian object recognition and identification process. This work describes a new RSO taxonomy along with specific reasoning behind the choice of groupings. An alternative taxonomy was recently presented at the Sixth Conference on Space Debris in Darmstadt, Germany. [1] The best example of a taxonomy that enjoys almost universal scientific acceptance is the classical Linnaean biological taxonomy. A strength of Linnaean taxonomy is that it can be used to organize the different kinds of living organisms, simply and practically. Every species can be given a unique name. This uniqueness and stability are a result of the acceptance by biologists specializing in taxonomy, not merely of the binomial names themselves. Fundamentally, the taxonomy is governed by rules for the use of these names, and these are laid down in formal Nomenclature Codes. We seek to provide a similar formal nomenclature system for RSOs through a defined tree-based taxonomy structure. Each categorization, beginning with the most general or inclusive, at any level is called a taxon. Taxon names are defined by a type, which can be a specimen or a taxon of lower rank, and a diagnosis, a statement intended to supply characters that

  10. Reconciling taxonomy and phylogenetic inference: formalism and algorithms for describing discord and inferring taxonomic roots

    Directory of Open Access Journals (Sweden)

    Matsen Frederick A

    2012-05-01

    Full Text Available Abstract Background Although taxonomy is often used informally to evaluate the results of phylogenetic inference and the root of phylogenetic trees, algorithmic methods to do so are lacking. Results In this paper we formalize these procedures and develop algorithms to solve the relevant problems. In particular, we introduce a new algorithm that solves a "subcoloring" problem to express the difference between a taxonomy and a phylogeny at a given rank. This algorithm improves upon the current best algorithm in terms of asymptotic complexity for the parameter regime of interest; we also describe a branch-and-bound algorithm that saves orders of magnitude in computation on real data sets. We also develop a formalism and an algorithm for rooting phylogenetic trees according to a taxonomy. Conclusions The algorithms in this paper, and the associated freely-available software, will help biologists better use and understand taxonomically labeled phylogenetic trees.

  11. 76 FR 74050 - Measured Building Energy Performance Data Taxonomy

    Science.gov (United States)

    2011-11-30

    ... Office of Energy Efficiency and Renewable Energy Measured Building Energy Performance Data Taxonomy... related to a measured building energy performance data taxonomy. DOE has created this measured building energy performance data taxonomy as part of its DOE Buildings Performance Database project....

  12. Taxonomies of Educational Technology Uses: Dewey, Chip and Me

    Science.gov (United States)

    Levin, James A.

    2014-01-01

    In the early 1990s, Chip Bruce created a taxonomy of education technology uses, which the author of the article helped to expand and evaluate. This taxonomy is based on John Dewey's "four impulses of the child": inquiry, construction, communication, and expression. This taxonomy has helped people interested in the uses of…

  13. Binary Keys for Classification and Taxonomy of Behaviour

    Science.gov (United States)

    Nieminen, Timo A.; Choi, Serene Hyun-Jin

    2008-01-01

    Quantitative behaviour analysis requires the classification of behaviour to produce the basic data. This can be challenging when the theoretical taxonomy does not match observational limitations, or if a theoretical taxonomy is unavailable. Binary keys allow qualitative observation to be used to modify a theoretical taxonomy to produce a practical…

  14. The genus Gloriosa (Colchicaceae) : ethnobotany, phylogeny and taxonomy

    NARCIS (Netherlands)

    Maroyi, A.

    2012-01-01

    This thesis focuses on the ethnobotany, phylogeny and taxonomy of the genus Gloriosa L. over its distributional range. Some Gloriosa species are known to have economic and commercial value, but the genus is also well known for its complex alpha taxonomy. An appropriate taxonomy for this group is of

  15. A Taxonomy of Human Translation Styles

    DEFF Research Database (Denmark)

    Carl, Michael; Dragsted, Barbara; Lykke Jakobsen, Arnt

    2011-01-01

    While the translation profession becomes increasingly technological, we are still far from understanding how humans actually translate and how they could be best supported by machines. In this paper we outline a method which helps to uncover characteristics of human translation processes. Based o...... on the translators' activity data, we develop a taxonomy of translation styles. The taxonomy could serve to inform the development of advanced translation assistance tools and provide a basis for a felicitous and grounded integration of human machine interaction in translation....

  16. Towards a taxonomy of technological change

    OpenAIRE

    Foray, D.; Grubler, A

    1991-01-01

    The paper presents an approach towards a taxonomy of technological change focusing on the dynamic processes of technological diffusion. The objective of the approach is to develop a synthetic measure of the transformation of the diffusion characteristics during the very process of diffusion of a technological innovation.

  17. A Taxonomy of Counseling Goals and Methods.

    Science.gov (United States)

    Frey, David H.; Raming, Henry E.

    1979-01-01

    Taxonomies were generated from theorists in counseling and psychotherapy. Goal clusters included: Transfer of Therapy Learning to Outside Situations, Awareness and Acceptance of Self in Conflict, Specific Symptom Removal, and Awareness of Positive Inner Resources. Process clusters included: Client Acceptance, Active Critical Questioning, and…

  18. An Android Communication App Forensic Taxonomy.

    Science.gov (United States)

    Azfar, Abdullah; Choo, Kim-Kwang Raymond; Liu, Lin

    2016-09-01

    Due to the popularity of Android devices and applications (apps), Android forensics is one of the most studied topics within mobile forensics. Communication apps, such as instant messaging and Voice over IP (VoIP), are one popular app category used by mobile device users, including criminals. Therefore, a taxonomy outlining artifacts of forensic interest involving the use of Android communication apps will facilitate the timely collection and analysis of evidentiary materials from such apps. In this paper, 30 popular Android communication apps were examined, where a logical extraction of the Android phone images was collected using XRY, a widely used mobile forensic tool. Various information of forensic interest, such as contact lists and chronology of messages, was recovered. Based on the findings, a two-dimensional taxonomy of the forensic artifacts of the communication apps is proposed, with the app categories in one dimension and the classes of artifacts in the other dimension. Finally, the artifacts identified in the study of the 30 communication apps are summarized using the taxonomy. It is expected that the proposed taxonomy and the forensic findings in this paper will assist forensic investigations involving Android communication apps. PMID:27443418

  19. An Android Communication App Forensic Taxonomy.

    Science.gov (United States)

    Azfar, Abdullah; Choo, Kim-Kwang Raymond; Liu, Lin

    2016-09-01

    Due to the popularity of Android devices and applications (apps), Android forensics is one of the most studied topics within mobile forensics. Communication apps, such as instant messaging and Voice over IP (VoIP), are one popular app category used by mobile device users, including criminals. Therefore, a taxonomy outlining artifacts of forensic interest involving the use of Android communication apps will facilitate the timely collection and analysis of evidentiary materials from such apps. In this paper, 30 popular Android communication apps were examined, where a logical extraction of the Android phone images was collected using XRY, a widely used mobile forensic tool. Various information of forensic interest, such as contact lists and chronology of messages, was recovered. Based on the findings, a two-dimensional taxonomy of the forensic artifacts of the communication apps is proposed, with the app categories in one dimension and the classes of artifacts in the other dimension. Finally, the artifacts identified in the study of the 30 communication apps are summarized using the taxonomy. It is expected that the proposed taxonomy and the forensic findings in this paper will assist forensic investigations involving Android communication apps.

  20. Visualizing a Taxonomy for Virtual Worlds

    Science.gov (United States)

    Downey, Steve

    2012-01-01

    Since the mid-1990s, however, the popularity, diversity, and application of virtual worlds have spread rapidly. As a result, existing taxonomies and topologies increasingly are becoming less effective at being able to classify and organize the growing diversification of content available in today's virtual worlds. This article presents the…

  1. Semantic Annotation to Support Automatic Taxonomy Classification

    DEFF Research Database (Denmark)

    Kim, Sanghee; Ahmed, Saeema; Wallace, Ken

    2006-01-01

    This paper presents a new taxonomy classification method that generates classification criteria from a small number of important sentences identified through semantic annotations, e.g. cause-effect. Rhetorical Structure Theory (RST) is used to discover the semantics (Mann et al. 1988). Specifically...

  2. Classification and Taxonomy of Vegetable Macergens.

    Science.gov (United States)

    Aremu, Bukola R; Babalola, Olubukola O

    2015-01-01

    Macergens are bacteria capable of releasing pectic enzymes (pectolytic bacteria). These enzymatic actions result in the separation of plant tissues leading to total plant destruction. This can be attributed to soft rot diseases in vegetables. These macergens primarily belong to the genus Erwinia and to a range of opportunistic pathogens namely: the Xanthomonas spp., Pseudomonas spp., Clostridium spp., Cytophaga spp., and Bacillus spp. They consist of taxa that displayed considerable heterogeneity and intermingled with members of other genera belonging to the Enterobacteriaceae. They have been classified based on phenotypic, chemotaxonomic and genotypic which obviously not necessary in the taxonomy of all bacterial genera for defining bacterial species and describing new ones These taxonomic markers have been used traditionally as a simple technique for identification of bacterial isolates. The most important fields of taxonomy are supposed to be based on clear, reliable and worldwide applicable criteria. Hence, this review clarifies the taxonomy of the macergens to the species level and revealed that their taxonomy is beyond complete. For discovery of additional species, further research with the use modern molecular methods like phylogenomics need to be done. This can precisely define classification of macergens resulting in occasional, but significant changes in previous taxonomic schemes of these macergens.

  3. Classification and taxonomy of vegetable macergens

    Directory of Open Access Journals (Sweden)

    Bukola Rhoda Aremu

    2015-11-01

    Full Text Available Macergens are bacteria capable of releasing pectic enzymes (pectolytic bacteria. These enzymatic actions result in the separation of plant tissues leading to total plant destruction. This can be attributed to soft rot diseases in vegetables. These macergens primarily belong to the genus Erwinia and to a range of opportunistic pathogens namely: the Xanthomonas spp, Pseudomonas spp., Clostridium spp., Cytophaga spp. and Bacillus spp. They consist of taxa that displayed considerable heterogeneity and intermingled with members of other genera belonging to the Enterobacteriaceae. They have been classified based on phenotypic, chemotaxonomic and genotypic which obviously not necessary in the taxonomy of all bacterial genera for defining bacterial species and describing new ones These taxonomic markers have been used traditionally as a simple technique for identification of bacterial isolates. The most important fields of taxonomy are supposed to be based on clear, reliable and worldwide applicable criteria. Hence, this review clarifies the taxonomy of the macergens to the species level and revealed that their taxonomy is beyond complete. For discovery of additional species, further research with the use modern molecular methods like phylogenomics need to be done. This can precisely define classification of macergens resulting in occasional, but significant changes in previous taxonomic schemes of these macergens.

  4. Taxonomy for Common-Cause Failure Vulnerability and Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mullens, James Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pullum, Laura L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The potential for CCF vulnerability inhibits I&C modernization, thereby challenging the long-term sustainability of existing plants. For new plants and advanced reactor concepts, concern about CCF vulnerability in highly integrated digital I&C systems imposes a design burden that results in higher costs and increased complexity. The regulatory uncertainty in determining which mitigation strategies will be acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. To address the conditions that constrain the transition to digital I&C technology by the US nuclear industry, crosscutting research is needed to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for nuclear power plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is investigating mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive basis to qualify digital technology for nuclear power applications. This report documents the development of a CCF taxonomy. The basis for the CCF taxonomy was generated by determining consistent terminology and establishing a classification approach. The terminology is based on definitions from standards, guides, and relevant nuclear power industry technical reports. The classification approach is derived from identified classification schemes focused on I&C systems and key characteristics, including failure modes. The CCF taxonomy provides the basis for a systematic organization of key systems aspects relevant to analyzing the potential for

  5. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy.

    Science.gov (United States)

    Kluger, Benzi M; Krupp, Lauren B; Enoka, Roger M

    2013-01-22

    Fatigue is commonly reported in many neurologic illnesses, including multiple sclerosis, Parkinson disease, myasthenia gravis, traumatic brain injury, and stroke. Fatigue contributes substantially to decrements in quality of life and disability in these illnesses. Despite the clear impact of fatigue as a disabling symptom, our understanding of fatigue pathophysiology is limited and current treatment options rarely lead to meaningful improvements in fatigue. Progress continues to be hampered by issues related to terminology and assessment. In this article, we propose a unified taxonomy and a novel assessment approach to addressing distinct aspects of fatigue and fatigability in clinical and research settings. This taxonomy is based on our current knowledge of the pathophysiology and phenomenology of fatigue and fatigability. Application of our approach indicates that the assessment and reporting of fatigue can be clarified and improved by utilizing this taxonomy and creating measures to address distinct aspects of fatigue and fatigability. We review the strengths and weaknesses of several common measures of fatigue and suggest, based on our model, that many research questions may be better addressed by using multiple measures. We also provide examples of how to apply and validate the taxonomy and suggest directions for future research. PMID:23339207

  6. [Are the contours of the frontal section of shell valves in Bivalvia specific?].

    Science.gov (United States)

    Voroshilova, I S

    2013-01-01

    The diagnostic importance of the character of curvature of the frontal section of shell valves in Bivalvia on the basis of determining the constant angle of the logarithmic spiral is discussed. The contours of the frontal section of shell valves in several species of mollusks of the families Margaritiferidae and Sphaeriidae have been analyzed. It is shown that in different species of the family Sphaeriidae, the values of constant angles coincide. While performing graphic constructions, it was established that the contours of the frontal section of all studied species of pearl mussels and some spheriids do not correspond to the segment of the logarithmic spiral. It was noted that the hypothesis of the species specificity of this character was not confirmed; therefore, the curvature of the frontal section of shell valves cannot be used as the main character for the systematics and species identification of bivalves.

  7. Distribution patterns of the Jurassic ostreids (Bivalvia) from Tanggula of China

    Institute of Scientific and Technical Information of China (English)

    沙金庚

    2001-01-01

    Distribution of the Jurassic ostreids (Bivalvia) from Tanggula area of China includes three patterns, which are (1) Tethys: containing Liostrea birmanica and Eligmus rollandi, (2) western Europe and northern Tethys: consisting of Gryphaea (Bilobissa) bilobata; and (3) Global: composed of Actinostreon gregareum and Nanogyra nana. However, they are all limited between palaeolatidudes 60° South and North. Actinostreon gregareum originated in the Sinemurian of northern Chile and it entered Kenya and Madagascar in the Toarcian, but there is no reliable Si-nemurian-Toarcian A. gregareum fossil record in continental margins between Chile and Kenya and Madagascar. Such distribution patterns and dispersal processes have demonstrated that (1) during the Jurassic all seas and oceans were connected to each other; (2) the Tethys and the western European epicontinental seas did produce some endemic taxa; (3) the distribution of these ostreids was most likely controlled by latitudes and creature ecology; and (4) A, gr

  8. Building a framework for a dual task taxonomy.

    Science.gov (United States)

    McIsaac, Tara L; Lamberg, Eric M; Muratori, Lisa M

    2015-01-01

    The study of dual task interference has gained increasing attention in the literature for the past 35 years, with six MEDLINE citations in 1979 growing to 351 citations indexed in 2014 and a peak of 454 cited papers in 2013. Increasingly, researchers are examining dual task cost in individuals with pathology, including those with neurodegenerative diseases. While the influence of these papers has extended from the laboratory to the clinic, the field has evolved without clear definitions of commonly used terms and with extreme variations in experimental procedures. As a result, it is difficult to examine the interference literature as a single body of work. In this paper we present a new taxonomy for classifying cognitive-motor and motor-motor interference within the study of dual task behaviors that connects traditional concepts of learning and principles of motor control with current issues of multitasking analysis. As a first step in the process we provide an operational definition of dual task, distinguishing it from a complex single task. We present this new taxonomy, inclusive of both cognitive and motor modalities, as a working model; one that we hope will generate discussion and create a framework from which one can view previous studies and develop questions of interest.

  9. Building a Framework for a Dual Task Taxonomy

    Directory of Open Access Journals (Sweden)

    Tara L. McIsaac

    2015-01-01

    Full Text Available The study of dual task interference has gained increasing attention in the literature for the past 35 years, with six MEDLINE citations in 1979 growing to 351 citations indexed in 2014 and a peak of 454 cited papers in 2013. Increasingly, researchers are examining dual task cost in individuals with pathology, including those with neurodegenerative diseases. While the influence of these papers has extended from the laboratory to the clinic, the field has evolved without clear definitions of commonly used terms and with extreme variations in experimental procedures. As a result, it is difficult to examine the interference literature as a single body of work. In this paper we present a new taxonomy for classifying cognitive-motor and motor-motor interference within the study of dual task behaviors that connects traditional concepts of learning and principles of motor control with current issues of multitasking analysis. As a first step in the process we provide an operational definition of dual task, distinguishing it from a complex single task. We present this new taxonomy, inclusive of both cognitive and motor modalities, as a working model; one that we hope will generate discussion and create a framework from which one can view previous studies and develop questions of interest.

  10. The Rho GTPase Family Genes in Bivalvia Genomes: Sequence, Evolution and Expression Analysis.

    Directory of Open Access Journals (Sweden)

    Xue Li

    Full Text Available Rho GTPases are important members of the Ras superfamily, which represents the largest signaling protein family in eukaryotes, and function as key molecular switches in converting and amplifying external signals into cellular responses. Although numerous analyses of Rho family genes have been reported, including their functions and evolution, a systematic analysis of this family has not been performed in Mollusca or in Bivalvia, one of the most important classes of Mollusca.In this study, we systematically identified and characterized a total set (Rho, Rac, Mig, Cdc42, Tc10, Rnd, RhoU, RhoBTB and Miro of thirty Rho GTPase genes in three bivalve species, including nine in the Yesso scallop Patinopecten yessoensis, nine in the Zhikong scallop Chlamys farreri, and twelve in the Pacific oyster Crassostrea gigas. Phylogenetic analysis and interspecies comparison indicated that bivalves might possess the most complete types of Rho genes in invertebrates. A multiple RNA-seq dataset was used to investigate the expression profiles of bivalve Rho genes, revealing that the examined scallops share more similar Rho expression patterns than the oyster, whereas more Rho mRNAs are expressed in C. farreri and C. gigas than in P. yessoensis. Additionally, Rho, Rac and Cdc42 were found to be duplicated in the oyster but not in the scallops. Among the expanded Rho genes of C. gigas, duplication pairs with high synonymous substitution rates (Ks displayed greater differences in expression.A comprehensive analysis of bivalve Rho GTPase family genes was performed in scallop and oyster species, and Rho genes in bivalves exhibit greater conservation than those in any other invertebrate. This is the first study focusing on a genome-wide characterization of Rho GTPase genes in bivalves, and the findings will provide a valuable resource for a better understanding of Rho evolution and Rho GTPase function in Bivalvia.

  11. Towards an understanding of driver inattention: taxonomy and theory.

    Science.gov (United States)

    Regan, Michael A; Strayer, David L

    2014-01-01

    There is little agreement in the scientific literature about what the terms "driver distraction" and "driver inattention" mean, and what the relationship is between them. In 2011, Regan, Hallett and Gordon proposed a taxonomy of driver inattention in which driver distraction is conceptualized as just one of several processes that give rise to driver inattention. Since publication of that paper, two other papers have emerged that bear on the taxonomy. In one, the Regan et al taxonomy was used, for the first time, to classify data from an in-depth crash investigation in Australia. In the other, another taxonomy of driver inattention was proposed and described. In this paper we revisit the original taxonomy proposed by Regan et al. in light of these developments, and make recommendations for how the original taxonomy might be improved to make it more useful as a tool for classifying and coding crash and critical incident data. In addition, we attempt to characterize, theoretically, the processes within each category of the original taxonomy that are assumed to give rise to driver inattention. Recommendations are made for several lines of research: to further validate the original taxonomy; to understand the impact of each category of inattention in the taxonomy on driving performance, crash type and crash risk; and to revise and align with the original taxonomy existing crash and incident investigation protocols, so that they provide more comprehensive, reliable and consistent information regarding the contribution of inattention to crashes of all types.

