WorldWideScience

Sample records for biuret nh atom

  1. Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily.

    Science.gov (United States)

    Robinson, Serina L; Badalamenti, Jonathan P; Dodge, Anthony G; Tassoulas, Lambros J; Wackett, Lawrence P

    2018-03-12

    Biuret is a minor component of urea fertilizer and an intermediate in s-triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest-growing isolate, Herbaspirillum sp. BH-1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH-1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2-11 µmol min -1 mg -1 protein. We then constructed a global protein superfamily network to map structure-function relationships in the BH subfamily and used this to mine > 7000 genomes. High-confidence BH sequences were detected in Actinobacteria, Alpha- and Beta-proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in > 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s-triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome-mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Biuret, a NPN source for ruminants -- a review

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, K K; Mudgal, V D [National Dairy Research Inst., Karnal (India)

    1980-06-01

    Biuret is a non toxic and palatable source of non protein nitrogen which is hydrolyzed slowly and has a slower solubility as compared to urea. It is hydrolyzed in rumen with the help of biuretase which is an induced enzyme, therefore animals require some time of adaptation before its proper utilization. Biuret is degraded into ammonia and urea which later on gets hydrolysed further into ammonia with the help of urease. The activity of urease might have been supressed in the rumen when the animals were fed on biuret supplemented diet. Biuret degradation into ammonia increases as the adaptation reaches. Biuret hydrolyzed slowly upto 24 hr of its feeding in adapted animals. For the best utilization of this NPN compound, the diet should contain low levels of natural protein and sufficient quantity of readily available source of energy and provide adequate essential minerals. Biuret can be successfully used for the maintenance and production ratio of the ruminants.

  3. Biuret, a NPN source for ruminants -- a review

    International Nuclear Information System (INIS)

    Singhal, K.K.; Mudgal, V.D.

    1980-01-01

    Biuret is a non toxic and palatable source of non protein nitrogen which is hydrolyzed slowly and has a slower solubility as compared to urea. It is hydrolyzed in rumen with the help of biuretase which is an induced enzyme, therefore animals require some time of adaptation before its proper utilization. Biuret is degraded into ammonia and urea which later on gets hydrolysed further into ammonia with the help of urease. The activity of urease might have been supressed in the rumen when the animals were fed on biuret supplemented diet. Biuret degradation into ammonia increases as the adaptation reaches. Biuret hydrolyzed slowly upto 24 hr of its feeding in adapted animals. For the best utilization of this NPN compound, the diet should contain low levels of natural protein and sufficient quantity of readily available source of energy and provide adequate essential minerals. Biuret can be successfully used for the maintenance and production ratio of the ruminants. (author)

  4. Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3

    International Nuclear Information System (INIS)

    Kim, Hyo Kyeom; Kim, Ju Youn; Park, Jin Yong; Kim, Yang Do; Kim, Young Do; Jeon, Hyeong Tag; Kim, Won Mok

    2002-01-01

    TiN films were deposited by using the metalorganic atomic layer deposition (MOALD) method using tetrakis-dimethyl-amino-titanium (TDMAT) as the titanium precursor and ammonia (NH 3 ) as the reactant gas. Two saturated TiN film growth regions were observed in the temperature ranges from 175 and 190 .deg. C and from 200 and 210 .deg. C. TiN films deposited by the MOALD technique showed relatively lower carbon content than films deposited by metalorganic chemical vapor deposition (MOCVD) method. TiN films deposited at around 200 .deg. C under standard conditions showed the resistivity values as low as 500 μΩ-cm, which is about one order lower than the values for TiN films deposited by MOCVD using TDMAT or TDMAT with NH 3 . Also, the carbon incorporation and the resistivity were further decreased with increasing Ar purge time and flow rate. TiN films deposited at temperature below 300 .deg. C showed amorphous characteristics. TiN film deposited on contact holes, about 0.4-μm wide and 0.8-μm deep, by using the MOALD method showed excellent conformal deposition with almost 100% step coverage. This study demonstrates that the processing parameters need to be carefully controlled to optimize the film properties that the processing parameters need to be carefully controlled to optimize the film properties when using the ALD technique and that TiN films deposited by using the MOALD method exhibited excellent film properties compared to those of films deposited by using other CVD methods

  5. Reactions of 11C recoil atoms in the systems H2O-NH3, H2O-CH4 and NH3-CH4

    International Nuclear Information System (INIS)

    Nebeling, B.

    1988-11-01

    In this study the chemical reactions of recoil carbon 11 in the binary gas mixtures H 2 O-NH 3 , H 2 O-CH 4 and NH 3 -CH 4 in different mixing ratios as well as in solid H 2 O and in a solid H 2 O-NH 3 mixture were analyzed in dependence of the dose. The analyses were to serve e.g. the simulation of chemical processes caused by solar wind, solar radiation and cosmic radiation in the coma and core of comets. They were to give further information about the role of the most important biogeneous element carbon, i.e. carbon, in the chemical evolution of the solar system. Besides the actual high energy processes resulting in the so-called primary products, also the radiation-chemical changes of the primary products were also observed in a wide range of dosing. The generation of the energetic 11 C atoms took place according to the target composition by the nuclear reactions 14 N(p,α) 11 C, 12 C( 3 He,α) 11 C or the 16 O(p,αpn) 11 C reaction. The identification of the products marked with 11 C was carried out by means of radio gas chromatography or radio liquid chromatography (HPLC). (orig./RB) [de

  6. Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH 3 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Papri; Heiden, Zachariah M.; Wiedner, Eric S.; Raugei, Simone; Piro, Nicholas A.; Kassel, W. Scott; Bullock, R. Morris; Mock, Michael T.

    2017-02-15

    We report ammonia oxidation by homolytic cleavage of all three H atoms from a Mo-15NH3 complex using the 2,4,6-tri-tert-butylphenoxyl radical to afford a Mo-alkylimido (Mo=15NR) complex (R = 2,4,6-tri-t-butylcyclohexa-2,5-dien-1-one). Reductive cleavage of Mo=15NR generates a terminal Mo≡N nitride, and a [Mo-15NH]+ complex is formed by protonation. Computational analysis describes the energetic profile for the stepwise removal of three H atoms from the Mo-15NH3 complex and the formation of Mo=15NR. Acknowledgment. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Re-search Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences. EPR and mass spectrometry experiments were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. The authors thank Dr. Eric D. Walter and Dr. Rosalie Chu for assistance in performing EPR and mass spectroscopy analysis, respectively. Computational resources provided by the National Energy Re-search Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific North-west National Laboratory is operated by Battelle for the U.S. DOE.

  7. Atomic force microscopy study of TiO2 sol-gel films thermally treated under NH3 atmosphere

    International Nuclear Information System (INIS)

    Trapalis, C.; Todorova, N.; Anastasescu, M.; Anastasescu, C.; Stoica, M.; Gartner, M.; Zaharescu, M.; Stoica, T.

    2009-01-01

    Multilayered TiO 2 films were obtained by sol-gel and dipping deposition on quartz substrate followed by thermal treatment under NH 3 atmosphere. In an attempt to understand the close relationship between microstructural characteristics and the synthesis parameters, a systematic research of the structure and the morphology of NH 3 modified TiO 2 sol-gel films by XRD and Atomic Force Microscopy is reported. The surface morphology has been evaluated in terms of grains size, fractal dimension and surface roughness. For each surface, it was found a self-similar behavior (with mean fractal dimension in the range of 2.67-3.00) related to an optimum morphology favorable to maintain a nano-size distribution of the grains. The root mean square (RMS) roughness of the samples was found to be in the range of 0.72-6.02 nm.

  8. Comparison of biuret and refractometry methods for the serum total proteins measurement in ruminants.

    Science.gov (United States)

    Katsoulos, Panagiotis D; Athanasiou, Labrini V; Karatzia, Maria A; Giadinis, Nektarios; Karatzias, Harilaos; Boscos, Constantin; Polizopoulou, Zoe S

    2017-12-01

    Determination of serum total protein concentration is commonly performed by the biuret method. Refractometric measurement is a faster and less expensive alternative but its accuracy has not been determined in ruminants. The purpose of the study was to compare the serum total protein concentrations in cattle, sheep, and goats measured by the biuret method with those obtained by refractometry. Serum total protein concentration was determined in 120 cattle, 67 sheep, and 58 goat blood samples refractometrically and with the biuret method. The data were analyzed with a paired samples t-test, and Passing and Bablok regression equations and Bland and Altman plots were generated. There was a strong linear relationship between the total protein values determined with the refractometer and the biuret method in cattle, sheep, and goats. The statistical accuracy, which represents a bias correction factor that measures the deviation of the best-fit line from the 45° line through the origin, was 90.63% for cattle, 93.05% for sheep, and 91.76% for goats. The mean protein values determined with the refractometer were significantly lower than those measured with the biuret method in cattle and goats (P  .05). The evaluated refractometer was sufficiently accurate for the determination of serum total proteins in cattle, sheep, and goats, although it cannot be used interchangeably with the biuret method. The RIs should be corrected for negative bias based on the created equations. © 2017 American Society for Veterinary Clinical Pathology.

  9. A Three-Step Atomic Layer Deposition Process for SiN x Using Si2Cl6, CH3NH2, and N2 Plasma.

    Science.gov (United States)

    Ovanesyan, Rafaiel A; Hausmann, Dennis M; Agarwal, Sumit

    2018-06-06

    We report a novel three-step SiN x atomic layer deposition (ALD) process using Si 2 Cl 6 , CH 3 NH 2 , and N 2 plasma. In a two-step process, nonhydrogenated chlorosilanes such as Si 2 Cl 6 with N 2 plasmas lead to poor-quality SiN x films that oxidize rapidly. The intermediate CH 3 NH 2 step was therefore introduced in the ALD cycle to replace the NH 3 plasma step with a N 2 plasma, while using Si 2 Cl 6 as the Si precursor. This three-step process lowers the atomic H content and improves the film conformality on high-aspect-ratio nanostructures as Si-N-Si bonds are formed during a thermal CH 3 NH 2 step in addition to the N 2 plasma step. During ALD, the reactive surface sites were monitored using in situ surface infrared spectroscopy. Our infrared spectra show that, on the post-N 2 plasma-treated SiN x surface, Si 2 Cl 6 reacts primarily with the surface -NH 2 species to form surface -SiCl x ( x = 1, 2, or 3) bonds, which are the reactive sites during the CH 3 NH 2 cycle. In the N 2 plasma step, reactive -NH 2 surface species are created because of the surface H available from the -CH 3 groups. At 400 °C, the SiN x films have a growth per cycle of ∼0.9 Å with ∼12 atomic percent H. The films grown on high-aspect-ratio nanostructures have a conformality of ∼90%.

  10. Room temperature atomic layer deposited Al2O3 on CH3NH3PbI3 characterized by synchrotron-based X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kot, Małgorzata; Das, Chittaranjan; Henkel, Karsten; Wojciechowski, Konrad; Snaith, Henry J.; Schmeisser, Dieter

    2017-11-01

    An ultrathin Al2O3 film deposited on methylammonium lead triiodide (CH3NH3PbI3) perovskite has the capability to suppress the carrier recombination process and improve the perovskite solar cells efficiency and stability. However, annealing at temperatures higher than 85 °C degrades the CH3NH3PbI3 perovskite film. The X-ray photoelectron spectroscopy study performed in this work indicates that it is possible to grow Al2O3 by atomic layer deposition on the perovskite at room temperature, however, besides pure Al2O3 some OH groups are found and the creation of lead and iodine oxides at the Al2O3/CH3NH3PbI3 interface takes place.

  11. Comparison of refractometry and biuret assay for measurement of total protein concentration in canine abdominal and pleural fluid specimens.

    Science.gov (United States)

    Rose, Alexandra; Funk, Deborah; Neiger, Reto

    2016-04-01

    To compare total protein (TP) concentrations in canine pleural and abdominal fluid specimens as measured by refractometry and biuret assay. Diagnostic test evaluation. Data regarding 92 pleural and 148 abdominal fluid specimens from dogs with various diseases. TP concentrations in fluid specimens as measured by refractometry and biuret assay were recorded. Strength of association between sets of measurements was assessed by Spearman rank correlations and Bland-Altman plots. Optimal concentration cutoff for diagnostic discrimination between exudate and nonexudate was identified by construction of receiver operating characteristic curves. Median TP concentration in pleural fluid specimens was 2.7 g/dL (range, 0.3 to 4.8 g/dL) for refractometry and 2.9 g/dL (range, 0.7 to 5.8 g/dL) for biuret assay. Median TP concentration in abdominal fluid specimens was 3.5 g/dL (range, 0.1 to 6.0 g/dL) for refractometry and 3.5 g/dL (range, 0.6 to 5.7 g/dL) for biuret assay. Correlation was significant between refractometric and biuret results for pleural (ρ = 0.921) and abdominal (ρ = 0.908) fluid. Bland-Altman plots revealed bias of -0.18 g/dL for pleural fluid and -0.03 g/dL for abdominal fluid for refractometry versus biuret assay. With a TP concentration of ≥ 3 g/dL used to distinguish exudate from nonexudate, sensitivity of refractometry was 77% for pleural fluid and 80% for abdominal fluid. Specificity was 100% and 94%, respectively. Refractometry yielded acceptable results for measurement of TP concentration in canine pleural and abdominal fluid specimens, providing a more rapid and convenient method than biuret assay.

  12. In Situ Measurements of Sulfur Hexafluoride (SF6) and age of air from NH sources during the Atmospheric Tomography (ATom) global airborne survey

    Science.gov (United States)

    Elkins, J. W.; Moore, F. L.; Hintsa, E. J.; Ray, E. A.; Dutton, G. S.; Nance, J. D.; Hall, B. D.; Dlugokencky, E. J.; Sweeney, C.; Montzka, S. A.; Newman, P. A.

    2017-12-01

    Atmospheric SF6 is an excellent tracer of atmospheric transport in the troposphere, because of its long lifetime (850 years), mostly northern hemispheric (NH) emissions (95%), and high atmospheric growth rate ( 4%/yr.). The gas is used in the distribution of electrical power, because it is an excellent insulator. It is primarily released through its use (leaking and refilling) in high voltage power transformers. Two NOAA/GMD airborne, in situ gas chromatographs (GCs), PAN and other Trace Hydrohalocarbons ExpeRiment (PANTHER) and UAS Chromatograph for Atmospheric Trace Species (UCATS), operated on the first two circuits of the Atmospheric Tomography Mission (ATom-1 & ATom-2). Both instruments measure nitrous oxide (N2O) and sulfur hexafluoride (SF6) once every 70 seconds using a very sensitive electron capture detector (ECD). We combined both measurements into one data set for analysis of twice the amount of data, since both instruments are comparable and used the same gas standards. The main purpose of ATom is to study the influence of air quality on climate during the four seasons, where two seasons are completed so far. The altitude-latitude cross sections of SF6 mixing ratios during the ATom-1 (left) shows sources are mostly located in the NH ( 95%). The upper troposphere shows inter-hemispheric mixing. The polar stratosphere shows older air that is mixed with air from the mesospheric sink. Using the procedure described by Waugh et al., (2013) [JGR-Atmos. 10.1002/jgrd.50189] and a recent growth rate of 0.32 ppt yr-1, we have calculated the mean age of each SF6 measurement from its source at ground level in the NH (lat. range of 30-50°N). The contours of age (right) are in agreement with the mean inter-hemispheric exchange time (τNS) of 1.2 yr and higher ages in the polar stratosphere (2.5-3.0 yr).

  13. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pansila, P. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Kanomata, K. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Miura, M. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Ahmmad, B.; Kubota, S. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); CREST, Japan Science and Technology Agency, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Hirose, F., E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); CREST, Japan Science and Technology Agency, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2015-12-01

    Highlights: • We discuss the reaction mechanism of the low temperature GaN ALD. • The plasma-excited NH{sub 3} is effective in the nitridation of the TMG saturated GaN surface with surface temperatures in excess of 100 °C. • The temperature controlled ALD of GaN is examined using RT-TMG adsorption and plasma-excited NH{sub 3} treatment with the temperature of 115 °C. - Abstract: Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH{sub 3} are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 10{sup 4} Langmuir (L), where 1 L corresponds to 1.33 × 10{sup −4} Pa s (or 1.0 × 10{sup −6} Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH{sub 3} on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH{sub 3}.

  14. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH3

    International Nuclear Information System (INIS)

    Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.

    2015-01-01

    Highlights: • We discuss the reaction mechanism of the low temperature GaN ALD. • The plasma-excited NH 3 is effective in the nitridation of the TMG saturated GaN surface with surface temperatures in excess of 100 °C. • The temperature controlled ALD of GaN is examined using RT-TMG adsorption and plasma-excited NH 3 treatment with the temperature of 115 °C. - Abstract: Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH 3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 10 4 Langmuir (L), where 1 L corresponds to 1.33 × 10 −4 Pa s (or 1.0 × 10 −6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH 3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH 3 .

  15. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH3

    Science.gov (United States)

    Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.

    2015-12-01

    Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 104 Langmuir (L), where 1 L corresponds to 1.33 × 10-4 Pa s (or 1.0 × 10-6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH3.

  16. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S)

    Science.gov (United States)

    Gao, Zhengyang; Yang, Weijie; Ding, Xunlei; Lv, Gang; Yan, Weiping

    2018-04-01

    The effects of support on gas adsorption is crucial for single atom catalysts design and optimization. To gain insight into support effects on gas adsorption characteristics, a comprehensive theoretical study was performed to investigate the adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S) by utilizing single atom iron catalysts with three graphene-based supports. The adsorption geometry, adsorption energy, electronic and magnetic properties of the adsorption system have been explored. Additionally, the support effects have been analyzed through d-band center and Fermi softness, and thermodynamic analysis has been performed to consider the effect of temperature on gas adsorption. The support effects have a remarkable influence on the adsorption characteristics of four types of toxic gases which is determined by the electronic structure of graphene-based support, and the electronic structure can be characterized by Fermi softness of catalysts. Fermi softness and uplift height of Fe atom could be good descriptors for the adsorption activity of single atom iron catalysts with graphene-based supports. The findings can lay a foundation for the further study of graphene-based support effects in single atom catalysts and provide a guideline for development and design of new graphene-based support materials utilizing the idea of Fermi softness.

  17. A practical method for extending the biuret assay to protein determination of corn-based products.

    Science.gov (United States)

    Liu, Zelong; Pan, Junhui

    2017-06-01

    A modified biuret method suitable for protein determination of corn-based products was developed by introducing a combination of an alkaline reagent with sodium dodecyl sulfate (reagent A) and heat treatments. The method was tested on seven corn-based samples. The results showed mostly good agreement (P>0.05) as compared to the Kjeldahl values. The proposed method was found to enhance the accuracy of prediction on zein content using bovine serum albumin as standard. Reagent A and sample treatment were proved to effectively improve protein solubilization for the thermally-dried corn-based products, e.g. corn gluten meal. The absorbance was stable for at least 1-h. Moreover, the whole measurement of protein content only needs 15-20min more than the traditional biuret assay, and can be performed in batches. The findings suggest that the proposed method could be a timesaving alternative for routine protein analyses in corn processing factories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Atomic partial charges on CH{sub 3}NH{sub 3}PbI{sub 3} from first-principles electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Madjet, Mohamed E., E-mail: mmadjet@qf.org.qa; El-Mellouhi, Fedwa; Carignano, Marcelo A.; Berdiyorov, Golibjon R. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P. O. Box 5825, Doha (Qatar)

    2016-04-28

    We calculated the partial charges in methylammonium (MA) lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3} in its different crystalline phases using different first-principles electronic charge partitioning approaches, including the Bader, ChelpG, and density-derived electrostatic and chemical (DDEC) schemes. Among the three charge partitioning methods, the DDEC approach provides chemically intuitive and reliable atomic charges for this material, which consists of a mixture of transition metals, halide ions, and organic molecules. The DDEC charges are also found to be robust against the use of hybrid functionals and/or upon inclusion of spin–orbit coupling or dispersive interactions. We calculated explicitly the atomic charges with a special focus on the dipole moment of the MA molecules within the perovskite structure. The value of the dipole moment of the MA is reduced with respect to the isolated molecule due to charge redistribution involving the inorganic cage. DDEC charges and dipole moment of the organic part remain nearly unchanged upon its rotation within the octahedral cavities. Our findings will be of both fundamental and practical importance, as the accurate and consistent determination of the atomic charges is important in order to understand the average equilibrium distribution of the electrons and to help in the development of force fields for larger scale atomistic simulations to describe static, dynamic, and thermodynamic properties of the material.

  19. Effects of annealing on the properties of atomic layer deposited Ru thin films deposited by NH{sub 3} and H{sub 2} as reactants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Joon; Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr

    2016-08-01

    Atomic layer deposition (ALD) of Ru using a non-oxidizing reactant is indispensable considering its application as a seed layer for Cu electroplating and a bottom electrode for dynamic random access memory capacitors. In this study, ALD-Ru films were deposited using a sequential supply of dicarbonyl-bis(5-methyl-2,4-hexanediketonato) Ru(II) (C{sub 16}H{sub 22}O{sub 6}Ru) and potential non-oxidizing reducing agents, NH{sub 3} or H{sub 2}, as the reactants at a substrate temperature of 250 °C, and the effects of post-annealing in a H{sub 2} ambient on the film properties were investigated. The highly conformal deposition of Ru films was possible using the present reaction scheme but its resistivity was as high as ~ 750 μΩ-cm due to carbon incorporation into the film and the formation of an amorphous structure. Low temperature annealing at 300 °C at H{sub 2} ambient after deposition was found to improve the properties significantly in terms of the resistivity, impurities contents and crystallinity. For example, the film resistivity was decreased drastically to ~ 40 μΩ-cm with both the release of C in the film and crystallization after annealing based on secondary ion mass spectrometry and transmission electron microscopy, whereas perfect step coverage at a very small-sized dual trench (aspect ratio: ~ 3, the top opening size of 45 nm and bottom size of 20 nm) was maintained after annealing. - Highlights: • Ru thin films were deposited by atomic layer deposition (ALD) using NH{sub 3} and H{sub 2} molecules. • Effects of low temperature (300 °C) post-annealing on the film properties were investigated. • Post annealing improved the properties of ALD-Ru films. • Perfect step coverage of ALD-Ru was confirmed at trench structure (top opening width: 45 nm).

  20. Chelation Ion Exchange Properties of 2, 4-Dihydroxyacetophenone-Biuret-Formaldehyde Terpolymer Resin

    Directory of Open Access Journals (Sweden)

    Sanjiokumar S. Rahangdale

    2009-01-01

    Full Text Available The terpolymer resin 2, 4-HABF has been synthesized by the condensation of 2, 4-dihydroxyacetophenone (2, 4-HA and biuret (B with formaldehyde (F in 1:1:2 molar ratios in presence of 2 M hydrochloric acid as catalyst. UV-Visible, IR and proton NMR spectral studies have been carried out to elucidate the structure of the resin. A terpolymer (2, 4-HABF proved to be a selective chelating ion exchange polymer for certain metals. Chelating ion-exchange properties of this polymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+ and Pb2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The polymer showed highest selectivity for Fe3+, Cu2+ ions than for Ni2+, Co2+, Zn2+, Cd2+, and Pb2+ ions. Study of distribution ratio as a formation of pH indicates that the amount of metal ion taken by resin is increases with the increasing pH of the medium.

  1. Formation of simple nitrogen hydrides NH and NH2 at cryogenic temperatures through N + NH3→ NH + NH2 reaction: dark cloud chemistry of nitrogen.

    Science.gov (United States)

    Nourry, Sendres; Krim, Lahouari

    2016-07-21

    Although NH3 molecules interacting with ground state nitrogen atoms N((4)S) seem not to be a very reactive system without providing additional energy to initiate the chemical process, we show through this study that, in the solid phase, at very low temperature, NH3 + N((4)S) reaction leads to the formation of the amidogen radical NH2. Such a dissociation reaction previously thought to occur exclusively through UV photon or energetic particle irradiation is in this work readily occurring just by stimulating the mobility of N((4)S)-atoms in the 3-10 K temperature range in the solid sample. The N((4)S)-N((4)S) recombination may be the source of metastable molecular nitrogen N2(A), a reactive species which might trigger the NH3 dissociation or react with ground state nitrogen atoms N((4)S) to form excited nitrogen atoms N((4)P/(2)D) through energy transfer processes. Based on our obtained results, it is possible to propose reaction pathways to explain the NH2 radical formation which is the first step in the activation of stable species such as NH3, a chemical induction process that, in addition to playing an important role in the origin of molecular complexity in interstellar space, is known to require external energy supplies to occur in the gas phase.

  2. Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.

    Science.gov (United States)

    Zhang, Mingming; Fan, Jianfen; Xu, Jian; Weng, Peipei; Lin, Huifang

    2016-10-01

    Two water-filled transmembrane cyclic peptide nanotubes (CPNTs) of 8×cyclo-(WL)n=4,5/POPE were chosen to investigate the dependences of the transport properties of the positive NH4 (+) and neutral NH3 on the channel radius. Molecular dynamic simulations revealed that molecular charge, size, ability to form H-bonds and channel radius all significantly influence the behaviors of NH4 (+) and NH3 in a CPNT. Higher electrostatic interactions, more H-bonds, and water-bridges were found in the NH4 (+) system, resulting in NH4 (+) meeting higher energy barriers, while NH3 can enter, exit and permeate the channels effortlessly. This work sheds a first light on the differences between the mechanisms of NH4 (+) and NH3 moving in a CPNT at an atomic level. Graphical Abstract Snapshot of the simulation system of NH4 (+)_octa-CPNT with an NH4 (+) initially positioned at one mouth of the tube, PMF profiles for single NH4 (+) ion and NH3 molecule moving through water-filled transmembrane CPNTs of 8×cyclo-(WL)n=4,5/POPE and sketch graphs of the possible H-bond forms of NH3 and NH4 (+) with the neighboring water.

  3. Exo-pi-bonding to an ortho-carborane hypercarbon atom: systematic icosahedral cage distortions reflected in the structures of the fluoro-, hydroxy- and amino-carboranes, 1-X-2-Ph-1,2-C2B10H10 (X=F, OH or NH2) and related anions.

    Science.gov (United States)

    Boyd, Lynn A; Clegg, William; Copley, Royston C B; Davidson, Matthew G; Fox, Mark A; Hibbert, Thomas G; Howard, Judith A K; Mackinnon, Angus; Peace, Richard J; Wade, Kenneth

    2004-09-07

    The structures of derivatives of phenyl-ortho-carborane bearing on the second cage hypercarbon atom a pi-donor substituent (F, OH, O-, NH2, NH- and CH2-) were investigated by NMR, X-ray crystallography and computational studies. The molecular structures of these compounds, notably their cage C1-C2 distances and the orientations of their pi-donor substituents (OH, NH2, NH- and CH2-) show remarkable and systematic variations with the degree of exo pi-bonding, which varies as expected with the pi-donor characteristics of the substituent.

  4. Exo-π-bonding to an ortho-carborane hypercarbon atom : systematic icosahedral cage distortions reflected in the structures of the fluoro-, hydroxy- and amino-carboranes, 1-X-2-Ph-1,2-C2B10H10 (X = F, OH or NH2) and related anions.

    OpenAIRE

    Boyd, L.A.; Clegg, W.; Copley, R.C.B.; Davidson, M.G.; Fox, M.A.; Hibbert, T.G.; Howard, J.A.K.; Mackinnon, A.; Peace, R.J.; Wade, K.

    2004-01-01

    The structures of derivatives of phenyl-ortho-carborane bearing on the second cage hypercarbon atom a pi-donor substituent (F, OH, O-, NH2, NH- and CH2-) were investigated by NMR, X-ray crystallography and computational studies. The molecular structures of these compounds, notably their cage C1-C2 distances and the orientations of their pi-donor substituents (OH, NH2, NH- and CH2-) show remarkable and systematic variations with the degree of exo pi-bonding, which varies as expected with the p...

  5. Crystal structures and vibrational spectra of biuret co-crystals with cyanuric and glutaric acids, discussion of hydrogen bonding involving carbonyl groups

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Mathauserová, J.; Císařová, I.; Němec, I.; Fábry, Jan

    2016-01-01

    Roč. 231, č. 5 (2016), s. 291-300 ISSN 2194-4946 R&D Projects: GA ČR GA14-05506S Institutional support: RVO:68378271 Keywords : biuret * crystal structure analysis * hydrogen bonding * vibrational spectroscopy * X-ray diffraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.179, year: 2016

  6. Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent.

    Science.gov (United States)

    Jin, Shuping; Yue, Guoren; Feng, Lei; Han, Yuqi; Yu, Xinghai; Zhang, Zenghu

    2011-01-12

    In this investigation, a novel water-insoluble slow-release fertilizer, biuret polyphosphoramide (BPAM), was formulated and synthesized from urea, phosphoric acid (H(3)PO(4)), and ferric oxide (Fe(2)O(3)). The structure of BPAM was characterized by Fourier transform infrared (FTIR) spectroscopy. Subsequently, a coated slow-release BPAM fertilizer with superabsorbent was prepared by ionic cross-linked carboxymethylchitosan (the core), acrylic acid, acrylamide, and active carbon (the coating). The variable influences on the water absorbency were investigated and optimized. Component analysis results showed that the coated slow-release BPAM contained 5.66% nitrogen and 11.7% phosphorus. The property of water retention, the behavior of slow release of phosphorus, and the capacity of adsorption of cations were evaluated, and the results revealed that the product not only had good slow-release property and excellent water retention capacity but also higher adsorption capacities of cations in saline soil.

  7. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  8. Synthesis of 15N-enriched urea (CO(15NH22 from 15NH3, CO, and S in a discontinuous process

    Directory of Open Access Journals (Sweden)

    C. R. Sant Ana Filho

    2012-12-01

    Full Text Available CO(15NH22 enriched with the stable isotope 15N was synthesized based on a reaction involving CO, 15NH3, and S in the presence of CH3OH. The method differs from the industrial method; a stainless steel reactor internally lined with polytetrafluoroethylene (PTFE was used in a discontinuous process under low pressure and temperature. The yield of the synthesis was evaluated as a function of the parameters: the amount of reagents, reaction time, addition of H2S, liquid solution and reaction temperature. The results showed that under optimum conditions (1.36, 4.01, and 4.48 g of 15NH3, CO, and S, respectively, 40 ml CH3OH, 40 mg H2S, 100 ºC and 120 min of reaction 1.82 g (yield 76.5% of the compound was obtained per batch. The synthesized CO(15NH22 contained 46.2% N, 0.55% biuret, melting point of 132.55 ºC and did not exhibit isotopic fractionation. The production cost of CO(15NH22 with 90.0 at. % 15N was US$ 238.60 per gram.

  9. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  10. The Third Dimension of a More O'Ferrall-Jencks Diagram for Hydrogen Atom Transfer in the Isoelectronic Hydrogen Exchange Reactions of (PhX)(2)H(•) with X = O, NH, and CH(2).

    Science.gov (United States)

    Cembran, Alessandro; Provorse, Makenzie R; Wang, Changwei; Wu, Wei; Gao, Jiali

    2012-11-13

    A critical element in theoretical characterization of the mechanism of proton-coupled electron transfer (PCET) reactions, including hydrogen atom transfer (HAT), is the formulation of the electron and proton localized diabatic states, based on which a More O'Ferrall-Jencks diagram can be represented to determine the step-wise and concerted nature of the reaction. Although the More O'Ferrall-Jencks diabatic states have often been used empirically to develop theoretical models for PCET reactions, the potential energy surfaces for these states have never been determined directly based on first principles calculations using electronic structure theory. The difficulty is due to a lack of practical method to constrain electron and proton localized diabatic states in wave function or density functional theory calculations. Employing a multistate density functional theory (MSDFT), in which the electron and proton localized diabatic configurations are constructed through block-localization of Kohn-Sham orbitals, we show that distinction between concerted proton-electron transfer (CPET) and HAT, which are not distinguishable experimentally from phenomenological kinetic data, can be made by examining the third dimension of a More O'Ferrall-Jencks diagram that includes both the ground and excited state potential surfaces. In addition, we formulate a pair of effective two-state valence bond models to represent the CPET and HAT mechanisms. We found that the lower energy of the CPET and HAT effective diabatic states at the intersection point can be used as an energetic criterion to distinguish the two mechanisms. In the isoelectronic series of hydrogen exchange reaction in (PhX)(2)H(•), where X = O, NH, and CH(2), there is a continuous transition from a CPET mechanism for the phenoxy radical-phenol pair to a HAT process for benzyl radical and toluene, while the reaction between PhNH(2) and PhNH(•) has a mechanism intermediate of CPET and HAT. The electronically nonadiabatic

  11. Crystal structure of [UO2(NH35]NO3·NH3

    Directory of Open Access Journals (Sweden)

    Patrick Woidy

    2016-12-01

    Full Text Available Pentaammine dioxide uranium(V nitrate ammonia (1/1, [UO2(NH35]NO3·NH3, was obtained in the form of yellow crystals from the reaction of caesium uranyl nitrate, Cs[UO2(NO33], and uranium tetrafluoride, UF4, in dry liquid ammonia. The [UO2]+ cation is coordinated by five ammine ligands. The resulting [UO2(NH35] coordination polyhedron is best described as a pentagonal bipyramid with the O atoms forming the apices. In the crystal, numerous N—H...N and N—H...O hydrogen bonds are present between the cation, anion and solvent molecules, leading to a three-dimensional network.

  12. Moessbauer study of 57Fe isolated in NH3 and NH3/Xe matrices

    International Nuclear Information System (INIS)

    Saitovitch, E.M.B.; Litterst, F.J.; Micklitz, H.

    1981-01-01

    Moessbauer studies on 57 Fe isolated in solid ammonia and ammonia/xenon mixtures were perfomed at 4.2 K and 77 K. They show clearly that atomic iron reacts only with one ammonia molecule forming FeNH 3 which is stable in an ammonia matrix up to 77 K. In addition a compound is formed which is attributed to an iron (II) hexammine. (Author) [pt

  13. On the volatility of nihonium (Nh, Z = 113)

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, Nikolay V.; Steinegger, Patrick; Abdullin, Farid Sh.; Albin, Yury V.; Chepigin, Viktor I.; Lebedev, Vyacheslav Ya.; Madumarov, Alexander Sh.; Malyshev, Oleg N.; Petrushkin, Oleg V.; Polyakov, Alexander N.; Popov, Yury A.; Sabel' nikov, Alexey V.; Sagaidak, Roman N.; Shirokovsky, Igor V.; Shumeiko, Maksim V.; Starodub, Gennadii Ya.; Tsyganov, Yury S.; Utyonkov, Vladimir K.; Voinov, Alexey A.; Vostokin, Grigory K.; Yeremin, Alexander V.; Dmitriev, Sergey N. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russian Federation); Bozhikov, Gospodin A. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Advanced Physical Studies, Sofia (Bulgaria); Eichler, Robert [Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen PSI (Switzerland); Departement fuer Chemie und Biochemie, Universitaet Bern, Bern (Switzerland)

    2017-07-15

    Gas-phase chromatography studies of nihonium (Nh, Z = 113) were carried out at the one-atom-at-a-time level. For the production of nihonium, the heavy-ion-induced nuclear fusion reaction of {sup 48}Ca with {sup 243}Am was used. This leads to isotopes {sup 284,285}Nh, as the direct descendants of the α-decaying precursors {sup 288,289}Mc. Combining the Dubna Gas-Filled Recoil Separator with gas-phase chromatographic separation, the experiment was sensitive to elemental nihonium and its adsorption behavior on Teflon, theoretically predicted by modern relativistic density functional theory. The non-observation of any decays of Nh after the chemical separation indicates a larger than expected retention of elemental Nh on a Teflon surface. (orig.)

  14. First principles study of NH3 molecular adsorption on LiH (100) surfaces

    International Nuclear Information System (INIS)

    Lu Xiaoxia; Chen Yuhong; Dong Xiao

    2012-01-01

    The adsorption of NH 3 on LiH (100) crystal surfaces was studied by first principles method. The preferred adsorption sites, adsorption energy, dissociation energy and electronic structure of the LiH (100)/NH 3 systems were calculated separately. It is found that chemical adsorption happened mainly when NH 3 molecules are on the LiH (100) crystal surfaces. When NH 3 is adsorbed on the Li top site, NH 2 is formed on the LiH (100) crystal surfaces after loss of H atom, the calculated adsorption energy, 0.511 eV, belongs to strong chemical adsorption, then the interaction is strongest. The interaction between NH 2 and the neighboring Li, H are ionic. The covalent bonds are formed between N and H atoms in NH 2 . One H 2 molecule is formed by another H atom in NH 3 and H atom from LiH (100) crystal sur- faces. The covalent bonds are formed between H and H atoms in H 2 . (authors)

  15. Real-time observation of formation and relaxation dynamics of NH4 in (CH3OH)m(NH3)n clusters.

    Science.gov (United States)

    Yamada, Yuji; Nishino, Yoko; Fujihara, Akimasa; Ishikawa, Haruki; Fuke, Kiyokazu

    2009-03-26

    The formation and relaxation dynamics of NH4(CH3OH)m(NH3)n clusters produced by photolysis of ammonia-methanol mixed clusters has been observed by a time-resolved pump-probe method with femtosecond pulse lasers. From the detailed analysis of the time evolutions of the protonated cluster ions, NH4(+)(CH3OH)m(NH3)n, the kinetic model has been constructed, which consists of sequential three-step reaction: ultrafast hydrogen-atom transfer producing the radical pair (NH4-NH2)*, the relaxation process of radical-pair clusters, and dissociation of the solvated NH4 clusters. The initial hydrogen transfer hardly occurs between ammonia and methanol, implying the unfavorable formation of radical pair, (CH3OH2-NH2)*. The remarkable dependence of the time constants in each step on the number and composition of solvents has been explained by the following factors: hydrogen delocalization within the clusters, the internal conversion of the excited-state radical pair, and the stabilization of NH4 by solvation. The dependence of the time profiles on the probe wavelength is attributed to the different ionization efficiency of the NH4(CH3OH)m(NH3)n clusters.

  16. Two-center three-electron bonding in ClNH{sub 3} revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH{sub 3} → ClNH{sub 2} + H reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Christopher P.; Douberly, Gary E., E-mail: douberly@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 (United States); Xie, Changjian; Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Kaufmann, Matin [Department of Physical Chemistry II, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-04-28

    Pyrolytic dissociation of Cl{sub 2} is employed to dope helium droplets with single Cl atoms. Sequential addition of NH{sub 3} to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH{sub 3} → ClNH{sub 2} + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C{sub 3v} symmetric top. Frequency shifts from NH{sub 3} and dipole moment measurements are consistent with a ClNH{sub 3} complex containing a relatively strong two-center three-electron (2c–3e) bond. The nature of the 2c–3e bonding in ClNH{sub 3} is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH{sub 3}Cl and Cl–HNH{sub 2}, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH{sub 3} → HCl + NH{sub 2}.

  17. Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Noritake, T.; Nozaki, H.; Aoki, M.; Towata, S.; Kitahara, G.; Nakamori, Y.; Orimo, S.

    2005-01-01

    Complex hydrides, such as lithium amide (LiNH 2 ) and lithium imide (Li 2 NH), have recently been noticed as one of the most promising materials for reversible hydrogen storage. In this paper, we reveal the bonding nature of hydrogen in Li 2 NH crystal by synchrotron powder X-ray diffraction measurement at room temperature. The crystal structure was refined by Rietveld method and the charge density distribution was analyzed by maximum entropy method (MEM). The Li 2 NH crystal is anti-fluorite type structure (space group Fm3-bar m) consisting of Li and NH. Hydrogen atom occupies randomly the 48h (Wyckoff notation) sites around N atom. The refined lattice constant is a=5.0742(2)A. The charge density distribution around NH anion in Li 2 NH is almost spherical. The number of electrons within the sphere around the Li and NH is estimated from the obtained charge density distribution. As the result, the ionic charge is expressed as [Li 0.99+ ] 2 [NH] 1.21- . Therefore, it is confirmed experimentally that Li 2 NH is ionically bonded

  18. Treatment for GaSb surfaces using a sulphur blended (NH4)2S/(NH4)2SO4 solution

    International Nuclear Information System (INIS)

    Murape, D.M.; Eassa, N.; Neethling, J.H.; Betz, R.; Coetsee, E.; Swart, H.C.; Botha, J.R.; Venter, A.

    2012-01-01

    A sulphur based chemical, [(NH 4 ) 2 S/(NH 4 ) 2 SO 4 ] to which S has been added, not previously reported for the treatment of (1 0 0) n-GaSb surfaces, is introduced and benchmarked against the commonly used passivants Na 2 S·9H 2 O and (NH 4 ) 2 S. The surfaces of the treated material were studied by scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It has been found that the native oxides present on the GaSb surface are more effectively removed when treated with ([(NH 4 ) 2 S/(NH 4 ) 2 SO 4 ] + S) than with (NH 4 ) 2 S or Na 2 S·9H 2 O, as evidenced by the ratio of the O 506eV to Sb 457eV AES peaks. XPS results reveal that Sb 2 S 3 /Sb 2 S 5 “replaces” Sb 2 O 3 /Sb 2 O 5 , suggesting that sulphur atoms substitute oxygen atoms in Sb 2 O 3 /Sb 2 O 5 to form Sb-S. It seems sulphurization only partially removes Ga 2 O 3 . Treatment with ([(NH 4 ) 2 S/(NH 4 ) 2 SO 4 ] + S) also results in a noteworthy improvement in the current-voltage (I-V) characteristics of Au/n-GaSb Schottky contacts compared to those fabricated on as-received material.

  19. Investigation on thermal evaporated CH3NH3PbI3 thin films

    Directory of Open Access Journals (Sweden)

    Youzhen Li

    2015-09-01

    Full Text Available CH3NH3I, PbI2 and CH3NH3PbI3 films were fabricated by evaporation and characterized with X-ray Photoelectron Spectroscopy (XPS and X-ray diffraction (XRD. The XPS results indicate that the PbI2 and CH3NH3PbI3 films are more uniform and stable than the CH3NH3I film. The atomic ratio of the CH3NH3I, PbI2 and CH3NH3PbI3 films are C:N:I=1.00:1.01:0.70, Pb:I= 1.00:1.91 and C: N: Pb: I = 1.29:1.07:1.00:2.94, respectively. The atomic ratio of CH3NH3PbI3 is very close to that of the ideal perovskite. Small angle x-ray diffraction results demonstrate that the as evaporated CH3NH3PbI3 film is crystalline. The valence band maximum (VBM and work function (WF of the CH3NH3PbI3 film are about 0.85eV and 4.86eV, respectively.

  20. Electron transport in NH3/NO2 sensed buckled antimonene

    Science.gov (United States)

    Srivastava, Anurag; Khan, Md. Shahzad; Ahuja, Rajeev

    2018-04-01

    The structural and electronic properties of buckled antimonene have been analysed using density functional theory based ab-initio approach. Geometrical parameters in terms of bond length and bond angle are found close to the single ruffle mono-layer of rhombohedral antimony. Inter-frontier orbital analyses suggest localization of lone pair electrons at each atomic centre. Phonon dispersion along with high symmetry point of Brillouin zone does not signify any soft mode. With an electronic band gap of 1.8eV, the quasi-2D nano-surface has been further explored for NH3/NO2 molecules sensing and qualities of interaction between NH3/NO2 gas and antimonene scrutinized in terms of electronic charges transfer. A current-voltage characteristic has also been analysed, using Non Equilibrium Green's function (NEGF), for antimonene, in presence of incoming NH3/NO2 molecules.

  1. Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants

    Directory of Open Access Journals (Sweden)

    Martins-Loução Maria A

    2011-05-01

    Full Text Available Abstract Background In plants, nitrate (NO3- nutrition gives rise to a natural N isotopic signature (δ15N, which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+ nutrition. When NH4+ is the major N source, the two forms, NH4+ and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g and NH4+ (aq which drives to a different δ15N. Nine plant species with different NH4+-sensitivities were cultured hydroponically with NO3- or NH4+ as the sole N sources, and plant growth and δ15N were determined. Short-term NH4+/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4+ and NH3. Results Several NO3--fed plants were consistently enriched in 15N, whereas plants under NH4+ nutrition were depleted of 15N. It was shown that more sensitive plants to NH4+ toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4+ showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4+ pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. Conclusions This article proposes that the negative values of δ15N in NH4+-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4+/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4+ may have two components: one that

  2. Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants.

    Science.gov (United States)

    Ariz, Idoia; Cruz, Cristina; Moran, Jose F; González-Moro, María B; García-Olaverri, Carmen; González-Murua, Carmen; Martins-Loução, Maria A; Aparicio-Tejo, Pedro M

    2011-05-16

    In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4+ is the major N source, the two forms, NH4+ and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4+ (aq) which drives to a different δ15N. Nine plant species with different NH4+-sensitivities were cultured hydroponically with NO3- or NH4+ as the sole N sources, and plant growth and δ15N were determined. Short-term NH4+/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4+ and NH3. Several NO3--fed plants were consistently enriched in 15N, whereas plants under NH4+ nutrition were depleted of 15N. It was shown that more sensitive plants to NH4+ toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4+ showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4+ pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. This article proposes that the negative values of δ15N in NH4+-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4+/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4+ may have two components: one that transports N in the molecular form and is associated with

  3. Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants

    Science.gov (United States)

    2011-01-01

    Background In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4+ is the major N source, the two forms, NH4+ and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4+ (aq) which drives to a different δ15N. Nine plant species with different NH4+-sensitivities were cultured hydroponically with NO3- or NH4+ as the sole N sources, and plant growth and δ15N were determined. Short-term NH4+/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4+ and NH3. Results Several NO3--fed plants were consistently enriched in 15N, whereas plants under NH4+ nutrition were depleted of 15N. It was shown that more sensitive plants to NH4+ toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4+ showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4+ pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. Conclusions This article proposes that the negative values of δ15N in NH4+-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4+/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4+ may have two components: one that transports N in the

  4. H2 dilution effect in the Cat-CVD processes of the SiH4/NH3 system

    International Nuclear Information System (INIS)

    Ansari, S.G.; Umemoto, Hironobu; Morimoto, Takashi; Yoneyama, Koji; Izumi, Akira; Masuda, Atsushi; Matsumura, Hideki

    2006-01-01

    Gas-phase diagnostics in the catalytic chemical vapor deposition processes of the SiH 4 /NH 3 /H 2 system were carried out to examine the effect of H 2 dilution. The decomposition efficiency of NH 3 showed a sharp decrease with the introduction of a small amount of SiH 4 , but this decrease was recovered by the addition of H 2 when the NH 3 pressure was low. On the other hand, at higher NH 3 pressures, the decomposition efficiency showed a minor dependence on the H 2 partial pressure. The addition of SiH 4 to the NH 3 system decreases the H-atom density by one order of magnitude, but this decrease is also recovered by H 2 addition. H atoms produced from H 2 must re-activate the catalyzer surfaces poisoned by SiH 4 when the NH 3 pressure is low

  5. Is Electronegativity a Useful Descriptor for the 'Pseudo-Alkali-Metal' NH4?

    International Nuclear Information System (INIS)

    Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.

    2011-01-01

    Molecular ions in the form of 'pseudo-atoms' are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the 'pseudo-alkali metal' ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, and reactivity), which can cause deviations from the behaviour expected of a conceptual 'true alkali metal' with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.

  6. UiO-66-NH2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Lee, Dennis T; Zhao, Junjie; Oldham, Christopher J; Peterson, Gregory W; Parsons, Gregory N

    2017-12-27

    Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles show promising performance for many future applications. In particular, Zr-based UiO-66-family MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents (CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation mechanism of Zr-based MOFs on different metal oxides and how product performance is affected are not well understood. Herein, we provide new insight into how different inorganic nucleation films (i.e., Al 2 O 3 , ZnO, or TiO 2 ) conformally coated on polypropylene (PP) nonwoven textiles via atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield of UiO-66-NH 2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, we find that TiO 2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate (DMNP) with t 1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. Interestingly, compared to ALD TiO 2 and Al 2 O 3 , ALD ZnO induces a larger MOF yield in solution and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical instability of the ZnO layer under MOF formation condition, leading to Zn 2+ ions that promote further homogeneous MOF growth. Insights presented here improve understanding of compatibility between active MOF materials and substrate surfaces, which we believe will help advanced MOF composite materials for a variety of useful functions.

  7. Treatment for GaSb surfaces using a sulphur blended (NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Murape, D.M., E-mail: Davison.Murape@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth, 6031 (South Africa); Eassa, N.; Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth, 6031 (South Africa); Betz, R. [Department of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth, 6031 (South Africa); Coetsee, E.; Swart, H.C. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein, 9300 (South Africa); Botha, J.R.; Venter, A. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth, 6031 (South Africa)

    2012-07-01

    A sulphur based chemical, [(NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}] to which S has been added, not previously reported for the treatment of (1 0 0) n-GaSb surfaces, is introduced and benchmarked against the commonly used passivants Na{sub 2}S{center_dot}9H{sub 2}O and (NH{sub 4}){sub 2}S. The surfaces of the treated material were studied by scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It has been found that the native oxides present on the GaSb surface are more effectively removed when treated with ([(NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}] + S) than with (NH{sub 4}){sub 2}S or Na{sub 2}S{center_dot}9H{sub 2}O, as evidenced by the ratio of the O{sub 506eV} to Sb{sub 457eV} AES peaks. XPS results reveal that Sb{sub 2}S{sub 3}/Sb{sub 2}S{sub 5} 'replaces' Sb{sub 2}O{sub 3}/Sb{sub 2}O{sub 5}, suggesting that sulphur atoms substitute oxygen atoms in Sb{sub 2}O{sub 3}/Sb{sub 2}O{sub 5} to form Sb-S. It seems sulphurization only partially removes Ga{sub 2}O{sub 3}. Treatment with ([(NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}] + S) also results in a noteworthy improvement in the current-voltage (I-V) characteristics of Au/n-GaSb Schottky contacts compared to those fabricated on as-received material.

