WorldWideScience

Sample records for bischelating oxalate ion

  1. Thermodynamics of hydrothermal systems with oxalate ion

    Science.gov (United States)

    Khodakovsky, I. L.; Devina, O. A.

    2009-04-01

    The geochemical and industrial significance of oxalates have led to great interest in the behavior of oxalate ion in hydrothermal systems. On the basis of a study by G.B. Naumov et al (1971) of gaseous-liquid inclusions it is shown that whewellite (CaC2O4•H2O) which was found in quartz-calcite-fluorite veins in the uranium ore deposit of the Eastern Transbaikal region was formed at temperatures about 150°C and pressure CO2 of 600-860 atm. The isotopic composition of carbon for these hydrothermal whewellite samples was determined by Galimov et al (1975): Delta13C from -1.56 to -2.22%. In a continuation of the study of organic-acid-water-rock interactions the thermodynamics of hydrothermal equilibriums for the systems Ox-H, Ox-H-Ca, Ox-H-Mg (where Ox = C2O42-), are described up to 200°C. The key network reactions and compounds related to the aqueous ion C2O42- are discussed and used to define the key values. The critical evaluation of thermodynamic properties for this ion is a part of the development of the new key values system for the joint thermodynamic database in the Internet. The evaluation involves the analysis of the enthalpy changes, Gibbs energy changes, and the entropy calculations for all key substances in the key network. A consistent set of thermodynamic property values is given for α-H2C2O4(cr), β-H2C2O4(cr), H2C2O4•H2O(cr), CaC2O4(cr), CaC2O4•H2O(cr,whewellite), NaC2O4(cr,natroxalate), MgC2O4•2H2O(cr,glushinskite) and aqueous species C2O42-, HC2O4-, H2C2O4°, CaC2O4°. This study was funded by Russian Foundation for Basic Research (project N 07-05-01108).

  2. Construction and Characterization of Coated Wire Oxalate Ion Selective Electrode Based on Chitosan

    Directory of Open Access Journals (Sweden)

    Zuri Rismiarti

    2013-10-01

    Full Text Available PVC (polyvinyl chloride membrane based coated wire oxalate ion selective electrode has been developed by using chitosan. The results showed the optimum composition of the membrane was chitosan: aliquat 336: PVC: DBP = 4:1:33:62 (% weight. The electrode showed Nernstian response, Nernst factor 29.90 mV/decade of concentration, linier concentration range of 1x10-5 - 1x10-1 M, detection limit of 2.56 x10-6 M, response time of 30 second, and life time of 42 days. ISE’s performance worked well in pH range of 5-7 and temperature of 25-50 oC. Validation test showed no significant difference (t test with the SSA method so that the potentiometric method could be used as an alternative method for determining urinary oxalate.

  3. Coordination of manganous ion at the active site of pyruvate, phosphate dikinase: the complex of oxalate with the phosphorylated enzyme

    International Nuclear Information System (INIS)

    Kofron, J.L.; Ash, D.E.; Reed, G.H.

    1988-01-01

    Electron paramagnetic resonance spectroscopy has been used to investigate the structure of the complex of manganous ion with the phosphorylated form of pyruvate, phosphate dikinase (E/sub p/) and the inhibitor oxalate. Oxalate, an analogue of the enolate of pyruvate, is competitive with respect to pyruvate in binding to the phosphorylated form of the enzyme. Superhyperfine coupling between the unpaired electrons of Mn(I) and ligands specifically labeled with 17 O has been used to identify oxygen ligands to Mn(II) in the complex with oxalate and the phosphorylated form of the enzyme. Oxalate binds at the active site as a bidentate chelate with Mn(II). An oxygen from the 3'-N-phosphohistidyl residue of the protein is in the coordination sphere of Mn(II), and at least two water molecules are also bound to Mn(II) in the complex. Oxalate also binds directly to Mn(II) in a complex with nonphosphorylated enzyme. The structure for the E/sub p/-Mn(II)-oxalate complex implies that simultaneous coordination of a phospho group and of the attacking nucleophile to the divalent cation is likely an important factor in catalysis of this phospho-transfer reaction

  4. Mechanism of oxalate ion adsorption on chromium oxide-hydroxide from pH dependence and time evolution of ATR-IR spectra

    Science.gov (United States)

    Degenhardt, Jens; McQuillan, A. James

    1999-09-01

    A chromium (III) oxide-hydroxide colloid film has been used to model the passive surface of stainless steel in in situ ATR-IR studies of oxalate ion adsorption from aqueous oxalate solutions over a wide pH range. Studies of time and pH dependence of adsorption have been used to reveal a mechanism of adsorption proceeding through ionic, hydrogen bonded and coordinated oxalate species. A Langmuir adsorption constant of 4.5×10 4 M -1 was determined for the surface coordinated oxalate from an adsorption isotherm at pH=3.

  5. Catalytic upgrading of oleic acid into biofuel using Mo modified zeolite supported Ni oxalate catalyst functionalized with fluoride ion

    International Nuclear Information System (INIS)

    Ayodele, O.B.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Modification of zeolite with freshly prepared molybdenum oxalate. • Functionalization of Ni oxalate with HF and incorporation into Mo modified zeolite. • Characterization of synthesized Mo modified zeolite supported Ni oxalate catalyst. • Deoxygenation of oleic acid with the synthesized zeolite supported catalyst. • Reusability study on the synthesized zeolite supported catalyst. - Abstract: In this study, fluoride ion functionalized nickel oxalate supported on molybdenum modified zeolite (NiMoFOx/Zeol) catalyst was synthesized, characterized and tested on the hydrodeoxygenation (HDO) of oleic acid (OA) into paraffinic fuel. The NiMoFOx/Zeol characterization results confirmed the presence of both Ni and Mo as well as the formation of NiMoO 4 which is a highly HDO reactive specie at 2θ value of 43.6° according to the XRD result. NiMoFOx/Zeol also showed loss in crystallinity and reduction in the average particle size leading to increase in the pore volume and specific surface area due to the combined effects of fluoride ion presence, oxalic acid functionalization and calcination. The effect of temperature, pressure and NiMoFOx/Zeol loading studied showed that initial increase in their values increased the yield of the target fractions until some points where reduction was observed. The best observed experimental conditions to hydrodeoxygenate 40 g (∼45 mL) of OA into 75% n-C 18 and 23% i-C 18 were 360 °C, 30 mg NiMoFOx/Zeol loading and 20 bar using 100 mL H 2 /min. The presence of i-C 18 was due to the functionalization of the catalyst with fluoride ion. The catalyst reusability result displayed excellent qualities with marginal loss of only 2% in activity after third reuse due to the improved synthesis protocol that employed organometallic precursor. The results are strongly encouraging for further studies toward industrialization of HDO process

  6. Dinuclear metal complexes derived from a bis-chelating heterocyclic ...

    African Journals Online (AJOL)

    The analytical data indicate that the metal to ligand ratio is 2:1 in all the complexes. The coordination of triethylamine, water and chloride ion are observed in the Co(II), Zn(II) and Ni(II) complexes. The absence of ionizable or coordinated chloride in Cu(II) complex is a notable feature. Octahedral geometry for Co(II), Zn(II) and ...

  7. Photocatalytic hydrogen evolution from carbon-neutral oxalate with 2-phenyl-4-(1-naphthyl)quinolinium ion and metal nanoparticles.

    Science.gov (United States)

    Yamada, Yusuke; Miyahigashi, Takamitsu; Ohkubo, Kei; Fukuzumi, Shunichi

    2012-08-14

    Photocatalytic hydrogen evolution has been made possible by using oxalate as a carbon-neutral electron source, metal nanoparticles as hydrogen-evolution catalysts and the 2-phenyl-4-(1-naphthyl)quinolinium ion (QuPh(+)-NA), which forms the long-lived electron-transfer state upon photoexcitation, as a photocatalyst. The hydrogen evolution was conducted in a deaerated mixed solution of an aqueous buffer and acetonitrile (MeCN) [1:1 (v/v)] by photoirradiation (λ > 340 nm). The gas evolved during the photocatalytic reaction contained H(2) and CO(2) in a molar ratio of 1:2, indicating that oxalate acts as a two-electron donor. The hydrogen yield based on the amount of oxalate reached more than 80% under pH conditions higher than 6. Ni and Ru nanoparticles as well as Pt nanoparticles act as efficient hydrogen-evolution catalysts in the photocatalytic hydrogen evolution. The photocatalyst for hydrogen evolution can be used several times without significant deactivation of the catalytic activity. Nanosecond laser flash photolysis measurements have revealed that electron transfer from oxalate to the photogenerated QuPh˙-NA˙(+), which forms a π-dimer radical cation with QuPh(+)-NA [(QuPh˙-NA˙(+))(QuPh(+)-NA)], occurs followed by subsequent electron transfer from QuPh˙-NA to the hydrogen-evolution catalyst in the photocatalytic hydrogen evolution. Oxalate acts as an efficient electron source under a wide range of reaction conditions.

  8. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  9. Oxalate Concentrations in Human Gastrointestinal Fluid.

    Science.gov (United States)

    Reddy, Thanmaya G; Knight, John; Holmes, Ross P; Harvey, Lisa M; Mitchem, April L E; Wilcox, Charles M; Monkemuller, Klaus E; Assimos, Dean G

    2016-05-01

    Urinary oxalate excretion is a risk factor for nephrolithiasis and is a result of endogenous metabolism and gastrointestinal processes. Gastrointestinal absorption of oxalate has been well demonstrated but to our knowledge evidence for secretion of oxalate is absent in humans. The objective of this study was to measure the amount and conformation of oxalate in the stomach and small intestine of adult subjects undergoing gastrointestinal endoscopy. Eleven adults participated in this study. Gastrointestinal fluid was collected from the stomach and small intestine during endoscopy. A determination of the soluble and insoluble components of oxalate was made by centrifugation of the sample and subsequent acidification of the resultant pellet and supernatant. Samples were processed and the amount of oxalate was measured by ion chromatography, the limit of which is 1.6 μM. The majority of small intestinal samples contained some degree of oxalate. This is in contrast to the stomach where minimal oxalate was detected. There was a wide range of oxalate concentrations and a greater degree of insoluble oxalate in small intestinal samples. Our results suggest that some degree of oxalate secretion in the small intestine may occur in the fasted state while this is less likely in the stomach. Further studies are warranted to provide definitive evidence of gastrointestinal secretion of oxalate.

  10. Enrofloxacinium oxalate

    Directory of Open Access Journals (Sweden)

    Thammarse S. Yamuna

    2014-02-01

    Full Text Available The title salt, 2C19H23FN3O3+·C2O42− {systematic name: bis-[4-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl-1-ethylpiperazin-1-ium] oxalate}, crystallizes with two independent monocations (A and B and an oxalate dianion (C in the asymmetric unit. The piperazinium ring in both the cations adopts a slightly disordered chair conformation. The dihedral angles between the mean planes of the cyclopropyl ring and the 10-membered quinoline ring are 50.6 (5° (A and 62.2 (5° (B. In each of the cations, a single O—H...O intramolecular hydrogen bond is observed. In the crystal, the oxalate anions interact with the cations through N—H...O hydrogen bonds and weak C—H...O interactions, forming R22(8 graph-set ring motifs. Weak C—H...F interactions along with further C—H...O interactions are observed between the cations, forming zigzag chains along [001]. In addition, π–π stacking interactions are observed with centroid–centroid distances of 3.5089 (13, 3.5583 (13, 3.7900 (13 and 3.7991 (13 Å.

  11. Destruction of oxalate by reaction with hydrogen peroxide. [Hydrazine oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Mailen, J.C.; Tallent, O.K.; Arwood, P.C.

    1981-09-01

    The destruction of oxalate by oxidation to carbon dioxide using hydrogen peroxide was studied as an alternative method for the disposal of oxalate in connection with the possible use of an aqueous hydrazine oxalate solution as a scrubbing agent for solvent cleanup in processes for the recovery of uranium, plutonium, and thorium by solvent extraction. The rate of oxidation of oxalate by hydrogen peroxide in acid solution at the reflux temperature was adequate for process application; reaction half-times at 100/sup 0/C were less than one hour when the hydrogen peroxide concentration was greater than 0.5 M. The reaction was first order with respect to both the oxalate and hydrogen peroxide concentrations and had an activation energy of 58.7 kJ/g-mol. The rate increased with the hydrogen ion concentration as (H/sup +/)/sup 0/ /sup 3/ but was not significantly affected by the presence of 100 ppM of uranium or copper in solution. In the near-neutral hydrazine oxalate solutions, the reaction of either component with hydrogen peroxide was too slow for process application.

  12. Tetraphenylphosphonium hydrogen oxalate

    Directory of Open Access Journals (Sweden)

    Philip A. W. Dean

    2008-01-01

    Full Text Available In the title compound, C24H20P+·C2HO4−, two symmetry-independent ion pairs are present. The cations aggregate into puckered sheets via zigzag infinite chains of sixfold phenyl embraces and parallel fourfold phenyl embraces, while the anions form hydrogen-bonded chains between the sheets of cations. In the two independent oxalate anions, the angles between the normals to the two least-squares carboxylate COO planes are unusually large, viz. 72.5 (1 and 82.1 (1°.

  13. A new method for the analysis of soluble and insoluble oxalate in pulp and paper matrices

    CSIR Research Space (South Africa)

    Sithole, Bruce

    2013-11-01

    Full Text Available A novel method has been developed for determining soluble and insoluble forms of oxalate in pulp and paper samples by ion chromatography. Methanesulphonic acid is used to dissolve insoluble oxalate, and total oxalate is then determined by ion...

  14. Distribution of Components in Ion Exchange Materials Taken from the K East Basin and Leaching of Ion Exchange Materials by Nitric/Hydrofluoric Acid and Nitric/Oxalic Acid

    International Nuclear Information System (INIS)

    Delegard, C.H.; Rinehart, D.E.; Hoopes, F.V.

    1998-01-01

    Laboratory tests were performed to examine the efficacy of mixed nitric/hydrofluoric acid followed by mixed nitric/oxalic acid leach treatments to decontaminate ion exchange materials that have been found in a number of samples retrieved from K East (KE)Basin sludge. The ion exchange materials contain organic ion exchange resins and zeolite inorganic ion exchange material. Based on process records, the ion exchange resins found in the K Basins is a mixed-bed, strong acid/strong base material marketed as Purolite NRW-037. The zeolite material is Zeolon-900, a granular material composed of the mineral mordenite. Radionuclides sorbed or associated with the ion exchange material can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). Elutriation and washing steps are designed to remove the organic resins from the K Basin sludge. To help understand the effects of the anticipated separation steps, tests were performed with well-rinsed ion exchange (IX) material from KE Basin floor sludge (sample H-08 BEAD G) and with well-rinsed IX having small quantities of added KE canister composite sludge (sample KECOMP). Tests also were performed to determine the relative quantities of organic and inorganic IX materials present in the H-08 K Basin sludge material. Based on chemical analyses of the separated fractions, the rinsed and dry IX material H-08 BEAD G was found to contain 36 weight percent inorganic material (primarily zeolite). The as-received (unrinsed) and dried H-08 material was estimated to contain 45 weight percent inorganic material

  15. Variation in oxalate and oxalate decarboxylase production by six species of brown and white rot fungi

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Oliver, Jason; Howell, Caitlin

    cell lumen where it quickly dissociates into hydrogen ions and oxalate, resulting in a pH decrease of the environment, and oxalate-cation complexes. Generally, brown rot fungi accumulate larger quantities of oxalic acid in the wood than white rot fungi. The amount of oxalic acid has been shown to vary......  Oxalic acid (C2O4H2), the strongest of the organic acids is produced by both brown and white rot decay fungi and has been connected to various aspects of brown- and white rot decay including the Fenton reaction (Green and Highley, 1997; Munir et al.,2001). Oxalic acid is secreted into the wood...

  16. Oxalate induces breast cancer.

    Science.gov (United States)

    Castellaro, Andrés M; Tonda, Alfredo; Cejas, Hugo H; Ferreyra, Héctor; Caputto, Beatriz L; Pucci, Oscar A; Gil, German A

    2015-10-22

    Microcalcifications can be the early and only presenting sign of breast cancer. One shared characteristic of breast cancer is the appearance of mammographic mammary microcalcifications that can routinely be used to detect breast cancer in its initial stages, which is of key importance due to the possibility that early detection allows the application of more conservative therapies for a better patient outcome. The mechanism by which mammary microcalcifications are formed is still largely unknown but breast cancers presenting microcalcifications are more often associated with a poorer prognosis. We combined Capillary Electrochromatography, histology, and gene expression (qRT-PCR) to analyze patient-matched normal breast tissue vs. breast tumor. Potential carcinogenicity of oxalate was tested by its inoculation into mice. All data were subjected to statistical analysis. To study the biological significance of oxalates within the breast tumor microenvironment, we measured oxalate concentration in both human breast tumor tissues and adjoining non-pathological breast tissues. We found that all tested breast tumor tissues contain a higher concentration of oxalates than their counterpart non-pathological breast tissue. Moreover, it was established that oxalate induces proliferation of breast cells and stimulates the expression of a pro-tumorigenic gene c-fos. Furthermore, oxalate generates highly malignant and undifferentiated tumors when it was injected into the mammary fatpad in female mice, but not when injected into their back, indicating that oxalate does not induce cancer formation in all types of tissues. Moreover, neither human kidney-epithelial cells nor mouse fibroblast cells proliferate when are treated with oxalate. We found that the chronic exposure of breast epithelial cells to oxalate promotes the transformation of breast cells from normal to tumor cells, inducing the expression of a proto-oncogen as c-fos and proliferation in breast cancer cells

  17. Oxalate induces breast cancer

    International Nuclear Information System (INIS)

    Castellaro, Andrés M.; Tonda, Alfredo; Cejas, Hugo H.; Ferreyra, Héctor; Caputto, Beatriz L.; Pucci, Oscar A.; Gil, German A.

    2015-01-01

    Microcalcifications can be the early and only presenting sign of breast cancer. One shared characteristic of breast cancer is the appearance of mammographic mammary microcalcifications that can routinely be used to detect breast cancer in its initial stages, which is of key importance due to the possibility that early detection allows the application of more conservative therapies for a better patient outcome. The mechanism by which mammary microcalcifications are formed is still largely unknown but breast cancers presenting microcalcifications are more often associated with a poorer prognosis. We combined Capillary Electrochromatography, histology, and gene expression (qRT-PCR) to analyze patient-matched normal breast tissue vs. breast tumor. Potential carcinogenicity of oxalate was tested by its inoculation into mice. All data were subjected to statistical analysis. To study the biological significance of oxalates within the breast tumor microenvironment, we measured oxalate concentration in both human breast tumor tissues and adjoining non-pathological breast tissues. We found that all tested breast tumor tissues contain a higher concentration of oxalates than their counterpart non-pathological breast tissue. Moreover, it was established that oxalate induces proliferation of breast cells and stimulates the expression of a pro-tumorigenic gene c-fos. Furthermore, oxalate generates highly malignant and undifferentiated tumors when it was injected into the mammary fatpad in female mice, but not when injected into their back, indicating that oxalate does not induce cancer formation in all types of tissues. Moreover, neither human kidney-epithelial cells nor mouse fibroblast cells proliferate when are treated with oxalate. We found that the chronic exposure of breast epithelial cells to oxalate promotes the transformation of breast cells from normal to tumor cells, inducing the expression of a proto-oncogen as c-fos and proliferation in breast cancer cells

  18. Electrochemical synthesis and characterization of zinc oxalate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Roushani, Mahmoud [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Department of Chemistry, Ilam University, Ilam (Iran, Islamic Republic of); Pourmortazavi, Seied Mahdi [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2013-03-15

    Highlights: ► Synthesis of zinc oxalate nanoparticles via electrolysis of a zinc plate anode in sodium oxalate solutions. ► Design of a Taguchi orthogonal array to identify the optimal experimental conditions. ► Controlling the size and shape of particles via applied voltage and oxalate concentration. ► Characterization of zinc oxalate nanoparticles by SEM, UV–vis, FT-IR and TG–DTA. - Abstract: A rapid, clean and simple electrodeposition method was designed for the synthesis of zinc oxalate nanoparticles. Zinc oxalate nanoparticles in different size and shapes were electrodeposited by electrolysis of a zinc plate anode in sodium oxalate aqueous solutions. It was found that the size and shape of the product could be tuned by electrolysis voltage, oxalate ion concentration, and stirring rate of electrolyte solution. A Taguchi orthogonal array design was designed to identify the optimal experimental conditions. The morphological characterization of the product was carried out by scanning electron microscopy. UV–vis and FT-IR spectroscopies were also used to characterize the electrodeposited nanoparticles. The TG–DTA studies of the nanoparticles indicated that the main thermal degradation occurs in two steps over a temperature range of 350–430 °C. In contrast to the existing methods, the present study describes a process which can be easily scaled up for the production of nano-sized zinc oxalate powder.

  19. An antagonist treatment in combination with tracer experiments revealed isocitrate pathway dominant to oxalate biosynthesis in Rumex obtusifolius L

    Science.gov (United States)

    Oxalate accumulates in leaves of certain plants such as Rumex species (Polygonaceae). Oxalate plays important roles in defense to predator, detoxification of metallic ions, and in hydroxyl peroxide formation upon wounding/senescence. However, biosynthetic pathways of soluble oxalate are largely unkn...

  20. Thorium oxalate solubility and morphology

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.; Hall, R.

    1981-10-01

    Thorium was used as a stand-in for studying the solubility and precipitation of neptunium and plutonium oxalates. Thorium oxalate solubility was determined over a range of 0.001 to 10.0 in the concentration parameter [H 2 C 2 O 4 ]/[HNO 3 ] 2 . Morphology of thorium oxide made from the oxalate precipitates was characterized by scanning electron microscopy. The different morphologies found for oxalate-lean and oxalate-rich precipitations were in agreement with predictions based on precipitation theory

  1. Crystal structure of dimethylammonium hydrogen oxalate hemi(oxalic acid

    Directory of Open Access Journals (Sweden)

    Waly Diallo

    2015-05-01

    Full Text Available Single crystals of the title salt, Me2NH2+·HC2O4−·0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH22C2O4 salt and Sn(CH33Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a dimethylammonium cation (Me2NH2+, an hydrogenoxalate anion (HC2O4−, and half a molecule of oxalic acid (H2C2O4 situated about an inversion center. From a supramolecular point of view, the three components interact together via hydrogen bonding. The Me2NH2+ cations and the HC2O4− anions are in close proximity through bifurcated N—H...(O,O hydrogen bonds, while the HC2O4− anions are organized into infinite chains via O—H...O hydrogen bonds, propagating along the a-axis direction. In addition, the oxalic acid (H2C2O4 molecules play the role of connectors between these chains. Both the carbonyl and hydroxyl groups of each diacid are involved in four intermolecular interactions with two Me2NH2+ and two HC2O4− ions of four distinct polymeric chains, via two N—H...O and two O—H...O hydrogen bonds, respectively. The resulting molecular assembly can be viewed as a two-dimensional bilayer-like arrangement lying parallel to (010, and reinforced by a C—H...O hydrogen bond.

  2. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.

  3. Synthesis, characterization, density functional study and antimicrobial evaluation of a series of bischelated complexes with a dithiocarbazate Schiff base ligand

    Directory of Open Access Journals (Sweden)

    E. Zangrando

    2017-02-01

    Full Text Available A nitrogen-sulfur Schiff base HL (1 derived from S-hexyldithiocarbazate and 4-methylbenzaldehyde has been reacted with different divalent metal ions in 2:1 molar ratio, producing neutral complexes (2–7 of general formula MIIL2 (where M = Ni, Cu, Zn, Cd, Pd and Pb. All compounds were characterized using established physico-chemical and spectroscopic methods. The single crystal structures of CuII and ZnII complexes are compared and discussed with those of NiII and PdII already reported by us, underlining the geometrical variations occurring in the HL ligand upon coordination. The metal complexes, as revealed by the X-ray diffraction analyses, show a square planar or tetrahedral coordination geometry, and in the former case either a cisoid or transoid configuration of chelating ligands. Density functional theory (DFT and time-dependent density functional theory (TD-DFT calculations have been performed on the isolated cis/trans complexes of Ni and Pd complexes in order to evaluate the stability of the isomer isolated in solid state. The thermodynamic parameters for trans to cis isomerization of NiL2 complex [ΔH = −29.12 kJ/mol and ΔG = −43.97 kJ/mol] indicated that the trans isomer (observed in solid state is more stable than the cis one. On the other hand, relative enthalpy [ΔH = −4.37 kJ/mol] and Gibbs free energy [ΔG = −5.50 kJ/mol] of PdL2 complex disclosed a small difference between the energies of the two isomers. Experimental UV–vis and TD-DFT calculation confirmed that these complexes have distinctive LMCT bands with a broad shoulder at 400–550 nm. With the purpose of providing insight into the properties and behavior of the complexes in solution, photoluminescence and electrochemical experiments have been also performed. Finally, the anti-bacterial activity of these compounds was evaluated against three pathogenic Gram-negative organisms such as Escherichia coli, Salmonella typhi and Shigella flexneri, but

  4. The effects of copper proximity on oxalate production in Fibroporia radiculosa

    Science.gov (United States)

    Katie M. Jenkins; Carol A. Clausen; Frederick Green III

    2014-01-01

    Copper remains a key component used in wood preservatives available today. However, the observed tolerance of several critical wood rotting organisms continues to be problematic. Tolerance to copper has been linked to the production and accumulation of oxalate, which precipitates copper into insoluble copper-oxalate crystals, thus inactivating copper ions. The purpose...

  5. SPECTROPHOTOMETRIC DETERMINATION OF TRACE OXALIC ...

    African Journals Online (AJOL)

    Based on the property that oxalic acid has the effect on the replacement of dibromochloroarsenazo in zirconium(IV)-dibromochloroarsenazo complex to produce hyperchromic effects in 1.26 M hydrochloric acid medium, a novel method for the determination of trace oxalic acid by spectrophotometry was developed.

  6. Assessment of in vitro oxalate degradation by Lactobacillus species cultured from veterinary probiotics.

    Science.gov (United States)

    Cho, Jenny G; Gebhart, Connie J; Furrow, Eva; Lulich, Jody P

    2015-09-01

    To culture Lactobacillus spp from veterinary probiotics and measure their in vitro oxalate-degrading capacity. 2 commercial veterinary probiotics containing Lactobacillus spp. Lactobacillus spp were cultured anaerobically on selective deMan, Rogosa, Sharpe agar medium and subcultured for speciation by 16S rDNA gene sequencing. Isolates were inoculated into broth containing sodium oxalate (5 mg/L) and incubated anaerobically for 72 hours. An oxalate-degrading isolate of Lactobacillus acidophilus (American Type Culture Collection [ATCC] 53544) was the positive control sample; sterile broth containing a known quantity of sodium oxalate was the negative control sample. Oxalate concentrations were detected with ion chromatography. Oxalate degradation was assessed with Dunnett tests to detect differences in mean oxalate concentration for each isolate, compared with results for the negative control. Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei or Lactobacillus zeae (too closely related to differentiate) were isolated from probiotic 1, and L plantarum was isolated from probiotic 2. Sequencing of the 16S rDNA gene confirmed 100% homology to type species. Lactobacillus acidophilus (ATCC 53544) and L acidophilus from probiotic 1 significantly decreased oxalate concentrations by 85.3 and 161.9 mg/L, respectively. Lactobacillus plantarum from probiotics 1 and 2 significantly increased oxalate concentrations by 56.1 and 36.1 mg/L, respectively. Lactobacillus casei did not alter oxalate concentrations. Lactobacillus acidophilus isolates significantly reduced oxalate concentrations. In vivo studies are needed to determine whether probiotics containing L acidophilus decrease urine oxalate concentrations and reduce risk of urolith recurrence in dogs with a history of calcium oxalate urolithiasis.