  12. Benchmarking of methods for genomic taxonomy

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby; Cosentino, Salvatore; Lukjancenko, Oksana;

    2014-01-01

    One of the first issues that emerges when a prokaryotic organism of interest is encountered is the question of what it is--that is, which species it is. The 16S rRNA gene formed the basis of the first method for sequence-based taxonomy and has had a tremendous impact on the field of microbiology......; (ii) Reads2Type that searches for species-specific 50-mers in either the 16S rRNA gene or the gyrB gene (for the Enterobacteraceae family); (iii) the ribosomal multilocus sequence typing (rMLST) method that samples up to 53 ribosomal genes; (iv) TaxonomyFinder, which is based on species...

  13. Linking Virus Genomes with Host Taxonomy.

    Science.gov (United States)

    Mihara, Tomoko; Nishimura, Yosuke; Shimizu, Yugo; Nishiyama, Hiroki; Yoshikawa, Genki; Uehara, Hideya; Hingamp, Pascal; Goto, Susumu; Ogata, Hiroyuki

    2016-03-01

    Environmental genomics can describe all forms of organisms--cellular and viral--present in a community. The analysis of such eco-systems biology data relies heavily on reference databases, e.g., taxonomy or gene function databases. Reference databases of symbiosis sensu lato, although essential for the analysis of organism interaction networks, are lacking. By mining existing databases and literature, we here provide a comprehensive and manually curated database of taxonomic links between viruses and their cellular hosts.

  14. An Empirical Taxonomy of Crowdfunding Intermediaries

    OpenAIRE

    Haas, Philipp; Blohm, Ivo; Leimeister, Jan Marco

    2014-01-01

    Due to the recent popularity of crowdfunding, a broad magnitude of crowdfunding intermediaries has emerged, while research on crowdfunding intermediaries has been largely neglected. As a consequence, existing classifications of crowdfunding intermediaries are conceptual, lack theoretical grounding, and are not empirically validated. Thus, we develop an empirical taxonomy of crowdfunding intermediaries, which is grounded in the theories of two-sided markets and financial intermediation. Integr...

  15. A revised taxonomy of assistance animals

    OpenAIRE

    Lindsay Parenti, MA, BCBA; Anne Foreman, PhD; B. Jean Meade, MD, DVM, MPH, PhD; Oliver Wirth, PhD

    2013-01-01

    The use of animals in various assistive, therapeutic, and emotional support roles has contributed to the uncoordinated expansion of labels used to distinguish these animals. To address the inconsistent vocabulary and confusion, this article proposes a concise taxonomy for classifying assistance animals. Several factors were identified to differentiate categories, including (1) whether the animal performs work or tasks related to an individual’s disability; (2) the typical level of skill requi...

  16. Mathematics, curriculum and assessment: The role of taxonomies in the quest for coherence

    Directory of Open Access Journals (Sweden)

    Caroline Long

    2014-12-01

    Full Text Available A challenge encountered when monitoring mathematics teaching and learning at high school is that taxonomies such as Bloom’s, and variations of this work, are not entirely adequate for providing meaningful feedback to teachers beyond very general cognitive categories that are difficult to interpret. Challenges of this nature are also encountered in the setting of examinations, where the requirement is to cover a range of skills and cognitive domains. The contestation as to the cognitive level is inevitable as it is necessary to analyse the relationship between the problem and the learners’ background experience. The challenge in the project described in this article was to find descriptive terms that would be meaningful to teachers. The first attempt at providing explicit feedback was to apply the assessment frameworks that include a content component and a cognitive component, namely knowledge, routine procedures, complex procedures and problem solving, currently used in the South African curriculum documents. The second attempt investigated various taxonomies, including those used in international assessments and in mathematics education research, for constructs that teachers of mathematics might find meaningful. The final outcome of this investigation was to apply the dimensions required to understand a mathematical concept proposed by Usiskin (2012: the skills-algorithm, property-proof, use-application and representation-metaphor dimension. A feature of these dimensions is that they are not hierarchical; rather, within each of the dimensions, the mathematical task may demand recall but may also demand the highest level of creativity. For our purpose, we developed a two-way matrix using Usiskin’s dimensions on one axis and a variation of Bloom’s revised taxonomy on the second axis. Our findings are that this two-way matrix provides an alternative to current taxonomies, is more directly applicable to mathematics and provides the

  17. Taxonomy of Challenges for Digital Forensics.

    Science.gov (United States)

    Karie, Nickson M; Venter, Hein S

    2015-07-01

    Since its inception, over a decade ago, the field of digital forensics has faced numerous challenges. Despite different researchers and digital forensic practitioners having studied and analysed various known digital forensic challenges, as of 2013, there still exists a need for a formal classification of these challenges. This article therefore reviews existing research literature and highlights the various challenges that digital forensics has faced for the last 10 years. In conducting this research study, however, it was difficult for the authors to review all the existing research literature in the digital forensic domain; hence, sampling and randomization techniques were employed to facilitate the review of the gathered literature. Taxonomy of the various challenges is subsequently proposed in this paper based on our review of the literature. The taxonomy classifies the large number of digital forensic challenges into four well-defined and easily understood categories. The proposed taxonomy can be useful, for example, in future developments of automated digital forensic tools by explicitly describing processes and procedures that focus on addressing specific challenges identified in this paper. However, it should also be noted that the purpose of this paper was not to propose any solutions to the individual challenges that digital forensics face, but to serve as a survey of the state of the art of the research area.

  18. A taxonomy update for the family Polyomaviridae.

    Science.gov (United States)

    Calvignac-Spencer, Sébastien; Feltkamp, Mariet C W; Daugherty, Matthew D; Moens, Ugo; Ramqvist, Torbjörn; Johne, Reimar; Ehlers, Bernhard

    2016-06-01

    Many distinct polyomaviruses infecting a variety of vertebrate hosts have recently been discovered, and their complete genome sequence could often be determined. To accommodate this fast-growing diversity, the International Committee on Taxonomy of Viruses (ICTV) Polyomaviridae Study Group designed a host- and sequence-based rationale for an updated taxonomy of the family Polyomaviridae. Applying this resulted in numerous recommendations of taxonomical revisions, which were accepted by the Executive Committee of the ICTV in December 2015. New criteria for definition and creation of polyomavirus species were established that were based on the observed distance between large T antigen coding sequences. Four genera (Alpha-, Beta, Gamma- and Deltapolyomavirus) were delineated that together include 73 species. Species naming was made as systematic as possible - most species names now consist of the binomial name of the host species followed by polyomavirus and a number reflecting the order of discovery. It is hoped that this important update of the family taxonomy will serve as a stable basis for future taxonomical developments.

  19. A Taxonomy of Malicious Programs For An End User

    Directory of Open Access Journals (Sweden)

    Muhammad Azhar Mushtaq

    2011-11-01

    Full Text Available Computer and network attacks have become highly sophisticated and complex with different names and multiple characteristics. In order to understand and find solutions against new and old attacks, different types of computer and network taxonomies are utilized. However, such taxonomies are being actively developed for expert users; research efforts towards making attack taxonomy for basic end users are still isolated. In this work we present taxonomy for the end users that will help in identifying attacks, the precaution measures they need to adapt and how to categorize new attacks. Moreover, through an empirical survey of the taxonomy, it is concluded that end users will be more protected than before and validity of the taxonomy was also checked.

  20. Download - Taxonomy Icon | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us Taxonomy Icon Download... of all, please read the license of this database. Data names and data descriptions are about the download...atabase. Click the links on Data Name for descriptions of the data. # Data name File Simple search and download... 1 README README_e.html - 2 Taxonomy Icon Data taxonomy_icon_en.zip (14.1 KB) Simple search and downloa... data Comment. # Data name File Simple search and download 4 Comment taxonomy_icon_comment_en.zip (5.7 KB) Simple search and download

  1. A New Generic Taxonomy on Hybrid Malware Detection Technique

    CERN Document Server

    Robiah, Y; Zaki, M Mohd; Shahrin, S; Faizal, M A; Marliza, R

    2009-01-01

    Malware is a type of malicious program that replicate from host machine and propagate through network. It has been considered as one type of computer attack and intrusion that can do a variety of malicious activity on a computer. This paper addresses the current trend of malware detection techniques and identifies the significant criteria in each technique to improve malware detection in Intrusion Detection System (IDS). Several existing techniques are analyzing from 48 various researches and the capability criteria of malware detection technique have been reviewed. From the analysis, a new generic taxonomy of malware detection technique have been proposed named Hybrid Malware Detection Technique (Hybrid MDT) which consists of Hybrid Signature and Anomaly detection technique and Hybrid Specification based and Anomaly detection technique to complement the weaknesses of the existing malware detection technique in detecting known and unknown attack as well as reducing false alert before and during the intrusion ...

  2. Transporter taxonomy - a comparison of different transport protein classification schemes.

    Science.gov (United States)

    Viereck, Michael; Gaulton, Anna; Digles, Daniela; Ecker, Gerhard F

    2014-06-01

    Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions. In light of the development of Open PHACTS, which provides an open pharmacological space, we analyzed selected membrane transport protein classification schemes (Transporter Classification Database, ChEMBL, IUPHAR/BPS Guide to Pharmacology, and Gene Ontology) for their ability to serve as a basis for pharmacology driven protein classification. A comparison of these membrane transport protein classification schemes by using a set of clinically relevant transporters as use-case reveals the strengths and weaknesses of the different taxonomy approaches.

  3. What is a virus species? Radical pluralism in viral taxonomy.

    Science.gov (United States)

    Morgan, Gregory J

    2016-10-01

    Early attempts in the 1960s at constructing a classification scheme for viruses were phenetic and focused on structural properties of the virion. Over time, the International Committee on the Taxonomy of Viruses (ICTV) has refined its definition of a virus species to include an appeal to evolutionary history. The current ICTV definition defines a viral species in terms of monophyly. The existence of prolific horizontal genetic transfer (HGT) among various groups of viruses presents a challenge to this definition. I argue that the proper response to this mode of evolution is to allow for radical pluralism. Some viruses can be members of more than one species; others don't form species at all and should be classified using new reticulate categories.

  4. Clarifying phylogenetic relationships and the evolutionary history of the bivalve order Arcida (Mollusca: Bivalvia: Pteriomorphia).

    Science.gov (United States)

    Combosch, David J; Giribet, Gonzalo

    2016-01-01

    The systematics of the bivalve order Arcida constitutes an unresolved conundrum in bivalve systematics. The current definition of Arcida encompasses two superfamilies: Limopsoidea, which includes the recent families Philobryidae and Limopsidae, and Arcoidea, which encompasses the families Arcidae, Cucullaeidae, Noetiidae, Glycymerididae and Parallelodontidae. This classification, however, is controversial particularly with respect to the position and taxonomic status of Glycymerididae. Previous molecular phylogenies were limited either by the use of only a single molecular marker or by including only a few limopsoid and glycymeridid taxa. The challenging nature of Arcida taxonomy and the controversial results of some of the previous studies, prompted us to use a broad range of taxa (55 species), three nuclear markers (18S rRNA, 28S rRNA and histone H3) and a wide range of algorithmic approaches. This broad but stringent approach led to a number of results that differ significantly from previous studies. We provide the first molecular evidence that supports the separation of Arcoidea from Limopsoidea, although the exact position of Glycymerididae remains unresolved, and the monophyly of Limopsoidea is algorithm-dependent. In addition, we present the first time-calibrated evolutionary tree of Arcida relationships, indicating a significant increase in the diversification of arcidan lineages at the beginning of the Cretaceous, around 140Ma. The monophyly of Arcida, which has been supported previously, was confirmed in all our analyses. Although relationships among families remain somehow unresolved we found support for the monophyly of most arcidan families, at least under some analytical conditions (i.e., Glycymerididae, Noetiidae, Philobryidae, and Limopsidae). However, Arcidae, and particularly Arcinae, remain a major source of inconsistency in the current system of Arcida classification and are in dire need of taxonomic revision.

  5. Biocenosis de Bivalvia y Polyplacophora del intermareal rocoso en playa Tlacopanocha, Acapulco, Guerrero, México Polyplacophora and Bivalvia biocenosis at rocky intertidal Tlacopanocha beach, Acapulco, Guerrero, Mexico

    Directory of Open Access Journals (Sweden)

    Lizeth Galeana-Rebolledo

    2012-11-01

    Full Text Available El Estado de Guerrero, México, tiene regiones marinas prioritarias para la conservación de su biodiversidad y la información acerca de la diversidad de moluscos es escasa, por lo que es necesario realizar inventarios de especies, estudios de ecología de poblaciones y comunidades. Este estudio se efectuó en el intermareal rocoso de la playa Tlacopanocha. Los objetivos fueron: determinar la riqueza, densidad y diversidad de especies; analizar la composición de especies y estructura de tallas. El área de muestreo fue de 10 m² y la unidad de muestreó fue de 1 m². Se identificaron 35 especies, de las cuales tres son nuevos registros para el intermareal rocoso de Guerrero: las familias mejor representadas en riqueza de especies fueron Ischnochitonidae y Arcidae, y en abundancia Chitonidae y Chamidae; la densidad fue de 31,60 ind m-2. Polyplacophora presentó 42,9% de especies dominantes y Bivalvia 19,0%. Chama corallina presentó la mayor talla en longitud y Chama sordida en ancho. La riqueza de especies de moluscos registrada se considera alta y corresponde a lo esperado para un sustrato rocoso en zona tropical. Polyplacophora presentó alta composición de especies, que podría ser resultado de la adaptación de los organismos a las condiciones dinámicas del intermareal rocoso. Los nuevos registros indican la importancia de los inventarios de especies y también del conocimiento de las poblaciones y comunidades de la fauna marina de Guerrero.The State of Guerrero, Mexico, has priority marine areas for conservation of its biodiversity, but information concerning diversity of mollusks is limited, so it is convenient to carry out species inventories, studies of populations and community ecology. This study was conducted in the intertidal rocky beach Tlacopanocha. The objectives were to determine richness, density and species diversity, analyze the species composition and size structure. The sampling area was 10 m² and the sampling unit was

  6. The identity of Isocrassina, Laevastarte and Ashtarotha (Mollusca, Bivalvia, Astartidae) and their representatives from beaches and estuaries in The Netherlands and Pliocene strata in Belgium

    NARCIS (Netherlands)

    Pouwer, R.

    2009-01-01

    The identity of the subgenera Isocrassina Chavan, 1950, Laevastarte Hinsch, 1952, and Ashtarotha Dall, 1903, of the genus Astarte Sowerby, 1816 in the family Astartidae (Mollusca, Bivalvia) is discussed. Isocrassina has been widely used for Pliocene species in the North Sea Basin. Here it is demonst

  7. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species.

    Science.gov (United States)

    Houbraken, Jos; de Vries, Ronald P; Samson, Robert A

    2014-01-01

    Taxonomy is a dynamic discipline and name changes of fungi with biotechnological, industrial, or medical importance are often difficult to understand for researchers in the applied field. Species belonging to the genera Aspergillus and Penicillium are commonly used or isolated, and inadequate taxonomy or uncertain nomenclature of these genera can therefore lead to tremendous confusion. Misidentification of strains used in biotechnology can be traced back to (1) recent changes in nomenclature, (2) new taxonomic insights, including description of new species, and/or (3) incorrect identifications. Changes in the recent published International Code of Nomenclature for Algae, Fungi and Plants will lead to numerous name changes of existing Aspergillus and Penicillium species and an overview of the current names of biotechnological important species is given. Furthermore, in (biotechnological) literature old and invalid names are still used, such as Aspergillus awamori, A. foetidus, A. kawachii, Talaromyces emersonii, Acremonium cellulolyticus, and Penicillium funiculosum. An overview of these and other species with their correct names is presented. Furthermore, the biotechnologically important species Talaromyces thermophilus is here combined in Thermomyces as Th. dupontii. The importance of Aspergillus, Penicillium, and related genera is also illustrated by the high number of undertaken genome sequencing projects. A number of these strains are incorrectly identified or atypical strains are selected for these projects. Recommendations for correct strain selection are given here. Phylogenetic analysis shows a close relationship between the genome-sequenced strains of Aspergillus, Penicillium, and Monascus. Talaromyces stipitatus and T. marneffei (syn. Penicillium marneffei) are closely related to Thermomyces lanuginosus and Th. dupontii (syn. Talaromyces thermophilus), and these species appear to be distantly related to Aspergillus and Penicillium. In the last part of

  8. Taxonomy, distribution and population structure of invasive Corbiculidae (Mollusca, Bivalvia in the Suquía River basin, Córdoba, Argentina

    Directory of Open Access Journals (Sweden)

    Paola B. Reyna

    2013-06-01

    Full Text Available Invasive species are one of the most significant causes of biodiversity loss and changes in ecosystem services, which underlines the importance of their detection and their study. The Asian clams (Corbiculidae are invasive organisms that accidentally entered the La Plata River, Argentina, presumably in the 1960s. The objectives of the present study were to identify the corbiculid species and to determine their distribution at several locations along the Suquía River basin, an extended area in central Argentina. In addition, population structure was evaluated monthly during one year, at a site in the city of Córdoba that is characterized by high human influence. The presence of Corbicula fluminea (Müller, 1774 and Corbicula largillierti (Philippi, 1844 in the Suquía River basin is reported for the first time. The former species was found only in a lentic environment (San Roque reservoir, while the latter was also found along the tributary rivers and brooks of the basin. Corbicula largillierti showed variations in average density between the different sites and also in biomass and size classes throughout the study period at the site at Córdoba city. The relative composition of the sediments, flow fluctuation and human pollution may be responsible for the observed differences.

  9. Spinaxinus (Bivalvia: Thyasiroidea) from sulfide biogenerators in the Gulf of Mexico and hydrothermal vents in the Fiji Back Arc: Chemosymbiosis and Taxonomy

    OpenAIRE

    Oliver, Graham; Rodrigues, Clara Lúcia Ferreira; Carney, Robert; Duperron, Sebastien

    2013-01-01

    Two new species of the thyasirid genus Spinaxinus (S. emicatus Oliver n. sp. and S. phrixicus Oliver n. sp.) are described from the Gulf of Mexico and the southwest Pacific, respectively. Both are compared with the type species of the genus, the eastern Atlantic S. sentosus Oliver and Holmes, 2006. Living specimens from the Gulf of Mexico were retrieved from artificial sulfide bio-generators on the upper Louisiana Slope. Gill morphology and molecular markers from the symbiotic bacteria confir...

  10. Taxonomy for spatial domain LSB steganography techniques

    Science.gov (United States)

    Collins, James C.; Agaian, Sos S.