  8. Rydberb bonding in (NH4)2

    International Nuclear Information System (INIS)

    Boldyrev, A.I.; Simons, J.

    1992-01-01

    Chemical binding of two monovalent Rydberg species to form a singlet-state Rydberg dimer molecule is predicted to be possible Ab initio electronic structure methods that include electron correlation (at levels up through QCISD(T)/6-31++G** MP2(full)/6-31++G** + ZPE) are shown to be essential to achieving a proper description of such bonding. The (NH 4 ) molecule, selected as the prototype for this study, is shown to be bound with respect to its Rydberg-species fragments, 2NH 4 by 7.5-9.7 kcal/mol, depending on the level of treatment of electron correlation, and to be electronically stable (by ca.4 eV) with respect to (NH 4 ) 2 + at the neutral's equilibrium geometry. The (NH 4 ) 2 Rydberg dimer is thermodynamically unstable with respect to 2NH 3 + H 2 by 86-89 kcal/mol mol yet possesses all real vibrational frequencies; it is thus a metastable molecular held together by a weak Rydberg bond. The dissociation energy of the (NH 4 ) 2 + cation to form NH 4 + + NH 4 is found to be larger than that of the neutral (NH 4 ) 2 . 12 refs., 4 figs., 9 tabs

  9. Aquaporin 4 as a NH3 Channel

    DEFF Research Database (Denmark)

    Assentoft, Mette; Kaptan, Shreyas; Schneider, Hans-Peter

    2016-01-01

    -brain-interface, participate in the exchange of ammonia, which is required to sustain the glutamate-glutamine cycle. Here we observe that AQP4-expressing Xenopus oocytes display a reflection coefficient NH4Cl at pH 8.0, at which pH an increased amount of the ammonia occurs in the form of NH3 Taken together with an NH4......Cl-mediated intracellular alkalization (or lesser acidification) of AQP4-expressing oocytes, these data suggest that NH3 is able to permeate the pore of AQP4. Exposure to NH4Cl increased the membrane currents to a similar extent in uninjected oocytes and in oocytes expressing AQP4, indicating...... that the ionic NH4 (+) did not permeate AQP4. Molecular dynamics simulations revealed partial pore permeation events of NH3 but not of NH4 (+) and a reduced energy barrier for NH3 permeation through AQP4 compared with that of a cholesterol-containing lipid bilayer, suggesting AQP4 as a favored transmembrane...

  10. Low Temperature Catalyst for NH3 Removal

    Science.gov (United States)

    Monje, Oscar; Melendez, Orlando

    2013-01-01

    Air revitalization technologies maintain a safe atmosphere inside spacecraft by the removal of C02, ammonia (NH3), and trace contaminants. NH3 onboard the International Space Station (ISS) is produced by crew metabolism, payloads, or during an accidental release of thermal control refrigerant. Currently, the ISS relies on removing NH3 via humidity condensate and the crew wears hooded respirators during emergencies. A different approach to cabin NH3 removal is to use selective catalytic oxidation (SCO), which builds on thermal catalytic oxidation concepts that could be incorporated into the existing TCCS process equipment architecture on ISS. A low temperature platinum-based catalyst (LTP-Catalyst) developed at KSC was used for converting NH3 to H20 and N2 gas by SCO. The challenge of implementing SCO is to reduce formation of undesirable byproducts like NOx (N20 and NO). Gas mixture analysis was conducted using FTIR spectrometry in the Regenerable VOC Control System (RVCS) Testbed. The RVCS was modified by adding a 66 L semi-sealed chamber, and a custom NH3 generator. The effect of temperature on NH3 removal using the LTP-Catalyst was examined. A suitable temperature was found where NH3 removal did not produce toxic NO, (NO, N02) and N20 formation was reduced.

  11. Sequence of phase transitions in (NH4)3SiF7.

    Science.gov (United States)

    Mel'nikova, S V; Molokeev, M S; Laptash, N M; Pogoreltsev, E I; Misyul, S V; Flerov, I N

    2017-02-21

    Single crystals of silicon double salt (NH 4 ) 3 SiF 7 = (NH 4 ) 2 SiF 6 ·NH 4 F = (NH 4 ) 3 [SiF 6 ]F were grown and studied by the methods of polarization optics, X-ray diffraction and calorimetry. A sequence of symmetry transformations with the temperature change was established: P4/mbm (Z = 2) (G 1 ) ↔ Pbam (Z = 4) (G 2 ) ↔ P2 1 /c (Z = 4) (G 3 ) ↔ P1[combining macron] (Z = 4) (G 4 ) ↔ P2 1 /c (Z = 8) (G 5 ). Crystal structures of different phases were determined. The experimental data were also interpreted by a group-theoretical analysis of the complete condensate of order parameters taking into account critical and noncritical atomic displacements. Strengthening of the N-HF hydrogen bonds can be a driving force of the observed phase transitions.

  12. Kinetics of selected elementary reactions of NH(a{sup 1}{delta}) or ND(a{sup {delta}}), NH(X{sup 3}{sigma}{sup -}) or ND(X{sup 3}{sigma}{sup -}) and NH{sub 2}(X), NHD(X), NH{sub 2}(X) radicals; Untersuchung der Kinetik ausgewaehlter Elementarreaktionen von NH(a{sup 1}{delta})- bzw. ND(a{sup 1}{delta})-, NH(X{sup 3}{sigma}{sup -})- bzw. ND(X{sup 3}{sigma}{sup -})- und NH{sub 2}(X)-, NHD(X)-, ND{sub 2}(X)-Radikalen

    Energy Technology Data Exchange (ETDEWEB)

    Adam, L.

    2002-02-01

    The elementary reactions of the NH and ND radicals in the ground state and the first excited state with H({sup 2}S) atoms and with molecules containing hydrogen and fluorine element bonds were investigated in the gaseous phase at a pressure of p = 7-80 bar. The elementary reactions of the NH{sub 2}, NHD and ND{sub 2} radicals in the ground state with hydrogen halides in the gaseous phase were investigated as well. [German] Die Elementarreaktionen des NH- bzw. ND-Radikals im Elektronengrundzustand und im ersten elektronisch angeregten Zustand mit H({sup 2}S)-Atomen und mit Molekuelen, die Wasserstoff- und Fluor-Elementbindungen besitzen, wurden in der Gasphase bei einem Druck von p = 7 - 80 mbar untersucht. Weiterhin wurden die Elementarreaktionen der NH{sub 2}-, NHD- bzw. ND{sub 2}-Radikale im Elektronengrundzustand mit Halogenwasserstoffen in der Gasphase untersucht. (orig.)

  13. A Low Temperature Infrared Study Of Deuterated NH4VO3

    Science.gov (United States)

    de Waal, D.; Heyns, A. M.

    1989-12-01

    The existence of (NH4)2V6016 as an intermediate in the thermal decomposition of NH4V03 to V205 has been confirmed by vibrational spectroscopy, resulting in the following reaction in an open systeml: NH4VO3 1 bar, air, 50-200°C/(1) (NH4)2v6o16 1 bar, air, ca.360°C/(2) V205 The kinetics of reaction (1) was studied by means of Raman spectroscopy, and structural information on NH4V03 and (N114)V60 16 was required to obtain an accurate description of the reaction mechanism2. Information on the site symmetry of an ammonium ion and hydrogen bonding in a crystal can be obtained by considering the infrared spectra of isotopically dilute NH3D+ ions in the lattice at liquid nitrogen temperatures3, especially as the position of hydrogen atoms in (NHO2V6016 could not be determined by X-ray methods.

  14. Structural determinants of NH3 and NH4+ transport by mouse Rhbg, a renal Rh glycoprotein.

    Science.gov (United States)

    Abdulnour-Nakhoul, Solange; Le, Trang; Rabon, Edd; Hamm, L Lee; Nakhoul, Nazih L

    2016-12-01

    Renal Rhbg is localized to the basolateral membrane of intercalated cells and is involved in NH 3 /NH 4 + transport. The structure of Rhbg is not yet resolved; however, a high-resolution crystal structure of AmtB, a bacterial homolog of Rh, has been determined. We aligned the sequence of Rhbg to that of AmtB and identified important sites of Rhbg that may affect transport. Our analysis positioned three conserved amino acids, histidine 183 (H183), histidine 342 (H342), and tryptophan 230 (W230), within the hydrophobic pore where they presumably serve to control NH 3 transport. A fourth residue, phenylalanine 128 (F128) was positioned at the upper vestibule, presumably contributing to recruitment of NH 4 + We generated three mutations each of H183, H342, W230, and F128 and expressed them in frog oocytes. Immunolabeling showed that W230 and F128 mutants were localized to the cell membrane, whereas H183 and H342 staining was diffuse and mostly intracellular. To determine function, we compared measurements of NH 3 /NH 4 + and methyl amine (MA)/methyl ammonium (MA + )-induced currents, intracellular pH, and surface pH (pHs) among oocytes expressing the mutants, Rhbg, or injected with H 2 O. In H183 and W230 mutants, NH 4 + -induced current and intracellular acidification were inhibited compared with that of Rhbg, and MA-induced intracellular alkalinization was completely absent. Expression of H183A or W230A mutants inhibited NH 3 /NH 4 + - and MA/MA + -induced decrease in pHs to the level observed in H 2 O-injected oocytes. Mutations of F128 did not significantly affect transport of NH 3 or NH 4 + These data demonstrated that mutating H183 or W230 caused loss of function but not F128. H183 and H342 may affect membrane expression of the transporter.

  15. Imaging a multidimensional multichannel potential energy surface: Photodetachment of H(-)(NH3) and NH4 (.).

    Science.gov (United States)

    Hu, Qichi; Song, Hongwei; Johnson, Christopher J; Li, Jun; Guo, Hua; Continetti, Robert E

    2016-06-28

    Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH4 and the double Rydberg anion NH4 (-) represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H(-)(NH3) ion-dipole complex and the NH4 (-) DRA probes different regions on the neutral NH4 PES. Photoelectron energy and angular distributions at photon energies of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH4 Rydberg radical occurs to H + NH3 with a peak kinetic energy of 0.13 eV, showing the ground state of NH4 to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.

  16. Et2NH2C6H3(CO23SnBr2.4H2O: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    DAOUDA NDOYE

    2014-01-01

    Full Text Available The title compound has been obtained on allowing [C6H3(CO23(Et2NH23] to react with SnBr4. The molecular structure of Et2NH2C6H3(CO23SnBr2.4H2O has been determined on the basis of the infrared data. The suggested structure is a dimer in which each tin atom is hexacoordinated by two chelating C6H3(CO233- anions and two Br atoms. Cy2NH2+cations are involved through hydrogen bonds with non-coordinating CO2 groups. The suggested structure is a cage.

  17. Role of NH3 and NH4+ transporters in renal acid-base transport.

    Science.gov (United States)

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  18. Crystal structure of beryllium amide, Be(NH2)2

    International Nuclear Information System (INIS)

    Jacobs, H.

    1976-01-01

    The x-ray investigation of single crystals of beryllium amide led to the following results. The compound crystallizes tetragonally a = 10.170 +- 0.005 A, c = 16.137 +- 0.008 A, and c/a = 1.587. The space group is I4 1 /acd. The lattice contains 32 formula units. The positions of all atoms including hydrogen were determined. The structure of Be(NH 2 ) 2 can be described by a strongly deformed cubic closepacking of anions. The cations occupy tetrahedral interstices so that 4 Be 2+ ions form a regular tetrahedron with the shortest Be-Be distances. This causes units, which can be described by Be 4 (NH 2 ) 6 (NH 2 ) 4 / 2 whereas the outer 4 amide ions serve as bridging anions to give a threedimensional arrangement. The orientation of the amide ions is given and compared with earlier results on similar metal amides. (author)

  19. ?????????? ?????, ?????????? ??????????? ?? ?????????? ?????????? ????? ? ?????? ???????? ZnCl2 +NH4Cl

    OpenAIRE

    Kuntyi, Orest; Zozulya, Galyna

    2010-01-01

    Zinc cementation by magnesium from ZnCl2 + NH4Cl aqueous solutions has been investigated. The amount of magnesium has been established as 0.8?2.0 g per 1 g of conditioned zinc to obtain recovery degree ? 99 %. At low concentrations of Zn2+ ions (0.025?0.1 M ZnCl2) dispersed deposit is formed with nanoparticles of reduced metal; at high concentrations (0.25?0.5 M) coarse-crystalline and fern-shaped deposit is formed. ?????????? ?????????? ????? ??????? ? ?????? ???????? ZnCl2 + NH4Cl. ????????...

  20. A new NH 3 orbital of the NH 3/Ni(110) surface observed by metastable quenching spectroscopy

    Science.gov (United States)

    Lee, Lihwa; Arias, Jose; Hanrahan, Ciaran; Martin, Richard M.; Metiu, Horia

    1986-01-01

    By using metastable quenching spectroscopy we have found a new NH 3 filled orbital (in the language of one electron theory) for NH 3/Ni(110), located at the Fermi level of the surface. The orbital is not observed when NH 3 is adsorbed on Ni(110), but it is detected for NH 3 adsorbed on polycrystalline Al.

  1. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots.

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J

    2013-12-01

    Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.

  2. Mixed adenine/guanine quartets with three trans-a2 Pt(II) (a=NH(3) or MeNH(2)) cross-links: linkage and rotational isomerism, base pairing, and loss of NH(3).

    Science.gov (United States)

    Albertí, Francisca M; Rodríguez-Santiago, Luis; Sodupe, Mariona; Mirats, Andrea; Kaitsiotou, Helena; Sanz Miguel, Pablo J; Lippert, Bernhard

    2014-03-17

    Of the numerous ways in which two adenine and two guanines (N9 positions blocked in each) can be cross-linked by three linear metal moieties such as trans-a2 Pt(II) (with a=NH3 or MeNH2 ) to produce open metalated purine quartets with exclusive metal coordination through N1 and N7 sites, one linkage isomer was studied in detail. The isomer trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)}2 ][(ClO4 )6 ]⋅3H2 O (1) (with 9-EtA=9-ethyladenine and 9-MeGH=9-methylguanine) was crystallized from water and found to adopt a flat Z-shape in the solid state as far as the trinuclear cation is concerned. In the presence of excess 9-MeGH, a meander-like construct, trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)2 }][(ClO4 )6 ]⋅[(9-MeGH)2 ]⋅7 H2 O (2) is formed, in which the two extra 9-MeGH nucleobases are hydrogen bonded to the two terminal platinated guanine ligands of 1. Compound 1, and likewise the analogous complex 1 a (with NH3 ligands only), undergo loss of an ammonia ligand and formation of NH4 (+) when dissolved in [D6 ]DMSO. From the analogy between the behavior of 1 and 1 a it is concluded that a NH3 ligand from the central Pt atom is lost. Addition of 1-methylcytosine (1-MeC) to such a DMSO solution reveals coordination of 1-MeC to the central Pt. In an analogous manner, 9-MeGH can coordinate to the central Pt in [D6 ]DMSO. It is proposed that the proton responsible for formation of NH4 (+) is from one of the exocyclic amino groups of the two adenine bases, and furthermore, that this process is accompanied by a conformational change of the cation from Z-form to U-form. DFT calculations confirm the proposed mechanism and shed light on possible pathways of this process. Calculations show that rotational isomerism is not kinetically hindered and that it would preferably occur previous to the displacement of NH3 by DMSO. This displacement is the most energetically costly step, but it is compensated by the proton

  3. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes

    DEFF Research Database (Denmark)

    Holm, Lars M.; Jahn, Thomas Paul; Møller, Anders Laurell Blom

    2005-01-01

    We have shown recently, in a yeast expression system, that some aquaporins are permeable to ammonia. In the present study, we expressed the mammalian aquaporins AQP8, AQQP9, AQP3, AQP1 and a plant aquaporin TIP2;1 in Xenopus oocytes to study the transport of ammonia (NH3) and ammonium (NH4+) under...... inwards currents carried by NH4+. This conductivity increased as a sigmoid function of external [NH3]: for AQP8 at a bath pH (pH(e)) of 6.5, the conductance was abolished, at pH(e) 7.4 it was half maximal and at pH(e) 7.8 it saturated. NY4+ influx was associated with oocyte swelling. In comparison, native...... oocytes as well as AQP1 and tip2;1-expressing oocytes showed small currents that were associated with small and even negative volume changes. We conclude that AQP8, AQP9, AQP3, and TIP2;1, apart from being water channels, also support significant fluxes of NH3. These aquaporins could support NH4...

  4. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  5. Carbon nitride films synthesized by NH3-ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Song, H.W.; Cui, F.Z.; He, X.M.; Li, W.Z.; Li, H.D.

    1994-01-01

    Carbon nitride thin film films have been prepared by NH 3 -ion-beam-assisted deposition with bombardment energies of 200-800 eV at room temperature. These films have been characterized by transmission electron microscopy. Auger electron spectroscopy and x-ray photoelectron spectroscopy for chemical analysis. It was found that the structure of the films varied with the bombardment energy. In the case of 400 eV bombardment, the tiny crystallites immersed on an amorphous matrix were identified to be β-C 3 N 4 . X-ray photoelectron spectroscopy indicated that some carbon atoms and nitrogen atoms form unpolarized covalent bonds in these films. (Author)

  6. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction

    Science.gov (United States)

    Yamei, Wu; Ruixia, Yang; Hanmin, Tian; Shuai, Chen

    2016-05-01

    Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ±5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Isc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated. Project supported by the Hebei Province Natural Science Foundation of China (No. F2014202184) and the Tianjin Natural Science Foundation of China (No. 15JCZDJC37800).

  7. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  8. NH4+-NH3 removal from simulated wastewater using UV-TiO2 photocatalysis: effect of co-pollutants and pH.

    Science.gov (United States)

    Vohra, M S; Selimuzzaman, S M; Al-Suwaiyan, M S

    2010-05-01

    The main objective of the present study was to investigate the efficiency of titanium dioxide (TiO2) assisted photocatalytic degradation (PCD) process for the removal of ammonium-ammonia (NH4(+)-NH3) from the aqueous phase and in the presence of co-pollutants thiosulfate (S2O3(2-)) and p-cresol (C6H4CH3OH) under varying mixed conditions. For the NH4(+)-NH3 only PCD experiments, results showed higher NH4 -NH3 removal at pH 12 compared to pH 7 and 10. For the binary NH4(+)-NH3/S2O3(2-) studies the respective results indicated a significant lowering in NH4(+)-NH3 PCD in the presence of S2O32- at pH 7/12 whereas at pH 10 a marked increase in NH4(+)-NH3 removal transpired. A similar trend was noted for the p-cresol/NH4(+)-NH3 binary system. Comparing findings from the binary (NH4(+)-NH3/S2O3(2-) and p-cresol/NH4(+)-NH3) and tertiary (NH4(+)-NH3/S2O3(2-)/p-cresol) systems, at pH 10, showed fastest NH4(+)-NH3 removal transpiring for the tertiary system as compared to the binary systems, whereas both the binary systems indicated comparable NH4(+)-NH3 removal trends. The respective details have been discussed.

  9. Eliminating amino acid interference during spectrophotometric NH4+ analysis

    NARCIS (Netherlands)

    Ros, G.H.; Leeuwen, van A.G.; Temminghoff, E.J.M.

    2011-01-01

    Amino acids can interfere with NH4+ in spectrophotometric NH4+ determination hampering accurate quantification of the fate of NH4+ and dissolved organic N in soils. Serious interference has been reported for soils rich in organic matter, and for soils that have been fumigated, oven-dried or

  10. [Ag(NH3)2]Ag(OsO3N)2: a new nitridoosmate(VIII)

    International Nuclear Information System (INIS)

    Wickleder, M.S.; Pley, Martin

    2004-01-01

    Dark brown single crystals of [Ag(NH 3 ) 2 ]Ag(OsO 3 N) 2 were obtained from the reaction of Ag 2 CO 3 , OsO 4 , and NH 3 in aqueous solution. The crystal structure was solved in the monoclinic space group C2/m, with the following unit-cell dimensions: a=1962.5(3), b=633.1(1), c=812.6(1) pm, β=96.71(1) deg. The final reliability factor was R=0.0256 for 1034 reflections with I>2σ(I). Linear [Ag(NH 3 ) 2 ] + ions are present oriented perpendicular to the [010] direction, leading to short Ag + -Ag + distances of 316 pm. A second type of Ag + ions in the crystal structure present coordination number '6+1' and are surrounded by oxygen and nitrogen atoms of the nitridoosmate groups. Within the first of the two crystallographically distinguishable anions one can clearly differentiate between oxygen and nitrogen atoms while the second one exhibits a N/O disorder over two positions. The infrared spectrum of [Ag(NH 3 ) 2 ]Ag(OsO 3 N) 2 shows the typical absorptions which can be attributed to the complex anions and the NH 3 ligands

  11. NH{sub 3} adsorption on the Lewis and Bronsted acid sites of MoO{sub 3} (0 1 0) surface: A cluster DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Fan, Junyan [Foundation Department, Shanxi Police Academy, No. 27 Second Section of Old Jinci Road, Taiyuan 030021, Shanxi (China); Zuo, Zhijun [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Li, Zhe, E-mail: lizhe@tyut.edu.cn [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Zhang, Jinshan [College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)

    2014-01-01

    The adsorption of NH{sub 3} on the Lewis and Bronsted acid sites of MoO{sub 3} (0 1 0) surface has been investigated based on the density functional theory (DFT) method using the clusters models. The calculated results indicate that NH{sub 3} could strongly adsorb on both the Lewis and Bronsted acid sites in the form of NH{sub 3} species and NH{sub 4}{sup +} respectively, whereas the adsorption on the Lewis acid site is found to be more favorable energetically than that on the Bronsted acid site. For the Lewis acid site Mulliken population analysis shows a donation of lone pairs from NH{sub 3} to the surface and activation of N–H bond. The overlaps of N-s, N-p and Mo-d orbitals suggest the strong interaction between N and Mo atoms. For the Bronsted acid site N–H bond is also activated by the formation of NH{sub 4}{sup +} species. The hybridizations between H and O atoms as well as N and H atoms are the major reasons for strong chemical adsorption of NH{sub 3} and the existence of NH{sub 4}{sup +} species, which partly attributed to the presence of N–H… O hydrogen bonds. Furthermore, the formation of a second Lewis acid site at adjacent or diagonal site results in slight changes of adsorption stability, structural changes and charge redistributions, suggesting its small influence on NH{sub 3} adsorption.

  12. Anomalous Centrifugal Distortion in NH_2

    Science.gov (United States)

    Martin-Drumel, Marie-Aline; Pirali, Olivier; Coudert, L. H.

    2017-06-01

    The NH2 radical spectrum, first observed by Herzberg and Ramsay, is dominated by a strong Renner-Teller effect giving rise to two electronic states: the bent X ^{2}B_1 ground state and the quasi-linear A ^{2}A_1 excited state. The NH2 radical has been the subject of numerous high-resolution investigations and its electronic and ro-vibrational transitions have been measured. Using synchrotron radiation, new rotational transitions have been recently recorded and a value of the rotational quantum number N as large as 26 could be reached. In the X ^{2}B_1 ground state, the NH2 radical behaves like a triatomic molecule displaying spin-rotation splittings. Due to the lightness of the molecule, a strong coupling between the overall rotation and the bending mode arises whose effects increase with N and lead to the anomalous centrifugal distortion evidenced in the new measurements.^d In this talk the Bending-Rotation approach developed to account for the anomalous centrifugal distortion of the water molecule is modified to include spin-rotation coupling and applied to the fitting of high-resolution data pertaining to the ground electronic state of NH2. A preliminary line position analysis of the available data^{c,d} allowed us to account for 1681 transitions with a unitless standard deviation of 1.2. New transitions could also be assigned in the spectrum recorded by Martin-Drumel et al.^d In the talk, the results obtained with the new theoretical approach will be compared to those retrieved with a Watson-type Hamiltonian and the effects of the vibronic coupling between the ground X ^{2}B_1 and the excited A ^{2}A_1 electronic state will be discussed. Herzberg and Ramsay, J. Chem. Phys. 20 (1952) 347 Dressler and Ramsay, Phil. Trans. R. Soc. A 25 (1959) 553 Hadj Bachir, Huet, Destombes, and Vervloet, J. Molec. Spectrosc. 193 (1999) 326 McKellar, Vervloet, Burkholder, and Howard, J. Molec. Spectrosc. 142 (1990) 319 Morino and Kawaguchi, J. Molec. Spectrosc. 182 (1997) 428

  13. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  14. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  15. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  16. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  17. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  18. Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air

    International Nuclear Information System (INIS)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki

    2016-01-01

    Low stability of organic-inorganic perovskite (CH 3 NH 3 PbI 3 ) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH 3 NH 3 PbI 3 layers prepared by a laser evaporation technique is studied. We present evidence that the CH 3 NH 3 PbI 3 degradation in humid air proceeds by two competing reactions of (i) the PbI 2 formation by the desorption of CH 3 NH 3 I species and (ii) the generation of a CH 3 NH 3 PbI 3 hydrate phase by H 2 O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH 3 NH 3 PbI 3 layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH 3 NH 3 PbI 3 layer is converted completely to hexagonal platelet PbI 2 /hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH 3 NH 3 PbI 3 in humid air.

  19. Heterogeneous reactions between ions NH3+and NH+andhydrocarbons adsorbed on a tungsten surface.Formation of HCN+in NH+-surface hydrocarbon collisions

    Czech Academy of Sciences Publication Activity Database

    Harnisch, M.; Scheier, P.; Herman, Zdeněk

    2015-01-01

    Roč. 392, DEC 2015 (2015), s. 139-144 ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : ion-surface collisions * NH3+ and NH+projectiles * surface hydrocarbons Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.183, year: 2015

  20. Crystal structure of NH4[La(SO42(H2O

    Directory of Open Access Journals (Sweden)

    Meriem Benslimane

    2015-06-01

    Full Text Available The principal building units in the crystal structure of ammonium aquabis(sulfatolanthanate(III are slightly distorted SO4 tetrahedra, LaO9 polyhedra in the form of distorted tricapped trigonal prisms, and NH4+ ions. The La3+ cation is coordinated by eight O atoms from six different sulfate tetrahedra, two of which are bidentate coordinating and four monodentate, as well as one O atom from a water molecule; each sulfate anion bridges three La3+ cations. These bridging modes result in the formation of a three-dimensional anionic [La(SO42(H2O]− framework that is stabilized by O—H...O hydrogen-bonding interactions. The disordered ammonium cations are situated in the cavities of this framework and are hydrogen-bonded to six surrounding O atoms.

  1. Unique reactivity of Fe nanoparticles-defective graphene composites toward NH x (x = 0, 1, 2, 3) adsorption: A first-principles study

    KAUST Repository

    Liu, Xin

    2012-01-01

    We investigated the electronic structure of Fe nanoparticle-graphene composites and the impact of the interfacial interaction on NH x (x = 0, 1, 2, 3) adsorption by first-principles based calculations. We found that Fe 13 nanoparticles can be stabilized by the sp 2 dangling bonds on single vacancy graphene substrate with a binding energy up to -7.07 eV. This interaction not only deformed the carbon atoms around the defect and gave rise to the stability of the Fe nanoparticle against sintering, but also had significant impact on the adsorption of NH x that is related to the catalytic performance of these composites in NH 3 decomposition. Doping of the single vacancy graphene with N or B can finely tune the adsorption of NH x. Further analysis revealed that the calculated adsorption energies of NH x on these composites correlated well with the shift of the average d-band center of the Fe nanoparticles and they were around the peak of the activity-adsorption energy curve for NH 3 decomposition catalysts, especially when doped with B. The optimal adsorption of NH x on Fe nanoparticles deposited on boron-doped defective graphene suggests the possible high stability and superior catalytic performance of these composites in the low-temperature catalytic decomposition of NH 3. This journal is © 2012 the Owner Societies.

  2. NO ICE HYDROGENATION: A SOLID PATHWAY TO NH2OH FORMATION IN SPACE

    International Nuclear Information System (INIS)

    Congiu, Emanuele; Dulieu, François; Chaabouni, Henda; Baouche, Saoud; Lemaire, Jean Louis; Fedoseev, Gleb; Ioppolo, Sergio; Lamberts, Thanja; Linnartz, Harold; Laffon, Carine; Parent, Philippe; Cuppen, Herma M.

    2012-01-01

    Icy dust grains in space act as catalytic surfaces onto which complex molecules form. These molecules are synthesized through exothermic reactions from precursor radicals and, mostly, hydrogen atom additions. Among the resulting products are species of biological relevance, such as hydroxylamine—NH 2 OH—a precursor molecule in the formation of amino acids. In this Letter, laboratory experiments are described that demonstrate NH 2 OH formation in interstellar ice analogs for astronomically relevant temperatures via successive hydrogenation reactions of solid nitric oxide (NO). Inclusion of the experimental results in an astrochemical gas-grain model proves the importance of a solid-state NO+H reaction channel as a starting point for prebiotic species in dark interstellar clouds and adds a new perspective to the way molecules of biological importance may form in space.

  3. NO ICE HYDROGENATION: A SOLID PATHWAY TO NH{sub 2}OH FORMATION IN SPACE

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Emanuele; Dulieu, Francois; Chaabouni, Henda; Baouche, Saoud; Lemaire, Jean Louis [LERMA-LAMAp, Universite de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 Mail Gay Lussac, 95000 Cergy Pontoise Cedex (France); Fedoseev, Gleb; Ioppolo, Sergio; Lamberts, Thanja; Linnartz, Harold [Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, P.O. Box 9513, 2300 RA Leiden (Netherlands); Laffon, Carine; Parent, Philippe [Laboratoire de Chimie-Physique, Matiere et Rayonnement, Universite Pierre-et-Marie Curie (Paris 06) and CNRS (UMR 7614), 11 rue Pierre-et-Marie-Curie, 75231 Paris (France); Cuppen, Herma M., E-mail: emanuele.congiu@u-cergy.fr [Faculty of Science, Radboud University Nijmegen, IMM, P.O. Box 9010, NL 6500 GL Nijmegen (Netherlands)

    2012-05-01

    Icy dust grains in space act as catalytic surfaces onto which complex molecules form. These molecules are synthesized through exothermic reactions from precursor radicals and, mostly, hydrogen atom additions. Among the resulting products are species of biological relevance, such as hydroxylamine-NH{sub 2}OH-a precursor molecule in the formation of amino acids. In this Letter, laboratory experiments are described that demonstrate NH{sub 2}OH formation in interstellar ice analogs for astronomically relevant temperatures via successive hydrogenation reactions of solid nitric oxide (NO). Inclusion of the experimental results in an astrochemical gas-grain model proves the importance of a solid-state NO+H reaction channel as a starting point for prebiotic species in dark interstellar clouds and adds a new perspective to the way molecules of biological importance may form in space.

  4. Formation of doubly and triply bonded unsaturated compounds HCN, HNC, and CH2NH via N + CH4 low-temperature solid state reaction: from molecular clouds to solar system objects

    Science.gov (United States)

    Mencos, Alejandro; Krim, Lahouari

    2018-06-01

    We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  5. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  6. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  7. NH2+ implantations induced superior hemocompatibility of carbon nanotubes.

    Science.gov (United States)

    Guo, Meixian; Li, Dejun; Zhao, Mengli; Zhang, Yiteng; Deng, Xiangyun; Geng, Dongsheng; Li, Ruying; Sun, Xueliang; Gu, Hanqing; Wan, Rongxin

    2013-05-01

    NH2+ implantation was performed on multiwalled carbon nanotubes (MWCNTs) prepared by chemical vapor deposition. The hemocompatibility of MWCNTs and NH2+-implanted MWCNTs was evaluated based on in vitro hemolysis, platelet adhesion, and kinetic-clotting tests. Compared with MWCNTs, NH2+-implanted MWCNTs displayed more perfect platelets and red blood cells in morphology, lower platelet adhesion rate, lower hemolytic rate, and longer kinetic blood-clotting time. NH2+-implanted MWCNTs with higher fluency of 1 × 1016 ions/cm2 led to the best thromboresistance, hence desired hemocompatibility. Fourier transfer infrared and X-ray photoelectron spectroscopy analyses showed that NH2+ implantation caused the cleavage of some pendants and the formation of some new N-containing functional groups. These results were responsible for the enhanced hemocompatibility of NH2+-implanted MWCNTs.

  8. Crystal structure and phase transition in (NH4)3WO2F5: from dynamic to static orientational disorder.

    Science.gov (United States)

    Udovenko, Anatoly; Laptash, Natalia

    2015-08-01

    Single crystals of tungsten double salt (NH4)3WO2F5 = (NH4)3[WO2F4]F have been synthesized by solid-state reaction or from fluoride solution and its crystal structures at 296 and 193 K were determined by X-ray diffraction. At room temperature, the crystal structure of the compound is dynamically disordered with the ligand atoms statistically distributed on two positions (6e and 24m) of the Pm3m unit cell [a = 6.0298 (1) Å], and the tungsten atom dynamically disordered on 12 orientations forming a spatial cuboctahedron [W12] that enables the real geometry of cis-WO2F4 octahedron to be determined with two short W-O distances. On cooling, the compound undergoes a first-order phase transition with the symmetry change Pm3m → Pa3 and a doubling of the unit-cell parameter [a = 11.9635 (7) Å]. The ligand F(O) atoms statistically occupy two general 24d sites and form W1X6 and W2X6 octahedra, in which the O and F atoms are not crystallographically different that means a static orientational disorder of (NH4)3WO2F5.

  9. Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century. Ammonia and phosphine

    International Nuclear Information System (INIS)

    Hayashi, Makoto

    2004-08-01

    Bibliographies of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for ammonia (NH 3 ) and phosphine (PH 3 ). About 820 (NH 3 ) and 190 (PH 3 ) papers were compiled respectively. Comprehensive author indexes for each molecule are included. The bibliography covers the period 1922 through 2000 for NH 3 and 1928 through 2000 for PH 3 . Finally, author's comments for NH 3 electron collision cross sections are given. (author)

  10. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  11. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  12. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  13. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  14. Dissociation of NH3 and NH2D by high power CO2 laser radiation

    International Nuclear Information System (INIS)

    Jacobs, R.R.

    1976-08-01

    Multiquantum dissociation of polyatomics using intense CO 2 lasers resulting in isotopic enrichment has been demonstrated for several molecules. In this presentation, the possibility of selective dissociation of NH 3 and NH 2 D by high power laser radiation at 10 μm will be considered. Relevant work performed at the Lawrence Livermore Laboratory and elsewhere will be summarized. In this review, attention will be given to four distinct mechanisms that can play varying degrees of importance in such investigations. Discussion will deal with the usefulness of two-resonant-frequency molecular excitation, the role of buffer gases, and the need to monitor the yields into the ground and excited electronic states of the dissociated fragments

  15. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  16. High speed atom source

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi.

    1990-01-01

    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  17. Atomic and molecular adsorption on Fe(110)

    Science.gov (United States)

    Xu, Lang; Kirvassilis, Demetrios; Bai, Yunhai; Mavrikakis, Manos

    2018-01-01

    Iron is the principal catalyst for the ammonia synthesis process and the Fischer-Tropsch process, as well as many other heterogeneously catalyzed reactions. It is thus of fundamental importance to understand the interactions between the iron surface and various reaction intermediates. Here, we present a systematic study of atomic and molecular adsorption behavior over Fe(110) using periodic, self-consistent density functional theory (DFT-GGA) calculations. The preferred binding sites, binding energies, and the corresponding surface deformation energies of five atomic species (H, C, N, O, and S), six molecular species (NH3, CH4, N2, CO, HCN, and NO), and eleven molecular fragments (CH, CH2, CH3, NH, NH2, OH, CN, COH, HCO, NOH, and HNO) were determined on the Fe(110) surface at a coverage of 0.25 monolayer. The binding strengths calculated using the PW91 functional decreased in the following order: C > CH >N > O > S > NH > COH > CN > CH2 > NOH > OH > HNO > HCO > NH2 > H > NO > HCN > CH3 > CO > N2 > NH3. No stable binding structures were observed for CH4. The estimated diffusion barriers and pathways, as well as the adsorbate-surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites, were identified. Using the calculated adsorption energetics, we constructed the potential energy surfaces for a few surface reactions including the decomposition of methane, ammonia, dinitrogen, carbon monoxide, and nitric oxide. These potential energy surfaces provide valuable insight into the ability of Fe(110) to catalyze common elementary steps.

  18. Hydrogen adsorption and storage on Palladium – functionalized graphene with NH-dopant: A first principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Faye, Omar, E-mail: omf071@mail.usask.ca [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9 Saskatchewan (Canada); Department of Condensed Matter Physics, Cheikh Anta Diop University, Dakar (Senegal); Szpunar, Jerzy A; Szpunar, Barbara [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9 Saskatchewan (Canada); Beye, Aboubaker Chedikh [Department of Condensed Matter Physics, Cheikh Anta Diop University, Dakar (Senegal)

    2017-01-15

    Highlights: • H{sub 2} adsorption in single and double-sided Pd-G(3x3) and the effect of NH radical on graphene were studied. • Strong interaction of Pd and graphene in double-sided Pd-G(3x3) than that in the single-sided Pd-G(3x3). • The storage capacity was 3.622 wt% with a binding energy of 0.658 eV/H2. • The increase of NH radicals on Pd-G(3x3) enhanced the binding of Pd atoms on the graphene sheet. • We predicted that 2NH-dopant at the opposite site of Pd atoms prevents the desorption of Pd atom from graphene sheet. - Abstract: We conducted a detailed theoretical investigation of the structural and electronic properties of single and double sided Pd-functionalized graphene and NH-doped Pd-functionalized graphene, which are shown to be efficient materials for hydrogen storage. Nitrene radical dopant was an effective addition required for enhancing the Pd binding on the graphene sheet as well as the storage of hydrogen. We found that up to eight H{sub 2} molecules could be adsorbed by double-sided Pd-functionalized graphene at 0 K with an average binding energy in the range 1.315–0.567 eVA gravimetric hydrogen density of 3.622 wt% was reached in the Pd-functionalized graphene on both sides. The binding mechanism of H{sub 2} molecules came not only the polarization mechanism between Pd and H atoms but also from the binding of the Pd atoms on the graphene sheet and the orbital hybridization. The most crucial part of our work is measuring the effect of nitrene radical on the H{sub 2} adsorption on Pd-functionalized graphene. Our calculations predicted that the addition of NH radicals on Pd-functionalized graphene enhance the binding of H{sub 2} molecules, which helps also to avoid the desorption of Pd(H{sub 2}){sub n} (n = 1–5) complexes from graphene sheet. Our results also predict Pd-functionalized NH-doped graphene is a potential hydrogen storage medium for on-board applications.

  19. Hydrogen adsorption and storage on Palladium – functionalized graphene with NH-dopant: A first principles calculation

    International Nuclear Information System (INIS)

    Faye, Omar; Szpunar, Jerzy A; Szpunar, Barbara; Beye, Aboubaker Chedikh

    2017-01-01

    Highlights: • H_2 adsorption in single and double-sided Pd-G(3x3) and the effect of NH radical on graphene were studied. • Strong interaction of Pd and graphene in double-sided Pd-G(3x3) than that in the single-sided Pd-G(3x3). • The storage capacity was 3.622 wt% with a binding energy of 0.658 eV/H2. • The increase of NH radicals on Pd-G(3x3) enhanced the binding of Pd atoms on the graphene sheet. • We predicted that 2NH-dopant at the opposite site of Pd atoms prevents the desorption of Pd atom from graphene sheet. - Abstract: We conducted a detailed theoretical investigation of the structural and electronic properties of single and double sided Pd-functionalized graphene and NH-doped Pd-functionalized graphene, which are shown to be efficient materials for hydrogen storage. Nitrene radical dopant was an effective addition required for enhancing the Pd binding on the graphene sheet as well as the storage of hydrogen. We found that up to eight H_2 molecules could be adsorbed by double-sided Pd-functionalized graphene at 0 K with an average binding energy in the range 1.315–0.567 eVA gravimetric hydrogen density of 3.622 wt% was reached in the Pd-functionalized graphene on both sides. The binding mechanism of H_2 molecules came not only the polarization mechanism between Pd and H atoms but also from the binding of the Pd atoms on the graphene sheet and the orbital hybridization. The most crucial part of our work is measuring the effect of nitrene radical on the H_2 adsorption on Pd-functionalized graphene. Our calculations predicted that the addition of NH radicals on Pd-functionalized graphene enhance the binding of H_2 molecules, which helps also to avoid the desorption of Pd(H_2)_n (n = 1–5) complexes from graphene sheet. Our results also predict Pd-functionalized NH-doped graphene is a potential hydrogen storage medium for on-board applications.

  20. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  1. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH3 in promoting H + NH3 → H2 + NH2 reaction

    Science.gov (United States)

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-01

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-of-the-art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH3 → H2 + NH2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH3 stretching modes, is demonstrated. It is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.

  2. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  3. Herschel/HIFI deepens the circumstellar NH3 enigma

    NARCIS (Netherlands)

    Menten, K. M.; Wyrowski, F.; Alcolea, J.; De Beck, E.; Decin, L.; Marston, A. P.; Bujarrabal, V.; Cernicharo, J.; Dominik, C.; Justtanont, K.; de Koter, A.; Melnick, G.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Schmidt, M.; Schoier, F. L.; Szczerba, R.; Teyssier, D.; Waters, L. B. F. M.; Edwards, K.; Olberg, M.; Phillips, T. G.; Morris, P.; Salez, M.; Caux, E.

    2010-01-01

    Context. Circumstellar envelopes (CSEs) of a variety of evolved stars have been found to contain ammonia (NH3) in amounts that exceed predictions from conventional chemical models by many orders of magnitude. Aims. The observations reported here were performed in order to better constrain the NH3

  4. CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition

    Science.gov (United States)

    Yao, Zhibo; Wang, Wenli; Shen, Heping; Zhang, Ye; Luo, Qiang; Yin, Xuewen; Dai, Xuezeng; Li, Jianbao; Lin, Hong

    2017-12-01

    Although the two-step deposition (TSD) method is widely adopted for the high performance perovskite solar cells (PSCs), the CH3NH3PbI3 perovskite crystal growth mechanism during the TSD process and the photo-generated charge recombination dynamics in the mesoporous-TiO2 (mp-TiO2)/CH3NH3PbI3/hole transporting material (HTM) system remains unexploited. Herein, we modified the concentration of PbI2 (C(PbI2)) solution to control the perovskite crystal properties, and observed an abnormal CH3NH3PbI3 grain growth phenomenon atop mesoporous TiO2 film. To illustrate this abnormal grain growth mechanism, we propose that a grain ripening process is taking place during the transformation from PbI2 to CH3NH3PbI3, and discuss the PbI2 nuclei morphology, perovskite grain growing stage, as well as Pb:I atomic ratio difference among CH3NH3PbI3 grains with different morphology. These C(PbI2)-dependent perovskite morphologies resulted in varied charge carrier transfer properties throughout the mp-TiO2/CH3NH3PbI3/HTM hybrid, as illustrated by photoluminescence measurement. Furthermore, the effect of CH3NH3PbI3 morphology on light absorption and interfacial properties is investigated and correlated with the photovoltaic performance of PSCs.

  5. Transport experience of NH-25 spent fuel shipping cask for post irradiation examination

    International Nuclear Information System (INIS)

    Mori, Ryuji

    1982-01-01

    Since the Japan Atomic Energy Research Institute and Nippon Nuclear Fuel Development Co. hot laboratories are located far off from the port which can handle spent fuel shipping casks, it is necessary to use a trailer-mounted cask which can be transported by public roads, bridges and intersections for the transportation of spent fuel specimens to these hot laboratories. Model NH-25 shipping cask was designed, manufactured and oualification tested to meet Japanese regulations and was officially registered as a BM type cask. The NH-25 cask accomodates two BWR fuel assemblies, one PWR assembly or one ATR fuel assembly using interchangeable inner containers. The cask weight is 29.2 t. The cask has three concentric stainless steel shells. Gamma shielding is lead cast between the inner shell and the intermediate shell. Neutro n shielding consists of ethylene-glycol-aqueous solution layer formed between the intermediate shell and the outer shell. The NH-25 cask now has been in operation for 2.5 yr. It was used for the transportation of spent fuel assemblies from six LWR power plants to the port on shipping cask carrier ''Hinouramaru'' on the sea, as well as from the port to the hot laboratory on a trailer. The capability of safe handling and transporting of spent fuel assemblies has been well demonstrated. (author)

  6. Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3

    OpenAIRE

    Lee, Paul David; Bristowe, Nicholas C; Bristowe, Paul D; Cheetham, Anthony Kevin

    2015-01-01

    First principles calculations on the hybrid perovskite CH3NH3PbI3 predict strong hydrogen-bonding which influences the structure and dynamics of the methylammonium cation and reveal its interaction with the tilting of the PbI6 octahedra. The calculated atomic coordinates are in excellent agreement with neutron diffraction results. [Image - see article] Funding from the Winton Programme for the Physics of Sustainability at the University of Cambridge is gratefully acknowledged. NCB acknowle...

  7. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  8. Generation of nanopores during desorption of NH3 from Mg(NH3)6Cl2

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Sørensen, Rasmus Zink; Kostova, M.Y.

    2006-01-01

    It is shown that nanopores are formed during desorption of NH3 from Mg(NH3)6Cl2, which has been proposed as a hydrogen storage material. The system of nanopores facilitates the transport of desorbed ammonia away from the interior of large volumes of compacted storage material. DFT calculations sh...

  9. Monitoring and understanding the paraelectric-ferroelectric phase transition in the metal-organic framework [NH4 ][M(HCOO)3 ] by solid-state NMR spectroscopy.

    Science.gov (United States)

    Xu, Jun; Lucier, Bryan E G; Sinelnikov, Regina; Terskikh, Victor V; Staroverov, Viktor N; Huang, Yining

    2015-10-05

    The paraelectric-ferroelectric phase transition in two isostructural metal-organic frameworks (MOFs) [NH4 ][M(HCOO)3 ] (M=Mg, Zn) was investigated by in situ variable-temperature (25) Mg, (67) Zn, (14) N, and (13) C solid-state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder-order transition of NH4 (+) cations causes a change in dielectric properties. It is thought that [NH4 ][Mg(HCOO)3 ] exhibits a higher transition temperature than [NH4 ][Zn(HCOO)3 ] due to stronger hydrogen-bonding interactions between NH4 (+) ions and framework oxygen atoms. (25) Mg and (67) Zn NMR parameters are very sensitive to temperature-induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric-ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although (25) Mg and (67) Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal-atom environments in [NH4 ][M(HCOO)3 ] give rise to relatively narrow spectra that can be acquired in 30-60 min at a low magnetic field of 9.4 T. Complementary (14) N and (13) C SSNMR experiments were performed to probe the role of NH4 (+) -framework hydrogen bonding in the paraelectric-ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4 ][M(HCOO)3 ] system and shows great potential for molecular-level studies on electric phenomena in a wide variety of MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A computational study of dimers and trimers of nitrosyl hydride: Blue shift of NH bonds that are involved in H-bond and orthogonal interactions

    Science.gov (United States)

    Solimannejad, Mohammad; Massahi, Shokofeh; Alkorta, Ibon

    2009-07-01

    Ab initio calculations at MP2/aug-cc-pVTZ level were used to analyze the interactions between nitrosyl hydride (HNO) dimers and trimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Nine different structures have been obtained for the trimers. Three types of interactions are observed, NH⋯N and NH⋯O hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of dimers and trimers including BSSE and ZPE are in the range 4-8 kJ mol -1 and 12-19 kJ mol -1, respectively. Blue shift of NH bond upon complex formation in the ranges between 30-80 and 14,114 cm -1 is predicted for dimers and trimers, respectively.

  11. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.; Hoogland, Sjoerd; Adachi, Michael M.; Kanjanaboos, Pongsakorn; Wong, Chris T. O.; McDowell, Jeffrey J.; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J.; Sargent, Edward H.

    2014-01-01

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  12. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  13. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  14. Ready synthesis of free N-H 2-arylindoles via the copper-catalyzed amination of 2-bromo-arylacetylenes with aqueous ammonia and sequential intramolecular cyclization.

    Science.gov (United States)

    Wang, Huifeng; Li, Yaming; Jiang, Linlin; Zhang, Rong; Jin, Kun; Zhao, Defeng; Duan, Chunying

    2011-07-07

    A wide range of free N-H 2-arylindoles were synthesised via the copper(II)-catalyzed amination of 2-bromo-arylacetylenes with aqueous ammonia and sequential intramolecular cyclization. The convenience and atom economy of aqueous ammonia, and the low cost of the copper catalytic system make this protocol readily superior in practical application.

  15. Analytic models of NH4+ uptake and regeneration experiments

    International Nuclear Information System (INIS)

    Laws, E.A.