  7. Synthesis, Crystal structure and Characterization of a New Oxalate ...

    Indian Academy of Sciences (India)

    dination modes.4 Moreover, the oxalate bridge can effi- ciently mediate the exchange interactions between para- magnetic metal ions, leading to interesting magnetic ..... step which is consistent with the calculated weight loss of 21.67%. The result is in agreement with the struc- ture which contains five water molecules.

  8. Charge dynamics in conducting polyaniline–metal oxalate composites

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Polyaniline (Pani) and its metal oxalate composites (~ 10 wt.%) of trivalent metal ions of Cr, Fe,. Mn, Co and Al were synthesized by chemical oxidative polymerization technique with potassium perdisul- phate oxidant in aqueous sulphuric acid medium. These materials were characterized by UV–VIS and EPR.

  9. Analytical Study of Oxalates Coprecipitation

    Directory of Open Access Journals (Sweden)

    Liana MARTA

    2003-03-01

    Full Text Available The paper deals with the establishing of the oxalates coprecipitation conditions in view of the synthesis of superconducting systems. A systematic analytical study of the oxalates precipitation conditions has been performed, for obtaining superconducting materials, in the Bi Sr-Ca-Cu-O system. For this purpose, the formulae of the precipitates solubility as a function of pH and oxalate excess were established. The possible formation of hydroxo-complexes and soluble oxalato-complexes was taken into account. A BASIC program was used for tracing the precipitation curves. The curves of the solubility versus pH for different oxalate excess have plotted for the four oxalates, using a logaritmic scale. The optimal conditions for the quantitative oxalate coprecipitation have been deduced from the diagrams. The theoretical curves were confirmed by experimental results. From the precursors obtained by this method, the BSCCO superconducting phases were obtained by an appropriate thermal treatment. The formation of the superconducting phases was identified by X-ray diffraction analysis.

  10. Surface analysis of transition metal oxalates: Damage aspects

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@imp.kiev.ua [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Institute of Metal Physics, Nat. Acad. Sci. of Ukraine, Akad. Vernadsky Blvd. 36, 03680 Kiev (Ukraine); Szukiewicz, R. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Barbosa, R.; Kruse, N. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Voiland School of Chemical Engineering and Bioengineering, Washington State University, 155 Wegner Hall, Pullman, WA 99164-6515 (United States)

    2016-05-15

    Highlights: • Gas evolution from the Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation is studied. • A comparative study of the damage caused by X-rays in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} is carried out. • Effect of Ar{sup +} bombardment on the structure and composition of CoC{sub 2}O{sub 4} is studied. - Abstract: The behavior of transition metal oxalates in vacuum, under X-ray irradiation and low-energy Ar{sup +} ion bombardment was studied. A comparative mass-spectrometric analysis was carried out of gas evolution from the surface of Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation. The rates of H{sub 2}O and CO{sub 2} liberation from the oxalates were found to be in an inverse correlation with the temperatures of dehydration and decomposition, respectively. X-ray photoelectron spectroscopy (XPS) was employed to study the X-ray induced damage in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} by measuring the various XP spectral characteristics and surface composition of the oxalates as a function of time of exposure to X-rays. It was shown that Cu oxalate underwent a significantly faster degradation than Ni oxalate and demonstrated a high degree of X-ray induced reduction from the Cu{sup 2+} to the Cu{sup 1+} chemical state. 500 eV Ar{sup +} sputter cleaning of CoC{sub 2}O{sub 4} for 10 min was found to cause a strong transformation of the oxalate structure which manifested itself in an appreciable alteration of the XP core-level and valence band spectra. The analysis of changes in stoichiometry and comparison of XP spectra of bombarded oxalate with respective spectra of a reference carbonate CoCO{sub 3} implied that the bombardment-induced decomposition of CoC{sub 2}O{sub 4} gave rise to the formation of CoO-like and disordered CoCO{sub 3}-like phases.

  11. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    Directory of Open Access Journals (Sweden)

    G. Cailleau

    2011-07-01

    Full Text Available An African oxalogenic tree, the iroko tree (Milicia excelsa, has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi. Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate

  12. A new polymorph of magnesium oxalate dihydrate

    Directory of Open Access Journals (Sweden)

    Xue-An Chen

    2008-07-01

    Full Text Available In the asymmetric unit of the title compound, catena-poly[[diaquamagnesium(II]-μ-oxalato], [Mg(C2O4(H2O2]n, there is one Mg atom in an octahedral coordination with site symmetry 222, a unique C atom of the oxalate anion lying on a twofold axis, an O atom of the anion in a general position and a water O atom at a site with imposed twofold rotation symmetry. The Mg2+ ions are ligated by water molecules and bridged by the anions to form chains that are held together by O—H...O hydrogen bonds. The structure of the title compound has already been reported in a different space group [Lagier, Pezerat & Dubernat (1969. Rev. Chim. Miner. 6, 1081–1093; Levy, Perrotey & Visser (1971. Bull. Soc. Chim. Fr. pp. 757–761].

  13. Radiochemical separation of rare earths by retention on lanthanum oxalate

    International Nuclear Information System (INIS)

    Csajka, M.

    1975-01-01

    Investigations have been made on the applicability of lanthanum oxalate for the practically total retention of rare earth activities using radiochemical group separation. The variation of the retention was studied by increasing the concentration of the investigated rare earth ions in the solution. The effect of the presence of another than the retained rare earth activity in the solution was determined. Finally, the retention of scandium under the same conditions as those used for the rare earths was investigated. (T.G.)

  14. The abiotic degradation of soil organic matter to oxalic acid

    Science.gov (United States)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  15. Circular patterns of calcium oxalate monohydrate induced by defective Langmuir-Blodgett film on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    He Jieyu [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Ouyang Jianming [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)], E-mail: toyjm@jnu.edu.cn

    2009-01-01

    The defective Langmuir-Blodgett (LB) film of dipalmitoylphosphatidylcholine (DPPC) on quartz injured by potassium oxalate (K{sub 2}C{sub 2}O{sub 4}) was used as a model system to induce growth of calcium oxalate crystals. Atomic force microscopy (AFM) indicated that circular defective domains with a diameter of 1-200 {mu}m existed in the LB film. Scanning electron microscopy (SEM) showed circular patterns of aggregated calcium oxalate monohydrate (COM) crystallites were induced by these defective domains. It was ascribed to that the interaction between the negatively-charged oxalate ions and the phosphatidyl groups in DPPC headgroups makes the phospholipid molecules rearranged and exist in an out-of-order state in the LB film, especially at the boundaries of liquid-condensed (LC)/liquid-expanded (LE) phases, which provide much more nucleating sites for COM crystals.

  16. Decontamination effectiveness of mixtures of citric acid, oxalic acid and EDTA

    International Nuclear Information System (INIS)

    Speranzini, R.A.

    1990-01-01

    An experimental study of the decontamination effectiveness of citric acid, oxalic acid and EDTA mixtures was conducted to assess whether oxalic acid could be removed from decontamination solutions to minimize corrosion. In loop experiments, radioactive specimens from two boiling water reactors and one pressurized water reactor were suspended in solutions of single acids or in mixtures of reagents at total reagent concentrations of less than 0.1 wt% under conditions similar to those used to decontaminate reactor systems. Rate constants for dissolution of oxides and decontamination factors were measured. Based on the results, it was concluded that under certain conditions, oxalic acid was the most effective reagent for the dissolution of oxides. It was also found, however, that conditions under which effective dissolution occurred in solutions of oxalic acid and/or citric acid were difficult to define and control. EDTA was found to be an effective reagent for dissolution of oxides such that rates of dissolution in EDTA containing solutions at 117 degrees Celsius were comparable to rates in oxalic acid containing solutions. At 90 degrees Celsius, EDTA acted synergistically with oxalic acid such that the rate of dissolution of oxides in citric-acid/oxalic-acid/EDTA solutions was higher than in citric-acid/EDTA solutions. The rates of dissolution of oxides were significantly reduced when 60 mg/kg of ferric ion was added to the citric-acid/oxalic-acid, citric-acid/EDTA and citric-acid/oxalic-acid/EDTA solutions. It was concluded that effective decontaminations of BWR and PWR systems could be achieved with mixtures of citric acid and EDTA

  17. Tannin, oxalate, saponin, cyanogenic and cardiac glycosides ...

    African Journals Online (AJOL)

    Two species of cola, Cola nitida and Cola acuminate, were investigated for their possible relative contents of the secondary plant products:- tannin, oxalate, saponin, cyanogenic and cardiac glycosides. The two cola species gave low levels of tannin and oxalate but very high levels of cyanogenic and cardiac glycosides as ...

  18. Studies on the adsorption of plutonium(IV) on alumina from aqueous nitric acid-oxalic acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Subba Rao, M.; Gaikwad, A.M.; Rao, V.K.; Natarajan, P.R. (Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.)

    1983-05-11

    Results of experiments on the adsorption of plutonium(IV) on alumina from solutions containing oxalic acid-nitric acid are reported. Distribution coefficients for Pu adsortion at various oxalic acid and nitric acid concentrations have been determined and optimum conditions for loading and elution of plutonium from columns packed with alumina have been established. Plutonium recoveries better than 99.5% were obtained. The effect of ions like U(VI) and Fe(III) on plutonium loading has also been studied.

  19. Reaction of Hydrazine Hydrate with Oxalic Acid: Synthesis and ...

    African Journals Online (AJOL)

    The reaction of oxalic acid with hydrazine hydrate (in appropriate mole ratio) forms the dihydrazinium oxalate under specific experimental condition. The title compound is a molecular salt containing two discrete hydrazinium cations and an oxalate anion. The oxalate anion is perfectly planar and there is a crystallographic ...

  20. [Quantitative mineralogical analyzes of kidney stones and diagnosing metabolic disorders in female patients with calcium oxalate urolithiasis].

    Science.gov (United States)

    Kustov, A V; Moryganov, M A; Strel'nikov, A I; Zhuravleva, N I; Airapetyan, A O

    2016-02-01

    To conduct a complex examination of female patients with calcium oxalate urolithiasis to detect metabolic disorders, leading to stone formation. The study was carried out using complex physical and chemical methods, including quantitative X-ray phase analysis of urinary stones, pH measurement, volumetry, urine and blood spectrophotometry. Quantitative mineralogical composition of stones, daily urine pH profile, daily urinary excretion of ions of calcium, magnesium, oxalate, phosphate, citrate and uric acid were determined in 20 female patients with calcium oxalate stones. We have shown that most of the stones comprised calcium oxalate monohydrate or mixtures of calcium oxalate dihydrate and hydroxyapatite. Among the identified abnormalities, the most frequent were hypocitraturia and hypercalciuria - 90 and 45%, respectively. Our findings revealed that the daily secretion of citrate and oxalate in patients older than 50 years was significantly lower than in younger patients. In conclusion, daily urinary citrate excretion should be measured in female patients with calcium oxalate stones. This is necessary both to determine the causes of stone formation, and to monitor the effectiveness of citrate therapy.

  1. Probiotics and Other Key Determinants of Dietary Oxalate Absorption1

    OpenAIRE

    Liebman, Michael; Al-Wahsh, Ismail A.

    2011-01-01

    Oxalate is a common component of many foods of plant origin, including nuts, fruits, vegetables, grains, and legumes, and is typically present as a salt of oxalic acid. Because virtually all absorbed oxalic acid is excreted in the urine and hyperoxaluria is known to be a considerable risk factor for urolithiasis, it is important to understand the factors that have the potential to alter the efficiency of oxalate absorption. Oxalate bioavailability, a term that has been used to refer to that p...

  2. Hydrogen peroxide inhibition of bicupin oxalate oxidase.

    Science.gov (United States)

    Goodwin, John M; Rana, Hassan; Ndungu, Joan; Chakrabarti, Gaurab; Moomaw, Ellen W

    2017-01-01

    Oxalate oxidase is a manganese containing enzyme that catalyzes the oxidation of oxalate to carbon dioxide in a reaction that is coupled with the reduction of oxygen to hydrogen peroxide. Oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx) is the first fungal and bicupin enzyme identified that catalyzes this reaction. Potential applications of oxalate oxidase for use in pancreatic cancer treatment, to prevent scaling in paper pulping, and in biofuel cells have highlighted the need to understand the extent of the hydrogen peroxide inhibition of the CsOxOx catalyzed oxidation of oxalate. We apply a membrane inlet mass spectrometry (MIMS) assay to directly measure initial rates of carbon dioxide formation and oxygen consumption in the presence and absence of hydrogen peroxide. This work demonstrates that hydrogen peroxide is both a reversible noncompetitive inhibitor of the CsOxOx catalyzed oxidation of oxalate and an irreversible inactivator. The build-up of the turnover-generated hydrogen peroxide product leads to the inactivation of the enzyme. The introduction of catalase to reaction mixtures protects the enzyme from inactivation allowing reactions to proceed to completion. Circular dichroism spectra indicate that no changes in global protein structure take place in the presence of hydrogen peroxide. Additionally, we show that the CsOxOx catalyzed reaction with the three carbon substrate mesoxalate consumes oxygen which is in contrast to previous proposals that it catalyzed a non-oxidative decarboxylation with this substrate.

  3. Modeling the Adsorption of Oxalate onto Montmorillonite.

    Science.gov (United States)

    Ramos, M Elena; Emiroglu, Caglayan; García, David; Sainz-Díaz, C Ignacio; Huertas, F Javier

    2015-11-03

    In this work, a multiscale modeling of the interaction of oxalate with clay mineral surfaces from macroscale thermodynamic equilibria simulations to atomistic calculations is presented. Previous results from macroscopic adsorption data of oxalate on montmorillonite in 0.01 M KNO3 media at 25 °C within the pH range from 2.5 to 9 have been used to develop a surface complexation model. The experimental adsorption edge data were fitted using the triple-layer model (TLM) with the aid of the FITEQL 4.0 computer program. Surface complexation of oxalate is described by two reactions: >AlOH + Ox(2-) + 2H(+) = >AlOxH + H2O (log K = 14.39) and >AlOH + Ox(2-) + H(+) = >AlOx(-) + H2O (log K = 10.39). The monodentate complex >AlOxH dominated adsorption below pH 4, and the bidentate complex >AlOx(-) was predominant at higher pH values. Both of the proposed inner-sphere oxalate species are qualitatively consistent with previously published diffuse reflectance FTIR spectroscopic results for oxalate on montmorillonite edge surface (Chem. Geol. 2014, 363, 283-292). Atomistic computational studies have been performed to understand the interactions at the molecular level between adsorbates and mineral surface, showing the atomic structures and IR frequency shifts of the adsorption complexes of oxalate with the edge surface of a periodic montmorillonite model.

  4. Effect of Surface Precipitate on the Crevice Corrosion in HYBRID and Oxalic Acid Solution

    International Nuclear Information System (INIS)

    Park, S. Y.; Jung, J. Y.; Won, H. J.; Kim, S. B.; Choi, W. K.; Moon, J. K.; Park, S. J.

    2015-01-01

    In this study, we investigated the characteristics of the crevice corrosion for Inconel-600 and 304SS in OA solution according to the change in pH. The evaluation of the crevice corrosion with the chemical thermodynamic analysis identified the effect of the residual chemicals such as iron-oxalate and nickeloxalate to the crevice corrosion behavior. Test results were compared with those of HYBRID (HYdrizine Base Reductive metal Ion Decontamination). The crevice corrosion properties of 304 SS and Inconel-600 in HYBRID and oxalic acid solution were evaluated. In case of oxalic acid solution, the corrosion rate on 304SS was rapidly increased with a pH decrease of around 2, but there was no increase in the corrosion rate on Inconel-600

  5. Colorimetric sensing of oxalate based on its inhibitory effect on the reaction of Fe (III) with curcumin nanoparticles

    Science.gov (United States)

    Pourreza, Nahid; Lotfizadeh, Neda; Golmohammadi, Hamed

    2018-03-01

    In this research, a new colorimetric method for the determination of oxalate using curcumin nanoparticles (CURNs) in the presence Fe (III) is introduced. The method is based on the inhibitory effect of oxalate ion on the reaction of (CURNs) with Fe (III) in acidic media. This reaction was monitored by measuring the increase in absorbance of CURNs-Fe3 + complex in the presence of oxalate ion at 427 nm. The effect of different parameters such as the pH of the sample solution, concentration of Fe (III), concentration of CURNs and the reaction time was examined and optimized. Under optimum experimental conditions, the absorption intensity was linear with the concentration of oxalate in the range of 0.15 to 1.70 μg mL- 1. The limit of detection (LOD) was 0.077 μg mL- 1 and the relative standard deviations (RSD) for 8 replicate measurements of 0.40 and 1.05 μg mL- 1 of oxalate were 4.20% and 2.74%, respectively. The developed method was successfully employed to the determination of oxalate in water, food and urine samples with satisfactory results.

  6. Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants 1

    Science.gov (United States)

    Nuss, Richard F.; Loewus, Frank A.

    1978-01-01

    l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined. When l-[1-14C]ascorbic acid is supplied to young seedlings of R. crispus or H. glomeratus, a major portion of the 14C is released over a 24-hour period as 14CO2 and only a small portion is recovered as [14C]oxalate, unlike cuttings from 2- or 4-month-old plants which retain a large part of the 14C as [14C]oxalic acid and release very little 14CO2. Support for an intermediate role of oxalate in the release of 14CO2 from l-[1-14C]ascorbic acid is seen in the rapid release of 14CO2 by R. crispus and H. glomeratus seedlings labeled with [14C]oxalic acid. The common origin of oxalic acid carbon in the C1 and C2 fragment from l-ascorbic acid is demonstrated by comparison of 14C content of oxalic acid in several oxalate-accumulators after cuttings or seedlings are supplied equal amounts of l-[1-14C]- or l-[UL-14C]ascorbic acid. Theoretically, l-[1-14C]ascorbic acid will produce labeled oxalic acid containing three times as much 14C as l-[UL-14C]ascorbic acid when equal amounts of label are provided. Experimentally, a ratio of 2.7 ± 0.5 is obtained in duplicate experiments with six different species. PMID:16660342

  7. Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants.

    Science.gov (United States)

    Nuss, R F; Loewus, F A

    1978-04-01

    l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined.When l-[1-(14)C]ascorbic acid is supplied to young seedlings of R. crispus or H. glomeratus, a major portion of the (14)C is released over a 24-hour period as (14)CO(2) and only a small portion is recovered as [(14)C]oxalate, unlike cuttings from 2- or 4-month-old plants which retain a large part of the (14)C as [(14)C]oxalic acid and release very little (14)CO(2). Support for an intermediate role of oxalate in the release of (14)CO(2) from l-[1-(14)C]ascorbic acid is seen in the rapid release of (14)CO(2) by R. crispus and H. glomeratus seedlings labeled with [(14)C]oxalic acid.The common origin of oxalic acid carbon in the C1 and C2 fragment from l-ascorbic acid is demonstrated by comparison of (14)C content of oxalic acid in several oxalate-accumulators after cuttings or seedlings are supplied equal amounts of l-[1-(14)C]- or l-[UL-(14)C]ascorbic acid. Theoretically, l-[1-(14)C]ascorbic acid will produce labeled oxalic acid containing three times as much (14)C as l-[UL-(14)C]ascorbic acid when equal amounts of label are provided. Experimentally, a ratio of 2.7 +/- 0.5 is obtained in duplicate experiments with six different species.

  8. Growth and characterization of Sm3+ doped cerium oxalate single crystals

    Directory of Open Access Journals (Sweden)

    Minu Mary C

    2016-07-01

    Full Text Available Single crystals of Sm3+ doped cerium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, morphology, nucleation density and quality of the crystals were optimized. Highly transparent single crystals of average size 3 mm × 2 mm × 1 mm with well-defined hexagonal morphology were grown during a time period of two weeks. X-ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c as identical with the pure cerium oxalate. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. The photoluminescence spectrum of the Sm3+ doped cerium oxalate indicated that the Sm3+ ions are optically active in the cerium oxalate matrix. The crystal has a strong and efficient orange red emission with a wavelength peak at 595 nm and hence can be effectively used for optical amplification. Microhardness measurements of the crystal revealed that they belong to the soft material category.

  9. Short communication: Urinary oxalate and calcium excretion by dogs and cats diagnosed with calcium oxalate urolithiasis

    NARCIS (Netherlands)

    Dijcker, J.C.; Kummeling, A.; Hagen-Plantinga, E.A.; Hendriks, W.H.

    2012-01-01

    Introduction Urine concentrations of oxalate and calcium play an important role in calcium oxalate (CaOx) urolith formation in dogs and cats, with high excretions of both substances increasing the chance of CaOx urolithiasis. In 17 CaOx-forming dogs, urine calcium:creatinine ratio (Ca:Cr) was found

  10. Probiotics and other key determinants of dietary oxalate absorption.

    Science.gov (United States)

    Liebman, Michael; Al-Wahsh, Ismail A

    2011-05-01

    Oxalate is a common component of many foods of plant origin, including nuts, fruits, vegetables, grains, and legumes, and is typically present as a salt of oxalic acid. Because virtually all absorbed oxalic acid is excreted in the urine and hyperoxaluria is known to be a considerable risk factor for urolithiasis, it is important to understand the factors that have the potential to alter the efficiency of oxalate absorption. Oxalate bioavailability, a term that has been used to refer to that portion of food-derived oxalate that is absorbed from the gastrointestinal tract (GIT), is estimated to range from 2 to 15% for different foods. Oxalate bioavailability appears to be decreased by concomitant food ingestion due to interactions between oxalate and coingested food components that likely result in less oxalic acid remaining in a soluble form. There is a lack of consensus in the literature as to whether efficiency of oxalate absorption is dependent on the proportion of total dietary oxalate that is in a soluble form. However, studies that directly compared foods of varying soluble oxalate contents have generally supported the proposition that the amount of soluble oxalate in food is an important determinant of oxalate bioavailability. Oxalate degradation by oxalate-degrading bacteria within the GIT is another key factor that could affect oxalate absorption and degree of oxaluria. Studies that have assessed the efficacy of oral ingestion of probiotics that provide bacteria with oxalate-degrading capacity have led to promising but generally mixed results, and this remains a fertile area for future studies.

  11. Probiotics and Other Key Determinants of Dietary Oxalate Absorption1

    Science.gov (United States)

    Liebman, Michael; Al-Wahsh, Ismail A.

    2011-01-01

    Oxalate is a common component of many foods of plant origin, including nuts, fruits, vegetables, grains, and legumes, and is typically present as a salt of oxalic acid. Because virtually all absorbed oxalic acid is excreted in the urine and hyperoxaluria is known to be a considerable risk factor for urolithiasis, it is important to understand the factors that have the potential to alter the efficiency of oxalate absorption. Oxalate bioavailability, a term that has been used to refer to that portion of food-derived oxalate that is absorbed from the gastrointestinal tract (GIT), is estimated to range from 2 to 15% for different foods. Oxalate bioavailability appears to be decreased by concomitant food ingestion due to interactions between oxalate and coingested food components that likely result in less oxalic acid remaining in a soluble form. There is a lack of consensus in the literature as to whether efficiency of oxalate absorption is dependent on the proportion of total dietary oxalate that is in a soluble form. However, studies that directly compared foods of varying soluble oxalate contents have generally supported the proposition that the amount of soluble oxalate in food is an important determinant of oxalate bioavailability. Oxalate degradation by oxalate-degrading bacteria within the GIT is another key factor that could affect oxalate absorption and degree of oxaluria. Studies that have assessed the efficacy of oral ingestion of probiotics that provide bacteria with oxalate-degrading capacity have led to promising but generally mixed results, and this remains a fertile area for future studies. PMID:22332057

  12. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration

  13. Advanced Oxidation: Oxalate Decomposition Testing With Ozone

    International Nuclear Information System (INIS)

    Ketusky, E.; Subramanian, K.

    2012-01-01

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  14. Spectroscopic study of the inhibition of calcium oxalate calculi by Larrea tridentata

    Science.gov (United States)

    Pinales, Luis Alonso

    The causes of urolithiasis include such influences as diet, metabolic disorders, and genetic factors which have been documented as sources that aggravate urinary calculi depositions and aggregations, and, implicitly, as causes of urolithiasis. This study endeavors to detail the scientific mechanisms involved in calcium oxalate calculi formation, and, more importantly, their inhibition under growth conditions imposed by the traditional medicinal approach using the herbal extract, Larrea tridentata. The calculi were synthesized without and with Larrea tridentata infusion by employing the single diffusion gel technique. A visible decrease in calcium oxalate crystal growth with increasing amounts of Larrea tridentata herbal infusion was observed in photomicrographs, as well as a color change from white-transparent for pure crystals to light orange-brown for crystals with inhibitor. Analysis of the samples, which includes Raman, infrared absorption, scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) techniques, demonstrate an overall transition in morphology of the crystals from monohydrate without herbal extract to dihydrate with inhibitor. Furthermore, the resulting data from Raman and infrared absorption support the possibilities of the influences, in this complex process, of NDGA and its derivative compounds from Larrea tridentata, and of the bonding of the magnesium of the inhibitor with the oxalate ion on the surface of the calculi crystals. This assumption corroborates well with the micrographs obtained under higher magnification, which show that the separated small crystallites consist of darker brownish cores, which we attribute to the dominance of growth inhibition by NDGA, surrounded by light transparent thin shells, which possibly correspond to passivation of the crystals by magnesium oxalate. The SEM results reveal the transformation from the dominant monoclinic structure of the calcium oxalate crystals grown alone to the tetragonal

  15. Nutrition and oxalate metabolism in cats

    NARCIS (Netherlands)

    Dijcker, J.C.|info:eu-repo/dai/nl/315029412

    2013-01-01

    Over the past 30 years, a progressive increase in calcium oxalate (CaOx) urolith prevalence is reported in cats and dogs diagnosed with urolithiasis. This increase in prevalence appears to have occurred since dietary modifications were introduced to address magnesium ammonium phosphate urolithiasis.

  16. Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate ...

    African Journals Online (AJOL)

    This research was carried out to investigate effect of ethylenediaminetetraacetic acid and ammonium oxalate on the prevalence of microorganisms and removal of aluminum in soil by bitter leaf plant (Vernonia amygdalina). The test plant was sown in aluminium-polluted soil (conc. = 150mg Al kg-1 soil). One gram of each ...

  17. In vitro adsorption of oxalic acid and glyoxylic acid onto activated charcoal, resins and hydrous zirconium oxide

    NARCIS (Netherlands)

    Scholtens, R.; Scholten, J.; de Koning, H. W.; Tijssen, J.; ten Hoopen, H. W.; Olthuis, F. M.; Feijen, J.

    1982-01-01

    Patients suffering from primary hyperoxaluria show elevated plasma concentrations of oxalic acid and glyoxylic acid. The in vitro adsorption of these compounds into activated charcoal, a series of neutral and ion exchange resins and onto hydrous zirconium oxide has been investigated. Hydrous

  18. Red facts: Oxalic acid. Fact sheet

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    All pesticides sold or used in the United States must be registered by EPA, based on scientific studies showing that they can be used without posing unreasonable risks to people or the environment. Because of advances in scientific knowledge, the law requires that pesticides which were first registered years ago be reregistered to ensure that they meet today's more stringent standards. Oxalic acid is registered for use as a disinfectant to control bacteria and germs, and as a sanitizer, in toilet bowls, urinals and bathroom premises. Oxalic acid also has many diverse, non-pesticidal, manufacturing and industrial uses including use in fabric printing and dyeing; bleaching straw hats; removing paint, varnish, rust or ink stains; and cleaning wood.

  19. Luminescent and morphological study of Sr2CeO4 blue phosphor prepared from oxalate precursors

    International Nuclear Information System (INIS)

    Ferrari, Jefferson L.; Pires, Ana M.; Serra, Osvaldo A.; Davolos, Marian R.