    2014-05-01

    The Least Significant Bit (LSB) embedding technique is a well-known and broadly employed method in multimedia steganography, used mainly in applications involving single bit-plane manipulations in the spatial domain [1]. The key advantages of LSB procedures are they are simple to understand, easy to implement, have high embedding capacity, and can be resistant to steganalysis attacks. Additionally, the LSB approach has spawned numerous applications and can be used as the basis of more complex techniques for multimedia data embedding. In the last several decades, hundreds of new LSB or LSB variant methods have been developed in an effort to optimize capacity while minimizing detectability, taking advantage of the overall simplicity of this method. LSB-steganalysis research has also intensified in an effort to find new or improved ways to evaluate the performance of this widely used steganographic system. This paper reviews and categorizes some of these major techniques of LSB embedding, focusing specifically on the spatial domain. Some justification for establishing and identifying promising uses of a proposed SD-LSB centric taxonomy are discussed. Specifically, we define a new taxonomy for SD-LSB embedding techniques with the goal of aiding researchers in tool classification methodologies that can lead to advances in the state-of-the-art in steganography. With a common framework to work with, researchers can begin to more concretely identify core tools and common techniques to establish common standards of practice for steganography in general. Finally, we provide a summary on some of the most common LSB embedding techniques followed by a proposed taxonomy standard for steganalysis.

  11. NASA Taxonomy 2.0 Project Overview

    Science.gov (United States)

    Dutra, Jayne; Busch, Joseph

    2004-01-01

    This viewgraph presentation reviews the project to develop a Taxonomy for NASA. The benefits of this project are: Make it easy for various audiences to find relevant information from NASA programs quickly, specifically (1) Provide easy access for NASA Web resources (2) Information integration for unified queries and management reporting ve search results targeted to user interests the ability to move content through the enterprise to where it is needed most (3) Facilitate Records Management and Retention Requirements. In addition the project will assist NASA in complying with E-Government Act of 2002 and prepare NASA to participate in federal projects.

  12. Taxonomy of the nuclear plant operator's role

    International Nuclear Information System (INIS)

    A program is presently under way at the Oak Ridge National Laboratory (ORNL) to define the functional design requirements of operational aids for nuclear power plant operators. A first and important step in defining these requirements is to develop an understanding of the operator's role or function. This paper describes a taxonomy of operator functions that applies during all operational modes and conditions of the plant. Other topics such as the influence of automation, role acceptance, and the operator's role during emergencies are also discussed. This systematic approach has revealed several areas which have potential for improving the operator's ability to perform his role

  13. The relationship between complexity (taxonomy) and difficulty

    Science.gov (United States)

    Tan, Yih Tyng; Othman, Abdul Rahman

    2013-04-01

    Difficulty and complexity are important factors that occur in every test questions. These two factors will also affect the reliability of the test. Hence, difficulty and complexity must be considered by educators during preparation of the test questions. The relationship between difficulty and complexity is studied. Complexity is defined as the level in Bloom's Taxonomy. Difficulty is represented by the proportion of students scoring between specific score intervals. A chi-square test of independence between difficulty and complexity was conducted on the results of a continuous assessment of a third year undergraduate course, Probability Theory. The independence test showed that the difficulty and complexity are related. However, this relationship is small.

  14. Constructive Alignment and the SOLO Taxonomy

    DEFF Research Database (Denmark)

    Brabrand, Claus; Dahl, Bettina

    2008-01-01

    the science faculties at University of Aarhus, Denmark (AU) and the University of Southern Denmark (SDU) that had been rewritten to explicitly incorporate course objectives, interpreted as intended learning outcomes (ILOs), using the principles of Constructive Alignment and the SOLO Taxonomy. In this paper we...... explain and discuss these principles, give examples of how the new syllabi were constructed, and describe the process by which they were formed. We also explain and discuss the results of a comparative study comparing the competences of Computer Science with those of Mathematics (and classical Natural...

  15. Constructive Alignment and the SOLO Taxonomy:

    DEFF Research Database (Denmark)

    Brabrand, Claus; Dahl, Bettina

    2008-01-01

    the science faculties at University of Aarhus, Denmark (AU) and the University of Southern Denmark (SDU) that had been rewritten to explicitly incorporate course objectives, interpreted as intended learning outcomes (ILOs), using the principles of Constructive Alignment and the SOLO Taxonomy. In this paper we...... explain and discuss these principles, give examples of how the new syllabi were constructed, and describe the process by which they were formed. We also explain and discuss the results of a comparative study comparing the competences of Computer Science with those of Mathematics (and classical Natural...

  16. Development of a taxonomy of keywords for engineering education research

    Science.gov (United States)

    Finelli, Cynthia J.; Borrego, Maura; Rasoulifar, Golnoosh

    2016-05-01

    The diversity of engineering education research provides an opportunity for cross-fertilisation of ideas and creativity, but it also can result in fragmentation of the field and duplication of effort. One solution is to establish a standardised taxonomy of engineering education terms to map the field and communicate and connect research initiatives. This report describes the process for developing such a taxonomy, the EER Taxonomy. Although the taxonomy focuses on engineering education research in the United States, inclusive efforts have engaged 266 individuals from 149 cities in 30 countries during one multiday workshop, 7 conference sessions, and several other virtual and in-person activities. The resulting taxonomy comprises 455 terms arranged in 14 branches and 6 levels. This taxonomy was found to satisfy four criteria for validity and reliability: (1) keywords assigned to a set of abstracts were reproducible by multiple researchers, (2) the taxonomy comprised terms that could be selected as keywords to fully describe 243 articles in 3 journals, (3) the keywords for those 243 articles were evenly distributed across the branches of the taxonomy, and (4) the authors of 31 conference papers agreed with 90% of researcher-assigned keywords. This report also describes guidelines developed to help authors consistently assign keywords for their articles by encouraging them to choose terms from three categories: (1) context/focus/topic, (2) purpose/target/motivation, and (3) research approach.

  17. Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy

    Science.gov (United States)

    von Eye, Alexander; Wiedermann, Wolfgang

    2015-01-01

    Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…

  18. The Evolution of Educational Objectives: Bloom's Taxonomy and beyond

    Science.gov (United States)

    Fallahi, Carolyn R.; LaMonaca, Frank H., Jr.

    2009-01-01

    It is crucial for teachers to communicate effectively about educational objectives to students, colleagues, and others in education. In 1956, Bloom developed a cognitive learning taxonomy to enhance communication between college examiners. The Bloom taxonomy consists of 6 hierarchical levels of learning (knowledge, comprehension, application,…

  19. Understanding the Advising Learning Process Using Learning Taxonomies

    Science.gov (United States)

    Muehleck, Jeanette K.; Smith, Cathleen L.; Allen, Janine M.

    2014-01-01

    To better understand the learning that transpires in advising, we used Anderson et al.'s (2001) revision of Bloom's (1956) taxonomy and Krathwohl, Bloom, and Masia's (1964) affective taxonomy to analyze eight student-reported advising outcomes from Smith and Allen (2014). Using the cognitive processes and knowledge domains of Anderson et al.'s…

  20. Reconsidering Bloom's Taxonomy of Educational Objectives, Cognitive Domain.

    Science.gov (United States)

    Moore, David S.

    1982-01-01

    The hierarchical structure of the cognitive domain presented in Benjamin S. Bloom's taxonomy of educational objectives does not reflect the actual nature of the learning process. Attempts to apply the classification levels to student learning in mathematics and other subjects place the taxonomy's usefulness in question. (PP)

  1. The Semantic Web: Differentiating between Taxonomies and Ontologies.

    Science.gov (United States)

    Adams, Katherine

    2002-01-01

    Explains the concept of a semantic Web where software agents perform jobs for end-users by using hierarchies, metadata, and structured vocabularies. Discusses taxonomies; defining ontologies and taxonomies; standardized language and conceptual relationships; different points of emphasis; and topic maps as new Web infrastructure. (LRW)

  2. A revised taxonomy of assistance animals

    Directory of Open Access Journals (Sweden)

    Lindsay Parenti, MA, BCBA

    2013-08-01

    Full Text Available The use of animals in various assistive, therapeutic, and emotional support roles has contributed to the uncoordinated expansion of labels used to distinguish these animals. To address the inconsistent vocabulary and confusion, this article proposes a concise taxonomy for classifying assistance animals. Several factors were identified to differentiate categories, including (1 whether the animal performs work or tasks related to an individual’s disability; (2 the typical level of skill required by the animal performing the work or task; (3 whether the animal is used by public service, military, or healthcare professionals; (4 whether training certifications or standards are available; and (5 the existence of legal public access protections for the animal and handler. Acknowledging that some category labels have already been widely accepted or codified, six functional categories were identified: (1 service animal; (2 public service animal; (3 therapy animal; (4 visitation ­animal; (5 sporting, recreational, or agricultural animal; and (6 support animal. This taxonomy provides a clear vocabulary for use by consumers, professionals working in the field, researchers, policy makers, and regulatory agencies.

  3. Systematics and distribution of Cristaria plicata (Bivalvia, Unionidae) from the Russian Far East

    Science.gov (United States)

    Klishko, Olga K.; Lopes-Lima, Manuel; Froufe, Elsa; Bogan, Arthur E.; Abakumova, Vera Y.

    2016-01-01

    Abstract The number of anodontine bivalve species placed in the genus Cristaria (Bivalvia, Unionidae) from the Russian Far East is still not stable among authors. Some recognize only one valid species Cristaria plicata (Leach, 1815) while others accept two additional species, Cristaria tuberculata Schumacher, 1817 and Cristaria herculea (Middendorff, 1847). In the present study, these taxonomic doubts are addressed using analyses of mitochondrial DNA sequences and shell morphometry. No significant differences have been revealed by the COI DNA sequences or the main statistical morphometric indices from the three Cristaria forms. In the specimens analysed, changes in shell morphometry with age suggest that original descriptions of the different forms may be attributed solely to differences in age and sex. We consider that Cristaria plicata, Cristaria tuberculata and Cristaria herculea from the Russian Far East should be considered as a single species, namely Cristaria plicata (Leach, 1815), with Cristaria tuberculata and Cristaria herculea as junior synonyms. The geographic range of Cristaria plicata and its conservation status are also presented here. PMID:27110206

  4. A review of the taxonomy of chondrichthyan fishes: a modern perspective.

    Science.gov (United States)

    White, W T; Last, P R

    2012-04-01

    Taxonomic clarity is a fundamental requirement as it forms the foundation of all other life sciences. In the last decade, chondrichthyan taxonomy has undergone a scientific renaissance with >180 new species formally described. This effort encompasses c. 15% of the global chondrichthyan fauna, which consists of 1185 currently recognized species. The important role of chondrichthyan taxonomy for conservation management has been highlighted in recent years with new species descriptions or taxonomic resolution of a number of threatened species. These include Australian gulper (genus Centrophorus) and speartooth sharks (genus Glyphis) in coastal waters of Australia and Borneo. Closer examination of other wide-ranging species, for which the taxonomy was thought to be stable, has shown that they consist of species complexes, e.g. manta rays (Manta spp.) and spotted eagle rays (the Aetobatus narinari complex), and highlights the need for critical re-examination of other wide-ranging species. Molecular methods have provided another useful tool to taxonomists and they have proven to assist greatly with identifying cryptic species and species complexes. The limitations of particular molecular methods being used need, however, to be carefully considered and there are some concerns about how these are being integrated with classical taxonomy. The fundamental importance of taxonomic nomenclature to life sciences is often poorly understood but striving for nomenclatural stability is a critical component of taxonomy. Similarly, biological collections are an extremely vital asset to both taxonomists and the broader scientific community. These collections are becoming increasingly important due in part to molecular species identification initiatives such as the Barcode of Life which has resulted in a large number of voucher specimens linked to tissue samples being deposited. Biological collections are also proving to be imperative in biodiversity studies as they contain a 'gold mine

  5. A review of the taxonomy of chondrichthyan fishes: a modern perspective.

    Science.gov (United States)

    White, W T; Last, P R

    2012-04-01

    Taxonomic clarity is a fundamental requirement as it forms the foundation of all other life sciences. In the last decade, chondrichthyan taxonomy has undergone a scientific renaissance with >180 new species formally described. This effort encompasses c. 15% of the global chondrichthyan fauna, which consists of 1185 currently recognized species. The important role of chondrichthyan taxonomy for conservation management has been highlighted in recent years with new species descriptions or taxonomic resolution of a number of threatened species. These include Australian gulper (genus Centrophorus) and speartooth sharks (genus Glyphis) in coastal waters of Australia and Borneo. Closer examination of other wide-ranging species, for which the taxonomy was thought to be stable, has shown that they consist of species complexes, e.g. manta rays (Manta spp.) and spotted eagle rays (the Aetobatus narinari complex), and highlights the need for critical re-examination of other wide-ranging species. Molecular methods have provided another useful tool to taxonomists and they have proven to assist greatly with identifying cryptic species and species complexes. The limitations of particular molecular methods being used need, however, to be carefully considered and there are some concerns about how these are being integrated with classical taxonomy. The fundamental importance of taxonomic nomenclature to life sciences is often poorly understood but striving for nomenclatural stability is a critical component of taxonomy. Similarly, biological collections are an extremely vital asset to both taxonomists and the broader scientific community. These collections are becoming increasingly important due in part to molecular species identification initiatives such as the Barcode of Life which has resulted in a large number of voucher specimens linked to tissue samples being deposited. Biological collections are also proving to be imperative in biodiversity studies as they contain a 'gold mine

  6. An IT Service Taxonomy for Elaborating IT Service Catalog

    OpenAIRE

    Rabbi, Md Forhad

    2009-01-01

    In this thesis, I, as the author, have tried to propose a methodology for establishing IT service taxonomy in order to elaborate IT service portfolio and IT service catalog. As a core part of my thesis, IT service taxonomy has been discussed to manage IT services in an efficient way in the small and medium sized enterprises The small and medium sized enterprises can use the categories and sub categories of this taxonomy to define their service catalog and portfolio. In that regards, a list of...

  7. Ontologies, taxonomies and thesauri in systems science and systematics

    CERN Document Server

    Currás, Emilia

    2010-01-01

    The originality of this book, which deals with such a new subject matter, lies in the application of methods and concepts never used before - such as ontologies and taxonomies, as well as thesauri - to the ordering of knowledge based on primary information. Chapters in the book also examine the study of ontologies, taxonomies and thesauri from the perspective of systematics and general systems theory. Ontologies, Taxonomies and Thesauri in Systems Science and Systematics will be extremely useful to those operating within the network of related fields, which includes documentation and informati

  8. Teosinte inflorescence phytolith assemblages mirror Zea taxonomy.

    Directory of Open Access Journals (Sweden)

    John P Hart

    Full Text Available Molecular DNA analyses of the New World grass (Poaceae genus Zea, comprising five species, has resolved taxonomic issues including the most likely teosinte progenitor (Zea mays ssp. parviglumis of maize (Zea mays ssp. mays. However, archaeologically, little is known about the use of teosinte by humans both prior to and after the domestication of maize. One potential line of evidence to explore these relationships is opaline phytoliths produced in teosinte fruit cases. Here we use multidimensional scaling and multiple discriminant analyses to determine if rondel phytolith assemblages from teosinte fruitcases reflect teosinte taxonomy. Our results indicate that rondel phytolith assemblages from the various taxa, including subspecies, can be statistically discriminated. This indicates that it will be possible to investigate the archaeological histories of teosinte use pending the recovery of appropriate samples.

  9. Nematode taxonomy: from morphology to metabarcoding

    Science.gov (United States)

    Ahmed, M.; Sapp, M.; Prior, T.; Karssen, G.; Back, M.

    2015-11-01

    Nematodes represent a species rich and morphologically diverse group of metazoans inhabiting both aquatic and terrestrial environments. Their role as biological indicators and as key players in nutrient cycling has been well documented. Some groups of nematodes are also known to cause significant losses to crop production. In spite of this, knowledge of their diversity is still limited due to the difficulty in achieving species identification using morphological characters. Molecular methodology has provided very useful means of circumventing the numerous limitations associated with classical morphology based identification. We discuss herein the history and the progress made within the field of nematode systematics, the limitations of classical taxonomy and how the advent of high throughput sequencing is facilitating advanced ecological and molecular studies.

  10. Organizing electronic services into security taxonomies - revised

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.W. [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States); Pedersen, P.S. [Los Alamos National Lab., NM (United States)

    1997-01-01

    With increasing numbers of commercial and government services being considered for electronic delivery, effective vulnerability analysis will become increasingly critical, Organizing sets of proposed electronic services into security taxonomies will be a key part of this work. However, brute force enumeration of services and risks is inefficient, and ad hoc methods require re-invention with each new set of services. Furthermore, both such approaches fail to communicate effectively the tradeoffs between vulnerabilities and features in a set of electronic services, and fail to scale to large sets of service. From our experience advising players considering electronic delivery, we have developed a general, systematic, and scalable methodology that addresses these concerns. In this paper, we present this methodology, and apply it to the example of electronic services offered via kiosks (since kiosk systems are representative of a wide range of security issues in electronic commerce).

  11. A Taxonomy of Metrics for Hosted Databases

    Directory of Open Access Journals (Sweden)

    Jordan Shropshire

    2006-04-01

    Full Text Available The past three years has seen exponential growth in the number of organizations who have elected to entrust core information technology functions to application service providers. Of particular interest is the outsourcing of critical systems such as corporate databases. Major banks and financial service firms are contracting with third party organizations, sometimes overseas, for their database needs. These sophisticated contracts require careful supervision by both parties. Due to the complexities of web- based applications and the complicated nature of databases, an entire class of software suites has been developed to measure the quality of service the database is providing. This article investigates the performance metrics which have evolved to satisfy this need and describes a taxonomy of performance metrics for hosted databases.

  12. Taxonomy of Data Prefetching for Multicore Processors

    Institute of Scientific and Technical Information of China (English)

    Surendra Byna; Yong Chen; Xian-He Sun

    2009-01-01

    Data prefetching is an effective data access latency hiding technique to mask the CPU stall caused by cache misses and to bridge the performance gap between processor and memory. With hardware and/or software support, data prefetching brings data closer to a processor before it is actually needed. Many prefetching techniques have been developed for single-core processors. Recent developments in processor technology have brought multicore processors into mainstream.While some of the single-core prefetching techniques are directly applicable to multicore processors, numerous novel strategies have been proposed in the past few years to take advantage of multiple cores. This paper aims to provide a comprehensive review of the state-of-the-art prefetching techniques, and proposes a taxonomy that classifies various design concerns in developing a prefetching strategy, especially for multicore processors. We compare various existing methods through analysis as well.

  13. The taxonomy of viruses should include viruses.

    Science.gov (United States)

    Calisher, Charles H

    2016-05-01

    Having lost sight of its goal, the International Committee on Taxonomy of Viruses has redoubled its efforts. That goal is to arrive at a consensus regarding virus classification, i.e., proper placement of viruses in a hierarchical taxonomic scheme; not an easy task given the wide variety of recognized viruses. Rather than suggesting a continuation of the bureaucratic machinations of the past, this opinion piece is a call for insertion of common sense in sorting out the avalanche of information already, and soon-to-be, accrued data. In this way information about viruses ideally would be taxonomically correct as well as useful to working virologists and journal editors, rather than being lost, minimized, or ignored.

  14. Application of Modern Experimental Technique to Solve Morphological Complexity in Plants Taxonomy

    OpenAIRE

    SURANTO

    2000-01-01

    Modern taxonomy has two approaches, i.e. classical and experimental taxonomy. Classical taxonomy uses morphological characters, while experimental taxonomy uses broader methods including chemistry, physics and mathematics, in the form of laboratory data that are revealed together with the progress of optical technique (microscope), chemistry methods (chromatography, electrophoresis), etc. Modern taxonomy tends to use series of interrelated data. More data used would result in more validity an...

  15. Taxonomy of the genus Leishmania: present and future trends and their implications

    OpenAIRE

    Shaw, Jeffrey J.