    1985-01-01

    Differential equations describing the uptake and regeneration of NH 4 + in both laboratory and field experiments are shown to have analytic solutions which can easily be inverted to determine the rate constants of interest. The solutions are used to study the descriptive ability of two fundamentally different models of NH 4 + cycling, one in which NH 4 + regeneration is regarded as a process that transfers N from participate N to NH 4 + , the other in which regeneration is regarded as a process that introduced NH 4 + to the dissolved phase without removing N from the particulate phase. The former model was found to give a good description of experimental field data and reasonable parameter values in all cases studied. The latter model was much less successful in describing the data and in producing reasonable parameter values. It is concluded that transfer of nitrogen from particulate N to NH 4 + is a process which must be taken into account in analyzing NH 4 + uptake and regeneration experiments

  16. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  17. A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature

    KAUST Repository

    Tan, Yingbin; Guo, Yanhui; Li, Shaofeng; Sun, Weiwei; Zhu, Yihan; Li, Qi; Yu, Xuebin

    2011-01-01

    A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system

  18. Rapid Ammonia Gas Transport Accounts for Futile Transmembrane Cycling under NH3/NH4+ Toxicity in Plant Roots1[C][W

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T.; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J.

    2013-01-01

    Futile transmembrane NH3/NH4+ cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4+ toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4+) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope 13N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4+ ion. Influx of 13NH3/13NH4+, which exceeded 200 µmol g–1 h–1, was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4+), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g–1 h–1). Efflux of 13NH3/13NH4+ responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions. PMID:24134887

  19. Crystal structure and characterization of the novel NH+⋯N hydrogen bonded polar crystal [NH2(CH2)4NH][BF4

    International Nuclear Information System (INIS)

    Wojtaś, M.; Gagor, A.; Czupiński, O.; Medycki, W.; Jakubas, R.

    2012-01-01

    Dielectric properties and phase transitions of the piperazinium tetrafluoroborate ([NH 2 (CH 2 ) 4 NH][BF 4 ], abbreviated as PFB) crystal are related to the one-dimensional arrangement of the cations linked by the bistable NH + ⋯N hydrogen bonds and molecular motions of the [BF 4 ] − units. The crystal structure of [NH 2 (CH 2 ) 4 NH][BF 4 ] is monoclinic at room temperature with the polar space group Pn. The polar/acentric properties of the room temperature phase IV have been confirmed by the piezoelectric and pyroelectric measurements. DSC measurements show that the compound undergoes three first-order structural phase transitions: at 421/411 K (heating/cooling), at 386/372 K and at 364/349 K. 1 H and 19 F NMR measurements indicate the reorientational motions of [BF 4 ] − anions and piperazinium(+) cations as well as the proton motion in the hydrogen-bonded chains of piperazine along the [001] direction. Over the phase I the isotropic reorientational motions or even self-diffusion of the cations and anions are expected. The conductivity measurements in the vicinity of the II–I PT indicate a superionic phase over the phase I. - Graphical abstract: It must be emphasized that the titled compound represents the first organic–inorganic simple salt containing the single-protonated piperazinium cation which was studied by means of the wide variety of experimental techniques. A survey of Cambridge Structural Database (CSD version 5.32 (November 2010) and updates (May 2011)) for structure containing the piperazinium cations yields 248 compounds with the doubly protonated piperazinium(2+) cations and only eight compounds with the singly protonated piperazinium(+) cations. Among these structures only one is the hybrid organic–inorganic material. This is piperazinium nitrate characterized structurally. The crystal packing of [NH 2 (CH 2 ) 4 NH][BF 4 ], phase IV. The dashed lines stand for the hydrogen bonds. The hydrogen bonds to BF4 groups are not included for

  20. Crystal structure and characterization of the novel NH+⋯N hydrogen bonded polar crystal [NH2(CH2)4NH][BF4

    Science.gov (United States)

    Wojtaś, M.; Gaģor, A.; Czupiński, O.; Medycki, W.; Jakubas, R.

    2012-03-01

    Dielectric properties and phase transitions of the piperazinium tetrafluoroborate ([NH2(CH2)4NH][BF4], abbreviated as PFB) crystal are related to the one-dimensional arrangement of the cations linked by the bistable NH+⋯N hydrogen bonds and molecular motions of the [BF4]- units. The crystal structure of [NH2(CH2)4NH][BF4] is monoclinic at room temperature with the polar space group Pn. The polar/acentric properties of the room temperature phase IV have been confirmed by the piezoelectric and pyroelectric measurements. DSC measurements show that the compound undergoes three first-order structural phase transitions: at 421/411 K (heating/cooling), at 386/372 K and at 364/349 K. 1H and 19F NMR measurements indicate the reorientational motions of [BF4]- anions and piperazinium(+) cations as well as the proton motion in the hydrogen-bonded chains of piperazine along the [001] direction. Over the phase I the isotropic reorientational motions or even self-diffusion of the cations and anions are expected. The conductivity measurements in the vicinity of the II-I PT indicate a superionic phase over the phase I.

  1. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  2. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  3. Fluorescence Excitation Models of Ammonia and Amidogen Radical (NH2) in Comets: Application to Comet C/2004 Q2 (Machholz)

    Science.gov (United States)

    Kawakita, Hideyo; Mumma, Michael J.

    2011-01-01

    Ammonia is a major reservoir of nitrogen atoms in cometary materials. However, detections of ammonia in comets are rare, with several achieved at radio wavelengths. A few more detections were obtained through near-infrared observations (around the 3 m wavelength region), but moderate relative velocity shifts are required to separate emission lines of cometary ammonia from telluric absorption lines in the 3 micron wavelength region. On the other hand, the amidogen radical (NH2 -- a photodissociation product of ammonia in the coma) also shows rovibrational emission lines in the 3 micron wavelength region. Thus, gas production rates for ammonia can be determined from the rovibrational emission lines of ammonia (directly) and amidogen radical (indirectly) simultaneously in the near-infrared. In this article, we present new fluorescence excitation models for cometary ammonia and amidogen radical in the near-infrared, and we apply these models to the near-infrared high-dispersion spectra of comet C/2004 Q2 (Machholz) to determine the mixing ratio of ammonia to water in the comet. Based on direct detection of NH3 lines, the mixing ratio of NH3/H2O is 0.46% +/- 0.03% in C/2004 Q2 (Machholz), in agreement with other results. The mixing ratio of ammonia determined from the NH2 observations (0.31% -- 0.79%) is consistent but has relatively larger error, owing to uncertainty in the photodissociation rates of ammonia. At the present level of accuracy, we confirm that NH3 could be the sole parent of NH2 in this comet.

  4. FLUORESCENCE EXCITATION MODELS OF AMMONIA AND AMIDOGEN RADICAL (NH2) IN COMETS: APPLICATION TO COMET C/2004 Q2 (MACHHOLZ)

    International Nuclear Information System (INIS)

    Kawakita, Hideyo; Mumma, Michael J.

    2011-01-01

    Ammonia is a major reservoir of nitrogen atoms in cometary materials. However, detections of ammonia in comets are rare, with several achieved at radio wavelengths. A few more detections were obtained through near-infrared observations (around the 3 μm wavelength region), but moderate relative velocity shifts are required to separate emission lines of cometary ammonia from telluric absorption lines in the 3 μm wavelength region. On the other hand, the amidogen radical (NH 2 -a photodissociation product of ammonia in the coma) also shows rovibrational emission lines in the 3 μm wavelength region. Thus, gas production rates for ammonia can be determined from the rovibrational emission lines of ammonia (directly) and amidogen radical (indirectly) simultaneously in the near-infrared. In this article, we present new fluorescence excitation models for cometary ammonia and amidogen radical in the near-infrared, and we apply these models to the near-infrared high-dispersion spectra of comet C/2004 Q2 (Machholz) to determine the mixing ratio of ammonia to water in the comet. Based on direct detection of NH 3 lines, the mixing ratio of NH 3 /H 2 O is 0.46% ± 0.03% in C/2004 Q2 (Machholz), in agreement with other results. The mixing ratio of ammonia determined from the NH 2 observations (0.31%-0.79%) is consistent but has relatively larger error, owing to uncertainty in the photodissociation rates of ammonia. At the present level of accuracy, we confirm that NH 3 could be the sole parent of NH 2 in this comet.

  5. A cluster DFT study of NH{sub 3} and NO adsorption on the (MoO{sub 2}){sup 2+}/HZSM-5 surface: Lewis versus Brønsted acid sites

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Zuo, Zhijun [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Li, Zhe, E-mail: lizhe@tyut.edu.cn [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Zhang, Jinshan [College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)

    2014-12-01

    Graphical abstract: - Highlights: • NH{sub 3} adsorption is found to be more favorable energetically than NO adsorption on both Lewis and Brønsted acid sites. • Lewis and Brønsted acid sites are competitive energetically for NH{sub 3} adsorption. • Reduced-state Mo{sup 5+} is suggested to play a key role in adsorption and activation of NO{sub x} together with the adsorbed NH{sub 4}{sup +}. - Abstract: A systematic DFT study was carried out to investigate NH{sub 3} and NO adsorption on both Lewis and Brønsted acid sites of (MoO{sub 2}){sup 2+}/HZSM-5 catalyst by using cluster models. The adsorption energy results indicate that NH{sub 3} could strongly adsorb on both Lewis and Brønsted acid sites in the form of coordinated NH{sub 3} and NH{sub 4}{sup +}, respectively, whereas NO represents poorer adsorption ability. It is also found that Lewis and Brønsted acid sites are competitive energetically for NH{sub 3} adsorption. According to the difference in the proposed mechanisms for NH{sub 3} adsorption on different acid sites, particular attention has been focused on the first dissociation of coordinated NH{sub 3} for Lewis acid site and the effect of Mo site on the introduction of NO for Brønsted acid site. For the coordinated NH{sub 3} on Lewis acid site, the more electron donation from NH{sub 3} is, the greater its adsorption stability is and the higher active its H atoms are. In addition, DOS results show that stability of the H atoms is enhanced by interacting with framework oxygen and especially the H atoms chemical-bonded with framework oxygen. For the NH{sub 4}{sup +} on Brønsted acid site, reduced-state Mo{sup 5+} holds stronger reducibility and oxidizability than terminal oxygen, which is suggested to play a key role in adsorption and activation of NO{sub x} together with the adsorbed NH{sub 4}{sup +}.

  6. Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (MASIE-NH)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multisensor Analyzed Sea Ice Extent Northern Hemisphere (MASIE-NH) products provide measurements of daily sea ice extent and sea ice edge boundary for the...

  7. ??????????? ????????? ???????????? ???????????? NH4X (?=??,?1) ??? ??????????? CdxHgi-xTe ??????? ???????? ???????????? ???????

    OpenAIRE

    ??????, ?. ?.; ?????????, ?. ?.; ???????, ?. ?.; ?????????, ?. ?.; ?????????, ?. ?.

    2004-01-01

    ?? ?????? ??????????? ?????????? ???????????? ?????? ??????? ???? ??????? CdxHgi_xTe-Hg-NH4Br ??? ??????? ?????? Hg ? ????????? ?????????? 560-860? ? ??????????? ?????? ?? = 103-=-105 ?? ????????? ????????, ??? ??????? ???????? ????? ? ??????????????? ??????, ????? ? ?????? - CdBr2, Hg, ??2. ??? ????????? ??????? ??????? ???????????? CdxHgi_xTe ??????? ? = 0.2; 0.3; 0.4 ?? ????????? ??? ??? ? ??? ?????????? ??????? ???????? ??????? (??? ?????? ?????? ????? ? ???????) ????????? ??????????? ???...

  8. Atoms stories

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1988-01-01

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  9. Atomic physics

    International Nuclear Information System (INIS)

    Held, B.

    1991-01-01

    This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr

  10. 15N enrichment of soil NH4+-N as an alternative non-N2-fixing reference for assessing varietal differences in N2 fixation of rice

    International Nuclear Information System (INIS)

    Shrestha, R.K.; Ladha, J.K.

    1996-01-01

    A pot experiment in the greenhouse was conducted to assess the usefulness of 15 N enrichment of soil NH 4 + -N as an alternative to a non-fixing reference plant to determine varietal differences in N 2 fixation among rice varieties. Diverse rice genotypes were grown in a 15 N stabilized soil obtained after 6 wk of application under flooded conditions. Atom % 15 N excess of soil NH 4 + -N was decreased exponentially with amount of N mineralized (r=99). Close agreement was observed between the 15 N enrichment of reference rice plant and 15 N enrichment of KCl extractable NH 4 + -N from unplanted pots maintained in the greenhouse. Whole plant atom % 15 N excess was inversely correlated within growth duration. Therefore, it was necessary to calculate Ndfa within growth duration. Ndfa estimated within the growth duration using 15 N enrichment of soil NH 4 + -N and reference rice genotype correlated almost perfectly (r=998). Thus the study demonstrated the potential of using 15 N enrichment of soil NH 4 + -N as a non-N 2 fixing reference for reliable estimate of biological nitrogen fixation by nonlegumes under flooded conditions. (author)

  11. NH AND Mg INDEX TRENDS IN ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Serven, Jedidiah; Worthey, Guy; Toloba, Elisa; Sanchez-Blazquez, Patricia

    2011-01-01

    We examine the spectrum in the vicinity of the NH3360 index of Davidge and Clark, which was defined to measure the NH absorption around 3360 A and shows almost no trend with velocity dispersion, unlike other N-sensitive indices, which show a strong trend. Computing the effect of individual elements on the integrated spectrum with synthetic stellar population integrated spectra, we find that, while being well correlated with nitrogen abundance, NH3360 is almost equally well anti-correlated with Mg abundance. This prompts the definition of two new indices, Mg3334, which is mostly sensitive to magnesium, and NH3375, which is mostly sensitive to nitrogen. Rather surprisingly, we find that the new NH3375 index shows a trend versus optical absorption feature indices that is as shallow as the NH3360 index. We hypothesize that the lack of a strong index trend in these near-UV indices is due to the presence of an old metal-poor component of the galactic population. Comparison of observed index trends and those predicted by models shows that a modest fraction of an old, metal-poor stellar population could easily account for the observed flat trend in these near-UV indices while still allowing substantial N abundance increase in the larger galaxies.

  12. Kinetics of elementary atom and radical reactions: Progress report

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1986-01-01

    Our research program is concerned with the kinetics of elementary gas phase reactions and energy transfer involving polyatomic molecules. We report here on three ongoing projects: The reaction of oxygen atoms with hydrogen molecules, the electronic relaxation of NH radicals, and the vibrational relaxation of highly excited SF 6 molecules. 10 refs., 5 figs

  13. Ratiometric Fluorescence Sensing and Real-Time Detection of Water in Organic Solvents with One-Pot Synthesis of Ru@MIL-101(Al)-NH2.

    Science.gov (United States)

    Yin, Hua-Qing; Yang, Ji-Chun; Yin, Xue-Bo

    2017-12-19

    Ratiometric fluorescence detection attracts much attention because of its decreased environmental influence and easy-to-differentiate color and intensity change. Herein, a guest-encapsulation metal-organic framework (MOF), Ru@MIL-NH 2 , is prepared with 2-aminoterephthalic acid, AlCl 3 , and Ru(bpy) 3 2+ by a simple one-pot method for ratiometric fluorescence sensing of water in organic solvents. The rational selection of the excitation wavelength provides dual emission at 465 and 615 nm from Ru@MIL-NH 2 under a single excitation of 300 nm. High sensitivity, low detection limit (0.02% v/v), wide response range (0-100%), and fast response (less than 1 min) are obtained for ratiometric fluorescence sensing of water under single excitation with Ru@MIL-NH 2 as the probe. Moreover, the result of water content is independent of the concentration of Ru@MIL-NH 2 as the merit of ratiometric fluorescence detection. The response mechanism reveals that the protonation of the nitrogen atom of the MIL-NH 2 , the π-conjugation system, and the stable fluorescence of Ru(bpy) 3 2+ achieve the ratiometric fluorescence. The analysis of real spirit samples confirms the proposed method. A test strip is prepared with Ru@MIL-NH 2 for convenient use. We believe that such turn-on ratiometric host-guest MOFs and the rational selection of excitation wavelength will offer guidance for ratiometric fluorescence detection with wide applications.

  14. Synthesis, optical properties and photostability of novel fluorinated organic–inorganic hybrid (R–NH3)2PbX4 semiconductors

    International Nuclear Information System (INIS)

    Wei, Y; Lauret, J-S; Deleporte, E; Audebert, P; Galmiche, L

    2013-01-01

    We report on the synthesis and the optical properties of several novel semiconductors (R–NH 3 ) 2 PbX 4 (X = Br − , I − or Cl − ). These semiconductors are two-dimensional organic–inorganic perovskite (2DOIP) materials and have multiple quantum-well energy level structures. We vary the organic components (R-NH 3 + ), introducing fluorine atoms into the organic part, on the phenyl ring of the amine. We discuss its influence on the self-organization ability and long-term photostability of the 2DOIPs. The trends of introducing fluorine atoms on the self-organization and long-term photostability of 2DOIPs are obtained by analysing the optical experimental results, and show that the influence of the fluorine position on the benzene ring is quite important. The most promising compounds seem to be the ones with the fluorine atom sitting on the para position of the phenyl group. (paper)

  15. Energetics of fragmentation of CH5, H3O, and NH4 from neutralized ion-beam experiments

    International Nuclear Information System (INIS)

    Williams, B.W.; Porter, R.F.

    1980-01-01

    Fragmentation energies for radicals of the type RH 2 (RH=CH 4 , NH 3 , and H 2 O) produced by electron capture interactions of 5 keV RH 2 + ion with Na or K atoms are reported. The experimental technique involves measurement of spatial beam profiles resulting from dissociation of neutral radicals following their formation in a near resonant electron transfer process. Cross sections for RH 2 + --Na capture reactions are typically 1x10 -14 cm 2 . Fragmentation energies from measurements with Na target atoms are -2.65 +- 0.14, -0.22 +- 0.03, and -1.12 +- 0.07 eV for CH 5 , NH 4 , and H 3 O, respectively. From our results with Na and K targets and published values for proton affinities, the vertical electron affinities of CH 5 + and H 3 O + are calculated to be 5.3 +- 0.2 eV and 5.1 +- 0.3 eV, respectively. Beam profiles for ND 4 show this species to be metastable with a lifetime of about 1 μs. From this we estimate a potential barrier to dissociation in NH 4 (ND 4 ) between 0.36 and 0.48 eV, indicating this species should be stable at low temperatures. Comparison of these experimental results with theoretical calculations indicates areas of disagreement

  16. Degradation mechanism of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite materials upon exposure to humid air

    Energy Technology Data Exchange (ETDEWEB)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-03-21

    Low stability of organic-inorganic perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH{sub 3}NH{sub 3}PbI{sub 3} layers prepared by a laser evaporation technique is studied. We present evidence that the CH{sub 3}NH{sub 3}PbI{sub 3} degradation in humid air proceeds by two competing reactions of (i) the PbI{sub 2} formation by the desorption of CH{sub 3}NH{sub 3}I species and (ii) the generation of a CH{sub 3}NH{sub 3}PbI{sub 3} hydrate phase by H{sub 2}O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH{sub 3}NH{sub 3}PbI{sub 3} layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH{sub 3}NH{sub 3}PbI{sub 3} layer is converted completely to hexagonal platelet PbI{sub 2}/hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH{sub 3}NH{sub 3}PbI{sub 3} in humid air.

  17. Lithium amide (LiNH2) under pressure.

    Science.gov (United States)

    Prasad, Dasari L V K; Ashcroft, N W; Hoffmann, Roald

    2012-10-11

    Static high pressure lithium amide (LiNH(2)) crystal structures are predicted using evolutionary structure search methodologies and intuitive approaches. In the process, we explore the relationship of the structure and properties of solid LiNH(2) to its molecular monomer and dimer, as well as its valence-isoelectronic crystalline phases of methane, water, and ammonia all under pressure. A NaNH(2) (Fddd) structure type is found to be competitive for the ground state of LiNH(2) above 6 GPa with the P = 1 atm I4[overline] phase. Three novel phases emerge at 11 (P4[overline]2(1)m), 13 (P4(2)/ncm), and 46 GPa (P2(1)2(1)2(1)), still containing molecular amide anions, which begin to form N-H···N hydrogen bonds. The P2(1)2(1)2(1) phase remains stable over a wide pressure range. This phase and another Pmc2(1) structure found at 280 GPa have infinite ···(H)N···H···N(H)···H polymeric zigzag chains comprising symmetric N···H···N hydrogen bonds with one NH bond kept out of the chain, an interesting general feature found in many of our high pressure (>280 GPa) LiNH(2) structures, with analogies in high pressure H(2)O-ices. All the predicted low enthalpy LiNH(2) phases are calculated to be enthalpically stable with respect to their elements but resist metallization with increasing pressure up to several TPa. The possibility of Li sublattice melting in the intermediate pressure range structures is raised.

  18. Increase in Ice Nucleation Efficiency of Feldspars, Kaolinite and Mica in Dilute NH3 and NH4+-containing Solutions

    Science.gov (United States)

    Kumar, A.; Marcolli, C.; Luo, B.; Krieger, U. K.; Peter, T.

    2017-12-01

    Semivolatile species present in the atmosphere are prone to adhere to mineral dust particle surfaces during long range transport, and could potentially change the particle surface properties and its ice nucleation (IN) efficiency. Immersion freezing experiments were performed with microcline (K-feldspar), known to be highly IN active, suspended in aqueous solutions of ammonia, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl to investigate the effect of solutes on the IN efficiency. Freezing of emulsified droplets investigated with a differential scanning calorimeter (DSC) showed that the heterogeneous ice nucleation temperatures deviate from the water activity-based IN theory, describing heterogeneous ice nucleation temperatures as a function of solution water activity by a constant offset with respect to the ice melting point curve (Zobrist et al. 2008). IN temperatures enhanced up to 4.5 K were observed for very dilute NH3 and NH4+-containing solutions while a decrease was observed as the concentration was further increased. For all solutes with cations other than NH4+, the IN efficiency decreased. An increase of the IN efficiency in very dilute NH3 and NH4+-containing solutions followed by a decrease with increasing concentration was also observed for sanidine (K-feldspar) and andesine (Na/Ca-feldspar). This is an important indication towards specific chemical interactions between solutes and the feldspar surface which is not captured by the water activity-based IN theory. A similar trend is present but less pronounced in case of kaolinite and mica, while quartz is barely affected. We hypothesize that the hydrogen bonding of NH3 molecules with surface -OH groups could be the reason for the enhanced freezing temperatures in dilute ammonia and ammonium containing solutions as they could form an ice-like overlayer providing hydrogen bonding groups for ice to nucleate on top of it. This implies to possibilities of enhanced IN efficiency, especially

  19. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  20. Kinetics of 15NH4+ assimilation in Zea mays

    International Nuclear Information System (INIS)

    Magalhaes, J.R.; Ju, G.C.; Rich, P.J.; Rhodes, D.

    1990-01-01

    Comparative studies of 15 NH 4 + assimilation were undertaken with a GDH1-null mutant of Zea mays and a related (but not strictly isogenic) GDH1-positive wild type from which this mutant was derived. The kinetics of 15 NH 4 + assimilation into free amino acids and total reduced nitrogen were monitored in both roots and shoots of 2-week-old seedlings supplied with 5 millimolar 99% ( 15 NH 4 ) 2 SO 4 via the aerated root medium in hydroponic culture over a 24-h period. The GDH1-null mutant, with a 10- to 15-fold lower total root GDH activity in comparison to the wild type, was found to exhibit a 40 to 50% lower rate of 15 NH 4 + assimilation into total reduced nitrogen. The lower rates of 15 NH 4 + assimilation in the mutant was associated with lower rates of labeling of several free amino acids (including glutamate, glutamine-amino N, aspartate, asparagine-amino N, and alanine) in both roots and shoots of the mutant in comparison to the wild type. Qualitatively, these labeling kinetics appear consistent with a reduced flux of 15 N via glutamate in the GDH1-null mutant. However, the responses of the two genotypes to the potent inhibitor of glutamine synthetase, methionine sulfoximine, and differences in morphology of the two genotypes (particularly a lower shoot:root ratio in the GDH1-null mutant) urge caution in concluding that GDH1 is solely responsible for these differences in ammonia assimilation rate

  1. Exotic atoms

    International Nuclear Information System (INIS)

    Kunselman, R.

    1993-01-01

    The experiments use a solid hydrogen layer to form muonic hydrogen isotopes that escape into vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to learn more about the energy dependence of transfer and muon molecular formation

  2. Vectorial Modeling Of NH In Comet 2P/Encke

    Science.gov (United States)

    Dorman, Garrett; Pierce, D.; Cochran, A.

    2010-10-01

    Encke is an ideal comet for studying the relationship of radicals to their photodissociative parent molecules due to its low dust content. On 2003 October 22 - 24, we used the the 2.7 m telescope at the McDonald Observatory of the University of Texas to obtain spectra of several cometary radical species. Using a version of the Vectorial Model that has been modified to simulate Encke's prominent sunward-facing fan, we examined the spacial distribution of NH in the coma. Potential photochemical parents of NH were studied in order to understand its production and spacial distribution in the coma. Derived production rates are compared to values in other comets to constrain the primary parent of NH in Encke.

  3. Wet Mechanochemical Processing of Celestine using (NH42CO3

    Directory of Open Access Journals (Sweden)

    Deniz Bingöl

    2017-06-01

    Full Text Available In this study, traditional (univariate method of processing to the wet mechanochemical treatment were applied to obtain both SrCO3 and (NH42SO4 from celestite (SrSO4-(NH42CO3-H2O mixtures in a planetary ball mill. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis were used to analyze products formed during wet milling. A hydrometallurgical process was carried out to examine milling time, ball to grinding material mass ratio, (NH42CO3 to SrSO4 mole ratio and rotational speed of the mill in a planetary mill. Under optimum conditions, a conversion approaching 100% of SrCO3 was obtained.

  4. Improved GaSb surfaces using a (NH4)2S/(NH4)2S04 solution

    International Nuclear Information System (INIS)

    Murape, D.M.; Eassa, N.; Nyamhere, C.; Neethling, J.H.; Betz, R.; Coetsee, E.; Swart, H.C.; Botha, J.R.; Venter, A.

    2012-01-01

    Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH 4 ) 2 S/(NH 4 ) 2 SO 4 ) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height (φ b ) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at −0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb–O, present on the as-received material is effectively removed on treating with ([(NH 4 ) 2 S/(NH 4 ) 2 SO 4 ]+S) and (NH 4 ) 2 S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is ≤8.5 nm.

  5. Formulation of an inhibitor radiopharmaceutical of prostatic antigen of {sup 177}Lu-Glu-Nh-CO-Nh-Lys membrane; Formulacion de un radiofarmaco inhibidor del antigeno prostatico de membrana {sup 177}Lu-Glu-NH-CO-NH-Lys

    Energy Technology Data Exchange (ETDEWEB)

    Ortega S, D.

    2015-07-01

    The prostate specific membrane antigen (PSMA) is a zinc metalloenzyme that is expressed on the cell membrane and highly expressed in prostate cancer. Recently, it has been demonstrated that the peptide sequence Glu-Nh-CO-Nh-Lys inhibit PSMA activity through an electrostatic interaction with the Zn. Several theragnostic radiopharmaceuticals with base in {sup 177}Lu have been developed for radiotherapy of specific molecular targets because gamma and beta emissions of the radionuclide (β = 0.498 MeV and γ= 0.133 MeV). However, there is currently no label a formulation for preparing a radiopharmaceutical of {sup 177}Lu-Glu-Nh-CO-Nh-Lys useful treatment of prostate cancer. The aim of this research was to optimize and document the process of production of the radiopharmaceutical {sup 177}Lu-Glu-Nh-CO-Nh-Lys for sanitary registration application before the Comision Federal para la Proteccion contra Riesgos Sanitarios (COFEPRIS). The optimization of the production process was assessed a factorial design of three variables with mixed levels (3 x 3 x 2) where the dependent variable is the radiochemical purity, the analytical method was validated by UV-Vis spectrophotometry. Next, process validation was carried out by labeling 3 lots of the optimized formulation of the radiopharmaceutical (5.55 GBq (2.16 μg) of {sup 177}LuCl{sub 3}, 90 mg peptide PSMA, 50 mg ascorbic acid and 150 μL of acetate buffer 1 M ph 5), long-term stability was performed by high resolution liquid chromatography) to determine its useful shelf life. 3 validation batches were prepared under protocols of Good Manufacturing Practice (GMP) in the Production Plant of Radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ), meet specifications preset by obtaining a sterile and free development of bacterial endotoxin yields of labeled 100% and which retains its quality characteristics radiochemical purity greater than 90% for at least 15 days. (Author)

  6. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  7. Effects of NH3 Flow Rate During AlGaN Barrier Layer Growth on the Material Properties of AlGaN/GaN HEMT Heterostructure

    Science.gov (United States)

    Lumbantoruan, Franky J.; Wong, Yuen-Yee; Huang, Wei-Ching; Yu, Hung-Wei; Chang, Edward-Yi

    2017-10-01

    NH3 flow rate during AlGaN barrier layer growth not only affects the growth efficiency and surface morphology as a result of parasitic reactions but also influences the concentration of carbon impurity in the AlGaN barrier. Carbon, which decomposes from metal precursors, plays a role in electron compensation for AlGaN/GaN HEMT. No 2-dimensional electron gas (2-DEG) was detected in the AlGaN/GaN structure if grown with 0.5 slm of NH3 due to the presence of higher carbon impurity (2.6 × 1019 cm-2). When the NH3 flow rate increased to 6.0 slm, the carbon impurity reduced to 2.10 × 1018 atom cm-3 and the 2 DEG electron density recovered to 9.57 × 1012 cm-2.

  8. Mechanical response of CH3NH3PbI3 nanowires

    Science.gov (United States)

    Ćirić, L.; Ashby, K.; Abadie, T.; Spina, M.; Duchamp, M.; Náfrádi, B.; Kollár, M.; Forró, L.; Horváth, E.

    2018-03-01

    We report a systematic study of the mechanical response of methylammonium lead triiodide CH3NH3PbI3 nanowires by employing bending measurements using atomic force microscope on suspended wires over photo-lithographically patterned channels. Force-deflection curves measured at room temperature give a Young's modulus between 2 and 14 GPa. This broad range of values is attributed to the variations in the microcrystalline texture of halide perovskite nanowires. The mechanical response of a highly crystalline nanowire is linear with force and has a brittle character. The braking modulus of 48 ± 20 MPa corresponds to 100 μm of radius of curvature of the nanowires, rendering them much better structures for flexible devices than spin coated films. The measured moduli decrease rapidly if the NW is exposed to water vapor.

  9. Appendix S-NH-1 and S-NH-2 of the experiment operating specification for the semiscale MOD-2C small break LOCA without HPI experiment series

    International Nuclear Information System (INIS)

    Owca, W.A.

    1985-10-01

    This document is Appendix S-NH--1 and S-NH-2 of the Experiment Operating Specification (EOS) for the Small Break LOCA without high pressure injection (HPI) series. It contains detailed information on the S-NH-1 and S-NH-2 experiment operation and facility configuration necessary to meet the series objectives stated in the main EOS body. 14 refs., 17 figs

  10. Reassessment of the NH4 NO3 thermal decomposition technique for calibration of the N2 O isotopic composition.

    Science.gov (United States)

    Mohn, Joachim; Gutjahr, Wilhelm; Toyoda, Sakae; Harris, Eliza; Ibraim, Erkan; Geilmann, Heike; Schleppi, Patrick; Kuhn, Thomas; Lehmann, Moritz F; Decock, Charlotte; Werner, Roland A; Yoshida, Naohiro; Brand, Willi A

    2016-09-08

    In the last few years, the study of N 2 O site-specific nitrogen isotope composition has been established as a powerful technique to disentangle N 2 O emission pathways. This trend has been accelerated by significant analytical progress in the field of isotope-ratio mass-spectrometry (IRMS) and more recently quantum cascade laser absorption spectroscopy (QCLAS). Methods The ammonium nitrate (NH 4 NO 3 ) decomposition technique provides a strategy to scale the 15 N site-specific (SP ≡ δ 15 N α - δ 15 N β ) and bulk (δ 15 N bulk  = (δ 15 N α  + δ 15 N β )/2) isotopic composition of N 2 O against the international standard for the 15 N/ 14 N isotope ratio (AIR-N 2 ). Within the current project 15 N fractionation effects during thermal decomposition of NH 4 NO 3 on the N 2 O site preference were studied using static and dynamic decomposition techniques. The validity of the NH 4 NO 3 decomposition technique to link NH 4 + and NO 3 - moiety-specific δ 15 N analysis by IRMS to the site-specific nitrogen isotopic composition of N 2 O was confirmed. However, the accuracy of this approach for the calibration of δ 15 N α and δ 15 N β values was found to be limited by non-quantitative NH 4 NO 3 decomposition in combination with substantially different isotope enrichment factors for the conversion of the NO 3 - or NH 4 + nitrogen atom into the α or β position of the N 2 O molecule. The study reveals that the completeness and reproducibility of the NH 4 NO 3 decomposition reaction currently confine the anchoring of N 2 O site-specific isotopic composition to the international isotope ratio scale AIR-N 2 . The authors suggest establishing a set of N 2 O isotope reference materials with appropriate site-specific isotopic composition, as community standards, to improve inter-laboratory compatibility. This article is protected by copyright. All rights reserved.

  11. THE KINETICS OF NH(4)+ AND NO3(-) UPTAKE BY DOUGLAS-FIR FROM SINGLE N-SOLUTIONS AND FROM SOLUTIONS CONTAINING BOTH NH(4)+ AND NO3(-)

    NARCIS (Netherlands)

    KAMMINGAVANWIJK, C; PRINS, HBA

    The kinetics of NH4+ and NO3- uptake in young Douglas fir trees (Pseudotsuga menziesii [Mirb.] Franco) were studied in solutions, containing either one or both N species. Using solutions containing a single N species, the V(max) of NH4+ uptake was higher than that of NO3- uptake. The K(m) of NH4+

  12. Order-disorder phase transition in the peroxidovanadium complex NH4[VO(O2)2(NH3)].

    Science.gov (United States)

    Schwendt, Peter; Gyepes, Róbert; Chrappová, Jana; Němec, Ivan; Vaněk, Přemysl

    2018-07-05

    Complex NH 4 [VO(O 2 ) 2 (NH 3 )] (1) undergoes an order-disorder phase transition at T c ~258K. This transition is accompanied by change in the space group of the orthorhombic lattice and also by significant structural rearrangements of the constituent molecules, which are pertinent mostly to their NH 4 + ions and their ammonia ligands. The low-temperature solid state IR and Raman spectra of 1 were corroborated by solid-state computations that employed Gaussian functions as the basis set. Results of these computations yielded excellent agreement with experimental data. On the curves of temperature dependence of vibrational modes, the phase transition is expressed by an abrupt change of the slope above T c . Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effective identification of (NH4)2CO3 and NH4HCO3 concentrations in NaHCO3 regeneration process from desulfurized waste.

    Science.gov (United States)

    Govindan, Muthuraman; Karunakaran, Kannan; Nallasamy, Palanisami; Moon, Il Shik

    2015-01-01

    This work describes the quantitative analysis of (NH4)2CO3 and NH4HCO3 using a simple solution phase titration method. Back titration results at various (NH4)2CO3-NH4HCO3 ratios demonstrated that 6:4 ratio caused a 3% error in their differentiation, but very high errors were found at other ratios. A similar trend was observed for the double indicator method, especially when strong acid HCl was used as a titrant, where still less errors (2.5%) at a middle ratio of (NH4)2CO3-NH4HCO3 was found. Remaining ratios with low (NH4)2CO3 (2:8, 4:6) show high +ve error (found concentration is less) and high (NH4)2CO3 (7:3, 8:2, and 9:1) show high -ve error (found concentration is higher) and vice versa for NH4HCO3. In replacement titration using Na2SO4, at both higher end ratios of (NH4)2CO3-NH4HCO3 (2:8 and 9:1), both -ve and +ve errors were minimized to 75% by partial equilibrium arrest between (NH4)2CO3 and NH2COONH4, instead of more than 100% observed in back titration and only double indicator methods. In the presence of (NH4)2SO4 both -ve and +ve error% are completely reduced to 3±1 at ratios 2:8, 4:6, and 6:4 of (NH4)2CO3-NH4HCO3, which demonstrates that the equilibrium transformation between NH2COONH4 and (NH4)2CO3 is completely controlled. The titration conducted at lower temperature (5 °C) in the presence of (NH4)2SO4 at higher ratios of (NH4)2CO3-NH4HCO3 (7:3, 8:2,and 9:1) shows complete minimization of both -ve and +ve errors to 2±1%, which explains the complete arresting of equilibrium transformation. Finally, the developed method shows 2±1% error in differentiation of CO3(2-) and HCO3(-) in the regeneration process of NaHCO3 from crude desulfurized sample. The developed method is more promising to differentiate CO3(2-) and HCO3(-) in industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Formulation of an inhibitor radiopharmaceutical of prostatic antigen of 177Lu-Glu-Nh-CO-Nh-Lys membrane

    International Nuclear Information System (INIS)

    Ortega S, D.

    2015-01-01

    The prostate specific membrane antigen (PSMA) is a zinc metalloenzyme that is expressed on the cell membrane and highly expressed in prostate cancer. Recently, it has been demonstrated that the peptide sequence Glu-Nh-CO-Nh-Lys inhibit PSMA activity through an electrostatic interaction with the Zn. Several theragnostic radiopharmaceuticals with base in 177 Lu have been developed for radiotherapy of specific molecular targets because gamma and beta emissions of the radionuclide (β = 0.498 MeV and γ= 0.133 MeV). However, there is currently no label a formulation for preparing a radiopharmaceutical of 177 Lu-Glu-Nh-CO-Nh-Lys useful treatment of prostate cancer. The aim of this research was to optimize and document the process of production of the radiopharmaceutical 177 Lu-Glu-Nh-CO-Nh-Lys for sanitary registration application before the Comision Federal para la Proteccion contra Riesgos Sanitarios (COFEPRIS). The optimization of the production process was assessed a factorial design of three variables with mixed levels (3 x 3 x 2) where the dependent variable is the radiochemical purity, the analytical method was validated by UV-Vis spectrophotometry. Next, process validation was carried out by labeling 3 lots of the optimized formulation of the radiopharmaceutical (5.55 GBq (2.16 μg) of 177 LuCl 3 , 90 mg peptide PSMA, 50 mg ascorbic acid and 150 μL of acetate buffer 1 M ph 5), long-term stability was performed by high resolution liquid chromatography) to determine its useful shelf life. 3 validation batches were prepared under protocols of Good Manufacturing Practice (GMP) in the Production Plant of Radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ), meet specifications preset by obtaining a sterile and free development of bacterial endotoxin yields of labeled 100% and which retains its quality characteristics radiochemical purity greater than 90% for at least 15 days. (Author)

  15. Reinforcing graphene oxide/cement composite with NH2 ...

    Indian Academy of Sciences (India)

    Reinforcing graphene oxide/cement composite with NH2 functionalizing group. M EBRAHIMIZADEH ABRISHAMI1,∗ and V ZAHABI2. 1Materials and Electroceramics Laboratory, Department of Physics, Ferdowsi University of Mashhad, Mashhad. 9177948974, Iran. 2Department of Civil Engineering, Islamic Azad University, ...

  16. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    International Nuclear Information System (INIS)

    Yuan, Guangjie; Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro

    2014-01-01

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH 2 radical as the reducing agent and nickelocene as the precursor. NH 2 radicals were generated by the thermal decomposition of NH 3 with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH 2 radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH 2 radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH 2 radical flux and the reactivity of the NH 2 radicals

  17. Reconstructive phase transition in (NH4)3TiF7 accompanied by the ordering of TiF6 octahedra.

    Science.gov (United States)

    Molokeev, Maxim; Misjul, S V; Flerov, I N; Laptash, N M

    2014-12-01

    An unusual phase transition P4/mnc → Pa\\bar 3 has been detected after cooling the (NH4)3TiF7 compound. Some TiF6 octahedra, which are disordered in the room-temperature tetragonal structure, become ordered in the low-temperature cubic phase due to the disappearance of the fourfold axis. Other TiF6 octahedra undergo large rotations resulting in huge displacements of the F atoms by 1.5-1.8 Å that implies a reconstructive phase transition. It was supposed that phases P4/mbm and Pm\\bar 3m could be a high-temperature phase and a parent phase, respectively, in (NH4)3TiF7. Therefore, the sequence of phase transitions can be written as Pm\\bar 3m → P4/mbm → P4/mnc → Pa\\bar 3. The interrelation between (NH4)3TiF7, (NH4)3GeF7 and (NH4)3PbF7 is found, which allows us to suppose phase transitions in relative compounds.

  18. Analysis of (NH4)2SO4/(NH4)H2PO4 mixtures by thermogravimetry and X-ray diffraction

    International Nuclear Information System (INIS)

    Perez, Jose; Perez, Eduardo; Vas, Beatriz del; Garcia, Luis; Serrano, Jose Luis

    2006-01-01

    (NH 4 ) 2 SO 4 and (NH 4 )H 2 PO 4 are the principal components in the powder material used in fire extinguishers. In this paper the mutual influence in their thermal decomposition is investigated by thermogravimetry. Two methods for the quantification of both salts in mixtures (NH 4 ) 2 SO 4 /(NH 4 )H 2 PO 4 are proposed. The first employs thermogravimetry and is based on the measurement of the mass fraction in the 500-550 deg. C interval, once (NH 4 ) 2 SO 4 has totally decomposed to yield gaseous products. The second uses some selected peaks in the X-ray diffractogram

  19. Synthesis and structural characterization of two cobalt phosphites: 1-D (H3NC6H4NH3)Co(HPO3)2 and 2-D (NH4)2Co2(HPo3)3

    International Nuclear Information System (INIS)

    Cheng, C.-C.; Chang, W.-K.; Chiang, R.-K.; Wang, S.-L.

    2010-01-01

    Two new cobalt phosphites, (H 3 NC 6 H 4 NH 3 )Co(HPO 3 ) 2 (1) and (NH 4 ) 2 Co 2 (HPO 3 ) 3 (2), have been synthesized and characterized by single-crystal X-ray diffraction. All the cobalt atoms of 1 are in tetrahedral CoO 4 coordination. The structure of 1 comprises twisted square chains of four-rings, which contain alternating vertex-shared CoO 4 tetrahedra and HPO 3 groups. These chains are interlinked with trans-1,4-diaminocyclohexane cations by hydrogen bonds. The 2-D structure of 2 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by Co 2 O 9 to form complex layers. Magnetic susceptibility measurements of 1 and 2 showed that they have a weak antiferromagnetic interaction. - Graphical abstract: The 2-D structure of (NH 4 ) 2 Co 2 (HPO 3 ) 3 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by dimmeric Co 2 O 9 to form complex layers.

  20. Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH 2CH=NH 2SnI 3and Related Systems

    Science.gov (United States)

    Mitzi, D. B.; Liang, K.

    1997-12-01

    Combining concentrated hydriodic acid solutions of tin(II) iodide and formamidine acetate in an inert atmosphere results in the precipitation of a new conducting organic-inorganic compound, NH 2CH=NH 2SnI 3, which at room temperature adopts a cubic perovskite structure. The lattice constant for NH 2CH=NH 2SnI 3is found to be a=6.316(1) Å, which is approximately 1.2% larger than that for the isostructural compound CH 3NH 3SnI 3. The electrical resistivity of a pressed pellet of the new compound exhibits semimetallic temperature dependence from 10 to 300 K, with evidence of a structural transition at approximately 75 K. NH 2CH=NH 2SnI 3begins to slowly decompose in an inert atmosphere at temperatures as low as 200°C, with bulk decomposition/melting occurring above 300°C. The properties of the formamidinium-based perovskite are compared with those of the related cubic (at room temperature) perovskite CH 3NH 3SnI 3and the mixed-cation system (CH 3NH 3) 1- x(NH 2CH=NH 2) xSnI 3.

  1. Study of ZrO2-H2SO4-(NH4)2SO4(NH4Cl)-H2O systems

    International Nuclear Information System (INIS)

    Motov, D.L.; Sozinova, Yu.P.; Rys'kina, M.P.

    1988-01-01

    Regions of formation, composition and solubility of ammonium sulfatozirconates (ASZ) in ZrO 2 -H 2 SO 4 -(NH 4 ) 2 SO 4 (NH 4 Cl)-H 2 O systems at 25 and 75 deg C are studied by the isothermal method. Five ASZ: (NH 4 ) 2 Zr(OH) 2 (SO 4 ) 2 , NH 4 ZrOH(SO 4 ) 2 xH 2 O, NH 4 ZrO 0.5 (OH) 2 SO 4 x1.5H 2 O, (NH 4 ) 2 Zr(SO 4 ) 3 x2H 2 O, (NH 4 ) 4 Zr(SO 4 ) 4 x4H 2 O are detected, their properties are investigated. Main sulfates are new compounds never described ealier

  2. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  3. Atomic energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1978-01-01

    Development of nuclear science in India, particularly the research and development work at the Bhabha Atomic Research Centre (BARC), Bombay, is described. Among the wide range of materials developed for specific functions under rigorous conditions are nuclear pure grade uranium, zirconium and beryllium, and conventional materials like aluminium, carbon steel and stainless steels. Radioisotopes are produced and used for tracer studies in various fields. Various types of nuclear gauges and nuclear instruments are produced. Radiations have been used to develop new high yielding groundnut mutants with large kernals. The sterile male technique for pest control and radiosterilization technique to process potatoes, onions and marine foods for storage are ready for exploitation. Processes and equipment have been developed for production of electrolytic hydrogen, electrothermal phosphorus and desalinated water. Indigenously manufactured components and materials are now being used for the nuclear energy programme. Indian nuclear power programme strategy is to build heavy water reactors and to utilise their byproduct plutonium and depleted uranium to feed fast breeder reactors which will produce more fissile material than burnt. Finally a special mention has been made of the manpower development programme of the BARC. BARC has established a training school in 1957 giving advanced training in physics, chemistry and various branches of engineering and metallurgy

  4. Synthesis, crystal structure, and properties of a perovskite-related bismuth phase, (NH43Bi2I9

    Directory of Open Access Journals (Sweden)

    Shijing Sun

    2016-03-01

    Full Text Available Organic-inorganic halide perovskites, especially methylammonium lead halide, have recently led to remarkable advances in photovoltaic devices. However, due to environmental and stability concerns around the use of lead, research into lead-free perovskite structures has been attracting increasing attention. In this study, a layered perovskite-like architecture, (NH43Bi2I9, is prepared from solution and the structure solved by single crystal X-ray diffraction. The band gap, which is estimated to be 2.04 eV using UV-visible spectroscopy, is lower than that of CH3NH3PbBr3. The energy-minimized structure obtained from first principles calculations is in excellent agreement with the X-ray results and establishes the locations of the hydrogen atoms. The calculations also point to a significant lone pair effect on the bismuth ion. Single crystal and powder conductivity measurements are performed to examine the potential application of (NH43Bi2I9 as an alternative to the lead containing perovskites.

  5. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  6. NH{sub 4}-doped anodic WO{sub 3} prepared through anodization and subsequent NH{sub 4}OH treatment for water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Wook; Kim, Sunkyu; Seong, Mijeong; Yoo, Hyeonseok; Choi, Jinsub, E-mail: jinsub@inha.ac.kr

    2015-01-01

    Highlights: • NN{sub 4}-doped WO{sub 3} was successfully fabricated by a wet-based method using ammonium hydroxide (NH{sub 4}OH). • (NH{sub 4}){sub 10}W{sub 12}O{sub 41} phase was formed during the NH{sub 4}OH treatment. • Over-doped NH{sub 4} in WO{sub 3} led to reduced photo-electrochemical performance for OER. • The optimized surface was achieved by thermal treatment of anodic WO{sub 3} with 2 g of NH{sub 4}OH solution. - Abstract: Tungsten trioxide (WO{sub 3}) prepared by anodization of a W foil was doped with NH{sub 4} through NH{sub 4}OH treatment at 450 °C. Since aqueous NH{sub 4}OH was used during doping instead of NH{sub 3} gas, the treatment step does not require complicated annealing facilities. Moreover, the state of doped N is a form of NH{sub 3}-W instead of W{sub 2}N, which lowers the bandgap but increases photocorrosion. We found that incorporation of NH{sub 4} into WO{sub 3} leads to reduction of the bandgap from 2.9 eV to 2.2 eV, regardless of the amount of NH{sub 4}OH treatment, lowering the onset potential and increasing the current density at fixed potential for oxygen evolution reaction under illumination. Scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy were employed to investigate the surface morphologies, crystallinities of tungsten oxides and existence of NH{sub 4} doping, respectively. The bandgap energy was determined by UV–Vis spectroscopy to measure the transmittance and refraction. The water splitting performance of each sample was measured by electrochemical linear sweep voltammetry in a 3-electrode configuration under illumination.

  7. [Seasonal variation patterns of NH4(+) -N/NO3(-) -N ratio and delta 15 NH4(+) value in rainwater in Yangtze River Delta].