    2011-01-01

    Luminescent and morphological studies of Sr 2 CeO 4 blue phosphor prepared from cerium-doped strontium oxalate precursor are reported. Powder samples were prepared from 5 and 25 mol% Ce 3+ -doped strontium oxalate as well as from a mechanical mixture of strontium oxalate and cerium oxalate at a 4:1 ratio, respectively. All the samples were characterized by XRD, IR, PLS, and SEM. The luminescent and structural properties of the Sr 2 CeO 4 material are little affected by the SrCO 3 remaining from precursors. The Sr 2 CeO 4 material consists in one-dimensional chains of edge-sharing CeO 6 octahedra that are linked together by Sr 2+ ions. The carbonate ion might be associated with oxygen ions of the linear chain, and also with the oxygen atoms located in the equatorial position, which consequently affects the charge transfer bands between O 2- and Ce 4+ . As observed by SEM, the morphological changes are related to each kind of precursor and thermal treatment, along with irregular powder particles within the size range 0.5-2 μm.

  20. Addition of calcium compounds to reduce soluble oxalate in a high oxalate food system.

    Science.gov (United States)

    Bong, Wen-Chun; Vanhanen, Leo P; Savage, Geoffrey P

    2017-04-15

    Spinach (Spinacia oleracea L.) is often used as a base vegetable to make green juices that are promoted as healthy dietary alternatives. Spinach is known to contain significant amounts of oxalates, which are toxic and, if consumed regularly, can lead to the development of kidney stones. This research investigates adding 50-500mg increments of calcium carbonate, calcium chloride, calcium citrate and calcium sulphate to 100g of raw homogenates of spinach to determine whether calcium would combine with the soluble oxalate present in the spinach. Calcium chloride was the most effective additive while calcium carbonate was the least effective. The formation of insoluble oxalate after incubation at 25°C for 30min is a simple practical step that can be incorporated into the juicing process. This would make the juice considerably safer to consume on a regular basis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, B. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Pamplona, M. [Centro de Petrologia e Geoquimica do Instituto Superior Tecnico Universidade Tecnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Selvaggi, R. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Miliani, C. [Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy)]. E-mail: miliani@thch.unipg.it; Matteini, M. [CNR Istituto, Conservazione e Valorizzazione dei Beni Culturali (ICVBC), Via Madonna del Piano, 10, Edifico C-50019, Florence (Italy); Sgamellotti, A. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Brunetti, B. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy)

    2007-03-15

    The artificial oxalate protection method was analyzed in laboratory experiments in order to achieve an optimum treatment application and concentration giving rise to its most effective protective nature. Spectroscopic (Fourier transform infrared, Micro-Raman and UV-vis colorimetry), microscopic (scanning electron microscope) and contact-angle analyses were carried out to characterize Carrara marble samples before and after application of the treatment to validate its efficiency. The resistance effects against chemical weathering were subsequently observed in a lab-controlled weak acid rain experiment. An acid spray at pH 5.5, representative of normal rain was used to provoke degrade of natural marble, marble treated with the artificial oxalate protective at concentrations of 0.4 and 5% and marble treated with a commercial organic silicon product. Run-off solutions sampled at timely intervals were tested for any change in pH followed by ion chromatography measurements for the presence of calcium ions in solution. The chromatography results of the oxalate treatment applied at a 5% concentration are analogous to an organic commercial product indicating its validity as a method for the conservation of carbonate substrates conferring protection to stone materials against acid environments.

  2. Oxalate Content of Taro Leaves Grown in Central Vietnam

    Science.gov (United States)

    Du Thanh, Hang; Phan Vu, Hai; Vu Van, Hai; Le Duc, Ngoan; Le Minh, Tuan; Savage, Geoffrey

    2017-01-01

    Leaves were harvested from four different cultivars of Colocasia esculenta and three cultivars of Alocasia odora that were growing on nine different farms in central Vietnam. The total, soluble and insoluble oxalate contents of the leaves were extracted and measured using HPLC chromatography. Total calcium determinations were also carried out on the same samples. The total oxalate content of the leaves ranged from 433.8 to 856.1 mg/100 g wet matter (WM) while the soluble oxalate ranged from 147.8 to 339.7 mg/100 g WM. The proportion of soluble oxalate ranged from 28% to 41% (overall mean 35%) of the total oxalate content of the leaves. The equivalent insoluble oxalate proportion ranged from 59% to 72% of the total (overall mean 65%). There was little difference between the Colocasia esculenta and Alocasia odora taro cultivars, although the total oxalate content was significantly higher in Alocasia odora cultivars. The overall mean total calcium content was 279.5 mg/100 WM and the percentage of insoluble calcium bound as calcium oxalate ranged from 31.7% to 57.3% of the total calcium content (overall mean 47.1%). The oxalate content in taro leaves is a major factor to consider when different cultivars of taro are recommended for human or animal consumption. PMID:28231080

  3. Oxalate Content of Taro Leaves Grown in Central Vietnam

    Directory of Open Access Journals (Sweden)

    Hang Du Thanh

    2017-01-01

    Full Text Available Leaves were harvested from four different cultivars of Colocasia esculenta and three cultivars of Alocasia odora that were growing on nine different farms in central Vietnam. The total, soluble and insoluble oxalate contents of the leaves were extracted and measured using HPLC chromatography. Total calcium determinations were also carried out on the same samples. The total oxalate content of the leaves ranged from 433.8 to 856.1 mg/100 g wet matter (WM while the soluble oxalate ranged from 147.8 to 339.7 mg/100 g WM. The proportion of soluble oxalate ranged from 28% to 41% (overall mean 35% of the total oxalate content of the leaves. The equivalent insoluble oxalate proportion ranged from 59% to 72% of the total (overall mean 65%. There was little difference between the Colocasia esculenta and Alocasia odora taro cultivars, although the total oxalate content was significantly higher in Alocasia odora cultivars. The overall mean total calcium content was 279.5 mg/100 WM and the percentage of insoluble calcium bound as calcium oxalate ranged from 31.7% to 57.3% of the total calcium content (overall mean 47.1%. The oxalate content in taro leaves is a major factor to consider when different cultivars of taro are recommended for human or animal consumption.

  4. Synthesis of water-dispersible silver nanoparticles by thermal decomposition of water-soluble silver oxalate precursors.

    Science.gov (United States)

    Togashi, Takanari; Saito, Kota; Matsuda, Yukiko; Sato, Ibuki; Kon, Hiroki; Uruma, Keirei; Ishizaki, Manabu; Kanaizuka, Katsuhiko; Sakamoto, Masatomi; Ohya, Norimasa; Kurihara, Masato

    2014-08-01

    Silver oxalate, one of the coordination polymer crystals, is a promising synthetic precursor for transformation into Ag nanoparticles without any reducing chemicals via thermal decomposition of the oxalate ions. However, its insoluble nature in solvents has been a great disadvantage, especially for systematic control of crystal growth of the Ag nanoparticles, while such control of inorganic nanoparticles has been generally performed using soluble precursors in homogeneous solutions. In this paper, we document our discovery of water-soluble species from the reaction between the insoluble silver oxalate and N,N-dimethyl-1,3-diaminopropane. The water-soluble species underwent low-temperature thermal decomposition of the oxalate ions at 30 °C with evolution of CO2 to reduce Ag+ to Ag0. Water-dispersible Ag nanoparticles have been successfully synthesized from the water-soluble species in the presence of gelatin via similar thermal decomposition at 100 °C. The gelatin-protected and water-dispersible Ag nanoparticles with a mean diameter of 25.1 nm appeared. In addition, antibacterial activity of the prepared water-dispersible Ag nanoparticles has been preliminarily investigated.

  5. Influence of nutrition on feline calcium oxalate urolithiasis with emphasis on endogenous oxalate synthesis

    NARCIS (Netherlands)

    Dijcker, J.C.; Plantinga, E.A.; Baal, van J.; Hendriks, W.H.

    2011-01-01

    The prevalence of calcium oxalate (CaOx) uroliths detected in cats with lower urinary tract disease has shown a sharp increase over the last decades with a concomitant reciprocal decrease in the occurrence of struvite (magnesium ammonium phosphate) uroliths. CaOx stone-preventative diets are

  6. Characterization of oxalic acid pretreatment on lignocellulosic biomass using oxalic acid recovered by electrodialysis.

    Science.gov (United States)

    Lee, Hong-Joo; Seo, Young-Jun; Lee, Jae-Won

    2013-04-01

    The properties of pretreated biomass and hydrolysate obtained by oxalic acid pretreatment using oxalic acid recovered through electrodialysis (ED) were investigated. Most of the oxalic acid was recovered and some of the fermentation inhibitors were removed by ED. For the original hydrolysate, the ethanol production was very low and fermentable sugars were not completely consumed by Pichia stipitis during fermentation. Ethanol yield was less than 0.12 g/g in all stage. For the ED-treated hydrolysate, ethanol production was increased by up to two times in all stages compared to the original hydrolysate. The highest ethanol production was 19.38 g/l after 72 h which correspond to the ethanol yield of 0.33 g/g. Enzymatic conversion of the cellulose to glucose for all the pretreated biomass was in the range of 76.03 and 77.63%. The hydrolysis rate on each pretreated biomass was not significantly changed when oxalic acid recovered by ED was used for pretreatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Calcium Oxalate: A Surface Treatment for Limestone

    Directory of Open Access Journals (Sweden)

    Tody M. Cezar

    1998-05-01

    Full Text Available This paper looks at the artificially induced surface conversion of calcium carbonate to the more durable calcium oxalate. Extensive research is being carried out on wall paintings and marble sculpture at the Opicificio delle Pietre Dure e Laboratori di Restauro in Florence, Encouraged by their work, I have researched the effectiveness of the conversion on English limestones. The treated samples have been compared to untreated samples for appearance, hardness, resistance to acid and alkali, porosity, and durability. The results have been assessed considering ease of use, effectiveness, and the appropriateness of the treatment.

  8. Computational and experimental studies on oxalic acid imprinted ...

    Indian Academy of Sciences (India)

    template-functional monomer interactions by computa- tional method is a successful approach towards more rational designing of MIP.8–11. In this work, oxalic acid which is widely distributed in various organisms, fungi, plants and animals was selected as template. High levels of oxalic acid remove calcium from blood with ...

  9. Hydrogen bonding in oxalic acid and its complexes: A database ...

    Indian Academy of Sciences (India)

    Abstract. The basic result of carboxylic group that the oxygen atom of the –OH never seems to be a hydrogen bond acceptor is violated in the cases, namely urea oxalic acid and bis urea oxalic acid complexes, where the hydroxyl oxygen atom is an acceptor of a weak. N–H...O hydrogen bond. The parameters of this ...

  10. Hydrogen bonding in oxalic acid and its complexes

    Indian Academy of Sciences (India)

    The basic result of carboxylic group that the oxygen atom of the –OH never seems to be a hydrogen bond acceptor is violated in the cases, namely urea oxalic acid and bis urea oxalic acid complexes, where the hydroxyl oxygen atom is an acceptor of a weak N–H... O hydrogen bond. The parameters of this hydrogen bond, ...

  11. Hydrogen bonding in oxalic acid and its complexes: A database ...

    Indian Academy of Sciences (India)

    The basic result of carboxylic group that the oxygen atom of the –OH never seems to be a hydrogen bond acceptor is violated in the cases, namely urea oxalic acid and bis urea oxalic acid complexes, where the hydroxyl oxygen atom is an acceptor of a weak N–H... O hydrogen bond. The parameters of this hydrogen bond, ...

  12. Synthesis and structural characterization of actinide oxalate compounds

    International Nuclear Information System (INIS)

    Tamain, C.

    2011-01-01

    Oxalic acid is a well-known reagent to recover actinides thanks to the very low solubility of An(IV) and An(III) oxalate compounds in acidic solution. Therefore, considering mixed-oxide fuel or considering minor actinides incorporation in ceramic fuel materials for transmutation, oxalic co-conversion is convenient to synthesize mixed oxalate compounds, precursors of oxide solid solutions. As the existing oxalate single crystal syntheses are not adaptable to the actinide-oxalate chemistry or to their manipulation constrains in gloves box, several original crystal growth methods were developed. They were first validate and optimized on lanthanides and uranium before the application to transuranium elements. The advanced investigations allow to better understand the syntheses and to define optimized chemical conditions to promote crystal growth. These new crystal growth methods were then applied to a large number of mixed An1(IV)-An2(III) or An1(IV)-An2(IV) systems and lead to the formation of the first original mixed An1(IV)-An2(III) and An1(IV)-An2(IV) oxalate single crystals. Finally thanks to the first thorough structural characterizations of these compounds, single crystal X-ray diffraction, EXAFS or micro-RAMAN, the particularly weak oxalate-actinide compounds structural database is enriched, which is essential for future studied nuclear fuel cycles. (author) [fr

  13. Oxalate Synthesis and Pyrolysis: A Colorful Introduction to Stoichiometry

    Science.gov (United States)

    Vannatta, Michael W.; Richards-Babb, Michelle; Sweeney, Robert J.

    2010-01-01

    Metal oxalate synthesis and pyrolysis provides an opportunity for students to (i) learn stoichiometry, (ii) experience the consequences of proper stoichiometric calculations and experimental techniques, and (iii) be introduced to the relevance of chemistry by highlighting oxalates in context, for example, usages and health effects. At our…

  14. Probable functions of calcium oxalate crystals in different tissues of ...

    African Journals Online (AJOL)

    Representatives of seven major edible aroid accessions were screened for calcium oxalate using standard histochemical methods. All the accessions were noted to contain calcium oxalate in the forms of raphide bundles and intra-amylar crystals. The crystals were widely present in all parts of the plants including spongy ...

  15. Wu-Ling-San formula prophylaxis against recurrent calcium oxalate ...

    African Journals Online (AJOL)

    Wu-Ling-San (WLS) formula has been proved to prevent calcium oxalate nephrolithiasis both in vitro and in vivo. This is the first prospective, randomized and placebo-controlled clinical trial of WLS in calcium oxalate nephrolithiasis prevention. All patients who enrolled were asked to drink enough fluid to urinate at least 2 L ...

  16. (azo anils and oxalate ion) copper(ii)

    African Journals Online (AJOL)

    B. S. Chandravanshi

    transition metal complexes compared to corresponding free ligands may be attributed to structural symmetry of ... C H, N contents in synthesized azo anils ligands and in Cu(II) complexes were found using. CHNS technique (Costech international-4100). Metal contents in synthesized complexes were. Compounds. Color.

  17. ions

    African Journals Online (AJOL)

    (MP2 B2). In order to draw the final conclusion about the content of the isomers of pentaatomic ions in saturated vapor over cesium chloride, we have taken into account the entropy factor. We considered the isomerization reactions which are given below: Cs3Cl2. + (V-shaped) = Cs3Cl2. + (cyclic or bipyramidal). (1). Cs2Cl3.

  18. An oxalate selective electrode based on modified PVC-membrane with tetra-butylammonium--Clinoptilolite nanoparticles.

    Science.gov (United States)

    Hoseini, Zohre; Nezamzadeh-Ejhieh, Alireza

    2016-03-01

    A modified PVC-membrane electrode with tetra-butylammonium bromide - Clinoptilolite nano-particles (TBA-NCP) showed good Nernstian slope (29.9±0.6 mV per decade of oxalate concentration) in concentration range of 3.1×10(-7)-8.3×10(-1) mol L(-1) with a detection limit of 1.5×10(-7) mol L(-1). The best performance was obtained with a membrane composition of 31.5% PVC, 62.5% DOP and 6% TBA-NCP in the temperature range of 20-35 °C and the pH range of 4-9. The fast response time and good reproducibility over a period of 3 months are other characteristics of the sensor. The proposed electrode was successfully used as an indicator electrode in titration of oxalate ions with CaCl2 solution. The proposed electrode was also used in direct potentiometric determination of oxalate in many real samples such as: mushroom, black and green tea, spinach and beet. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Degradation of sulfated polysaccharide extracted from algal Laminaria japonica and its modulation on calcium oxalate crystallization

    International Nuclear Information System (INIS)

    Ouyang Jianming; Wang Miao; Lu Peng; Tan Jin

    2010-01-01

    Sulfated polysaccharide (LPS) extracted from alga Laminaria japonica was degraded by hydrogen peroxide (H 2 O 2 ). The average molecular weight of LPS was apparently decreased from 172,000 to 9550 after degradation, while the proportion of sulfate groups (-OSO 3 - ) and carboxylic groups (-COO - ) in the molecular chains of LPS were slightly decreased from 4.5% and 5.20% to 3.9% and 4.64%, respectively. The effects of degraded and natural LPS on formation of calcium oxalate (CaOxa) crystals were investigated in vitro using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), zeta-potential, and atomic absorption spectroscopy. LPS could increase the concentration of soluble Ca 2+ ions in the solution, decrease the weight of precipitated CaOxa, and increase the negative value of zeta-potential of CaOxa crystals. LPS also inhibits the formation of thermodynamically stable calcium oxalate monohydrate (COM) crystals, while inducing and stabilizing metastable calcium oxalate dihydrate (COD) crystals. These results suggested that both degraded and natural LPS could decrease CaOxa crystallization, but the inhibition efficiency of the degraded LPS was clearly superior to that of the natural LPS. We expected this investigation would provide encouragement for further exploration into new drugs for the prevention and treatment of urolithiasis.

  20. Degradation of sulfated polysaccharide extracted from algal Laminaria japonica and its modulation on calcium oxalate crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang Jianming, E-mail: toyjm@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Wang Miao; Lu Peng; Tan Jin [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)

    2010-08-30

    Sulfated polysaccharide (LPS) extracted from alga Laminaria japonica was degraded by hydrogen peroxide (H{sub 2}O{sub 2}). The average molecular weight of LPS was apparently decreased from 172,000 to 9550 after degradation, while the proportion of sulfate groups (-OSO{sub 3}{sup -}) and carboxylic groups (-COO{sup -}) in the molecular chains of LPS were slightly decreased from 4.5% and 5.20% to 3.9% and 4.64%, respectively. The effects of degraded and natural LPS on formation of calcium oxalate (CaOxa) crystals were investigated in vitro using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), zeta-potential, and atomic absorption spectroscopy. LPS could increase the concentration of soluble Ca{sup 2+} ions in the solution, decrease the weight of precipitated CaOxa, and increase the negative value of zeta-potential of CaOxa crystals. LPS also inhibits the formation of thermodynamically stable calcium oxalate monohydrate (COM) crystals, while inducing and stabilizing metastable calcium oxalate dihydrate (COD) crystals. These results suggested that both degraded and natural LPS could decrease CaOxa crystallization, but the inhibition efficiency of the degraded LPS was clearly superior to that of the natural LPS. We expected this investigation would provide encouragement for further exploration into new drugs for the prevention and treatment of urolithiasis.

  1. Calcium oxalate crystals: an integral component of the Sclerotinia sclerotiorum/Brassica carinata pathosystem.

    Science.gov (United States)

    Uloth, Margaret B; Clode, Peta L; You, Ming Pei; Barbetti, Martin J

    2015-01-01

    Oxalic acid is an important virulence factor for disease caused by the fungal necrotrophic pathogen Sclerotinia sclerotiorum, yet calcium oxalate (CaOx) crystals have not been widely reported. B. carinata stems were infected with S. sclerotiorum and observed using light microscopy. Six hours post inoculation (hpi), CaOx crystals were evident on 46% of stem sections and by 72 hpi on 100%, demonstrating that the secretion of oxalic acid by S. sclerotiorum commences before hyphal penetration. This is the first time CaOx crystals have been reported on B. carinata infected with S. sclerotiorum. The shape of crystals varied as infection progressed. Long tetragonal rods were dominant 12 hpi (68% of crystal-containing samples), but by 72 hpi, 50% of stems displayed bipyramidal crystals, and only 23% had long rods. Scanning electron microscopy from 24 hpi revealed CaOx crystals in all samples, ranging from tiny irregular crystals (Crystal morphology encompassed various forms, including tetragonal prisms, oval plates, crystal sand, and druses. Large conglomerates of CaOx crystals were observed in the hyphal mass 72 hpi and these are proposed as a strategy of the fungus to hold and detoxify Ca2+ions. The range of crystal morphologies suggests that S. sclerotiorum growth and infection controls the form taken by CaOx crystals.

  2. Urinary oxalate to creatinine ratios in healthy Turkish schoolchildren.

    Science.gov (United States)

    Dursun, Ismail; Çelik, İlknur; Poyrazoglu, Hakan M; Köse, Kader; Tanrıkulu, Esen; Sahin, Habibe; Yılmaz, Kenan; Öztürk, Ahmet; Yel, Sibel; Gündüz, Zübeyde; Düşünsel, Ruhan

    2017-11-01

    we aimed to establish reference values for urinary oxalate to creatinine ratios in healthy children aged 6-15 years and to investigate the relationship between their nutritional habits and oxalate excretion. Random urine specimens from 953 healthy children aged 6-15 years were obtained and analyzed for oxalate and creatinine. Additionally, a 24-h dietary recall form was prepared and given to them. The ingredient composition of the diet was calculated. The children were divided into three groups according to age: Group I (69 years, n = 353), Group II (10-12 years, n = 335), and Group III (13-15 years, n = 265). The 95th percentile of the oxalate to creatinine ratio for subjects aged 6-9, 10-12, and 13-15 years were 0.048, 0.042, and 0.042 mg/mg, respectively. The oxalate to creatinine ratio was significantly higher in Group 1 than in Group 2 and Group 3. Urinary oxalate excretion was positively correlated with increased protein intake and negatively correlated with age. A significant positive correlation was determined between urinary oxalate excretion and the proline, serine, protein, and glycine content of diet. Dietary proline intake showed a positive correlation with the urine oxalate to creatinine ratio and was found to be an independent predictor for urinary oxalate. These data lend support to the idea that every country should have its own normal reference values to determine the underlying metabolic risk factor for kidney stone disease since regional variation in the dietary intake of proteins and other nutrients can affect normal urinary excretion of oxalate.

  3. Crystal growth methods dedicated to low solubility actinide oxalates

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, C., E-mail: christelle.tamain@cea.fr [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Arab-Chapelet, B. [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Rivenet, M. [University Lille Nord de France, Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, F-59652 Villeneuve d’Ascq Cedex (France); Grandjean, S. [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, F. [University Lille Nord de France, Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, F-59652 Villeneuve d’Ascq Cedex (France)

    2016-04-15

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 3}·xH{sub 2}O, Th(C{sub 2}O{sub 4}){sub 2}·6H{sub 2}O, M{sub 2+x}[Pu{sup IV}{sub 2−x}Pu{sup III}{sub x}(C{sub 2}O{sub 4}){sub 5}]·nH{sub 2}O and M{sub 1−x}[Pu{sup III}{sub 1−x}Pu{sup IV}{sub x}(C{sub 2}O{sub 4}){sub 2}·H{sub 2}O]·nH{sub 2}O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV–visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds. - Graphical abstract: Two new single crystal growth methods dedicated to actinide oxalate compounds. - Highlights: • Use of diester as oxalate precursor for crystal growth of actinide oxalates. • Use of actinide oxide as precursor for crystal growth of actinide oxalates. • Crystal growth of Pu(III) and Am(III) oxalates. • Crystal growth of mixed Pu(III)/Pu(IV) oxalates.

  4. Polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets

    CERN Document Server

    Clément, R; Gruselle, M; Train, C

    2003-01-01

    We report major results concerning polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets. As a consequence of their specific organization they are composed of an anionic sub-lattice and a cationic counter-part. These bimetallic polymers can accommodate various counter-cations possessing specific physical properties in addition to the magnetic ones resulting from the interactions between the metallic ions in the anionic sub-lattice. Thus, molecular magnets possessing paramagnetic, conductive and optical properties are presented in this review. Refs. 60 (author)

  5. Oxalic acid excretion after intravenous ascorbic acid administration

    Science.gov (United States)

    Robitaille, Line; Mamer, Orval A.; Miller, Wilson H.; Levine, Mark; Assouline, Sarit; Melnychuk, David; Rousseau, Caroline; Hoffer, L. John

    2012-01-01

    Ascorbic acid is frequently administered intravenously by alternative health practitioners and, occasionally, by mainstream physicians. Intravenous administration can greatly increase the amount of ascorbic acid that reaches the circulation, potentially increasing the risk of oxalate crystallization in the urinary space. To investigate this possibility, we developed gas chromatography mass spectrometry methodology and sampling and storage procedures for oxalic acid analysis without interference from ascorbic acid and measured urinary oxalic acid excretion in people administered intravenous ascorbic acid in doses ranging from 0.2 to 1.5 g/kg body weight. In vitro oxidation of ascorbic acid to oxalic acid did not occur when urine samples were brought immediately to pH less than 2 and stored at –30°C within 6 hours. Even very high ascorbic acid concentrations did not interfere with the analysis when oxalic acid extraction was carried out at pH 1. As measured during and over the 6 hours after ascorbic acid infusions, urinary oxalic acid excretion increased with increasing doses, reaching approximately 80 mg at a dose of approximately 100 g. We conclude that, when studied using correct procedures for sample handling, storage, and analysis, less than 0.5% of a very large intravenous dose of ascorbic acid is recovered as urinary oxalic acid in people with normal renal function. PMID:19154961

  6. Dissociation of protonated oxalic acid [HOOC-C(OH)2]+ into H30++CO+CO2: an experimental and CBS-QB3 computational study

    NARCIS (Netherlands)

    Ervasti, H.K.; Lee, R.; Burgers, P.C.; Ruttink, P.J.A.; Terlouw, J.K.

    2006-01-01

    The predominant dissociation process observed for metastable protonated oxalic acid ions HOOC-C(OH)2+ (generated by self-protonation) leads to H3O++CO+CO2. We have traced the mechanism of this intriguing reaction using the CBS-QB3 model chemistry. Our calculations show that a unique ter-body

  7. Viscosities of oxalic acid and its salts in water and binary aqueous ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Relative viscosities for the solutions of oxalic acid and its salts, viz. ammonium oxalate, sodium oxalate and potassium oxalate, at different concentrations have been determined in water and in binary aqueous mixtures of tetrahydrofuran (THF) [5, 10, 15 and 20% by weight of THF] at 298⋅15 K, and in water and in ...

  8. Synthesis of unsymmetrical dimethylhydrazine oxalate from rejected liquid rocket propellant

    Science.gov (United States)

    Mu, Xiaogang; Yang, Jingjing; Zhang, Youzhi

    2018-02-01

    The rejected liquid propellant unsymmetrical dimethylhydrazine (UDMH) was converted to UDMH oxalate, which has commercial value. The UDMH oxalate structure and stability were investigated by the Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and ultraviolet-visible spectrophotometric analysis. The results indicate that UDMH oxalate has good thermal and aqueous solution stability, a melting point of 144 °C, an initial decomposition temperature of 180 °C, and a peak wavelength of UV in aqueous solution at λ = 204 nm. This disposal method of rejected UDMH is highly efficient and environmentally safe.