    1994-01-01

    The application of different taxonomic methods (Cladistic, Evolutionary Taxonomy and Numerical Taxonomy) to the taxonomy of the Genus Leishmania are reviewed. The major groupings of the most recent classifications obtained using the cladistical approach agree with the major divisions of previous classifications which used traditional taxonomy (Evolutionary Taxonomy). The advantage of the cladistical approach is that it produces cladograms whose branches indicate more accurately levels of rela...

  16. Biology in bloom: implementing Bloom's Taxonomy to enhance student learning in biology.

    Science.gov (United States)

    Crowe, Alison; Dirks, Clarissa; Wenderoth, Mary Pat

    2008-01-01

    We developed the Blooming Biology Tool (BBT), an assessment tool based on Bloom's Taxonomy, to assist science faculty in better aligning their assessments with their teaching activities and to help students enhance their study skills and metacognition. The work presented here shows how assessment tools, such as the BBT, can be used to guide and enhance teaching and student learning in a discipline-specific manner in postsecondary education. The BBT was first designed and extensively tested for a study in which we ranked almost 600 science questions from college life science exams and standardized tests. The BBT was then implemented in three different collegiate settings. Implementation of the BBT helped us to adjust our teaching to better enhance our students' current mastery of the material, design questions at higher cognitive skills levels, and assist students in studying for college-level exams and in writing study questions at higher levels of Bloom's Taxonomy. From this work we also created a suite of complementary tools that can assist biology faculty in creating classroom materials and exams at the appropriate level of Bloom's Taxonomy and students to successfully develop and answer questions that require higher-order cognitive skills.

  17. Adoption of geodemographic and ethno-cultural taxonomies for analysing Big Data

    Directory of Open Access Journals (Sweden)

    Richard James Webber

    2015-05-01

    Full Text Available This paper is intended to contribute to the discussion of the differential level of adoption of Big Data among research communities. Recognising the impracticality of conducting an audit across all forms and uses of Big Data, we have restricted our enquiry to one very specific form of Big Data, namely general purpose taxonomies, of which Mosaic, Acorn and Origins are examples, that rely on data from a variety of Big Data feeds. The intention of these taxonomies is to enable the records of consumers and citizens held on Big Data datasets to be coded according to type of residential neighbourhood or ethno-cultural heritage without any use of questionnaires. Based on our respective experience in the academic social sciences, in government and in the design and marketing of these taxonomies, we identify the features of these classifications which appear to render them attractive or problematic to different categories of potential user or researcher depending on how the relationship is conceived. We conclude by identifying seven classifications of user or potential user who, on account of their background, current position and future career expectations, tend to respond in different ways to the opportunity to adopt these generic systems as aids for understanding social processes.

  18. Constructing a taxonomy to support multi-document summarization of dissertation abstracts

    Institute of Scientific and Technical Information of China (English)

    OU Shi-yan; KHOO Christopher S.G.; GOH Dion H.

    2005-01-01

    This paper reports part of a study to develop a method for automatic multi-document summarization. The current focus is on dissertation abstracts in the field of sociology. The summarization method uses macro-level and micro-level discourse structure to identify important information that can be extracted from dissertation abstracts, and then uses a variable-based framework to integrate and organize extracted information across dissertation abstracts. This framework focuses more on research concepts and their research relationships found in sociology dissertation abstracts and has a hierarchical structure. A taxonomy is constructed to support the summarization process in two ways: (1) helping to identify important concepts and relations expressed in the text, and (2) providing a structure for linking similar concepts in different abstracts. This paper describes the variable-based framework and the summarization process, and then reports the construction of the taxonomy for supporting the summarization process. An example is provided to show how to use the constructed taxonomy to identify important concepts and integrate the concepts extracted from different abstracts.

  19. Integrative taxonomy: a multisource approach to exploring biodiversity.

    Science.gov (United States)

    Schlick-Steiner, Birgit C; Steiner, Florian M; Seifert, Bernhard; Stauffer, Christian; Christian, Erhard; Crozier, Ross H

    2010-01-01

    Good alpha taxonomy is central to biology. On the basis of a survey of arthropod studies that used multiple disciplines for species delimitation, we evaluated the performance of single disciplines. All included disciplines had a considerable failure rate. Rigor in species delimitation can thus be increased when several disciplines chosen for complementarity are used. We present a flexible procedure and stopping rule for integrative taxonomy that uses the information from different disciplines separately. Disagreement among disciplines over the number and demarcation of species is resolved by elucidating and invoking evolutionary explanations for disagreement. With the identification of further promising study organisms and of new questions for in-depth analysis, evolutionary biology should profit from integrative taxonomy. An important rationale is clarity in researcher bias in the decision-making process. The success of integrative taxonomy will further increase through methodological progress, taxonomic training of evolutionary biologists, and balanced resource allocation.

  20. Norms for environmentally responsible behaviour: An extended taxonomy

    DEFF Research Database (Denmark)

    Thøgersen, John

    2006-01-01

      The concept of personal or moral norms is ambiguous with regard to its motivational content. An extension and a refinement of the norm taxonomy are therefore suggested, distinguishing between two types of personal norms: introjected and integrated norms. A preliminary assessment of the taxonomy...... and shopping. Also the frequency of the four behaviours was measured. The revised taxonomy has content, discriminant, predictive, and nomological validity and satisfactory test-retest reliability. The most internalized of the new norm constructs, integrated norms, is most strongly correlated with conventional...... measures of personal and moral norms. However, other constructs in the proposed taxonomy still contribute significantly to predicting conventional norm measures after controlling for integrated norms. This documents the motivational ambiguity of the conventional personal norm construct. The patterns...

  1. Chinese Soil Taxonomy: A Milestone of Soil Classification in China

    Institute of Scientific and Technical Information of China (English)

    Gong Zitong; Zhang Ganlin

    2007-01-01

    @@ 1 Background Taxonomy is the branch of science dedicated to discovering, characterizing, naming, and classifying objects or organisms so as to understand relationships between them and the factors of their formation[1].

  2. The HCBS Taxonomy- A New Language for Classifying Home...

    Data.gov (United States)

    U.S. Department of Health & Human Services — The home- and community-based services (HCBS) taxonomy provides a common language for describing and categorizing HCBS across Medicaid programs. Prior to the...

  3. Generating a multilingual taxonomy based on multilingual terminology clustering

    Institute of Scientific and Technical Information of China (English)

    Chengzhi; ZHANG

    2011-01-01

    Taxonomy denotes the hierarchical structure of a knowledge organization system.It has important applications in knowledge navigation,semantic annotation and semantic search.It is a useful instrument to study the multilingual taxonomy generated automatically under the dynamic information environment in which massive amounts of information are processed and found.Multilingual taxonomy is the core component of the multilingual thesaurus or ontology.This paper presents two methods of bilingual generated taxonomy:Cross-language terminology clustering and mixed-language based terminology clustering.According to our experimental results of terminology clustering related to four specific subject domains,we found that if the parallel corpus is used to cluster multilingual terminologies,the method of using mixed-language based terminology clustering outperforms that of using the cross-language terminology clustering.

  4. Rehabilitation treatment taxonomy and the international classification of health interventions.

    Science.gov (United States)

    Sykes, Catherine R

    2014-01-01

    This commentary provides some reactions to the rehabilitation treatment taxonomy project in relation to work already underway to develop an International Classification of Health Interventions. This commentary also includes some comments in response to questions posed by the authors.

  5. A taxonomy of behaviour change methods: an Intervention Mapping approach.

    Science.gov (United States)

    Kok, Gerjo; Gottlieb, Nell H; Peters, Gjalt-Jorn Y; Mullen, Patricia Dolan; Parcel, Guy S; Ruiter, Robert A C; Fernández, María E; Markham, Christine; Bartholomew, L Kay

    2016-09-01

    In this paper, we introduce the Intervention Mapping (IM) taxonomy of behaviour change methods and its potential to be developed into a coding taxonomy. That is, although IM and its taxonomy of behaviour change methods are not in fact new, because IM was originally developed as a tool for intervention development, this potential was not immediately apparent. Second, in explaining the IM taxonomy and defining the relevant constructs, we call attention to the existence of parameters for effectiveness of methods, and explicate the related distinction between theory-based methods and practical applications and the probability that poor translation of methods may lead to erroneous conclusions as to method-effectiveness. Third, we recommend a minimal set of intervention characteristics that may be reported when intervention descriptions and evaluations are published. Specifying these characteristics can greatly enhance the quality of our meta-analyses and other literature syntheses. In conclusion, the dynamics of behaviour change are such that any taxonomy of methods of behaviour change needs to acknowledge the importance of, and provide instruments for dealing with, three conditions for effectiveness for behaviour change methods. For a behaviour change method to be effective: (1) it must target a determinant that predicts behaviour; (2) it must be able to change that determinant; (3) it must be translated into a practical application in a way that preserves the parameters for effectiveness and fits with the target population, culture, and context. Thus, taxonomies of methods of behaviour change must distinguish the specific determinants that are targeted, practical, specific applications, and the theory-based methods they embody. In addition, taxonomies should acknowledge that the lists of behaviour change methods will be used by, and should be used by, intervention developers. Ideally, the taxonomy should be readily usable for this goal; but alternatively, it should be

  6. A taxonomy of behaviour change methods: an Intervention Mapping approach.

    Science.gov (United States)

    Kok, Gerjo; Gottlieb, Nell H; Peters, Gjalt-Jorn Y; Mullen, Patricia Dolan; Parcel, Guy S; Ruiter, Robert A C; Fernández, María E; Markham, Christine; Bartholomew, L Kay

    2016-09-01

    In this paper, we introduce the Intervention Mapping (IM) taxonomy of behaviour change methods and its potential to be developed into a coding taxonomy. That is, although IM and its taxonomy of behaviour change methods are not in fact new, because IM was originally developed as a tool for intervention development, this potential was not immediately apparent. Second, in explaining the IM taxonomy and defining the relevant constructs, we call attention to the existence of parameters for effectiveness of methods, and explicate the related distinction between theory-based methods and practical applications and the probability that poor translation of methods may lead to erroneous conclusions as to method-effectiveness. Third, we recommend a minimal set of intervention characteristics that may be reported when intervention descriptions and evaluations are published. Specifying these characteristics can greatly enhance the quality of our meta-analyses and other literature syntheses. In conclusion, the dynamics of behaviour change are such that any taxonomy of methods of behaviour change needs to acknowledge the importance of, and provide instruments for dealing with, three conditions for effectiveness for behaviour change methods. For a behaviour change method to be effective: (1) it must target a determinant that predicts behaviour; (2) it must be able to change that determinant; (3) it must be translated into a practical application in a way that preserves the parameters for effectiveness and fits with the target population, culture, and context. Thus, taxonomies of methods of behaviour change must distinguish the specific determinants that are targeted, practical, specific applications, and the theory-based methods they embody. In addition, taxonomies should acknowledge that the lists of behaviour change methods will be used by, and should be used by, intervention developers. Ideally, the taxonomy should be readily usable for this goal; but alternatively, it should be

  7. Bloom’s taxonomy of cognitive learning objectives

    OpenAIRE

    Adams, Nancy E.

    2015-01-01

    Information professionals who train or instruct others can use Bloom’s taxonomy to write learning objectives that describe the skills and abilities that they desire their learners to master and demonstrate. Bloom’s taxonomy differentiates between cognitive skill levels and calls attention to learning objectives that require higher levels of cognitive skills and, therefore, lead to deeper learning and transfer of knowledge and skills to a greater variety of tasks and contexts.

  8. TOWARDS A FACETED TAXONOMY TO STRUCTURE WEBGENRE CORPORA

    OpenAIRE

    Joseba Ezeiza Ramos; Ugurtzane Elordui Urkiza; Xavier Payá Ruiz; Imanol Epelde Pagola

    2011-01-01

    The purpose of this paper is to contribute to the analysis of cyberjournalistic documents by proposing a taxonomy to structure web-genre corpora. It takes into account the peculiarities of this field, the new genres, their hybridization and complexness. In this sense, the taxonomy presented in this paper does not match a single theoretical framework, but it tries to gather the guidelines of various works intended to study online journalism and its genres. This theoretical flexibility is neede...

  9. Molecular phylogeny of pearl oysters and their relatives (Mollusca, Bivalvia, Pterioidea

    Directory of Open Access Journals (Sweden)

    Tëmkin Ilya

    2010-11-01

    Full Text Available Abstract Background The superfamily Pterioidea is a morphologically and ecologically diverse lineage of epifaunal marine bivalves distributed throughout the tropical and subtropical continental shelf regions. This group includes commercially important pearl culture species and model organisms used for medical studies of biomineralization. Recent morphological treatment of selected pterioideans and molecular phylogenetic analyses of higher-level relationships in Bivalvia have challenged the traditional view that pterioidean families are monophyletic. This issue is examined here in light of molecular data sets composed of DNA sequences for nuclear and mitochondrial loci, and a published character data set of anatomical and shell morphological characters. Results The present study is the first comprehensive species-level analysis of the Pterioidea to produce a well-resolved, robust phylogenetic hypothesis for nearly all extant taxa. The data were analyzed for potential biases due to taxon and character sampling, and idiosyncracies of different molecular evolutionary processes. The congruence and contribution of different partitions were quantified, and the sensitivity of clade stability to alignment parameters was explored. Conclusions Four primary conclusions were reached: (1 the results strongly supported the monophyly of the Pterioidea; (2 none of the previously defined families (except for the monotypic Pulvinitidae were monophyletic; (3 the arrangement of the genera was novel and unanticipated, however strongly supported and robust to changes in alignment parameters; and (4 optimizing key morphological characters onto topologies derived from the analysis of molecular data revealed many instances of homoplasy and uncovered synapomorphies for major nodes. Additionally, a complete species-level sampling of the genus Pinctada provided further insights into the on-going controversy regarding the taxonomic identity of major pearl culture species.

  10. Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia.

    Science.gov (United States)

    Zieritz, Alexandra; Lopes-Lima, Manuel; Bogan, Arthur E; Sousa, Ronaldo; Walton, Samuel; Rahim, Khairul Adha A; Wilson, John-James; Ng, Pei-Yin; Froufe, Elsa; McGowan, Suzanne

    2016-11-15

    Freshwater mussels (Bivalvia, Unionida) fulfil important ecosystem functions and are one of the most threatened freshwater taxa globally. Knowledge of freshwater mussel diversity, distribution and ecology in Peninsular Malaysia is extremely poor, and the conservation status of half of the species presumed to occur in the region has yet to be assessed. We conducted the first comprehensive assessment of Peninsular Malaysia's freshwater mussels based on species presence/absence and environmental data collected from 155 sites spanning all major river catchments and diverse habitat types. Through an integrative morphological-molecular approach we recognised nine native and one widespread non-native species, i.e. Sinanodonta woodiana. Two species, i.e. Pilsbryoconcha compressa and Pseudodon cambodjensis, had not been previously recorded from Malaysia, which is likely a result of morphological misidentifications of historical records. Due to their restriction to single river catchments and declining distributions, Hyriopsis bialata, possibly endemic to Peninsular Malaysia, Ensidens ingallsianus, possibly already extinct in the peninsula, and Rectidens sumatrensis, particularly require conservation attention. Equally, the Pahang, the Perak and the north-western river catchments are of particular conservation value due to the presence of a globally unique freshwater mussel fauna. Statistical relationships of 15 water quality parameters and mussel presence/absence identified acidification and nutrient pollution (eutrophication) as the most important anthropogenic factors threatening freshwater mussel diversity in Peninsular Malaysia. These factors can be linked to atmospheric pollution, deforestation, oil-palm plantations and a lack of functioning waste water treatment, and could be mitigated by establishing riparian buffers and improving waste water treatment for rivers running through agricultural and residential land. PMID:27473771

  11. Vesicomyinae (Bivalvia: Vesicomyidae) of the Kuril-Kamchatka Trench and adjacent abyssal regions

    Science.gov (United States)

    Krylova, Elena M.; Kamenev, Gennady M.; Vladychenskaya, Irina P.; Petrov, Nikolai B.

    2015-01-01

    Representatives of the subfamily Vesicomyinae (Bivalvia, Vesicomyidae) are tiny deep-sea molluscs distributed worldwide and reaching huge abundances of hundreds and thousands of specimens in trawl catches. During the German-Russian deep-sea expedition KuramBio (R/V Sonne, 2012) for the first time two vesicomyin species were collected from the abyssal plain adjacent to the Kuril-Kamchatka Trench from the depths of 4861-5787 m, Vesicomya pacifica (Smith, 1885) and "Vesicomya" filatovae sp.n. Two species of vesicomyins, V. sergeeviFilatova, 1971 and V. profundiFilatova, 1971, which were previously reported from the hadal of the Kuril-Kamchatka Trench, were not collected at the abyssal depth despite of the close geographical proximity of the sampling area to their distribution ranges. Altogether nine species of vesicomyins are recorded now from the West and Indo-West Pacific; data on distribution and morpho-anatomical characters of these species are provided. Taxonomic description of V. pacifica is revised including information on its soft part anatomy, new localities and COI sequences. For the first time for a vesicomyin bivalve molecular data is given for a species with an explicit morphological description and unambiguous taxonomic affiliation. Molecular analysis of 160 published COI sequences of vesicomyids and newly obtained molecular data on V. pacifica showed that V. pacifica and two undescribed vesicomyin species forming a monophyletic clade which exhibits sister relationships with the Pliocardiinae, the group of chemosymbiotic vesicomyids. "Vesicomya" filatovae sp.n. is provisionally assigned to the genus Vesicomya (s.l.) until additional morphological and molecular data are obtained. It differs from Vesicomya s.s. by a broader hinge margin with more radiating teeth and the presence of only one pair of demibranchs.

  12. Comparative morphology among representatives of main taxa of Scaphopoda and basal protobranch Bivalvia (Mollusca

    Directory of Open Access Journals (Sweden)

    Luiz Ricardo L. Simone

    2009-01-01

    Full Text Available This study deals with detailed morphology and anatomy of 4 species of Scaphopoda and 5 species of protobranch Bivalvia. Both classes are traditionally grouped in the taxon Diasoma, which has been questioned by different methodologies, such as molecular and developmental. This study is developed under a phylogenetic methodology with the main concern in performing it in an intelligible and testable methodology. The analyzed Scaphopoda species came from the Brazilian coast and belong to the family Dentaliidae [(1 Coccodentalium carduus; (2 Paradentalium disparile] and Gadiliidae; [(3 Polyschides noronhensis, n. sp. from Fernando de Noronha Archipelago; (4 Gadila braziliensis]. These species represent the main branches of the class Scaphopoda. From protobranch bivalves, representatives of the families Solemyidae [(5 Solemya occidentalis, from Florida; S. notialis, n. sp. from S.E. Brazil], Nuculanidae [(6 Propeleda carpentieri from Florida], and Nuculidae [(7 Ennucula puelcha, from south Brazil] are included. These species represent the main branches of the basal Bivalvia. The descriptions on the anatomy of S. occidentalis and of P. carpentieri are published elsewhere. The remaining are included here, for which a complete taxonomical treatment is performed. Beyond these species, representatives of other taxa are operationally included as part of the ingroup (indices are then shared with them, as a procedure to test the morphological monophyly of Diasoma. These taxa are: two lamellibranch bivalves [(8 Barbatia - Arcidae; (9 Serratina - Tellinidae; both published elsewhere;, and Propilidium (10 Patellogastropoda, and (11 Nautilus, basal Cephalopoda, based on basal taxa. The effective outgroups are (12 Neopilina (Monoplacophora and (13 Hanleya (Polyplacophora. The phylogenetic analysis based on morphology revealed that the taxon Diasoma is supported by 14 synapomorphies, and is separated from Cyrtosoma (Gastropoda + Cephalopoda. Although they are not

  13. RAPID INDUCTION OF MULTIPLE TAXONOMIES FOR ENHANCED FACETED TEXT BROWSING

    Directory of Open Access Journals (Sweden)

    Lawrence Muchemi 1

    2016-07-01

    Full Text Available In this paper we present and compare two methodologies for rapidly inducing multiple subject-specific taxonomies from crawled data. The first method involves a sentence-level words co-occurrence frequency method for building the taxonomy, while the second involves the bootstrapping of a Word2Vec based algorithm with a directed crawler. We exploit the multilingual open-content directory of the World Wide Web, DMOZ1 to seed the crawl, and the domain name to direct the crawl. This domain corpus is then input to our algorithm that can automatically induce taxonomies. The induced taxonomies provide hierarchical semantic dimensions for the purposes of faceted browsing. As part of an ongoing personal semantics project, we applied the resulting taxonomies to personal social media data Twitter, Gmail, Facebook, Instagram, Flickr with an objective of enhancing an individual’s exploration of their personal information through faceted searching. We also perform a comprehensive corpus based evaluation of the algorithms based on many datasets drawn from the fields of medicine (diseases and leisure (hobbies and show that the induced taxonomies are of high quality.