    Science.gov (United States)

    Xie, Ying-Xin; Zhang, Shu-Li; Zhao, Xu; Xiong, Zheng-Qin; Xing, Guang-Xi

    2008-09-01

    By using a customized manual rainwater sampler made of polyvinyl chloride plastic, the molar ratio of NH4(+) -N/NO3(-) -N and the natural 15N abundance of NH4(+) (delta 15 NH4(+) in rainwater was monitored all year round from June 2003 to July 2005 at three observation sites (Changshu, Nanjing, and Hangzhou) in the Yangtze River Delta. The results indicated that at the three sites, the NH4(+) -N/NO3(-) -N ratio and the delta 15 NH4(+) value in rainwater had the similar seasonal variation trend, being more obvious in Changshu (rural monitoring type) site than in Nanjing (urban monitoring type) and Hangzhou (urban-rural monitoring type) sites. The NH4(+) -N/NO3(-) -N ratio peaked from early June to early August, declined gradually afterwards, and reached the bottom in winter; while the delta 15 NH4(+) value was negative from late June to mid-August, turned positive from late August to mid or late November, became negative again when winter dominated from December to March, but turned positive again in next May and negative again in next July. These seasonal variation patterns of NH4(+) -N/NO3(-) -N ratio and delta 15 NH4(+) value were found in relation to the application of chemical nitrogen fertilizers during different crop growth periods, and also, the alternation of seasons and the NH3 volatilization from other NH3 emission sources (including excrements of human and animals, nitrogen- polluted water bodies, and organic nitrogen sources, etc.), which could be taken as an indicator of defining the sources and form composition of NH4(+) in atmospheric wet deposition and the intensity of various terrestrial NH3 emission sources.

  8. Electrolytic dissociation of NH{sub 2}K in liquid ammonia; Dissociation electrolytique de NH{sub 2}K dans NH{sub 3} liquide

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    By assuming the Debye and Huckel approximation giving the activity coefficient and the Onsager relationship linking the conductivity and infinite dilution conductivity of an electrolyte, it has been possible using the available literature data and the electrical conductivity measurements carried out for this purpose, to calculate certain typical parameters of the dissociation of potassium amide in liquid ammonia in the temperature range of -77 deg. C to -33.5 deg. C: degree of dissociation, mean activity coefficient of the ions NH{sub 2}{sup -} and K{sup +}, and the mean activity of these ions. (author) [French] En admettant l'approximation de Debye et Huckel donnant le coefficient d'activite et la relation d'Onsager reliant conductivite et conductivite a dilution infinie d'un electrolyte, on a, en se basant sur les donnees bibliographiques disponibles et des mesures de conductivite electrique effectuees a cette fin, determine par un calcul, certains parametres caracteristiques de la dissociation de l'amidure de potassium dans l'ammoniac liquide dans un domaine de temperature de -77 deg. C a -33,5 deg. C: degre de dissociation, coefficient d'activite moyen des ions NH{sub 2}{sup -} et K{sup +} et activite moyenne de ces ions. (auteur)

  9. The phytotoxic effects of present NH3 immissions

    International Nuclear Information System (INIS)

    Adaros, G.; Daemmgen, U.

    1994-01-01

    The phytotoxic effects of NH 3 have been known since the end of the previous century. The significance of ammonia as harmful substance or stressor even in ambient concentrations has been only realized and investigated during the last decades. This volume is aimed at accounting the effects produced by ambient doses of NH 3 . The entities relevant for the description of potential dose response relationships are discussed. The major source of potential dose response relationships are discussed. The major source of atmospheric pollution of ammonia and ammonium is intensive agriculture, in particular intensive cattle production. However, sources and transmission processes are not dealt with in this paper. Potential pathways of ammonia into the plants and the respective reaction mechanisms are discussed in detail. (orig./MG) [de

  10. Atomic weight versus atomic mass controversy

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives

  11. Molecular orbital calculations for the formation of GaN layers on ultra-thin AlN/6H-SiC surface using alternating pulsative supply of gaseous trimethyl gallium (TMG) and NH3

    International Nuclear Information System (INIS)

    Seong, See Yearl; Hwang, Jin Soo

    2001-01-01

    The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH 3 gases have been examined by ASED-MO calculations. We postulate that the gallium clusters was formed with the evaporation of CH 4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl gallium (MMG). During the injection of NH 3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH 3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH 3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster. This suggests that the adhesion of the initial layer can be reinforced by the incorporation of nitrogen atom through the formation of large grain boundary GaN crystals at the early stage of GaN film growth

  12. Bias Gender Dalam Novel La Grande Borne Karya NH. Dini

    OpenAIRE

    Dilla, Raili Irfa; Thahar, Harris Effendi; Zulfikarni, Zulfikarni

    2013-01-01

    The purpose of this article was to describe the gender diffraction in novel La Grande Borne by Nh. Dini, evaluated from five aspects, (a) marginalization, (b) subordination, (c) stereotype, (d) violence, and (e) double work load. The data of this study was the sentences that refer to the gender diffraction.. The analyze technics were (1) describe the data, (2) analyze the data that refer to gender, (3) lnterpretated the unfair in gender, and (4) conclusion. The results of this study could be ...

  13. Magnetic trapping of NH molecules with 20 s lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Tsikata, E; Campbell, W C; Hummon, M T; Lu, H-I; Doyle, J M, E-mail: tsikata@fas.harvard.ed [Department of Physics, Harvard University, Cambridge, MA (United States)

    2010-06-15

    Buffer gas cooling is used to trap NH molecules with 1/e lifetimes exceeding 20 s. Helium vapor generated by laser desorption of a helium film is employed to thermalize 10{sup 5} molecules at a temperature of 500 mK in a 3.9 T magnetic trap. Long molecule trapping times are attained through rapid pumpout of residual buffer gas. Molecules experience a helium background gas density below 1x10{sup 12} cm{sup -3}.

  14. Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH)

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2018-03-01

    Here we present our recent studies on the color and spectral reflectance changes induced by ∼0.9 MeV proton irradiation of ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. Ultraviolet-visible spectroscopy was used to observe and identify reaction products in the ice sample and digital photography was used to document the corresponding color changes at 10-160 K. Our experiments clearly show that the resulting color of the sample depends not only on the irradiation dose but also the irradiation temperature. Furthermore, unlike in our most recent studies of irradiation of NH4SH at 120 K, which showed that higher irradiation doses caused the sample to appear green, the lower temperature studies now show that the sample becomes red after irradiation. However, comparison of these lower temperature spectra over the entire spectral range observed by HST shows that even though the color and spectrum resemble the color and spectrum of the GRS, there is still enough difference to suggest that another component may be needed to adequately fit spectra of the GRS and other red regions of Jupiter's clouds. Regardless, the presence of NH4SH in the atmosphere of Jupiter and other gas giants, combined with this compound's clear alteration via radiolysis, suggests that its contribution to the ultraviolet-visible spectra of any of these object's clouds is significant.

  15. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  16. DFT investigation of NH_3, PH_3, and AsH_3 adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Buasaeng, Prayut; Rakrai, Wandee; Wanno, Banchob; Tabtimsai, Chanukorn

    2017-01-01

    Highlights: • Transition metal-doped single wall carbon nanotubes and their adsorption with NH_3, PH_3 and AsH_3 molecules were investigated using a DFT method. • Adsorptions of NH_3, PH_3 and AsH_3 molecules on pristine single wall carbon nanotubeswere improved by transition metal doping. • Structural and electronic properties of single wall carbon nanotubes were significantly changed by transition metal doping and gas adsorptions. - Abstract: The adsorption properties of ammonia (NH_3), phosphine (PH_3), and arsine (AsH_3) on pristine and transition metal- (TM = Sc, Ti, V, and Cr) doped (5,5) armchair single-walled carbon nanotubes (SWCNTs) were theoretically investigated. The geometric and electronic properties and adsorption abilities for the most stable configuration of NH_3, PH_3, and AsH_3 adsorptions on pristine and TM-doped SWCNTs were calculated. It was found that the binding abilities of TMs to the SWCNT were in the order: Cr > V > Sc > Ti. However, the adsorption energy showed that the pristine SWCNT weakly adsorbed gas molecules and its electronic properties were also insensitive to gas molecules. By replacing a C atom with TM atoms, all doping can significantly enhance the adsorption energy of gas/SWCNT complexes and their adsorption ability was in the same order: NH_3 > PH_3 > AsH_3. A remarkable increase in adsorption energy and charge transfer of these systems was expected to induce significant changes in the electrical conductivity of the TM-doped SWCNTs. This work revealed that the sensitivity of SWCNT-based chemical gas adsorptions and sensors can be greatly improved by introducing an appropriate TM dopant. Accordingly, TM-doped SWCNTs are more suitable for gas molecule adsorptions and detections than the pristine SWCNT.

  17. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  18. NMR Spectroscopic Characterization of Methylcobalt(III) Compounds with Classical Ligands. Crystal Structures of [Co(NH(3))(5)(CH(3))]S(2)O(6), trans-[Co(en)(2)(NH(3))(CH(3))]S(2)O(6) (en = 1,2-Ethanediamine), and [Co(NH(3))(6)]-mer,trans-[Co(NO(2))(3)(NH(

    DEFF Research Database (Denmark)

    Kofod, Pauli; Harris, Pernille; Larsen, Sine

    1997-01-01

    magnetic resonance spectroscopy and by absorption spectroscopy. Single-crystal X-ray structure determinations at 122.0(5) K were performed on [Co(NH(3))(5)(CH(3))]S(2)O(6) (1), trans-[Co(en)(2)(NH(3))(CH(3))]S(2)O(6) (2), and [Co(NH(3))(6)]-mer,trans-[Co(NO(2))(3)(NH(3))(2)(CH(3))](2)-trans-[Co(NO(2...

  19. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  20. Guidelines for standard and biuretic renogram in children

    International Nuclear Information System (INIS)

    Gordon, I.; Piepsz, A.; Colarinha, P.; Hahn, K.; Fischer, S.; Porn, U.; Sixt, R.; Velzen, J. van

    2000-01-01

    The guidelines are intended to help nuclear medical teams in their daily routine. The information given relates to aspects such as data acquisition, evaluation and interpretation, and indications for pediatric renal functional scintigraphy. The guidelines have been elaborated in response to a request of EANM and the American Society of Nuclear Medicine, who expressed the need for guidelines on recommended procedures for most of the standard nuclear medical examinations. The guidelines express the opinion of the Paediatric Committee of the EANM, and should be seen in the context of generally accepted basic principles in nuclear medicine, as well as local and national regulatory standards in radiation protection. (orig./CB) [de

  1. Preparation of silver chloride nanoparticles by a mechanical treatment of the system NH4Cl−AgNO3−NH4NO3

    Directory of Open Access Journals (Sweden)

    Farit Urakaev

    2014-08-01

    Full Text Available Silver chloride nanoparticles dispersed within ammonium nitrate matrix have been prepared though displacement mechanochemical reaction NH4Cl + AgNO3 + z NH4NO3 = (z+1 NH4 NO3 + AgCl at various z coefficients z1 = 7.22 and z2 = 3.64. The intermediate compound of NH4Ag(NO32 were recorded after mechanochemical processing of studied system. By using simultaneous TG and DSC measurements possibilities to prepare silver chloride in its free form have been discussed by using thermal treatment.

  2. 极压润滑剂NH-EPL性能评价与现场应用%Performance Evaluation and Application of Extreme Pressure Lubricant NH-EPL

    Institute of Scientific and Technical Information of China (English)

    逯贵广

    2017-01-01

    Aiming at the problems of commonly drilling fluid lubricant,such as low pressure,poor anti-friction effect and temperature resistance, extreme pressure lubricant NH-EPL was prepared by introducing metal organic compound into alkanolamine ester. The properties of NH-EPL,such as lubrication,friction-reduction and wear-resistance effect,temperature resistance and salt tolerance,foam ability,fluorescence level and biological toxicity and so on,were studied and the effect of NH-EPL on the rheological property of drilling fluid was investigated. Furthermore,NH-EPL was applied in Xinjiang and Jiangsu area on site. The results showed that NH-EPL had excellent extreme pressure friction resistance and lubrication performance. At room temperature,the lubrication factor reduced 93.4%and the wear loss reduced 99.87%by 0.5%NH-EPL. The pressure capacity of NH-EPL was 320 kgf. NH-EPL had good resistance to temperature(160℃)and salt. The lubrication factor of 20% NaCl salt water slurry reduced 80.43% by NH-EPL. The foam ability of NH-EPL was poor and the foaming rate of base slurry containing 0.5% NH-EPL was only 1.0%. The fluorescence level of NH-EPL was one level. It had no biological toxicity which was in accordance with environmental guidelines. NH-EPL had little effect on the rheological property and filtration property of mud,and the compatibility between NH-EPL and other treatment agent was good. The field application effect of NH-EPL was remarkable in Xinjiang and Jiangsu area with drilling friction reduction rate up to 50%,which met the demand for drilling service of deep, highly-deviated and horizontal wells.%针对目前钻井液常用润滑剂承压能力低、减磨效果和抗温性能差等问题,通过在醇胺酯中引入金属有机化合物制得极压润滑剂NH-EPL.研究了NH-EPL的润滑性能、极压减磨性能、抗温耐盐性能、起泡性、荧光级别以及生物毒性等,考察了其对钻井液流变性的影响,并在新疆和江苏地区进

  3. Parallel Changes in Intracellular Water Volume and pH Induced by NH3/NH4+ Exposure in Single Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Víctor M. Blanco

    2013-12-01

    Full Text Available Background: Increased blood levels of ammonia (NH3 and ammonium (NH4+, i.e. hyperammonemia, leads to cellular brain edema in humans with acute liver failure. The pathophysiology of this edema is poorly understood. This is partly due to incomplete understanding of the osmotic effects of the pair NH3/NH4+ at the cellular and molecular levels. Cell exposure to solutions containing NH3/NH4+ elicits changes in intracellular pH (pHi, which can in turn affect cell water volume (CWV by activating transport mechanisms that produce net gain or loss of solutes and water. The occurrence of CWV changes caused by NH3/NH4+ has long been suspected, but the mechanisms, magnitude and kinetics of these changes remain unknown. Methods: Using fluorescence imaging microscopy we measured, in real time, parallel changes in pHi and CWV caused by brief exposure to NH3/NH4+ of single cells (N1E-115 neuroblastoma or NG-108 neuroblastoma X glioma loaded with the fluorescent indicator BCECF. Changes in CWV were measured by exciting BCECF at its intracellular isosbestic wavelength (∼438 nm, and pHi was measured ratiometrically. Results: Brief exposure to isosmotic solutions (i.e. having the same osmolality as that of control solutions containing NH4Cl (0.5- 30 mM resulted in a rapid, dose-dependent swelling, followed by isosmotic regulatory volume decrease (iRVD. NH4Cl solutions in which either extracellular [NH3] or [NH4+] was kept constant while the other was changed by varying the pH of the solution, demonstrated that [NH3]o rather than [NH4+]o is the main determinant of the NH4Cl-induced swelling. The iRVD response was sensitive to the anion channel blocker NPPB, and partly dependent on external Ca2+. Upon removal of NH4Cl, cells shrank and displayed isosmotic regulatory volume increase (iRVI. Regulatory volume responses could not be activated by comparable CWV changes produced by anisosmotic solutions, suggesting that membrane stretch or contraction by themselves are

  4. Atomic fountain and applications

    International Nuclear Information System (INIS)

    Rawat, H.S.

    2000-01-01

    An overview of the development of working of MOT along with the basic principle of laser atom cooling and trapping is given. A technique to separate the cooled and trapped atoms from the MOT using atomic fountain technique will also be covered. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT and then launch them in the vertical direction, using moving molasses technique. Using 133 Cs atomic fountain clock, time improvement of 2 to 3 order of magnitude over a conventional 133 Cs atomic clock has been observed

  5. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  6. Ultrasonic irradiation-promoted one-pot synthesis of CH3NH3PbBr3 quantum dots without using flammable CH3NH2 precursor

    Science.gov (United States)

    Jiang, Han; Wang, Chunlei; Lv, Changgui; Xu, Shuhong; Zhu, Li; Zhang, Ruohu; Cui, Yiping

    2017-02-01

    At present, the CH3NH3PbBr3 quantum dots (QDs) reported in the literature usually contain two synthesis steps: the initial preparation of CH3NH3Br via the reaction of flammable CH3NH2 and HBr, together with the subsequent formation of CH3NH3PbBr3 QDs. To avoid the use of dangerous CH3NH2, this work develops a novel one-pot method for synthesizing CH3NH3PbBr3 QDs using safe and commercially available reactants (CH3NH3Cl, KBr and PbCl2). It is found that ultrasonic treatment plays a key role during the synthesis of CH3NH3PbBr3 QDs. Without ultrasonic irradiation, it is not possible to synthesize CH3NH3PbBr3 QDs under heating or vigorous stirring. Aliquots of samples taken at different ultrasonic irradiation time intervals show a time-dependent redshift in the emission wavelength. This suggests the formation of CH3NH3PbCl3 QDs first, followed by the formation of CH3NH3PbBr3 QDs through ultrasonically promoted halide exchange. Moreover, mixed CH3NH3PbCl x Br3-x QDs with a tunable emission wavelength can also be prepared through this one-pot method by controlling the ultrasonic irradiation time. In comparison to the previous two-step method, the current one-pot method is simpler, less time-consuming and does not use flammable CH3NH2. The as-prepared CH3NH3PbBr3 QDs show a comparable photoluminescence (PL) quantum yield (QY) to that of the literature. What is more, the ultrasonic time-controlled emission wavelength of CH3NH3PbCl x Br3-x QDs also provides an alternative way of tuning QD emission to the traditional way of controlling the halide ratios.

  7. A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature

    KAUST Repository

    Tan, Yingbin

    2011-01-01

    A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system showed significantly improved dehydrogenation properties compared to the neat AB and LiBH 4·NH3 alone. For example, in the case of the LiBH4·NH3/AB with a mole ratio of 1:3, over 8 wt.% hydrogen could be released at 90 °C within 4 h, while only 5 wt.% hydrogen released from the neat AB at the same conditions. Through a series of experiments it has been demonstrated that the hydrogen release of the new system is resulted from an interaction of AB and the NH3 group in the LiBH4·NH3, in which LiBH4 works as a carrier of ammonia and plays a crucial role in promoting the interaction between the NH3 group and AB. The enhanced dehydrogenation of LiBH 4·NH3/AB may result from the polar liquid state reaction environments and the initially promoted formation of the diammoniate of diborane, which will facilitate the B-H⋯H-N interaction between LiBH4·NH3 and AB. Kinetics analysis revealed that the rate-controlling steps of the dehydrogenation process are three-dimensional diffusion of hydrogen at temperatures ranging from 90 to 110 °C. This journal is © The Royal Society of Chemistry.

  8. Three-atom clusters

    International Nuclear Information System (INIS)

    Pen'kov, F.M.

    1998-01-01

    The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example

  9. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  10. A non-typical sequence of phase transitions in (NH4)3GeF7: optical and structural characterization.

    Science.gov (United States)

    Mel'nikova, S V; Molokeev, M S; Laptash, N M; Misyul, S V

    2016-03-28

    Single crystals of germanium double salt (NH4)3GeF7 = (NH4)2GeF6·NH4F = (NH4)3[GeF6]F were grown and studied by the methods of polarization optics and X-ray diffraction. The birefringence Δn = (no - ne), the rotation angle of the optical indicatrix ϕ(T) and unit cell parameters were measured in the temperature range 100-400 K. Three structural phase transitions were found at the temperatures: T1↓ = 279.2 K (T1↑ = 279.4 K), T2↑ = 270 K (T2↓ = 268.9 K), T3↓ = 218 K (T3↑ = 227 K). An unusual sequence of symmetry transformations with temperature change was established: P4/mbm (Z = 2) (G1) ↔ Pbam (Z = 4) (G2) ↔ P21/c (Z = 4) (G3) ↔ Pa3[combining macron] (Z = 8) (G4). The crystal structures of different phases were determined. The experimental data were additionally interpreted by a group-theoretical analysis of the complete condensate of order parameters taking into account the critical and noncritical atomic displacements. Strengthening of the N-HF hydrogen bonds can be a driving force of the observed phase transitions.

  11. GaN-Based High-k Praseodymium Oxide Gate MISFETs with P2S5/(NH42SX + UV Interface Treatment Technology

    Directory of Open Access Journals (Sweden)

    Chao-Wei Lin

    2012-01-01

    Full Text Available This study examines the praseodymium-oxide- (Pr2O3- passivated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs with high dielectric constant in which the AlGaN Schottky layers are treated with P2S5/(NH42SX + ultraviolet (UV illumination. An electron-beam evaporated Pr2O3 insulator is used instead of traditional plasma-assisted chemical vapor deposition (PECVD, in order to prevent plasma-induced damage to the AlGaN. In this work, the HEMTs are pretreated with P2S5/(NH42SX solution and UV illumination before the gate insulator (Pr2O3 is deposited. Since stable sulfur that is bound to the Ga species can be obtained easily and surface oxygen atoms are reduced by the P2S5/(NH42SX pretreatment, the lowest leakage current is observed in MIS-HEMT. Additionally, a low flicker noise and a low surface roughness (0.38 nm are also obtained using this novel process, which demonstrates its ability to reduce the surface states. Low gate leakage current Pr2O3 and high-k AlGaN/GaN MIS-HEMTs, with P2S5/(NH42SX + UV illumination treatment, are suited to low-noise applications, because of the electron-beam-evaporated insulator and the new chemical pretreatment.

  12. Infrared spectra of the ammonium ion in ammonium hexavanadate (NH 4) 2V 6O 16

    Science.gov (United States)

    de Waal, D.; Heyns, A. M.; Range, K.-J.; Eglmeier, C.

    The infrared bands of the NH +4 and ND +4 groups in (NH 4) 2V 6O 16 and its deuterated analogue can be assigned with a fair amount of certainty at 90 K under the space group P2 1/ m( C22 h). The ND stretching modes of isotopically dilute NH 3D + ions in the crystal are in agreement with the predicted splitting into Cs, Cs and C1(2) components. The frequencies, shapes and temperature dependence of these modes suggest that both normal and bifurcated hydrogen bonds are formed. The latter closely resembles corresponding bonds in NH 4VO 3, but the normal hydrogen bonds are not as strong as the similar bonds in NH 4VO 3. This can be expected as NH +4 ions are dynamic in character in (NH 4) 2V 6O 16 and remain so down to temperatures of 90 K.

  13. Infrared spectra of the ammonium ion in ammonium metavanadate NH 4VO 3

    Science.gov (United States)

    de Waal, D.; Heyns, A. M.; Range, K.-J.; Eglmeier, C.

    The ND stretching modes of isotopically dilute NH 3D + ions in NH 4VO 3 are in agreement with the predicted splitting into C s, C s and C1(2) components under C s site symmetry for the NH +4 ion. The three bands observed represent the three NH bonding distances in the crystal, and the position, shape and low temperature behaviour of each band confirms the existence of two types of hydrogen bonding in NH 4VO 3. The low temperature infrared modes of NH +4 and ND +4 in NH 4VO 3 and ND 4VO 3, respectively, can be assigned under space group Pbcm. Temperature dependence of these modes also reflects the presence of both normal and bifurcated hydrogen bonds in NH 4VO 3.

  14. A computational study of dimers and trimers of nitrosyl hydride: Blue shift of NH bonds that are involved in H-bond and orthogonal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Solimannejad, Mohammad, E-mail: m-solimannejad@araku.ac.ir [Quantum Chemistry Group, Department of Chemistry, Arak University, 38156-879 Arak (Iran, Islamic Republic of); Massahi, Shokofeh [Quantum Chemistry Group, Department of Chemistry, Arak University, 38156-879 Arak (Iran, Islamic Republic of); Alkorta, Ibon, E-mail: ibon@iqm.csic.es [Instituto de Quimica Medica (CSIC), Juan de la Cierva, 3, 28006 Madrid (Spain)

    2009-07-30

    Ab initio calculations at MP2/aug-cc-pVTZ level were used to analyze the interactions between nitrosyl hydride (HNO) dimers and trimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Nine different structures have been obtained for the trimers. Three types of interactions are observed, NH{center_dot}{center_dot}{center_dot}N and NH{center_dot}{center_dot}{center_dot}O hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of dimers and trimers including BSSE and ZPE are in the range 4-8 kJ mol{sup -1} and 12-19 kJ mol{sup -1}, respectively. Blue shift of NH bond upon complex formation in the ranges between 30-80 and 14,114 cm{sup -1} is predicted for dimers and trimers, respectively.

  15. Increasing Hydrogen Density with the Cation-Anion Pair BH4−-NH4+ in Perovskite-Type NH4Ca(BH43

    Directory of Open Access Journals (Sweden)

    Pascal Schouwink

    2015-08-01

    Full Text Available A novel metal borohydride ammonia-borane complex Ca(BH42·NH3BH3 is characterized as the decomposition product of the recently reported perovskite-type metal borohydride NH4Ca(BH43, suggesting that ammonium-based metal borohydrides release hydrogen gas via ammonia-borane-complexes. For the first time the concept of proton-hydride interactions to promote hydrogen release is applied to a cation-anion pair in a complex metal hydride. NH4Ca(BH43 is prepared mechanochemically from Ca(BH42 and NH4Cl as well as NH4BH4 following two different protocols, where the synthesis procedures are modified in the latter to solvent-based ball-milling using diethyl ether to maximize the phase yield in chlorine-free samples. During decomposition of NH4Ca(BH43 pure H2 is released, prior to the decomposition of the complex to its constituents. As opposed to a previously reported adduct between Ca(BH42 and NH3BH3, the present complex is described as NH3BH3-stuffed α-Ca(BH42.

  16. Imaging a multidimensional multichannel potential energy surface: Photodetachment of H{sup −}(NH{sub 3}) and NH{sub 4}{sup −}

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qichi; Johnson, Christopher J.; Continetti, Robert E., E-mail: hguo@umn.edu, E-mail: rcontinetti@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340 (United States); Song, Hongwei; Guo, Hua, E-mail: hguo@umn.edu, E-mail: rcontinetti@ucsd.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Li, Jun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-06-28

    Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH{sub 4} and the double Rydberg anion NH{sub 4}{sup −} represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H{sup −}(NH{sub 3}) ion-dipole complex and the NH{sub 4}{sup −} DRA probes different regions on the neutral NH{sub 4} PES. Photoelectron energy and angular distributions at photon energies of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH{sub 4} Rydberg radical occurs to H + NH{sub 3} with a peak kinetic energy of 0.13 eV, showing the ground state of NH{sub 4} to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.

  17. Comparative genomic and physiological analysis of nutrient response to NH4+, NH4+:NO3- and NO3- in barley seedlings.

    Science.gov (United States)

    Lopes, Marta S; Araus, José L

    2008-09-01

    Long-term differences in photosynthesis, respiration and growth of plants receiving distinct nitrogen (N) sources imply that N metabolism generates signals that regulate metabolism and development. The molecular basis of these signals remains unclear. Here we studied the gene expression profiles of barley (Hordeum vulgare L. cv. Graphic) seedlings fertilized either with ammonium (NH4+), with ammonium and nitrate (NH4+:NO3-), or with nitrate (NO3-) only. Our transcriptome analysis after 48 h of growth in these N sources showed major changes in the expression of genes involved in N metabolism (nitrate reductase), signalling (protein kinases and protein phosphatases), photosynthesis (chlorophyll a/b-binding protein and a PsbQ domain), where increases in NO3- as compared with NH4+ were observed. Moreover, NH4+ assimilation induced genes participating in C and sugars metabolism (phosphoglycerate kinase, glucosyltranferase and galactokinase), respiration (cytochrome c oxidase), protein fate (heat shock proteins) and development (MTN3-like protein). These changes in gene expression could well explain the long-term growth depression observed in NH4+ plants. Even if a few genes participating in protein fate (proteases) and development (OsNAC5) were upregulated in NH4+ as compared with NH4+:NO3-, the general pattern of expression was quite similar between these two N sources. Taken together, these results indicated that other downstream mechanisms should be involved in the synergetic long-term response of NH4+:NO3-.

  18. Molecular orbital calculations for the formation of GaN layers on ultra-thin AlN/6H-SiC surface using alternating pulsative supply of gaseous trimethyl gallium (TMG) and NH sub 3

    CERN Document Server

    Seong, S Y

    2001-01-01

    The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH sub 3 gases have been examined by ASED-MO calculations. We postulate that the gallium clusters was formed with the evaporation of CH sub 4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl gallium (MMG). During the injection of NH sub 3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH sub 3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH sub 3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster...

  19. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  20. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  1. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  2. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  3. Biopesticide activity of sugarcane associated rhizobacteria: Ochrobactrum intermedium strain NH-5 and Stenotrophomonas maltophilia strain NH-300 against red rot under field conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem HASSAN

    2014-09-01

    Full Text Available Colletotrichum falcatum is the major fungal pathogen causing sugarcane red rot. Four antagonistic bacterial strains exhibiting biocontrol activity against this pathogen in greenhouse conditions were characterized for production of different antifungal metabolites and biocontrol determinants to elucidate the mechanism of action involved in their antagonistic activity. The strains were also evaluated under field conditions to assess their biocontrol potential. All the strains produced hydrogen cyanide (HCN, and volatile and diffusible antibiotics. In addition, the Ochrobactrum intermedium strain NH-5 produced siderophores and the broad spectrum antibiotic 2, 4-diacetylphloroglucinol (2,4-DAPG; Pseudomonas sp. NH-203 produced siderophores, and Pseudomonas sp. NH-276 produced protease. Two strains, Ochrobactrum intermedium NH-5 and Stenotrophomonas maltophilia NH-300, exhibited good biocontrol activity, suppressing red rot by 44–52% on two sugarcane varieties, SPF-234 and Co-1148, in field experiments. The strains gave consistent results in three consecutive years and showed potential to be used as biopesticides.

  4. Electron motion in high-pressure polar gases: NH3

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Carter, J.G.; Maxey, D.V.

    1982-01-01

    Drift velocities w for slow electrons in NH 3 vapor have been measured and are reported as a function of the density-reduced electric field E/N ( -17 V cm 2 ), density N (2.43--292 x 10 18 molecule cm -3 ), and temperature T (300--650 K). The w decreases with increasing N considerably and this decrease varies with T; for a fixed N it is higher the lower the T. Use is made of the T- and N-dependence of w to assess the role of the various processes which delay the electron drift. The density range above approx.2.5 x 10 19 molecules cm -3 seems (anionic) electron state. The number density N/sub L/ at which complete electron localization occurs, has been estimated at various T. At T = 300 K, N/sub L/approx. =3.3 x 10 20 molecule cm -3 or approx.0.01 g cm 3 . Estimates have also been made of the binding energy of the electron to the trapping species (possibly NH 3 clusters) which, depending on T, range from 0.11 to 0.15 eV

  5. Observations of HC5N and NH3 in Taurus

    International Nuclear Information System (INIS)

    Myers, P.C.; Ho, P.T.P.; Benson, P.J.

    1979-01-01

    Observations of HC 5 N lines toward TMC-2 indicate that it is a small (Lapprox.0.1 pc), dense (napprox.4 x 10 4 cm -3 ), low-mass (Mapprox.1 M/sub sun/) fragment in the Taurus complex, with velocity dispersion at the emission peak only about twice thermal (Δvapprox.0.2 km s -1 ). The HC 5 N emission region in TMC-2 has roughly half the projected area of that in TMC-1, and is more round than filamentary. The HC 5 N and NH 3 emission regions in TMC-2 are coincident, with N (HC 5 N)/N (NH 3 ) approx.0.1. The line width is much smaller than the free-fall width; the deduced values of L, n, and T satisfy the virial-theorem requirement for stable equilibrium. The temporary equilibrium of such fragments may serve to lengthen the time scales for formation of low-mass stars and long-chain molecules

  6. Photoacoustic detection of NH3 in power plant emissions

    International Nuclear Information System (INIS)

    Rassmussen, O.

    1991-01-01

    The paper describes a photoacoustic spectrometer initially designed for detection of NH 3 in power plant emission with a detection limit below 1 ppm. The radiation source is a high tunable CO 2 waveguide laser emitting its own frequency standard in one of 90 laserlines. The detection is performed at reduced pressure where the vibration-rotation transitions give an unambiguous fingerprint for each trace gas. Immunity against interference is ensured by recording this characteristic spectral fingerprint over the tuning range of the laser, and problems associated with the high concentration of CO 2 or other interfering molecules are further eliminated by utilizing the effect of kinetic cooling in the photoacoustic phase. The use of a CO 2 laser as radiation source combined with the highly sensitive photoacoustic detection provides a great possibility of measuring a wide range of air pollutants in the range down to ppt concentrations. Experimental measurements have been carried out on gases like sulfur dioxide, ethylene, sulfur hexafluoride, vinylchloride, ozone, etc., and many others have been theoretically examined to give a high response in the CO 2 laser frequency range. A computerized NH 3 spectrometer has been constructed and tested under realistic conditions at a Danish power plant operating a test facility for selective non-catalytic reduction of NO x . Results of this test will be presented

  7. Atomic Fisher information versus atomic number

    International Nuclear Information System (INIS)

    Nagy, A.; Sen, K.D.

    2006-01-01

    It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number

  8. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions.

    Science.gov (United States)

    Ranathunge, Kosala; El-Kereamy, Ashraf; Gidda, Satinder; Bi, Yong-Mei; Rothstein, Steven J

    2014-03-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4(+)). The NH4(+) uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4(+) transport in rice plants. However, little is known about its involvement in NH4(+) uptake in rice roots and subsequent effects on NH4(+) assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4(+) permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4(+) content in the shoots and roots than the WT. Direct NH4(+) fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4(+) contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4(+) levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.

  9. AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions

    Science.gov (United States)

    Rothstein, Steven J.

    2014-01-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4 +). The NH4 + uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4 + transport in rice plants. However, little is known about its involvement in NH4 + uptake in rice roots and subsequent effects on NH4 + assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4 + permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4 + content in the shoots and roots than the WT. Direct NH4 + fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4 + contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4 + levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions. PMID:24420570

  10. Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process

    International Nuclear Information System (INIS)

    Li, Kangkang; Yu, Hai; Qi, Guojie; Feron, Paul; Tade, Moses; Yu, Jingwen; Wang, Shujuan

    2015-01-01

    Highlights: • A rigorous, rate-based model for an NH 3 –CO 2 –SO 2 –H 2 O system was developed. • Model predictions are in good agreement with pilot plant results. • >99.9% of SO 2 was captured and >99.9% of slipped ammonia was reused. • The process is highly adaptable to the variations of SO 2 /NH 3 level, temperatures. - Abstract: To reduce the costs of controlling emissions from coal-fired power stations, we propose an advanced and effective process of combined SO 2 removal and NH 3 recycling, which can be integrated with the aqueous NH 3 -based CO 2 capture process to simultaneously achieve SO 2 and CO 2 removal, NH 3 recycling and flue gas cooling in one process. A rigorous, rate-based model for an NH 3 –CO 2 –SO 2 –H 2 O system was developed and used to simulate the proposed process. The model was thermodynamically and kinetically validated by experimental results from the open literature and pilot-plant trials, respectively. Under typical flue gas conditions, the proposed process has SO 2 removal and NH 3 reuse efficiencies of >99.9%. The process is strongly adaptable to different scenarios such as high SO 2 levels in flue gas, high NH 3 levels from the CO 2 absorber and high flue gas temperatures, and has a low energy requirement. Because the process simplifies flue gas desulphurisation and resolves the problems of NH 3 loss and SO 2 removal, it could significantly reduce the cost of CO 2 and SO 2 capture by aqueous NH 3

  11. Functionalised metal-organic frameworks : A novel approach to stabilising single metal atoms

    NARCIS (Netherlands)

    Szilagyi, P.A.; Rogers, D. M.; Zaiser, I.; Callini, E; Turner, Stuart; Borgschulte, A; Züttel, A.; Geerlings, J.J.C.; Hirscher, M; Dam, B.

    2017-01-01

    We have investigated the potential of metal-organic frameworks for immobilising single atoms of transition metals using a model system of Pd supported on NH2-MIL-101(Cr). Our transmission electron microscopy and in situ Raman spectroscopy results give evidence for the first time that

  12. Gold(I) Complexes with N-Donor Ligands. 2.(1) Reactions of Ammonium Salts with [Au(acac-kappaC(2))(PR(3))] To Give [Au(NH(3))L](+), [(AuL)(2)(&mgr;(2)-NH(2))](+), [(AuL)(4)(&mgr;(4)-N)](+), or [(AuL)(3)(&mgr;(3)-O)](+). A New and Facile Synthesis of [Au(NH(3))(2)](+) Salts. Crystal Structure of [{AuP(C(6)H(4)OMe-4)(3)}(3)(&mgr;(3)-O)]CF(3)SO(3).

    Science.gov (United States)

    Vicente, José; Chicote, María-Teresa; Guerrero, Rita; Jones, Peter G.; Ramírez De Arellano, M. Carmen

    1997-09-24

    The complexes [Au(acac-kappaC(2))(PR(3))] (acac = acetylacetonate, R = Ph, C(6)H(4)OMe-4) react with (NH(4))ClO(4) to give amminegold(I), [Au(NH(3))(PR(3))]ClO(4), amidogold(I), [(AuPR(3))(2)(&mgr;(2)-NH(2))]ClO(4), or nitridogold(I), [(AuPR(3))(4)(&mgr;(4)-N)]ClO(4), complexes, depending on the reaction conditions. Similarly, [Au(acac-kappaC(2))(PPh(3))] reacts with (NH(3)R')OTf (OTf = CF(3)SO(3)) (1:1) or with [H(3)N(CH(2))(2)NH(2)]OTf (1:1) to give (amine)gold(I) complexes [Au(NH(2)R')(PPh(3))]OTf (R' = Me, C(6)H(4)NO(2)-4) or [(AuPPh(3))(2){&mgr;(2)-H(2)N(CH(2))(2)NH(2)}](OTf)(2), respectively. The ammonium salts (NH(2)R'(2))OTf (R' = Et, Ph) react with [Au(acac-kappaC(2))(PR(3))] (R = Ph, C(6)H(4)OMe-4) (1:2) to give, after hydrolysis, the oxonium salts [(AuPR(3))(3)(&mgr;(3)-O)]OTf (R = Ph, C(6)H(4)OMe-4). When NH(3) is bubbled through a solution of [AuCl(tht)] (tht = tetrahydrothiophene), the complex [Au(NH(3))(2)]Cl precipitates. Addition of [Au(NH(3))(2)]Cl to a solution of AgClO(4) or TlOTf leads to the isolation of [Au(NH(3))(2)]ClO(4) or [Au(NH(3))(2)]OTf, respectively. The crystal structure of [(AuPR(3))(3)(&mgr;(3)-O)]OTf.Me(2)CO (R = C(6)H(4)OMe-4) has been determined: triclinic, space group P&onemacr;, a = 14.884(3) Å, b = 15.828(3) Å, c = 16.061(3) Å, alpha = 83.39(3) degrees, beta = 86.28(3) degrees, gamma = 65.54(3) degrees, R1 (wR2) = 0.0370 (0.0788). The [(AuPR(3))(3)(&mgr;(3)-O)](+) cation shows an essentially trigonal pyramidal array of three gold atoms and one oxygen atom with O-Au-P bond angles of ca. 175 degrees and Au.Au contacts in the range 2.9585(7)-3.0505(14) Å. These cations are linked into centrosymmetric dimers through two short Au.Au [2.9585(7), 3.0919(9) Å] contacts. The gold atoms of the dimer form a six-membered ring with a chair conformation.

  13. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  14. Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3

    International Nuclear Information System (INIS)

    Benami, A; Santana, G; Ortiz, A; Ponce, A; Romeu, D; Aguilar-Hernandez, J; Contreras-Puente, G; Alonso, J C

    2007-01-01

    Strong white and blue photoluminescence (PL) from as-grown silicon nanocrystals (nc-Si) in SiN x films prepared by remote plasma enhanced chemical vapour deposition using SiCl 4 /NH 3 mixtures is reported. The colour and intensity of the PL could be controlled by adjusting the NH 3 flow rate. Samples with white emission were annealed at 1000 deg. C, obtaining a strong improvement of the PL intensity with a blue colour. The PL can be attributed to quantum confinement effect in nc-Si embedded in SiN x matrix, which is improved when a better passivation of nc-Si surface with chlorine and nitrogen atoms is obtained. The size, density and structure of the nc-Si in the as-grown and annealed films were confirmed and measured by high-resolution transmission electron microscopy

  15. Synthesis and crystal structure of 4-fluorobenzylammonium dihydrogen phosphate, [FC6H4CH2NH3]H2PO4

    Directory of Open Access Journals (Sweden)

    Ali Rayes

    2016-12-01

    Full Text Available The asymmetric unit of the title salt, [p-FC6H4CH2NH3]+·H2PO4−, contains one 4-fluorobenzylammonium cation and one dihydrogen phosphate anion. In the crystal, the H2PO4− anions are linked by O—H...O hydrogen bonds to build corrugated layers extending parallel to the ab plane. The FC6H4CH2NH3+ cations lie between these anionic layers to maximize the electrostatic interactions and are linked to the H2PO4− anions through N—H...O hydrogen bonds, forming a three-dimensional supramolecular network. Two hydrogen atoms belonging to the dihydrogen phosphate anion are statistically occupied due to disorder along the OH...HO direction.

  16. Comprehension of Postmetallization Annealed MOCVD-TiO2 on (NH42S Treated III-V Semiconductors

    Directory of Open Access Journals (Sweden)

    Ming-Kwei Lee

    2012-01-01

    Full Text Available The electrical characteristics of TiO2 films grown on III-V semiconductors (e.g., p-type InP and GaAs by metal-organic chemical vapor deposition were studied. With (NH42S treatment, the electrical characteristics of MOS capacitors are improved due to the reduction of native oxides. The electrical characteristics can be further improved by the postmetallization annealing, which causes hydrogen atomic ion to passivate defects and the grain boundary of polycrystalline TiO2 films. For postmetallization annealed TiO2 on (NH42S treated InP MOS, the leakage current densities can reach 2.7 × 10−7 and 2.3 × 10−7 A/cm2 at ±1 MV/cm, respectively. The dielectric constant and effective oxide charges are 46 and 1.96 × 1012 C/cm2, respectively. The interface state density is 7.13×1011 cm−2 eV−1 at the energy of 0.67 eV from the edge of valence band. For postmetallization annealed TiO2 on (NH42S treated GaAs MOS, The leakage current densities can reach 9.7×10−8 and 1.4×10−7 at ±1 MV/cm, respectively. The dielectric constant and effective oxide charges are 66 and 1.86×1012 C/cm2, respectively. The interface state density is 5.96×1011 cm−2 eV−1 at the energy of 0.7 eV from the edge of valence band.

  17. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  18. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  19. Determination of NH2 concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde

    Science.gov (United States)

    Manakhov, Anton; Čechal, Jan; Michlíček, Miroslav; Shtansky, Dmitry V.

    2017-08-01

    The quantification of concentration of primary amines, e.g. in plasma polymerized layers is a very important task for surface analysis. However, the commonly used procedure, such as gas phase derivatization with benzaldehydes, shows several drawbacks, the most important of which are the side reaction effects. In the present study we propose and validate a liquid phase derivatization using 5-iodo 2-furaldehyde (IFA). It was demonstrated that the content of NH2 groups can be determined from the atomic concentrations measured by X-ray photoelectron spectroscopy (XPS), in particular from the ratio of I 3d and N 1s peak intensities. First, we demonstrate the method on a prototypical system such as 3-aminopropyl tri-ethoxy silane (APTES) layer. Here the XPS analysis carried out after reaction of APTES layer with IFA gives the fraction of primary amines (NH2/N) of 38.3 ± 7.9%. Comparing this value with that obtained by N 1s curve fitting of APTES layer giving 40.9 ± 9.5% of amine groups, it can be concluded that all primary amines were derivatized by reaction with IFA. The second system to demonstrate the method comprises cyclopropylamine (CPA) plasma polymers that were free from conjugated imines. In this case the method gives the NH2 fraction ∼8.5%. This value is closely matching the NH2/N ratio estimated by 4-trifluoromethyl benzaldehyde (TFBA) derivatization. The reaction of IFA with CPA plasma polymer exhibiting high density of conjugated imines revealed the NH2/N fraction of ∼10.8%. This value was significantly lower compared to 17.3% estimated by TFBA derivatization. As the overestimated density of primary amines measured by TFBA derivatization is probably related to the side reaction of benzaldehydes with conjugated imines, the proposed IFA derivatization of primary amines can be an alternative procedure for the quantification of surface amine groups.

  20. Ammonium iron(III phosphate(V fluoride, (NH40.5[(NH40.375K0.125]FePO4F, with ammonium partially substituted by potassium

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2009-01-01

    Full Text Available The title compound, ammonium potassium iron(III phosphate fluoride, (NH40.875K0.125FePO4F, is built from zigzag chains ∞1{[FeO4F2]7−}, with Fe3+ in a distorted octahedral coordination, extending along both the [011] and [0overline{1}1] directions. These chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octahedra via shared F-atom corners, and are linked by PO4 tetrahedra, resulting in an open-framework structure with channels along the [010] and [100] directions. There are two crystallographically independent ammonium sites: one in the [010] channels and the other, partially substituted by K+ ions, in the [100] channels. The ammonium in the [010] channels is fixed to the framework via eight hydrogen bonds (six N—H...O and two N—H...F.

  1. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  2. [UO2(NH3)5]Br2·NH3: synthesis, crystal structure, and speciation in liquid ammonia solution by first-principles molecular dynamics simulations.

    Science.gov (United States)

    Woidy, Patrick; Bühl, Michael; Kraus, Florian

    2015-04-28

    Pentaammine dioxido uranium(VI) dibromide ammonia (1/1), [UO2(NH3)5]Br2·NH3, was synthesized in the form of yellow crystals by the reaction of uranyl bromide, UO2Br2, with dry liquid ammonia. The compound crystallizes orthorhombic in space group Cmcm and is isotypic to [UO2(NH3)5]Cl2·NH3 with a = 13.2499(2), b = 10.5536(1), c = 8.9126(1) Å, V = 1246.29(3) Å(3) and Z = 4 at 123 K. The UO2(2+) cation is coordinated by five ammine ligands and the coordination polyhedron can be best described as pentagonal bipyramid. Car-Parrinello molecular dynamics simulations are reported for [UO2(NH3)5](2+) in the gas phase and in liquid NH3 solution (using the BLYP density functional). According to free-energy simulations, solvation by ammonia has only a small effect on the uranyl-NH3 bond strength.

  3. CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2017-09-01

    Full Text Available CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO2 gas to carbonates in MgCl2–NH3–NH4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO2 absorption when proceeding chiefly through interactions between CO2(aq and NH3(aq. We further quantified the reaction kinetic constant of the CO2–NH3 reaction. Our results indicate that higher initial concentration of NH4Cl ( ≥ 2 mol · L − 1 leads to the precipitation of roguinite [ ( NH 4 2 Mg ( CO 3 2 · 4 H 2 O ], while nesquehonite appears to be the dominant Mg-carbonate without NH4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO2 sequestration.

  4. Evaluation of the phase composition of (NH4)2SO4 + (NH4)H2PO4 mixtures by X-ray diffractometry

    International Nuclear Information System (INIS)

    Ortiz, Angel L.; Cumbrera, Francisco L.; Perez, Jose; Vas, Beatriz del; Perez, Eduardo

    2009-01-01

    The phase composition of standard (NH 4 ) 2 SO 4 + (NH 4 )H 2 PO 4 mixtures was investigated by X-ray diffractometry (XRD) using the internal-standard, reference-intensity-ratio, and Rietveld methods. It was found that the Rietveld method yields the most accurate phase-composition measurements, with an average error of ∼2 wt.%. It was also found that the internal-standard method is only effective in determining the phase composition if the calibration curve for (NH 4 )H 2 PO 4 is used, giving an average error of ∼6.5 wt.%. On the contrary, the internal-standard method with the calibration curve of the (NH 4 ) 2 SO 4 phase and the reference-intensity-ratio method are not valid. The inappropriateness of these two methods was attributed to graininess in the (NH 4 ) 2 SO 4 phase, with the attendant deviation of its diffracted intensities from the theoretical values. Direct scanning electron microscopy observations of the morphology of the powder particles in the mixtures showed clear evidence of the large agglomerates formed because the individual powder particles are partially sintered together during milling, thus corroborating the graininess determined by the XRD analyses. Finally, the implications of the present study for the quantitative phase-composition analysis of (NH 4 ) 2 SO 4 + (NH 4 )H 2 PO 4 mixtures, which are of great technological importance for the fire prevention industry, are discussed.

  5. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    1970-01-01

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  6. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  7. NH exchange in point mutants of human ubiquitin.

    Science.gov (United States)

    Jahr, Nicole; Fiedler, Erik; Günther, Robert; Hofmann, Hans-Jörg; Berger, Stefan

    2011-08-01

    Several point mutants of human ubiquitin (Ub(T9V), Ub(F45W), Ub(F45G), and Ub(A46S)) were prepared by recombinant techniques. The NH exchange rate constants were measured by the NMR diffusion and the MEXICO methods and compared with those in the wild type to examine the influence of structural changes and to improve the understanding of this important reaction in studies of protein folding and denaturation. The observed changes follow qualitatively the polarity and steric alterations caused by the introduced amino acids. Attempts to reproduce quantitatively the observed changes by modeling studies and molecular dynamics simulations were not satisfactory. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Low-Pressure H2, NH3 Microwave Plasma Treatment of Polytetrafluoroethylene (PTFE) Powders: Chemical, Thermal and Wettability Analysis

    Science.gov (United States)

    Hunke, Harald; Soin, Navneet; Shah, Tahir H.; Kramer, Erich; Pascual, Alfons; Karuna, Mallampalli Sri Lakshmi; Siores, Elias

    2015-01-01

    Functionalization of Polytetrafluoroethylene (PTFE) powders of ~6 μm particle size is carried out using low-pressure 2.45 GHz H2, NH3 microwave plasmas for various durations (2.5, 10 h) to chemically modify their surface and alter their surface energy. The X-ray Photoelectron Spectroscopy (XPS) analyses reveal that plasma treatment leads to significant defluorination (F/C atomic ratio of 1.13 and 1.30 for 10 h NH3 and H2 plasma treatments, respectively vs. 1.86 for pristine PTFE), along with the incorporation of functional polar moieties on the surface, resulting in enhanced wettability. Analysis of temperature dependent XPS revealed a loss of surface moieties above 200 °C, however, the functional groups are not completely removable even at higher temperatures (>300 °C), thus enabling the use of plasma treated PTFE powders as potential tribological fillers in high temperature engineering polymers. Ageing studies carried over a period of 12 months revealed that while the surface changes degenerate over time, again, they are not completely reversible. These functionalised PTFE powders can be further used for applications into smart, high performance materials such as tribological fillers for engineering polymers and bio-medical, bio-material applications.