  9. Influence of additives on the structure and microstructure of lanthanides and actinides oxalates

    International Nuclear Information System (INIS)

    Haidon, Blaise; Vitart, Anne-Lise; Rivenet, Murielle; Arab-Chapelet, Benedicte; Roussel, Pascal; Delahaye, Thibaud; Grandjean, Stephane; Abraham, Francis

    2015-07-01

    Oxalic conversion is a well-known process in the nuclear industry where it is used for precipitating plutonium as an oxalate thereafter calcinated into an oxide. As there is a strong relationship between the morphology of the oxalate precursor and that of the resulting oxide, it is of interest to control the oxalate structure and microstructure during the precipitation step. The influence of additives on the precipitation of neodymium (III) oxalates, non-radioactive analogs of actinides (III) oxalates, was explored. With the use of nitrilotri-methylphosphonic acid (NTMP), the structure and microstructure of the neodymium oxalates are different from that obtained without additive. (authors)

  10. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid

    Science.gov (United States)

    Cheng, Chunlei; Li, Mei; Chan, Chak K.; Tong, Haijie; Chen, Changhong; Chen, Duohong; Wu, Dui; Li, Lei; Wu, Cheng; Cheng, Peng; Gao, Wei; Huang, Zhengxu; Li, Xue; Zhang, Zhijuan; Fu, Zhong; Bi, Yanru; Zhou, Zhen

    2017-08-01

    The formation of oxalic acid and its mixing state in atmospheric particulate matter (PM) were studied using a single-particle aerosol mass spectrometer (SPAMS) in the summer and winter of 2014 in Heshan, a supersite in the rural area of the Pearl River Delta (PRD) region in China. Oxalic-acid-containing particles accounted for 2.5 and 2.7 % in total detected ambient particles in summer and winter, respectively. Oxalic acid was measured in particles classified as elemental carbon (EC), organic carbon (OC), elemental and organic carbon (ECOC), biomass burning (BB), heavy metal (HM), secondary (Sec), sodium-potassium (NaK), and dust. Oxalic acid was found predominantly mixing with sulfate and nitrate during the whole sampling period, likely due to aqueous-phase reactions. In summer, oxalic-acid-containing particle number and ozone concentration followed a very similar trend, which may reflect the significant contribution of photochemical reactions to oxalic acid formation. The HM particles were the most abundant oxalic acid particles in summer and the diurnal variations in peak area of iron and oxalic acid show opposite trends, which suggests a possible loss of oxalic acid through the photolysis of iron oxalato-complexes during the strong photochemical activity period. In wintertime, carbonaceous particles contained a substantial amount of oxalic acid as well as abundant carbon clusters and BB markers. The general existence of nitric acid in oxalic-acid-containing particles indicates an acidic environment during the formation process of oxalic acid. The peak areas of nitrate, sulfate and oxalic had similar temporal change in the carbonaceous type oxalic acid particles, and the organosulfate-containing oxalic acid particles correlated well with total oxalic acid particles during the haze episode, which suggests that the formation of oxalic acid is closely associated with the oxidation of organic precursors in the aqueous phase.

  11. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid

    Directory of Open Access Journals (Sweden)

    C. Cheng

    2017-08-01

    Full Text Available The formation of oxalic acid and its mixing state in atmospheric particulate matter (PM were studied using a single-particle aerosol mass spectrometer (SPAMS in the summer and winter of 2014 in Heshan, a supersite in the rural area of the Pearl River Delta (PRD region in China. Oxalic-acid-containing particles accounted for 2.5 and 2.7 % in total detected ambient particles in summer and winter, respectively. Oxalic acid was measured in particles classified as elemental carbon (EC, organic carbon (OC, elemental and organic carbon (ECOC, biomass burning (BB, heavy metal (HM, secondary (Sec, sodium-potassium (NaK, and dust. Oxalic acid was found predominantly mixing with sulfate and nitrate during the whole sampling period, likely due to aqueous-phase reactions. In summer, oxalic-acid-containing particle number and ozone concentration followed a very similar trend, which may reflect the significant contribution of photochemical reactions to oxalic acid formation. The HM particles were the most abundant oxalic acid particles in summer and the diurnal variations in peak area of iron and oxalic acid show opposite trends, which suggests a possible loss of oxalic acid through the photolysis of iron oxalato-complexes during the strong photochemical activity period. In wintertime, carbonaceous particles contained a substantial amount of oxalic acid as well as abundant carbon clusters and BB markers. The general existence of nitric acid in oxalic-acid-containing particles indicates an acidic environment during the formation process of oxalic acid. The peak areas of nitrate, sulfate and oxalic had similar temporal change in the carbonaceous type oxalic acid particles, and the organosulfate-containing oxalic acid particles correlated well with total oxalic acid particles during the haze episode, which suggests that the formation of oxalic acid is closely associated with the oxidation of organic precursors in the aqueous phase.

  12. Oxalate accumulation in forage plants: Some agronomic, climatic and genetic aspects

    OpenAIRE

    M.M.Rahman; Kawamura, O

    2011-01-01

    Oxalic acid is synthesized by a wide range of plants. A few of them are forage plants that can cause oxalate poisoning in ruminants under certain conditions. In this paper, the role of some agronomic, climatic and genetic factors in minimizing oxalate accumulation in forage plants has been discussed. Research indicates that the content of oxalate in forage can be controlled by fertilizer application. For example, nitrate application resulted in higher contents of soluble and insoluble oxalate...

  13. Computational and experimental studies on oxalic acid imprinted ...

    Indian Academy of Sciences (India)

    EGDMA) were purchased from Sigma Aldrich. Ace- tonitrile and Oxalic acid were procured from Merck. Azobisisobutyronitrile (AIBN) was supplied by Across. Organics and re-crystallized from methanol before use. All chemicals were of analytical ...

  14. Dynamic process model of a plutonium oxalate precipitator. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.L.; Hammelman, J.E.; Borgonovi, G.M.

    1977-11-01

    In support of LLL material safeguards program, a dynamic process model was developed which simulates the performance of a plutonium (IV) oxalate precipitator. The plutonium oxalate precipitator is a component in the plutonium oxalate process for making plutonium oxide powder from plutonium nitrate. The model is based on state-of-the-art crystallization descriptive equations, the parameters of which are quantified through the use of batch experimental data. The dynamic model predicts performance very similar to general Hanford oxalate process experience. The utilization of such a process model in an actual plant operation could promote both process control and material safeguards control by serving as a baseline predictor which could give early warning of process upsets or material diversion. The model has been incorporated into a FORTRAN computer program and is also compatible with the DYNSYS 2 computer code which is being used at LLL for process modeling efforts.

  15. Dynamic process model of a plutonium oxalate precipitator. Final report

    International Nuclear Information System (INIS)

    Miller, C.L.; Hammelman, J.E.; Borgonovi, G.M.

    1977-11-01

    In support of LLL material safeguards program, a dynamic process model was developed which simulates the performance of a plutonium (IV) oxalate precipitator. The plutonium oxalate precipitator is a component in the plutonium oxalate process for making plutonium oxide powder from plutonium nitrate. The model is based on state-of-the-art crystallization descriptive equations, the parameters of which are quantified through the use of batch experimental data. The dynamic model predicts performance very similar to general Hanford oxalate process experience. The utilization of such a process model in an actual plant operation could promote both process control and material safeguards control by serving as a baseline predictor which could give early warning of process upsets or material diversion. The model has been incorporated into a FORTRAN computer program and is also compatible with the DYNSYS 2 computer code which is being used at LLL for process modeling efforts

  16. Factors affecting crystallization, dispersion, and aggregation of calcium oxalate monohydrate in various urinary environments

    Science.gov (United States)

    Christmas, Kimberly Gail

    The mechanisms for the formation of kidney stones are not well understood. One possible mechanism is the formation of aggregates in the nephron tubules of the kidneys. However, altering the urinary environment may be a method to help prevent the recurrence of the formation of kidney stones. The primary inorganic constituent found in kidney stones of North American patients is calcium oxalate monohydrate (COM). In this research, studies on the effect of mixing rate on COM precipitation showed that rapid mixing compared to slow mixing produced smaller particle sizes and a narrower particle size distribution due to the more uniform supersaturation level. The findings are consistent with the general contention that mixing directly influences nucleation rate while mixing rate has relatively little influence over rate of growth in precipitation processes. Screening and central composite experimental designs are used to determine the effect of various factors on the aggregation and dispersion characteristics of previously grown calcium oxalate monohydrate (COM) crystals in artificial urinary environments of controlled variables. The variables examined are pH, calcium, oxalate, pyrophosphate, citrate, and protein concentrations in ultrapure water and artificial urine. Optical density measurements, zeta potential analysis, particle size analyzer, optical microscopy, AFM force measurements, protein adsorption, and ions and small molecule adsorption have been used to assess the state of aggregation and dispersion of the COM crystals and to elucidate the mechanisms involved in such a complex system. The data indicate that our model protein, mucin, acts as a dispersant. This is attributed to steric hindrance resulting from the adsorbed mucoprotein. Oxalate, however, promotes aggregation. Interesting interactions between protein and oxalate along with protein and citrate are observed. Such interactions (synergistic or antagonistic) are found to depend on the concentrations of

  17. Oxalate quantification in hemodialysate to assess dialysis adequacy for primary hyperoxaluria.

    Science.gov (United States)

    Tang, Xiaojing; Voskoboev, Nikolay V; Wannarka, Stacie L; Olson, Julie B; Milliner, Dawn S; Lieske, John C

    2014-01-01

    Patients with primary hyperoxaluria (PH) overproduce oxalate which is eliminated via the kidneys. If end-stage kidney disease develops they are at high risk for systemic oxalosis, unless adequate oxalate is removed during hemodialysis (HD) to equal or exceed ongoing oxalate production. The purpose of this study was to validate a method to measure oxalate removal in this unique group of dialysis patients. Fourteen stable patients with a confirmed diagnosis of PH on HD were included in the study. Oxalate was measured serially in hemodialysate and plasma samples in order to calculate rates of oxalate removal. HD regimens were adjusted according to a given patient's historical oxalate production, amount of oxalate removal at dialysis, residual renal clearance of oxalate, and plasma oxalate levels. After a typical session of HD, plasma oxalate was reduced by 78.4 ± 7.7%. Eight patients performed HD 6 times/week, 2 patients 5 times/week, and 3 patients 3 times/week. Combined oxalate removal by HD and the kidneys was sufficient to match or exceed endogenous oxalate production. After a median period of 9 months, pre-dialysis plasma oxalate was significantly lower than initially (75.1 ± 33.4 vs. 54.8 ± 46.6 mmol/l, p = 0.02). This methodology can be used to individualize the dialysis prescription of PH patients to prevent oxalosis during the time they are maintained on HD and to reduce risk of oxalate injury to a transplanted kidney.

  18. The odd association of a C(3h) trisamidinium cation and tosylate anion with a series of linear oxalate-bridged trinuclear heterometallic complexes.

    Science.gov (United States)

    Maxim, Catalin; Pardo, Emilio; Hosseini, Mir Wais; Ferlay, Sylvie; Train, Cyrille

    2013-04-07

    A series of six isostructural heterometallic trinuclear oxalate-bridged complexes of the formula (TDbenz)(2)(TsO)(2)[M(II)(H(2)O)(2){(μ-ox)M(III)(ox)(2)}(2)]·6H(2)O·2CH(3)OH (TDbenz = 1,3,5-tris[2-(1,3-diazolinium)]benzene; TsO = 4-methylbenzenesulfonate; ox = oxalate; M(III) = Fe, M(II) = Mn (1), Fe (2), Co (3); M(III) = Cr, M(II) = Mn (4), Fe (5), Co (6)) have been synthesized from (NH(4))(3)[M(III)(ox)(3)]·3H(2)O, the chloride salts of the divalent metal ions and the tosylate salt of 1,3,5-tris[2-(1,3-diazolinium)]benzene (trisamidinium). Whereas the crystal structures of compounds 2, 3, 4 and 5 have been investigated by single-crystal X-ray diffraction, the structures of 1 and 6 have been checked by X-ray powder diffraction. All six compounds are isostructural and crystallise in the P1 space group. The crystals are composed of discrete linear [M(II)(H(2)O)(2){(μ-ox)M(III)(ox)(2)}(2)](4-) trinuclear bimetallic units, trisamidinium and tosylate ions and solvent molecules. The linear trinuclear unit is based on a central trans-diaquametal(II) entity connected to two [M(III)(ox)(3)](3-) (M(III) = Cr(III), Fe(III)) moieties through oxalate bridges. The divalent metal ions, surrounded by six oxygen atoms, adopt a distorted octahedral coordination geometry. The coordination sphere is composed of four oxygen atoms belonging to two oxalate ligands and two trans-coordinated water molecules. One of the oxalate ions is coordinated to the central metal centre whereas the other two oxalate ligands are non-bridging. In the crystal, intermolecular hydrogen bonds involving oxalate ligands, solvent molecules and the counter-ions form a complex 3D network. Variable-temperature magnetic susceptibility measurements indicate an antiferromagnetic interaction between the iron(III) and the metal(II) ions (J = -4.23, -6.73, -8.97 cm(-1) for 1, 2 and 3 respectively) whereas this interaction is ferromagnetic when iron(III) is replaced by chromium(III) (J = +1.21, +2.20, +3.63 cm(-1

  19. Oxalate Encapsulation in Aqueous Medium by Tripodal Urea ...

    Indian Academy of Sciences (India)

    1H-NMR titration studies: All 1H-NMR titration experiments for L1 and L2 were conducted on a Bruker 300 MHz spectrometer at 298 K respectively. Potassium oxalate dihydrate (K2C2O4.2H2O) was used to prepare the stock solution of anion in DMSO-d6:D2O (1:1.1) solvent system. Lower solubility of potassium oxalate in ...

  20. Controlled synthesis of porous anhydrous cobalt oxalate nanorods with high reversible capacity and excellent cycling stability

    International Nuclear Information System (INIS)

    Xu, Junmin; He, Lei; Liu, Hui; Han, Tao; Wang, Yongjian; Zhang, Changjin; Zhang, Yuheng

    2015-01-01

    Graphical abstract: Display Omitted -- Abstract: One-dimensional porous anhydrous cobalt oxalate nanorods are prepared via a facile water-controlled coprecipitate method followed by thermal annealing treatment under N 2 at 300 °C. The nanorods are characterized by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. When evaluated as an anode material for lithium ion batteries, the nanorods exhibit high reversible specific capacity and excellent cycling stability (924 mA h g −1 at 50 mA g −1 after 100 cycles and 709 mA h g −1 at 200 mA g −1 after 220 cycles). This remarkable electrochemical performance is attributed to the one-dimensional porous nanostructure that can provide large electrode/electrolyte contact area and short lithium-ion diffusion pathway, meanwhile reduce the volume expansion during the repeated discharge/charge process

  1. Correlation between the degree of air pollution and the distribution of calcium oxalate crystals in the gingko leaf

    Energy Technology Data Exchange (ETDEWEB)

    Umemoto, K.; Hozumi, K.

    1972-12-01

    It is now found that the leaves of the gingko tree, Gingko biloba Linn, start to change color prematurely (in July) and are frequently shed considerably in advance of their normal release due to exposure to automotive exhaust. A comparison was made between leaves taken from clean locations free from exhaust fumes and others from high traffic intersections in urban areas. There were noticeable changes in the distribution of inorganic crystals, calcium oxalate, which suggested a biochemical synthesis in the leaf of oxalic acid from inspired carbon monoxide, carbon dioxide, and water, with subsequent neutralization by calcium ion. Results showed significant differences in the size and shape of the crystals, and in their original sites in the leaf. An effect of air pollution from automobile exhaust fumes upon the metabolism of the gingko tree is thus strikingly evident. 4 figures, 2 tables.

  2. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    International Nuclear Information System (INIS)

    Esteban, A.; Orosco, E.H.; Cassaniti, P.; Greco, L.; Adelfang, P.

    1989-01-01

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author) [es

  3. Changes in oxalate and some mineral concentrations of Setaria sphacelata under cutting and uncutting conditions.

    Science.gov (United States)

    Rahman, M M; Tateyama, M; Niimi, M; Abdullah, R B; Khadijah, W E Wan; Kawamura, O

    2014-04-01

    Oxalate concentration in forage plants is important, because it results mineral deficiency in ruminants. Data on oxalate concentration in forage plants in conjunction with cutting and uncutting conditions throughout the growing period are limited. This study was aimed to investigate the changes in oxalate and some mineral concentrations of setaria (Setaria sphacelata). The plants were harvested at different stages (vegetative, boot, pre-flowering, flowering and seed) of maturity and at about 50 cm in length of regrowth (second to sixth cuttings) for evaluation of soluble oxalate, insoluble oxalate and some mineral concentrations. Soluble oxalate and total oxalate concentrations, as well as mineral concentrations, decreased with advancing maturity. Both oxalate concentrations (soluble or insoluble) were higher in leaf compared to stem. Soluble oxalate and total oxalate concentrations of regrowth were the highest at third cutting and lowest at sixth cutting. Insoluble oxalate concentration of regrowth was almost similar in all cuttings, except for the sixth cutting. The highest concentrations of potassium, sodium and magnesium of regrowth were observed at third cutting, while the highest concentration of calcium was observed at sixth cutting. A relationship between oxalate and mineral concentrations was partially observed. Results suggest that cutting materials of setaria from June to October could achieve oxalate levels that are toxic to ruminants.

  4. Successful treatment of sodium oxalate induced urolithiasis with Helichrysum flowers.

    Science.gov (United States)

    Onaran, Metin; Orhan, Nilüfer; Farahvash, Amirali; Ekin, Hasya Nazlı; Kocabıyık, Murat; Gönül, İpek Işık; Şen, İlker; Aslan, Mustafa

    2016-06-20

    Helichrysum (Asteraceae) flowers, known as "altın otu, yayla çiçeği, kudama çiçeği" , are widely used to remove kidney stones and for their diuretic properties in Turkey. To determine the curative effect of infusions prepared from capitulums of Helichrysum graveolens (M. Bieb.) Sweet (HG) and H. stoechas ssp. barellieri (Ten.) Nyman (HS) on sodium oxalate induced kidney stones. Infusions prepared from the capitulums of HG and HS were tested for their curative effect on calcium oxalate deposition induced by sodium oxalate (70mg/kg i.p.). Following the injection of sodium oxalate for 5 days, plant extracts were administered to rats at two different doses. Potassium citrate was used as positive control. Water intake, urine volume, body, liver and kidney weights were measured; biochemical and hematological analyses were conducted on urine and blood samples. Additionally, histopathological examinations were done on kidney samples. H. stoechas extract showed prominent effect at 156mg/kg dose (stone formation score: 0.33), whereas number of kidney stones was maximum in sodium oxalate group (stone formation score: 2.33). The reduction in the uric acid and oxalate levels of urine samples and the elevation in the urine citrate levels are significant and promising in extract groups. Some hematological, biochemical and enzymatic markers are also ameliorated by the extracts. This is the first report on the curative effect of immortal flowers. Our preliminary study indicated that Helichrysum extracts may be used for treatment of urolithiasis and Helichrysum extracts are an alternative therapy to potassium citrate for patients suffering from kidney stones. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Oxalate enhanced degradation of Orange II in heterogeneous UV-Fenton system catalyzed by Fe3O4@γ-Fe2O3composite.

    Science.gov (United States)

    Dai, Huiwang; Xu, Shuying; Chen, Jianxin; Miao, Xiaozeng; Zhu, Jianxi

    2018-05-01

    Oxalate enhanced mechanism of Fe 3 O 4 @γ-Fe 2 O 3 was developed to provide novel insight into catalytic process regulation of iron oxide catalysts in heterogeneous UV-Fenton system. And the iron oxide composite of Fe 3 O 4 @γ-Fe 2 O 3 was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FTIR) spectroscopy and nitrogen adsorption-desorption isotherms. The results showed that large amount of iron could be leached from catalyst in the presence of oxalate, which promoted the homogeneous UV-Fenton reactions in solution. Orange II degradation could be significantly enhanced with the increase of the ratio of homogeneous UV-Fenton process to heterogeneous UV-Fenton process. The optimum concentration of oxalate determined by experiment was 0.5 mM in oxalate enhanced heterogeneous UV-Fenton system. On this condition, the pseudo-first-order rate constant value of Orange II degradation was 0.314 min -1 , which was 2.3 times as high as that in heterogeneous UV-Fenton system. The removal rates of color and TOC were 100% and 86.6% after 20 min and 120 min treatment, respectively. In addition, the iron ions in solution could be almost completely adsorbed back to the catalyst surface in later degradation stages of Orange II. During the recycle experiments, the results showed that the increase of pH in solution and the sorption of intermediates on the catalyst surface would hinder oxalate enhanced process and lead to a decrease of degradation rate of Orange II in oxalate enhanced heterogeneous UV-Fenton system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Internalization of Calcium Oxalate Calculi Developed in Narrow Cavities

    Directory of Open Access Journals (Sweden)

    Fèlix Grases

    2014-03-01

    Full Text Available We describe the case of a patient with calcium oxalate monohydrate and calcium oxalate dihydrate calculi occluded in cavities. All those calculi were located inside narrow cavities covered with a thin epithelium that permits their visualization. Urinary biochemical analysis showed high calciuria, not hypercalciuria, hypocitraturia, and a ratio [calcium]/[citrate] >0.33. The existence of cavities of very low urodynamic efficacy was decisive in the formation of such calculi. It is important to emphasize that we observed a thin epithelium covering such cavities, demonstrating that this epithelium may be formed after the development of the calculi through a re-epithelialization process.

  7. On thorium and plutonium cocrystallization with calcium oxalate

    International Nuclear Information System (INIS)

    Basalaeva, L.N.; Bekyasheva, T.A.; Popov, D.K.

    1987-01-01

    Study of possibility of 239 Pu and 234 Th concentration from bone ashe (calcium phosphate) hydrochloric acid solutions by coprecipitation with nonisotopic medium (CaC 2 O 4 ) for their further radiometry or alpha-spectrometry is carried out. Thorium and plutonium distribution coefficients in calcium oxalate precipitate - solution system, as well as coefficients of Th and Pu cocrystallization with CaC 2 O 4 and cocrystallization type are determined. Possibility of Pu and Th concentration from bone tissue solutions is demonstrated on small oxalate amount containing 25% of Ca total amount in bone tissue

  8. Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana.

    OpenAIRE

    Edith eJoseph; Edith eJoseph; Sylvie eCario; Anaële eSimon; Marie eWörle; Rocco eMazzeo; Pilar eJunier; Daniel eJob

    2012-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated in vitro. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g.L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxal...

  9. Protection of Metal Artifacts with the Formation of Metal?Oxalates Complexes by Beauveria bassiana

    OpenAIRE

    Joseph, Edith; Cario, Sylvie; Simon, Ana?le; W?rle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2012-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal–oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L−1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid a...

  10. Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi

    Science.gov (United States)

    Anne Christine Steenkjær Hastrup; Frederick Green III; Patricia K. Lebow; Bo Jensen

    2012-01-01

    Oxalic acid is a key component in the initiation of brown-rot decay and it has been suggested that it plays multiple roles during the degradation process. Oxalic acid is accumulated to varying degrees among brown-rot fungi; however, details on active regulation are scarce. The accumulation of oxalic acid was measured in this study from wood degraded by the four brown-...

  11. Thermal, FT–IR and dielectric studies of gel grown sodium oxalate ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. Oxalic acid metabolism is important in humans, animals and plants. The effect of oxalic acid sodium salt is widely studied in living body. The growth of sodium oxalate single crystals by gel growth is reported, which can be used to mimic the growth of crystals in vivo. The grown single crystals are colourless, ...

  12. Extraction and estimation of the quantity of calcium oxalate crystals in the foliage of conifer and hardwood trees.

    Science.gov (United States)

    Minocha, Rakesh; Chamberlain, Bradley; Long, Stephanie; Turlapati, Swathi A; Quigley, Gloria

    2015-05-01

    The main goal of this study was to develop a method for the extraction and indirect estimation of the quantity of calcium oxalate (CaOx) in the foliage of trees. Foliar tissue was collected from a single tree of each species (five conifers and five hardwoods) for comparison of extractions in different solvents using 10 replicates per species from the same pool of tissue. For each species, calcium (Ca) and oxalate were extracted sequentially in double deionized water and 2N acetic acid, and finally, five replicate samples were extracted in 5% (0.83N) perchloric acid (PCA) and the other five in 2N hydrochloric acid (HCl); three cycles of freezing and thawing were used for each solvent. Total ions were extracted by microwave digestion. Calcium was quantified with an inductively coupled plasma emission spectrophotometer method and oxalate was eluted and quantified using a high performance liquid chromatography method. This experiment was repeated again with two conifer and two hardwood species using four trees per species, and two analytical replicates for each tree. We report here that, regardless of age of individual trees within a species, time of collection or species type, the third extraction in PCA or HCl resulted in near equimolar quantities of Ca and oxalate (r(2) ≥ 0.99). This method provides an easy estimate of the quantity of CaOx crystals using a small sample of foliar tissue. An additional benefit of PCA is that it precipitates the nucleic acids and proteins, allowing the quantification of several free/soluble metabolites such as amino acids, polyamines, organic acids and inorganic elements all from a single sample extract. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Phase transition in L-alaninium oxalate by photoacoustics

    Indian Academy of Sciences (India)

    Phase transition in L-alaninium oxalate is studied by using TG, DTA and photoacoustic spectroscopy. A sharp transition at 378 K by photoacoustics is observed whereas at the same temperature the endothermic energy change observed by TG and DTA is not very sharp. This is discussed in detail with reference to the other ...

  14. Crystal growth and morphology of calcium oxalates and carbonates

    NARCIS (Netherlands)

    Heijnen, W.M.M.

    1986-01-01

    The main purpose of the research described in this thesis is to establish a relationship between the crystal structure and morphology of calcium oxalate and calcium carbonate crystals grown from aqueous solutions. Starting point is the PBC (Periodic Bond Chain) theory formulated by Hartman and

  15. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Unknown

    Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline. R MURUGESAN† and E SUBRAMANIAN*. Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, India. †Deputed on F.I.P. from Department of Chemistry, T.D.M.N.S. College ...

  16. Competitive adsorption and photodegradation of salicylate and oxalate on goethite

    Czech Academy of Sciences Publication Activity Database

    Krýsa, J.; Jirkovský, Jaromír; Bajt, O.; Mailhot, G.

    2011-01-01

    Roč. 161, č. 1 (2011), s. 221-227 ISSN 0920-5861 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : goethite * oxalate * salicylate Subject RIV: CG - Electrochemistry Impact factor: 3.407, year: 2011

  17. peroxo-oxalate preparation of doped barium titanate

    NARCIS (Netherlands)

    van der Gijp, S.; Winnubst, Aloysius J.A.; Verweij, H.

    1999-01-01

    The peroxo-oxalate complexation method is a method that can be used for the preparation of doped barium titanate. In this paper we focus on BaTi0.91Zr0.09O3, which can be used for discharge capacitors in lamp starters. The preparation method described here is based on the complexation and subsequent

  18. Histochemical localization and probable functions of calcium oxalate ...

    African Journals Online (AJOL)

    Dr. Julian O. Osuji

    The most remarkable aspect of the histochemistry of this ergastic substance in the edible aroids is the high concentration of the raphide bundles around the root apical meristems. This suggests that the crystals of calcium oxalate serve a protective function in the root of these taxa. Their occurrence in starch granules imply.

  19. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Doped polyaniline materials with metal oxalate complexes of Cr, Fe, Mn, Co and Al were synthesized by in situ chemical oxidative polymerization of aniline using potassium perdisulphate as oxidant in aqueous sulphuric acid medium. These polymer materials were characterized by chemical analyses, spectral studies ...

  20. Growth of strontium oxalate crystals in agar–agar gel

    Indian Academy of Sciences (India)

    Crystal growth; strontium oxalate; X-ray spectroscopy; FT–IR. 1. Introduction. The growth of single crystals of various substances has gained considerable attention of several investigators. Sophisticated and strenuous equipments have been devel- oped and employed for growing a wide variety of crystals; either may be due ...

  1. Simultaneous determination of oxalic, citric, nitrilotriacetic and ethylenediamenetetraacetic acids by gas liquid chromatography of their methyl esters

    International Nuclear Information System (INIS)

    Eskell, C.J.; Pick, M.E.