  14. Determination of protein-carbonyls and ubiquitin-mediated proteolysis as biomarkers of oxidative-stress in bivalvia and anthozoa

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Stephen Thomas

    2002-07-01

    This study describes the investigation of biomarkers of oxidative-stress in the bivalves Mytilus edulis and Dosinia lupinus, together with host and symbiont tissues of the scleractinian Anthozoa Agaricia agaricites. The biomarkers used were assay of total (via spectrophotometry) and individual (via Western blotting; Oxyblot kit) protein-carbonyls (PC=Os) and content of ubiquitin protein conjugates (UPC) via Western blotting (Bivalvia and Anthozoa) and immunohistochemistry (Anthozoa only). Additional assays for Bivalvia were Trolox equivalent antioxidant capacity (TEAC); and post {gamma}-irradiation survival rates. Experimental stressors for Bivalvia were increased seawater temperature, H{sub 2}O{sub 2} and {sup 60}Co {gamma}-radiation (latter two were used in vivo and in vitro). Comparisons of clean and polluted marine sites are included. Stressors used for Anthozoa were increased solar irradiation concomitant with elevated seawater temperature. Results and conclusions were as follows: individual samples showed considerable variation, pooling of samples improved consistency. Controls for both biomarkers had detectable background levels in each phylum, against which relatively small differences were assessed. In M. edulis, no measurable differences in PC=Os could be determined when elevated seawater temperature or dilute H{sub 2}O{sub 2} (<30% v/v) stressors were used, nor with between-site comparisons. Concentrated H{sub 2}O{sub 2} (30% v/v) produced a small difference. {sup 60}Co {gamma}-radiation produced clearer differences via Oxyblot and spectrophotometric assays. Comparison of four different tissues from the two bivalves found considerable species-specific and tissue-specific differences. Post-irradiation mortality between species was significantly different (<0.001), D. lupinus was more susceptible than M. edulis. TEAC values generally showed a decrease following irradiation (except for digestive gland). UPCs were clearly different between tissues and

  15. Molecular phylogeny and shell microstructure of Fungiacava eilatensis Goreau et al. 1968, boring into mushroom corals (Scleractinia: Fungiidae), in relation to other mussels (Bivalvia: Mytilidae)

    OpenAIRE

    Owada, M; Hoeksema, B.W.

    2011-01-01

    Research on the evolution of the symbiosis between the boring mussel Fungiacava eilatensis (Bivalvia: Mytilidae) and its mushroom coral hosts (Scleractinia: Fungiidae), which requires phylogenetic reconstructions of both the Mytilidae and the Fungiidae, contributes to the understanding of the complexity of coral reef ecosystems. Previously, Fungiacava was regarded as a genus that had descended from Leiosolenus or as belonging to the subfamily Crenellinae, but no phylogenetic support has been ...

  16. Surfacing the deep data of taxonomy.

    Science.gov (United States)

    Page, Roderic D M

    2016-01-01

    Taxonomic databases are perpetuating approaches to citing literature that may have been appropriate before the Internet, often being little more than digitised 5 × 3 index cards. Typically the original taxonomic literature is either not cited, or is represented in the form of a (typically abbreviated) text string. Hence much of the "deep data" of taxonomy, such as the original descriptions, revisions, and nomenclatural actions are largely hidden from all but the most resourceful users. At the same time there are burgeoning efforts to digitise the scientific literature, and much of this newly available content has been assigned globally unique identifiers such as Digital Object Identifiers (DOIs), which are also the identifier of choice for most modern publications. This represents an opportunity for taxonomic databases to engage with digitisation efforts. Mapping the taxonomic literature on to globally unique identifiers can be time consuming, but need be done only once. Furthermore, if we reuse existing identifiers, rather than mint our own, we can start to build the links between the diverse data that are needed to support the kinds of inference which biodiversity informatics aspires to support. Until this practice becomes widespread, the taxonomic literature will remain balkanized, and much of the knowledge that it contains will linger in obscurity. PMID:26877663

  17. The Upper Miocene of the Rostov Dome (Eastern Paratethys: Implication of the chronostratigraphy and bivalvia-based biostratigraphy

    Directory of Open Access Journals (Sweden)

    Ruban Dmitry A.

    2005-01-01

    Full Text Available The Rostov Dome is located in the south of the Russian Platform. In the Late Miocene this area was embraced by the Eastern Paratethys. The implications of a recently developed Neogene chronostratigraphy to the studied area are discussed. The Sarmatian regional stage corresponds to the upper part of the Langhian, the entire Serravalian and the lower part of the Tortonian global stages; the Maeotian regional stage corresponds to the upper part of the Tortonian and the lowermost horizons of the Messinian global stages; the Pontian regional stage corresponds to most of the Messinian and the lowermost Zanclean global stages. A first Bivalvia-based bio-stratigraphic framework is proposed for the territory of the Rostov Dome. Five biozones were established within the Serravalian-Messinian: Tapes vitalianus, Cerastoderma fittoni-Cerastoderma subfittoni, Congeria panticapaea, Congeria amygdaloides navicula and Monodacna pseudocatillus-Prosodacna schirvanica.

  18. Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca).

    Science.gov (United States)

    Sharma, Prashant P; González, Vanessa L; Kawauchi, Gisele Y; Andrade, Sónia C S; Guzmán, Alejandra; Collins, Timothy M; Glover, Emily A; Harper, Elizabeth M; Healy, John M; Mikkelsen, Paula M; Taylor, John D; Bieler, Rüdiger; Giribet, Gonzalo

    2012-10-01

    Revived interest in molluscan phylogeny has resulted in a torrent of molecular sequence data from phylogenetic, mitogenomic, and phylogenomic studies. Despite recent progress, basal relationships of the class Bivalvia remain contentious, owing to conflicting morphological and molecular hypotheses. Marked incongruity of phylogenetic signal in datasets heavily represented by nuclear ribosomal genes versus mitochondrial genes has also impeded consensus on the type of molecular data best suited for investigating bivalve relationships. To arbitrate conflicting phylogenetic hypotheses, we evaluated the utility of four nuclear protein-encoding genes-ATP synthase β, elongation factor-1α, myosin heavy chain type II, and RNA polymerase II-for resolving the basal relationships of Bivalvia. We sampled all five major lineages of bivalves (Archiheterodonta, Euheterodonta [including Anomalodesmata], Palaeoheterodonta, Protobranchia, and Pteriomorphia) and inferred relationships using maximum likelihood and Bayesian approaches. To investigate the robustness of the phylogenetic signal embedded in the data, we implemented additional datasets wherein length variability and/or third codon positions were eliminated. Results obtained include (a) the clade (Nuculanida+Opponobranchia), i.e., the traditionally defined Protobranchia; (b) the monophyly of Pteriomorphia; (c) the clade (Archiheterodonta+Palaeoheterodonta); (d) the monophyly of the traditionally defined Euheterodonta (including Anomalodesmata); and (e) the monophyly of Heteroconchia, i.e., (Palaeoheterodonta+Archiheterodonta+Euheterodonta). The stability of the basal tree topology to dataset manipulation is indicative of signal robustness in these four genes. The inferred tree topology corresponds closely to those obtained by datasets dominated by nuclear ribosomal genes (18S rRNA and 28S rRNA), controverting recent taxonomic actions based solely upon mitochondrial gene phylogenies.

  19. Molecular phylogeny of Pholadoidea Lamarck, 1809 supports a single origin for xylotrophy (wood feeding) and xylotrophic bacterial endosymbiosis in Bivalvia.

    Science.gov (United States)

    Distel, Daniel L; Amin, Mehwish; Burgoyne, Adam; Linton, Eric; Mamangkey, Gustaf; Morrill, Wendy; Nove, John; Wood, Nicole; Yang, Joyce

    2011-11-01

    The ability to consume wood as food (xylotrophy) is unusual among animals. In terrestrial environments, termites and other xylotrophic insects are the principle wood consumers while in marine environments wood-boring bivalves fulfill this role. However, the evolutionary origin of wood feeding in bivalves has remained largely unexplored. Here we provide data indicating that xylotrophy has arisen just once in Bivalvia in a single wood-feeding bivalve lineage that subsequently diversified into distinct shallow- and deep-water branches, both of which have been broadly successful in colonizing the world's oceans. These data also suggest that the appearance of this remarkable life habit was approximately coincident with the acquisition of bacterial endosymbionts. Here we generate a robust phylogeny for xylotrophic bivalves and related species based on sequences of small and large subunit nuclear rRNA genes. We then trace the distribution among the modern taxa of morphological characters and character states associated with xylotrophy and xylotrepesis (wood-boring) and use a parsimony-based method to infer their ancestral states. Based on these ancestral state reconstructions we propose a set of plausible hypotheses describing the evolution of symbiotic xylotrophy in Bivalvia. Within this context, we reinterpret one of the most remarkable progressions in bivalve evolution, the transformation of the "typical" myoid body plan to create a unique lineage of worm-like, tube-forming, wood-feeding clams. The well-supported phylogeny presented here is inconsistent with most taxonomic treatments for xylotrophic bivalves, indicating that the bivalve family Pholadidae and the subfamilies Teredininae and Bankiinae of the family Teredinidae are non-monophyletic, and that the principle traits used for their taxonomic diagnosis are phylogenetically misleading.

  20. A Taxonomy of Fallacies in System Safety Arguments

    Science.gov (United States)

    Greenwell, William S.; Knight, John C.; Holloway, C. Michael; Pease, Jacob J.

    2006-01-01

    Safety cases are gaining acceptance as assurance vehicles for safety-related systems. A safety case documents the evidence and argument that a system is safe to operate; however, logical fallacies in the underlying argument may undermine a system s safety claims. Removing these fallacies is essential to reduce the risk of safety-related system failure. We present a taxonomy of common fallacies in safety arguments that is intended to assist safety professionals in avoiding and detecting fallacious reasoning in the arguments they develop and review. The taxonomy derives from a survey of general argument fallacies and a separate survey of fallacies in real-world safety arguments. Our taxonomy is specific to safety argumentation, and it is targeted at professionals who work with safety arguments but may lack formal training in logic or argumentation. We discuss the rationale for the selection and categorization of fallacies in the taxonomy. In addition to its applications to the development and review of safety cases, our taxonomy could also support the analysis of system failures and promote the development of more robust safety case patterns.

  1. Historical development and some emendations of dinoflagellate taxonomy

    Directory of Open Access Journals (Sweden)

    Xin Ma

    2013-01-01

    Full Text Available The historical development of dinoflagellate taxonomy in China and the world are reviewed, and the taxonomic status of some dinoflagellate groups in Chinese coastal seas are emended. It has been more than 200 years since the discovery of dinoflagellates, but following intensive study, increasing confusion and controversy in dinofalgellate taxonomy has become apparent. In this paper, a broad overview of the history of dinoflagellate taxonomy is presented, highlighting some major developments. Differences exist between the international and Chinese taxonomy system. When comparing the internationally accepted system (based on the information provided by the website algaeBASE with that used in China (based on the monograph Checklist of Marine Biota of China Seas, we found that they were very similar at the order level, but some differences existed at the family and genus levels. According to morphological and some physiological characteristics, a more reasonable taxonomy is presented. The main emendations are: (1 the three genera named Karenia, Karlodinium and Takayama, are separated from the family Gymnodiniaceae and classified as a new family Kareniaceae; (2 most species in the genus Ceratium are placed in Neoceratium; (3 the genus Alexandrium is separated from family Goniodomataceae, and placed in the family Gonyaulacaceae; (4 the family Heteraulacaceae is replaced by the family Goniodomataceae; and (5 two new orders, Oxyrrhinales and Pyrocystales, are established.

  2. Peruvian Children's Folk Taxonomy of Marine Animals

    Directory of Open Access Journals (Sweden)

    José Pizarro-Neyra

    2011-09-01

    Full Text Available Free listing was used to obtain names of marine animals from 234 Peruvian children with families involved in fishing activities. They live in the fishing towns of Vila-vila, Morro Sama and Ilo, located in Southern Peru. Fishes, birds and the category “other marine animal” were used for the classification of marine fauna by children. The group of 6-8 year-olds shows a mean frequency of 19.7 names per child, while the group of 9-11 year-olds shows a mean frequency of 25.7 names per child. Folk species of fish is the most frequently recorded category with a predominance of coastal species and with a mean frequency of 7.56 and 11.51 names per child for the groups of 6-8 year-olds and 9-11 year-olds, respectively. In contrast, bird names are less frequently recorded in the lists. Some bird and mollusc names have lexical under-differentiation at a generic level and apparently have lower cultural significance than fish. Children’s classification in different levels of organization is evidence of a folk biology. The folk taxonomy of marine animals could be influenced by the lesser cognitive development of younger children and the ecological salience of some species. Some species with coastal habitat exhibit a high dominance index of folk names. Cultural transmission of knowledge about birds could be failing due to the recent occupancy of the study sites by migratory people and the sexual division of work in the children’s families.

  3. Taxonomy for Modeling Demand Response Resources

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael; Dunn, Laura; Piette, Mary, A

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed a modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.

  4. Geomorphic mapping and taxonomy of fluvial landforms

    Science.gov (United States)

    Wheaton, Joseph M.; Fryirs, Kirstie A.; Brierley, Gary; Bangen, Sara G.; Bouwes, Nicolaas; O'Brien, Gary

    2015-11-01

    Fluvial geomorphologists use close to a 100 different terms to describe the landforms that make up riverscapes. We identified 68 of these existing terms that describe truly distinctive landforms, in which form is maintained under characteristic conditions and fluvial processes. Clear topographic definitions for these landforms to consistently identify and map them are lacking. With the explosion of continuous, high-resolution topography and digital elevation models, we have plenty of new basemaps in which these landforms are clearly visible, but very few examples of manual or automated classification of fluvial landforms. Fluvial landforms are the building blocks of a river and are variously referred to as geomorphic units, morphological units, habitat units, and channel units. We present a tiered framework for describing geomorphic units, with tier 1 differentiating units on the basis of their stage, tier 2 separating shape (e.g., concave, convex, or planar), tier 3 using particular key attributes to narrow in on the likely specific geomorphic unit type, and tier 4 differentiating those types on the basis of vegetative or roughness modifiers. Information on the assemblage and configuration of geomorphic units can be used to inform process-based interpretations of the range of river behavior. The accuracy and transferability of such analyses is fundamentally tied to the taxonomy we assign to these discrete building blocks. In this paper we clarify the terminology and definitions relating to the identification and delineation of geomorphic units, margins, and structural elements. We establish a set of procedures that can be used to manually map and identify these features. The proposed framework provides a rigorous and repeatable approach to identification of topographically defined features of riverscapes. We demonstrate the application of these systematic yet flexible procedures with a series of maps from rivers in differing valley settings.

  5. Microbial taxonomy in the post-genomic era: Rebuilding from scratch?

    NARCIS (Netherlands)

    Thompson, C.C.; Amaral, G.R.; Campeao, M.; Edwards, R.A.; Polz, M.F.; Dutilh, B.E.; Ussery, D.W.; Sawabe, T.; Swings, J.; Thompson, F.L.

    2015-01-01

    Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. Its cornerstone, the prokaryote species has been re-evaluated twice. It is time to revisit polyphasic taxonomy, its principles, and

  6. Critical Examination of a Revision of Bloom's Taxonomy for the Development of Art Education Curriculum

    OpenAIRE

    Nakamura, Kazuyo; Yamato, Hiroko; Nakashima, Atsuo; Kikkawa, Kazuo

    2011-01-01

    This paper is aimed at developing Art Education Taxonomy Table through critically examining a revision of Bloom's Taxonomy of Educational Objectives contrived by Anderson and Krathwohl. First, the overview of the history of Bloom's Taxonomy is provided in relation to art education. Second, the influence of Bloom's theory of educational evaluation and Taxonomy on the classroom practice of art education in Japan is discussed. Third, aiming at using for the development of art education curriculu...

  7. Unified Taxonomy for Reference Ontology of Shape Features in Product Model

    OpenAIRE

    Gupta, Ravi Kumar; Gurumoorthy, B

    2013-01-01

    This paper presents a unified taxonomy of shape features. Such taxonomy is required to construct ontologies to address heterogeneity in product/shape models. Literature provides separate classifications for volumetric, deformation and free-form surface features. The unified taxonomy proposed allows classification, representation and extraction of shape features in a product model. The novelty of the taxonomy is that the classification is based purely on shape entities and therefore it is poss...

  8. Query processing in distributed, taxonomy-based information sources

    CERN Document Server

    Meghini, Carlo; Coltella, Veronica; Analyti, Anastasia

    2011-01-01

    We address the problem of answering queries over a distributed information system, storing objects indexed by terms organized in a taxonomy. The taxonomy consists of subsumption relationships between negation-free DNF formulas on terms and negation-free conjunctions of terms. In the first part of the paper, we consider the centralized case, deriving a hypergraph-based algorithm that is efficient in data complexity. In the second part of the paper, we consider the distributed case, presenting alternative ways implementing the centralized algorithm. These ways descend from two basic criteria: direct vs. query re-writing evaluation, and centralized vs. distributed data or taxonomy allocation. Combinations of these criteria allow to cover a wide spectrum of architectures, ranging from client-server to peer-to-peer. We evaluate the performance of the various architectures by simulation on a network with O(10^4) nodes, and derive final results. An extensive review of the relevant literature is finally included.

  9. Update History of This Database - Taxonomy Icon | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us Taxonomy Icon Update... History of This Database Date Update contents 2013/06/19 Taxonomy Icon English archive ...by Artio About This Database Database Description Download License Update History... of This Database Site Policy | Contact Us Update History of This Database - Taxonomy Icon | LSDB Archive ...