  9. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications.

    Science.gov (United States)

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2014-03-26

    Hybrid AMX3 perovskites (A = Cs, CH3NH3; M = Sn, Pb; X = halide) have revolutionized the scenario of emerging photovoltaic technologies, with very recent results demonstrating 15% efficient solar cells. The CH3NH3PbI3/MAPb(I(1-x)Cl(x))3 perovskites have dominated the field, while the similar CH3NH3SnI3 has not been exploited for photovoltaic applications. Replacement of Pb by Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Density Functional Theory electronic structure methods have so far delivered an unbalanced description of Pb- and Sn-based perovskites. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 electronic properties are discussed in light of their exploitation for solar cells, and found to be dominantly due to relativistic effects. These effects stabilize the CH3NH3PbI3 material towards oxidation, by inducing a deeper valence band edge. Relativistic effects, however, also increase the material band-gap compared to CH3NH3SnI3, due to the valence band energy downshift (~0.7 eV) being only partly compensated by the conduction band downshift (~0.2 eV).

  10. Dehydriding reaction of Mg(NH2)2-LiH system under hydrogen pressure

    International Nuclear Information System (INIS)

    Aoki, M.; Noritake, T.; Kitahara, G.; Nakamori, Y.; Towata, S.; Orimo, S.

    2007-01-01

    The dehydriding and structural properties of the 3Mg(NH 2 ) 2 + 12LiH system under hydrogen pressure were investigated using the pressure-composition (p-c) isotherm measurement and X-ray diffraction (XRD) analysis. Two distinct regions, a plateau region and a sloping region, can be seen on the p-c isotherms and the amount of the desorbed hydrogen at 523 K was 4.9 mass%. The enthalpy of hydrogenation calculated using a van't Hoff plot was -46 kJ/mol H 2 . The dehydriding reaction was proposed for the 3Mg(NH 2 ) 2 + 12LiH system based on the obtained p-c isotherms and XRD profiles and chemical valences of Li, Mg, N, and H. In the plateau region on the p-c isotherm, Mg(NH 2 ) 2 , Li 4 Mg 3 (NH 2 ) 2 (NH) 4 (tetragonal), and LiH phases coexist and the molar ratio of the Li 4 Mg 3 (NH 2 ) 2 (NH) 4 phase increases (while those of Mg(NH 2 ) 2 and LiH phases decrease) with the amount of the desorbed hydrogen. On the other hand, the mixture of Li 4+x Mg 3 (NH 2 ) 2-x (NH) 4+x + (8-x)LiH (0 ≤ x ≤ 2) is formed and the lattice volume of the Li 4+x Mg 3 (NH 2 ) 2-x (NH) 4+x phase continuously increases with the amount of the desorbed hydrogen in the sloping region on the p-c isotherm

  11. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  12. First detection of cyanamide (NH2CN) towards solar-type protostars

    Science.gov (United States)

    Coutens, A.; Willis, E. R.; Garrod, R. T.; Müller, H. S. P.; Bourke, T. L.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Ligterink, N. F. W.; Persson, M. V.; Stéphan, G.; van der Wiel, M. H. D.; van Dishoeck, E. F.; Wampfler, S. F.

    2018-05-01

    Searches for the prebiotically relevant cyanamide (NH2CN) towards solar-type protostars have not been reported in the literature. We present here the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PILS) of IRAS 16293-2422 B and observations from the IRAM Plateau de Bure Interferometer of NGC 1333 IRAS2A. We also detected the deuterated and 13C isotopologs of NH2CN towards IRAS 16293-2422 B. This is the first detection of NHDCN in the interstellar medium. Based on a local thermodynamic equilibrium analysis, we find that the deuteration of cyanamide ( 1.7%) is similar to that of formamide (NH2CHO), which may suggest that these two molecules share NH2 as a common precursor. The NH2CN/NH2CHO abundance ratio is about 0.2 for IRAS 16293-2422 B and 0.02 for IRAS2A, which is comparable to the range of values found for Sgr B2. We explored the possible formation of NH2CN on grains through the NH2 + CN reaction using the chemical model MAGICKAL. Grain-surface chemistry appears capable of reproducing the gas-phase abundance of NH2CN with the correct choice of physical parameters.

  13. NH4SH and cloud cover in the atmospheres of the giant planets

    Science.gov (United States)

    Ibragimov, K. Iu.; Solodovnik, A. A.

    1991-02-01

    The probability of the formation of NH4SH and (NH4)2S is examined on the basis of the Le Chatelier principle. It is shown that it is very doubtful if NH4SH can be created in the atmospheres of the giant planets in quantities sufficient for cloud formation. Thus (NH4)2S is considered as a more likely candidate for cloud formation in the atmospheres of these planets, inasmuch as the conditions for its production there are more favorable.

  14. Ammonothermal synthesis and characterization of Cs{sub 2}[Zn(NH{sub 2}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Theresia M.M.; Niewa, Rainer [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart (Germany); Alt, Nicolas S.A.; Schluecker, Eberhard [Lehrstuhl fuer Prozessmaschinen und Anlagentechnik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Cauerstrasse 4, 91058, Erlangen (Germany)

    2016-10-15

    Cs{sub 2}[Zn(NH{sub 2}){sub 4}] was synthesized under ammonothermal conditions (sc-NH{sub 3}, 523 K, 155 MPa) from CsNH{sub 2} and Zn. Growth of cm-sized crystals succeeded upon application of a temperature gradient. The crystal structure is based on the motif of a hexagonal closed packing of [Zn(NH{sub 2}){sub 4}]{sup 2-} ions with occurrence of no significant hydrogen bridges according to distances and vibrational spectroscopy. Cs{sup +} ions are located within octahedral and tetrahedral holes of the packing. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Toxic effects of NH4+-N on embryonic development of Bufo gargarizans and Rana chensinensis.

    Science.gov (United States)

    Deng, Hongzhang; Chai, Lihong; Luo, Pingping; Zhou, Meimei; Nover, Daniel; Zhao, Xiaohong

    2017-09-01

    Although nitrogen fertilizer is commonly used worldwide, little information is currently available about NH 4 + -N toxicity on amphibians. This study determined the acute and chronic toxic effects of NH 4 + -N on two native Chinese amphibian species (Bufo gargarizans and Rana chensinensis), and compared the negative sensitivity of different embryos to NH 4 + -N. Static renewal aqueous exposures were performed using B. gargarizans and R. chensinensis embryos at Gosner stage 2 over 96 h. In terms of 96 h-LC 50 , B. gargarizans and R. chensinensis embryos had significantly different responses to NH 4 + -N, and the latter was more sensitive to NH 4 + -N than the former. In the chronic toxicity test, exposure to 10 mg L -1 NH 4 + -N or higher significantly decreased the hatching rate of embryos in both species. Significant increases in the abnormality rate of embryos at 50 mg L -1 NH 4 + -N or higher were observed and morphological abnormalities were characterized by axial flexures, yolk sac edema, and hyperplasia in both species. Additionally, the total length of embryos decreased in a dose-dependent manner after exposure to NH 4 + -N. The results indicate that NH 4 + -N exposure can increase abnormality and inhibit the hatching and development of embryos in B. gargarizans and R. chensinensis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Transcriptomic and physiological analysis of common duckweed Lemna minor responses to NH4(+) toxicity.

    Science.gov (United States)

    Wang, Wenguo; Li, Rui; Zhu, Qili; Tang, Xiaoyu; Zhao, Qi

    2016-04-18

    Plants can suffer ammonium (NH4 (+)) toxicity, particularly when NH4 (+) is supplied as the sole nitrogen source. However, our knowledge about the underlying mechanisms of NH4 (+) toxicity is still largely unknown. Lemna minor, a model duckweed species, can grow well in high NH4 (+) environment but to some extent can also suffer toxic effects. The transcriptomic and physiological analysis of L. minor responding to high NH4 (+) may provide us some interesting and useful information not only in toxic processes, but also in tolerance mechanisms. The L. minor cultured in the Hoagland solution were used as the control (NC), and in two NH4 (+) concentrations (NH4 (+) was the sole nitrogen source), 84 mg/L (A84) and 840 mg/L (A840) were used as stress treatments. The NH4 (+) toxicity could inhibit the growth of L. minor. Reactive oxygen species (ROS) and cell death were studied using stained fronds under toxic levels of NH4 (+). The malondialdehyde content and the activities of superoxide dismutase and peroxidase increased from NC to A840, rather than catalase and ascorbate peroxidase. A total of 6.62G nucleotides were generated from the three distinct libraries. A total of 14,207 differentially expressed genes (DEGs) among 70,728 unigenes were obtained. All the DEGs could be clustered into 7 profiles. Most DEGs were down-regulated under NH4 (+) toxicity. The genes required for lignin biosynthesis in phenylpropanoid biosynthesis pathway were up-regulated. ROS oxidative-related genes and programmed cell death (PCD)-related genes were also analyzed and indicated oxidative damage and PCD occurring under NH4 (+) toxicity. The first large transcriptome study in L. minor responses to NH4 (+) toxicity was reported in this work. NH4 (+) toxicity could induce ROS accumulation that causes oxidative damage and thus induce cell death in L. minor. The antioxidant enzyme system was activated under NH4 (+) toxicity for ROS scavenging. The phenylpropanoid pathway was stimulated under

  17. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  18. Update and Improve Subsection NH - Alternative Simplified Creep-Fatigue Design Methods

    International Nuclear Information System (INIS)

    Asayama, Tai

    2009-01-01

    This report described the results of investigation on Task 10 of DOE/ASME Materials NGNP/Generation IV Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 10 is to Update and Improve Subsection NH -- Alternative Simplified Creep-Fatigue Design Methods. Five newly proposed promising creep-fatigue evaluation methods were investigated. Those are (1) modified ductility exhaustion method, (2) strain range separation method, (3) approach for pressure vessel application, (4) hybrid method of time fraction and ductility exhaustion, and (5) simplified model test approach. The outlines of those methods are presented first, and predictability of experimental results of these methods is demonstrated using the creep-fatigue data collected in previous Tasks 3 and 5. All the methods (except the simplified model test approach which is not ready for application) predicted experimental results fairly accurately. On the other hand, predicted creep-fatigue life in long-term regions showed considerable differences among the methodologies. These differences come from the concepts each method is based on. All the new methods investigated in this report have advantages over the currently employed time fraction rule and offer technical insights that should be thought much of in the improvement of creep-fatigue evaluation procedures. The main points of the modified ductility exhaustion method, the strain range separation method, the approach for pressure vessel application and the hybrid method can be reflected in the improvement of the current time fraction rule. The simplified mode test approach would offer a whole new advantage including robustness and simplicity which are definitely attractive but this approach is yet to be validated for implementation at this point. Therefore, this report recommends the following two steps as a course of improvement of NH based on newly proposed creep-fatigue evaluation

  19. Collective and planetary motion in atoms

    International Nuclear Information System (INIS)

    Berry, R.S.

    1986-01-01

    The evolution of the conception of electron correlation is sketched, particularly the ideas that emerged in the late 1970s. Those ideas have led to a deep reexamination of the behavior of electrons sharing a valence shell. Doubly-excited helium was the first case in which it could be clearly established that the electronic states exhibit collective rotations and vibrations, rather than predominantly independent-particle-like behavior. More recently, it has appeared that the ground states and most but not all of the low-lying excited states of the alkaline-earth atoms are also much more like collective rotor-vibrators than like quantum analogues of solar systems. The appearance of such molecule-like characteristics for the electrons in atoms leads to a search for independent-particle-like behavior for atoms in highly excited vibrational states of small molecules such as H 2 O, NH 3 and CH 4 . Together, the two kinds of systems potentially exhibiting characteristics traditionally associated with the other suggest trying to find a more unified formulation of few-body problems that makes collective and independent-particle behavior into related but complementary manifestations of some more general characterization of the states of few-body systems. (Auth.)

  20. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease.

    Science.gov (United States)

    Sarwar, Ambrin; Hassan, Muhammad Nadeem; Imran, Muhammad; Iqbal, Mazhar; Majeed, Saima; Brader, Günter; Sessitsch, Angela; Hafeez, Fauzia Yusuf

    2018-04-01

    The potential of the Bacillus genus to antagonize phytopathogens is associated with the production of cyclic lipopeptides. Depending upon the type of lipopeptide, they may serve as biocontrol agents that are eco-friendly alternatives to chemical fertilizers. This study evaluates the biocontrol activity of surfactin-producing Bacillus (SPB) strains NH-100 and NH-217 and purified surfactin A from these strains against rice bakanae disease. Biologically active surfactin fractions were purified by HPLC, and surfactin A variants with chain lengths from C12 to C16 were confirmed by LCMS-ESI. In hemolytic assays, a positive correlation between surfactin A production and halo zone formation was observed. The purified surfactin A had strong antifungal activity against Fusarium oxysporum, F. moniliforme, F. solani, Trichoderma atroviride and T. reesei. Maximum fungal growth suppression (84%) was recorded at 2000 ppm against F. moniliforme. Surfactin A retained antifungal activity at different pH levels (5-9) and temperatures (20, 50 and 121 °C). Hydroponic and pot experiments were conducted to determine the biocontrol activity of SPB strains and the purified surfactin A from these strains on Super Basmati rice. Surfactin production in the rice rhizosphere was detected by LCMS-ESI at early growth stages in hydroponics experiments inoculated with SPB strains. However, the maximum yield was observed with a consortium of SPB strains (T4) and purified surfactin A (T5) treatments in the pot experiment. The outcomes of the present study revealed that surfactin A significantly reduced rice bakanae disease by up to 80%. These findings suggest that purified surfactin A could be an effective biocontrol agent against bakanae disease in rice and should be incorporated into strategies for disease management. Copyright © 2018 Elsevier GmbH. All rights reserved.

  1. Limited overshooting of NH{sub 4}{sup +} ions in ammonium perchlorate; Ograniczene przeskoki jonow NH{sub 4}{sup +} w nadchloranie amonowym

    Energy Technology Data Exchange (ETDEWEB)

    Birczynski, A.; Lalowicz, Z.T. [Inst. of Nuclear Physics, Cracow (Poland); Ingman, L.P.; Punkkinen, M.; Ylinen, E.E. [Wihuri Physical Lab., Turku Univ., Turku (Finland)

    1995-12-31

    The interpretation of NMR spectra for polycrystalline sample of ammonium perchlorate in helium temperature assumes the tunneling of NH{sub 4}{sup +}. Such interpretation does not agree with experimental data. The hypothesis of additional motion (fast rotation around one of C3 axis) has been checked and discussed on the base of NMR spectra of NH{sub 4}ClO{sub 4} monocrystal for the temperature range 2.1-25 K. 9 refs, 1 fig.

  2. Limited overshooting of NH{sub 4}{sup +} ions in ammonium perchlorate; Ograniczene przeskoki jonow NH{sub 4}{sup +} w nadchloranie amonowym

    Energy Technology Data Exchange (ETDEWEB)

    Birczynski, A; Lalowicz, Z T [Inst. of Nuclear Physics, Cracow (Poland); Ingman, L P; Punkkinen, M; Ylinen, E E [Wihuri Physical Lab., Turku Univ., Turku (Finland)

    1996-12-31

    The interpretation of NMR spectra for polycrystalline sample of ammonium perchlorate in helium temperature assumes the tunneling of NH{sub 4}{sup +}. Such interpretation does not agree with experimental data. The hypothesis of additional motion (fast rotation around one of C3 axis) has been checked and discussed on the base of NMR spectra of NH{sub 4}ClO{sub 4} monocrystal for the temperature range 2.1-25 K. 9 refs, 1 fig.

  3. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation.

    Science.gov (United States)

    Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma

    2015-11-01

    NH4 (+) nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 (+) nutrition (N-NH4 (+))-induced resistance (NH4 (+)-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 (+) plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 (+) toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 (+) plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 (+)-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 (+)-IR. The metabolic profile revealed that infected N-NH4 (+) plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 (+) nutrition) and resistance to subsequent Pst infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  5. Adsorption behavior of Co anchored on graphene sheets toward NO, SO2, NH3, CO and HCN molecules

    International Nuclear Information System (INIS)

    Tang, Yanan; Chen, Weiguang; Li, Chenggang; Pan, Lijun; Dai, Xianqi; Ma, Dongwei

    2015-01-01

    Graphical abstract: - Highlights: • In contrast to the pristine graphene, a vacancy defect in graphene strongly stabilizes the Co atom. • The positively charged of Co atom on graphene can regulate the stability of gas molecules. • Different gas molecules can modulate the electronic structure of Co–graphene systems. • The adsorbed NO on Co–graphene can effectively regulate the magnetic properties of systems. - Abstract: Based on the first-principles of density-functional theory (DFT), the effects of gas adsorption on the change in geometric stability, electronic structure and magnetic properties of graphene with anchored Co (Co–graphene) systems were investigated. A single Co adatom interacts much weaker with pristine graphene (Co/pri–graphene) than with the graphene containing a single vacancy (Co/SV–graphene). The Co dopant provides more electrons to the dangling bonds of carbon atom at defective site and exhibits more positive charges, which makes Co/SV–graphene less prone to be adsorbed by gas molecules in comparison to Co/pri–graphene. It is found that the electronic structure and magnetic properties of Co–graphene systems can be modulated by adsorbing gas molecules. Except the NH 3 molecule, the adsorbed NO, SO 2 , CO or HCN as electron acceptors on the Co/pri–graphene can exhibit semiconducting properties. Among the gas molecules, the strong adsorption of NO molecule can effectively regulate the magnetic properties of Co–graphene systems. Moreover, the stable configuration of Co/SV–graphene is more likely to be the gas sensor for detecting NO and SO 2 . The results validate that the reactivity of atomic-scale catalyst is supported on graphene sheets, which is expected to be potentially efficient in the gas sensors and electronic device

  6. Atoms - molecules - nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Otter, G.; Honecker, R.

    1993-01-01

    This first volume covers the following topics: Wave-particle dualism, classical atomic physics; the Schroedinger equation, angular momentum in quantum physics, one-electron atoms and many-electron atoms with atomic structure, atomic spectra, exotic atoms, influence of electric and magnetic fields

  7. Atomic and molecular sciences

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics

  8. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  9. Photostriction of CH3NH3PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao; Wang, Hsin-Ping; Li, Ting-You; Lin, Chun-Ho; Hsieh, Ying-Hui; Chu, Ying-Hao; He, Jr-Hau

    2017-01-01

    .e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination

  10. Performance analysis of double-effect absorption heat pump cycle using NH

    NARCIS (Netherlands)

    Wang, M.; Infante Ferreira, C.A.

    2017-01-01

    Ionic liquids (ILs), as novel absorbents, draw considerable attention for their potential roles in replacing H2O or LiBr aqueous solutions in conventional NH3/H2O or H2O/LiBr absorption chiller or heat pump cycles. In this paper, NH3/IL working pairs are proposed for implementation in parallel

  11. SURVEY OBSERVATIONS OF A POSSIBLE GLYCINE PRECURSOR, METHANIMINE (CH{sub 2}NH)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Taiki; Ohishi, Masatoshi; Hirota, Tomoya; Saito, Masao [Department of Astronomy, the Graduate University for Advanced Studies (SOKENDAI), Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Majumdar, Liton; Wakelam, Valentine, E-mail: taiki.suzuki@nao.ac.jp [Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac (France)

    2016-07-01

    We conducted survey observations of a glycine precursor, methanimine, or methylenimine (CH{sub 2}NH), with the Nobeyama Radio Observatory 45 m telescope and the Sub-Millimeter Radio telescope toward 12 high-mass and two low-mass star-forming regions in order to increase the number of known CH{sub 2}NH sources and to better understand the characteristics of CH{sub 2}NH sources. As a result of our survey, CH{sub 2}NH was detected in eight sources, including four new sources. The estimated fractional abundances were ∼10{sup −8} in Orion KL and G10.47+0.03, while they were ∼10{sup −9} toward the other sources. Our hydrogen recombination line and past studies suggest that CH{sub 2}NH-rich sources have less (this mean not so evolved) evolved H ii regions. The lower destruction rates from UV flux from the central star would contribute to the high CH{sub 2}NH abundances toward CH{sub 2}NH-rich sources. Our gas-grain chemical simulations suggest that CH{sub 2}NH is mostly formed in the gas phase by neutral–neutral reactions, rather than being the product of thermal evaporation from dust surfaces.

  12. Co-adsorption of NH3 and SO2 on quartz : Formation of a stabilized complex

    NARCIS (Netherlands)

    Grecea, M.L.; Gleeson, M.A.; van Schaik, W.; Kleyn, A.W.; Bijkerk, Frederik

    2011-01-01

    We have investigated the co-adsorption of NH3 and SO2 on the quartz(0 0 0 1) surface by TPD and RAIRS. A surface complex is formed as a result of various relative exposures of NH3 and SO2, irrespective of dosage order. However, the relative molecular composition of the complex is dependent on the

  13. Molecular modelling of the decomposition of NH{sub 3} over CoO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Shojaee, Kambiz; Haynes, Brian S.; Montoya, Alejandro, E-mail: alejandro.montoya@sydney.edu.au

    2015-04-15

    Spin-polarised density functional theory using the PBE + U approach are used to determine reaction pathways of successive NH{sub 3} dehydrogenation on the CoO(100) surface. NH{sub 3} dehydrogenation promotes noticeable displacements of the surface CoO sites, in particular due to the binding of NH{sub 2} and H species. Surface lattice O has low activity towards dehydrogenation, reflected in energy barriers that are in the range of 292 kJ mol{sup −1} to 328 kJ mol{sup −1}. There is a preference of surface NH{sub 3} dehydrogenation to N{sub 2} rather than towards NO, due to a high-energy penalty of surface O vacancy formation. The presence of CoO in cobalt oxide catalysts not only may decline the ammonia conversion but also alter the selectivity towards N{sub 2} rather than NO. - Highlights: • Minimum reactions pathways of ammonia decomposition were studied using density functional theory. • The bonding characteristics of NH{sub x} and H on the CoO(100) surface were analysed using Layer-projected density of states. • Dehydrogenations of NH{sub 3}, NH{sub 2} and NH are highly activated. • The presence of strongly bound lattice oxygen favours the ammonia decomposition towards N{sub 2}.

  14. NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting

    Science.gov (United States)

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T.; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L. Felipe

    2015-01-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K+ as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4+, a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4+ with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4+ and in the somatosensory cortex of anesthetized mice in response to i.v. NH4+. Unexpectedly, NH4+ had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4+ diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4+ is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4+ behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes. PMID:26286989

  15. Atmospheric NH3 as plant nutrient: A case study with Brassica oleracea

    International Nuclear Information System (INIS)

    Castro, Ana; Stulen, Ineke; De Kok, Luit J.

    2008-01-01

    Nutrient-sufficient and nitrate- or sulfate-deprived plants of Brassica oleracea L. were exposed to 4 μl l -1 NH 3 (2.8 mg m -3 ), and effects on biomass production and allocation, N-compounds and root morphology investigated. Nitrate-deprived plants were able to transfer to atmospheric NH 3 as nitrogen source, but biomass allocation in favor of the root was not changed by exposure to NH 3 . NH 3 reduced the difference in total root length between nitrate-sufficient and nitrate-deprived plants, and increased the specific root length in the latter. The internal N status, therefore, might be involved in controlling root length in B. oleracea. Root surface area, volume and diameter were unaffected by both nitrate deprivation and NH 3 exposure. In sulfate-deprived plants an inhibitory effect of NH 3 on root morphological parameters was observed. These plants, therefore, might be more susceptible to atmospheric NH 3 than nitrate-deprived plants. The relevance of the present data under field conditions is discussed. - Atmospheric NH 3 can serve as sole N source for Brassica oleracea, but does not change root biomass allocation in nitrate-deprived plants

  16. NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting.

    Science.gov (United States)

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L Felipe

    2015-09-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.

  17. 13N-NH3 PET in the diagnosis of astrocytomas: preliminary result

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu

    2004-01-01

    Objective: To evaluate the feasibility of diagnosing the astrocytoma with 13N-NH3 PET imaging. Methods 13N-NH3 and 18F-fluorodeoxyglucose (FDG) PET imaging were performed in seven cases of astrocytomas including 3 anteoperative astrocytomas, 2 recurrent astrocytomas, 2 brain injury or necrosis after the operation and radiotherapy. The radioactivity ratios of the tumor and normal white matter (T/WM) were calculated. Results: The tumor lesions in 3 anteoperative astrocytomas and 2 recurrent astrocytomas all uptake 13N-NH3. The average T/WM on 13N-NH3 images was 1.82±0.21, and T/WM on 13N-NH3 and 18F-FDG images were 1.98 and 0.97 for one case with grade 1 astrocytoma. 13N-NH3 and 18F-FDG PET imaging both showed decreased uptake in 2 brain injury or necrosis after the operation and radiotherapy of astrocytomas. Conclusions: 13N-NH3 was uptaken in astrocytomas. 13N-NH3 can be useful in the diagnosis of astrocytoma, and potentially improve diagnostic accuracy of astrocytoma, especially in low-grade astrocytoma. (authors)

  18. 13N-NH3 PET in the diagnosis of astrocytomas: preliminary result

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu

    2004-01-01

    Objective: To evaluate the feasibility of diagnosing the astrocytoma with 13N-NH3 PET imaging. Methods: 13N-NH3 and 18F-fluorodeoxyglucose (FDG) PET imaging were performed in seven cases of astrocytomas including 3 anteoperative astrocytomas, 2 recurrent astrocytomas, 2 brain injury or necrosis after the operation and radiotherapy. The radioactivity ratios of the tumor and normal white matter (T/WM) were calculated. Results: The tumor lesions in 3 anteoperative astrocytomas and 2 recurrent astrocytomas all uptake 13N-NH3 .The average T/WM on 13N-NH3 images was 1.82±0.21, and T/WM on 13N-NH3 and 18F-FDG images were 1.98 and 0.97 for one case with grade 1 astrocytoma. 13N-NH3 and 18F-FDG PET imaging both showed decreased uptake in 2 brain injury or necrosis after the operation and radiotherapy of astrocytomas. Conclusions: 13N-NH3 was uptaken in astrocytomas. 13N-NH3 can be useful in the diagnosis of astrocytoma, and potentially improve diagnostic accuracy of astrocytoma, especially in low-grade astrocytoma. (authors)

  19. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  20. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  1. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  2. Atomic physics made clear

    International Nuclear Information System (INIS)

    Meinhold, H.

    1980-01-01

    This book is a popular introduction into the foundations of atomic physics und quantum mechanics. Starting from some phenomenological concepts Bohr's model and the construction of the periodic system regarding the shell structure of atoms are introduced. In this framework the selection rules and magnetic moments of atomic electrons are considered. Finally the wave-particle dualism is considered. In the appendix some mathematical methods are described which are useful for a deeper penetration into the considered ideas. (HSI)

  3. Theoretical study of the properties of BH3NH3

    International Nuclear Information System (INIS)

    Binkley, J.S.; Thorne, L.R.

    1983-01-01

    Borane monoammoniate (BH 3 NH 3 ) has been studied using several ab initio electronic structure methods and Gaussian basis sets. Equilibrium geometries have been computed at the Hartree--Fock level and, using the electron-correlated Moller--Plesset perturbation method, carried out to third order (MP3) with double-zeta polarized quality basis sets. The computed MP3 geometry is in close agreement with recent microwave data; electron correlation is found to be necessary for a proper description of the B--N distance. Hartree--Fock dipole moments and harmonic vibrational frequencies are presented and discussed. Moller--Plesset perturbation theory carried out to fourth order with triple-zeta plus polarization basis sets is used to compute a B--N dissociation energy of 34.7 kcal mol -1 and a (Hartree--Fock zero-point corrected) rotational barrier of 2.065 kcal mol -1 , which is in excellent agreement with the experimental value. Analysis of the dissociation energy as a function of perturbation order indicates that terms involving triple and quadruple substitutions are required in the dissociation energy

  4. Molecular beam epitaxy of GaN(0001) utilizing NH3 and/or NH+x ions: Growth kinetics and defect structure

    International Nuclear Information System (INIS)

    Lee, N.; Powell, R.C.; Kim, Y.; Greene, J.E.

    1995-01-01

    Gas-source molecular beam epitaxy (GS-MBE), utilizing Ga and NH 3 , and reactive-ion MBE (RIMBE), incorporating both thermal NH 3 and low-energy NH + x ions, were used to grow single crystal GaN(0001) layers on Al 2 O 3 (0001) at temperatures T s between 700 and 850 degree C with deposition rates of 0.2--0.5 μm h -1 . The RIMBE experiments were carried out with incident NH + x /Ga flux ratios J NH + x /J Ga =1.9--3.2 and NH + x acceleration energies E NH + x =45--90 eV. Plan-view and cross-sectional transmission electron microscopy analyses showed that the primary defects in the GS-MBE films were threading dislocations having either pure edge or mixed edge/screw characteristics with Burgers vectors bar b=1/3 left-angle 2 bar 1 bar 10 right-angle, basal-plane stacking faults with displacement vectors bar R=1/6 left-angle 02 bar 23 right-angle, and prismatic stacking faults with bar R=1/2 left-angle bar 1101 right-angle. In the case of RIMBE films, no stacking faults or residual ion-induced defects were observed with E NH + x =45 eV and T s ≥800 degree C. However, increasing E NH + x to ≥60 eV at T s =800 degree C gave rise to the formation of residual ion-induced point-defect clusters observable by transmission electron microscopy (TEM). Increasing T s to 850 degree C with E NH + x ≥60 eV resulted in the ion-induced defects aggregating to form interstitial basal and prismatic dislocation loops, whose number densities depended upon the ion flux, with Burgers vectors 1/2 left-angle 0001 right-angle and 1/3 left-angle 2 bar 1 bar 10 right-angle, respectively. (Abstract Truncated)

  5. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  6. Single atom oscillations

    International Nuclear Information System (INIS)

    Wiorkowski, P.; Walther, H.

    1990-01-01

    Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented

  7. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  8. Ni(NH32(NO32—A 3-D Network through Bridging Nitrate Units Isolated from the Thermal Decomposition of Nickel Hexammine Dinitrate

    Directory of Open Access Journals (Sweden)

    Joachim Breternitz

    2018-06-01

    Full Text Available Nickel nitrate diammine, Ni(NH32(NO32, can be synthesised from the thermal decomposition of nickel nitrate hexammine, Ni[(NH36](NO32. The hexammine decomposes in two distinct major stages; the first releases 4 equivalents of ammonia while the second involves the release of NOx, N2, and H2O to yield NiO. The intermediate diammine compound can be isolated following the first deammoniation step or synthesised as a single phase from the hexammine under vacuum. Powder X-ray diffraction (PXD experiments have allowed the structure of Ni(NH32(NO32 to be solved for the first time. The compound crystallises in orthorhombic space group Pca21 (a = 11.0628 (5 Å, b = 6.0454 (3 Å, c = 9.3526 (4 Å; Z = 4 and contains 11 non-hydrogen atoms in the asymmetric unit. Fourier transform infrared (FTIR spectroscopy demonstrates that the bonding in the ammine is consistent with the structure determined by PXD.

  9. Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3

    Science.gov (United States)

    Ma, Jie; Wang, Lin-Wang

    2015-03-01

    Perovskite-based solar cells have achieved high solar-energy conversion efficiencies and attracted wide attentions nowadays. Despite the rapid progress in solar-cell devices, many fundamental issues of the hybrid perovskites have not been fully understood. Experimentally, it is well known that in CH3NH3PbI3, the organic molecules CH3NH3 are randomly orientated at the room temperature, but the impact of the random molecular orientation has not been investigated. Using linear-scaling ab-initiomethods, we have calculated the electronic structures of the tetragonal phase of CH3NH3PbI3 with randomly orientated organic molecules in large supercells up to ~20,000 atoms. Due to the dipole moment of the organic molecule, the random orientation creates a novel system with long-range potential fluctuations unlike alloys or other conventional disordered systems. We find that the charge densities of the conduction-band minimum and the valence-band maximum are localized separately in nanoscales due to the potential fluctuations. The charge localization causes electron-hole separation and reduces carrier recombination rates, which may contribute to the long carrier lifetime observed in experiments. We have also proposed a model to explain the charge localization.

  10. The structure and the analytical potential energy function of NH2 (X2B1)

    International Nuclear Information System (INIS)

    Liu Yufang; Jiang Lijuan; Ma Heng; Sun Jinfeng

    2008-01-01

    This paper reports that the equilibrium structure of NH 2 has been optimized at the QCISD/6-311++G (3df, 3pd) level. The ground-state NH 2 has a bent (C 2v , X 2 B 1 ) structure with an angle of 103.0582°. The geometrical structure is in good agreement with the other calculational and experimental results. The harmonic frequencies and the force constants have also been calculated. Based on the group theory and the principle of microscopic reversibility, the dissociation limits of NH 2 (C 2v , X 2 B 1 ) have been derived. The potential energy surface of NH 2 (X 2 B 1 ) is reasonable. The contour lines are constructed, the structure and energy of NH 2 reappear on the potential energy surface

  11. Rotational spectrum of the NH3–He van der Waals complex

    Directory of Open Access Journals (Sweden)

    Surin L.

    2017-01-01

    Full Text Available The interaction between ammonia and helium has attracted considerable interest over many years, partly because of the observation of interstellar ammonia. The rate coefficients of NH3–He scattering are an important ingredient for numerical modeling of astrochemical environments. Another, though quite different application in which the NH3–He interaction can play an important role is the doping of helium clusters with NH3 molecules to perform high-resolution spectroscopy. Such experiments are directed on the detection of non-classical response of molecular rotation in helium clusters addressing fundamental questions related to the microscopic nature of superfluidity. High-resolution spectroscopy on the NH3–He complex is an important tool for increasing our understanding of intermolecular forces between NH3 and He.

  12. NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption.

    Science.gov (United States)

    Kim, Wooseong; Fricke, Nico; Conery, Annie L; Fuchs, Beth Burgwyn; Rajamuthiah, Rajmohan; Jayamani, Elamparithi; Vlahovska, Petia M; Ausubel, Frederick M; Mylonakis, Eleftherios

    2016-01-01

    NH125, a known WalK inhibitor kills MRSA persisters. However, its precise mode of action is still unknown. The mode of action of NH125 was investigated by comparing its spectrum of antimicrobial activity and its effects on membrane permeability and giant unilamellar vesicles (GUVs) with walrycin B, a WalR inhibitor and benzyldimethylhexadecylammonium chloride (16-BAC), a cationic surfactant. NH125 killed persister cells of a variety of Staphylococcus aureus strains. Similar to 16-BAC, NH125 killed MRSA persisters by inducing rapid membrane permeabilization and caused the rupture of GUVs, whereas walrycin B did not kill MRSA persisters or induce membrane permeabilization and did not affect GUVs. NH125 kills MRSA persisters by interacting with and disrupting membranes in a detergent-like manner.

  13. Mechanism of the self-condensation of GlcNH2

    DEFF Research Database (Denmark)

    Jia, Lingyu; Liu, Xingchen; Qiao, Yan

    2017-01-01

    A combined experimental and computational study on the imidazolium ionic liquid-promoted conversion of d-Glucosamine (GlcNH2) to deoxyfructosazine (DOF) and fructosazine (FZ) was performed. The pathways for the formation of DOF and FZ via self-condensation of GlcNH2 were investigated by in situ13C...... NMR using site-selectively 13C-labeled GlcNH2. The structural characterization of the reactive species by ESI–MS spectrometry combined with NMR analysis of [13C-1]GlcNH2 indicates that the first carbon (C-1) of GlcNH2 maps onto the corresponding ring carbons of the intermediate, called...... dihydrofructosazine, indicates that both pathways are plausible and that the pathway to DOF is thermodynamically more favorable than that to FZ. The theoretical results are consistent with the experimental observations, and therefore, a detailed and reasonable reaction mechanism was proposed...

  14. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  15. Effects of two litter amendments on air NH3 levels in broiler closed-houses

    Science.gov (United States)

    Atapattu, N. S. B. M; Lakmal, L. G. E.; Perera, P. W. A.

    2017-01-01

    Objective High NH3 emissions from poultry houses are reported to have negative impacts on health, welfare and safety of birds and humans, and on the environment. Objective of the present study was to determine the effects of two litter amendments on the NH3 levels in broiler closed houses under hot-humid conditions. Methods Giving a completely randomize design, nine closed houses, each housed 32,500 birds on paddy husk litter, were randomly allocated into two treatment (Mizuho; a bacterial culture mix and Rydall OE; an enzymatic biocatalyst) and control groups. NH3 levels were determined thrice a day (0600, 1200, and 1800 h), at three heights from the litter surface (30, 90, and 150 cm), at 20 predetermined locations of a house, from day 1 to 41. Results Rydall significantly reduced the NH3 level compared to control and Mizuho. NH3 levels at 30 cm were significantly higher than that of 90 and 150 cm. The NH3 levels at 30 cm height were higher than 25 ppm level from day 9, 11, and 13 in Mizuho, control, and Rydall groups, respectively to day 41. NH3 levels at 150 cm height were higher than maximum threshold limit of 50 ppm for human exposure from day 12, 14, and 15 in Mizuho, control, and Rydall groups, respectively to day 33. Being significantly different among each other, the NH3 level was highest and lowest at 0600 and 1800 h. Litter amendments had no significant effects on growth performance. Rydall significantly increased the litter N content on day 24. Conclusion It was concluded that the NH3 levels of closed house broiler production facilities under tropical condition are so high that both birds and workers are exposed to above recommended levels during many days of the growing period. Compared to microbial culture, the enzymatic biocatalyst was found to be more effective in reducing NH3 level. PMID:28423888

  16. Atoms stories; Histoire d`atomes

    Energy Technology Data Exchange (ETDEWEB)

    Radvanyi, P; Bordry, M [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)

    1988-12-31

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  17. Low energy atom-atom collisions

    International Nuclear Information System (INIS)

    Child, M.S.

    1980-01-01

    The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail. The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabetic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stuckelberg), Demkov and Nikitin models. The relation between Stuckelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F( 2 P) + Xe( 2 S) scattering

  18. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review

    International Nuclear Information System (INIS)

    Krupa, S.V.

    2003-01-01

    A review of atmospheric ammonia (NH 3 ) and ammonium (NH 4 + ) deposition and their effects on plants. - At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH 3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH 3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH 3 can result in visible foliar injury on vegetation. NH 3 is deposited rapidly within the first 4-5 km from its source. However, NH 3 is also converted in the atmosphere to fine particle NH 4 + (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH 3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH 3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH 3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO 2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH 3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH 3 with other air pollutants such as all-pervasive O 3 or

  19. Effects of atmospheric ammonia (NH{sub 3}) on terrestrial vegetation: a review

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, S.V

    2003-07-01

    A review of atmospheric ammonia (NH{sub 3}) and ammonium (NH{sub 4}{sup +}) deposition and their effects on plants. - At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH{sub 3} (ammonia) is considered to be the foremost. The major sources for atmospheric NH{sub 3} are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH{sub 3} can result in visible foliar injury on vegetation. NH{sub 3} is deposited rapidly within the first 4-5 km from its source. However, NH{sub 3} is also converted in the atmosphere to fine particle NH{sub 4}{sup +} (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH{sub 3} on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH{sub 3} is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH{sub 3} are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO{sub 2} (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH{sub 3} on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint

  20. A computational study of dimers and trimers of nitrosyl hydride: Blue shift of NH bonds that are involved in H-bond and orthogonal interactions

    International Nuclear Information System (INIS)

    Solimannejad, Mohammad; Massahi, Shokofeh; Alkorta, Ibon

    2009-01-01

    Ab initio calculations at MP2/aug-cc-pVTZ level were used to analyze the interactions between nitrosyl hydride (HNO) dimers and trimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Nine different structures have been obtained for the trimers. Three types of interactions are observed, NH···N and NH···O hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of dimers and trimers including BSSE and ZPE are in the range 4-8 kJ mol -1 and 12-19 kJ mol -1 , respectively. Blue shift of NH bond upon complex formation in the ranges between 30-80 and 14,114 cm -1 is predicted for dimers and trimers, respectively.

  1. Temperature dependence of the effective mass of the hybrid organic-inorganic perovskites CH3NH3PbI3

    Science.gov (United States)

    Lu, Ying-Bo; Yang, Haozhi; Cong, Wei-Yan; Zhang, Peng; Guo, Hong

    2017-12-01

    The material of methylammonium lead iodide, CH3NH3PbI3 (MAPbI3), has shown significant promise in solar cell applications. A way to infer the microscopic scattering mechanism(s) in MAPbI3 is through the measured temperature dependence of carrier mobility. To this end, how does the carrier effective mass depend on temperature, m* = m*(T), is a useful information since the mobility is a function of m*. By atomistic first principles, we report the calculated m*(T) due to the thermal expansion of MAPbI3 materials, in the experimentally relevant range of 130 K to room temperature. The calculated results suggest m* = m*(T) to be linear in T. The increase of m* versus temperature is predominantly due to the expansion of the longitudinal atomic spacing that weakens the s/p hybridization between the I/Pb atoms.

  2. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  3. Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Blackman, N.S.; Gummer, W.K.

    1982-02-01

    This paper has been prepared to provide an overview of the responsibilities and activities of the Atomic Energy Control Board. It is designed to address questions that are often asked concerning the establishment of the Atomic Energy Control Board, its enabling legislation, licensing and compliance activities, federal-provincial relationships, international obligations, and communications with the public

  4. mu. -nucleon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Dobretsov, Yu; Dolgoshein, B; Kirillov-Ugryumov, V

    1980-12-01

    The properties and formation are described of ..mu..-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of ..mu..-nucleon atoms is shown. The prospects of their use are indicated.

  5. μ-nucleon atoms

    International Nuclear Information System (INIS)

    Dobretsov, Yu.; Dolgoshejn, B.; Kirillov-Ugryumov, V.

    1980-01-01

    The properties and formation are described of μ-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of μ-nucleon atoms is shown. The prospects of their use are indicated. (J.P.)

  6. Atomic Ferris wheel beams

    Science.gov (United States)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  7. Atom lithography of Fe

    NARCIS (Netherlands)

    Sligte, te E.; Smeets, B.; van der Stam, K.M.R.; Herfst, R.W.; Straten, van der P.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.

    2004-01-01

    Direct write atom lithography is a technique in which nearly resonant light is used to pattern an atom beam. Nanostructures are formed when the patterned beam falls onto a substrate. We have applied this lithography scheme to a ferromagnetic element, using a 372 nm laser light standing wave to

  8. Beyond the Atom

    Science.gov (United States)

    Cox, John

    2011-08-01

    1. Introduction - the atom in the seventies; 2. The vacuum tube; 3. The new rays; 4. The new substances; 5. Disintegration; 6. A family tree; 7. Verifications and results; 8. The objective reality of molecules; 9. The new atom; Bibliography; Index.

  9. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  10. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  11. Atomic energy for progress

    International Nuclear Information System (INIS)

    1974-01-01

    The film discusses the functions and activities of the Philippine Atomic Energy Commission. Shown are the applications of atomic energy in research, agriculture, engineering, industry and medicine, as well as the construction of the research reactor and its inauguration by President Marcos

  12. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  13. Isotopes and atomic weights

    International Nuclear Information System (INIS)

    Zhang Qinglian

    1990-01-01

    A review of the chemical and mass spectrometric methods of determining the atomic weights of elements is presented. A, special discussion is devoted to the calibration of the mass spectrometer with highly enriched isotopes. It is illustrated by the recent work on europium. How to choose the candidate element for new atomic weight determination forms the last section of the article

  14. [Effect of humic acids on migration and transformation of NH4(+) -N in saturated aquifer].

    Science.gov (United States)

    Meng, Qing-Jun; Zhang, Yan; Feng, Qi-Yan; Zhang, Shuang-Sheng

    2011-11-01

    Isothermal adsorption experiment was used to study the adsorbing process of NH4(+) -N in quartz sands under the conditions with and without humic acid; the Langmuir and Freundlich equations were used to fit the absorption result and the maximum adsorption capacity of NH4(+) -N by quarts sands was calculated. Through the soil column experiments, the concentration of NH4(+) -N, NO3(-) -N and NO2(-) -N in effluent water in the tested soil column was investigated, and the effect of humic acid on migration and transformation of NH4(+) -N in saturated aquifer was analyzed, and Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equation were applied to fit the kinetic processes. The results showed that both Langmuir and Freundlich models can well describe the isothermal adsorption process of NH4(+) -N on the surface of quartz sands, which means that NH4(+) -N adsorbed by the quartz sand was mainly in the form of monolayer adsorption. The humic acid could increase the adsorption capacity of NH4(+) -N on quartz sand, and the saturated adsorption capacity was 0.354 mg x g(-1) under the condition with humic acid and 0.205 mg x g(-1) with the absence of humic acid. The experiment indicated that humic acid increased the adsorption capacity of NH4(+) -N on the surface of quartz sand by increasing adsorption space in the initial stage. After saturation, humic acid influenced the migration and transformation of NH4(+) -N to NO3(-) -N and NO2(-) -N probably through providing carbon source and energy for microorganisms such as nitrifying bacteria and then resulting in lower NH4(+) -N concentration in effluent water. Both Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equations can well describe the process of NH4(+) -N adsorption kinetics on quartz sand (R2 = 0.997 7 and R2 = 0.998 1 with humic acid; R2 = 0.992 3 and R2 = 0.994 4 without humic acid), indicating that this process was chemical adsorption. By comparing the

  15. Removing Gaseous NH3 Using Biochar as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Kyoung S. Ro

    2015-09-01

    Full Text Available Ammonia is a major fugitive gas emitted from livestock operations and fertilization production. This study tested the potential of various biochars in removing gaseous ammonia via adsorption processes. Gaseous ammonia adsorption capacities of various biochars made from wood shaving and chicken litter with different thermal conditions and activation techniques were determined using laboratory adsorption column tests. Ammonia adsorption capacities of non-activated biochars ranged from 0.15 to 5.09 mg·N/g, which were comparable to that of other commercial activated carbon and natural zeolite. There were no significant differences in ammonia adsorption capacities of steam activated and non-activated biochars even if the surface areas of the steam activated biochars were about two orders of magnitude greater than that of non-activated biochars. In contrast, phosphoric acid activation greatly increased the biochar ammonia adsorption capacity. This suggests that the surface area of biochar did not readily control gaseous NH3 adsorption. Ammonia adsorption capacities were more or less linearly increased with acidic oxygen surface groups of non-activated and steam-activated biochars. Phosphoric acid bound to the acid activated biochars is suspected to contribute to the exceptionally high ammonia adsorption capacity. The sorption capacities of virgin and water-washed biochar samples were not different, suggesting the potential to regenerate spent biochar simply with water instead of energy- and capital-intensive steam. The results of this study suggest that non-activated biochars can successfully replace commercial activated carbon in removing gaseous ammonia and the removal efficiency will greatly increase if the biochars are activated with phosphoric acid.

  16. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  17. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  18. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Batty, C.J.

    1989-07-01

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  19. Elimination Reactions of (E)-2,4,6-Trinitrobenzaldehyde O-benzoyloximes Promoted by R2NH in MeCN. Change of Reaction Mechanism

    International Nuclear Information System (INIS)

    Cho, Bong Rae; Pyun, Sang Yong

    2010-01-01

    We have studied the nitrile-forming elimination reactions from 1 promoted by R 2 NH in MeCN. The reaction proceeded by (E1cb) irr mechanism. Change of the β-aryl group from 2,4-dinitrophenyl to a more strongly electron-withdrawing 2,4,6-trinitrophenyl increased the reaction rate by 470-fold, shifted the transition state toward more reactant-like, and changed the reaction mechanism from E2 to (E1cb) irr . To the best of our knowledge, this is the first example of nitrile-forming elimination reaction that proceeds by the (E1cb) irr mechanism in MeCN. Noteworthy is the carbanion stabilizing ability of the 2,4,6-trinitrophenyl group in aprotic solvent. Nitrile-forming elimination reactions of (E)-benzaldoxime derivatives have been extensively investigated under various conditions. The reactions proceeded by the E2 mechanism in MeCN despite the fact that the reactants have syn stereochemistry, poor leaving, and sp 2 hybridized β-carbon atom, all of which favor E1cb- or E1cb-like transition state. Moreover, the transition state structures were relatively insensitive to the variation of the reactant structures. The results have been attributed to the poor anion solvating ability of MeCN, which favors E2 transition state with maximum charge dispersal. For eliminations from strongly activated (E)-2,4-(NO 2 ) 2 C 6 H 3 CH=NOC(O)C 6 H 4 X, a change in the reaction mechanism from E2 to (E1cb) irr was observed as the base-solvent was changed from R 2 NH in MeCN to R 2 NH/R 2 NH 2 + in 70 mol % MeCN(aq). A combination of a strong electron-withdrawing β-aryl group and anion-solvating protic solvent was required for the mechanistic change

  20. Improved GaSb surfaces using a (NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}S0{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Murape, D.M., E-mail: Davison.Murape@live.nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Eassa, N.; Nyamhere, C.; Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Betz, R. [Department of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Coetsee, E.; Swart, H.C. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300 (South Africa); Botha, J.R.; Venter, A. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height ({phi}{sub b}) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at -0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb-O, present on the as-received material is effectively removed on treating with ([(NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}]+S) and (NH{sub 4}){sub 2}S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is {<=}8.5 nm.