    1980-04-01

    A procedure for simultaneous determination of ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), citric acid and oxalic acid by gas liquid chromatography is described. The involatile acids are first concerted to their volatile methyl ester derivatives by reaction with boron trifluoride in methanol. Transition metal ions (Fe 3+ , Cr 3+ and Ni 2+ ) which will be present in decontamination liquors from nuclear reactors, and form strong chelates with the acids, have been shown to cause no interference to the esterification reaction. The esters were separated by temperature programming on a 3.5 metre capillary column packed with 3% OV1 on Diatomite CQ and were detected by flame ionisation. (author)

  2. Calcium extraction from brine water and seawater using oxalic acid

    Science.gov (United States)

    Natasha, Nadia Chrisayu; Lalasari, Latifa Hanum

    2017-01-01

    Calcium can be extracted not only from rocks but also from natural liquor such as seawater and brine water. In order to extract the calcium from seawater and brine water, oxalic acid was used in this research. Effect of variations of the volume of the oxalic acid at a constant concentration in seawater and brine water to produce calcium was investigated. The concentration of oxalic acid was 100 g/l and the variations of its volume were 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml, and 50 ml. The used seawater and brine water were firstly evaporated from 100 ml into 50 ml and then the oxalic acid was added into them with mixing to produce the calcium precipitates. The precipitates were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) and the filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES). The SEM analysis showed that the precipitates from brine water were consisted of only calcium compound while from seawater sodium one was also found along with calcium compound. The XRD analysis showed that the calcium was present in the form of calcium oxalate for both seawater and brine water. The ICP-OES analysis of the filtrate from seawater precipitation showed that the its calcium content was decreased from 826.20 ppm to 0.04 ppm while from brine water, it decreased from 170.06 ppm to 1.96 ppm. These results showed that both seawater and brine water have the potential to be a raw material for calcium production.

  3. Averrhoa carambola: A Renewable Source of Oxalic Acid for the Facile and Green Synthesis of Divalent Metal (Fe, Co, Ni, Zn, and Cu Oxalates and Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nguimezong Nguefack Marius Borel

    2014-01-01

    Full Text Available A green, simple, and environmentally benign synthetic approach has been utilised to obtain some bivalent metal oxalates from Averrhoa carambola juice extract, without any purification or special treatment of the juice. The main acid components (oxalic acid and ascorbic acid of the juice were identified by HPLC technique. The effect of temperature on the purity of the product has been investigated. The as-synthesized metal oxalates were thermally decomposed at low temperatures to their respective metal oxide nanoparticles. The metal oxalates and their respective thermal decomposition products were characterized by Fourier Transform Infrared spectroscopy, X-ray diffraction analysis, and thermogravimetry.

  4. Oxalate-Degrading Enzyme Recombined Lactic Acid Bacteria Strains Reduce Hyperoxaluria.

    Science.gov (United States)

    Zhao, Chenming; Yang, Huan; Zhu, Xiaojing; Li, Yang; Wang, Ning; Han, Shanfu; Xu, Hua; Chen, Zhiqiang; Ye, Zhangqun

    2017-12-02

    To develop recombinant lactic acid bacteria (LAB) strains that express oxalate-degrading enzymes through biotechnology-based approach for the treatment of hyperoxaluria by oral administration. The coding gene of oxalate decarboxylase (ODC) and oxalate oxidase (OxO) was transformed into Lactococcus lactis MG1363. The oxalate degradation ability in vitro was evaluated in media with high concentration of oxalate. Hyperoxaluria rat models through high oxalate diet were given recombinant LAB through oral administration. Twenty-four-hour urinary oxalate was measured, and kidney stone formation was investigated. LAB recombined with the coding gene of ODC could effectively decrease the amount of oxalate in the media and in the urine of rats. Moreover, the formation of calcium oxalate crystals in kidneys was also inhibited. The acid-induced promoter p170 significantly enhanced the reduction of hyperoxaluria. However, recombinant LAB expressing heterologous OxO showed less efficiency in oxalate degradation even in the presence of p170. LAB expressing ODC is more efficient in degradation of oxalate in vitro and in vivo than that expressing OxO. This present study provided novel recombinant probiotic strains as a potential treatment tool against oxalosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status

    Science.gov (United States)

    Dauer, Jenny M.; Perakis, Steven S.

    2014-01-01

    Calcium oxalate (Ca oxalate) is an insoluble biomineral that forms in plants and fungi, and occurs in soils across many types of ecosystems. Assessing how Ca oxalate may shape ecosystem Ca cycling requires information on the distribution of Ca oxalate among plant biomass, detritus, and mineral soil, and how it varies with ecosystem Ca status. We compared two Douglas-fir forests of contrasting ecosystem Ca availability, and found that Ca oxalate was partitioned similarly among plant biomass, detritus and mineral soil major ecosystem compartments at both sites, and total pools of Ca oxalate were greater in the high-Ca forest. However, the proportional importance of Ca oxalate was greater in the low-Ca than high-Ca forest (18% versus 4% of actively cycling ecosystem Ca, respectively). And calcium oxalate in mineral soil, which is of particular interest as a potential long-term Ca reservoir, was a larger portion of total available Ca (exchangeable Ca plus Ca oxalate Ca) in the low-Ca site than the high-Ca site (9% versus 1% of available soil Ca, respectively). Calcium oxalate was the dominant form of Ca returned from plants to soil as leaf litterfall at the high-Ca site, yet calcium oxalate disappeared rapidly from decomposing litter (0.28 yr−1 or faster) at both sites. We conclude that accumulation of Ca oxalate in forest ecosystems appears most closely related to overall Ca supply for live biomass pools, and that the accumulation of Ca oxalate in forest floor and mineral soil is limited by rapid microbial degradation of putatively unavailable Ca oxalate.

  6. The distribution of free calcium ions in the cholesteatoma epithelium

    DEFF Research Database (Denmark)

    Svane-Knudsen, Viggo; Rasmussen, Gurli; Ottosen, Peter D

    2005-01-01

    The distribution of free calcium ions in normal skin and cholesteatoma epithelium was investigated using the oxalate precipitation method. In agreement with previous observations, we could demonstrate a calcium ion gradient in normal epidermis where the cells in stratum basale and spinosum reside...

  7. Novel Inorganic Coordination Polymers Based on Cadmium Oxalates

    Science.gov (United States)

    Prasad, P. A.; Neeraj, S.; Vaidhyanathan, R.; Natarajan, Srinivasan

    2002-06-01

    Three new cadmium oxalate coordination polymers, I-III, with extended layered structures have been synthesized in the presence of imidazole. While I was prepared by the reaction between imidazolium oxalate and Cd, II and III were synthesized from their constituents using hydrothermal methods. [Cd(C2O4)(C3N2H4)]∞ (I): monoclinic, space group P21/c (no. 14), a=8.7093(1) Å, b=9.9477(3) Å, c=8.4352 Å, β=93.796(1)°, Z=4; [Cd(C2O4)2(C3N2H4)3(H2O)]∞ (II): monoclinic, space group P21/c (no. 14), a=7.8614(2) Å, b=14.9332(3) Å, c=15.9153(4) Å β=94.587(1)°, Z=4; [Cd(C2O4)2(C3N2H4)3(H2O)]∞ (III): monoclinic, space group P21/c (no. 14), a=11.844(2) Å, b=9.066(1) Å, c=18.583(2) Å, β=103.84(2)°, Z=4. While the structure of I is made from CdO5N distorted octahedra linked with oxalate, II and III are built-up from CdO6N, CdO5N2 distorted pentagonal bi-pyramids connected to oxalate units. The framework formulas of II and III are identical and their structures closely related. In all the cases, the networking between the Cd-O/N polyhedra and oxalates give rise to layered architectures with the amine molecules pointing in a direction perpendicular to the layers (in the inter-lamellar region). The difference in the linkages between the oxalates and the Cd atoms in I-III, produces unusual Cd-O-Cd one-dimensional chains, which have been observed for the first time.

  8. A hybrid lithium oxalate-phosphinate salt.

    Science.gov (United States)

    Shaffer, Andrew R; Deligonul, Nihal; Scherson, Daniel A; Protasiewicz, John D

    2010-12-06

    The novel organophosphorus-containing lithium salt Li(THF)[(C(2)O(4))B(O(2)PPh(2))(2)] (1; THF = tetrahydrofuran) was synthesized and characterized using a variety of spectroscopic techniques. An X-ray structural analysis on crystals of 1 grown from THF reveals a dimeric structure [Li(THF)(C(2)O(4))B(O(2)PPh(2))(2)](2)·THF, whereby the two units of 1 are bridged via P-O···Li interactions. Compound 1 displays high air and water stability and is also thermally robust, properties needed of electrolytes for their possible use as electrolytes and/or additives in lithium-ion battery applications.

  9. The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut.

    Science.gov (United States)

    Miller, Aaron W; Dearing, Denise

    2013-12-06

    Oxalate-degrading bacteria comprise a functional group of microorganisms, commonly found in the gastrointestinal tract of mammals. Oxalate is a plant secondary compound (PSC) widely produced by all major taxa of plants and as a terminal metabolite by the mammalian liver. As a toxin, oxalate can have a significant impact on the health of mammals, including humans. Mammals do not have the enzymes required to metabolize oxalate and rely on their gut microbiota for this function. Thus, significant metabolic interactions between the mammalian host and a complex gut microbiota maintain the balance of oxalate in the body. Over a dozen species of gut bacteria are now known to degrade oxalate. This review focuses on the host-microbe and microbe-microbe interactions that regulate the degradation of oxalate by the gut microbiota. We discuss the pathways of oxalate throughout the body and the mammalian gut as a series of differentiated ecosystems that facilitate oxalate degradation. We also explore the mechanisms and functions of microbial oxalate degradation along with the implications for the ecological and evolutionary interactions within the microbiota and for mammalian hosts. Throughout, we consider questions that remain, as well as recent technological advances that can be employed to answer them.

  10. Oxalate-Degrading Capacities of Gastrointestinal Lactic Acid Bacteria and Urinary Tract Stone Formation

    Directory of Open Access Journals (Sweden)

    Mohammad Kargar

    2013-10-01

    Full Text Available Background: Calcium oxalate is one the most significant causes of human kidney stones. Increasing oxalate uptake results in increased urinary oxalate. Elevated urinary oxalate is one the most important causes of kidney stone formation. This study aims to evaluate oxalate-degrading capacity of lactic acid bacteria and its impact on incidence of kidney stone.Materials and Methods: This case-control study was conducted on serum, urinary, and fecal samples. The research population included a total of 200 subjects divided in two equal groups. They were selected from the patients with urinary tract stones, visiting urologist, and also normal people. The level of calcium, oxalate, and citrate in the urinary samples, parathyroid and calcium in the serum samples, and degrading activity of fecal lactobacillus strains of all the subjects were evaluated. Then, data analysis was carried out using SPSS-11.5, χ2 test, Fisher’s exact test, and analysis of variance. Results: The results revealed that the patients had higher urinary level of oxalate and calcium, as well as higher serum level of parathyroid hormone than normal people. In contrast, urinary level of citrate was higher in normal people. In addition, there was a significant difference between the oxalate-degrading capacities of lactobacillus isolated from the patients and their normal peers.Conclusion: Reduction of digestive lactobacillus-related oxalate-degrading capacity and increased serum level of parathyroid hormone can cause elevated urinary level of oxalate and calcium in people with kidney stone.

  11. The crystal structure of urea oxalic acid (2:1)

    NARCIS (Netherlands)

    Harkema, Sybolt; Bats, J.W.; Weyenberg, A.M.; Feil, D.

    1972-01-01

    The crystal structure of urea oxalic acid, 2[CO(NH2)2].(COOH)2 has been determined using three-dimensional X-ray data, collected on an automatic diffractometer. The space group is P21/c. The lattice constants are: a = 5.058 (3), b = 12.400 (3), c = 6.964 (2) A, fl= 98"13 (7) °. The number of

  12. Hafnium(IV) complexation with oxalate at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Friend, Mitchell T.; Wall, Nathalie A. [Washington State Univ., Pullmanm, WA (United States). Dept. of Chemistry

    2017-08-01

    Appropriate management of fission products in the reprocessing of spent nuclear fuel (SNF) is crucial in developing advanced reprocessing schemes. The addition of aqueous phase complexing agents can prevent the co-extraction of these fission products. A solvent extraction technique was used to study the complexation of Hf(IV) - an analog to fission product Zr(IV) - with oxalate at 15, 25, and 35 C in 1 M HClO{sub 4} utilizing a {sup 175+181}Hf radiotracer. The mechanism of the solvent extraction system of 10{sup -5} M Hf(IV) in 1 M HClO{sub 4} to thenoyltrifluoroacetone (TTA) in toluene demonstrated a 4{sup th}-power dependence in both TTA and H{sup +}, with Hf(TTA){sub 4} the only extractable species. The equilibrium constant for the extraction of Hf(TTA){sub 4} was determined to be log K{sub ex}=7.67±0.07 (25±1 C, 1 M HClO{sub 4}). The addition of oxalate to the aqueous phase decreased the distribution ratio, indicating aqueous Hf(IV)-oxalate complex formation. Polynomial fits to the distribution data identified the formation of Hf(ox){sup 2+} and Hf(ox){sub 2(aq)} and their stability constants were measured at 15, 25, and 35 C in 1 M HClO{sub 4}. van't Hoff analysis was used to calculate Δ{sub r}G, Δ{sub r}H, and Δ{sub r}S for these species. Stability constants were observed to increase at higher temperature, an indication that Hf(IV)-oxalate complexation is endothermic and driven by entropy.

  13. Binding abilities of copper to phospholipids and transport of oxalate

    Czech Academy of Sciences Publication Activity Database

    Jaklová Dytrtová, Jana; Jakl, M.; Nováková, Kateřina; Navrátil, Tomáš; Šádek, Vojtěch

    2015-01-01

    Roč. 146, č. 5 (2015), s. 831-837 ISSN 0026-9247 R&D Projects: GA ČR GP13-21409P; GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : copper cations * dipalmitoylphosphatidylcholine (lecithin) * ESI-MS * impedance spectroscopy * oxalic acid * voltammetry * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.131, year: 2015

  14. Equilibrium studies of oxalate and aluminum containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-01

    The Savannah River National Laboratory (SRNL) was tasked to develop data on the solubility and conditions leading to precipitation of sodium oxalate, sodium nitrate, Bayerite (a polymorph of gibbsite, Al(OH)3), and sodium aluminosilicate solids recently found in the Modular Caustic Side Solvent Extraction Unit (MCU). The data generated will be used to improve the OLI Systems thermodynamic database for these compounds allowing better prediction of solids formation by the modeling software in the future.

  15. Liquid waste processing from plutonium (III) oxalate precipitation

    International Nuclear Information System (INIS)

    Esteban, A.; Cassaniti, P.; Orosco, E.H.

    1990-01-01

    Plutonium (III) oxalate filtrates contain about 0.2M oxalic acid, 0.09M ascorbic acid, 0.05M hydrazine, 1M nitric acid and 20-100 mg/l of plutonium. The developed treatment of liquid wastes consist in two main steps: a) Distillation to reduce up to 10% of the initial volume and refluxing to destroy organic material. Then, the treated solution is suitable to adjust the plutonium at the tetravalent state by addition of hydrogen peroxide and the nitric molarity up to 8.6M. b) Recovery and purification of plutonium by anion exchange using two columns in series containing Dowex 1-X4 resin. With the proposed process, it is possible to transform 38 litres of filtrates with 40mg/l of Pu into 0.1 l of purified solution with 15-20g/l of Pu. This solution is suitable to be recycled in the Pu (III) oxalate precipitation process. This process has several potential advantages over similar liquid waste treatments. These include: 1) It does not increase the liquid volume. 2) It consumes only few reagents. 3) The operations involved are simple, requiring limited handling and they are feasible to automatization. 4) The Pu recovery factor is about 99%. (Author) [es

  16. Diversity in protein profiles of individual calcium oxalate kidney stones.

    Science.gov (United States)

    Okumura, Nobuaki; Tsujihata, Masao; Momohara, Chikahiro; Yoshioka, Iwao; Suto, Kouzou; Nonomura, Norio; Okuyama, Akihiko; Takao, Toshifumi

    2013-01-01

    Calcium oxalate kidney stones contain low amounts of proteins, some of which have been implicated in progression or prevention of kidney stone formation. To gain insights into the pathophysiology of urolithiasis, we have characterized protein components of calcium oxalate kidney stones by proteomic approaches. Proteins extracted from kidney stones showed highly heterogeneous migration patterns in gel electrophoresis as reported. This was likely to be mainly due to proteolytic degradation and protein-protein crosslinking of Tamm-Horsfall protein and prothrombin. Protein profiles of calcium oxalate kidney stones were obtained by in-solution protease digestion followed by nanoLC-MALDI-tandem mass spectrometry, which resulted in identification of a total of 92 proteins in stones from 9 urolithiasis patients. Further analysis showed that protein species and their relative amounts were highly variable among individual stones. Although proteins such as prothrombin, osteopontin, calgranulin A and calgranulin B were found in most stones tested, some samples had high contents of prothrombin and osteopontin, while others had high contents of calgranulins. In addition, calgranulin-rich stones had various neutrophil-enriched proteins such as myeloperoxidase and lactotransferrin. These proteomic profiles of individual kidney stones suggest that multiple systems composed of different groups of proteins including leucocyte-derived ones are differently involved in pathogenesis of individual kidney stones depending on situations.

  17. Adsorption characteristics of amino acids on to calcium oxalate.

    Science.gov (United States)

    He, Junbin; Lin, Rihui; Long, Han; Liang, Yuwei; Chen, Yangyang

    2015-09-15

    Adsorption of amino acids on to calcium oxalate found in urinary calculus has been studied and the adsorption characteristics were analyzed. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to fit the kinetics data. The pseudo-second-order model best described the dynamic behavior of the adsorption process. The uptake of glutamic acid and aspartic acid were found to decrease as solution pH increasing from 4 to 8. The experimental data obtained at different pH conditions were analyzed and fitted by Langmuir, Freundlich, Redlich-Peterson, Temkin and Sips isotherm models using linear and nonlinear regression analysis. Error analysis (correlation coefficient, residual root mean square error and chi-square test) showed that the Langmuir I isotherm model and the non-linear form of Sips isotherm model should be primarily adopted for fitting the equilibrium data. The maximum adsorption capacity of glutamic acid and aspartic acid onto calcium oxalate monohydrate crystals are 0.059 and 0.066μmol/g at pH 4, respectively. These studies have the vital significance for research aimed at exploring the role of urinary amino acids effect the formation process of calcium oxalate crystals found in urinary calculus and for potential application in the design of synthetic peptides used for urinary calculi therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Primary Nonfunction of Renal Allograft Secondary to Acute Oxalate Nephropathy

    Directory of Open Access Journals (Sweden)

    Ravi Parasuraman

    2011-01-01

    Full Text Available Primary nonfunction (PNF accounts for 0.6 to 8% of renal allograft failure, and the focus on causes of PNF has changed from rejection to other causes. Calcium oxalate (CaOx deposition is common in early allograft biopsies, and it contributes in moderate intensity to higher incidence of acute tubular necrosis and poor graft survival. A-49-year old male with ESRD secondary to polycystic kidney disease underwent extended criteria donor kidney transplantation. Posttransplant, patient developed delayed graft function (DGF, and the biopsy showed moderately intense CaOx deposition that persisted on subsequent biopsies for 16 weeks, eventually resulting in PNF. The serum oxalate level was 3 times more than normal at 85 μmol/L (normal <27 μmol/L. Allograft nephrectomy showed massive aggregates of CaOx crystal deposition in renal collecting system. In conclusion, acute oxalate nephropathy should be considered in the differential diagnosis of DGF since optimal management could change the outcome of the allograft.

  19. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism.

    Science.gov (United States)

    Velazquez-Jimenez, Litza Halla; Hurt, Robert H; Matos, Juan; Rangel-Mendez, Jose Rene

    2014-01-21

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbents by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L(-1). The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS, and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve -OH(-) exchange from zirconyl oxalate complexes.

  20. Acute oxalate poisoning attributable to ingestion of curly dock (Rumex crispus) in sheep.

    Science.gov (United States)

    Panciera, R J; Martin, T; Burrows, G E; Taylor, D S; Rice, L E

    1990-06-15

    Ten of 100 mature ewes were afflicted with acute oxalate toxicosis within 40 hours after being temporarily penned in a lot that contained considerable growing Rumex crispus (curly dock). Clinical signs of toxicosis included excess salivation, tremors, ataxia, and recumbency. Affected ewes were markedly hypocalcemic and azotemic. Oxalate crystals were not observed in urine. Gross postmortem lesions were minimal and nondiagnostic in 2 ewes that died peracutely, but perirenal edema and renal tubular degeneration were clearly observable in ewes euthanatized on the third day of toxicosis. Diagnosis of oxalate toxicosis was confirmed by histopathologic findings. Samples of Rumex spp contained 6.6 to 11.1% oxalic acid on a dry-weight basis, a concentration comparable with that in other oxalate-containing plants that have caused acute oxalate toxicosis.

  1. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-03-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added /sup 14/CO/sub 2/ was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.

  2. A Novel Method for Fabricating Double Layers Porous Anodic Alumina in Phosphoric/Oxalic Acid Solution and Oxalic Acid Solution

    Directory of Open Access Journals (Sweden)

    Yanfang Xu

    2016-01-01

    Full Text Available A novel method for fabricating ordered double layers porous anodic alumina (DL-PAA with controllable nanopore size was presented. Highly ordered large pore layer with interpore distance of 480 nm was fabricated in phosphoric acid solution with oxalic acid addition at the potential of 195 V and the small pore layer was fabricated in oxalic acid solution at the potential from 60 to 100 V. Experimental results show that the thickness of large pore layer is linearly correlative with anodizing time, and pore diameter is linearly correlative with pore widening time. When the anodizing potential in oxalic acid solution was adjusted from 60 to 100 V, the small pore layers with continuously tunable interpore distance from 142 to 241 nm and pore density from 1.94×109 to 4.89×109 cm−2 were obtained. And the interpore distance and the pore density of small pore layers are closely correlative with the anodizing potential. The fabricated DL-PAA templates can be widely utilized for fabrication of ordered nanomaterials, such as superhydrophobic or gecko-inspired adhesive materials and metal or semiconductor nanowires.

  3. Availability of calcium from chemically pure potassium oxalate to the buffalo (Bubalus bubalis)

    International Nuclear Information System (INIS)

    Singh, Sudarshan; Sareen, V.K.; Marwah, S.R.; Sharma, K.C.; Bhatia, I.S.

    1978-01-01

    Three experiments were conducted to determine the true dige'stibility of calcium in the buffalo calves fed chemically pure potassium oxalate. In each experiments 6 calves were divided into two groups, viz. control and oxalate-fed. The control group was given basal ration consisting of wheat straw, mustard-cake and maize grains. The oxalate-fed group was fed the basal ration supplemented with 60, 100 and 140 g potassium oxalate per day in experiments 1,2, and 3 respectively. The percent true digestibility of calcium was 51.7 and 52.5 in experiment 1, 60.5 and 44.1 in experiment 2, and 59.3 and 44.1 in experiment 3 in the control and oxalate-fed groups respectively. In all the experiments the oxalate was completely broken down in the rumen. The volume of water intake and urine excretion was more in the oxalate-fed groups. The daily alkali output in the urine in terms of N-acid was 0.7 and 1.3 in experiment 1, 1.5 and 2.5 in experiment 2, and 2.1 and 3.8 in experiment 3 in control and oxalate-fed groups respectively. The daily bicarbonate concentration in the urine (in g) was 26.5 and 53.4 in experiment 1, 83.2 and 146.2 in experiment 2, and 132.6 and 222.8 in experiment 3 in control and oxalate-fed groups respectively. Likewise the excretion of oxalate in the urine was more in oxalate-fed groups. On the basis of the results obtained, the reason for the somewhat low true digestibility of calcium in the calves consuming more than 60 g of potassium oxalate/day are discussed. Isotope-dilution technique using 45 CaCl 2 was employed in the study. (auth.)

  4. Efficacy of Mixtures of Magnesium, Citrate and Phytate as Calcium Oxalate Crystallization Inhibitors in Urine.

    Science.gov (United States)

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2015-09-01

    The main aim of the current study was to evaluate the effectiveness of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors. A turbidimetric assay in synthetic urine was performed to obtain induction times for calcium oxalate crystallization in the absence and presence of different mixtures of inhibitors. The morphology of calcium oxalate crystals in the absence or presence of inhibitors and mixtures of the inhibitors was evaluated in 2 crystallization experiments at low and high calcium oxalate supersaturation. The crystals formed were examined using scanning electron microscopy. Examination of crystallization induction times revealed clear inhibitory effects of magnesium, citrate and phytate on calcium oxalate crystallization, supporting usefulness in the treatment and prevention of calcium oxalate nephrolithiasis. Significant synergistic effects between magnesium and phytate were observed. Scanning electron microscopy images revealed that phytate is a powerful crystal growth inhibitor of calcium oxalate, totally preventing the formation of trihydrate and monohydrate. In addition to crystallization inhibition capacity, citrate and magnesium avoided calcium oxalate crystallization by decreasing its supersaturation. The synergistic effect between magnesium and phytate on calcium oxalate crystallization suggests that a combination of these 2 compounds may be highly useful as antilithiasis therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Arthritis associated with calcium oxalate crystals in an anephric patient treated with peritoneal dialysis

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A.; Ryan, L.M.; McCarty, D.J.

    1988-09-02

    The authors report a case of calcium oxalate arthropathy in a woman undergoing intermittent peritoneal dialysis who was not receiving pharmacologic doses of ascorbic acid. She developed acute arthritis, with calcium oxalate crystals in Heberden's and Bouchard's nodes, a phenomenon previously described in gout. Intermittent peritoneal dialysis may be less efficient than hemodialysis in clearing oxalate, and physicians should now consider calcium oxalate-associated arthritis in patients undergoing peritoneal dialysis who are not receiving large doses of ascorbic acid.

  6. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence.

    Science.gov (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei

    2017-09-01

    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H 2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10 -3 S cm -1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Use of Fe(III) oxalate for oxidativewastewater treatment; Einsatz von Fe(III)-Oxalat zur chemisch-oxidativen Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.M.; Vogelpohl, A. [Clausthal Univ., Clausthal-Zellerfeld (Germany). Inst. fuer Thermische Verfahrenstechnik

    1998-08-01

    Iron(III)-oxalate was used as an iron catalyst for the Photo Fenton reaction. Iron(III) oxalations ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) are reduced to Fe(II) by irradiation using near UV-light ({lambda} = 300 - 400 nm) or visible light ({lambda} > 400 nm). At the same time, CO{sub 2}{sup -} or C{sub 2}O{sub 4}{sup -}-radicals originate, which cause the secondary reduction of Fe(III) to Fe(II). By means of the photolytically regenerated Fe(II) ions, hydroxyl radicals are increasingly formed, so that the degradation of organic substances is accelerated. The work aimed to assess the catalytic effect of Fe(III) oxalate for photochemical oxidation processes and to establish the parameters influencing further treatment of leachate from a municipal waste sanitary landfill by means of technical-scale experiments. (orig.) [Deutsch] In der vorliegenden Arbeit wurde Eisen(III)-Oxalat als Eisenkatalysator fuer die Photo-Fenton-Reaktion eingesetzt. Eisen(III)-Oxalationen ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) werden durch Strahlung mit nahem UV-Licht ({lambda}=300 bis 400 nm) oder mit sichtbarem Licht ({lambda}>400 nm) zu Fe(II) reduziert. Gleichzeitig entstehen CO{sub 2}{sup .-} oder C{sub 2}O{sub 4}{sup .-}-Radikale, die eine sekundaere Reduktion von Fe(III) zu Fe(II) bewirken. Mit Hilfe der photolytiisch regenerierten Fe(II)-Ionen werden vermehrt Hydroxylradikale gebildet und damit die Abbaugeschwindigkeit der organischen Substanzen beschleunigt. Ziel der hier vorgestellten Arbeit war es, die katalytische Wirkung von Fe(III)-Oxalat fuer photochemische Oxidationsverfahren abzuschaetzen und die Einflussparameter zur weitergehenden Behandlung eines Deponiesickerwassers aus Hausmuelldeponie anhand von Technikumsversuchen zu ermitteln. (orig.)