  10. Simbiontes associados com Anomalocardia brasiliana (Gmelin (Mollusca, Bivalvia, Veneridae na Ilha de Santa Catarina e região continental adjacente, Santa Catarina, Brasil Symbionts associated with Anomalocardia brasiliana (Gmelin (Mollusca, Bivalvia, Veneridae on Santa Catarina Island and adjacent continental region, Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Guisla Boehs

    2004-12-01

    Full Text Available Berbigões, Anomalocardia brasiliana (Gmelin, 1791, de bancos naturais da Ilha de Santa Catarina e região continental adjacente (SC, Brasil, foram examinados quanto a presença de simbiontes. Holothuriophilus tomentosus (Ortmann, 1894 (Brachyura, Sphenia antillensis Dall & Simpson, 1901 (Bivalvia e poliquetos espionídeos (Polychaeta foram observados macroscopicamente. A análise das secções histológicas evidenciou esporocistos de trematódeos (Digenea, um metacestóide (Cestoda e dois ciliados (Ciliophora.Pointed venus, Anomalocardia brasiliana (Gmelin, 1791, from natural beds of Santa Catarina Island and adjacent continental region (SE Brazil were examined in respect of symbiotic associations. Holothuriophilus tomentosus (Ortmann, 1894 (Brachyura, Sphenia antillensis Dall & Simpson, 1901 (Bivalvia, and polychaete worms (Polychaeta were found by macroscopic diagnosis. By analysis of histological sections, it was noted trematode sporocysts (Digenea, a metacestode (Cestoda and two ciliates (Ciliophora.

  11. License - Taxonomy Icon | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Taxonomy Icon License License to Use This Database Last updated : 2013/3/21 You may use this database in com...s regarding the use of this database and the requirements you must follow in using this database.... The license for this database is specified in the Creative Commons Attribution 2.1 Japan . ...If you use data from this database, please be sure attribute this database as follows: Taxonomy Icon © Datab... of the Creative Commons Attribution 2.1 Japan is found here . With regard to this database, you are license

  12. Taxonomy, Ontology and Semantics at Johnson Space Center

    Science.gov (United States)

    Berndt, Sarah Ann

    2011-01-01

    At NASA Johnson Space Center (JSC), the Chief Knowledge Officer has been developing the JSC Taxonomy to capitalize on the accomplishments of yesterday while maintaining the flexibility needed for the evolving information environment of today. A clear vision and scope for the semantic system is integral to its success. The vision for the JSC Taxonomy is to connect information stovepipes to present a unified view for information and knowledge across the Center, across organizations, and across decades. Semantic search at JSC means seemless integration of disparate information sets into a single interface. Ever increasing use, interest, and organizational participation mark successful integration and provide the framework for future application.

  13. A taxonomy for differentiating entrepreneurship education across disciplines

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Blenker, Per

    of courses and curricula. At the core of this framework is a taxonomy for discipline-specific entrepreneurship education content and learning goals—different educations have varying inherent strengths and weakness vis-à-vis entrepreneurship, and thus have different pathways and barriers to develop...... entrepreneurial graduates (Blenker et al., 2008; Johnson et al., 2006; Neck and Greene, 2011). The objective of this paper is to establish a taxonomy whereby the differences between university disciplines are identified and organized from an entrepreneurial perspective (Jones and Matlay, 2011; Jones et al., 2012...

  14. A Practitioner's Perspective on Taxonomy, Ontology and Findability

    Science.gov (United States)

    Berndt, Sarah

    2011-01-01

    This slide presentation reviews the presenters perspective on developing a taxonomy for JSC to capitalize on the accomplishments of yesterday, while maintaining the flexibility needed for the evolving information of today. A clear vision and scope for the semantic system is integral to its success. The vision for the JSC Taxonomy is to connect information stovepipes to present a unified view for information and knowledge across the Center, across organizations, and across decades. Semantic search at JSC means seamless integration of disparate information sets into a single interface. Ever increasing use, interest, and organizational participation mark successful integration and provide the framework for future application.

  15. A decision surface-based taxonomy of detection statistics

    Science.gov (United States)

    Bouffard, François

    2012-09-01

    Current and past literature on the topic of detection statistics - in particular those used in hyperspectral target detection - can be intimidating for newcomers, especially given the huge number of detection tests described in the literature. Detection tests for hyperspectral measurements, such as those generated by dispersive or Fourier transform spectrometers used in remote sensing of atmospheric contaminants, are of paramount importance if any level of analysis automation is to be achieved. The detection statistics used in hyperspectral target detection are generally borrowed and adapted from other fields such as radar signal processing or acoustics. Consequently, although remarkable efforts have been made to clarify and categorize the vast number of available detection tests, understanding their differences, similarities, limits and other intricacies is still an exacting journey. Reasons for this state of affairs include heterogeneous nomenclature and mathematical notation, probably due to the multiple origins of hyperspectral target detection formalisms. Attempts at sorting out detection statistics using ambiguously defined properties may also cause more harm than good. Ultimately, a detection statistic is entirely characterized by its decision boundary. Thus, we propose to catalogue detection statistics according to the shape of their decision surfaces, which greatly simplifies this taxonomy exercise. We make a distinction between the topology resulting from the mathematical formulation of the statistic and mere parameters that adjust the boundary's precise shape, position and orientation. Using this simple approach, similarities between various common detection statistics are found, limit cases are reduced to simpler statistics, and a general understanding of the available detection tests and their properties becomes much easier to achieve.

  16. Jaguar taxonomy and genetic diversity for southern Arizona, United States, and Sonora, Mexico

    Science.gov (United States)

    Culver, Melanie; Hein, Alexander Ochoa

    2016-06-28

    Executive SummaryThe jaguar is the largest Neotropical felid and the only extant representative of the genus Panthera in the Americas. In recorded history, the jaguars range has extended from the Southern United States, throughout Mexico, to Central and South America, and they occupy a wide variety of habitats. A previous jaguar genetic study found high historical levels of gene flow among jaguar populations over broad areas but did not include any samples of jaguar from the States of Arizona, United States, or Sonora, Mexico. Arizona and Sonora have been part of the historical distribution of jaguars; however, poaching and habitat fragmentation have limited their distribution until they were declared extinct in the United States and endangered in Sonora. Therefore, a need was apparent to have this northernmost (Arizona/Sonora) jaguar population included in an overall jaguar molecular taxonomy and genetic diversity analyses. In this study, we used molecular genetic markers to examine diversity and taxonomy for jaguars in the Northwestern Jaguar Recovery Unit (NJRU; Sonora, Sinaloa, and Jalisco, Mexico; and southern Arizona and New Mexico, United States) relative to jaguars in other parts of the jaguar range (Central and South America). The objectives of this study were to:Collect opportunistic jaguar samples (hide, blood, hair, saliva, and scat), from historical and current individuals, that originated in NJRU areas of Arizona, New Mexico, and Sonora;Use these samples to assess molecular taxonomy of NJRU jaguars compared to data from a previous study of jaguars rangewide; andDevelop suggestions for conservation of NJRU jaguars based on the results.

  17. Jaguar taxonomy and genetic diversity for southern Arizona, United States, and Sonora, Mexico

    Science.gov (United States)

    Culver, Melanie; Hein, Alexander Ochoa

    2016-01-01

    Executive SummaryThe jaguar is the largest Neotropical felid and the only extant representative of the genus Panthera in the Americas. In recorded history, the jaguars range has extended from the Southern United States, throughout Mexico, to Central and South America, and they occupy a wide variety of habitats. A previous jaguar genetic study found high historical levels of gene flow among jaguar populations over broad areas but did not include any samples of jaguar from the States of Arizona, United States, or Sonora, Mexico. Arizona and Sonora have been part of the historical distribution of jaguars; however, poaching and habitat fragmentation have limited their distribution until they were declared extinct in the United States and endangered in Sonora. Therefore, a need was apparent to have this northernmost (Arizona/Sonora) jaguar population included in an overall jaguar molecular taxonomy and genetic diversity analyses. In this study, we used molecular genetic markers to examine diversity and taxonomy for jaguars in the Northwestern Jaguar Recovery Unit (NJRU; Sonora, Sinaloa, and Jalisco, Mexico; and southern Arizona and New Mexico, United States) relative to jaguars in other parts of the jaguar range (Central and South America). The objectives of this study were to:Collect opportunistic jaguar samples (hide, blood, hair, saliva, and scat), from historical and current individuals, that originated in NJRU areas of Arizona, New Mexico, and Sonora;Use these samples to assess molecular taxonomy of NJRU jaguars compared to data from a previous study of jaguars rangewide; andDevelop suggestions for conservation of NJRU jaguars based on the results.

  18. Application of Modern Experimental Technique to Solve Morphological Complexity in Plants Taxonomy

    Directory of Open Access Journals (Sweden)

    SURANTO

    2000-07-01

    Full Text Available Modern taxonomy has two approaches, i.e. classical and experimental taxonomy. Classical taxonomy uses morphological characters, while experimental taxonomy uses broader methods including chemistry, physics and mathematics, in the form of laboratory data that are revealed together with the progress of optical technique (microscope, chemistry methods (chromatography, electrophoresis, etc. Modern taxonomy tends to use series of interrelated data. More data used would result in more validity and give better clarification of taxonomic status. A lot of modern taxonomic data such as palynology, cytotaxonomy (cytology, chemical constituent (chemotaxonomy, isozyme and DNA sequencing were used recently.

  19. Was Bloom's Taxonomy Pointed in the Wrong Direction?

    Science.gov (United States)

    Wineburg, Sam; Schneider, Jack

    2010-01-01

    Bloom's Taxonomy usually is depicted as a pyramid with knowledge at the lowest level and evaluation at the top. For the history classroom, however, that arrangement might be upside down. In history, evaluation is often necessary before new knowledge can be learned. (Contains 1 figure.)

  20. Taxonomy for complexity theory in the context of maternity care

    NARCIS (Netherlands)

    Nieuwenhuize, M.; Downe, S.; Gottfreðsdóttir, H.; Rijnders, M.; Preez, A. du; Vaz Rebelo, P.

    2015-01-01

    Background The linear focus of ‘normal science’ is unable toadequately take account of the complex interactions that direct health care systems. There is a turn towards complexity theory as a more appropriate framework for understanding system behaviour. However, a comprehensive taxonomy for complex

  1. Taxonomies of Educational Objectives and Theories of Classification.

    Science.gov (United States)

    Travers, Robert M. W.

    1980-01-01

    Classification is the taxonomic science in which a system of categories is established and in which the categories have some logical structure. Scientific classifications have included those by Aristotle, Linnaeus, and Lavoisier. Educational taxonomies include those developed by Bloom, Herbart, Dewey, and Piaget. The problems of taxonomy…

  2. The construction of a joint taxonomy of traits and situations

    NARCIS (Netherlands)

    van den Berge, Maarten; De Raad, B.

    2001-01-01

    This study implements the first steps to be taken in the Construction of a taxonomy of situations front a trait psychological perspective. Taking the AB(5)C model of personality characteristics (De Raad et al., 1992) as a point of departure, a collection of situations that is linked to the personali

  3. Pollen morphology of the Euphorbiaceae with special reference to taxonomy

    NARCIS (Netherlands)

    Punt, W.

    1962-01-01

    In the present study pollen morphology of the Euphorbeaceae is treated as an additional character in taxonomy. Besides the greater part of the genera occurring in the system of PAX and K. HOFFMANN (1931), most of the genera published after 1931 are studied. The pollen grains have been described with

  4. The Unfortunate Consequences of Bloom's Taxonomy

    Science.gov (United States)

    Case, Roland

    2013-01-01

    The sequenced levels of thinking articulated in Bloom's original taxonomy (or in the multitude of subsequent variations) is the most widely known list in education. In addition to enduring popularity, it is arguably one of the most destructive theories in education. In this article, the author explains what makes it so damaging and how…

  5. Taxonomies of situations from a trait psychological perspective. A review

    NARCIS (Netherlands)

    Ten Berge, MA; De Raad, B

    1999-01-01

    In this article we review studies of situations and situation taxonomies from the perspective of trait psychology. Objections to trait psychology are discussed and several refutations are recapitulated The relation between traits and situations is analysed, as well as the affinity that both concepts

  6. Physics assessment and the development of a taxonomy

    OpenAIRE

    Buick, James

    2011-01-01

    Aspects of assessment in physics are considered with the aim of designing assessments that will encourage a deep approach to student learning and will ultimately lead to higher levels of achievement. A range of physics questions are considered and categorized by the level of knowledge and understanding which is require for a successful answer. Taxonomy is then proposed to aid classification.

  7. Computer-assisted tree taxonomy by automated image recognition

    NARCIS (Netherlands)

    Pauwels, E.J.; Zeeuw, P.M.de; Ranguelova, E.B.

    2009-01-01

    We present an algorithm that performs image-based queries within the domain of tree taxonomy. As such, it serves as an example relevant to many other potential applications within the field of biodiversity and photo-identification. Unsupervised matching results are produced through a chain of comput

  8. Merlin C. Wittrock and the Revision of Bloom's Taxonomy

    Science.gov (United States)

    Krathwohl, David R.; Anderson, Lorin W.

    2010-01-01

    Merl Wittrock, a cognitive psychologist who had proposed a generative model of learning, was an essential member of the group that over a period of 5 years revised the "Taxonomy of Educational Objectives," originally published in 1956. This article describes the development of that 2001 revision (Anderson and Krathwohl, Editors) and Merl's…

  9. Applying a Knowledge Management Taxonomy to Secondary Schools

    Science.gov (United States)

    Thambi, Melinda; O'Toole, Paddy

    2012-01-01

    The purpose of this article is to examine the relevance of a corporate-based taxonomy of knowledge management to secondary schooling. Do the principles of knowledge management from the corporate world translate to the world of education; specifically, secondary schooling? This article examines categories of knowledge management articulated in…

  10. Taxonomy of Lecture Note-Taking Skills and Subskills

    Science.gov (United States)

    Al-Musalli, Alaa M.

    2015-01-01

    Note taking (NT) in lectures is as active a skill as listening, which stimulates it, and as challenging as writing, which is the end product. Literature on lecture NT misses an integration of the processes involved in listening with those in NT. In this article, a taxonomy is proposed of lecture NT skills and subskills based on a similar list…

  11. An alternative to soil taxonomy for describing key soil characteristics

    Science.gov (United States)

    Duniway, Michael C.; Miller, Mark E.; Brown, Joel R.; Toevs, Gordon

    2013-01-01

    We are pleased to see the letter by Schimel and Chadwick (Front Ecol Environ 2013; 11[8]: 405–06), highlighting the importance of soil characterization in ecological and biogeochemical research and explaining the value of soil taxonomy, and we agree with the authors that reporting soil

  12. A Taxonomy of Virtual Worlds Usage in Education

    Science.gov (United States)

    Duncan, Ishbel; Miller, Alan; Jiang, Shangyi

    2012-01-01

    Virtual worlds are an important tool in modern education practices as well as providing socialisation, entertainment and a laboratory for collaborative work. This paper focuses on the uses of virtual worlds for education and synthesises over 100 published academic papers, reports and educational websites from around the world. A taxonomy is then…

  13. Fail Better: Toward a Taxonomy of E-Learning Error

    Science.gov (United States)

    Priem, Jason

    2010-01-01

    The study of student error, important across many fields of educational research, has begun to attract interest in the field of e-learning, particularly in relation to usability. However, it remains unclear when errors should be avoided (as usability failures) or embraced (as learning opportunities). Many domains have benefited from taxonomies of…

  14. Development of a Taxonomy of Keywords for Engineering Education Research

    Science.gov (United States)

    Finelli, Cynthia J.; Borrego, Maura; Rasoulifar, Golnoosh

    2016-01-01

    The diversity of engineering education research provides an opportunity for cross-fertilisation of ideas and creativity, but it also can result in fragmentation of the field and duplication of effort. One solution is to establish a standardised taxonomy of engineering education terms to map the field and communicate and connect research…

  15. Conception of Learning Outcomes in the Bloom's Taxonomy Affective Domain

    Science.gov (United States)

    Savickiene, Izabela

    2010-01-01

    The article raises a problematic issue regarding an insufficient base of the conception of learning outcomes in the Bloom's taxonomy affective domain. The search for solutions introduces the conception of teaching and learning in the affective domain as well as presents validity criteria of learning outcomes in the affective domain. The…

  16. Developing Learning Objectives for Accounting Ethics Using Bloom's Taxonomy

    Science.gov (United States)

    Kidwell, Linda A.; Fisher, Dann G.; Braun, Robert L.; Swanson, Diane L.

    2013-01-01

    The purpose of our article is to offer a set of core knowledge learning objectives for accounting ethics education. Using Bloom's taxonomy of educational objectives, we develop learning objectives in six content areas: codes of ethical conduct, corporate governance, the accounting profession, moral development, classical ethics theories, and…

  17. Using Bloom's Taxonomy to Teach Students about Plagiarism

    Science.gov (United States)

    Vosen, Melissa A.

    2008-01-01

    Melissa A. Vosen outlines a unit she has designed to help students comprehend the often unclear boundaries and issues surrounding plagiarism. Using Bloom's taxonomy of the cognitive domain, students complete increasingly complex tasks, learning to construct a works cited page and assess scholarly opinions. They also research the consequences of…

  18. Sine systemate chaos? A versatile tool for earthworm taxonomy: non-destructive imaging of freshly fixed and museum specimens using micro-computed tomography.

    Science.gov (United States)

    Fernández, Rosa; Kvist, Sebastian; Lenihan, Jennifer; Giribet, Gonzalo; Ziegler, Alexander

    2014-01-01

    In spite of the high relevance of lumbricid earthworms ('Oligochaeta': Lumbricidae) for soil structure and functioning, the taxonomy of this group of terrestrial invertebrates remains in a quasi-chaotic state. Earthworm taxonomy traditionally relies on the interpretation of external and internal morphological characters, but the acquisition of these data is often hampered by tedious dissections or restricted access to valuable and rare museum specimens. The present state of affairs, in conjunction with the difficulty of establishing primary homologies for multiple morphological features, has led to an almost unrivaled instability in the taxonomy and systematics of certain earthworm groups, including Lumbricidae. As a potential remedy, we apply for the first time a non-destructive imaging technique to lumbricids and explore the future application of this approach to earthworm taxonomy. High-resolution micro-computed tomography (μCT) scanning of freshly fixed and museum specimens was carried out using two cosmopolitan species, Aporrectodea caliginosa and A. trapezoides. By combining two-dimensional and three-dimensional dataset visualization techniques, we demonstrate that the morphological features commonly used in earthworm taxonomy can now be analyzed without the need for dissection, whether freshly fixed or museum specimens collected more than 60 years ago are studied. Our analyses show that μCT in combination with soft tissue staining can be successfully applied to lumbricid earthworms. An extension of the approach to other families is poised to strengthen earthworm taxonomy by providing a versatile tool to resolve the taxonomic chaos currently present in this ecologically important, but taxonomically neglected group of terrestrial invertebrates.