  1. Nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]: Synthesis, structure, and the nature of the K–O chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical-Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2016-07-15

    The crystal structure of nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]—a three-dimensional coordination polymer—was determined. The potassium atom is coordinated by seven oxygen atoms belonging to the six nearest ligand molecules, resulting in distorted monocapped octahedral coordination geometry. The complex contains the four-membered chelate ring K–O–P–O. The K–O chemical bond is predominantly ionic. Meanwhile, the bonds of the potassium atom with some oxygen atoms have a noticeable covalent component. In addition to coordination bonds, the molecules in the crystal packing are linked by hydrogen bonds.

  2. Penggunaan zeolit alam untuk mengurangi kandungan krom dan nh4+ dalam air limbah penyamakan kulit

    Directory of Open Access Journals (Sweden)

    Supraptiningsih Supraptiningsih

    2006-07-01

    Full Text Available Leather tanning waste water contains chemical compounds, such as chromium and NH4+ in high concentration, so if they are thrown away without treatment they will make some problems. The aims of this research is to adsorb the cations in leather tanning waste water i.e chromium and NH4+ used natural zeolite as an adsorbent. Research was done by comparing amount of chromium and NH4+ in effluent waste water treatment unit with amount of chromium and NH4+ after being adsorbed by zeolite in a batch system. The result of this research showed that efficiency difference between using zeolite and waste water treatment unit was significant. The optimal condition to reduce chromium and NH4+ was by using 300 grams per liter waste, zeolite particle size was 50-60 mesh, contact time was 24 hours and pH 8±0,1. In this condition, zeolites could reduce chromium from 3728,56mg/l to 365,39 mg/l or 90,20%, and NH4+ from 3040,02 mg/l menjadi 209,76 mg/l or 93,10%. Waste water treatment unit could reduce chromium 63,55% and NH4+ 56,75%.

  3. Effect of synthetic iron colloids on the microbiological NH(4)(+) removal process during groundwater purification.

    Science.gov (United States)

    Wolthoorn, Anke; Temminghoff, Erwin J M; van Riemsdijk, Willem H

    2004-04-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater that is used to make drinking water potable. In a groundwater system with pH>7 subsurface aeration results in non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove iron in situ, the formation of non-mobile iron precipitate, which facilitates the metal's removal, is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of ammonium (NH(4)(+)) in the purification station. Mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process. Therefore, the objective of this study was to assess whether synthetic iron colloids could improve the NH(4)(+) removal process. The effect of synthetic iron colloids on the NH(4)(+) removal process was studied using an artificial purification set-up on a laboratory scale. Columns that purified groundwater with or without added synthetic iron colloids were set up in duplicate. The results showed that the NH(4)(+) removal was significantly ( alpha = 0.05 ) increased in columns treated with the synthetic iron colloids. Cumulative after 4 months about 10% more NH(4)(+) was nitrified in the columns that was treated with the groundwater containing synthetic iron colloids. The results support the hypothesis that mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process.

  4. Chemical and electrical properties of (NH4)2S passivated GaSb surface

    International Nuclear Information System (INIS)

    Tao Dongyan; Cheng Yu; Liu Jingming; Su Jie; Liu Tong; Yang Fengyun; Wang Fenghua; Cao Kewei; Dong Zhiyuan; Zhao Youwen

    2015-01-01

    The surface chemical properties of gallium antimonide (GaSb) after ammonium sulfide ((NH 4 ) 2 S) solution passivation have been studied by X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (TOF-SIMS) and I–V measurement. An advantage of neutral (NH 4 ) 2 S + S solution over pure (NH 4 ) 2 S solution and alkaline (NH 4 ) 2 S + S solution has been found in the ability to passivate the GaSb surface by contrast and comparison. It has been found that alkaline (NH 4 ) 2 S + S solution passivation effectively removes oxides of the GaSb surface and forms sulfide products to improve device performance. TOF-SIMS complementally demonstrates that pure (NH 4 ) 2 S passivation did form sulfide products, which are too soluble to really exist. The lowest roughness determined using a 3D optical profilometer and the highest improved SBD quality proved that neutral (NH 4 ) 2 S + S solution passivation worked much better in improving the surface properties of GaSb. (paper)

  5. Effects of hypoxia on 13NH4+ fluxes in rice roots: kinetics and compartmental analysis

    International Nuclear Information System (INIS)

    Kronzucker, H.J.; Kirk, G.J.D.; Siddiqi, M.Y.; Glass, A.D.M.

    1998-01-01

    Techniques of compartmental (efflux) and kinetic influx analyses with the radiotracer 13NH4+ were used to examine the adaptation to hypoxia (15, 35, and 50% O2 saturation) of root N uptake and metabolism in 3-week-old hydroponically grown rice (Oryza sativa L., cv IR72) seedlings. A time-dependence study of NH4+ influx into rice roots after onset of hypoxia (15% O2) revealed an initial increase in the first 1 to 2.5 h after treatment imposition, followed by a decline to less than 50% of influx in control plants by 4 d. Efflux analyses conducted 0, 1, 3, and 5 d after the treatment confirmed this adaptation pattern of NH4+ uptake. Half-lives for NH4+ exchange with subcellular compartments, cytoplasmic NH4+ concentrations, and efflux (as percentage of influx) were unaffected by hypoxia. However, significant differences were observed in the relative amounts of N allocated to NH4+ assimilation and the vacuole versus translocation to the shoot. Kinetic experiments conducted at 100, 50, 35, and 15% O2 saturation showed no significant change in the K(m) value for NH4+ uptake with varying O2 supply. However, V(max) was 42% higher than controls at 50% O2 saturation, unchanged at 35%, and 10% lower than controls at 15% O2. The significance of these flux adaptations is discussed

  6. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH3

    International Nuclear Information System (INIS)

    Gwo, Dz-Hung; California Univ., Berkeley, CA

    1989-11-01

    Hyperfine resolved vibration-rotation-tunneling spectra of Ar--NH 3 and (NH 3 ) 2 , generated in a planar supersonic jet, have been measured with the Berkeley tunable far infrared laser spectrometer. Among the seven rotationally assigned bands, one band belongs to Ar--NH 3 , and the other six belong to (NH 3 ) 2 . To facilitate the intermolecular vibrational assignment for Ar--NH 3 , a dynamics study aided by a permutation-inversion group theoretical treatment is performed on the rovibrational levels. The rovibrational quantum number correlation between the free internal rotor limit and the semi-rigid limit is established to provide a basic physical picture of the evolution of intermolecular vibrational component states. An anomalous vibronically allowed unique Q branch vibrational band structure is predicted to exist for a near prolate binary complex containing an inverting subunit. According to the model developed in this work, the observed band of Ar--NH 3 centered at 26.470633(17) cm -1 can correlate only to either the fundamental dimeric stretching band for the A 2 states with the NH 3 inversional quantum number v i = 1, or the K a = 0 left-arrow 0 subband of the lowest internal-rotation-inversion difference band. Although the estimated nuclear quadrupole coupling constant favors a tentative assignment in terms of the first possibility, a definitive assignment will require far infrared data and a dynamical model incorporating a potential surface

  7. Towards validation of ammonia (NH3) measurements from the IASI satellite

    Science.gov (United States)

    Van Damme, M.; Clarisse, L.; Dammers, E.; Liu, X.; Nowak, J. B.; Clerbaux, C.; Flechard, C. R.; Galy-Lacaux, C.; Xu, W.; Neuman, J. A.; Tang, Y. S.; Sutton, M. A.; Erisman, J. W.; Coheur, P. F.

    2015-03-01

    Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI) satellite has been observing NH3 from space at a high spatio-temporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement, but they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows investigations of the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  8. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Directory of Open Access Journals (Sweden)

    E. Dammers

    2016-08-01

    Full Text Available Global distributions of atmospheric ammonia (NH3 measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547 give a mean relative difference of −32.4 ± (56.3 %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (−50 to +100 %.

  9. Empirical and mechanistic evaluation of NH4(+) release kinetic in calcareous soils.

    Science.gov (United States)

    Ranjbar, F; Jalali, M

    2014-05-01

    Release, fixation, and distribution of ammonium (NH4(+)) as a source of nitrogen can play an important role in soil fertility and plant nutrition. In this study, ten surface soils, after addition of 1,000 mg NH4(+) kg(-1,) were incubated for 1 week at the field capacity moisture and 25 ± 2 °C temperature, and then NH4(+) release kinetic was investigated by sequential extractions with 10 mM CaCl2. Furthermore, NH4(+) distribution among three fractions, including water-soluble, exchangeable, and non-exchangeable, was determined in all soil samples. NH4(+) release was initially rapid followed by a slower reaction, and this was described well with the Elovich equation as an empirical model. The cumulative NH4(+) concentration released in spiked soil samples had a positive significant correlation with sand content and negative ones with pH, exchangeable Ca(2+)m and K(+), cation exchange capacity (CEC), equivalent calcium carbonate (ECC), and clay content. The cation exchange model in the PHREEQC program was successful in mechanistic simulation of the release trend of native and added NH4(+) in all control and spiked soil samples. The results of fractionation experiments showed that the non-exchangeable fraction in control and spiked soil samples was greater than that in water-soluble and exchangeable fractions. Soil properties, such as pH, exchangeable Ca(2+) and K(+), CEC, ECC, and contents of sand and clay, had significant influences on the distribution of NH4(+) among three measured fractions. This study indicated that both native and recently fixed NH4(+), added to soil through the application of fertilizers, were readily available for plant roots during 1 week after exposure.

  10. Study of various NH4+/NO3- mixtures for enhancing growth of potatoes

    Science.gov (United States)

    Cao, W.; Tibbitts, T. W.

    1993-01-01

    Two experiments were conducted to determine the effects of various NH4(+)-N/NO3(-)-N percentages on growth and mineral concentrations in potato (Solanum tuberosum L.) plants using a non-recirculating nutrient film system in a controlled environment. The first experiment included six NH4(+)-N/NO3(-)-N percentages at 0/100, 20/80, 40/60, 60/40, 80/20, and 100/0 with the same total N concentration of 4 mM. The second experiment included six NH4(+)-N/NO3(-)-N percentages at 0/100, 4/96, 8/92, 12/88, 16/84, and 20/80 again with the same total N of 4 mM. In each experiment, plants were harvested 35 days after transplanting when tubers had been initiated and started to enlarge. Dry weights of shoots, tubers, and whole plant at the harvest were increased significantly with all mixed nitrogen treatments as compared with single NH4+ or NO3- form. The enhanced growth with mixed nitrogen was greatest at 8% to 20% NH4(+)-N. Also, the concentrations and accumulation of total N in the shoots and roots were greater with mixed nitrogen than with separate NH4+ or NO3- nutrition. With NH4+ present in the solutions, the concentrations of P and Cl in the shoots were increased compared to NO3- alone, whereas the tissue concentrations of Ca and Mg were decreased. It was concluded that nitrogen fertilization provided with combined NH4+ and NO3- forms, even at small proportions of NH4+, can enhance nitrogen uptake and productivity in potato plants.

  11. The international research progress of Ammonia(NH3) emissions and emissions reduction technology in farmland ecosystem

    Science.gov (United States)

    Yang, W. Z.; Jiao, Y.

    2017-03-01

    NH3 is the important factor leading to the grey haze, and one of the main causes of environmental problems of serious ecological imbalance, such as acid rain and air quality deterioration. The fertilizer excessive application of the current farmland results NH3 emissions intensity greatly. In order to clear the farmland NH3 emissions research status and achievements, the literature of farmland NH3 emission related were retrievaled by the SCI journals and Chinese science citation database. Some factors of NH3 emission were analyzed such as soil factors, climate factors and farmland management measures. The research progress was inductived on farmland NH3 emission reduction technology. The results will help to clarify farmland NH3 emissions research progress. The theoretical guidance was provided on the future of farmland NH3 emissions research.

  12. DFT investigation of NH{sub 3}, PH{sub 3}, and AsH{sub 3} adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Buasaeng, Prayut; Rakrai, Wandee [Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham, 44000 (Thailand); Wanno, Banchob [Center of Excellence for Innovation in Chemistry and Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150 (Thailand); Tabtimsai, Chanukorn, E-mail: tabtimsai.c@gmail.com [Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham, 44000 (Thailand)

    2017-04-01

    Highlights: • Transition metal-doped single wall carbon nanotubes and their adsorption with NH{sub 3}, PH{sub 3} and AsH{sub 3} molecules were investigated using a DFT method. • Adsorptions of NH{sub 3}, PH{sub 3} and AsH{sub 3} molecules on pristine single wall carbon nanotubeswere improved by transition metal doping. • Structural and electronic properties of single wall carbon nanotubes were significantly changed by transition metal doping and gas adsorptions. - Abstract: The adsorption properties of ammonia (NH{sub 3}), phosphine (PH{sub 3}), and arsine (AsH{sub 3}) on pristine and transition metal- (TM = Sc, Ti, V, and Cr) doped (5,5) armchair single-walled carbon nanotubes (SWCNTs) were theoretically investigated. The geometric and electronic properties and adsorption abilities for the most stable configuration of NH{sub 3}, PH{sub 3}, and AsH{sub 3} adsorptions on pristine and TM-doped SWCNTs were calculated. It was found that the binding abilities of TMs to the SWCNT were in the order: Cr > V > Sc > Ti. However, the adsorption energy showed that the pristine SWCNT weakly adsorbed gas molecules and its electronic properties were also insensitive to gas molecules. By replacing a C atom with TM atoms, all doping can significantly enhance the adsorption energy of gas/SWCNT complexes and their adsorption ability was in the same order: NH{sub 3} > PH{sub 3} > AsH{sub 3}. A remarkable increase in adsorption energy and charge transfer of these systems was expected to induce significant changes in the electrical conductivity of the TM-doped SWCNTs. This work revealed that the sensitivity of SWCNT-based chemical gas adsorptions and sensors can be greatly improved by introducing an appropriate TM dopant. Accordingly, TM-doped SWCNTs are more suitable for gas molecule adsorptions and detections than the pristine SWCNT.

  13. Experimental atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The experimental atomic physics program within the physics division is carried out by two groups, whose reports are given in this section. Work of the accelerator atomic physics group is centered around the 6.5-MV EN tandem accelerator; consequently, most of its research is concerned with atomic processes occurring to, or initiated by, few MeV/amu heavy ions. Other activities of this group include higher energy experiments at the Holifield Heavy Ion Research Facility (HHIRF), studies of electron and positron channeling radiation, and collaborative experiments at other institutions. The second experimental group concerns itself with lower energy atomic collision physics in support of the Fusion Energy Program. During the past year, the new Electron Cyclotron Resonance Source has been completed and some of the first data from this facility is presented. In addition to these two activities in experimental atomic physics, other chapters of this report describe progress in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compilation activities

  14. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  15. The Spectrum of Jupiters Great Red Spot: the Case for Ammonium Hydrosulfide (NH4SH)

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.

    2016-01-01

    Here we present new ultraviolet-visible spectra of irradiated ammonium hydrosul?de (NH4SH), a reported Jovian atmospheric cloud component, for a range of temperatures and radiation doses and make assignments to the spectral features. We show that the combination of radiolysis and thermal annealing of NH4SH causes the originally featureless ultraviolet-visible re?ectance spectrum to evolve into one that absorbs in the ultraviolet-visible region. Furthermore, we ?nd that our laboratory spectra resemble HST (Hubble Space Telescope) spectra below 500 nanometers, suggesting that the more stable reaction products of NH4SH radiolysis are likely an important component of the Great Red Spot.

  16. The Spectrum of Jupiter's Great Red Spot: The Case for Ammonium Hydrosulfide (NH4SH)

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.

    2016-01-01

    Here we present new ultraviolet-visible spectra of irradiated ammonium hydrosul?de (NH4SH), a reported Jovian atmospheric cloud component, for a range of temperatures and radiation doses and make assignments to the spectral features. We show that the combination of radiolysis and thermal annealing of NH4SH causes the originally featureless ultraviolet-visible re?ectance spectrum to evolve into one that absorbs in the ultraviolet-visible region. Furthermore, we ?nd that our laboratory spectra resemble HST (Hubble Space Telescope) spectra below 500 nanometers, suggesting that the more stable reaction products of NH4SH radiolysis are likely an important component of the Great Red Spot.

  17. CH3NH3PbI3 based solar cell: Modified by antisolvent treatment

    Science.gov (United States)

    Nandi, Pronoy; Giri, Chandan; Bansode, Umesh; Topwal, D.

    2017-05-01

    Solar cells based on new class of organic inorganic hybrid perovskite CH3NH3PbI3 were prepared by Ethyl acetate (EA); antisolvent treatment for the first time. This treatment results in new morphology for CH3NH3PbI3 thin film. FESEM image shows microrod type structures of CH3NH3PbI3 after EA antisolvent treatment. Energy band diagram was constructed using photoluminescence and photoemission studies. A better power conversion efficiency was achieved in EA treated film compare to without EA treated film.

  18. Effects of NO3(-) and NH4(+) and urea on each other's uptake and incorporation

    Science.gov (United States)

    Huffaker, R. C.; Ward, M. R.

    1986-01-01

    The purpose was to determine the optimal use by wheat plants of the N sources expected from processing biological waste products, NO3(-),NO2(-)NH4(+), and urea. The approach was to determine the uptake and metabolic products of each N source (from single and multiple component solutions), inhibitory effects of each, feedback inhibition, and overall in vivo regulation of the rates of assimilation of each by wheat plants. Previously, researchers determined the interactions of NO3(-),NO2(-),NH4(+) on each other's uptake and incorporation. The assimilation and some of its effects on NO3(-) and NH4(+) assimilation which have been completed to data are discussed.

  19. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-10-01

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  20. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN)

    Science.gov (United States)

    Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.-C.; Le Sergeant D'Hendecourt, L.; Chiavassa, T.

    2011-11-01

    Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims: We present the first experimental investigation of the formation of aminoacetonitrile NH2CH2CN from the thermal processing of ices including methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods: We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spectroscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results: We demonstrate that methanimine can react with -CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH4+ -CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH4+ -CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH4+ -CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions.

  1. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review.

    Science.gov (United States)

    Krupa, S V

    2003-01-01

    At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4

  2. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  3. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  4. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  5. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  6. Atom trap trace analysis

    International Nuclear Information System (INIS)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-01-01

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications

  7. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  8. Interaction of (NH4)2ZrF6 and (NH4)3ZrF7 with strontium and lead nitrates

    International Nuclear Information System (INIS)

    Krysenko, G.F.; Mel'nichenko, E.I.; Ehpov, D.G.; Polishchuk, S.A.

    1991-01-01

    Methods of chemical, X-ray phase, thermogravimetric analysis and IR spectroscopy were used to study reactions between ammonium fluorozirconates and strontium and lead nitrates. Formation of anhydrous hexa- and octafluorozirconates of strontium and lead in the form of MZrF 6 ·0.5NH 4 F and M 2 ZrF 8 ·0.5NH 4 F double salts, which decompose at 315-430 deg C to corresponding hexa- and octafluorozirconates, was established. Effect of hydrofluoric acid on composition of lead fluorozirconates was studied

  9. Regeneration of porous nickel elements. [an aqueous solution of NH/sub 3/--NH/sub 4/Cl is passed through cell to remove nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Winsel, A; Von Doehren, H H

    1972-01-27

    A method for regenerating a fuel cell with Ag-catalyzed O electrodes containing Ni and H electrodes containing Raney Ni where the voltage had dropped from 750 to 630 mV within 3200 hr at 50 mA/cm/sup 2/ is described. An aqueous NH/sub 3/-NH/sub 4/Cl solution was passed through the cell under 1 atm H at 60/sup 0/, whereby 27 g Ni was dissolved as the hydroxide. The voltage of the regenerated cell was 770 mV and remained constant during 500 hr operation. The Ni ions in the regenerating solutions were removed by electrolysis.

  10. History of early atomic clocks

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    2005-01-01

    This review of the history of early atomic clocks includes early atomic beam magnetic resonance, methods of separated and successive oscillatory fields, microwave absorption, optical pumping and atomic masers. (author)

  11. Influence of H on the composition and atomic concentrations of 'N-rich' plasma deposited SiOxNyHz films

    International Nuclear Information System (INIS)

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bohne, W.; Roehrich, J.; Selle, B.

    2004-01-01

    The influence of H on the composition and atomic concentrations of Si, O, and N of plasma deposited SiO x N y H z films was investigated. The bonding scheme of H was analyzed by Fourier-transform infrared spectroscopy. The composition and absolute concentrations of all the species present in the SiO x N y H z , including H, was measured by heavy-ion elastic recoil detection analysis (HI-ERDA). Samples were deposited from SiH 4 , O 2 , and N 2 gas mixtures, with different gas flow ratios in order to obtain compositions ranging from SiN y H z to SiO 2 . Those samples deposited at higher SiH 4 partial pressures show both Si-H and N-H bonds, while those deposited at lower SiH 4 partial pressures show N-H bonds only. The Si-H and N-H bond concentrations were found to be proportional to the N concentration. The concentration of H was evaluated from the Si-H and N-H stretching absorption bands and compared to the HI-ERDA results, finding good agreement between both measurements. The deviation from H-free stoichiometric SiO x N y composition due to the presence of N-H bonds results in an effective coordination number of N to produce Si-N bonds lower than 3. By fitting the experimental composition data to a theoretical model taking into account the influence of N-H bonds, the actual concentration of N-H bonds was obtained, making evident the presence of nonbonded H. The presence of Si-H and Si-Si bonds was found to partially compensate the effect of N-H bonds, from the point of view of the relative N and Si contents. Finally, the presence of N-H bonds results in a lower Si atom concentration with respect to the stoichiometric film, due to a replacement of Si atoms by H atoms. This decrease of the Si concentration is lower in those films containing Si-H and Si-Si bonds. A model was developed to calculate the Si, O, and N atom concentrations taking into account the influence of N-H, Si-H, and Si-Si bonds, and was found to be in perfect agreement with the experimental data

  12. Atomic Energy Authority Bill

    International Nuclear Information System (INIS)

    Gray, J.H.N.; Stoddart, D.L.; Sinclair, R.M.; Ezra, D.

    1985-01-01

    The House, in Committee, discussed the following matters in relation to the Atomic Energy Authority Bill; financing; trading; personnel conditions of employment; public relations; organization; research programmes; fuels; energy sources; information dissemination. (U.K.)

  13. Atomic and Molecular Interactions

    International Nuclear Information System (INIS)

    2002-01-01

    The Gordon Research Conference (GRC) on Atomic and Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field

  14. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  15. Optics With Cold Atoms

    National Research Council Canada - National Science Library

    Hau, Lene

    2004-01-01

    .... And to test the novel atom sensor, we have built a moving-molasses magneto-optical trap in a geometry tailor-suited to the nanotube detector geometry, involving construction of a highly stable laser...

  16. Atomic Energy Control Regulations

    International Nuclear Information System (INIS)

    1992-01-01

    This is the consolidated text of the Atomic Energy Control Regulations of 17 March 1960, with amendments to 27 August 1992. The Regulations cover the licensing of nuclear facilities, radiation sources, including uranium mining, radiation protection questions, etc. (NEA)

  17. The atomic conflict

    International Nuclear Information System (INIS)

    Mez, L.

    1981-01-01

    This book provides a general view at the atomic programmes of several countries and makes an attempt to unmask the atomic industrial combines with their interlockings. The governments role is analysed as well as the atomic policy of the parties, union-trades and associations. Then, the anti-atomic movements in those countries, their forms of resistance, the resonance and the alternative proposals are presented. The countries concerned are Australia, the FRG, COMECON, Danmark, the EG, Finland, France, Great Britain, Ireland, Japan, the Netherlands, Norway, Austria, Sweden, Switzerland, Spain and the USA. For the pocket book version, Lutz Mez adds an updating epilogue which continues with the developments until springtime 1981. (orig./HP) [de

  18. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  19. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  20. Atoms at work

    International Nuclear Information System (INIS)

    1982-07-01

    This illustrated booklet discusses the following: atoms; fission of uranium; nuclear power plants; reactor types; plutonium (formation, properties, uses); radioactive waste (fuel cycle, reprocessing, waste management); nuclear fusion; fusion reactors; radiation; radioisotopes and their uses. (U.K.)

  1. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  2. Atomic Interferometry, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  3. Atomic bomb cataracts

    International Nuclear Information System (INIS)

    Shiraeda, Kanji

    1992-01-01

    Eye disturbance caused by atomic bomb radiation can be divided into three groups: direct injury immediately after exposure, eye lesions associated with radiation syndrome, and delayed disturbance. The crystalline lens of the eye is the most radiosensitive. Atomic bomb cataract has been investigated in a number of studies. The first section of this chapter discusses radiation cataract in terms of the incidence and characteristics. The second section deals with atomic bomb cataract, which can be diagnosed based on the four criteria: (1) opacity of the crystalline lens, (2) a history of proximal exposure, (3) lack of eye disease complicating cataract, and (4) non-exposure to radiation other than atomic bombing. The prevalence of cataract and severity of opacity are found to correlate with exposure doses and age at the time of exposure. Furthermore, it is found to correlate with distance from the hypocenter, the condition of shielding, epilation, and the presence or absence or degree of radiation syndrome. (N.K.)

  4. The Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Doern, G.B.

    1976-01-01

    This study describes and assesses the regulatory and administrative processes and procedures of the Atomic Energy Control Board, the AECB. The Atomic Energy Control Act authorized the AECB to control atomic energy materials and equipment in the national interest and to participate in measures for the international control of atomic energy. The AECB is authorized to make regulations to control atomic energy materials and equipment and to make grants in support of atomic energy research. (author)

  5. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  6. Harnessing the atom

    International Nuclear Information System (INIS)

    1999-01-01

    Splitting the atom has had a major impact on the history of the latter part of the 20th century. This film depicts the many benefits - and also drawbacks - of nuclear technology, and describes how the International Atomic Energy Agency performs its various tasks. It touches on challenges such as the choice between major energy sources, growing concerns about the global climate, and prospects for nuclear arms control and disarmament

  7. Atomic Energy Act 1946

    International Nuclear Information System (INIS)

    1946-01-01

    This Act provides for the development of atomic energy in the United Kingdom and for its control. It details the duties and powers of the competent Minister, in particular his powers to obtain information on and to inspect materials, plant and processes, to control production and use of atomic energy and publication of information thereon. Also specified is the power to search for and work minerals and to acquire property. (NEA) [fr

  8. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  9. Manipulating atoms with photons

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, C.N.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The physical mechanisms which allow manipulating of neutral atoms with laser photons are described. A remark is also made concerning several possible applications of ultra-cool atoms and streams of future research. The article is completed by Prof. Cohen-Tannoudji's autobiography. (Z.J.)

  10. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  11. Review of ASME-NH Design Materials for Creep-Fatigue

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Kim, Jong Bum

    2010-01-01

    To review and recommend the candidate design materials for the Sodium-Cooled Fast Reactor, the material sensitivity evaluations by the comparison of design data between the ASME-NH materials were performed by using the SIE ASME-NH computer program implementing the material database of the ASME-NH. The design material data provided by the ASME-NH code are the elastic modulus and yield Strength, Time-Independent Allowable Stress Intensity value, time-dependent allowable stress intensity value, expected minimum stress-to rupture value, stress rupture Factors for weldment, isochronous stress-strain curves, and design fatigue curves. Among these, the data related with the creep-fatigue evaluation are investigated in this study

  12. GLOBEC NEP Northern California Current Cetacean Survey Data, NH0005, 2000-2000, 0007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GLOBEC (GLOBal Ocean ECosystems Dynamics) NEP (Northeast Pacific) Northern California Current Cetacean Survey Data from R/V New Horizon cruises NH0005 and 0007....

  13. Seabrook, N.H. Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    Science.gov (United States)

    Dustin Price, a resident of Berwick Maine and the Chief Operator of the Seabrook, N.H. Wastewater Treatment Plant, was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  14. GLOBEC NEP Northern California Current Bird Data NH0005, 2000-2000, 0007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GLOBEC (GLOBal Ocean ECosystems Dynamics) NEP (Northeast Pacific) Northern California Current Bird Data from R/V New Horizon cruises NH0005 and 0007. As a part of...

  15. An introduction to NH-A neutron earth base moisture gage

    International Nuclear Information System (INIS)

    Zhu Huaian; Jiang Yulan; Yin Xilin; Yu Peiying; Luo Pinjie

    1988-01-01

    NH-A neutron earth base moisture gage is an accurate instrument which can measure earth moisture rapidly and non-destructively and display moisture results immediately. The deviation is estimated at ±0.012g/cm

  16. NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) is a record for the Northern Hemisphere (NH) Snow Cover Extent (SCE) spanning from October 4, 1966 to present, updated monthly...

  17. Refinement of hydrogen positions in (NH4)2SeO4

    International Nuclear Information System (INIS)

    Loose, A.; Mel'nik, G.; Zink, N.; Wozniak, K.; Dominiak, P.; Smirnov, L.S.; Pawlukojc, A.; Shuvalov, L.A.

    2005-01-01

    The crystal structure of ammonium selenate has been studied by means of single crystal X-ray and neutron diffraction with the purpose of the refinement of hydrogen positions. The refined hydrogen positions obtained by single crystal neutron diffraction show that N-H bond lengths form a regular tetrahedron in an ammonium ion. The single crystal X-ray diffraction data show that N-H bond lengths are shorter than those obtained by neutron diffraction and are not equal between themselves. Thus, the comparison of the results of X-ray and neutron diffraction allows one to suggest that the shorter N-H bond lengths by X-ray diffraction reflect the distribution of the electron charge density of ammonium ions within the (NH 4 ) 2 SeO 4 crystal lattice

  18. Theoretical study on the mechanism of CH3NH2 and O3 ...

    Indian Academy of Sciences (India)

    CH3NH + OH + O2 adducts with one transition state is the most favoured path. Keywords. Ozone; calculation; reaction mechanism; potential energy profile; transition state. 1. Introduction ..... University of. Applied Science, Bielefeld, Germany.

  19. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M; Tomonaga, M; Amenomori, T; Matsuo, T [Nagasaki Univ. (Japan). School of Medicine

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  20. On the bosonic atoms

    Science.gov (United States)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  1. Electron - atom bremsstrahlung

    International Nuclear Information System (INIS)

    Kim, L.

    1986-01-01

    Features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas are studied. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point-Coulomb potential and screened potentials are obtained using a classical numerical method. Results agree with exact quantum-mechanical partial-wave results for low incident electron energies in both the point-Coulomb and screened potentials. In the screened potential, the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. The scaling properties of bremsstrahlung spectra and energy losses were also studied. It was found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T 1 /Z 2 . This scaling is exact in the case of the point-Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. Bremsstrahlung from atoms in hot dense plasmas were also studied describing the atomic potentials by the temperature-and-density dependent Thomas-Fermi mode. Gaunt factors were obtained with the relativistic partial-wave method for atoms in plasmas of various densities and temperatures

  2. FAO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  3. Atomic clocks for geodesy

    Science.gov (United States)

    Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner

    2018-06-01

    We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.

  4. FAO and atomic energy

    International Nuclear Information System (INIS)

    1960-01-01

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  5. Atomic bomb and leukemia

    International Nuclear Information System (INIS)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T.

    1991-01-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5∼0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author)

  6. X-ray and NQR studies of bromoindate(III) complexes. [C2H5NH3]4InBr7, [C(NH2)3]3InBr6, and [H3NCH2C(CH3)2CH2NH3]InBr5

    International Nuclear Information System (INIS)

    Iwakiri, Takeharu; Ishihara, Hideta; Terao, Hiromitsu; Lork, Enno; Gesing, Thorsten M.

    2017-01-01

    The crystal structures of [C 2 H 5 NH 3 ] 4 InBr 7 (1), [C(NH 2 ) 3 ] 3 InBr 6 (2), and [H 3 NCH 2 C(CH 3 ) 2 CH 2 NH 3 ]InBr 5 (3) were determined at 100(2) K: monoclinic, P2 1 /n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2 1 2 1 2 1 , a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr 6 ] 3- ion and a Br - ion. The structure of 2 contains three different isolated octahedral [InBr 6 ] 3- ions. The structure of 3 has a corner-shared double-octahedral [In 2 Br 11 ] 5- ion and an isolated tetrahedral [InBr 4 ] - ion. The 81 Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The 81 Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr 6 ] 3- of 1 and for [In 2 Br 11 ] 5- and [InBr 4 ] - of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of 81 Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  7. Atomic phenomena in dense plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1981-03-01

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination

  8. Crystal structure and characterization of the novel NH{sup +} Midline-Horizontal-Ellipsis N hydrogen bonded polar crystal [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wojtas, M., E-mail: maciej.wojtas@chem.uni.wroc.pl [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland); Gagor, A. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Science, PO Box 1410, 50-950 Wroclaw (Poland); Czupinski, O. [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland); Medycki, W. [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznan (Poland); Jakubas, R. [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland)

    2012-03-15

    Dielectric properties and phase transitions of the piperazinium tetrafluoroborate ([NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}], abbreviated as PFB) crystal are related to the one-dimensional arrangement of the cations linked by the bistable NH{sup +} Midline-Horizontal-Ellipsis N hydrogen bonds and molecular motions of the [BF{sub 4}]{sup -} units. The crystal structure of [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}] is monoclinic at room temperature with the polar space group Pn. The polar/acentric properties of the room temperature phase IV have been confirmed by the piezoelectric and pyroelectric measurements. DSC measurements show that the compound undergoes three first-order structural phase transitions: at 421/411 K (heating/cooling), at 386/372 K and at 364/349 K. {sup 1}H and {sup 19}F NMR measurements indicate the reorientational motions of [BF{sub 4}]{sup -} anions and piperazinium(+) cations as well as the proton motion in the hydrogen-bonded chains of piperazine along the [001] direction. Over the phase I the isotropic reorientational motions or even self-diffusion of the cations and anions are expected. The conductivity measurements in the vicinity of the II-I PT indicate a superionic phase over the phase I. - Graphical abstract: It must be emphasized that the titled compound represents the first organic-inorganic simple salt containing the single-protonated piperazinium cation which was studied by means of the wide variety of experimental techniques. A survey of Cambridge Structural Database (CSD version 5.32 (November 2010) and updates (May 2011)) for structure containing the piperazinium cations yields 248 compounds with the doubly protonated piperazinium(2+) cations and only eight compounds with the singly protonated piperazinium(+) cations. Among these structures only one is the hybrid organic-inorganic material. This is piperazinium nitrate characterized structurally. The crystal packing of [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}], phase IV. The

  9. Computer Program of SIE ASME-NH (Revision 1.0) Code

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H

    2008-01-15

    In this report, the SIE ASME (Structural Integrity Evaluations by ASME-NH) (Revision 1.0), which has a computerized implementation of ASME Pressure Vessels and Piping Code Section III Subsection NH rules, is developed to apply to the next generation reactor design subjecting to the elevated temperature operations over 500 .deg. C and over 30 years design lifetime, and the user's manual for this program is described in detail.

  10. Porphyrin molecules boost the sensitivity of epitaxial graphene for NH3 detection

    Science.gov (United States)

    Iezhokin, I.; den Boer, D.; Offermans, P.; Ridene, M.; Elemans, J. A. A. W.; Adriaans, G. P.; Flipse, C. F. J.

    2017-02-01

    The sensitivity of quasi-free standing epitaxial graphene for NH3 detection is strongly enhanced by chemical functionalization with cobalt porphyrins resulting in a detection limit well below 100 ppb. Hybridization between NH3 and cobalt porphyrins induces a charge transfer to graphene and results in a shift of the graphene Fermi-level as detected by Hall measurements and theoretically explained by electronic structure calculations.

  11. Kinetics of gas to particle conversion in the NH/sub 3/-Chl system

    Energy Technology Data Exchange (ETDEWEB)

    Luria, M; Cohen, B

    1980-01-01

    Particle formation in the reaction of NH/sub 3/ and Chl under 1 atm of N/sub 2/ and at 25/sup 0/C was studied in a flow reactor. The critical concentration below which NO particle can be formed was found to be 3.5 x 10/sup +14/ molecule/CM/sup 3/ for (NH/sub 3/)=(HCl). Above this concentration, gas-particle conversion percentage increases rapidly to approach 100%.

  12. Surface study of platinum decorated graphene towards adsorption of NH_3 and CH_4

    International Nuclear Information System (INIS)

    Rad, Ali Shokuhi; Pazoki, Hossein; Mohseni, Soheil; Zareyee, Daryoush; Peyravi, Majid

    2016-01-01

    To distinguish the potential of graphene sensors, there is a need to recognize the interaction between graphene sheet and adsorbing molecules. We used density functional theory (DFT) calculations to study the properties of pristine as well as Pt-decorated graphene sheet upon adsorption of NH_3 and CH_4 on its surface to exploit its potential to be as gas sensors for them. We found much higher adsorption, higher charge transfer, lower intermolecular distance, and higher orbital hybridizing upon adsorption of NH_3 and CH_4 gas molecules on Pt-decorated graphene compared to pristine graphene. Also our calculations reveal that the adsorption energies on Pt-decorated graphene sheet are in order of NH_3 >CH_4 which could be corresponded to the order of their sensitivity on this modified surface. We used orbital analysis including density of states as well as frontier molecular orbital study for all analyte-surface systems to more understanding the kind of interaction (physisorption or chemisorption). Consequently, the Pt-decorated graphene can transform the existence of NH_3 and CH_4 molecules into electrical signal and it may be potentially used as an ideal sensor for detection of NH_3 and CH_4 in ambient situation. - Highlights: • Pt-decorated graphene was investigated as an adsorbent for NH_3 and CH_4. • Much higher adsorption of NH_3 and CH_4 on Pt-decorated graphene than pristine graphene. • Higher adsorption of NH_3 compared to CH_4 on Pt-decorated graphene. • Pt influences the electronic structure of graphene.

  13. Computer Program of SIE ASME-NH (Revision 1.0) Code

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, J. H.

    2008-01-01

    In this report, the SIE ASME (Structural Integrity Evaluations by ASME-NH) (Revision 1.0), which has a computerized implementation of ASME Pressure Vessels and Piping Code Section III Subsection NH rules, is developed to apply to the next generation reactor design subjecting to the elevated temperature operations over 500 .deg. C and over 30 years design lifetime, and the user's manual for this program is described in detail

  14. Urban NH3 levels and sources in six major Spanish cities.

    Science.gov (United States)

    Reche, Cristina; Viana, Mar; Karanasiou, Angeliki; Cusack, Michael; Alastuey, Andrés; Artiñano, Begoña; Revuelta, M Aranzazu; López-Mahía, Purificación; Blanco-Heras, Gustavo; Rodríguez, Sergio; Sánchez de la Campa, Ana M; Fernández-Camacho, Rocío; González-Castanedo, Yolanda; Mantilla, Enrique; Tang, Y Sim; Querol, Xavier

    2015-01-01

    A detailed spatial and temporal assessment of urban NH3 levels and potential emission sources was made with passive samplers in six major Spanish cities (Barcelona, Madrid, A Coruña, Huelva, Santa Cruz de Tenerife and Valencia). Measurements were conducted during two different periods (winter-autumn and spring-summer) in each city. Barcelona showed the clearest spatial pattern, with the highest concentrations in the old city centre, an area characterised by a high population density and a dense urban architecture. The variability in NH3 concentrations did not follow a common seasonal pattern across the different cities. The relationship of urban NH3 with SO2 and NOX allowed concluding on the causes responsible for the variations in NH3 levels between measurement periods observed in Barcelona, Huelva and Madrid. However, the factors governing the variations in A Coruña, Valencia and Santa Cruz de Tenerife are still not fully understood. This study identified a broad variability in NH3 concentrations at the city-scale, and it confirms that NH3 sources in Spanish urban environments are vehicular traffic, biological sources (e.g. garbage containers), wastewater treatment plants, solid waste treatment plants and industry. The importance of NH3 monitoring in urban environments relies on its role as a precursor of secondary inorganic species and therefore PMX. Further research should be addressed in order to establish criteria to develop and implement mitigation strategies for cities, and to include urban NH3 sources in the emission inventories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A study of proton polarization in ammonia (NH sub 3 ) under irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A.A.; Get' man, V.A.; Dzyubak, A.P.; Karnaukhov, I.M.; Lukhanin, A.A.; Neffa, A.Yu.; Semisalov, I.L.; Sorokin, P.V.; Sporov, E.S.; Telegin, Yu.N.; Tolmachev, I.A.; Trotsenko, V.I. (Kharkov Institute of Physics and Technology, Ukrainian SSR, Academy of Sciences, 310108 Kharkov, USSR (UA))

    1989-05-05

    The proton polarization in irradiated NH{sub 3} has been measured as a function of the irradiation dose and annealing temperature. The analysis of the experimental data obtained shows that under low-temperature'' irradiation along with the NH{sup {minus}}{sub 2} the e{sub tr}-radical is likely to be formed which contributes to the polarization build-up and relaxation and influences the radiation damage resistance of the target.

  16. Effects of high NH4+ on K+ uptake, culm mechanical strength and grain filling in wheat

    Directory of Open Access Journals (Sweden)

    Lingan eKong

    2014-12-01

    Full Text Available It is well established that a high external NH4+ concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH4+ are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m-2 and high (30 g N m-2 supplies of NH4+ in the presence or absence of additional K+ (6 g K2O m-2 to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N remobilization and the grain-filling rate. The results indicated that an excessive supply of NH4+ significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE and the grain-filling rate compared with a moderate level of NH4+. The additional provision of K+ considerably alleviated these negative effects of high NH4+, resulting in a 19.41%-26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET showed that the net rate of transmembrane K+ influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K+ content decreased by 36.13% in wheat plants subjected to high NH4+. This study indicates that the effects of high NH4+ on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K+ uptake in wheat.

  17. Photodissociation and photoionisation of atoms and molecules of astrophysical interest

    Science.gov (United States)

    Heays, A. N.; Bosman, A. D.; van Dishoeck, E. F.

    2017-06-01

    A new collection of photodissociation and photoionisation cross sections for 102 atoms and molecules of astrochemical interest has been assembled, along with a brief review of the basic physical processes involved. These have been used to calculate dissociation and ionisation rates, with uncertainties, in a standard ultraviolet interstellar radiation field (ISRF) and for other wavelength-dependent radiation fields, including cool stellar and solar radiation, Lyman-α dominated radiation, and a cosmic-ray induced ultraviolet flux. The new ISRF rates generally agree within 30% with our previous compilations, with a few notable exceptions. Comparison with other databases such as PHIDRATES is made. The reduction of rates in shielded regions was calculated as a function of dust, molecular and atomic hydrogen, atomic C, and self-shielding column densities. The relative importance of these shielding types depends on the atom or molecule in question and the assumed dust optical properties. All of the new data are publicly available from the Leiden photodissociation and ionisation database. Sensitivity of the calculated rates to variation of temperature and isotope, and uncertainties in measured or calculated cross sections, are tested and discussed. Tests were conducted on the new rates with an interstellar-cloud chemical model, and find general agreement (within a factor of two) in abundances obtained with the previous iteration of the Leiden database assuming an ISRF, and order-of-magnitude variations assuming various kinds of stellar radiation. The newly parameterised dust-shielding factors makes a factor-of-two difference to many atomic and molecular abundances relative to parameters currently in the UDfA and KIDA astrochemical reaction databases. The newly-calculated cosmic-ray induced photodissociation and ionisation rates differ from current standard values up to a factor of 5. Under high temperature and cosmic-ray-flux conditions the new rates alter the equilibrium

  18. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  19. Quantum chemical spectral characterization of CH2NH2+ for remote sensing of Titan's atmosphere

    Science.gov (United States)

    Thackston, Russell; Fortenberry, Ryan C.

    2018-01-01

    Cassini has shown that CH2NH2+ is likely present in relatively high abundance in Titan's upper atmosphere. Relatively little is known about this molecule even though it contains the same number of electrons as ethylene, a molecule of significance to Titan's chemistry. Any studies on CH2NH2+ with application to Titan or its atmospheric chemistry will have to be done remotely at this point with the end of the fruitful Cassini mission. Consequently, trusted quantum chemical techniques are utilized here to produce the rotational, vibrational, and rovibrational spectroscopic constants for CH2NH2+ for the first time. The methodology produces a tightly fit potential energy surface here that is well-behaved indicating a strong credence in the accuracy for the produced values. Most notably, the 884.1 cm-1 NH2 out-of-plane bend is the brightest of the vibrational frequencies reported here for CH2NH2+ , and an observed and unattributed feature in this spectral region has been documented but never assigned to a molecular carrier. Follow-up IR or radio observations making use of the 540 GHz to 660 GHz range with the 0.45 D molecular dipole moment will have to be undertaken in order to confirm this or any attribution, but the data provided in this work will greatly assist in any such studies related to CH2NH2+.

  20. NH4+ adsorption and adsorption kinetics by sediments in a drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Suna Hongyan

    2016-12-01

    Full Text Available The sorption isotherm and sorption kinetics of NH4+ by the Fen River reservoir sediment were investigated for a better understanding of the NH4+ sorption characteristics and parameters. The results showed that Q (adsorption content increased with the increase of Ceq (equilibrium concentration, sorption isotherms could be described by Freundlich equation (R2 from 0.97 to 0.99. Cation exchange capacity (CEC had a significant correlation with the parameters K and n (R2 was 0.85 and 0.95, respectively. The ENC0 (Ceq as Q was zero of S1, S2, S3 and S4 was 1.25, 0.57, 1.15 and 1.14 mg L-1, respectively, and they were less than the NH4+ concentrations in reservoir water. The sediments released NH4+ to the Fen River reservoir water and acted as a pollution source, in the form of complex and heterogeneous adsorbents. The NH4+ adsorption kinetic process was composed of ‘fast’ and ‘slow’ reaction patterns and could be fitted using both Elovich equation and Pseudo second-equation. More than one-step may be involved in the NH4+ sorption processes, and interior diffusion was not dominant ion action.

  1. Photostriction of CH3NH3PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao

    2017-07-17

    Organic-inorganic hybrid perovskite materials exhibit a variety of physical properties. Pronounced coupling between phonon, organic cations, and the inorganic framework suggest that these materials exhibit strong light-matter interactions. The photoinduced strain of CH3 NH3 PbBr3 is investigated using high-resolution and contactless in situ Raman spectroscopy. Under illumination, the material exhibits large blue shifts in its Raman spectra that indicate significant structural deformations (i.e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination of the photovoltaic effect and translational symmetry loss of the molecular configuration via strong translation-rotation coupling. Unlike CH3 NH3 PbI3 , it is noted that the photostriction of CH3 NH3 PbBr3 is extremely stable, demonstrating no signs of optical decay for at least 30 d. These results suggest the potential of CH3 NH3 PbBr3 for applications in next-generation optical micro-electromechanical devices.

  2. Application procedures and analysis examples of the SIE ASME-NH program

    International Nuclear Information System (INIS)

    Kim, Seok Hoon; Koo, G. H.; Kim, J. B.

    2010-12-01

    In this report, the design rule of the ASME-NH Code was briefly summarized and the application procedures of SIE ASME-NH program were analysed, the analysis examples were described. The SIE ASME-NH program was developed according to the ASME Code Section III Subsection NH rules to perform the primary stress limits, the accumulated inelastic strain limits and the creep fatigue damage evaluations in the structural design of nuclear power plants operating with high temperatures over creep temperature at normal operating conditions. In the analysis examples, the benchmark problem for the high temperature reactor vessel which was discussed in the SIE ASME-NH user's seminar was described. Also, the preliminary structural analysis of an Advanced Burner Test Reactor internal structure was described. Considering the load combinations of the various cycle types submitted from significant operating conditions, the integrity of a reactor internal structure was reviewed according to the stress and strain limits of the ASME-NH rules and the analysis and evaluation results were summarized

  3. Optical monitoring of CH3NH3PbI3 thin films upon atmospheric exposure

    International Nuclear Information System (INIS)

    Ghimire, Kiran; Zhao, Dewei; Cimaroli, Alex; Ke, Weijun; Yan, Yanfa; Podraza, Nikolas J

    2016-01-01

    CH 3 NH 3 PbI 3 perovskite films of interest for photovoltaic (PV) devices have been prepared by (i) vapor deposition and (ii) solution processing. Complex dielectric function ( ε   =   ε 1   +  i ε 2 ) spectra and structural parameters of the films have been extracted using near infrared to ultraviolet spectroscopic ellipsometry. In situ real time spectroscopic ellipsometry (RTSE) over a 48 h period has been performed on vapor deposited CH 3 NH 3 PbI 3 after the deposition in normal atmospheric laboratory ambient conditions. Analysis of RTSE data for vapor deposited CH 3 NH 3 PbI 3 film prepared under un-optimized conditions identifies phase segregated PbI 2 and CH 3 NH 3 I at the substrate/film interface and unreacted PbI 2 and CH 3 NH 3 I on the film surface. This analysis also provides the time dependence of the effective thicknesses of perovskite film, unreacted components, and phase segregated layers to track CH 3 NH 3 PbI 3 decomposition. (paper)

  4. Nanoscale structural characterization of Mg(NH3)6Cl2 during NH3 desorption

    DEFF Research Database (Denmark)

    Jacobsen, Hjalte Sylvest; Hansen, Heine Anton; Andreasen, Jens Wenzel

    2007-01-01

    Complex metal hydrides progressively display improved hydrogen storage capacity, but they are still far from fulfilling the requirements of the transport sector. Recently, indirect storage of hydrogen as ammonia in Mg(NH3)(6)Cl-2 has shown impressive capacity and reversibility. Here, we present...