  8. Protection of Metal Artifacts with the Formation of Metal-Oxalates Complexes by Beauveria bassiana.

    Science.gov (United States)

    Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2011-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L(-1), and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals.

  9. Preventive treatment of calcium oxalate crystal deposition with immortal flowers.

    Science.gov (United States)

    Orhan, Nilüfer; Onaran, Metin; Şen, İlker; Işık Gönül, İpek; Aslan, Mustafa

    2015-04-02

    A number of medicinal plants are used for their diuretic, urolithiatic and anti-inflammatory effects on urinary system problems in Turkey and the most common traditional remedy for kidney stones is the tea of immortal flowers. The aim of this study is to evaluate the preventive effect of infusions prepared from capitulums of Helichrysum graveolens (M.Bieb.) Sweet (HG) and Helichrysum stoechas ssp. barellieri (Ten.) Nyman (HS) on formation of kidney stones. Sodium oxalate (Ox-70mg/kg intraperitoneally) was used to induce kidney stones on Wistar albino rats. At the same time, two different doses of the plant extracts (HG: 62.5 and 125mg/kg; HS: 78 and 156mg/kg) were dissolved in the drinking water and administered to animals for 5 days. Potassium citrate was used as positive control in the experiments. During the experiment, water intake, urine volume and body weights of the animals were recorded. At the end of the experiments, liver, kidney and body weights of the animals were determined; biochemical analysis were conducted on urine, blood and plasma samples. Histopathological changes in kidney tissues were examined and statistical analysis were evaluated. HS extract showed the highest preventive effect at 156mg/kg dose (stone formation score: 1.16), whereas a number of kidney stones were maximum in sodium oxalate group (stone formation score: 2.66). Helichrysum extracts decreased urine oxalate and uric acid levels and increased citrate levels significantly. In addition, Helichrysum extracts regulated the negative changes in biochemical and hematological parameters occurred after Ox injection. We conclude that Helichrysum extracts could reduce the formation and growth of kidney stones in Ox-induced urolithiasis and can be beneficial for patients with recurrent stones. In addition, this is the first study on the preventive effect of immortal flowers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Ultrasound-assisted anodization of aluminum in oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rong; Jiang Kaiming [Department of Physics, Shanghai Maritime University, 1550 Pudong Avenue, Shanghai 200135 (China); Zhu Yun [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Qi Haiyang [Department of Physics, Shanghai Maritime University, 1550 Pudong Avenue, Shanghai 200135 (China); Ding Guqiao, E-mail: gqding@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2011-10-15

    Porous anodic alumina is an important nanoscale template for fabrication of various nanostructures. We report a new ultrasound-assisted anodization process in oxalic acid. Under the continuous irradiation of ultrasound, the one-step-anodized sample has a smooth and clean surface, and two-step-anodization brings ordered porous anodic alumina with higher growth rate of 52 {mu}m/h. The ultrasound applied during the anodization can clean the surface and enhance the nanopore growth since it can accelerate the oxide dissolving on the electrolyte/oxide interface. The ultrasound-assisted anodization may be utilized for other anodizations.

  11. An oxalyl-CoA synthetase is important for oxalate metabolism in Saccharomyces cerevisiae

    Science.gov (United States)

    Although oxalic acid is common in nature, our understanding of the mechanism(s) regulating its turnover remains incomplete. In this study we identify Saccharomyces cerevisiae acyl-activating enzyme 3 (ScAAE3) as an enzyme capable of catalyzing the conversion of oxalate to oxalyl-CoA. Based on our fi...

  12. Electrochemical Oxidation and Determination of Oxalic Acid at an Exfoliated Graphite-Polystyrene Composite Electrode

    NARCIS (Netherlands)

    Schoonman, J.; Manea, F.; Radovan, C.; Corb, I.; Pop, A.; Burtica, G.; Malchev, P.G.; Picken, S.J.

    2007-01-01

    An exfoliated graphite-polystyrene composite electrode was evaluated as analternative electrode in the oxidation and the determination of oxalic acid in 0.1 M Na2SO4supporting electrolyte. Using CV, LSV, CA procedures, linear dependences I vs. C wereobtained in the concentrations range of oxalic

  13. an oxalate-peroxide complex used in the preparation of doped barium titanate

    NARCIS (Netherlands)

    van der Gijp, S.; Winnubst, Aloysius J.A.; Verweij, H.

    1998-01-01

    A method is described for the preparation of homogeneously doped barium titanate, which can be applied in non-linear dielectric elements. Ba and Ti salts are dissolved, mixed with hydrogen peroxide and added to a solution of ammonium oxalate, resulting in the formation of an insoluble peroxo-oxalate

  14. Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana

    OpenAIRE

    Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2013-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid a...

  15. The initial and subsequent inflammatory events during calcium oxalate lithiasis.

    Science.gov (United States)

    Yuen, John W M; Gohel, Mayur-Danny I; Poon, Ngork-Wah; Shum, Daisy K Y; Tam, Po-Chor; Au, Doris W T

    2010-08-05

    Crystallization is believed to be the initiation step of urolithiasis, even though it is unknown where inside the nephron the first crystal nucleation occurs. Direct nucleation of calcium oxalate and subsequent events including crystal retention, cellular damage, endocytosis, and hyaluronan (HA) expression, were tested in a two-compartment culture system with intact human proximal tubular HK-2 cell monolayer. Calcium oxalate dihydrate (COD) was nucleated and bound onto the apical surface of the HK-2 cells under hypercalciuric and hyperoxaluric conditions. These cells displayed mild cellular damage and internalized some of the adhered crystals within 18h post-COD-exposure, as revealed by electron microscopy. Prolonged incubation in complete medium caused significant damage to disrupt the monolayer integrity. Furthermore, hyaluronan disaccharides were detected in the harvested media, and were associated with HAS-3 mRNA expression. Human proximal cells were able to internalize COD crystals which nucleated directly onto the apical surface, subsequently triggering cellular damage and HAS-3 specific hyaluronan synthesis as an inflammatory response. The proximal tubule cells here demonstrate that it plays an important role in facilitating urolithiasis via endocytosis and creating an inflammatory environment whereby free hyaluronan in tubular fluid can act as crystal-binding molecule at the later segments of distal and collecting tubules. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Effect of oxalic acid on the optical, thermal, dielectric and mechanical behaviour of ADP crystals

    International Nuclear Information System (INIS)

    Rajesh, P.; Ramasamy, P.

    2009-01-01

    The effect of the addition, over a concentration range from 1 to 5 mol%, of oxalic acid on the growth rate, optical transparency, hardness, dielectric behaviour, and SHG efficiency of ammonium dihydrogen phosphate single crystals grown by slow evaporation method has been investigated. UV-Vis studies show that the transparency of the oxalic acid added crystals decreased gradually. Thermal studies indicate that the decomposition temperatures of the crystal are decreased in oxalic acid added ADP crystals. It is observed from the dielectric measurements that the dielectric constant and dielectric loss increase with increase in temperature for all the crystals. Vicker's microhardness study reveals that the addition of higher concentration of oxalic acid decreases the hardness of the crystal. SHG efficiency of 1 mol% of oxalic acid is higher than the pure ADP.

  17. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    Science.gov (United States)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  18. Study of oxalic acid effect on equilibrium and kinetics of isotopic exchange between penta- and hexavalent neptunium in nitric acid solutions

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Ionnikova, N.I.

    1989-01-01

    Spectrophotometry at 25 deg C and ionic force μ=1.0 mol/l (KNO 3 +HNO 3 ) was used to show that at HNO 3 concentration 0.1-1.0 mol/l H 2 C 2 O 4 introduction to nitric acid solutions of Np 5+ in the presence of nitrite-ion resulted in the shift of equilibrium between Np 5+ and Np 6+ to the side of Np 6+ accumulation. The presence of H 2 C 2 O 4 at HNO 3 concentration > 1.0 mol/l doesn't affect the equilibrium position. The values of nominal equilibrium constant at different HNO 3 and H 2 C 2 O 4 concentrations were calculated. It was found that isotope exchange ( 239 Np/ 237 Np) between Np 5+ and Np 6+ in oxalate solutions proceeded more slowly than in oxalate absence. Rate constants of isotope exchange calculated at 9 deg C, μ=1.0 mol/l (KNO 3 ), H 2 C 2 O 4 concentration 0.01 mol/l and pH=2.2 and 3.5 are equal to 0.49x10 3 and 0.67x10 2 l/mol·min respectively. Mechanism of isotope exchange including electron transport between Np 5+ and Np 6+ oxalate complexes is suggested

  19. Enzymatic mechanism of oxalate production in the TCA and glyoxylate pathways using various isolates of Antrodia radiculosa

    Science.gov (United States)

    K.M. Jenkins; S.V. Diehl; C.A. Clausen; F. Green

    2011-01-01

    Brown-rot fungi produce oxalate in large amounts; however, levels of accumulation and function vary by species. Copper-tolerant fungi, like Antrodia radiculosa, produce and accumulate high levels of oxalate in response to copper. Oxalate biosynthesis in copper-tolerant fungi has been linked to the glyoxylate and tricarboxylic acid (TCA) cycles. Within these two cycles...

  20. Improving the two-step remediation process for CCA-treated wood. Part I, Evaluating oxalic acid extraction

    Science.gov (United States)

    Carol Clausen

    2004-01-01

    In this study, three possible improvements to a remediation process for chromated-copper-arsenate (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for...

  1. Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Edith eJoseph

    2012-01-01

    Full Text Available Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated in vitro. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g.L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archaeological and modern metal artefacts. The production of copper-oxalates was confirmed directly using metallic pieces (both archaeological and modern. The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates and probably goethite. However, the formation of a homogeneous layer on the object is not yet optimal. Silver nitrate was extracellularly reduced into nanoparticles of elemental silver by an unknown mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artefacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals.

  2. Field observation on secondary organic aerosols during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust surface

    Science.gov (United States)

    Wang, Gehui; Cheng, Chunlei; Meng, Jingjing; Huang, Yao; Li, Jianjun; Ren, Yanqin

    2015-07-01

    Chemical evolution of East Asian dust during transpacific transport has been given much attention for inorganic species such as sulfate, nitrate and ammonium. However, the role of organic species during the transport has almost entirely been ignored. To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids, keto-carboxylic acids, α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, central China during the two dust storm episodes in the springs of 2009 and 2011 and compared with those in nondust storm periods. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1 μm), and oxalic acid well correlated with NO3- (R2 = 0.72, p fine mode and a strong correlation of oxalic acid with SO42-. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of dust.

  3. Raman spectral titration method: an informative technique for studying the complexation of uranyl with uranyl(vi)-DPA/oxalate systems as examples.

    Science.gov (United States)

    Liu, Qian; Zhang, Qianci; Yang, Suliang; Zhu, Haiqiao; Liu, Quanwei; Tian, Guoxin

    2017-10-10

    The Raman band at about 870 cm -1 originating from the symmetric stretch vibration (ν 1 ) of uranyl, UO 2 2+ , has proven to be very informative for investigating the complexation of uranyl using perchlorate or nitrate of known concentration as internal standards. The concentration of uranyl can be conveniently calculated by using the ratio of the directly read band intensities of uranyl and the added reference, ClO 4 - , with a factor of 1.72. While with NO 3 - of concentration lower than 1.8 M as the reference, a factor of 0.85 should be used. Furthermore, with added internal standards, the linear relationship between the Raman intensity and the concentration of the corresponding species is illustrated by the spectral titration of U(vi) with a very strong ligand, dipicolinic acid (DPA); and the application of a spectral titration method with Raman spectroscopy in studying the complexation of uranyl is demonstrated by the titration of U(vi) with oxalate. The stepwise changes in the Raman shift of 18, 17, and 6 cm -1 , corresponding to the three oxalate anions successively bonding to UO 2 2+ , imply that the coordination modes are different. In the 1 : 1 and 1 : 2 ratios of metal to ligand complexes, the oxalate anions bond to the uranyl ion in side-on bidentate mode, but in the 1 : 3 complex the third oxalate bonds in head-on mode, which is much weaker than the first two.

  4. Physical simulation of precipitation of radioactive element oxalates by using the harmless neodymium oxalate for studying the agglomeration phenomena

    International Nuclear Information System (INIS)

    Lalleman, Sophie; Bertrand, Murielle; Plasari, Edouard

    2012-01-01

    Oxalic precipitation is usually applied in nuclear industry to process radioactive wastes or to recover actinides from a multicomponent solution.This paper deals with the development of methods adapted to a nuclear environment in order to study the agglomeration phenomena during actinide oxalic precipitation.These methods are previously set up with harmless elements that simulate the actinide behaviour: the lanthanides. A parametric study is carried out to quantify the influence of operating parameters on the agglomeration kernel and to determine a kinetic law for this mechanism. The experimental study is performed in a continuous-MSMPR precipitator at steady-state. The method is based on the resolution of two population balances using the moment approach, one for elementary crystals and the other for agglomerates. Provided that the kinetic rates of nucleation and growth are known, the agglomeration kernel can be obtained from a mathematical treatment of the experimental particle size distributions. Results point out that experimental crystal sizes are consistent with an independent kernel. It appears that the agglomeration kernel is directly proportional to supersaturation, increases with temperature but is limited by ionic strength and shear rate. (authors)

  5. Ion exchange behaviour of Zr, Hf, Nb and Pa in mixed acid solutions

    International Nuclear Information System (INIS)

    Monroy-Guzman, F.; Trubert, D.; Le Naour, C.

    2002-01-01

    A systematic study of the adsorbabilities of zirconium, hafnium, niobium and protactinium, elements with a chemical behaviour very similar, were realised in the systems Dowex 50 - oxalic acid, Dowex 50 - oxalic acid/HCl, Dowex 1 - oxalic acid, Dowex 1 - oxalic acid/HCl, BIO-RAD AGMP1 - oxalic acid/H 2 SO 4 and HDEHP - oxalic acid/H 2 SO 4 . These elements exhibited no significant adsorption on Dowex 50, while on the anionic exchange resins (Dowex 1 and BIO-RAD AGMP1) showed strong adsorption, particularly in oxalic acid and in mixed solutions at low concentrations of hydrochloric and sulphuric acids. This trend could be linked to the formation of anionic species of the types M(C 2 O 4 ) x (n-x) , MO(C 2 O 4 ) x (n-(2+x)) , M(C 2 O 4 H) x (n-x) and MO(C 2 O 4 H) x (n-(2+x)) , or mixed complexes of the form M(Y) y (C 2 O 4 ) x (n-x-y) , MO(Y) y (C 2 O 4 ) x (n-(2+x+y)) , where M n+ is the metallic cation and Y the ligand. The combination of two complexing agents alter the ion exchange behaviour of the above mentioned elements. In the case of system HDEHP, we suggest a procedure to separate these elements. (author)

  6. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Oxalate and malonate inPM2.5 and acetate in PM10 were most abundant carboxylates accounting for 64% and 62 % of total acids, respectively. Mg2+ was most important cation in PM2.5 and PM10 accounting for 44 % and 24 % of total water-soluble ions, respectively, whereas SO4 2- was the main anionic component ...

  7. Change of pH and Iron Ion Concentration During Photodegradation of TCE with Ferrioxalate/UVvis Process

    Science.gov (United States)

    Hareyama, Wataru; Suto, Koichi; Inoue, Chihiro; Chida, Tadashi; Nakazawa, Hiroshi

    2006-05-01

    Recently, some studies show various organic compounds such as pesticides and dyes degraded with the irradiation of ultraviolet light and visible light in the presence of oxalic acid and ferric ion (ferrioxalate/UVvis process). The process has much advance than other technologies because it can utilize the wavelength of 300˜450nm and also under the condition of neutral pH. Chlorinated organic compounds such as trichloroethene (TCE), which have caused ground water pollution on a lot of sites, have never been applied by photodegradation with this process. In this study, we showed the degradation of TCE in the presence of oxalic acid and iron ion and the change of pH, ferric and ferrous ion concentration during the photodegradation of TCE with ferrioxalate/UV-vis process. TCE was degraded in the presence of oxalic acid and iron ion. In the reactions, the equilibrium of oxalate ion and iron ion is important since it determines the amount of ferrioxalate complex which absorbs light and induces the reactions of the degradation of TCE. Thus, the pH value and iron ion concentration are the important factors which determine the amount of ferrioxalate complex. The pH is nearly constant during the photodegradation of TCE. The ferrous ion concentration was decreased as soon as beginning photodegradation of TCE, and then the ferrous ion concentration and ferric ion concentration became constant.

  8. Concentrated urine and diluted urine: the effects of citrate and magnesium on the crystallization of calcium oxalate induced in vitro by an oxalate load.

    Science.gov (United States)

    Guerra, Angela; Meschi, Tiziana; Allegri, Franca; Prati, Beatrice; Nouvenne, Antonio; Fiaccadori, Enrico; Borghi, Loris

    2006-12-01

    Supplementation of certain calcium crystallization inhibitors, such as citrate and magnesium, and the dilution of urine with water are now considered consolidated practice for the prevention of calcium kidney stones. The aim of this study is to verify, using tried and true in vitro methods, whether the effect of these inhibitors can manifest itself in different ways depending on whether the urine is concentrated or diluted. Calcium oxalate crystallization was studied on 4-h urine of 20 male idiopathic calcium oxalate stone formers, first under low hydration conditions (non-diluted urine) and then under high hydration conditions (diluted urine). Both the diluted and the non-diluted urine samples were subjected to three types of load: (a) an oxalate concentration increment of 1.3 mmol/l only; (b) an oxalate concentration increment of 1.3 mmol/l with a citrate concentration increment of 1.56 mmol/l; (c) an oxalate concentration increment of 1.3 mmol/l with a magnesium concentration increment of 2.08 mmol/l. In non-diluted urine, the addition of the citrate and magnesium did not modify the crystallization parameters under study. In contrast, in the diluted urine the addition of the citrate and magnesium led to a reduction in the total quantity of crystals (equivalent to 35-45%) and their aggregates (equivalent to 30-40%); at the same time, there was an increase in the diameter of the monohydrate calcium oxalate crystals, which also underwent a morphological change. In conclusion, the inhibitory effects of citrate and magnesium on the crystallization of calcium oxalate do not manifest themselves in highly concentrated urine.

  9. Growth and characterization of strontium oxalate crystals by the decomposition of ascorbic acid in presence of strontium chloride

    International Nuclear Information System (INIS)

    Bijini, B.R.; Prasanna, S.; Rajendra Babu, K.; Deepa, M.

    2010-01-01

    Full text: Ascorbic acid (vitamin c) is an important organic compound that helps to maintain the optimal health of human body. It is essential for the development and maintenance of connective tissues. Vitamin C plays an important role in a number of metabolic functions including the activation of the B vitamin, folic acid, the conversion of cholesterol to bile acids and the conversion of the amino acid, tryptophan, to the neurotransmitter, serotonin. During the process of metabolism it decomposes into oxalic acid. This compound is photosensitive and has least thermal stability. The decomposition of Ascorbic acid has been studied in various conditions. It is reported that decomposition of ascorbic acid in presence of Cd 2+ ions leads to the formation of cadmium oxalate crystals. In the present work, in presence of Sr 2+ ion the ascorbic acid is decomposed to Strontium Oxalate in gel media. In this technique, silica gel is used as a medium to grow crystals. Slow diffusion of reactants in the gel medium can be considered to mimic the growth of crystals in the human body. Gels were prepared by mixing appropriate quantities of sodium meta silicate and ascorbic acid, adjusting the pH in the range 5-7.5. Over the set gel, the feed solution of 1M Strontium chloride was added. Yellowish prismatic and bar shaped crystals were obtained within 24 hours. The nucleation density is maximum at a pH of 6 and minimum at 5. Good quality crystals were obtained for a pH of 5 and gel density 1.05g/cc. The FTIR spectra of grown crystals are recorded and analyzed.The band at 3431 cm -1 is assigned to OH stretching frequency of co-ordinated water molecule and the band at 1637cm -1 corresponds to C=O Stretching of carbonyl group. The band at 1319cm -1 is assigned to symmetric stretching of COO- group. The IR band at 767cm -1 corresponds to the combined effect of inplane deformation of CO 2 and the presence of metal oxygen bond .The band at 505cm -1 is due to wagging mode

  10. Oxalate mediated nephronal impairment and its inhibition by c-phycocyanin: a study on urolithic rats.

    Science.gov (United States)

    Farooq, Shukkur Muhammed; Ebrahim, Abdul Shukkur; Subramhanya, Karthik Harve; Sakthivel, Ramasamy; Rajesh, Nachiappa Ganesh; Varalakshmi, Palaninathan

    2006-03-01

    The assumption of oxidative stress as a mechanism in oxalate induced renal damage suggests that antioxidants might play a beneficial role against oxalate toxicity. An in vivo model was used to investigate the effect of C-phycocyanin (from aquatic micro algae; Spirulina spp.), a known antioxidant, against calcium oxalate urolithiasis. Hyperoxaluria was induced in two of the 4 groups of Wistar albino rats (n = 6 in each) by intraperitoneally injecting sodium oxalate (70 mg/kg body weight). A pretreatment of phycocyanin (100 mg/kg body weight) as a single oral dosage was given, one hour prior to oxalate challenge. An untreated control and drug control (phycocyanin alone) were employed. Phycocyanin administration resulted in a significant improvement (p calcium oxalate crystal retention in renal tissue using polarization microscopy and renal ultrastructure by electron microscopy reveals normal features in phycocyanin-- pretreated groups. Thus the study presents positive pharmacological implications of phycocyanin against oxalate mediated nephronal impairment and warrants further work to tap this potential aquatic resource for its medicinal application.

  11. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-15

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge the adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.

  12. Optimization of air-sparged plutonium oxalate/hydroxide precipitators

    International Nuclear Information System (INIS)

    VanderHeyden, W.B.; Yarbro, S.L.; Fife, K.W.

    1997-04-01

    The high cost of waste management and experimental work makes numerical modeling an inexpensive and attractive tool for optimizing and understanding complex chemical processes. Multiphase open-quotes bubbleclose quotes columns are used extensively at the Los Alamos Plutonium Facility for a variety of different applications. No moving parts and efficient mixing characteristics allow them to be used in glovebox operations. Initially, a bubble column for oxalate precipitations is being modeled to identify the effect of various design parameters such as, draft tube location, air sparge rate and vessel geometry. Two-dimensional planar and axisymmetric models have been completed and successfully compared to literature data. Also, a preliminary three-dimensional model has been completed. These results are discussed in this report along with future work

  13. Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere

    Directory of Open Access Journals (Sweden)

    Fujing ePan

    2016-05-01

    Full Text Available In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM and causes nitrogen (N and/or phosphorus (P limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015 where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass C (MBC, and β-1,4-N-acetylglucosaminidase (NAG on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems.

  14. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVE HIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    International Nuclear Information System (INIS)

    Ketusky, E

    2008-01-01

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned

  15. Complexation of Am(III) by oxalate in NaClO4 media

    International Nuclear Information System (INIS)

    Choppin, G.R.; Chen, J.F.

    1995-01-01

    The complexation of Am(III) by oxalate has been investigated in solutions of NaClO 4 up to 9.0 M ionic strength at 25 degrees C. The dissociation constants of oxalic acid were determined by potentiometric titration, while the stability constants of the Am(III)-oxalate complexation were measured by the solvent extraction technique. A thermodynamic model was constructed to predict the apparent equilibrium constants at different ionic strengths by applying the Pitzer equation using parameters for the Na + -HOx - , Na + -Ox - , AmOx + -ClO 4 - , and Na + -Am(Ox) 2 - interactions obtained by fitting the data

  16. Effect of Oxalate on the Recycle of Neptunium Filtrate Solution by Anion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E

    2004-11-18

    A series of laboratory column runs has been performed that demonstrates the recovery of neptunium (Np) containing up to 0.05 M oxalate. Np losses were generally less than one percent to the raffinate for feed solutions that contained 2 to 10 g Np/L. Up to 16 percent Np losses were observed with lower Np feed concentrations, but those losses were attributed to the shortened residence times rather than the higher oxalate to Np ratios. Losses in the plant are expected to be significantly less due to the lower cross-section flowrate possible with existing plant pumps. Elimination of the permanganate treatment of filtrates appears to be reasonable since the amount of Np in those filtrates does not appear to be practical to recover. Combination of untreated filtrates with other actinide rich solutions is not advisable as precipitation problems are likely. If untreated filtrates are kept segregated from other actinide rich streams, the recovery of the remaining Np is probably still possible, but could be limited due to the excessively high oxalate to Np ratio. The persistence of hydrazine/hydrazoic acid in filtrate solutions dictates that the nitrite treatment be retained to eliminate those species from the filtrates prior to transfer to the canyon. Elimination of the permanganate treatment of precipitator flushes and recovery by anion exchange does not appear to be limited by the oxalate effect on anion exchange. Np from solutions with higher oxalate to Np molar ratios than expected in precipitator flushes was recovered with low to modest losses. Solubility problems appear to be unlikely when the moles of oxalate involved are less than the total number of moles of Np due to complexation effects. The presence of significant concentrations of iron (Fe) in the solutions will further decrease the probability of Np oxalate precipitation due the formation of Fe oxalate complexes. Np oxalate solubility data in 8 M HNO{sub 3} with from one to six times as much oxalate as Np have

  17. [Oxalate nephropathy: a new entity of acute kidney injury in diabetic patients?].

    Science.gov (United States)

    Muji, A; Moll, S; Saudan, P

    2015-02-25

    Acute oxalate nephropathy is a severe cause of acute kidney injury characterized by tubule-interstitial oxalate deposits with an inflammatory infiltrate. Three cases of AKI occuring in diabetic patients, and whose renal biopsy gave a diagnosis of acute oxalate nephropathy are reported. This cristal deposit AKI is due to either primary hyperoxaluria or secondary to enteric hyperabsorption. Its prognosis is dismal and rapid recognition by renal biopsy and determination of the cause of hyperoxaluria is mandatory in order to avoid end-stage kidney disease. This diagnosis should be suspected in cases of non resolving AKI, especially in diabetic patients who may have undetected pancreatic exocrine insufficiency.

  18. Blue luminescence in porous anodic alumina films: the role of the oxalic impurities

    CERN Document Server

    Gao Tao; Zhang Li

    2003-01-01

    Porous anodic alumina (PAA) films with ordered nanopore arrays have been prepared by electrochemically anodizing aluminium in oxalic acid solutions, and the role of the oxalic impurities in the optical properties of PAA films has been discussed. Photoluminescence (PL) measurements show that the PAA films obtained have a blue PL band with a peak position at around 470 nm; the oxalic impurities, incorporated in the PAA films during the anodization processes and already existing in them, could be being transformed into PL centres and hence responsible for this PL emission.

  19. Insight into the in-cloud formation of oxalate based on in situ measurement by single particle mass spectrometry

    Science.gov (United States)

    Zhang, Guohua; Lin, Qinhao; Peng, Long; Yang, Yuxiang; Fu, Yuzhen; Bi, Xinhui; Li, Mei; Chen, Duohong; Chen, Jianxin; Cai, Zhang; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2017-11-01

    While ground-based works suggest the significance of in-cloud production (or aqueous formation) to oxalate, direct evidence is rare. With the in situ measurements performed at a remote mountain site (1690 m above sea level) in southern China, we first reported the size-resolved mixing state of oxalate in the cloud droplet residual (cloud RES), the cloud interstitial (cloud INT), and ambient (cloud-free) particles by single particle mass spectrometry. The results support the growing evidence that in-cloud aqueous reactions promote the formation of oxalate, with ˜ 15 % of the cloud RES and cloud INT particles containing oxalate in contrast to only ˜ 5 % of the cloud-free particles. Furthermore, individual particle analysis provides unique insight into the formation of oxalate during in-cloud processing. Oxalate was predominantly (> 70 % in number) internally mixed with the aged biomass-burning particles, highlighting the impact of biomass burning on the formation of oxalate. In contrast, oxalate was underrepresented in aged elemental carbon particles, although they represented the largest fraction of the detected particles. It can be interpreted by the individual particle mixing state that the aged biomass-burning particles contained an abundance of organic components serving as precursors for oxalate. Through the analysis of the relationship between oxalate and organic acids (-45[HCO2]-, -59[CH3CO2]-, -71[C2H3CO2]-, -73[C2HO3]-), the results show that in-cloud aqueous reactions dramatically improved the conversion of organic acids to oxalate. The abundance of glyoxylate associated with the aged biomass-burning particles is a controlling factor for the in-cloud production of oxalate. Since only limited information on oxalate is available in the free troposphere, the results also provide an important reference for future understanding of the abundance, evolution, and climate impacts of oxalate.