  19. Gastropoda-Bivalvia Fauna And Neogene-Quaternary Stratigraphy of the Southwest of Dardanelles (Çanakkale-NWAnatolia)

    Science.gov (United States)

    Kapan, Sevinç; Kabasakal, Sinem

    2016-04-01

    Gastropoda-Bivalvia Fauna And Neogene-Quaternary Stratigraphy of the Southwest of Dardanelles (Çanakkale-NWAnatolia) Sevinç KAPAN, Sinem KABASAKAL, Çanakkale Onsekiz Mart University, Engineering Faculty, Geological Engineering Department sevinckapan_yesilyurt@hotmail.com In this study, paleontology and stratigraphy of Neogene and Quaternary units around south of the Dardanelles have been examined using Gastropoda and Bivalvia fauna. In the investigation area, the base of the sediments that belongs to Neogene, consist of the volcanics which are formed with basalts, andesites and tuff. Neogene begins unconformity with basal conglomerate which are formed with basalt and tuff gravels. The measurable thickness of the Neogene sediments is approximately 200meters in total. First fossiliferius level which consist of Lymnocardium (Euxinicardium) nobile Sabba has showed similarities with the Pontian (Late Miocene) fauna of the Eastern Paratethys. The existence of Melanopsis and Psidium species indicate that the basin has been brackish water feeding by fresh water in the Early Pliocene. Theodoxus fluviatilis (Linne), Theodoxus (Calvertia) aff. imbricata Brusina, Theodoxus (Calvertia) licherdopoli scriptus (Stefanescu), Viviparus mammatus (Stefanescu), Valvata (Valavata) sulekiana Brusina, Valvata (Cincinna) crusitensis Fontannes, Hydrobia cf grandis Cobalcescu, Hydrobia ventrosa Monfort, Melanopsis (Melanopsis) cf. bergeroni Stefanescu, , Melanopsis (Melanopsis) sandbergeri rumana Tournouer, Melanopsis (Canthidomus) hybostoma anili Taner, Melanopsis (Canthidomus) hybostoma amaradica Fontannes, Melanopsis (Canthidomus) lanceolata Neumayr, Amphimelania fossariformis (Tournouer), Melanoides tuberculata monolithica (Bukowski), Radix (Radix) peregra (Müller), Planorbarius thiollierei (Michaud), Potamida (Potamida) craiovensis craiovensis (Tournouer), Potamida (Potamida) berbestiensis (Fontannes), Unio pristinus davilai Porumbaru, Unio subexquisitus Jatzko, Anadonta zmaji

  20. A philosophical taxonomy of ethically significant moral distress.

    Science.gov (United States)

    Thomas, Tessy A; McCullough, Laurence B

    2015-02-01

    Moral distress is one of the core topics of clinical ethics. Although there is a large and growing empirical literature on the psychological aspects of moral distress, scholars, and empirical investigators of moral distress have recently called for greater conceptual clarity. To meet this recognized need, we provide a philosophical taxonomy of the categories of what we call ethically significant moral distress: the judgment that one is not able, to differing degrees, to act on one's moral knowledge about what one ought to do. We begin by unpacking the philosophical components of Andrew Jameton's original formulation from his landmark 1984 work and identify two key respects in which that formulation remains unclear: the origins of moral knowledge and impediments to acting on that moral knowledge. We then selectively review subsequent literature that shows that there is more than one concept of moral distress and that explores the origin of the values implicated in moral distress and impediments to acting on those values. This review sets the stage for identifying the elements of a philosophical taxonomy of ethically significant moral distress. The taxonomy uses these elements to create six categories of ethically significant moral distress: challenges to, threats to, and violations of professional integrity; and challenges to, threats to, and violations of individual integrity. We close with suggestions about how the proposed philosophical taxonomy of ethically significant moral distress sheds light on the concepts of moral residue and crescendo effect of moral distress and how the proposed taxonomy might usefully guide prevention of and future qualitative and quantitative empirical research on ethically significant moral distress.

  1. Taxonomy of Means and Ends in Aquaculture Production—Part 2: The Technical Solutions of Controlling Solids, Dissolved Gasses and pH

    Directory of Open Access Journals (Sweden)

    Bjorgvin Vilbergsson

    2016-09-01

    Full Text Available In engineering design, knowing the relationship between the means (technique and the end (desired function or outcome is essential. The means in Aquaculture are technical solutions like airlifts that are used to achive desired functionality (an end like controlling dissolved gasses. In previous work, the authors identified possible functions by viewing aquaculture production systems as transformation processes in which inputs are transformed by treatment techniques (means and produce outputs (ends. The current work creates an overview of technical solutions of treatment functions for both design and research purposes. A comprehensive literature review of all areas of technical solutions is identified and categorized into a visual taxonomy of the treatment functions for controlling solids, controlling dissolved gasses and controlling pH alkalinity and hardness. This article is the second in a sequence of four and partly presents the treatments functions in the taxonomy. The other articles in this series present complementary aspects of this research: Part 1, A transformational view on aquaculture and functions divided into input, treatment and output functions; Part 2, The current taxonomy paper; Part 3, The second part of the taxonomy; and Part 4, Mapping of the means (techniques for multiple treatment functions.

  2. Crustaceans associated with Cnidaria, Bivalvia, Echinoidea and Pisces at São Tomé and Príncipe islands.

    Directory of Open Access Journals (Sweden)

    Wirtz, P.

    2008-01-01

    Full Text Available Symbiotic crustaceans were searched for at sea anemones (Actiniaria, encrusting anemones (Zoantharia, horny coral (Gorgonaria, black coral (Antipatharia, bivalves (Bivalvia, and sea urchins (Echinoidea at São Tomé and Príncipe Islands (Gulf of Guinea, eastern central Atlantic. Sixteen species of crustaceans were found in association with these invertebrate hosts; eleven of them were new records for the area and two species, belonging to the genera Hippolyte and Heteromysis, were new for science. The thalassinid Axiopsis serratifrons was occasionally associated with an undescribed species of gobiid fish.

  3. Molecular classification based on apomorphic amino acids (Arthropoda, Hexapoda): Integrative taxonomy in the era of phylogenomics.

    Science.gov (United States)

    Wu, Hao-Yang; Wang, Yan-Hui; Xie, Qiang; Ke, Yun-Ling; Bu, Wen-Jun

    2016-06-17

    With the great development of sequencing technologies and systematic methods, our understanding of evolutionary relationships at deeper levels within the tree of life has greatly improved over the last decade. However, the current taxonomic methodology is insufficient to describe the growing levels of diversity in both a standardised and general way due to the limitations of using only morphological traits to describe clades. Herein, we propose the idea of a molecular classification based on hierarchical and discrete amino acid characters. Clades are classified based on the results of phylogenetic analyses and described using amino acids with group specificity in phylograms. Practices based on the recently published phylogenomic datasets of insects together with 15 de novo sequenced transcriptomes in this study demonstrate that such a methodology can accommodate various higher ranks of taxonomy. Such an approach has the advantage of describing organisms in a standard and discrete way within a phylogenetic framework, thereby facilitating the recognition of clades from the view of the whole lineage, as indicated by PhyloCode. By combining identification keys and phylogenies, the molecular classification based on hierarchical and discrete characters may greatly boost the progress of integrative taxonomy.

  4. Shell microstructures of mussels (Bivalvia: Mytilidae: Bathymodiolinae) from deep-sea chemosynthetic sites: Do they have a phylogenetic significance?

    Science.gov (United States)

    Génio, Luciana; Kiel, Steffen; Cunha, Marina R.; Grahame, John; Little, Crispin T. S.

    2012-06-01

    The increasing number of bathymodiolin mussel species being described from deep-sea chemosynthetic environments worldwide has raised many questions about their evolutionary history, and their systematics is still being debated. Mussels are also abundant in fossil chemosynthetic assemblages, but their identification is problematic due to conservative shell morphology within the group and preservation issues. Potential resolution of bathymodiolin taxonomy requires new character sets, including morphological features that are likely to be preserved in fossil specimens. To investigate the phylogenetic significance of shell microstructural features, we studied the shell microstructure and mineralogy of 10 mussel species from hydrothermal vents and hydrocarbon seeps, and 15 taxa from sunken wood and bone habitats, and compared these observations with current molecular phylogenies of the sub-family Bathymodiolinae. In addition, we analyzed the shell microstructure in Adipicola chickubetsuensis from fossil whale carcasses, and in Bathymodiolus cf. willapaensis and “Modiola exbrocchii” from fossil cold seeps, and discussed the usefulness of these characters for identification of fossil chemosymbiotic mussels. Microstructural shell features are quite uniform among vent, seep, wood and bone mussel taxa, and therefore established bathymodiolin lineages cannot be discriminated, nor can the relations between fossil and modern species be determined with these characters. Nevertheless, the uniformity of shell microstructures observed among chemosymbiotic mussels and the similarity with its closest relative, Modiolus modiolus, does not challenge the monophyly of the group. Slight differences are found between the large vent and seep mussels and the small mytilids commonly found in habitats enriched in organic matter. Together with previous data, these results indicate that a repeated pattern of paedomorphism characterizes the evolutionary history of deep-sea mussels, and the

  5. Developing "Personality" Taxonomies: Metatheoretical and Methodological Rationales Underlying Selection Approaches, Methods of Data Generation and Reduction Principles.

    Science.gov (United States)

    Uher, Jana

    2015-12-01

    Taxonomic "personality" models are widely used in research and applied fields. This article applies the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) to scrutinise the three methodological steps that are required for developing comprehensive "personality" taxonomies: 1) the approaches used to select the phenomena and events to be studied, 2) the methods used to generate data about the selected phenomena and events and 3) the reduction principles used to extract the "most important" individual-specific variations for constructing "personality" taxonomies. Analyses of some currently popular taxonomies reveal frequent mismatches between the researchers' explicit and implicit metatheories about "personality" and the abilities of previous methodologies to capture the particular kinds of phenomena toward which they are targeted. Serious deficiencies that preclude scientific quantifications are identified in standardised questionnaires, psychology's established standard method of investigation. These mismatches and deficiencies derive from the lack of an explicit formulation and critical reflection on the philosophical and metatheoretical assumptions being made by scientists and from the established practice of radically matching the methodological tools to researchers' preconceived ideas and to pre-existing statistical theories rather than to the particular phenomena and individuals under study. These findings raise serious doubts about the ability of previous taxonomies to appropriately and comprehensively reflect the phenomena towards which they are targeted and the structures of individual-specificity occurring in them. The article elaborates and illustrates with empirical examples methodological principles that allow researchers to appropriately meet the metatheoretical requirements and that are suitable for comprehensively exploring individuals' "personality". PMID:25249469

  6. Evaluating the Cisco Networking Academy Program's Instructional Model against Bloom's Taxonomy for the purpose of Information Security Education for Organizational End-users

    OpenAIRE

    Niekerk, J. F. Van; Thomson, K.

    2010-01-01

    Organizational end-user information security end-user education is becoming increasingly more important in the current information society. Without the active co-operation of knowledgeable employees, organizations cannot effectively protect their valuable information resources. Most current information security educational programs lack a theoretical basis. This paper briefly examines the use of Bloom's learning taxonomy to help address this lack of theoretical basis. The paper further invest...

  7. Comparative studies on the morphometry and physiology of European populations of the lagoon specialist Cerastoderma glaucum (Bivalvia

    Directory of Open Access Journals (Sweden)

    Katarzyna Tarnowska

    2009-09-01

    Full Text Available Seasonal changes in the morphometric and physiological parameters of the cockle Cerastoderma glaucum (Bivalvia from the Baltic Sea (GD, the North Sea (LV, and the Mediterranean Sea (BL were investigated. The cockles from GD were much smaller than those from other populations due to osmotic stress. The female to male ratios did not differ significantly from 1:1. The northern populations (GD, LV had a monocyclic reproductive pattern, whereas the southern population (BL seemed to reproduce throughout the year. Seasonal changes in the contents of biochemical components appeared to be correlated with changes in trophic conditions and the reproductive cycle. Protein content was the highest in spring for all the populations. The highest lipid contents and lowest carbohydrate contents were noted in GD and BL in spring, while no marked differences were noted among seasons in LV (probably because the data from both sexes were pooled. Respiration rates in GD were the highest among the populations, which could have been due to osmotic stress. High metabolic rates expressed by high respiration rates in GD and LV in spring and autumn could have resulted from gamete development (in spring and phytoplankton blooms (in spring and autumn.

  8. The effect of temperature and body size on filtration rates of Limnoperna fortunei (Bivalvia, Mytilidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Débora Pestana

    2009-02-01

    Full Text Available The golden mussel (Limnoperna fortunei, Mollusca: Bivalvia is an invasive species that has been causing considerable environmental and economic problems in South America. In the present study, filtration rates of L. fortunei were determined in the laboratory under different temperatures (10, 15, 20, 25, 28, and 30 ºC and two types of food (Algamac-2000® and the chlorophycean alga Scenedesmus sp.. There was a statistically significant relationship between time and filtration rates in the experiment using Scenedesmus sp., regardless of temperature. However, this pattern was absent in the experiment using Algamac, suggesting that the relationship between filtration rates and temperature might depend on the size of the filtered particles. In addition, there was no correlation between filtration rates and either shell size or condition index (the relationship between the weight and the length of a mussel. The filtration rate measured in the present study (724.94 ml/h was one of the highest rates recorded among invasive bivalves to date. Given that the colonies of the golden mussel could reach hundreds of thousands of individuals per square meter, such filtration levels could severely impact the freshwater environments in its introduced range.

  9. Molecular phylogenetic analysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia: Unionida) and the paraphyly of Australasian taxa.

    Science.gov (United States)

    Graf, Daniel L; Jones, Hugh; Geneva, Anthony J; Pfeiffer, John M; Klunzinger, Michael W

    2015-04-01

    The freshwater mussel family Hyriidae (Mollusca: Bivalvia: Unionida) has a disjunct trans-Pacific distribution in Australasia and South America. Previous phylogenetic analyses have estimated the evolutionary relationships of the family and the major infra-familial taxa (Velesunioninae and Hyriinae: Hyridellini in Australia; Hyriinae: Hyriini, Castaliini, and Rhipidodontini in South America), but taxon and character sampling have been too incomplete to support a predictive classification or allow testing of biogeographical hypotheses. We sampled 30 freshwater mussel individuals representing the aforementioned hyriid taxa, as well as outgroup species representing the five other freshwater mussel families and their marine sister group (order Trigoniida). Our ingroup included representatives of all Australian genera. Phylogenetic relationships were estimated from three gene fragments (nuclear 28S, COI and 16S mtDNA) using maximum parsimony, maximum likelihood, and Bayesian inference, and we applied a Bayesian relaxed clock model calibrated with fossil dates to estimate node ages. Our analyses found good support for monophyly of the Hyriidae and the subfamilies and tribes, as well as the paraphyly of the Australasian taxa (Velesunioninae, (Hyridellini, (Rhipidodontini, (Castaliini, Hyriini)))). The Hyriidae was recovered as sister to a clade comprised of all other Recent freshwater mussel families. Our molecular date estimation supported Cretaceous origins of the major hyriid clades, pre-dating the Tertiary isolation of South America from Antarctica/Australia. We hypothesize that early diversification of the Hyriidae was driven by terrestrial barriers on Gondwana rather than marine barriers following disintegration of the super-continent.

  10. Chinese pond mussel Sinanodonta woodiana (Lea, 1834 (Bivalvia: origin of the Polish population and GenBank data

    Directory of Open Access Journals (Sweden)

    Marianna Soroka

    2014-05-01

    Full Text Available DDNA sequences of the mitochondrial cox1 gene were analysed in 4 new local populations of Sinanodonta woodiana (Bivalvia in Poland, in the first reported Polish population, and in a population from Hungary. The gene sequences of Polish specimens were identical to those of specimens from Hungary, Italy and Ukraine, but different from those of Romanian specimens (data from GenBank. According to fish farm documentation, S. woodiana had spread in Poland by 2 routes: i direct import of fish infected by glochidia of S. woodiana from Hungary; and ii indirectly, by the major distributor of thermophilous fish in Poland, Gosławice Fish Farm, which started to import Hungarian fish in the 1960s. The genetic analysis and available documentation unambiguously confirm that Polish populations of S. woodiana derive from a source population in Hungary. In addition, we noticed doubtful identification of this species in GenBank data and further research is needed to resolve this problem. 

  11. Developing Integrated Taxonomies for a Tiered Information Architecture

    Science.gov (United States)

    Dutra, Jayne E.

    2006-01-01

    This viewgraph presentation reviews the concept of developing taxonomies for an information architecture. In order to assist people in accessing information required to access information and retrieval, including cross repository searching, a system of nested taxonomies is being developed. Another facet of this developmental project is collecting and documenting attributes about people, to allow for several uses: access management, i.e., who are you and what can you see?; targeted content delivery i.e., what content helps you get your work done?; w ork force planning i.e., what skill sets do you have that we can appl y to work?; and IT Services i.e., How can we provision you with the proper IT services?

  12. NASA Taxonomies for Searching Problem Reports and FMEAs

    Science.gov (United States)

    Malin, Jane T.; Throop, David R.

    2006-01-01

    Many types of hazard and risk analyses are used during the life cycle of complex systems, including Failure Modes and Effects Analysis (FMEA), Hazard Analysis, Fault Tree and Event Tree Analysis, Probabilistic Risk Assessment, Reliability Analysis and analysis of Problem Reporting and Corrective Action (PRACA) databases. The success of these methods depends on the availability of input data and the analysts knowledge. Standard nomenclature can increase the reusability of hazard, risk and problem data. When nomenclature in the source texts is not standard, taxonomies with mapping words (sets of rough synonyms) can be combined with semantic search to identify items and tag them with metadata based on a rich standard nomenclature. Semantic search uses word meanings in the context of parsed phrases to find matches. The NASA taxonomies provide the word meanings. Spacecraft taxonomies and ontologies (generalization hierarchies with attributes and relationships, based on terms meanings) are being developed for types of subsystems, functions, entities, hazards and failures. The ontologies are broad and general, covering hardware, software and human systems. Semantic search of Space Station texts was used to validate and extend the taxonomies. The taxonomies have also been used to extract system connectivity (interaction) models and functions from requirements text. Now the Reconciler semantic search tool and the taxonomies are being applied to improve search in the Space Shuttle PRACA database, to discover recurring patterns of failure. Usual methods of string search and keyword search fall short because the entries are terse and have numerous shortcuts (irregular abbreviations, nonstandard acronyms, cryptic codes) and modifier words cannot be used in sentence context to refine the search. The limited and fixed FMEA categories associated with the entries do not make the fine distinctions needed in the search. The approach assigns PRACA report titles to problem classes in

  13. Capturing the Meaning of Internet Search Queries by Taxonomy Mapping

    Science.gov (United States)

    Tikk, Domonkos; Kardkovács, Zsolt T.; Bánsághi, Zoltán

    Capturing the meaning of internet search queries can significantly improve the effectiveness of search retrieval. Users often have problem to find relevant answer to their queries, particularly, when the posted query is ambiguous. The orientation of the user can be greatly facilitated, if answers are grouped into topics of a fixed subject taxonomy. In this manner, the original problem can be transformed to the labelling of queries — and consequently, the answers — with the topic names. Thus the original problem is transformed into a classification set-up. This paper introduces our Ferrety algorithm that performs topic assignment, which also works when there is no directly available training data that describes the semantics of the subject taxonomy. The approach is presented via the example of ACM KDD Cup 2005 problem, where Ferrety was awarded for precision and creativity.

  14. A Taxonomy of Representation Strategies in Iconic Communication.

    Science.gov (United States)

    Nakamura, Carlos; Zeng-Treitler, Qing

    2012-08-01

    Predicting whether the intended audience will be able to recognize the meaning of an icon or pictograph is not an easy task. Many icon recognition studies have been conducted in the past. However, their findings cannot be generalized to other icons that were not included in the study, which, we argue, is their main limitation. In this paper, we propose a comprehensive taxonomy of icons that is intended to enable the generalization of the findings of recognition studies. To accomplish this, we analyzed a sample of more than eight hundred icons according to three axes: lexical category, semantic category, and representation strategy. Three basic representation strategies were identified: visual similarity; semantic association; and arbitrary convention. These representation strategies are in agreement with the strategies identified in previous taxonomies. However, a greater number of subcategories of these strategies were identified. Our results also indicate that the lexical and semantic attributes of a concept influence the choice of representation strategy.