  5. Visualization of the Diffusion Pathway of Protons in (NH4)2Si0.5Ti0.5P4O13 as an Electrolyte for Intermediate-Temperature Fuel Cells.

    Science.gov (United States)

    Sun, Chunwen; Chen, Lanli; Shi, Siqi; Reeb, Berthold; López, Carlos Alberto; Alonso, José Antonio; Stimming, Ulrich

    2018-01-16

    We demonstrate that (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 is an excellent proton conductor. The crystallographic information concerning the hydrogen positions is unraveled from neutron-powder-diffraction (NPD) data for the first time. This study shows that all the hydrogen atoms are connected though H bonds, establishing a two-dimensional path between the [(Si 0.5 Ti 0.5 )P 4 O 13 2- ] n layers for proton diffusion across the crystal structure by breaking and reconstructing intermediate H-O═P bonds. This transient species probably reduces the potential energy of the H jump from an ammonium unit to the next neighboring NH 4 + unit. Both theoretical and experimental results support an interstitial-proton-conduction mechanism. The proton conductivities of (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 reach 0.0061 and 0.024 S cm -1 in humid air at 125 and 250 °C, respectively. This finding demonstrates that (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 is a promising electrolyte material operating at 150-250 °C. This work opens up a new avenue for designing and fabricating high-performance inorganic electrolytes.

  6. Synthesis and characteristics of a novel 3-D organic amine oxalate: (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)].6.5H2O

    International Nuclear Information System (INIS)

    Yu Xiaohong; Zhang Hanhui; Cao Yanning; Chen Yiping; Wang Zhen

    2006-01-01

    A novel 3-D compound of (enH 2 ) 1.5 [Bi 3 (C 2 O 4 ) 6 (CO 2 CONHCH 2 CH 2 NH 3 )].6.5H 2 O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with a=31.110(8)A, b=11.544(3)A, c=22.583(6)A, β=112.419(3) o , V=7497(3)A 3 , Z=8, R 1 =0.0463 and wR 2 =0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group - CO 2 CONHCH 2 CH 2 NH 3 + , which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445nm

  7. Atomic layer deposition of GaN at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ozgit, Cagla; Donmez, Inci; Alevli, Mustafa; Biyikli, Necmi [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey)

    2012-01-15

    The authors report on the self-limiting growth of GaN thin films at low temperatures. Films were deposited on Si substrates by plasma-enhanced atomic layer deposition using trimethylgallium (TMG) and ammonia (NH{sub 3}) as the group-III and -V precursors, respectively. GaN deposition rate saturated at 185 deg. C for NH{sub 3} doses starting from 90 s. Atomic layer deposition temperature window was observed from 185 to {approx}385 deg. C. Deposition rate, which is constant at {approx}0.51 A/cycle within the temperature range of 250 - 350 deg. C, increased slightly as the temperature decreased to 185 deg. C. In the bulk film, concentrations of Ga, N, and O were constant at {approx}36.6, {approx}43.9, and {approx}19.5 at. %, respectively. C was detected only at the surface and no C impurities were found in the bulk film. High oxygen concentration in films was attributed to the oxygen impurities present in group-V precursor. High-resolution transmission electron microscopy studies revealed a microstructure consisting of small crystallites dispersed in an amorphous matrix.

  8. Determination of NH_2 concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde

    International Nuclear Information System (INIS)

    Manakhov, Anton; Čechal, Jan; Michlíček, Miroslav; Shtansky, Dmitry V.

    2017-01-01

    Highlights: • A new method for primary amines derivatization is proposed and validated. • The chemical structure of APTES layer is studied. • The derivatization by 5-iodo 2-furaldehyde allowed to avoid side reactions in contrast to 4-trifluoromethyl benzaldehyde derivatization. - Abstract: The quantification of concentration of primary amines, e.g. in plasma polymerized layers is a very important task for surface analysis. However, the commonly used procedure, such as gas phase derivatization with benzaldehydes, shows several drawbacks, the most important of which are the side reaction effects. In the present study we propose and validate a liquid phase derivatization using 5-iodo 2-furaldehyde (IFA). It was demonstrated that the content of NH_2 groups can be determined from the atomic concentrations measured by X-ray photoelectron spectroscopy (XPS), in particular from the ratio of I 3d and N 1s peak intensities. First, we demonstrate the method on a prototypical system such as 3-aminopropyl tri-ethoxy silane (APTES) layer. Here the XPS analysis carried out after reaction of APTES layer with IFA gives the fraction of primary amines (NH_2/N) of 38.3 ± 7.9%. Comparing this value with that obtained by N 1s curve fitting of APTES layer giving 40.9 ± 9.5% of amine groups, it can be concluded that all primary amines were derivatized by reaction with IFA. The second system to demonstrate the method comprises cyclopropylamine (CPA) plasma polymers that were free from conjugated imines. In this case the method gives the NH_2 fraction ∼8.5%. This value is closely matching the NH_2/N ratio estimated by 4-trifluoromethyl benzaldehyde (TFBA) derivatization. The reaction of IFA with CPA plasma polymer exhibiting high density of conjugated imines revealed the NH_2/N fraction of ∼10.8%. This value was significantly lower compared to 17.3% estimated by TFBA derivatization. As the overestimated density of primary amines measured by TFBA derivatization is probably

  9. C-H and C-C activation of n -butane with zirconium hydrides supported on SBA15 containing N-donor ligands: [(≡SiNH-)(≡SiX-)ZrH2], [(≡SiNH-)(≡SiX-)2ZrH], and[(≡SiN=)(≡SiX-)ZrH] (X = -NH-, -O-). A DFT study

    KAUST Repository

    Pasha, Farhan Ahmad; Bendjeriou-Sedjerari, Anissa; Huang, Kuo-Wei; Basset, Jean-Marie

    2014-01-01

    : [(≡SiNH-)(≡SiO-)ZrH2] (A), [(≡SiNH-)2ZrH2] (B), [(≡SiNH-)(≡SiO-) 2ZrH] (C), [(≡SiNH-)2(≡SiO-)ZrH] (D), [(≡SiN=)(≡Si-O-)ZrH] (E), and [(≡SiN=)(≡SiNH-)ZrH] (F). The roles of these hydrides have been investigated in C-H/C-C bond activation and cleavage

  10. Process-based modelling of NH3 exchange with grazed grasslands

    Science.gov (United States)

    Móring, Andrea; Vieno, Massimo; Doherty, Ruth M.; Milford, Celia; Nemitz, Eiko; Twigg, Marsailidh M.; Horváth, László; Sutton, Mark A.

    2017-09-01

    In this study the GAG model, a process-based ammonia (NH3) emission model for urine patches, was extended and applied for the field scale. The new model (GAG_field) was tested over two modelling periods, for which micrometeorological NH3 flux data were available. Acknowledging uncertainties in the measurements, the model was able to simulate the main features of the observed fluxes. The temporal evolution of the simulated NH3 exchange flux was found to be dominated by NH3 emission from the urine patches, offset by simultaneous NH3 deposition to areas of the field not affected by urine. The simulations show how NH3 fluxes over a grazed field in a given day can be affected by urine patches deposited several days earlier, linked to the interaction of volatilization processes with soil pH dynamics. Sensitivity analysis showed that GAG_field was more sensitive to soil buffering capacity (β), field capacity (θfc) and permanent wilting point (θpwp) than the patch-scale model. The reason for these different sensitivities is dual. Firstly, the difference originates from the different scales. Secondly, the difference can be explained by the different initial soil pH and physical properties, which determine the maximum volume of urine that can be stored in the NH3 source layer. It was found that in the case of urine patches with a higher initial soil pH and higher initial soil water content, the sensitivity of NH3 exchange to β was stronger. Also, in the case of a higher initial soil water content, NH3 exchange was more sensitive to the changes in θfc and θpwp. The sensitivity analysis showed that the nitrogen content of urine (cN) is associated with high uncertainty in the simulated fluxes. However, model experiments based on cN values randomized from an estimated statistical distribution indicated that this uncertainty is considerably smaller in practice. Finally, GAG_field was tested with a constant soil pH of 7.5. The variation of NH3 fluxes simulated in this way

  11. UNESCO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    Atomic energy has been of particular concern to UNESCO virtually since the founding of this United Nations agency with the mission of promoting the advancement of science along with education and culture. UNESCO has been involved in the scientific aspects of nuclear physics - notably prior to the creation of the International Atomic Energy Agency - but it has also focussed its attention upon the educational and cultural problems of the atomic age. UNESCO's sphere of action was laid down by its 1954 General Conference which authorized its Director-General to extend full co-operation to the United Nations in atomic energy matters, with special reference to 'the urgent study of technical questions such as those involved in the effects of radioactivity on life in general, and to the dissemination of objective information concerning all aspects of the peaceful utilization of atomic energy; to study, and if necessary, to propose measures of international scope to facilitate the use of radioisotopes in research and industry'. UNESCO's first action under this resolution was to call a meeting of a committee of experts from twelve nations to study the establishment of a system of standards and regulations for the preparation, distribution, transport and utilization of radioactive isotopes and tracer molecules

  12. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  13. Atomic nucleus and elementary particles

    International Nuclear Information System (INIS)

    Zakrzewski, J.

    1976-01-01

    Negatively charged leptons and hadrons can be incorporated into atomic shells forming exotic atoms. Nucleon resonances and Λ hyperons can be considered as constituents of atomic nuclei. Information derived from studies of such exotic systems enriches our knowledge of both the interactions of elementary particles and of the structure of atomic nuclei. (author)

  14. NO3-/NH4+ proportions affect cadmium bioaccumulation and tolerance of tomato.

    Science.gov (United States)

    Nogueirol, Roberta Corrêa; Monteiro, Francisco Antonio; de Souza Junior, João Cardoso; Azevedo, Ricardo Antunes

    2018-05-01

    With the growth of the world population, cadmium (Cd) concentration in the environment has increased considerably as a result of human activities such as foundry, battery disposal, mining, application of fertilizers containing toxic elements as impurities, and disposal of metal-containing waste. Higher plants uptake N as ammonium (NH 4 + ), nitrate (NO 3 - ), and many other water-soluble compounds such as urea and amino acids, and nourishing plants with N, providing part of it as NH 4 + , is an interesting alternative to the supply of this nutrient in the exclusive form of NO 3 - under Cd toxicity. The objective was to evaluate the influence of NO 3 - /NH 4 + proportions on the development and tolerance of tomato plants grown under the presence of Cd in the culture medium. The experiment was conducted in a completely randomized block design in a 3 × 3 factorial arrangement consisting of three Cd rates (0, 50, and 100 μmol L -1 ) and three NO 3 - /NH 4 + proportions (100/0, 70/30, and 50/50) in the nutrient solution. To this end, we quantified the responses of the antioxidant enzymatic system and productive and functional changes in Solanum lycopersicum var. esculentum (Calabash Rouge). Shoot biomass production decreased with the maximum Cd rate (100 μmol L -1 ) tested in the growth medium, whereas the NO 3 - /NH 4 + proportions and other Cd rates did not significantly influence this variable. The lowest SPAD values were observed at the 100/0 NO 3 - /NH 4 + proportion and in plants exposed to Cd. The largest accumulation of the metal occurred in the shoots at the NO 3 - /NH 4 + proportion of 70/30 and at 100 μmol L -1 Cd and in the roots at 100/0 NO 3 - /NH 4 + and with 50 and 100 μmol L -1 Cd. The concentration and accumulation of NO 3 - were highest at the NO 3 - /NH 4 + proportion of 100/0 in the shoots and at 50/50 NO 3 - /NH 4 + in the roots, whereas for NH 4 + , values were higher as the proportion of N supplied in the form of NH 4 + was

  15. Compilation of data from hadronic atoms

    International Nuclear Information System (INIS)

    Poth, H.

    1979-01-01

    This compilation is a survey of the existing data of hadronic atoms (pionic-atoms, kaonic-atoms, antiprotonic-atoms, sigmonic-atoms). It collects measurements of the energies, intensities and line width of X-rays from hadronic atoms. Averaged values for each hadronic atom are given and the data are summarized. The listing contains data on 58 pionic-atoms, on 54 kaonic-atoms, on 23 antiprotonic-atoms and on 20 sigmonic-atoms. (orig./HB) [de

  16. CP violation in atoms

    International Nuclear Information System (INIS)

    Barr, S.M.

    1992-01-01

    Electric dipole moments of large atoms are an excellent tool to search for CP violation beyond the Standard Model. These tell us about the electron EDM but also about CP-violating electron-nucleon dimension-6 operators that arise from Higgs-exchange. Rapid strides are being made in searches for atomic EDMs. Limits on the electron EDM approaching the values which would be expected from Higgs-exchange mediated CP violation have been achieved. It is pointed out that in this same kind of model if tan β is large the effects in atoms of the dimension-6 e - n operators may outweigh the effect of the electron EDM. (author) 21 refs

  17. US Atomic Energy Law

    International Nuclear Information System (INIS)

    1981-01-01

    This is a new volume follows in the series supplementing the volumes 11 and 12 published in 1965 and 1966, updating the collection of Federal Acts and Executive Orders of the President of the United States of America relating to atomic energy legislation. Since the publication of volumes 11 and 12, the US Atomic Energy Act of 1954 alone has been amended 25 times, mainly as a consequence of by the Nuclear Non-Proliferation Act and the Uranium Mill Tailings Radiation Control Act, both of 1978. The Atomic Energy Act of 1954 is supplemented by a selection of the most important Federal Acts, Executive Orders of the President and Resolutions of the Congress. (orig./HSCH) [de

  18. Atomic profits, no thanks

    International Nuclear Information System (INIS)

    Bartels, W.; Dietrich, K.; Moeller, H.; Speier, C.

    1980-01-01

    The authors deal with the following topics: The secret of nuclear energy; the atom programmes of Bonn; on some arguments of the present nuclear energy discussion; how socialist countries solve the problems of nuclear energy. From the socialist point of view they discuss sociological, ideological and moral reasons for a peaceful utilization of nuclear energy. Nevertheless they refuse Bonn's atom programme because the high finance's interests concerning profit and power make it a danger. The biggest danger is said to lie in the creation of a plutonium-industry and the militaristic abuse which would be connected with it. The socialist way of utilizing atomic energy is seen by them as a way with a high feeling of responsibility towards all people and towards a guaranteed energy supply. (HSCH) [de

  19. Controlling the atom

    International Nuclear Information System (INIS)

    Mazuzan, G.T.; Walker, J.S.

    1984-01-01

    The authors trace the early history of nuclear power regulation in the US. Focusing on the Atomic Energy Commission, they describe the role of other groups that figured in the development of regulatory policies, including the Congressional Joint Committee on Atomic Energy, other federal agencies, state governments, the nuclear industry, and scientific organizations. They consider changes in public perceptions of and attitudes toward atomic energy and the dangers of radiation exposure. The basic purpose of the book is to provide the Nuclear Regulatory Commission and the general public with information on the historical antecedents and background of regulatory issues so that there will be continuity in policy decisions. The book concludes with an annotated bibliography of selected references. 19 figures

  20. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  1. Conductivity studies of biopolymer electrolytes based on chitosan incorporated with NH4Br

    International Nuclear Information System (INIS)

    Shukur, M F; Azmi, M S; Zawawi, S M M; Majid, N A; Illias, H A; Kadir, M F Z

    2013-01-01

    A polymer electrolyte system based on chitosan complexed with ammonium bromide (NH 4 Br) salt was prepared by the solution cast technique. 30 wt% NH 4 Br added electrolyte gave a room temperature conductivity of (4.38 ± 1.26) × 10 −7  S cm −1 and increased to (2.15 ± 0.47) × 10 −4  S cm −1 with addition of 40 wt% glycerol. The dependence of the conductivity on temperature proves that both chitosan–NH 4 Br and chitosan–NH 4 Br–glycerol systems are Arrhenian. The activation energy (E a ) value for 70 wt% chitosan–30 wt% NH 4 Br film is 0.31 eV and the E a value for 42 wt% chitosan–18 wt% NH 4 Br–40 wt% glycerol film is 0.20 eV. The carboxamide band at 1640 cm −1 and the amine band at 1549 cm −1 in the spectrum of pure chitosan film shifted to 1617 and 1516 cm −1 , respectively, in the spectrum of 70 wt% chitosan–30 wt% NH 4 Br film, indicating the occurrence of complexation between polymer and salt. The band at 1024 cm −1 in the pure chitosan film spectrum, which corresponds to the C–O stretching vibration, shifted to lower wavenumbers on addition of salt. A new band appears at 997 cm −1 on addition of 40 wt% glycerol. (paper)

  2. MARVEL analysis of the measured high-resolution spectra of 14NH3

    International Nuclear Information System (INIS)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-01-01

    Accurate, experimental rotational–vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14 NH 3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7–17 000 cm −1 region, with a large gap between 7000 and 15 000 cm −1 . The MARVEL (Measured Active Rotational–Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para- 14 NH 3 , respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14 NH 3 , 8 for ortho- and 22 for para- 14 NH 3 . The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para- 14 NH 3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14 NH 3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14 NH 3 ; these lines are also deposited in the Supporting Information to this paper

  3. MARVEL analysis of the measured high-resolution spectra of 14NH3

    Science.gov (United States)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-08-01

    Accurate, experimental rotational-vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14NH3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7-17 000 cm-1 region, with a large gap between 7000 and 15 000 cm-1. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para-14NH3, respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14NH3, 8 for ortho- and 22 for para-14NH3. The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para-14NH3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14NH3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14NH3; these lines are also deposited in the Supporting Information to this paper.

  4. Pressure induced polymorphism in ammonium azide (NH{sub 4}N{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, S.A., E-mail: s.medvedev@mpic.de [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Institute fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Eremets, M.I. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Evers, J.; Klapoetke, T.M. [Energetic Materials Research, Ludwig-Maximilian University Munich (LMU), Butenandtstrasse 5-13(D), D-81377 Munich (Germany); Palasyuk, T. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Trojan, I.A. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany)

    2011-07-28

    Graphical abstract: Polymorph phase transition is observed in NH{sub 4}N{sub 3} at {approx}3 GPa by pressure dependent Raman studies. The strength of hydrogen bond appears to be modified at the phase transition as illustrated by dependence of N-H stretching frequency on pressure shown on figure. Highlights: {yields} Ammonium azide (NH{sub 4}N{sub 3}) studied at high pressures by Raman spectroscopy. {yields} Phase transition is observed at pressure {approx}3 GPa. {yields} Strength of hydrogen bond appears to be modified at the phase transition. {yields} NH{sub 4}N{sub 3} remain in molecular form up to pressures above 50 GPa. - Abstract: Pressure-dependent Raman spectroscopy studies reveal polymorph phase transition in simple molecular ionic crystal NH{sub 4}N{sub 3} at pressure {approx}3 GPa unobserved by recent abinitio evolutionary structure searches. Hydrogen bonding is spectroscopically evident in both low- and high-pressure phases. The strength of hydrogen bond appears to be modified at the phase transition: in the low-pressure phase NH{sub 4}N{sub 3} behaves as system with very strong hydrogen bonding whereas changes of spectra with pressure in the high-pressure phase are indicative of weak or medium-strength hydrogen bonds. The high pressure phase is most likely thermodynamically stable at least up to pressure {approx}55 GPa contradicting the abinitio studies predicting transformation of NH{sub 4}N{sub 3} to nonmolecular hydronitrogen solid at 36 GPa.

  5. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, Dz-Hung (Lawrence Berkeley Lab., CA (USA) California Univ., Berkeley, CA (USA). Dept. of Chemistry)

    1989-11-01

    Hyperfine resolved vibration-rotation-tunneling spectra of Ar--NH{sub 3} and (NH{sub 3}){sub 2}, generated in a planar supersonic jet, have been measured with the Berkeley tunable far infrared laser spectrometer. Among the seven rotationally assigned bands, one band belongs to Ar--NH{sub 3}, and the other six belong to (NH{sub 3}){sub 2}. To facilitate the intermolecular vibrational assignment for Ar--NH{sub 3}, a dynamics study aided by a permutation-inversion group theoretical treatment is performed on the rovibrational levels. The rovibrational quantum number correlation between the free internal rotor limit and the semi-rigid limit is established to provide a basic physical picture of the evolution of intermolecular vibrational component states. An anomalous vibronically allowed unique Q branch vibrational band structure is predicted to exist for a near prolate binary complex containing an inverting subunit. According to the model developed in this work, the observed band of Ar--NH{sub 3} centered at 26.470633(17) cm{sup {minus}1} can correlate only to either the fundamental dimeric stretching band for the A{sub 2} states with the NH{sub 3} inversional quantum number v{sub i} = 1, or the K{sub a} = 0 {l arrow} 0 subband of the lowest internal-rotation-inversion difference band. Although the estimated nuclear quadrupole coupling constant favors a tentative assignment in terms of the first possibility, a definitive assignment will require far infrared data and a dynamical model incorporating a potential surface.

  6. The energy level alignment at the CH_3NH_3PbI_3/pentacene interface

    International Nuclear Information System (INIS)

    Ji, Gengwu; Zhao, Bin; Song, Fei; Zheng, Guanhaojie; Zhang, Xiaonan; Shen, Kongchao; Yang, Yingguo; Chen, Shi; Gao, Xingyu

    2017-01-01

    Highlights: • The Energy Level Alignment at the CH_3NH_3PbI_3/Pentacene Interface was resolved experimentally. • The downward band bending and the dipole found at the pentacene side would favorably drive holes away from the interface into pentacene. • A ∼0.7 eV offset between pentacene HOMO and CH_3NH_3PbI_3 VBM would be in favor of hole transfer whereas a ∼1.35 eV offset between pentacene LUMO and CH_3NH_3PbI_3 CBM should efficiently block the unwanted electron transfer from perovskite to pentacene. • Pentacene could be a viable hole transfer material candidate on perovskite to be explored in perovskite devices. - Abstract: Pentacene thin film on CH_3NH_3PbI_3 was studied by in-situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy to determine their interfacial energy level alignment. A 0.2 eV downward band bending together with a 0.1 eV interfacial dipole was found at the pentacene side, whereas there was no band bending found at the CH_3NH_3PbI_3 side. The offset between CH_3NH_3PbI_3 Valance Band Maximum (VBM) and pentacene Highest Occupied Molecular Orbital (HOMO) and that between CH_3NH_3PbI_3 Conduction Band Minimum (CBM) and pentacene Lowest Unoccupied Molecular Orbital (LUMO) was determined to be 0.7 and 1.35 eV, respectively. The band alignment at this interface is favor of efficient hole transfer, which suggests pentacene as a viable HTL candidate to be explored in perovskite solar cells.

  7. Atoms in Slovakia

    International Nuclear Information System (INIS)

    Danis, D.; Feik, K.; Florek, M.; Kmosena, J.; Chrapan, J.; Morovic, M.; Slugen, V.; Seliga, M.; Valovic, J.

    2006-01-01

    In this book the history of development of using of nuclear energy in the Slovak Republic as well as in the Czechoslovakia (before 1993 year) is presented. The aim of the book is to preserve the memory of the period when the creation and development of nuclear physics, technology, nuclear medicine, radioecology and energetics in Slovakia occurred - as witnessed by people who experienced this period and to adapt it to future generations. The Editorial board of the SNUS collected the views of 60 contributors and distinguished workers - Slovakian experts in nuclear science, education and technology. Calling upon a wide spectrum of experts ensured an objective historical description of the period. A huge amount of subjective views on recent decades were collected and supported by a wealth of photographic documentation. This created a synthesised reflection on the history of the 'atoms' in Slovakia. The book contains 15 tables, 192 black and white and 119 colour pictures from around the world and from places involved in the compilation of the study and with the study of atomic science in Slovakia. The main chapters are as follows: Atoms in the world, Atoms in Slovakia, Atoms in the educational system, Atoms in health services (Radiology, Nuclear medicine, Radiation protection, the Cyclotron centre of the Slovak Republic), Radioecology, Other applications of irradiation, Nuclear energetics (Electric energy in the second half of the 20 th century, NPP Bohunice, NPP Mochovce, the back-end of Nuclear energetics, Big names in Nuclear energetics in Slovakia), Chronology and an Appendix entitled 'Slovak companies in nuclear energetics'

  8. Editorial: Focus on Atom Optics and its Applications

    Science.gov (United States)

    Schmidt-Kaler, F.; Pfau, T.; Schmelcher, P.; Schleich, W.

    2010-06-01

    Couvert, B Georgeot and D Guéry-Odelin Analysis of the entanglement between two individual atoms using global Raman rotations A Gaëtan, C Evellin, J Wolters, P Grangier, T Wilk and A Browaeys Spin polarization transfer in ground and metastable helium atom collisions D Vrinceanu and H R Sadeghpour A fiber Fabry-Perot cavity with high finesse D Hunger, T Steinmetz, Y Colombe, C Deutsch, T W Hänsch and J Reichel Atomic wave packets in amplitude-modulated vertical optical lattices A Alberti, G Ferrari, V V Ivanov, M L Chiofalo and G M Tino Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions Julian Grond, Ulrich Hohenester, Igor Mazets and Jörg Schmiedmayer Storage of protonated water clusters in a biplanar multipole rf trap C Greve, M Kröner, S Trippel, P Woias, R Wester and M Weidemüller Single-atom detection on a chip: from realization to application A Stibor, H Bender, S Kühnhold, J Fortágh, C Zimmermann and A Günther Ultracold atoms as a target: absolute scattering cross-section measurements P Würtz, T Gericke, A Vogler and H Ott Entanglement-assisted atomic clock beyond the projection noise limit Anne Louchet-Chauvet, Jürgen Appel, Jelmer J Renema, Daniel Oblak, Niels Kjaergaard and Eugene S Polzik Towards the realization of atom trap trace analysis for 39Ar J Welte, F Ritterbusch, I Steinke, M Henrich, W Aeschbach-Hertig and M K Oberthaler Resonant superfluidity in an optical lattice I Titvinidze, M Snoek and W Hofstetter Interference of interacting matter waves Mattias Gustavsson, Elmar Haller, Manfred J Mark, Johann G Danzl, Russell Hart, Andrew J Daley and Hanns-Christoph Nägerl Magnetic trapping of NH molecules with 20 s lifetimes E Tsikata, W C Campbell, M T Hummon, H-I Lu and J M Doyle Imprinting patterns of neutral atoms in an optical lattice using magnetic resonance techniques Michal Karski, Leonid Förster, Jai-Min Choi, Andreas Steffen, Noomen Belmechri, Wolfgang Alt, Dieter Meschede and Artur Widera

  9. Positron-atom collisions

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1984-01-01

    The past decade has seen the field of positron-atom collisions mature into an important sub-field of atomic physics. Increasingly intense positron sources are leading towards a situation in which electron and positron collision experiments will be on almost an equal footing, challenging theory to analyze their similarities and differences. The author reviews the advances made in theory, including dispersion theory, resonances, and inelastic processes. A survey of experimental progress and a brief discussion of astrophysical positronics is also included. (Auth.)

  10. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  11. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  12. Atomic cluster collisions

    Science.gov (United States)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  13. Pulsed atomic soliton laser

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments

  14. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  15. Experimental comparison of the critical ionization velocity in atomic and molecular gases

    International Nuclear Information System (INIS)

    Axnaes, I.

    1978-08-01

    The critical ionization velocity usub(c) of Ne, Kr, Xe, Cl 2 , O 2 , CO, CO 2 , NH 3 and H 2 O is investigated experimentally in a coaxial plasma gun. Together with experimental data obtained in earlier experiments the present results make it possible to make a systematic comparison between the critical ionization velocity for atomic and molecular gases. It is found that atomic and molecular gases tend to have values of critical ionization velocity which are respectively smaller and larger than the theoretical values. The current dependence of usub(c) is found to be different for atomic and molecular gases. A number of atomic and molecular processes relevant to the experiment are discussed

  16. Structure-function studies of BPP-BrachyNH2 and synthetic analogues thereof with Angiotensin I-Converting Enzyme.

    Science.gov (United States)

    Arcanjo, Daniel D R; Vasconcelos, Andreanne G; Nascimento, Lucas A; Mafud, Ana Carolina; Plácido, Alexandra; Alves, Michel M M; Delerue-Matos, Cristina; Bemquerer, Marcelo P; Vale, Nuno; Gomes, Paula; Oliveira, Eduardo B; Lima, Francisco C A; Mascarenhas, Yvonne P; Carvalho, Fernando Aécio A; Simonsen, Ulf; Ramos, Ricardo M; Leite, José Roberto S A

    2017-10-20

    The vasoactive proline-rich oligopeptide termed BPP-BrachyNH 2 (H-WPPPKVSP-NH 2 ) induces in vitro inhibitory activity of angiotensin I-converting enzyme (ACE) in rat blood serum. In the present study, the removal of N-terminal tryptophan or C-terminal proline from BPP-BrachyNH 2 was investigated in order to predict which structural components are important or required for interaction with ACE. Furthermore, the toxicological profile was assessed by in silico prediction and in vitro MTT assay. Two BPP-BrachyNH 2 analogues (des-Trp 1 -BPP-BrachyNH 2 and des-Pro 8 -BPP-BrachyNH 2 ) were synthesized, and in vitro and in silico ACE inhibitory activity and toxicological profile were assessed. The des-Trp 1 -BPP-BrachyNH 2 and des-Pro 8 -BPP-BrachyNH 2 were respectively 3.2- and 29.5-fold less active than the BPP-BrachyNH 2 -induced ACE inhibitory activity. Molecular Dynamic and Molecular Mechanics Poisson-Boltzmann Surface Area simulations (MM-PBSA) demonstrated that the ACE/BBP-BrachyNH 2 complex showed lower binding and van der Wall energies than the ACE/des-Pro 8 -BPP-BrachyNH 2 complex, therefore having better stability. The removal of the N-terminal tryptophan increased the in silico predicted toxicological effects and cytotoxicity when compared with BPP-BrachyNH 2 or des-Pro 8 -BPP-BrachyNH 2 . Otherwise, des-Pro 8 -BPP-BrachyNH 2 was 190-fold less cytotoxic than BPP-BrachyNH 2 . Thus, the removal of C-terminal proline residue was able to markedly decrease both the BPP-BrachyNH 2 -induced ACE inhibitory and cytotoxic effects assessed by in vitro and in silico approaches. In conclusion, the aminoacid sequence of BPP-BrachyNH 2 is essential for its ACE inhibitory activity and associated with an acceptable toxicological profile. The perspective of the interactions of BPP-BrachyNH 2 with ACE found in the present study can be used for development of drugs with differential therapeutic profile than current ACE inhibitors. Copyright © 2017 Elsevier Masson SAS. All

  17. Atomic collisions related to atomic laser isotope separation

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    1995-01-01

    Atomic collisions are important in various places in atomic vapor laser isotope separation (AVLIS). At a vaporization zone, many atomic collisions due to high density have influence on the atomic beam characteristics such as velocity distribution and metastable states' populations at a separation zone. In the separation zone, a symmetric charge transfer between the produced ions and the neutral atoms may degrade selectivity. We have measured atomic excitation temperatures of atomic beams and symmetric charge transfer cross sections for gadolinium and neodymium. Gadolinium and neodymium are both lanthanides. Nevertheless, results for gadolinium and neodymium are very different. The gadolinium atom has one 5d electron and neodymium atom has no 5d electron. It is considered that the differences are due to existence of 5d electron. (author)

  18. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  19. Study of NH3 Line Intensities in the THz and Far-IR Region

    Science.gov (United States)

    Yu, Shanshan

    Ammonia (NH3) exists in the interstellar medium, late-type stars and giant planets of our solar system. Its temperature and abundance profiles in these environments, which are derived with its line parameters as fixed input , are commonly used to provide constraints on retrieving minor species. Therefore NH3 line parameters are essential for interpreting astrophysical and planetary spectra from Herschel, SOFIA, ALMA and JWST. However, our work under a predecessor grant with the APRA program revealed significant deficiencies in NH3 intensities in the terahertz and FIR region, including some weak Delta(K)=3 forbidden transitions predicted to be 100 times stronger. The Delta(K)=3 transitions are the ones connecting levels with different K values and therefore the only way other than collisions and l-doubled states to excite NH3 to K>0 levels. Their intensities have to be corrected to explain the observed high K excitation, such as the detection of NH3 (J,K) = (1,1), (2,2)&(14,14) and (18,18) transitions toward the galactic center star forming region Sgr B2, and to provide insights into the radiative- transfer vs. collision excitation mechanics of interstellar NH3. This proposal will remedy the serious deficiencies in the current databases involving NH3 line parameters in the terahertz and FIR region. We will target transitions with intensities greater than 10^{-23} cm-1/ (molecule/cm2) at 296 K, which will be among new astrophysical detections made by SOFIA, ALMA and JWST, and are 1000 times weaker than the strongest ground state transitions. We will retrieve new positions and intensities from existing laboratory spectra, use them to evaluate the current databases and ab initio calculations, and repair the line positions and intensities by replacing poorly calculated values with our new measurements. The proposed research will result in (1) a validated linelist containing the positions, intensities and lower state energies for the very important Delta(K)=3 NH3 FIR

  20. Thermal properties and phase transition in the fluoride, (NH4)3SnF7

    International Nuclear Information System (INIS)

    Kartashev, A.V.; Gorev, M.V.; Bogdanov, E.V.; Flerov, I.N.; Laptash, N.M.

    2016-01-01

    Calorimetric, dilatometric and differential thermal analysis studies were performed on (NH 4 ) 3 SnF 7 for a wide range of temperatures and pressures. Large entropy (δS 0 =22 J/mol K) and elastic deformation (δ(ΔV/V) 0 =0.89%) jumps have proven that the Pa-3↔Pm-3m phase transition is a strong first order structural transformation. A total entropy change of ΔS 0 =32.5 J/mol K is characteristic for the order–disorder phase transition, and is equal to the sum of entropy changes in the related material, (NH 4 ) 3 TiF 7 , undergoing transformation between the two cubic phases through the intermediate phases. Hydrostatic pressure decreases the stability of the high temperature Pm-3m phase in (NH 4 ) 3 SnF 7 , contrary to (NH 4 ) 3 TiF 7 , characterised by a negative baric coefficient. The effect of experimental conditions on the chemical stability of (NH 4 ) 3 SnF 7 was observed. - Graphical abstract: Strong first order structural transformation Pa-3↔Pm-3m in (NH 4 ) 3 SnF 7 is associated with very large total entropy change of ΔS 0 =32.5 J/mol K characteristic for the ordering processes and equal to the sum of entropy changes in the related (NH 4 ) 3 TiF 7 undergoing transformation between the same two cubic phases through the intermediate phases. - Highlights: • (NH 4 ) 3 SnF 7 undergoes strong first order Pa-3↔Pm-3m phase transition. • Anomalous behaviour of ΔC p and ΔV/V exists far below phase transition temperature. • Structural distortions are accompanied by huge total entropy change ΔS≈Rln50. • High pressure strongly increases the stability of Pa-3 phase in (NH 4 ) 3 SnF 7 . • Entropy of the Pa-3↔Pm-3m phase transition does not depend on pressure.

  1. Isotopically decoupled vibrational spectra and proton exchange rates for crystalline NH3 and ammonia hydrate

    Science.gov (United States)

    Thornton, Cynthia; Khatkale, M. S.; Devlin, J. Paul

    1981-12-01

    Codeposits of NH3 with ND3 or D2O have been prepared at liquid nitrogen temperatures in the absence of proton exchange. Vibrational data for the anhydrous cubic crystalline ammonia, containing isolated NH3 or ND3, confirm that, relative to water ice, intermolecular coupling in ammonia ice exerts a relatively minor influence on the infrared and Raman spectra. Nevertheless, sizeable decoupling shifts, particularly for ν1, have been observed and attributed to a combination of factors including correlation field and Fermi resonance effects. The Raman polarization data has also affirmed long standing assignments of ν1 and ν3 for ammonia ice. Warming of the ammonia thin films resulted in limited isotopic scrambling at 130 K, apparently possible only through the agency of trace concentrations of water. The vibrational coupling pattern for the resultant NHD2 and NH2D molecules suggest that proton (deuteron) migration away from the exchange centers is impossible at temperatures up to 150 K. By contrast, isotopic scrambling was rapid and complete at 140 K for amorphous ammonia hydrate films (˜35% NH3, ˜65% D2O) which were also prepared without exchange at ˜90 K. The proton (deuteron) exchange rate is much greater for the amorphous ammonia hydrate at 140 K than for pure water ice. Such exchange requires both ion-pair defect formation and proton mobility. Since the NH3 suppresses the H3O+ concentration via formation of NH+4, a suppression the likes of which has been shown to stop proton exchange in water ice, the evidence strongly suggests that NH4+ in ammonia, like H3O+ in water, is an effective proton transfer agent, probably acting through a tunneling mechanism (i.e., H3N+-HṡṡṡNH3→H3NṡṡṡH-N+H3 etc.) to render the proton mobile in the ammonia hydrate. This mobility combined with the greater NH4+ concentration, relative to the H3O+ concentration in H2O ice Ic, results in isotopic scrambling at the reduced temperature.

  2. Characterizing the influence of highways on springtime NO2 and NH3 concentrations in regional forest monitoring plots

    International Nuclear Information System (INIS)

    Watmough, Shaun A.; McDonough, Andrew M.; Raney, Shanel M.

    2014-01-01

    Highways are major sources of nitrogen dioxide (NO 2 ) and ammonia (NH 3 ). In this study, springtime NO 2 and NH 3 concentrations were measured at 17 Ontario Forest Biomonitoring Network (OFBN) plots using passive samplers. Average springtime NO 2 concentrations were between 1.3 μg m −3 and 27 μg m −3 , and NH 3 concentrations were between 0.2 μg m −3 and 1.7 μg m −3 , although concentrations measured in May (before leaf out) were typically twice as high as values recorded in June. Average NO 2 concentrations, and to a lesser extent NH 3 , could be predicted by road density at all radii (around the plot) tested (500 m, 1000 m, 1500 m). Springtime NO 2 concentrations were predicted for a further 50 OFBN sites. Normalized plant/lichen N concentrations were positively correlated with estimated springtime NO 2 and NH 3 concentrations. Epiphytic foliose lichen richness decreased with increasing NO 2 and NH 3 , but vascular plant richness was positively related to estimated springtime NO 2 and NH 3 . - Highlights: • Springtime concentrations of NO 2 and NH 3 in Ontario forest plots vary greatly. • Concentrations of NO 2 and NH 3 can be predicted by surrounding road density. • Plant and lichen N concentrations are positively related to predicted NO 2 and NH 3 . • Epiphytic lichen richness in negatively related to NO 2 and NH 3 . • Vascular plant richness is positively related to NO 2 and NH 3 . - “Springtime concentrations of NO 2 and NH 3 at Ontario forest monitoring plots vary greatly and can be predicted by road density surrounding the plot”

  3. Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3

    Science.gov (United States)

    Lu, Ying-Bo; Kong, Xianghua; Chen, Xiaobin; Cooke, David G.; Guo, Hong

    2017-01-01

    Carrier mobility is one of the most important parameters for semiconducting materials and their use in optoelectronic devices. Here we report a systematic first principles analysis of the acoustic phonon scattering mechanism that limits the mobility of CH3NH3PbI3 (MAPbI3) perovskites. Due to the unique hybrid organic-inorganic structure, the mechanical, electronic and transport properties are dominated by the same factor, i.e. the weak interatomic bond and the easy rotation of methylammonium (MA) molecules under strain. Both factors make MAPbI3 soft. Rotation of MA molecule induces a transverse shift between Pb and I atoms, resulting in a very low deformation potential and a strong piezoelectricity in MAPbI3. Hence the carrier mobility of pristine MAPbI3 is limited by the piezoelectric scattering, which is consistent to the form of its temperature dependence. Our calculations suggest that in the pristine limit, a high mobility of about several thousand cm2 V−1 S−1 is expected for MAPbI3. PMID:28150743

  4. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  5. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Erlach, Markus Beck; Koehler, Joerg [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany); Crusca, Edson [University of São Paulo, Physics Institute of São Carlos (Brazil); Kremer, Werner [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany); Munte, Claudia E. [University of São Paulo, Physics Institute of São Carlos (Brazil); Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)

    2016-06-15

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms {sup 1}H{sup α}, {sup 13}C{sup α} and {sup 13}C′ in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH{sub 2} (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B{sub 1} and B{sub 2} are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.Graphical Abstract.

  6. The spatial distribution of C2, C3, and NH in comet 2P/Encke

    International Nuclear Information System (INIS)

    Dorman, Garrett; Pierce, Donna M.; Cochran, Anita L.

    2013-01-01

    We examine the spatial distribution of C 2 , C 3 , and NH radicals in the coma of comet Encke in order to understand their abundances and distributions in the coma. The observations were obtained from 2003 October 22-24, using the 2.7 m telescope at McDonald Observatory. Building on our original study of CN and OH, we have used our modified version of the vectorial model, which treats the coma as one large cone, in order to reproduce Encke's highly aspherical and asymmetric coma. Our results suggest that NH can be explained by the photodissociation of NH 2 , assuming that NH 2 is produced rapidly from NH 3 in the innermost coma. Our modeling of C 2 and C 3 suggests a multi-generational photodissociation process may be required for their production. Using the results of our previous study, we also obtain abundance ratios with respect to OH and CN. Overall, we find that Encke exhibits typical carbon-chain abundances, and the results are consistent with other studies of comet Encke.

  7. Selective adsorption of cationic dyes by UiO-66-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi; He, Qinqin; Lv, Mengmeng; Xu, Yanli; Yang, Hanbiao; Liu, Xueting, E-mail: wmlxt@163.com; Wei, Fengyu, E-mail: weifyliuj@163.com

    2015-02-01

    Graphical abstract: - Highlights: • Two Zr(IV)-based MOFs can remove cationic dyes more effectively than anionic dyes. • UiO-66 has higher selectivity for cationic dyes after modification with NH{sub 2}. • The mechanism for adsorption selectivity is rationally proposed. - Abstract: Herein, two zirconium(IV)-based MOFs UiO-66 and UiO-66-NH{sub 2} had been successfully prepared by a facile solvothermal method and were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), N{sub 2} adsorption–desorption (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential. They exhibit small size, large surface area, and can remove cationic dyes from aqueous solution more effectively than anionic dyes. This adsorption selectivity is due to the favorable electrostatic interactions between the adsorbents and cationic dyes. Furthermore, owing to the individual micropore structure of UiO-66-NH{sub 2} and its more negative zeta potential resulted from the charge balance for the protonation of –NH{sub 2}, UiO-66-NH{sub 2} displays much higher adsorption capacity for cationic dyes and lower adsorption capacity for anionic dyes than UiO-66.

  8. Process for uranium separation and preparation of UO4.2NH3.2HF

    International Nuclear Information System (INIS)

    Dokuzoguz, H.Z.

    1976-01-01

    A process for treating the aqueous effluents that are produced in converting gaseous UF 6 (uranium hexafluoride) into solid UO 2 (uranium dioxide) by way of an intermediate (NH 4 ) 4 UO 2 (CO 3 ) 3 (''AUC'' Compound) is disclosed. These effluents, which contain large amounts of NH 4 + , CO 3 2- , F - , and a small amount of U are mixed with H 2 SO 4 (sulfuric acid) in order to expel CO 2 (carbon dioxide) and thereby reduce the carbonate concentration. The uranium is precipitated through treatment with H 2 O 2 (hydrogen peroxide) and the fluoride is easily recovered in the form of CaF 2 (calcium fluoride) by contacting the process liquid with CaO (calcium oxide). The presence of SO 4 2- (sulfate) in the process liquid during CaO contacting seems to prevent the development of a difficult-to-filter colloid. The process also provides for NH 3 recovery and recycling. Liquids discharged from the process, moreover, are essentially free of environmental pollutants. The waste treatment products, i.e., CO 2 , NH 3 , and U are economically recovered and recycled back into the UF 6 → UO 2 conversion process. The process, moreover, recovers the uranium as a precipitate in the second stage. This precipitate is a new inorganic chemical compound UO 4 .2NH 3 .2HF [uranyl peroxide-2-ammonia-2-(hydrogen fluoride)

  9. Rotational Spectroscopy of the NH{sub 3}–H{sub 2} Molecular Complex

    Energy Technology Data Exchange (ETDEWEB)

    Surin, L. A.; Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, D-50937 Cologne (Germany); Tarabukin, I. V. [Institute of Spectroscopy of Russian Academy of Sciences, Fizicheskaya Str. 5, 108840 Troitsk, Moscow, Russia (Russian Federation); Breier, A. A.; Giesen, T. F. [Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); McCarthy, M. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Avoird, A. van der, E-mail: surin@ph1.uni-koeln.de, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2017-03-20

    We report the first high resolution spectroscopic study of the NH{sub 3}–H{sub 2} van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH{sub 3}–H{sub 2} in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, ( o )-NH{sub 3}–( o )-H{sub 2} and ( p )-NH{sub 3}–( o )-H{sub 2}, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH{sub 3}–H{sub 2} PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.

  10. Selective Catalytic Reduction of NO with NH3 Over V-MCM-41 Catalyst.

    Science.gov (United States)

    Kwon, Woo Hyun; Park, Sung Hoon; Kim, Ji Man; Park, Su Bin; Jung, Sang-Chul; Kim, Sang Chai; Jeon, Jong-Ki; Park, Young-Kwon

    2016-02-01

    V-MCM-41, a mesoporous catalyst doped with V2O5, was applied for the first time to the removal of atmospheric NO. The quantity of V2O5 added was 10 wt% and 30 wt%. The characteristics of the synthesized catalysts were examined using XRD, N2 soprtion, and NH3-TPD. With increasing quantity of V2O5 added, specific surface area decreased and pore size increased. When the quantity of V2O5 was 10 wt%, the MCM-41 structure was retained, whereas considerable collapse of mesoporous structure was observed when 30 wt% V2O5 was added. The examination of acid characteristics using NH3-TPD showed that 30 wt% V-MCM-41 had the higher NH3 adsorption ability, implying that it would exhibit high activity for NH3 SCR reaction. In the NO removal experiments, 30 wt% V-MCM-41 showed much higher NO removal efficiency than 10 wt% V-MCM-41, which was attributed to its high NH3 adsorption ability.

  11. The Spatial Distribution of C2, C3, and NH in Comet 2P/Encke

    Science.gov (United States)

    Dorman, Garrett; Pierce, Donna M.; Cochran, Anita L.

    2013-12-01

    We examine the spatial distribution of C2, C3, and NH radicals in the coma of comet Encke in order to understand their abundances and distributions in the coma. The observations were obtained from 2003 October 22-24, using the 2.7 m telescope at McDonald Observatory. Building on our original study of CN and OH, we have used our modified version of the vectorial model, which treats the coma as one large cone, in order to reproduce Encke's highly aspherical and asymmetric coma. Our results suggest that NH can be explained by the photodissociation of NH2, assuming that NH2 is produced rapidly from NH3 in the innermost coma. Our modeling of C2 and C3 suggests a multi-generational photodissociation process may be required for their production. Using the results of our previous study, we also obtain abundance ratios with respect to OH and CN. Overall, we find that Encke exhibits typical carbon-chain abundances, and the results are consistent with other studies of comet Encke.

  12. Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins.

    Science.gov (United States)

    Wacker, Tobias; Garcia-Celma, Juan J; Lewe, Philipp; Andrade, Susana L A

    2014-07-08

    Ammonium transport (Amt) proteins form a ubiquitous family of integral membrane proteins that specifically shuttle ammonium across membranes. In prokaryotes, archaea, and plants, Amts are used as environmental NH4(+) scavengers for uptake and assimilation of nitrogen. In the eukaryotic homologs, the Rhesus proteins, NH4(+)/NH3 transport is used instead in acid-base and pH homeostasis in kidney or NH4(+)/NH3 (and eventually CO2) detoxification in erythrocytes. Crystal structures and variant proteins are available, but the inherent challenges associated with the unambiguous identification of substrate and monitoring of transport events severely inhibit further progress in the field. Here we report a reliable in vitro assay that allows us to quantify the electrogenic capacity of Amt proteins. Using solid-supported membrane (SSM)-based electrophysiology, we have investigated the three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus. Af-Amt1 and Af-Amt3 are electrogenic and transport the ammonium and methylammonium cation with high specificity. Transport is pH-dependent, with a steep decline at pH values of ∼5.0. Despite significant sequence homologies, functional differences between the three proteins became apparent. SSM electrophysiology provides a long-sought-after functional assay for the ubiquitous ammonium transporters.

  13. Lead-free Perovskite Materials (NH4 )3 Sb2 Ix Br9-x.

    Science.gov (United States)

    Zuo, Chuantian; Ding, Liming

    2017-06-01

    A family of perovskite light absorbers (NH 4 ) 3 Sb 2 I x Br 9-x (0≤x≤9) was prepared. These materials show good solubility in ethanol, a low-cost, hypotoxic, and environmentally friendly solvent. The light absorption of (NH 4 ) 3 Sb 2 I x Br 9-x films can be tuned by adjusting I and Br content. The absorption onset for (NH 4 ) 3 Sb 2 I x Br 9-x films changes from 558 nm to 453 nm as x changes from 9 to 0. (NH 4 ) 3 Sb 2 I 9 single crystals were prepared, exhibiting a hole mobility of 4.8 cm 2  V -1  s -1 and an electron mobility of 12.3 cm 2  V -1  s -1 . (NH 4 ) 3 Sb 2 I 9 solar cells gave an open-circuit voltage of 1.03 V and a power conversion efficiency of 0.51 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Immobilization of Mn and NH4 (+)-N from electrolytic manganese residue waste.