  20. Recovery of Cobalt as Cobalt Oxalate from Cobalt Tailings Using Moderately Thermophilic Bioleaching Technology and Selective Sequential Extraction

    Directory of Open Access Journals (Sweden)

    Guobao Chen

    2016-07-01

    Full Text Available Cobalt is a very important metal which is widely applied in various critical areas, however, it is difficult to recover cobalt from minerals since there is a lack of independent cobalt deposits in nature. This work is to provide a complete process to recover cobalt from cobalt tailings using the moderately thermophilic bioleaching technology and selective sequential extraction. It is found that 96.51% Co and 26.32% Cu were extracted after bioleaching for four days at 10% pulp density. The mean compositions of the leach solutions contain 0.98 g·L−1 of Co, 6.52 g·L−1 of Cu, and 24.57 g·L−1 of Fe (III. The copper ion was then recovered by a solvent extraction process and the ferric ions were selectively removed by applying a goethite deironization process. The technological conditions of the above purification procedures were deliberately discussed. Over 98.6% of copper and 99.9% of ferric ions were eliminated from the leaching liquor. Cobalt was finally produced as cobalt oxalate and its overall recovery during the whole process was greater than 95%. The present bioleaching process of cobalt is worth using for reference to deal with low-grade cobalt ores.

  1. Structure and dynamics of solvated hydrogenoxalate and oxalate anions: theoretical study

    Czech Academy of Sciences Publication Activity Database

    Kroutil, O.; Minofar, Babak; Kabeláč, M.

    2016-01-01

    Roč. 22, č. 9 (2016), s. 210 ISSN 1610-2940 Institutional support: RVO:61388971 Keywords : Ab initio molecular dynamics * oxalic acid anions * Potential energy surface Subject RIV: EE - Microbiology, Virology Impact factor: 1.425, year: 2016

  2. MRP-1 and BCRP Promote the Externalization of Phosphatidylserine in Oxalate-treated Renal Epithelial Cells: Implications for Calcium Oxalate Urolithiasis.

    Science.gov (United States)

    Li, YiFu; Yu, ShiLiang; Gan, XiuGuo; Zhang, Ze; Wang, Yan; Wang, YingWei; An, RuiHua

    2017-09-01

    To investigate the possible involvement of multidrug resistance-associated protein 1 (MRP-1) and breast cancer resistance protein (BCRP) in the oxalate-induced redistribution of phosphatidylserine (PS) in renal epithelial cell membranes. A western blot analysis was used to examine the MRP-1 and BCRP expression levels. Surface-expressed PS was detected by the annexin V-binding assay. The cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate was used to measure the intracellular reactive oxygen species (ROS) level. A rat model of hyperoxaluria was obtained using 0.5% ethylene glycol and 1.0% ammonium chloride. In addition, certain animals received verapamil (50 mg/kg body weight), which is a common inhibitor of MRP-1 and BCRP. The degree of nephrolithiasis was assessed histomorphometrically using sections stained by Pizzolato method and by measuring the calcium oxalate crystal content in the renal tissue. Oxalate produced a concentration-dependent increase in the synthesis of MRP-1 and BCRP. Treatment with MK571 and Ko143 (MRP-1- and BCRP-specific inhibitors, respectively) significantly attenuated the oxalate-induced PS externalization. Adding the antioxidant N-acetyl-l-cysteine significantly reduced MRP-1 and BCRP expression. In vivo, markedly decreased nephrocalcinosis was observed compared with that in the rat model of hyperoxaluria without verapamil treatment. Oxalate induces the upregulation of MRP-1 and BCRP, which act as phospholipid floppases causing PS externalization in the renal epithelial cell membrane. The process is mediated by intracellular ROS production. The ROS-mediated increase in the synthesis of MRP-1 and BCRP can play an important role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effect of Kimchi Fermentation on Oxalate Levels in Silver Beet (Beta vulgaris var. cicla

    Directory of Open Access Journals (Sweden)

    Yukiko Wadamori

    2014-04-01

    Full Text Available Total, soluble and insoluble oxalates were extracted and analyzed by high performance liquid chromatography (HPLC following the preparation of kimchi using silver beet (Beta vulgaris var. cicla stems and leaves. As silver beet contains high oxalate concentrations and consumption of high levels can cause the development of kidney stones in some people, the reduction of oxalate during preparation and fermentation of kimchi was investigated. The silver beet stems and leaves were soaked in a 10% brine solution for 11 h and then washed in cold tap water. The total, soluble and insoluble oxalate contents of the silver beet leaves were reduced by soaking in brine, from 4275.81 ± 165.48 mg/100 g to 3709.49 ± 216.51 mg/100 g fresh weight (FW. Fermenting the kimchi for 5 days at 19.3 ± 0.8 °C in 5 L ceramic jars with a water airtight seal resulted in a mean 38.50% reduction in total oxalate content and a mean 22.86% reduction in soluble oxalates. The total calcium content was essentially the same before and after the fermentation of the kimchi (mean 296.1 mg/100 g FW. The study showed that fermentation of kimchi significantly (p < 0.05 reduced the total oxalate concentration in the initial mix from 609.32 ± 15.69 to 374.71 ± 7.94 mg/100 g FW in the final mix which led to a 72.3% reduction in the amount of calcium bound to insoluble oxalate.

  4. Effect of Kimchi Fermentation on Oxalate Levels in Silver Beet (Beta vulgarisvar. cicla).

    Science.gov (United States)

    Wadamori, Yukiko; Vanhanen, Leo; Savage, Geoffrey P

    2014-04-23

    Total, soluble and insoluble oxalates were extracted and analyzed by high performance liquid chromatography (HPLC) following the preparation of kimchi using silver beet ( Beta vulgaris var. cicla) stems and leaves. As silver beet contains high oxalate concentrations and consumption of high levels can cause the development of kidney stones in some people, the reduction of oxalate during preparation and fermentation of kimchi was investigated. The silver beet stems and leaves were soaked in a 10% brine solution for 11 h and then washed in cold tap water. The total, soluble and insoluble oxalate contents of the silver beet leaves were reduced by soaking in brine, from 4275.81 ± 165.48 mg/100 g to 3709.49 ± 216.51 mg/100 g fresh weight (FW). Fermenting the kimchi for 5 days at 19.3 ± 0.8 °C in 5 L ceramic jars with a water airtight seal resulted in a mean 38.50% reduction in total oxalate content and a mean 22.86% reduction in soluble oxalates. The total calcium content was essentially the same before and after the fermentation of the kimchi (mean 296.1 mg/100 g FW). The study showed that fermentation of kimchi significantly ( p < 0.05) reduced the total oxalate concentration in the initial mix from 609.32 ± 15.69 to 374.71 ± 7.94 mg/100 g FW in the final mix which led to a 72.3% reduction in the amount of calcium bound to insoluble oxalate.

  5. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions.

    Science.gov (United States)

    Krick, Wolfgang; Schnedler, Nina; Burckhardt, Gerhard; Burckhardt, Birgitta C

    2009-07-01

    Tubular reabsorption of sulfate is achieved by the sodium-dependent sulfate transporter, NaSi-1, located at the apical membrane, and the sulfate-anion exchanger, sat-1, located at the basolateral membrane. To delineate the physiological role of rat sat-1, [(35)S]sulfate and [(14)C]oxalate uptake into sat-1-expressing oocytes was determined under various experimental conditions. Influx of [(35)S]sulfate was inhibited by bicarbonate, thiosulfate, sulfite, and oxalate, but not by sulfamate and sulfide, in a competitive manner with K(i) values of 2.7 +/- 1.3 mM, 101.7 +/- 9.7 microM, 53.8 +/- 10.9 microM, and 63.5 +/- 38.7 microM, respectively. Vice versa, [(14)C]oxalate uptake was inhibited by sulfate with a K(i) of 85.9 +/- 9.5 microM. The competitive type of inhibition indicates that these compounds are most likely substrates of sat-1. Physiological plasma bicarbonate concentrations (25 mM) reduced sulfate and oxalate uptake by more than 75%. Simultaneous application of sulfate, bicarbonate, and oxalate abolished sulfate as well as oxalate uptake. These data and electrophysiological studies using a two-electrode voltage-clamp device provide evidence that sat-1 preferentially works as an electroneutral sulfate-bicarbonate or oxalate-bicarbonate exchanger. In kidney proximal tubule cells, sat-1 likely completes sulfate reabsorption from the ultrafiltrate across the basolateral membrane in exchange for bicarbonate. In hepatocytes, oxalate extrusion is most probably mediated either by an exchange for sulfate or bicarbonate.

  6. Substituting milk for apple juice does not increase kidney stone risk in most normocalciuric adults who form calcium oxalate stones.

    Science.gov (United States)

    Massey, L K; Kynast-Gales, S A

    1998-03-01

    Increasing intake of dietary calcium from less than 400 mg to 800 mg daily may decrease the absorption of dietary oxalate, which in turn would decrease urinary oxalate excretion. The effect of substituting milk for apple juice on urine composition and risk of calcium oxalate precipitability was studied. Twenty-one normocalciuric adults with a history of at least 1 calcium oxalate stone and urinary oxalate excretion exceeding 275 micromol/day on their self-selected diet. Randomized crossover trial. Each participant consumed two moderate-oxalate (2,011 micromol/day) study diets, which were identical except that one contained 360 mL milk and the other contained 540 mL apple juice as the beverage with meals. Four days free-living then 2 days in the metabolic unit of a university nutrition department. Tiselius risk index for calcium oxalate precipitability calculated from urine composition. Paired t tests. Twenty-four hour urinary oxalate excretion was 18% lower (Papple juice with meals in a diet containing moderate amounts of dietary oxalate from whole grains, legumes, fruits, and vegetables does not increase the risk index of calcium oxalate precipitability in most normocalciuric adults who form stones.

  7. Oxalate synthesis in leaves is associated with root uptake of nitrate and its assimilation in spinach (Spinacia oleracea L.) plants.

    Science.gov (United States)

    Liu, Xiao Xia; Zhou, Kai; Hu, Yan; Jin, Rong; Lu, Ling Li; Jin, Chong Wei; Lin, Xian Yong

    2015-08-15

    Excessive accumulation of oxalate in numerous vegetables adversely affects their quality as food. While it is known that nitrate could effectively stimulate oxalate accumulation in many vegetables, little information is available about the mechanism of nitrate-induced oxalate accumulation. In this study, we examined the association of oxalate synthesis with nitrate uptake and assimilation in two genotypes of spinach (Spinacia oleracea L.), Heizhenzhu and Weilv. Increasing nitrate levels resulted in enhanced synthesis of oxalate, as well as increased root uptake of nitrate and leaf activities of nitrate reductase (NR) and glutamine synthetase (GS) for both genotypes. Correlation analysis revealed that oxalate accumulation in spinach leaves was positively related with rate of nitrate uptake by roots, as well as leaf activities of NR and GS. Addition of plasmalemma H(+)-ATPase inhibitor sodium vanadate (Na3VO4) significantly decreased leaf oxalate accumulation in both genotypes. Presence of NR or GS inhibitors led to reduction of leaf oxalate contents, GS/NR activities and decreased nitrate uptake rate. Significantly higher levels of nitrate root uptake, leaf NR and GS activities were observed in the high-oxalate genotype Heizhenzhu than in Weilv. Oxalate synthesis in leaves of spinach is not only positively associated with root uptake of nitrate, but also with its assimilation within the plants. © 2014 Society of Chemical Industry.

  8. Urinary metals in a spontaneous canine model of calcium oxalate urolithiasis.

    Directory of Open Access Journals (Sweden)

    Eva Furrow

    Full Text Available Calcium oxalate urolithiasis is a common and painful condition in people. The pathogenesis of this disease is complex and poorly understood. Laboratory animal and in vitro studies have demonstrated an effect of multiple trace metals in the crystallization process, and studies in humans have reported relationships between urinary metal concentrations and stone risk. Dogs are a spontaneous model of calcium oxalate urolithiasis, and the metal content of canine calcium oxalate stones mirrors that of human stones. The aim of this study was to test for a relationship between urinary metals and calcium oxalate urolithiasis in dogs. We hypothesized that urinary metals would differ between dogs with and without calcium oxalate urolithiasis. Urine from 122 dogs (71 cases and 51 stone-free controls was analyzed for calcium and 12 other metals. The cases had higher urinary calcium, copper, iron, and vanadium and lower urinary cobalt. Higher urinary vanadium in the cases was associated with being fed a therapeutic stone-prevention diet. Urinary calcium had a strong positive correlation with strontium and moderate positive correlations with chromium, nickel, and zinc. The results of this study complement the findings of similar human studies and suggest a potential role of trace metals in calcium oxalate urolithiasis. Further investigation into how trace metals may affect stone formation is warranted.

  9. Inhibition of crystallization of calcium oxalate by the extraction of Tamarix gallica L.

    Science.gov (United States)

    Bensatal, Ahmed; Ouahrani, M R

    2008-12-01

    The main objective is to study the inhibitor effect of acid fraction of the extract of Tamarix gallica L on the crystallization of calcium oxalate. The extract of Tamarix gallica L is very rich by acid compounds that are used as an inhibitor of nephrolithiasis (calcium oxalate). Our study of the calcium oxalate crystallization is based on the model of turbidimetry by means of a spectrophotometer. The calcium oxalate formation is induced by the addition of oxalate solutions of sodium and of calcium chloride. The addition of inhibitor with various concentrations enabled us to give information on the percentage of inhibition. The comparison between the turbidimetric slopes with and without inhibitor gives the effectiveness of inhibitor for the acid fraction. By comparing the photographs of with and without inhibitor, we concluded that the extract of Tamarix gallica L acts at the stage of growth. The acid fraction of the extract of Tamarix gallica L gives an activity remarkable in the formation of urinary lithiasis (calcium oxalate); this effectiveness is due to the presence of functions of acid.

  10. Competitive and Cooperative Effects during Nickel Adsorption to Iron Oxides in the Presence of Oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Elaine D. [Department of Earth and Planetary; Catalano, Jeffrey G. [Department of Earth and Planetary

    2017-08-09

    Iron oxides are ubiquitous in soils and sediments and play a critical role in the geochemical distribution of trace elements and heavy metals via adsorption and coprecipitation. The presence of organic acids may potentially alter how metals associate with iron oxide minerals through a series of cooperative or competitive processes: solution complexation, ternary surface complexation, and surface site competition. The macroscopic and molecular-scale effects of these processes were investigated for Ni adsorption to hematite and goethite at pH 7 in the presence of oxalate. The addition of this organic acid suppresses Ni uptake on both minerals. Aqueous speciation suggests that this is dominantly the result of oxalate complexing and solubilizing Ni. Comparison of the Ni surface coverage to the concentration of free (uncomplexed) Ni2+ in solution suggests that the oxalate also alters Ni adsorption affinity. EXAFS and ATR-FTIR spectroscopies indicate that these changes in binding affinity are due to the formation of Ni–oxalate ternary surface complexes. These observations demonstrate that competition between dissolved oxalate and the mineral surface for Ni overwhelms the enhancement in adsorption associated with ternary complexation. Oxalate thus largely enhances Ni mobility, thereby increasing micronutrient bioavailability and inhibiting contaminant sequestration.

  11. Putative Aspergillus niger-induced oxalate nephrosis in sheep : clinical communication

    Directory of Open Access Journals (Sweden)

    C.J. Botha

    2009-05-01

    Full Text Available A sheep farmer provided a maize-based brewer's grain (mieliemaroek and bales of Eragrostis curvula hay to ewes and their lambs, kept on zero-grazing in pens. The 'mieliemaroek' was visibly mouldy. After 14 days in the feedlot, clinical signs, including generalised weakness, ataxia of the hind limbs, tremors and recumbency, were noticed. Six ewes died within a period of 7 days. A post mortem examination was performed on 1 ewe. The carcass appeared to be cachectic with mild effusions into the body cavities; mild lung congestion and pallor of the kidneys were observed. Microscopical evaluation revealed nephrosis and birefringent oxalate crystals in the renal tubules when viewed under polarised light. A provisional diagnosis of oxalate nephrosis with subsequent kidney failure was made. Amongst other fungi, Aspergillus niger was isolated from 'mieliemaroek' samples submitted for fungal culture and identification. As A. niger is known to synthesise oxalates, a qualitative screen to detect oxalic acid in the mieliemaroek and purified A. niger isolates was performed using high-performance liquid chromatography (HPLC. Oxalic acid was detected, which supported a diagnosis of soluble oxalate-induced nephropathy.

  12. Assigning the EPR Fine Structure Parameters of the Mn(II) Centers in Bacillus subtilis Oxalate Decarboxylase by Site-Directed Mutagenesis and DFT/MM Calculations

    Science.gov (United States)

    2015-01-01

    Oxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. EPR-based strategies for investigating the catalytic mechanism of decarboxylation are complicated by the difficulty of assigning the signals associated with the two Mn(II) centers located in the N- and C-terminal cupin domains of the enzyme. We now report a mutational strategy that has established the assignment of EPR fine structure parameters to each of these Mn(II) centers at pH 8.5. These experimental findings are also used to assess the performance of a multistep strategy for calculating the zero-field splitting parameters of protein-bound Mn(II) ions. Despite the known sensitivity of calculated D and E values to the computational approach, we demonstrate that good estimates of these parameters can be obtained using cluster models taken from carefully optimized DFT/MM structures. Overall, our results provide new insights into the strengths and limitations of theoretical methods for understanding electronic properties of protein-bound Mn(II) ions, thereby setting the stage for future EPR studies on the electronic properties of the Mn(II) centers in OxDC and site-specific variants. PMID:24444454

  13. Structural features and electrochemical properties of nanostructured ZnCo2O4 synthesized by an oxalate precursor method

    International Nuclear Information System (INIS)

    Kang, Wenpei; Feng, Fan; Zhang, Miaomiao; Liu, Shaojie; Shen, Qiang

    2013-01-01

    As a Li-ion battery anode, the active substance with a porous nanostructure can be endowed with a high electrochemical performance because of its porosity and remarkable surface area. In this paper, the thermal decomposition of zinc–cobalt binary oxalate precursors, precipitated from a solvothermal medium of ethanol and water (75/25, v/v) at 100 °C, has been performed to synthesize phase-pure ZnCo 2 O 4 spinels, thoroughly giving porous and rod-like configurations with an average length of a few micrometers. Interestingly, each of the as-obtained porous microrods has been well characterized to consist of ∼35.2-nm single-crystalline nanoparticles with polydisperse interspaces. More interestingly, porous ZnCo 2 O 4 microrods can deliver an initial specific discharge capacity of 1,293.7 mAh g −1 with the coulombic efficiency of 76.8 % at 0.2 A g −1 , reaching a value of 937.3 mAh g −1 over 100 discharge–charge cycles. Even at a high current density of 2.0 A g −1 , the porous ZnCo 2 O 4 nanostructures can still possess a reversible discharge capacity of ∼925.0 mAh g −1 , further assigned to the synergistic effect of Zn- and Co-based oxide components. Anyway, the facile oxalate precursor method can realize the controlling synthesis of porous and rod-like ZnCo 2 O 4 nanostructures with a high electrochemical performance

  14. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    Science.gov (United States)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  15. Complexation ion-exchange chromatography of some metal ions on papers impregnated with Ti(IV)-based inorganic ion exchangers.

    Science.gov (United States)

    Sharma, S D; Gupta, R

    2000-02-01

    The chromatographic behavior of 40 metal ions is studied on titanium (IV) arsenate, titanium (IV) phosphate-, titanium (IV) molybdate-, titanium(IV) tungstate-, and titanium(IV) selenite-impregnated papers in 0.1M oxalic, citric, and tartaric acid as mobile phases. Similar studies are carried out on Whatman No. 1 papers for comparison. The ion-exchange capacity of these papers is determined, and their selectivity for different cations is discussed. The mechanism of migration is explained in terms of ion-exchange, precipitation, and adsorption. The prediction of elution sequence from RF values is also checked. The average Ri is found to be almost linearly dependent on the charge of the metal ions. The effect of the pKa of complexing acids on average RF values of 3d series metal ions is explained. A number of binary and ternary separations are achieved.

  16. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    Science.gov (United States)

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae; Kim, Jin-Cheol

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease.

  17. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    Directory of Open Access Journals (Sweden)

    Ja Yeong Jang

    Full Text Available Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS. Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10% and oxalic acid-WP8 (ai 8%, were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate. These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease.

  18. Prophylactic role of phycocyanin: a study of oxalate mediated renal cell injury.

    Science.gov (United States)

    Farooq, Shukkur Muhammed; Asokan, Devarajan; Kalaiselvi, Periandavan; Sakthivel, Ramasamy; Varalakshmi, Palaninathan

    2004-08-10

    Oxalate induced renal calculi formation and the associated renal injury is thought to be caused by free radical mediated mechanisms. An in vivo model was used to investigate the effect of phycocyanin (from Spirulina platensis), a known antioxidant, against calcium oxalate urolithiasis. Male Wistar rats were divided into four groups. Hyperoxaluria was induced in two of these groups by intraperitoneal infusion of sodium oxalate (70 mg/kg) and a pretreatment of phycocyanin (100 mg/kg) as a single oral dosage was given, 1h prior to sodium oxalate infusion. An untreated control and drug control (phycocyanin alone) were also included in the study. We observed that phycocyanin significantly controlled the early biochemical changes in calcium oxalate stone formation. The antiurolithic nature of the drug was evaluated by the assessment of urinary risk factors and light microscopic observation of urinary crystals. Renal tubular damage as divulged by urinary marker enzymes (alkaline phosphatase, acid phosphatase and gamma-glutamyl transferase) and histopathological observations such as decreased tubulointerstitial, tubular dilatation and mononuclear inflammatory cells, indicated that renal damage was minimised in drug-pretreated group. Oxalate levels (P < 0.001) and lipid peroxidation (P < 0.001) in kidney tissue were significantly controlled by drug pretreatment, suggesting the ability of phycocyanin to quench the free radicals, thereby preventing the lipid peroxidation mediated tissue damage and oxalate entry. This accounts for the prevention of CaOx stones. Thus, the present analysis revealed the antioxidant and antiurolithic potential of phycocyanin thereby projecting it as a promising therapeutic agent against renal cell injury associated kidney stone formation.

  19. 14C-oxalic acid resorption in patients with small bowel resection, jejunoileal bypass, Crohn's disease, and chronic pancreatitis

    International Nuclear Information System (INIS)

    Moeller, T.; Mueller, G.; Schuette, W.; Rogos, R.; Schneider, W.

    1987-01-01

    The enteric absorption of oxalic acid was determined with 14 C-oxalic acid in patients with small bowel resection, jejunoileal bypass, Crohn's disease and chronic pancreatitis in comparison to the control group. Extreme hyperoxaluria was found in small bowel resections above 100 cm, after bypass operations and in ileocolitis Crohn with signs of clinical activity. Small bowel resections and relapses of Crohn's disease increase the absorption of oxalic acid. The significance of 14 C-oxalic acid absorption test is the recognition of enteric hyperoxaluria. (author)

  20. Smad signaling pathway in pathogenesis of kidney injury induced by calcium oxalate stone in rats

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-10-01

    Full Text Available Objective: To investigate the involvement of Smad signaling pathway in the pathogenesis of kidney injury induced by calcium oxalate stone in rats to provide a reference for clinical treatment. Methods: Clean SD rats were randomly divided into 3 group, namely the control group, model group and pirfenidone group. Ethylene glycol + αhydroxy vitamin D3 was used as a stone-inducing agent to replicate the renal calcium oxalate stone model. Rats in the pirfenidone group were treated with pirfenidone intragastric administration. The serum Cr, BUN and 24-hour oxalate and calcium in renal tissues were assayed. The expressions of Bax/ Bcl2 protein, Caspase3 protein, TGFβ, Smad1, Smad2 and Smad3 proteins were detected by the fluorescent quantitation PCR method. Results: Compared with the rats of the control group, the results showed that the levels of serum BUN, Cr and 24-hour oxalate in rats of the model group were increased greatly, Bax and Caspase3 mRNA also increased while the level of Bcl2 decreased significantly, and the expressions of TGFβ, Smad1, Smad2 and Smad3 proteins increased distinctly as well (P<0.01. These abnormal parameters could be normalized effectively by pirfenidone. Conclusions: Activated TGFβ/Smad signaling pathway is involved in the pathogenesis of kidney injury induced by calcium oxalate stone in rats.

  1. [Effect of phosphorus supply and signal inhibitors on oxalate efflux in ectomycorrhizal fungi].

    Science.gov (United States)

    Yang, Hongjun; Li, Yong; Huang, Jianguo

    2015-06-04

    Phosphorous (P) is one of the essential elements for tree growth in forests. It is beneficial to characterize oxalate secretion by ectomycorrhizal fungi in response to P supply for understanding the mechanism of P mobilization in soils. In the present experiment, the influence of P supplies and inhibitors of Ca2+ signal/anion channel on oxalate efflux in ectomycorrhizal fungi was studied in the pure liquid culture with various P concentrations. Ectomycorrhizal fungi released a large amount of H+ and organic acids such as oxalate, acetate, malate, citrate and succinate, which are important for mobilization of insoluble P in the soils. Oxalate accounted for 15. 14% to 36. 01% of the total organic acids released by the fungi and was accelerated in culture solution under the condition of low P supply, but inhibited under normal and high P. Ectomycorrhizal fungi released a large amount of H+ and organic acids, particularly oxalate, which might be beneficial to inorganic P mobilization in the soils and improvement of P nutrition for their host plants.

  2. Effect of Blumea balsamifera extract on the phase and morphology of calcium oxalate crystals.

    Science.gov (United States)

    Montealegre, Charlimagne M; De Leon, Rizalinda L

    2017-10-01

    Calcium oxalate crystals are found in majority of kidney stones with calcium oxalate monohydrate (COM) as one of the primary types of kidney stones. Various methods of treatment exist, including herbal treatment in the Philippines that uses the medicinal herb Blumea balsamifera ( B. balsamifera ). The effect of B. balsamifera extract on the morphology of calcium oxalate crystals was studied by light microscopy, image analysis, powder X-ray diffraction and scanning electron microscopy. The extract decreased the crystal size by 5.22%-82.62% depending on the degree of supersaturation. Through analysis of the projected area of the crystals, the extract was found to shift the phase of the crystals from COM to calcium oxalate dihydrate (COD). This shift in phase is significant with a COM to COD shift of 88.26% at 0.5 mg/mL of extract and 91.53% at 1.0 mg/mL of extract. Scanning election microscopic (SEM) images revealed aggregation of crystals at 0 mg/mL of extract. At 1.0 mg/mL of extract, the scanning electron micrographs showed discernible crystal unit boundaries. B. balsamifera extract was observed to have decreased crystal size, shifted crystal phase from COM to COD and prevented the aggregation of calcium oxalate crystals.