  15. Botany, Taxonomy and Cytology of Crocus sativus series

    OpenAIRE

    Saxena, R. B.

    2010-01-01

    Saffron is produced from the dried styles of Crocus sativus L. (Iridaceae) which is unknown as wild plant, representing a sterile triploid. These belong to subgenus Crocus series Crocus sativus – series are closely related species; and are difficult to be separated taxonomically and have a complex cytology. Botany of C. sativus – series, taxonomy of their species and their infraspecific taxa are presented, and their distribution, ecology and phenology; full description and chromosome counts a...

  16. Botany, Taxonomy and Cytology of Crocus sativus series.

    Science.gov (United States)

    Saxena, R B

    2010-07-01

    Saffron is produced from the dried styles of Crocus sativus L. (Iridaceae) which is unknown as wild plant, representing a sterile triploid. These belong to subgenus Crocus series Crocus sativus - series are closely related species; and are difficult to be separated taxonomically and have a complex cytology. Botany of C. sativus - series, taxonomy of their species and their infraspecific taxa are presented, and their distribution, ecology and phenology; full description and chromosome counts are provided with key to their identification. PMID:22131743

  17. Competence Based Taxonomy of Supplier Firms in the Automotive Industry

    OpenAIRE

    Demeter, Krisztina; Gelei, Andrea; Jenei, Istvan

    2008-01-01

    Companies can change place in this taxonomy. The best signal that they want to do that is the level of proactive thinking. Also, the lack of proactive thinking can lead to step back. Company 6, for example, lost its position as an innovation based supplier since it did not make efforts to make improvements is seat design. The build-up and characteristics of supplier types are summarized in Figure 2.

  18. Bloom's Taxonomy (Classification of cognitive areas – remembering, understanding, applying)

    OpenAIRE

    Petrova Gjorgjeva, Emilija

    2011-01-01

    Traditional teaching is based upon the products of thought, but it neglects the processes which lead to these products. Efficacy in learning depends on the student‘s consciousness about the process of learning itself and on the usage of self-regulating learning mechanisms. The taxonomy conceived by Benjamin Bloom and his associates enables teachers to distinguish the questions that instigate lower and higher levels of students‘ thinking, i.e. to make the distinction between questions requi...

  19. Evaluating ILI Advanced Series through Bloom's Revised Taxonomy

    OpenAIRE

    MAHDIPOUR, Nasim; SADEGHI, Bahador

    2015-01-01

    Abstract. This study investigated Iran Language Institute Advanced Series in terms of learning objectives based on Bloom's Revised Taxonomy. It examined the cognitive, affective and psychomotor domains to see how the critical thinking skills are used and to what extent these books are different from each other. For these purposes, the frequencies, percentages and Standard Residual were analyzed. Results revealed that the lower-order cognitive skills (i.e. remembering, understanding and applyi...

  20. Towards a Taxonomy and Critique of Impact Sourcing

    OpenAIRE

    Malik, Fareesa;Nicholson, Brian;Morgan, Sharon

    2013-01-01

    This paper aims to propose appropriate concepts and taxonomy to improve our understandingof an emerging sub-field of global outsourcing known as Impact Sourcing. Impact Sourcingclaims to provide a ‘win-win’ scenario of social development benefits by providingoutsourcing work opportunities to marginalized communities and business benefits byoperating in low cost areas. The paper identifies two main conceptual streams of ImpactSourcing. Social IT Outsourcing derives from the concept of Social E...

  1. A taxonomy characterizing complexity of consumer eHealth Literacy.

    Science.gov (United States)

    Chan, Connie V; Matthews, Lisa A; Kaufman, David R

    2009-01-01

    There are a range of barriers precluding patients from fully engaging in and benefiting from the spectrum of eHealth interventions developed to support patient access to health information, disease self-management efforts, and patient-provider communication. Consumers with low eHealth literacy skills often stand to gain the greatest benefit from the use of eHealth tools. eHealth skills are comprised of reading/writing/numeracy skills, health literacy, computer literacy, information literacy, media literacy, and scientific literacy [1]. We aim to develop an approach to characterize dimensions of complexity and to reveal knowledge and skill-related barriers to eHealth engagement. We use Bloom's Taxonomy to guide development of an eHealth literacy taxonomy that categorizes and describes each type of literacy by complexity level. Illustrative examples demonstrate the utility of the taxonomy in characterizing dimensions of complexity of eHealth skills used and associated with each step in completing an eHealth task. PMID:20351828

  2. Precision psychiatry: a neural circuit taxonomy for depression and anxiety.

    Science.gov (United States)

    Williams, Leanne M

    2016-05-01

    Although there have been tremendous advances in the understanding of human dysfunctions in the brain circuitry for self-reflection, emotion, and cognitive control, a brain-based taxonomy for mental disease is still lacking. As a result, these advances have not been translated into actionable clinical tools, and the language of brain circuits has not been incorporated into training programmes. To address this gap, I present this synthesis of published work, with a focus on functional imaging of circuit dysfunctions across the spectrum of mood and anxiety disorders. This synthesis provides the foundation for a taxonomy of putative types of dysfunction, which cuts across traditional diagnostic boundaries for depression and anxiety and includes instead distinct types of neural circuit dysfunction that together reflect the heterogeneity of depression and anxiety. This taxonomy is suited to specifying symptoms in terms of underlying neural dysfunction at the individual level and is intended as the foundation for building mechanistic research and ultimately guiding clinical practice. PMID:27150382

  3. A New Similarity measure for taxonomy based on edge counting

    Directory of Open Access Journals (Sweden)

    Manjula Shenoy.K

    2012-11-01

    Full Text Available This paper introduces a new similarity measure based on edge counting in a taxonomy like WorldNet orOntology. Measurement of similarity between text segments or concepts is very useful for manyapplications like information retrieval, ontology matching, text mining, and question answering and so on.Several measures have been developed for measuring similarity between two concepts: out of these we seethat the measure given by Wu and Palmer [1] is simple, and gives good performance. Our measure isbased on their measure but strengthens it. Wu and Palmer [1] measure has a disadvantage that it does notconsider how far the concepts are semantically. In our measure we include the shortest path between theconcepts and the depth of whole taxonomy together with the distances used in Wu and Palmer [1]. Also themeasure has following disadvantage i.e. in some situations, the similarity of two elements of an IS-Aontology contained in the neighbourhood exceeds the similarity value of two elements contained in thesame hierarchy. Our measure introduces a penalization factor for this case based upon shortest lengthbetween the concepts and depth of whole taxonomy.

  4. Eliciting the Functional Taxonomy from protein annotations and taxa.

    Science.gov (United States)

    Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano

    2016-01-01

    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules. PMID:27534507

  5. Classification of Ferrallitic Soils in Chinese Soil Taxonomy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The development of the classification of ferrallitic soils in China is reviewed and the classification of Ferralisols and Ferrisols in Chinese Soil Taxonomy is introduced in order to discuss the correlation between the ferrallitic soil classification in the Chinese Soil Taxonomy and those of the other soil classification systems. In the former soil classification systems of China, the ferrallitic soils were classified into the soil groups of Latosols, Latosolic red soils, Red soils, Yellow soils and Dry red soils, according to the combination of soil forming conditions, soil-forming processes, soil features and soil properties. In the Chinese Soil Taxonomy, most of ferrallitic soils are classified into the soil orders of Ferralisols and Ferrisols based on the diagnostic horizons and/or diagnostic characteristics with quantitatively defined properties. Ferralisols are the soils that have ferralic horizon, and they are merely subdivided into one suborder and two soil groups. Ferrisols are the soils that have LAC-ferric horizon but do not have ferralic horizon, and they are subdivided into three suborders and eleven soil groups. Ferralisols may correspond to part of Latosols and Latosolic red soils. Ferrisols may either correspond to part of Red soils, Yellow soils and Dry red soils, or correspond to part of Latosols and Latosolic red soils.

  6. Eliciting the Functional Taxonomy from protein annotations and taxa.

    Science.gov (United States)

    Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano

    2016-08-18

    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules.

  7. A taxonomy of dignity: a grounded theory study

    Directory of Open Access Journals (Sweden)

    Jacobson Nora

    2009-02-01

    Full Text Available Abstract Background This paper has its origins in Jonathan Mann's insight that the experience of dignity may explain the reciprocal relationships between health and human rights. It follows his call for a taxonomy of dignity: "a coherent vocabulary and framework to characterize dignity." Methods Grounded theory procedures were use to analyze literature pertaining to dignity and to conduct and analyze 64 semi-structured interviews with persons marginalized by their health or social status, individuals who provide health or social services to these populations, and people working in the field of health and human rights. Results The taxonomy presented identifies two main forms of dignity–human dignity and social dignity–and describes several elements of these forms, including the social processes that violate or promote them, the conditions under which such violations and promotions occur, the objects of violation and promotion, and the consequences of dignity violation. Together, these forms and elements point to a theory of dignity as a quality of individuals and collectives that is constituted through interaction and interpretation and structured by conditions pertaining to actors, relationships, settings, and the broader social order. Conclusion The taxonomy has several implications for work in health and human rights. It suggests a map to possible points of intervention and provides a language in which to talk about dignity.

  8. Conchological Variability of Anadara Inaequivalvis (Bivalvia, Arcidae In the Black–Azov Sea Basin

    Directory of Open Access Journals (Sweden)

    Anistratenko V. V.

    2014-10-01

    Full Text Available Конхологическая изменчивость Anadara inaequivalvis (Bivalvia, Arcidae в Азово-Черноморском бассейне. Анистратенко В. В., Анистратенко О. Ю., Халиман И. А. - Показан широкий диа- пазон изменчивости раковины Anadara inaequivalvis (Bruguiere, 1789 - вида-вселенца в Азово- Черноморском бассейне. В изученном материале (более 900 створок выделены 6 основных форм комиссурального просвета раковины, которые, однако, не являются дискретными состояниями. Наличие промежуточных вариантов свидетельствует о плавной (непрерывной изменчивости и принадлежности всех изученных популяций к одному виду. Обсуждается варьирование некото- рых других признаков раковины Anadara: количество и скульптированность рёбер на поверхно- сти створок, количество шевронов на лигаментной площадке, форма замочного края и количество зубов замка. Сопоставление морфологических характеристик раковины Anadara из Чёрного и Азовского морей и A. inaequivalvis из юго-восточной Индии подтверждает, что границы и харак- тер изменчивости моллюсков рода Anadara, обитающих в азово-черноморском бассейне, вполне соответствуют изменчивости A. inaequivalvis из типовой

  9. Advanced Public Transportation Sytems; A Taxonomy, Commercial Availability And Deployment, Phase II

    OpenAIRE

    Khattak, Asad; Et. al.,

    1997-01-01

    This study explores the development and availability of Advanced Public Transportation Systems (APTS) technologies. The study refines a taxonomy of transit technologies and uses it to explore the availability of new technologies and their impacts in transit agencies. THe taxonomy is based on defining the features, functions and performance characteristics of transit technologies. Based on the taxonomy, three surveys of technology suppliers were conducted. Questions were related to technology ...

  10. Puppets, robots, critics, and actors within a taxonomy of attention for developmental disorders

    OpenAIRE

    Dennis, Maureen; Sinopoli, Katia J.; Fletcher, Jack M.; Schachar, Russell

    2008-01-01

    This review proposes a new taxonomy of automatic and controlled attention. The taxonomy distinguishes among the role of the attendee (puppet and robot, critic and actor), the attention process (stimulus orienting vs. response control), and the attention operation (activation vs. inhibition vs. adjustment), and identifies cognitive phenotypes by which attention is overtly expressed. We apply the taxonomy to four childhood attention disorders: attention deficit hyperactivity disorder, spina bif...

  11. A Revision of the Bloom’s Taxonomy: A Turning Point in Curriculum Development

    OpenAIRE

    T. Bümen, Nilay; Ege Üniversitesi Eğitim Bilimleri Bölümü

    2010-01-01

    This study introduces the Revised Bloom’s Taxonomy and discusses its implications for curriculum development, and instructional planning. The Revised Taxonomy has two dimensions: Knowledge and Cognitive Process. Using the taxonomy table to classify objectives, activities, and assessments helps to examine relative emphasis, curriculum alignment, and missed educational opportunities. Based on this evaluation, teachers can decide where and how to improve the planning of the curriculum and the de...

  12. Pragmatic Strategies and Linguistic Structures in Making ‘Suggestions’: Towards Comprehensive Taxonomies

    OpenAIRE

    Hossein Abolfathiasl; Ain Nadzimah Abdullah

    2013-01-01

    This paper analyses and upgrades taxonomies of strategies and structures for the speech act of suggesting based on existing taxonomies and classifications in the pragmatics research literature. Previous studies have focused mainly on linguistic structures used to perform the speech act of suggesting. Thus, there seems to be a need to provide a more comprehensive set of taxonomies for structures as well as strategies that can be used in EFL/ESL classrooms and for research on the speech act of ...

  13. Identifying the true oysters (Bivalvia: Ostreidae) with mitochondrial phylogeny and distance-based DNA barcoding.

    Science.gov (United States)

    Liu, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong

    2011-09-01

    Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis.

  14. Botany / Plant Taxonomy - University of Hawaii

    OpenAIRE

    Rutter, Sara

    2011-01-01

    The research project addressed in this data curation profile is the taxonomic revision of Astelia (including 46 taxa). The current work is an expansion of previous work in which she recognized three species and four proposed varieties of Astelia in Hawaii. The data management needs revolve around making the data available following publication. The researcher believes that the morphological data would be useful to plant systematics and conservation biologists and thus making it accessible to ...

  15. A proposal of amplification of general taxonomy of costs: an application in a higher education institution

    Directory of Open Access Journals (Sweden)

    Daniel Pacheco Lacerda

    2006-12-01

    Full Text Available The present article presents, starting from a wide revision of the current classification of costs, an amplification proposal, considering a new taxonomy vector. That new vector considers the subject of the costs with relationship your occurrence based on the process of decision of the mix of production of the organization and affecting your respective ones won. Like this being, some costs could be classified in having Throughput Pre-defined and other as having Throughput Powder-defined. The work relates that new classification with the variability concepts and the direct and indirect allocation of costs, resulting in eight groups of costs, which were used in the sense of a theoretical revision in the specific formulation of the Global Profit of the organization. Concluding and trying to illustrate the presented proposal, the same was applied in a higher education Institution, trying to validate the robustness of the developed proposal.

  16. Orobanche lutea Baumg. (Orobanchaceae in Poland: revised distribution, taxonomy, phytocoenological and host relations

    Directory of Open Access Journals (Sweden)

    Piwowarczyk Renata

    2014-06-01

    Full Text Available The paper presents current distribution of Orobanche lutea Baumg. in Poland based on a critical revision of herbarium and literature data as well as results of field investigations conducted between 1999-2014. Majority of localities are centred around the Silesia-Cracow, Małopolska and Lublin-Lviv Uplands. The greatest density of sites with probably the most abundant populations in Europe is in the central part of Silesia-Cracow Upland, which, by several hundred years, was heavily exploited for calamine mining (rich in zinc, lead and silver. This resulted in the formation of large areas of gangue containing toxic heavy metals. Since limestone, dolomite, marl and postglacial calcareous clay and sands occur there in most places, the soil is often strongly calcareous. Populations of O. lutea contain here many thousands of shoots. The distribution of the species in Poland is mapped. The taxonomy, biology, ecology and threats are also discussed.

  17. Summary statistics for fossil spider species taxonomy

    Directory of Open Access Journals (Sweden)

    David Penney

    2012-05-01

    Full Text Available Spiders (Araneae are one of the most species-rich orders on Earth today, and also have one of the longest geological records of any terrestrial animal groups, as demonstrated by their extensive fossil record. There are currently around 1150 described fossil spider species, representing 2.6% of all described spiders (i.e. extinct and extant. Data for numbers of fossil and living spider taxa described annually (and various other metrics for the fossil taxa were compiled from current taxonomic catalogues. Data for extant taxa showed a steady linear increase of approximately 500 new species per year over the last decade, reflecting a rather constant research activity in this area by a large number of scientists, which can be expected to continue. The results for fossil species were very different, with peaks of new species descriptions followed by long troughs, indicating minimal new published research activity for most years. This pattern is indicative of short bursts of research by a limited number of authors. Given the frequent discovery of new fossil deposits containing spiders, a wealth of new material coming to light from previously worked deposits, and the application of new imaging techniques in palaeoarachnology that allow us to extract additional data from historical specimens, e.g. X-ray computed tomography, it is important not only to ensure a sustained research activity on fossil spiders (and other arachnids through training and enthusing the next generation of palaeoarachnologists, but preferably to promote increased research and expertise in this field.

  18. Advances in Glomeromycota taxonomy and classification.

    Science.gov (United States)

    Oehl, Fritz; Sieverding, Ewald; Palenzuela, Javier; Ineichen, Kurt; Alves da Silva, Gladstone

    2011-12-01

    Concomitant morphological and molecular analyses have led to major breakthroughs in the taxonomic organization of the phylum Glomeromycota. Fungi in this phylum are known to form arbuscular mycorrhiza, and so far three classes, five orders, 14 families and 29 genera have been described. Sensulato, spore formation in 10 of the arbuscular mycorrhiza-forming genera is exclusively glomoid, one is gigasporoid, seven are scutellosporoid, four are entrophosporoid, two are acaulosporoid, and one is pacisporoid. Spore bimorphism is found in three genera, and one genus is associated with cyanobacteria. Here we present the current classification developed in several recent publications and provide a summary to facilitate the identification of taxa from genus to class level.

  19. Defining the Cognitive Levels in Bloom?s Taxonomy through the Quranic Levels of Understanding - Initial Progress of Developing an Islamic Concept Education

    OpenAIRE

    Syed Zainal Abidin; Syed Kamarul Bahrin; Nur Firdaus Abdul Razak

    2013-01-01

    The cognitive domain of a Bloom?s taxonomy and the Quranic levels of understanding are elements in education that focus on the ability to think. However, there is currently no education system or method that is based on the Quranic levels of understanding due to the absence of proper definition. Therefore, this paper will provide general correlations between the cognitive levels and the Quranic levels of understanding so that the cognitive domain can be defined in term of Quranic levels of un...

  20. A Unified Taxonomy for Ciliary Dyneins

    Science.gov (United States)

    Hom, Erik F.Y.; Witman, George B.; Harris, Elizabeth H.; Dutcher, Susan K.; Kamiya, Ritsu; Mitchell, David R.; Pazour, Gregory J.; Porter, Mary E.; Sale, Winfield S.; Wirschell, Maureen; Yagi, Toshiki; King, Stephen M.

    2011-01-01

    The formation and function of eukaryotic cilia/flagella require the action of a large array of dynein microtubule motor complexes. Due to genetic, biochemical, and microscopic tractability, Chlamydomonas reinhardtii has become the premier model system in which to dissect the role of dyneins in flagellar assembly, motility, and signaling. Currently, fifty-four proteins have been described as components of various Chlamydomonas flagellar dyneins or as factors required for their assembly in the cytoplasm and/or transport into the flagellum; orthologues of nearly all these components are present in other ciliated organisms including humans. For historical reasons, the nomenclature of these diverse dynein components and their corresponding genes, mutant alleles and orthologues has become extraordinarily confusing. Here, we unify Chlamydomonas dynein gene nomenclature and establish a systematic classification scheme based on structural properties of the encoded proteins. Furthermore, we provide detailed tabulations of the various mutant alleles and protein aliases that have been used and explicitly define the correspondence with orthologous components in other model organisms and humans. PMID:21953912