    Science.gov (United States)

    Chen, Hongliang; Liu, Renlong; Liu, Zuohua; Shu, Jiancheng; Tao, Changyuan

    2016-06-01

    The objective of this work was the immobilization of soluble manganese (Mn) and ammonium nitrogen (NH4 (+)-N) leached from electrolytic manganese residue (EMR). Immobilization of Mn was investigated via carbonation using carbon dioxide (CO2) and alkaline additives. NH4 (+)-N immobilization was evaluated via struvite precipitation using magnesium and phosphate sources. Results indicated that the immobilization efficiency of Mn using CO2 and quicklime (CaO) was higher than using CO2 and sodium hydroxide (NaOH). This higher efficiency was likely due to the slower release of OH(-) during CaO hydrolysis. The immobilization efficiency of Mn was >99.99 % at the CaO:EMR mass ratio of 0.05:1 for 20-min reaction time. The struvite precipitation of NH4 (+)-N was conducted in the carbonated EMR slurry and the immobilization efficiency was 89 % using MgCl2 · 6H2O + Na3PO4 · 12H2O at the Mg:P:N molar ratio of 1.5:1.5:1 for 90-min reaction time. A leaching test showed that the concentrations of Mn and NH4 (+)-N in the filtrate of the treated EMR were 0.2 and 9 mg/L, respectively. The combined immobilization of Mn and NH4 (+)-N was an effective pretreatment method in the harmless treatment of the EMR.

  15. NH3/O2 mixed gas plasmas alter the interaction of blood components with stainless steel.

    Science.gov (United States)

    Chen, Meng; Zamora, Paul O; Peña, Louis; Som, Prantika; Osaki, Shigemasa

    2003-12-01

    Stainless steel treated with a mixed gas plasma of NH(3) plus O(2) had chemical and biologic characteristics distinct from untreated stainless steel or stainless steel treated with NH(3) or O(2) plasmas used separately. NH(3)/O(2) plasmas deposited nitrogen as both -CN (organic) and -NO (nitrate, nitrite)--materials not found on untreated stainless steel--and the contact angle changed from 44 degrees to 23 degrees. Treatment of stainless steel (and titanium) resulted in surfaces with enhanced resistance to platelet and leukocyte attachment. A gas plasma of N(2)O/O(2) also was found to reduce platelet and leukocyte attachment, suggesting that these properties may be common to surfaces coated with oxynitrites (nitrides). Upon subcutaneous implantation, no inflammation, hemolysis, or untoward thrombosis was noted in the tissue surrounding the wafers treated with the NH(3)/O(2) plasmas, although the cellular density was considerably reduced by 2 weeks after implant. Collectively, the results suggest that NH(3)/O(2) plasmas impart a unique character to stainless steel that may be useful in the construction of medical devices. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 994-1000, 2003

  16. NH3 Abatement in Fluidized Bed Co-Gasification of RDF and Coal

    Science.gov (United States)

    Gulyurtlu, I.; Pinto, Filomena; Dias, Mário; Lopes, Helena; André, Rui Neto; Cabrita, I.

    Gasification of wastes may come out as an alternative technology to produce a gas with many potential applications, from direct burning in a boiler or motor to the production of synthetic chemicals and hydrogen. High tar production and high operational costs are preventing gasification wider dissemination. Besides these problems, the presence of NH3 in the syngas may have a negative impact as it can be converted into nitrogen oxides if the gas is further burnt. To reduce NH3 formation it is required a full understanding of how operational parameters contribute to the formation/reduction of this pollutant. A full studyon the effect of fuel composition, temperature and equivalence ratio on the formation of NH3 is given. Experimental results are compared to theoretical ones obtained with FactSage software. It is also analyzed the effect of feedstock mineral matterin NH3 release during gasification. Toaccomplish a significant decrease in the release of NH3, different catalysts and sorbents were tested with the aim of achieving high energy conversions and low environmental impact.

  17. UiO-66-NH2/GO Composite: Synthesis, Characterization and CO2 Adsorption Performance

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2018-04-01

    Full Text Available In this work, a new composite materials of graphene oxide (GO-incorporated metal-organic framework (MOF(UiO-66-NH2/GO were in-situ synthesized, and were found to exhibit enhanced high performances for CO2 capture. X-ray diffraction (XRD, scanning electron microscope (SEM, N2 physical adsorption, and thermogravimetric analysis (TGA were applied to investigate the crystalline structure, pore structure, thermal stability, and the exterior morphology of the composite. We aimed to investigate the influence of the introduction of GO on the stability of the crystal skeleton and pore structure. Water, acid, and alkali resistances were tested for physical and chemical properties of the new composites. CO2 adsorption isotherms of UiO-66, UiO-66-NH2, UiO-66/GO, and UiO-66-NH2/GO were measured at 273 K, 298 K, and 318 K. The composite UiO-66-NH2/GO exhibited better optimized CO2 uptake of 6.41 mmol/g at 273 K, which was 5.1% higher than that of UiO-66/GO (6.10 mmol/g. CO2 adsorption heat and CO2/N2 selectivity were then calculated to further evaluate the CO2 adsorption performance. The results indicated that UiO-66-NH2/GO composites have a potential application in CO2 capture technologies to alleviate the increase in temperature of the earth’s atmosphere.

  18. Low energy electron attachment to cyanamide (NH{sub 2}CN)

    Energy Technology Data Exchange (ETDEWEB)

    Tanzer, Katrin; Denifl, Stephan, E-mail: Andrzej.Pelc@poczta.umcs.lublin.pl, E-mail: Stephan.Denifl@uibk.ac.at [Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Pelc, Andrzej, E-mail: Andrzej.Pelc@poczta.umcs.lublin.pl, E-mail: Stephan.Denifl@uibk.ac.at [Mass Spectrometry Department, Institute of Physics, Marie Curie-Sklodowska University, Pl. M. C.-Sklodowskiej 1, 20-031 Lublin (Poland); Huber, Stefan E. [Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Lehrstuhl für Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany); Czupyt, Z. [Ion Microprobe Facility Micro-area Analysis Laboratory, Polish Geological Institute–National Research Institute, Rakowiecka 4, 00-975 Warszawa (Poland)

    2015-01-21

    Cyanamide (NH{sub 2}CN) is a molecule relevant for interstellar chemistry and the chemical evolution of life. In the present investigation, dissociative electron attachment to NH{sub 2}CN has been studied in a crossed electron–molecular beams experiment in the electron energy range from about 0 eV to 14 eV. The following anionic species were detected: NHCN{sup −}, NCN{sup −}, CN{sup −}, NH{sub 2}{sup −}, NH{sup −}, and CH{sub 2}{sup −}. The anion formation proceeds within two broad electron energy regions, one between about 0.5 and 4.5 eV and a second between 4.5 and 12 eV. A discussion of possible reaction channels for all measured negative ions is provided. The experimental results are compared with calculations of the thermochemical thresholds of the anions observed. For the dehydrogenated parent anion, we explain the deviation between the experimental appearance energy of the anion with the calculated corresponding reaction threshold by electron attachment to the isomeric form of NH{sub 2}CN—carbodiimide.

  19. Atomic physics through astrophysics

    International Nuclear Information System (INIS)

    Dalgarno, A.

    1987-01-01

    Astronomical environments encompass an extreme range of physical conditions of temperature, density, pressure and radiation fields and unusual situations abound. In this lecture, the author describes some of the objects found in the Universe and discussed the atomic processes that occur. 45 references, 8 figures

  20. Rutherford-Bohr atom

    Science.gov (United States)

    Heilbron, J. L.

    1981-03-01

    Bohr used to introduce his attempts to explain clearly the principles of the quantum theory of the atom with an historical sketch, beginning invariably with the nuclear model proposed by Rutherford. That was sound pedagogy but bad history. The Rutherford-Bohr atom stands in the middle of a line of work initiated by J.J. Thomson and concluded by the invention of quantum mechanics. Thompson's program derived its inspiration from the peculiar emphasis on models characteristic of British physics of the 19th century. Rutherford's atom was a late product of the goals and conceptions of Victorian science. Bohr's modifications, although ultimately fatal to Thomson's program, initially gave further impetus to it. In the early 1920s the most promising approach to an adequate theory of the atom appeared to be the literal and detailed elaboration of the classical mechanics of multiply periodic orbits. The approach succeeded, demonstrating in an unexpected way the force of an argument often advanced by Thomson: because a mechanical model is richer in implications than the considerations for which it was advanced, it can suggest new directions of research that may lead to important discoveries.

  1. Deep diode atomic battery

    International Nuclear Information System (INIS)

    Anthony, T.R.; Cline, H.E.

    1977-01-01

    A deep diode atomic battery is made from a bulk semiconductor crystal containing three-dimensional arrays of columnar and lamellar P-N junctions. The battery is powered by gamma rays and x-ray emission from a radioactive source embedded in the interior of the semiconductor crystal

  2. Atoms in Astronomy.

    Science.gov (United States)

    Blanchard, Paul A.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…

  3. Atomic energy and you

    International Nuclear Information System (INIS)

    1975-01-01

    The film discusses the peaceful applications of atomic energy in agriculture, engineering, industry and medicine. Shows exploration, prospecting and mining of uraninum ores at Larap, Camarines Norte and the study of geographical conditions of the site for the proposed Nuclear Power Plant in Bataan

  4. Discovery and the atom

    International Nuclear Information System (INIS)

    1989-01-01

    ''Discovery and the Atom'' tells the story of the founding of nuclear physics. This programme looks at nuclear physics up to the discovery of the neutron in 1932. Animation explains the science of the classic experiments, such as the scattering of alpha particles by Rutherford and the discovery of the nucleus. Archive film shows the people: Lord Rutherford, James Chadwick, Marie Curie. (author)

  5. Atomically resolved tissue integration.

    Science.gov (United States)

    Karlsson, Johan; Sundell, Gustav; Thuvander, Mattias; Andersson, Martin

    2014-08-13

    In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.

  6. Atomic transport properties

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)

  7. Experimental atomic physics

    International Nuclear Information System (INIS)

    Sellin, I.A.; Elston, S.B.; Forester, J.P.; Liao, K.H.; Pegg, D.J.; Peterson, R.S.; Thoe, R.S.; Hayden, H.C.; Griffin, P.M.

    1976-01-01

    The atomic structure and collision phenomena of highly stripped ions in the range Z = 6 to 35 were studied. Charge-transfer and multiple-electron-loss cross sections were determined. Absolute x-ray-production cross sections for incident heavy ions were measured. 10 figures, 1 table

  8. Transition probabilities for atoms

    International Nuclear Information System (INIS)

    Kim, Y.K.

    1980-01-01

    Current status of advanced theoretical methods for transition probabilities for atoms and ions is discussed. An experiment on the f values of the resonance transitions of the Kr and Xe isoelectronic sequences is suggested as a test for the theoretical methods

  9. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  10. Observational Evidence for Atoms.

    Science.gov (United States)

    Jones, Edwin R., Jr.; Childers, Richard L.

    1984-01-01

    Discusses the development of the concept of atomicity and some of the many which can be used to establish its validity. Chemical evidence, evidence from crystals, Faraday's law of electrolysis, and Avogadro's number are among the areas which show how the concept originally developed from a purely philosophical idea. (JN)

  11. Coherent atomic spectroscopy

    International Nuclear Information System (INIS)

    Garton, W.R.S.

    1988-01-01

    The Argonne Spectroscopy Laboratory, initiated and advanced over several decades by F.S. Tomkins and M. Fred, has been a major international facility. A range of collaborative work in atomic spectroscopy is selected to illustrate advances in experimental physics which have been made possible by combination of the talents of Tomkins and Fred with the unique facilities of the Argonne Laboratory. (orig.)

  12. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  13. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  14. Atomic Physics 16: Sixteenth International Conference on Atomic Physics. Proceedings

    International Nuclear Information System (INIS)

    Baylis, W.E.; Drake, G.W.

    1999-01-01

    These proceedings represent papers presented at the 16th International Conference on Atomic Physics held in Windsor, Ontario, Canada, in August, 1998. The topics discussed included a wide array of subjects in atomic physics such as atom holography, alignment in atomic collisions, coulomb-interacting particles, muon experiments, x-rays from comets, atomic electron collisions in intense laser fields, spectroscopy of trapped ions, and Bose-Einstein condensates. This conference represents the single most important meeting world wide on fundamental advances in atomic physics. There were 30 papers presented at the conference,out of which 4 have been abstracted for the Energy, Science and Technology database

  15. Atomic bomb injury: radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, C L; Cronkite, E P; Le Roy, G V; Warren, S

    1959-01-01

    This document contains 3 reports. In the first report, the clinical diagnosis and treatment of radiation syndrome in survivors of the atomic explosions in Hiroshima and Nagasaki are described. The syndrome of acute radiation injury is applied to the symptom complex, or diseased state, which results from exposure of the whole body to the initial nuclear radiation of an atomic bomb. It is applied to injuries of the skin and subcutaneous tissues resulting from x-radiation or from contact with radioactive material. Internal radiation injury may result from the selective deposition, such as in bone or thyroid, of radioactive material that has been inhaled or absorbed through the gastrointestinal tract or wounds. Radiation syndrome is classified as very severe, severe, and mild. In the second report, a brief discussion is presented on the question of genetic effects in atomic bomb survivors in Hiroshima and Nagasaki. In the third report, a study was carried out on 205 4-1/2 year old children who had been exposed to the atomic bomb blast during the first half of intra-uterine life. Correlation between head size and mental development of the child with distance from the hypocenter, symptoms of radiation effect and type of shielding of the mother is discussed. The conclusion drawn from the present study is that central nervous system defects can be produced in the fetus by atomic bomb radiation, provided that exposure occurs within approximately 1200 meters of the hypocenter and that no effective shielding, such as concrete, protects the fetus from direct irradiation.

  16. Trapped atoms along nanophotonic resonators

    Science.gov (United States)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  17. Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    International Nuclear Information System (INIS)

    Song, Mi Yeoun; Moon, Woo Kyung; Kim, Yun Hee; Song, In Chan; Yoon, Byung Woo; Lim, Dong Yeol

    2007-01-01

    We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH 2 and tat-CLIO. The hNSCs (5x10 5 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 μg/ml of ferumoxides, MION or CLIO-NH 2 , and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH 2 , respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH 2 into the hNSCs was comparable to that of tat-CLIO. For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH 2 and the transfection agent PLL

  18. Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    Science.gov (United States)

    Song, Miyeoun; Kim, Yunhee; Lim, Dongyeol; Song, In-Chan; Yoon, Byung-Woo

    2007-01-01

    Objective We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Materials and Methods The hNSCs (5 × 105 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 µg/ml of ferumoxides, MION or CLIO-NH2, and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. Results The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15 ± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH2, respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH2 into the hNSCs was comparable to that of tat-CLIO. Conclusion For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH2 and the transfection agent PLL. PMID:17923778

  19. Heterolytic cleavage of ammonia N-H bond by bifunctional activation in silica-grafted single site Ta(V) imido amido surface complex. Importance of the outer sphere NH3 assistance

    KAUST Repository

    Gouré, Eric

    2011-01-01

    Ammonia N-H bond is cleaved at room temperature by the silica-supported tantalum imido amido complex [(≡SiO)2Ta(NH)(-NH2)], 2, if excess ammonia is present, but requires 150 °C to achieve the same reaction if only one equivalent NH3 is added to 2. MAS solid-state 15N NMR and in situ IR spectroscopic studies of the reaction of either 15N or 2H labeled ammonia with 2 show that initial coordination of the ammonia is followed by scrambling of either 15N or 2H among ammonia, amido and imido groups. Density functional theory (DFT) calculations with a cluster model [{(μ-O)[(H3SiO) 2SiO]2}Ta(NH)(-NH2)(NH3)], 2 q·NH3, show that the intramolecular H transfer from Ta-NH2 to TaNH is ruled out, but the H transfers from the coordinated ammonia to the amido and imido groups have accessible energy barriers. The energy barrier for the ammonia N-H activation by the Ta-amido group is energetically preferred relative to the Ta-imido group. The importance of excess NH3 for getting full isotope scrambling is rationalized by an outer sphere assistance of ammonia acting as proton transfer agent, which equalizes the energy barriers for H transfer from coordinated ammonia to the amido and imido groups. In contrast, additional coordinated ammonia does not favor significantly the H transfer. These results rationalize the experimental conditions used. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011.

  20. In situ attenuated total reflection infrared (ATR-IR) study of the adsorption of NO2-, NH2OH, and NH4+ on Pd/Al2O3 and Pt/Al2O3.

    NARCIS (Netherlands)

    Ebbesen, S.D.; Mojet, Barbara; Lefferts, Leonardus

    2008-01-01

    In relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on

  1. Distribution of complemented 15N - (NH4)2SO4 in an ethanolic fermentation process on insolube-N and solube-N fractions

    International Nuclear Information System (INIS)

    Lara Cabejas, W.A.R.; Trivelin, P.C.O.

    1990-01-01

    Looking for stillage labeling with 15 N for further utilization in studies of mineral fertilization of sugar-cane, 15 N-(NH 4 ) 2 SO 4 (43.5ppm, 45.401 atoms% 15 N) was supplemented in a single fermentative cycle, in a laboratory scale. A nitrogen fractionation was made between insoluble-N and soluble-N in several componentes of the fermentative process (yeast, sugar-cane juice, centrifugate wine, centrifugate yeast and stillage) with the objective of studying the added nitrogen distribution and its isotopic abundance composition. The nitrogen fractionation, and the isotopic analysis by mass spectrometry of 15 N, in the fractions of the several components of the fermentative process, showed 81.1% of N recovery, being 3.2% in stillage and mainly in a soluble-N fraction (71.4%), and the rest found in centrifugate yeast (77.9%), distributed mainly in a insoluble-N fraction (92.0%). Desuniform isotopic label was found in stillage, between soluble-N (1.333 atoms% 15 N) and insoluble-N fractions (0.744 atoms% 15 N). Means to improve the isotopic uniformity in these fractions is discussed. (autor) [pt

  2. Synthesis and structure of [(NH2)2CSSC(NH2)2]2[OsBr6]Br2 . 3H2O

    International Nuclear Information System (INIS)

    Rudnitskaya, O. V.; Kultyshkina, E. K.; Stash, A. I.; Glukhova, A. A.; Venskovskii, N. U.

    2008-01-01

    The complex [(NH 2 ) 2 CSSC(NH 2 ) 2 ] 2 [OsBr 6 ]Br 2 . 3H 2 O is synthesized by the reaction of K 2 OsBr 6 with thiocarbamide in concentrated HBr and characterized using electronic absorption and IR absorption spectroscopy. Its crystal structure is determined by X-ray diffraction. The crystals are orthorhombic, a = 11.730(2) A, b = 14.052(3) A, c = 16.994(3) A, space group Cmcm, and Z = 4. The [OsBr 6 ] 2- anionic complex has an octahedral structure. The Os-Br distances fall in the range 2.483-2.490 A. The α,α'-dithiobisformamidinium cation is a product of the oxidation of thiocarbamide. The S-S and C-S distances are 2.016 and 1.784 A, respectively. The H 2 O molecules, Br - ions, and NH 2 groups of the cation are linked by hydrogen bonds.

  3. Nature of phase transitions in ammonium oxofluorovanadates, a vibrational spectroscopy study of (NH4)3VO2F4 and (NH4)3VOF5.

    Science.gov (United States)

    Gerasimova, Yu V; Oreshonkov, A S; Laptash, N M; Vtyurin, A N; Krylov, A S; Shestakov, N P; Ershov, A A; Kocharova, A G

    2017-04-05

    Two ammonium oxofluorovanadates, (NH 4 ) 3 VO 2 F 4 and (NH 4 ) 3 VOF 5 , have been investigated by temperature-dependent infrared and Raman spectroscopy methods to determine the nature of phase transitions (PT) in these compounds. Dynamics of quasioctahedral groups was simulated within the framework of semi-empirical approach, which justified the cis-conformation of VO 2 F 4 3- (C 2v ) and the C 4v geometry of VOF 5 3- . The observed infrared and Raman spectra of both compounds at room temperature (RT) revealed the presence at least of two crystallographically independent octahedral groups. The first order PT at elevated temperatures is connected with a complete dynamic disordering of these groups with only single octahedral state. At lower temperatures, the octahedra are ordered and several octahedral states appear. This PT is the most pronounced in the case of (NH 4 ) 3 VOF 5 , when at least seven independent VOF 5 3- octahedra are present in the structure below 50K, in accordance with the Raman spectra. Ammonium groups do not take part in PTs at higher and room temperatures but their reorientational motion freezes at lower temperatures. Copyright © 2017. Published by Elsevier B.V.

  4. Structural Studies of NH4-exchanged Natrolites at Ambient Conditions and High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Y Lee; D Seoung; Y Jang; J Bai; Y Lee

    2011-12-31

    We report here for the first time that fully and partially NH{sub 4}-exchanged natrolites can be prepared in hydrated states using the solution exchange method with potassium-natrolite. The structural models of the as-prepared hydrated phases and their dehydrated forms at elevated temperature were refined in space group Fdd2 using in situ synchrotron X-ray powder diffraction data and Rietveld methods. The unit-cell volumes of the hydrated NH{sub 4}-exchanged natrolites at ambient conditions, (NH{sub 4}){sub 16(2)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}14.1(9)H{sub 2}O and (NH{sub 4}){sub 5.1(1)}K{sub 10.9(1)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}15.7(3)H{sub 2}O, are found to be larger than that the original sodium-natrolite by ca. 15.6% and 12.8%, respectively. Upon temperature increase, the fully NH{sub 4}-exchanged natrolite undergoes dehydration at ca. 150 C with ca. 16.4% contraction in the unit-cell volume. The dehydrated phase of the fully NH{sub 4}-exchanged natrolite exhibits marginal volume expansion up to 425 C and then becomes amorphized during temperature decrease and exposure to atmospheric condition. In the case of the partially NH{sub 4}-exchanged natrolite, the dehydration starts from ca. 175 C with {approx}15.1% volume contraction and leads to a partial phase separation to show a phase related to the dehydrated K-natrolite. The degree of the phase separation decreases with temperature increase up to 475 C, concomitant to the gradual volume contraction occurring in the partially NH{sub 4}-exchanged natrolite in the dehydrared state. Upon temperature decrease and exposure to atmospheric condition, only the dehydrated K-natrolite is recovered as a crystalline phase from the partially NH{sub 4}-exchanged natrolite. In the hydrated model of the fully NH{sub 4}-exchanged natrolite, the ammonium cations and water molecules are statistically distributed along the elliptical channels, similar to the disordered pattern observed in natrolites exchanged

  5. The development of a material for uranium sorption in NH_3/N environment

    International Nuclear Information System (INIS)

    Chen Xiaotong; He Linfeng; Liu Bing; Tang Yaping

    2014-01-01

    An efficient hybrid silica (TD-silica) bifunctionalized with trimethyl ammonium (TMAP) and phosphonate (DPTS) for Uranium (VI) extraction in NH_3/N media has been developed in this study. The hybrid silica was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at large-pore silica. The resulting TD-modified silica were observed to possess a good stability and high efficiency for uranium (VI) sorption from solution in coexist with NH_3/N. The adsorbed uranium (VI) can be easily desorbed by using 0.05 mol/L HNO_3 and reused for at least 4 times. It is suggested that TD-silica could be a promising solid phase sorbent for highly-efficient removal of U(VI) from solution in coexist with NH_3/N. (author)

  6. Formation of condensed phosphates when heating CdO with NH4H2PO4

    International Nuclear Information System (INIS)

    Atstinya, L.Zh.; Dindune, A.P.; Konstant, Z.A.

    1987-01-01

    A study was made on process of CdO thermal condensation with NH 4 H 2 PO 4 depending on the ratio of basic substances and temperature synthesis conditions. It was established that reaction between CdO and NH 4 H 2 PO 4 of pure for analysis grade was initiated when basic mixtures were pounded with a pestle. Heating of cadmium-ammonium triphosphate with products of ammonium dihydrophosphate polycondensation in 330-350 deg C range resulted to CdNH 4 (PO 3 ) 3 formation. Exoeffect on DTA curves corresponded at 540 deg C to formation of α-Cd(PO 3 ) 2 . α-Cd(PO 3 ) 2 → β-Cd(PO 3 ) 2 transition took place at 810 deg C with successive melting of β-Cd(PO 3 ) 2 at 850 deg C, which was supported by the DTA curve and sharp change of the relative electric conductivity

  7. [CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B

    2003-10-20

    The organic-inorganic hybrid [CH(3)(CH(2))(11)NH(3)]SnI(3) presents a lamellar structure with a Sn-I framework isotypic to that of MoO(3). The SnI(3)(-) layer consists of edge and corner-sharing SnI(6) octahedra in which one of the six Sn-I bonds is distinctly elongated (e.g., 3.62 A), indicating lone-pair stereoactivity for the Sn(II) atom. The overall electronic character remains comparable with that of the well-studied SnI(4)(2)(-)-based perovskite semiconductors, such as [CH(3)(CH(2))(11)NH(3)](2)SnI(4), with a red-shifted and broadened exciton peak associated with the band gap, apparently due to the increased dimensionality of the Sn-I framework. The title compound offers, aside from the hybrid perovskites, a new type of solution-processable Sn-I network for potential applications in semiconductive devices.

  8. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH3

    International Nuclear Information System (INIS)

    Tsai, Y.-L.; Gong, J.-R.; Lin, T.-Y.; Lin, H.-Y.; Chen, Yang-Fang; Lin, K.-M.

    2006-01-01

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH 3 ) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH 3 exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements

  9. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Y.-L. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Gong, J.-R. [Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi 621, Taiwan (China); Lin, T.-Y. [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); Lin, H.-Y. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Lin, K.-M. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2006-03-15

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH{sub 3}) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH{sub 3} exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements.

  10. Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH4(+)-fertilized soil of North China.

    Science.gov (United States)

    Zhang, Wei; Li, Yuzhong; Xu, Chunying; Li, Qiaozhen; Lin, Wei

    2016-07-08

    Nitrous oxide (N2O) is a potent greenhouse gas. In North China, vegetable fields are amended with high levels of N fertilizer and irrigation water, which causes massive N2O flux. The aim of this study was to determine the contribution of microbial processes to N2O production and characterize isotopic signature effects on N2O source partitioning. We conducted a microcosm study that combined naturally abundant isotopologues and gas inhibitor techniques to analyze N2O flux and its isotopomer signatures [δ(15)N(bulk), δ(18)O, and SP (intramolecular (15)N site preference)] that emitted from vegetable soil after the addition of NH4(+) fertilizers. The results show that ammonia oxidation is the predominant process under high water content (70% water-filled pore space), and nitrifier denitrification contribution increases with increasing N content. δ(15)N(bulk) and δ(18)O of N2O may not provide information about microbial processes due to great shifts in precursor signatures and atom exchange, especially for soil treated with NH4(+) fertilizer. SP and associated two end-member mixing model are useful to distinguish N2O source and contribution. Further work is needed to explore isotopomer signature stability to improve N2O microbial process identification.

  11. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH_3

    International Nuclear Information System (INIS)

    Zhang, Tao; Shi, Juan; Liu, Jian; Wang, Daxi; Zhao, Zhen; Cheng, Kai; Li, Jianmei

    2016-01-01

    Highlights: • The hydrothermal stability of Cu-ZSM-5 catalyst was enhanced after surface modification. • An inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer. • The contact between Si and Cu and Al atoms could form Si-O-Al and Si- O−Cu bonds. • The redox and acidity properties of Cu-ZSM-5-CLD-Aged catalyst were largely retained. • The adsorption and activation of NO and NH_3 was almost unchanged over Cu-ZSM-5-CLD catalyst before and after hydrothermal treatment. - Abstract: The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH_3. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu"2"+ from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.

  12. Stability and carrier mobility of organic-inorganic hybrid perovskite CH3NH3PbI3 in two-dimensional limit

    Science.gov (United States)

    Huang, Kui; Lai, Kang; Yan, Chang-Lin; Zhang, Wei-Bing

    2017-10-01

    Recently, atomically thin organic-inorganic hybrid perovskites have been synthesized experimentally, which opens up new opportunities for exploring their novel properties in the 2D limit. Based on the comparative density functional theory calculation with and without spin-orbit coupling effects, the stability, electronic structure, and carrier mobility of the two-dimensional organic-inorganic hybrid perovskites MAPbI3 (MA = CH3NH3) have been investigated systemically. Two single-unit-cell-thick 2D MAPbI3 terminated by PbI2 and CH3NH3I are constructed, and their thermodynamic stabilities are also evaluated using the first-principles constrained thermodynamics method. Our results indicate that both 2D MAPbI3 with different terminations can be stable under certain conditions and have a suitable direct bandgap. Moreover, they are also found to have termination-dependent band edge and carrier mobility. The acoustic-phonon-limited carrier mobilities estimated using the deformation theory and effective mass approximation are on the order of thousands of square centimeters per volt per second and also highly anisotropic. These results indicate that 2D MAPbI3 are competitive candidates for low-dimensional photovoltaic applications.

  13. Thin-Film Transformation of NH4 PbI3 to CH3 NH3 PbI3 Perovskite: A Methylamine-Induced Conversion-Healing Process.

    Science.gov (United States)

    Zong, Yingxia; Zhou, Yuanyuan; Ju, Minggang; Garces, Hector F; Krause, Amanda R; Ji, Fuxiang; Cui, Guanglei; Zeng, Xiao Cheng; Padture, Nitin P; Pang, Shuping

    2016-11-14

    Methylamine-induced thin-film transformation at room-temperature is discovered, where a porous, rough, polycrystalline NH 4 PbI 3 non-perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH 3 NH 3 PbI 3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH 4 PbI 3 -to-CH 3 NH 3 PbI 3 transformation process. The chemical origins of this transformation are studied at various length scales. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Autotrophic nitrogen removal process in a potable water treatment biofilter that simultaneously removes Mn and NH4(+)-N.

    Science.gov (United States)

    Cai, Yan'an; Li, Dong; Liang, Yuhai; Zeng, Huiping; Zhang, Jie

    2014-11-01

    Ammonia (NH4(+)-N) removal pathways were investigated in a potable water treatment biofilter that simultaneously removes manganese (Mn) and NH4(+)-N. The results indicated a significant loss of nitrogen in the biofilter. Both the completely autotrophic nitrogen removal over nitrite (CANON) process and nitrification were more likely to contribute to NH4(+)-N removal. Moreover, the model calculation results demonstrated that the CANON process contributed significantly to the removal of NH4(+)-N. For influent NH4(+)-N levels of 1.030 and 1.749mg/L, the CANON process contribution was about 48.5% and 46.6%, respectively. The most important finding was that anaerobic ammonia oxidation (ANAMMOX) bacteria were detectable in the biofilter. It is interesting that the CANON process was effective even for such low NH4(+)-N concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  16. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  17. Meteorite impacts on ancient oceans opened up multiple NH3 production pathways.

    Science.gov (United States)

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2017-05-10

    A recent series of shock experiments by Nakazawa et al. starting in 2005 (e.g. [Nakazawa et al., Earth Planet. Sci. Lett., 2005, 235, 356]) suggested that meteorite impacts on ancient oceans would have yielded a considerable amount of NH 3 to the early Earth from atmospheric N 2 and oceanic H 2 O through reduction by meteoritic iron. To clarify the mechanisms, we imitated the impact events by performing multi-scale shock technique-based ab initio molecular dynamics in the framework of density functional theory in combination with multi-scale shock technique (MSST) simulations. Our previous simulations with impact energies close to that of the experiments revealed picosecond-order rapid NH 3 production during shock compression [Shimamura et al., Sci. Rep., 2016, 6, 38952]. It was also shown that the reduction of N 2 took place with an associative mechanism as seen in the catalysis of nitrogenase enzymes. In this study, we performed an MSST-AIMD simulation to investigate the production by meteorite impacts with higher energies, which are closer to the expected values on the early Earth. It was found that the amount of NH 3 produced further increased. We also found that the increased NH 3 production is due to the emergence of multiple reaction mechanisms at increased impact energies. We elucidated that the reduction of N 2 was not only attributed to the associative mechanism but also to a dissociative mechanism as seen in the Haber-Bosch process and to a mechanism through a hydrazinium ion. The emergence of these multiple production mechanisms capable of providing a large amount of NH 3 would support the suggestions from recent experiments much more strongly than was previously believed, i.e., shock-induced NH 3 production played a key role in the origin of life on Earth.

  18. LPG and NH3 sensing characteristics of DC electrochemically deposited Co3O4 films

    Science.gov (United States)

    Shelke, P. N.; Khollam, Y. B.; Gunjal, S. D.; Koinkar, P. M.; Jadkar, S. R.; Mohite, K. C.

    2015-03-01

    Present communication reports the LPG and NH3 sensing properties of Co3O4 films prepared on throughly cleaned stainless steel (SS) and copper (CU) substrates by using DC electrochemical deposition method followed by air annealing at 350°C/2 h. The resultant films are characterized by using X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The LPG and NH3 gas sensing properties of these films are measured at room temperature (RT) by using static gas sensing system at different concentrations of test gas ranging from 25 ppm to 350 ppm. The XRD and Raman spectroscopy studies clearly indicated the formation of pure cubic spinel Co3O4 in all films. The LPG and NH3 gas sensing properties of films showed (i) the increase in sensitivity factor (S.F.) with gas concentrations and (ii) more sensibility to LPG as compared to NH3 gas. In case of NH3 gas (conc. 150 ppm) and LPG gas (conc. 60 ppm) sensing, the maximum S.F. = 270 and 258 are found for the films deposited on CU substrates, respectively. For all films, the response time (3-5 min.) is found to be much higher than the recovery time (30-50 sec). For all films, the response and recovery time are found to be higher for LPG as compared to NH3 gas. Further, repeatability-reproducibility in gas sensing properties is clearly noted by analysis of data for number of cycles recorded for all films from different set of depositions.

  19. Angular momentum coupling in atom-atom collisions

    International Nuclear Information System (INIS)

    Grosser, J.

    1986-01-01

    The coupling between the electronic angular momentum and the rotating atom-atom axis in the initial or the final phase of an atom-atom collision is discussed, making use of the concepts of radial and rotational (Coriolis) coupling between different molecular states. The description is based on a limited number of well-understood approximations, and it allows an illustrative geometric representation of the transition from the body fixed to the space fixed motion of the electrons. (orig.)

  20. Hot atom chemistry of monovalent atoms in organic condensed phases

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1975-01-01

    The advantages and disadvantages of hot atom studies in condensed organic phases are considered, and recent advances in condensed phase organic hot atom chemistry of recoil tritium and halogen atoms are discussed. Details are presented of the present status and understanding of liquid phase hot atom chemistry and also that of organic solids. The consequences of the Auger effect in condensed organic systems are also considered. (author)

  1. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  2. A SEARCH FOR HYDROXYLAMINE (NH{sub 2}OH) TOWARD SELECT ASTRONOMICAL SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, Robin L.; Remijan, Anthony J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); McGuire, Brett A. [Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, CA 91125 (United States)

    2012-05-20

    Observations of 14 rotational transitions of hydroxylamine (NH{sub 2}OH) using the NRAO 12 m telescope on Kitt Peak are reported toward IRC+10216, Orion KL, Orion S, Sgr B2(N), Sgr B2(OH), W3IRS5, and W51M. Although recent models suggest the presence of NH{sub 2}OH in high abundance, these observations resulted in non-detection. Upper limits are calculated to be as much as six orders of magnitude lower than those predicted by models. Possible explanations for the lower-than-expected abundance are explored.

  3. A SEARCH FOR HYDROXYLAMINE (NH2OH) TOWARD SELECT ASTRONOMICAL SOURCES

    International Nuclear Information System (INIS)

    Pulliam, Robin L.; Remijan, Anthony J.; McGuire, Brett A.

    2012-01-01

    Observations of 14 rotational transitions of hydroxylamine (NH 2 OH) using the NRAO 12 m telescope on Kitt Peak are reported toward IRC+10216, Orion KL, Orion S, Sgr B2(N), Sgr B2(OH), W3IRS5, and W51M. Although recent models suggest the presence of NH 2 OH in high abundance, these observations resulted in non-detection. Upper limits are calculated to be as much as six orders of magnitude lower than those predicted by models. Possible explanations for the lower-than-expected abundance are explored.

  4. The refractometry of the mechanically stressed RbNH4SO4 crystals

    International Nuclear Information System (INIS)

    Stadnik, V.J.; Romanyuk, M.O.

    2001-01-01

    The temperature (77-300K) and spectral (300-700hm) dependencies of refractive indices n i of mechanically unstressed and stressed by the pressures along general crystallophysic directions RbNH 4 SO 4 crystals were studied.the refractive indices were observed to decrease under pressure.The temperature and spectral dependencies of piezooptic constants were investigated.The changes of refraction,electron polarizability and the position of ultraviolet absorption effective center were calculated.The temperature and spectral dependencies of birefringence sign inversion of the mechanically unstressed and stressed RbNH 4 SO 4 crystals were analyzed

  5. Appropriate NH4+: NO3- ratio improves low light tolerance of mini Chinese cabbage seedlings.

    Science.gov (United States)

    Hu, Linli; Liao, Weibiao; Dawuda, Mohammed Mujitaba; Yu, Jihua; Lv, Jian

    2017-01-23

    In northwest of China, mini Chinese cabbage (Brassica pekinensis) is highly valued by consumers, and is widely cultivated during winter in solar-greenhouses where low light (LL) fluence (between 85 and 150 μmol m -2 s -1 in day) is a major abiotic stress factor limiting plant growth and crop productivity. The mechanisms with which various NH 4 + : NO 3 - ratios affected growth and photosynthesis of mini Chinese cabbage under normal (200 μmol m -2 s -1 ) and low (100 μmol m -2 s -1 ) light conditions was investigated. The four solutions with different ratios of NH 4 + : NO 3 - applied were 0:100, 10:90, 15:85 and 25:75 with the set up in a glasshouse in hydroponic culture. The most appropriate NH 4 + : NO 3 - ratio that improved the tolerance of mini Chinese cabbage seedlings to LL was found in our current study. Under low light, the application of NH 4 + : NO 3 - (10:90) significantly stimulated growth compared to only NO 3 - by increasing leaf area, canopy spread, biomass accumulation, and net photosynthetic rate. The increase in net photosynthetic rate was associated with an increase in: 1) maximum and effective quantum yield of PSII; 2) activities of Calvin cycle enzymes; and 3) levels of mRNA relative expression of several genes involved in Calvin cycle. In addition, glucose, fructose, sucrose, starch and total carbohydrate, which are the products of CO 2 assimilation, accumulated most in the cabbage leaves that were supplied with NH 4 + : NO 3 - (10:90) under LL condition. Low light reduced the carbohydrate: nitrogen (C: N) ratio while the application of NH 4 + : NO 3 - (10:90) alleviated the negative effect of LL on C: N ratio mainly by increasing total carbohydrate contents. The application of NH 4 + :NO 3 - (10:90) increased rbcL, rbcS, FBA, FBPase and TK expression and/or activities, enhanced photosynthesis, carbohydrate accumulation and improved the tolerance of mini Chinese cabbage seedlings to LL. The results of this study would provide

  6. NH2- in a cold ion trap with He buffer gas: Ab initio quantum modeling of the interaction potential and of state-changing multichannel dynamics

    Science.gov (United States)

    Hernández Vera, Mario; Yurtsever, Ersin; Wester, Roland; Gianturco, Franco A.

    2018-05-01

    We present an extensive range of accurate ab initio calculations, which map in detail the spatial electronic potential energy surface that describes the interaction between the molecular anion NH2 - (1A1) in its ground electronic state and the He atom. The time-independent close-coupling method is employed to generate the corresponding rotationally inelastic cross sections, and then the state-changing rates over a range of temperatures from 10 to 30 K, which is expected to realistically represent the experimental trapping conditions for this ion in a radio frequency ion trap filled with helium buffer gas. The overall evolutionary kinetics of the rotational level population involving the molecular anion in the cold trap is also modelled during a photodetachment experiment and analyzed using the computed rates. The present results clearly indicate the possibility of selectively detecting differences in behavior between the ortho- and para-anions undergoing photodetachment in the trap.

  7. Synthesis and characterization of supramolecule self-assembly polyami-doamine (PAMAM G1-G1 NH2, CO2H end group Megamer

    Directory of Open Access Journals (Sweden)

    Omid Louie

    2014-10-01

    Full Text Available Supramolecule self-assembly polyamidoamine (PAMAM dendrimer refers to the chemical sys-tems made up of a discrete number of assembled molecular subunits or components. These strat-egies involve the covalent assembly of hierarchical components reactive monomers, branch cells or dendrons around atomic or molecular cores according to divergent/convergent dendritic branching principles, systematic filling of space around a core with shells (layers of branch cells. The polydispersity index (PDI for the supramolecule megamer are pretty closed to one, are in agreement with the Poisson probability distribution. Polyamidoamine (PAMAM den-drimer G1-G1 that it was PAMAM Megamer NH2, COOH end groupsynthesized and character-ized by FT-IR, 1H NMR, 13C NMRspectra and GelPermeation Chromatography (GPC.

  8. Trapping charges at grain boundaries and degradation of CH3NH3Pb(I1-x Br x )3 perovskite solar cells

    Science.gov (United States)

    Phuong Nguyen, Bich; Kim, Gee Yeong; Jo, William; Kim, Byeong Jo; Jung, Hyun Suk

    2017-08-01

    The electrical properties of CH3NH3Pb(I1-x Br x )3 (x = 0.13) perovskite materials were investigated under ambient conditions. The local work function and the local current were measured using Kelvin probe force microscopy and conductive atomic force microscopy, respectively. The degradation of the perovskite layers depends on their grain size. As the material degrades, an additional peak in the surface potential appears simultaneously with a sudden increase and subsequent relaxation of the local current. The potential bending at the grain boundaries and the intragrains is the most likely reason for the change of the local current surface of the perovskite layers. The improved understanding of the degradation mechanism garnered from this study helps pave the way toward an improved photo-conversion efficiency in perovskite solar cells.

  9. The Atomic energy basic law

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to secure future energy resources, push forward progress of science and advancement of industry for welfare of the mankind and higher standard of national life by helping research, development and utilization of atomic power. Research, development and utilization of atomic power shall be limited to the peaceful purpose with emphasis laid on safety and carried on independently under democratic administration. Basic concepts and terms are defined, such as: atomic power; nuclear fuel material; nuclear raw material; reactor and radiation. The Atomic Energy Commission and the Atomic Energy Safety Commission shall be set up at the Prime Minister's Office deliberately to realize national policy of research, development and utilization of atomic power and manage democratic administration for atomic energy. The Atomic Energy Commission shall plan, consider and decide matters concerning research, development and utilization of atomic energy. The Atomic Energy Safety Commission shall plan, consider and decide issues particularly concerning safety securing among such matters. The Atomic Energy Research Institute shall be founded under the governmental supervision to perform research, experiment and other necessary affairs for development of atomic energy. The Power Reactor and Nuclear Fuel Development Corporation shall be established likewise to develop fast breeding reactor, advanced thermal reactor and nuclear fuel materials. Development of radioactive minerals, control of nuclear fuel materials and reactors and measures for patent and invention concerning atomic energy, etc. are stipulated respectively. (Okada, K.)

  10. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  11. Atomic Act amended

    International Nuclear Information System (INIS)

    Drabova, D.

    2002-01-01

    In the paper by the chairwoman of the Czech nuclear regulatory authority, the history of Czech nuclear legislation is outlined, the reasons for the amendment of the Atomic Act (Act No. 18/1997) are explained, and the amendments themselves are highlighted. The Act No. 13/2002 of 18 December 2001 is reproduced from the official Collection of Acts of the Czech Republic in the facsimile form. The following acts were thereby amended: Atomic Act No. 18/1997, Metrology Act No. 505/1990, Public Health Protection Act No. 258/2000, and Act No. 2/1969 on the Establishment of Ministries and Other Governmental Agencies of the Czech Republic. (P.A.)

  12. Atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Haswell, S.J.

    1991-01-01

    Atomic absorption spectroscopy is now well established and widely used technique for the determination of trace and major elements in a wide range analyte types. There have been many advances in the atomic spectroscopy over the last decade and for this reason and to meet the demand, it was felt that there was a need for an updated book. Whilst interest in instrumental design has tended to dominate the minds of the spectrocopist, the analyst concerned with obtaining reliable and representative data, in diverse areas of application, has been diligently modifying and developing sample treatment and instrumental introduction techniques. Such methodology is de fundamental part of analysis and form the basis of the fourteen application chapters of this book. The text focuses in the main on AAS; however, the sample handling techniques described are in many cases equally applicable to ICP-OES and ICP-MS analysis. (author). refs.; figs.; tabs

  13. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  14. Atomic assistance in 1961

    International Nuclear Information System (INIS)

    1961-01-01

    More than 100 experts provided by the International Atomic Energy Agency will be working in different parts of the world this year, assisting the Agency's Member States in building up their national programs of peaceful atomic development. The total allocation of EPTA funds to the Agency for the two-year period 1961-62 is $1 393 600 (of which approximately half is available in 1961), and is meant not only for the provision of experts and equipment but also for training fellowships and regional projects. The countries which will receive Agency assistance in the form of experts and equipment this year are: Afghanistan, Argentina, Austria, Brazil, Burma, Ceylon, Chile, the Republic of China, Denmark, Greece, Guatemala, Iceland, Indonesia, Iran, Iraq, Israel, Japan, the Republic of Korea, the Republic of Mali, Mexico, Morocco, Pakistan, the Philippines, Senegal, the Sudan, Thailand, Tunisia, Turkey, the United Arab Republic, Vietnam and Yugoslavia

  15. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  16. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    Science.gov (United States)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  17. Adsorption behavior of NH3 and NO2 molecules on stanene and stanane nanosheets - A density functional theory study

    Science.gov (United States)

    Nagarajan, V.; Chandiramouli, R.

    2018-03-01

    Using density functional theory method, we investigate the adsorption properties of NH3 and NO2 molecules on stanene and stanane nanosheets. The adsorption of molecules is explored based on the charge transfer, energetics, energy band gap and average energy gap variation. Moreover, the optimal adsorption sites of NH3 and NO2 molecules are identified on stanene and stanane nanosheets. Besides, the state-of-the-art provides the key features for the development of chemi-resistive nanosensor based on stanene and stanane nanosheets upon adsorption of NH3 and NO2 molecules. Furthermore, the study shows that adsorption of NO2 molecules is more prominent rather than NH3 molecules.

  18. CH3NH3Pb1-xMgxI3 perovskites as environmentally friendly photovoltaic materials

    Science.gov (United States)

    Zhang, Y. D.; Feng, J.

    2018-01-01

    In an effort to reduce the toxicity of Pb in perovskite solar cells, the band structures, electron and hole effective masses, and electronic and optical properties of the novel perovskites CH3NH3Pb1-xMgxI3 were predicted using density functional theory with the scalar relativistic generalized gradient approximation. The calculation results indicated that the introduction of the Mg component caused the band gaps of the CH3NH3Pb1-xMgxI3 compounds to exceed that of CH3NH3PbI3. The calculated absorption coefficients of the CH3NH3PbI3 and CH3NH3Pb1-xMgxI3 perovskites revealed that substituting 12.5 mol % of the Pb in CH3NH3PbI3 with Mg had little effect on the absorption ability. Surprisingly, it was also found that CH3NH3Pb0.75Mg0.25I3 retained up to 83% of the absorption performance relative to CH3NH3PbI3. This indicates that the amount of toxic Pb used in perovskite solar cells could be reduced by a quarter while retaining over 80% of the light-absorbing ability. In general, these novel CH3NH3Pb1-xMgxI3 (x ≤ 0.25) perovskites represent promising candidates for environmentally friendly light-harvesting materials for use in solar cells.

  19. Giant-Planet Chemistry: Ammonium Hydrosulfide (NH4SH), Its IR Spectra and Thermal and Radiolytic Stabilities

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.

    2015-01-01

    Here we present our recent studies of proton-irradiated and unirradiated ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. We irradiated both crystalline and amorphous NH4SH at 10-160 K and used IR spectroscopy to observe and identify reaction products in the ice, specifically NH3 and long-chained sulfur-containing ions. Crystalline NH4SH was amorphized during irradiation at all temperatures studied with the rate being the fastest at the lowest temperatures. Irradiation of amorphous NH4SH at approximately 10-75 K showed that 60-80% of the NH4 + remained when equilibrium was reached, and that NH4SH destruction rates were relatively constant within this temperature range. Irradiations at higher temperatures produced different dose dependence and were accompanied by pressure outbursts that, in some cases, fractured the ice. The thermal stability of irradiated NH4SH was found to be greater than that of unirradiated NH4SH, suggesting that an irradiated giant-planet cloud precipitate can exist at temperatures and altitudes not previously considered.

  20. Glossary of atomic terms

    International Nuclear Information System (INIS)

    1982-04-01

    This glossary, containing almost 400 terms, has been compiled to help people outside the atomic energy industry to understand what those inside it are saying. It is not intended to be a definitive dictionary of scientific or technical terms, nor does it aim to cover terms that are in general use in science and technology. A list of about 100 initials and acronyms will be found at the end. (author)