  3. Photoreduction of mercury metal (Hg) using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Sumiardi, Ade, E-mail: zulfasalmasaodah@gmail.com [Departement of Biology, Faculty of Sciences and Pharmacy, Math’laul Anwar University, Banten (Indonesia); Novi, Cory; Sukaesih, Esih [Departement of Chemistry, Faculty of Sciences and Pharmacy, Math’laul Anwar University, Banten (Indonesia); Humaedi, Aji [Departement of Pharmacy, Faculty of Sciences and Pharmacy, Math’laul Anwar University, Banten (Indonesia)

    2016-04-19

    Photoreduction of mercury metal using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.) is one of methods to reduce toxicity properties of the mercury metal in the society. The purpose of this research is to enhance photoreduction of mercury metal using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.) at various concentrations. Photoreduction process is carried out in a closed reactor equipped with UV light and magnetic stirrer. Analysis of the influence of oxalic acid is determined by adding 25 mL of Hg (II) 5 ppm without oxalic acid, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 3 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 6 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 9 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 12 ppm and 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 15 ppm. All treatments are followed by centrifugation for 15 minutes, then the concentration of Hg residual in the solution is measured by mercury analyzer. The research results showed that addition of oxalic acid concentration from the cellulose of rice husks (Oryza sativa L.) can enhance photoreduction of mercury metal. Optimum concentration reduction of mercury metal with addition of oxalic acid is obtained as many as 9-12 ppm. It can reduce the concentration of mercury metal (II) by 68.8% to 88.6%.

  4. Antiurolithiatic Potential of Neeri against Calcium-Oxalate Stones by Crystallization Inhibition, Free Radicals Scavenging, and NRK-52E Cell Protection from Oxalate Injury.

    Science.gov (United States)

    Goyal, Parveen Kumar; Verma, Santosh Kumar; Sharma, Anil Kumar

    2017-10-01

    Neeri is a well-established polyherbal formulation prescribed for renal stones by the physicians but has not been experimentally evaluated for its antiurolithiatic potential using cell-lines. This study is aimed to scientifically substantiate the antiurolithiatic effect of Neeri extract (NRE) through calcium oxalate (CaOx) crystallization inhibition, scavenging of free radicals, and protection of renal tubular epithelial NRK-52E cells from oxalate-induced injury. The crystallization inhibition was studied by turbidimetric assay while the free radical scavenging potential was determined for superoxide and nitric oxide (NO) radicals. The cytoprotective effect against oxalate-induced injury was assessed by estimating lactate dehydrogenase (LDH) leakage and determining cell viability using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. NRE significantly inhibited the CaOx crystallization in a concentration-dependent manner and also scavenged superoxide (IC 50 302.88 μg/ml) and NO (IC 50 300.45 μg/ml) free radicals. It did not show any significant cytotoxicity for NRK-52E cells till the highest dose (500 μg/ml) and found to be safe. When NRK-52E cells, injured by exposing to oxalate crystals for 24 h, were treated with NRE, it appreciably prevented the cell injury in a dose-dependent manner. It significantly decreased the elevated LDH leakage toward normal range and improved renal cell viability (82.37% ± 0.87%), hence, prevented growth and retention of crystals. The experimental findings concluded that Neeri is a potent antiurolithiatic formulation that inhibited CaOx crystallization and prevented tubular retention of crystals by protecting the renal cells against oxalate-induced injury as well as reducing the oxidative stress by scavenging free radicals. Neeri extract significantly ( P free radicalsIt significantly ( P < 0.001) improved the cell viability by inhibiting the leakage of lactate dehydrogenase in a dose-dependent manner

  5. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-01-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  6. SAVANNAH RIVER SITE TANK CLEANING: CORROSION RATE FOR ONE VERSUS EIGHT PERCENT OXALIC ACID SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2011-01-20

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed

  7. Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect

    Directory of Open Access Journals (Sweden)

    B. Zobrist

    2006-01-01

    Full Text Available Heterogeneous ice freezing points of aqueous solutions containing various immersed solid dicarboxylic acids (oxalic, adipic, succinic, phthalic and fumaric have been measured with a differential scanning calorimeter. The results show that only the dihydrate of oxalic acid (OAD acts as a heterogeneous ice nucleus, with an increase in freezing temperature between 2 and 5 K depending on solution composition. In several field campaigns, oxalic acid enriched particles have been detected in the upper troposphere with single particle aerosol mass spectrometry. Simulations with a microphysical box model indicate that the presence of OAD may reduce the ice particle number density in cirrus clouds by up to ~50% when compared to exclusively homogeneous cirrus formation without OAD. Using the ECHAM4 climate model we estimate the global net radiative effect caused by this heterogeneous freezing to result in a cooling as high as −0.3 Wm−2.

  8. Synthesis, thermal and nonlinear optical characterization of L-arginine semi-oxalate single crystals

    Science.gov (United States)

    Vasudevan, P.; Gokulraj, S.; Sankar, S.

    2012-06-01

    Optically good quality L-arginine semi-oxalate, an organic nonlinear optical crystal, has been synthesized from aqueous solution by slow evaporation method. Single crystal X-ray diffraction (XRD) analysis reveals that the synthesized L-arginine semi-oxalate crystal possesses triclinic structure with unit cell dimensions as a=5.05Å, b=9.73Å, c=13.12Å, α=111.030, β=92.790 and γ=91.910. The Fourier transform infra-red (FTIR) spectroscopy was analyzed and the presence of functional groups of L-arginine semi-oxalate was confirmed. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) studies show that the material is thermally stable up to 1460C and the melting point is 1500C. Kurtz and Perry powder technique confirms that the second harmonic generation (SHG) efficiency is 0.32 times that of standard organic materials urea and KDP.

  9. ANALYSIS OF MACRONUTRIENCONTENT, GLYCEMIC INDEX AND CALCIUM OXALATE ELIMINATION IN Amorphophallus campanulatus (Roxb.

    Directory of Open Access Journals (Sweden)

    Endang Lukitaningsih

    2013-10-01

    Full Text Available Recently, the research to find alternative sources of carbohydrates as a replacement for rice has been developed. Walur is one of the carbohydrate sources that can be explored because it can be grown in any area with out special treatment. However, walur has limitation for direct consumption, because it contains calcium oxalate. The purposes of this study were to determine the chemical character (macronutrient content, calculate glycemic index and get the proper washing techniques to elimin ate calcium oxalate of walur. Macro nutrients content studied in this research include carbohydrates, fats, protein, star chand crude fiber. Analysis of macronutrients has been chemically done, while the glycemic index was measured by in vivo using glucose as a standard. Elimination of calcium oxalate was conducted by washing the fresh walur tubers using a solution of0.01NHCl-NaOH, 5% NaCl, and solution of lemon-lime. The content of oxalate before and after washing was analyzed by permanganometry method. The results showed that walur containing 4.34 ±0.07% of reducingsugar,3.24 ± 0.06 % of not-reducing sugar, 11.27±0.40 % of crude fiber,0.03±1.05 % of starchand0.57±0.01 % of protein. Qualitative analysis of fatty acids showed that hexade canoicacid, octade cadienoicacid, and the acide icosatetranoic were detected in high concentrations. The glycemic index valueof walur was relative lylow, about of 16.9. In addition, washing technique using a solution of lemon-lime was the most excellent technique and can reduce the oxalate content up to61.82%.Fromthis research, it can be concluded that walur can be used as food substitute esrice after washing treatment using lemon-lime solution to remove the calcium oxalate content.

  10. Stability-indicating RP-HPLC method for the simultaneous determination of escitalopram oxalate and clonazepam.

    Science.gov (United States)

    Kakde, Rajendra B; Satone, Dinesh D; Gadapayale, Kamalesh K; Kakde, Megha G

    2013-07-01

    The objective of the current study was to develop a validated, specific stability-indicating reversed-phase liquid chromatographic (LC) method for the quantitative determination of escitalopram oxalate and clonazepam and their related substances in bulk drugs and pharmaceutical dosage forms in the presence of degradation products. Forced degradation studies were performed on the pure drugs of escitalopram oxalate and clonazepam, as per the stress conditions prescribed by the International Conference on Harmonization (ICH) using acid, base, oxidation, thermal stress and photolytic degradation to show the stability-indicating power of the method. Significant degradation was observed during acid and alkaline hydrolysis and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies. Good resolution between the peaks corresponded to the active pharmaceutical ingredients, escitalopram oxalate and clonazepam, and degradation products from the analyte were achieved on an ODS Hypersil C18 column (250 × 4.6 mm) using a mobile phase consisting of a mixture of acetonitrile-50 mM phosphate buffer + 10 mM triethylamine (70:30, v/v). The detection was conducted at 268 nm. The limit of detection and the limit of quantitation for escitalopram oxalate and clonazepam were established. The stress test solutions were assayed against the qualified working standards of escitalopram oxalate and clonazepam, which indicated that the developed LC method was stability-indicating. Validation of the developed LC method was conducted as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of escitalopram oxalate and clonazepam.

  11. SAFETY EVALUATION OF OXALIC ACID WASTE RETRIEVAL IN SINGLE SHELL TANK (SST) 241-C-106

    International Nuclear Information System (INIS)

    SHULTZ, M.V.

    2003-01-01

    This report documents the safety evaluation of the process of retrieving sludge waste from single-shell tank 241-C-106 using oxalic acid. The results of the HAZOP, safety evaluation, and control allocation/decision are part of the report. This safety evaluation considers the use of oxalic acid to recover residual waste in single-shell tank (SST) 241-C-106. This is an activity not addressed in the current tank farm safety basis. This evaluation has five specific purposes: (1) Identifying the key configuration and operating assumptions needed to evaluate oxalic acid dissolution in SST 241-C-106. (2) Documenting the hazardous conditions identified during the oxalic acid dissolution hazard and operability study (HAZOP). (3) Documenting the comparison of the HAZOP results to the hazardous conditions and associated analyzed accident currently included in the safety basis, as documented in HNF-SD-WM-TI-764, Hazard Analysis Database Report. (4) Documenting the evaluation of the oxalic acid dissolution activity with respect to: (A) Accident analyses described in HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR), and (B) Controls specified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements (TSR). (5) Documenting the process and results of control decisions as well as the applicability of preventive and/or mitigative controls to each oxalic acid addition hazardous condition. This safety evaluation is not intended to be a request to authorize the activity. Authorization issues are addressed by the unreviewed safety question (USQ) evaluation process. This report constitutes an accident analysis

  12. Photodegradation of orange I in the heterogeneous iron oxide-oxalate complex system under UVA irradiation

    International Nuclear Information System (INIS)

    Lei, Jing; Liu Chengshuai; Li Fangbai; Li Xiaomin; Zhou Shungui; Liu Tongxu; Gu Minghua; Wu Qitang

    2006-01-01

    To understand the photodegradation of azo dyes in natural aquatic environment, a novel photo-Fenton-like system, the heterogeneous iron oxide-oxalate complex system was set up with the existence of iron oxides and oxalate. Five iron oxides, including γ-FeOOH, IO-250, IO-320, IO-420 and IO-520, were prepared and their adsorption capacity was investigated in the dark. The results showed that the saturated adsorption amount (Γ max ) was ranked the order of IO-250>IO-320>γ-FeOOH>IO-420>IO-520 and the adsorption equilibrium constant (K a ) followed the order of IO-250>IO-520>γ-FeOOH>IO-420>IO-320. The effect of initial pH value, the initial concentrations of oxalate and orange I on the photodegradation of orange I were also investigated in different iron oxide-oxalate systems. The results showed that the photodegradation of orange I under UVA irradiation could be enhanced greatly in the presence of oxalate. And the optimal oxalate concentrations (C ox 0 ) for γ-FeOOH, IO-250, IO-320, IO-420 and IO-520 were 1.8, 1.6, 3.5, 3.0 and 0.8mM, respectively. The photodegradation of orange I in the presence of optimal C ox 0 was ranked as the order of γ-FeOOH>IO-250>IO-320>IO-420>IO-520. The optimal range of initial pH was at about 3-4. The first-order kinetic constant for the degradation of orange I decreased with the increase in the initial concentration of orange I. Furthermore, the variation of pH, the concentrations of Fe 3+ and Fe 2+ during the photoreaction were also strongly dependent on the C ox 0 and iron oxides

  13. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation

    Science.gov (United States)

    Jae-Won Lee; Rita C.L.B. Rodrigues; Hyun Joo Kim; In-Gyu Choi; Thomas W. Jeffries

    2010-01-01

    High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 23 full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment...

  14. Kinetic and Mechanism of Oxidation of Oxalic Acid by Cerium (IV)

    OpenAIRE

    Dr. Ammar J. Mohammed

    2005-01-01

    Kinetic and mechanism studies of the oxidation of oxalic acid by Cerium sulphate have been carried out in acid medium sulphuric acid. The uv- vis. Spectrophotometric technique was used to follow up the reaction and the selected wavelength to be followed was 320 nm. The kinetic study showed that the order of reaction is first order in Ce(IV) and fractional in oxalic acid. The effect of using different concentration of sulphuric acid on the rate of the reaction has been studied a and it was fou...

  15. Electrochemical oxidation of oxalic acid and hydrazinium nitrate on platinum in nitric acid media

    OpenAIRE

    Rockombeny, L.C.; Féraud, Jean-Pierre; Queffelec, Benoit; Ode, Denis; Tzedakis, Théodore

    2012-01-01

    Several studies in the literature have investigated the electrochemical effects of oxalic acid and hydrazine on various materials in neutral (pH buffered to 7), basic or weakly acidic media (pH 6). The present work proposes electrochemical techniques that allow for the study of the electrochemical behavior, on a Pt electrode, of oxalic acid and hydrazinium nitrate to better understand their oxidation mechanisms in a nitric acid medium at a pH below 1; in addition, some experiments were carrie...

  16. A kinetic and ESR investigation of iron(II) oxalate oxidation by hydrogen peroxide and dioxygen as a source of hydroxyl radicals

    DEFF Research Database (Denmark)

    Park, J S; Wood, P M; Davies, Michael Jonathan

    1997-01-01

    The reaction of Fe(II) oxalate with hydrogen peroxide and dioxygen was studied for oxalate concentrations up to 20 mM and pH 2-5, under which conditions mono- and bis-oxalate complexes (Fe[II](ox) and Fe[II](ox)2[2-]) and uncomplexed Fe2+ must be considered. The reaction of Fe(II) oxalate...

  17. Insight into the in-cloud formation of oxalate based on in situ measurement by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    G. Zhang

    2017-11-01

    Full Text Available While ground-based works suggest the significance of in-cloud production (or aqueous formation to oxalate, direct evidence is rare. With the in situ measurements performed at a remote mountain site (1690 m above sea level in southern China, we first reported the size-resolved mixing state of oxalate in the cloud droplet residual (cloud RES, the cloud interstitial (cloud INT, and ambient (cloud-free particles by single particle mass spectrometry. The results support the growing evidence that in-cloud aqueous reactions promote the formation of oxalate, with  ∼  15 % of the cloud RES and cloud INT particles containing oxalate in contrast to only  ∼  5 % of the cloud-free particles. Furthermore, individual particle analysis provides unique insight into the formation of oxalate during in-cloud processing. Oxalate was predominantly (> 70 % in number internally mixed with the aged biomass-burning particles, highlighting the impact of biomass burning on the formation of oxalate. In contrast, oxalate was underrepresented in aged elemental carbon particles, although they represented the largest fraction of the detected particles. It can be interpreted by the individual particle mixing state that the aged biomass-burning particles contained an abundance of organic components serving as precursors for oxalate. Through the analysis of the relationship between oxalate and organic acids (−45[HCO2]−, −59[CH3CO2]−, −71[C2H3CO2]−, −73[C2HO3]−, the results show that in-cloud aqueous reactions dramatically improved the conversion of organic acids to oxalate. The abundance of glyoxylate associated with the aged biomass-burning particles is a controlling factor for the in-cloud production of oxalate. Since only limited information on oxalate is available in the free troposphere, the results also provide an important reference for future understanding of the abundance, evolution, and climate impacts of oxalate.

  18. Spectroscopic properties of Pr 3-doped erbium oxalate crystals

    Indian Academy of Sciences (India)

    The crystals were grown by hydro silica gel method under suitable pH conditions and by single diffusion method. The well-grown crystals are bright and transparent. The dark green colour of these crystals changes with the variation of the concentrations of the dopant ions. The absorption spectra have been measured in the ...

  19. Evaluation of soluble oxalates content in infusions of different kinds of tea and coffee available on the Polish market.

    Science.gov (United States)

    Rusinek, Elzbieta

    2012-01-01

    Tea and coffee are the potentially rich source of oxalic acid, which can act as a antinutrient. The aim of this study was to determine and evaluate the content of soluble oxalates in teas and coffees available on the Polish market. The green, red and black teas, and black natural ground and instant coffees were used for preparing the infusions. The manganometric method was used for the determination of the oxalates in the infusions. The mean oxalates content in the infusions from 3 g of black teas was 115.68 mg/100 cm3 and was higher as compared to red teas (101.91 mg/100 cm3) and green teas (87.64 mg/100 cm3). Disregarding the variety of analyzed teas, the largest oxalates content was in infusions of pure one-component tea--"Sir Roger" (164.82-174.22 mg/100 cm3), while the lowest oxalates content was noted in the tea containing the components from other plants ("Bio-Active" with grapefruit juice--reaching as low level as 39.00 mg/100 cm3). Instant coffees contained larger amount of oxalates than natural ground coffees. Irrespective of the kind of the tested coffees, the lowest oxalates content was found in the infusions from the following coffees: Tchibo Exclusive--19.62 mg/100 cm3, Gala ulubiona--37.32 mg/100 cm3, and Maxwell House--38.40 mg/100 cm3, while the highest oxalates content in instant coffee--Nescafe Espiro 51.80 mg/100 cm3. The results revealed a significant relation between phytochemical composition of analyzed teas and coffees and the level of soluble oxalates in infusions prepared from the tested products.

  20. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris.

    Science.gov (United States)

    Aggarwal, A; Tandon, S; Singla, S K; Tandon, C

    2010-01-01

    Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate solution, using phytotherapy is being sought. The present study attempted to evaluate the antilithiatic properties of Tribulus terrestris commonly called as "gokhru" which is often used in ayurveda to treat various urinary diseases including urolithiasis. The activity of Tribulus terrestris was investigated on nucleation and the growth of the calcium oxalate (CaOx) crystals as well as on oxalate induced cell injury of NRK 52E renal epithelial cells. Tribulus terrestris extract exhibited a concentration dependent inhibition of nucleation and the growth of CaOx crystals. When NRK-52E cells were injured by exposure to oxalate for 72 h, Tribulus terrestris extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. The current data suggests that Tribulus terrestris extract not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role. Our results indicate that it could be a potential candidate for phytotherapy against urolithiasis.

  1. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris

    Directory of Open Access Journals (Sweden)

    A. Aggarwal

    2010-08-01

    Full Text Available PURPOSE: Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate solution, using phytotherapy is being sought. The present study attempted to evaluate the antilithiatic properties of Tribulus terrestris commonly called as “gokhru” which is often used in ayurveda to treat various urinary diseases including urolithiasis. MATERIALS AND METHODS: The activity of Tribulus terrestris was investigated on nucleation and the growth of the calcium oxalate (CaOx crystals as well as on oxalate induced cell injury of NRK 52E renal epithelial cells. RESULTS: Tribulus terrestris extract exhibited a concentration dependent inhibition of nucleation and the growth of CaOx crystals. When NRK-52E cells were injured by exposure to oxalate for 72 h, Tribulus terrestris extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. CONCLUSION: The current data suggests that Tribulus terrestris extract not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role. Our results indicate that it could be a potential candidate for phytotherapy against urolithiasis.

  2. Growth and study of barium oxalate single crystals in agar gel

    Indian Academy of Sciences (India)

    Unknown

    by X-ray powder diffractometry, infrared spectroscopy, thermogravimetric and differential thermal analysis. An attempt is ... Quality. Transparent, opaque. Opaque. Size. 17 × 4 × 2, 4 × 3 × 2 and 4 mm diameter 4 mm diameter. Figure 1. Dendritic growth of barium oxalate. interstitial and spherulitic growth well inside the gel on.

  3. Comparative study of oxalic and malonic acid behaviour in the chemical cleaning of alloy 800 surfaces

    International Nuclear Information System (INIS)

    Garcia, Damian A.; Bruyere, Vivienne I.E.; Bordoni, Roberto A.; Olmedo, Ana M.; Morando, Pedro J.

    2004-01-01

    This work consisted, in a first stage, on a basic study of the dissolution mechanism of nickel ferrite in aqueous malonic acid. Powdered oxides (Ni x Fe 3-x O 4 ) were synthesized by wet procedures and heated at 750 C degrees. These oxides were characterized by conventional methods and dissolved under different experimental conditions (pH, reagent concentration, temperature, etc.) in order to determine the dissolution rates. Optimal dissolution conditions were explored and compared to the corresponding oxalic acid ones. In a second stage, these conditions were applied to oxides grown on Alloy 800 coupons. Before oxidation, all coupons were ground polished and then were exposed to hydrothermal conditions (350 C degrees, pH 25Cdegrees ≅ 10.4 -LiOH-, 20-22 days) in static autoclaves. Finally, oxidized and unoxidized coupons were treated with chemical solutions containing oxalic or malonic acid at conditions optimized in the first stage. These results were also compared to those obtained on coupons exposed to a commercial formulation, APAC (Alkaline Permanganate Ammonium Citrate), as a reference. The results on coupon descaling using APMAL (AP + Malonic), APOX (AP + oxalic) and the comparison with APAC leads to conclude that malonic acid is a reagent whose chemical behavior is much better than oxalic acid and comparable to commercial formulations. (author) [es

  4. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology

    Science.gov (United States)

    Jae-Won Lee; Rita C.L.B. Rodrigues; Thomas W. Jeffries

    2009-01-01

    Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 23 full factorial design with six axial points. Temperatures ranged from 132 to 180º...

  5. Factors contributing to the variation in feline urinary oxalate excretion rate.

    NARCIS (Netherlands)

    Dijcker, Judith; Hagen - Plantinga, Esther; Everts, Henk; Queau, Yann; Biourge, Vincent; Hendriks, Wouter

    2014-01-01

    This study aimed to identify factors (season, animal, and diet) contributing to the variation in urinary oxalate (Uox) excretion rate, Uox concentration, and urine volume in healthy adult cats. A data set (1,940 observations) containing information on Uox excretion rate of 65 cats fed 252 diets

  6. Thermal, FT–IR and dielectric studies of gel grown sodium oxalate ...

    Indian Academy of Sciences (India)

    WINTEC

    late for 30 days, the presence of renal tubular dilation with oxalate deposits (or stenosis) was found (Ono and Ki- ... times these minerals are formed as a result of expulsion of heavy metals from fungi, lichens and plants ... weight, W the weight at time t, Wf the final weight, n the order of reaction, A the frequency factor, E the ...

  7. Kaleidoscopic Views in the Bone Marrow: Oxalate Crystals in a Patient Presenting with Bicytopenia

    Directory of Open Access Journals (Sweden)

    Yelda Dere

    2016-03-01

    Full Text Available Pancytopenia associated with BM infiltration of different deposits is a rare condition mostly associated with amyloidosis or the accumulation of iron. One of the rarest deposits in the BM is oxalate crystals due to hyperoxaluria [1,2,3]. Primary hyperoxaluria, a genetic disorder due to mutation in the alanine glyoxylate aminotransferase gene, located on chromosome 2q37.3 and resulting in the conversion of glyoxylate to oxalate, is characterized by increased production of oxalic acid because of the specific liver enzyme deficiency and generally presents with renal stones, renal or liver failure, and oxalosis [4]. Calcium oxalate may even be deposited into various tissues such as those of the retina, peripheral nerves, arterial media, and heart [4,5]. The medical history of nephrolithiasis at early ages, characteristic appearance of birefringent crystals forming rosettes in the BM, and the envelope-like forms in the BM aspirates seen in our case supported the diagnosis of primary hyperoxaluria, which is best confirmed by genetic studies and treated with liver transplantation because of the location of the abnormal enzymes in the hepatocytes.

  8. Kinetics and mechanism of the oxidation of formic and oxalic acids ...

    Indian Academy of Sciences (India)

    The oxidation of formic and oxalic acids by benzyltrimethylammonium dichloroiodate (BTMACI), in the presence of zinc chloride, leads to the formation of carbon dioxide. The reaction is first order with respect to BTMACI, zinc chloride and organic acid. Oxidation of deuteriated formic acid indicates the presence of a kinetic ...

  9. Kinetics and mechanism of the oxidation of formic and oxalic acids ...

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of formic and oxalic acids by quinolinium fluorochromate (QFC) have been studied in dimethylsulphoxide. The main product of oxidation is carbon dioxide. The reaction is first-order with respect to QFC. Michaelis-Menten type of kinetics were observed with respect to the reductants.

  10. Mediation of calcium oxalate crystal growth on human kidney epithelial cells with different degrees of injury

    International Nuclear Information System (INIS)

    Zhang Shen; Su Zexuan; Yao Xiuqiong; Peng Hua; Deng Suiping; Ouyang Jianming

    2012-01-01

    The current study examined the role of injured human kidney tubular epithelial cell (HKC) in the mediation of formation of calcium oxalate (CaOxa) crystals by means of scanning electronic microscopy and X-ray diffraction. HKC was injured using different concentrations of H 2 O 2 . Cell injury resulted in a significant decrease in cell viability and superoxide dismutase (SOD) concentration and an increase in the level of malondialdehyde (MDA) and expression of osteopontin (OPN). Injured cells not only promote nucleation and aggregation of CaOxa crystals, but also induce the formation of calcium oxalate monohydrate (COM) crystals that strongly adhere to cells. These results imply that injured HKCs promote stone formation by providing more nucleating sites for crystals, promoting the aggregation of crystals, and inducing the formation of COM crystals. - Graphical abstract: Injured cells promote nucleation and aggregation of CaOxa crystals, induce the formation of calcium oxalate monohydrate (COM) crystals. Highlights: ► A direct nucleation and growth of CaOxa crystals on both normal and injured cells. ► Stronger green fluorescence, i.e. OPN expression, was seen on the injury cell surface ► Injured cells promote nucleation and aggregation of CaOxa crystals. ► Injured cells induce the formation of calcium oxalate monohydrate crystals. ► H 2 O 2 decrease cell viability in a dose-dependent manner at 0.1–1 mmol/L.

  11. Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.)

    Science.gov (United States)

    Danilo Scordia; Salvatore L. Cosentino; Jae-Won Lee; Thomas W. Jeffries

    2011-01-01

    Biomass pretreatment is essential to overcome recalcitrance of lignocellulose for ethanol production. In the present study we pretreated giant reed (Arundo donax L.), a perennial, rhizomatous lignocellulosic grass with dilute oxalic acid. The effects of temperature (170-190 ºC), acid loading (2-10% w/w) and reaction time (15-40 min) were handled as a single...

  12. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid.

    Science.gov (United States)

    Su, Xiaojuan; Zhu, Jun; Fu, Qingling; Zuo, Jichao; Liu, Yonghong; Hu, Hongqing

    2015-02-01

    Understanding the effects of oxalic acid (OA) on the immobilization of Pb(II) in contaminated soils by phosphate materials, has considerable benefits for risk assessment and remediation strategies for the soil. A series of phosphate amendments with/without oxalic acid were applied to two anthropogenic contaminated soils. We investigated the immobilization of Pb(II) by KH2PO4, phosphate rock (PR), activated phosphate rock (APR) and synthetic hydroxyapatite (HAP) at different phosphate:Pb (P:Pb) molar ratios (0, 0.6, 2.0 and 4.0) in the presence/absence of 50 mmol oxalic acid/kg soil, respectively. The effects of treatments were evaluated using single extraction with deionized water or CaCl2, Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) methods. Our results showed that the concentration of water extractable, exchangeable and TCLP-Pb all decreased with incubation time. The concentration of water-extractable Pb after 120 days was reduced by 100% when soils were amended with APR, HAP and HAP+OA, and the TCLP-Pb was phosphates, and so mixing insoluble phosphates with oxalic acid may be a useful strategy to improve their effectiveness in reducing Pb bioavailability. Copyright © 2014. Published by Elsevier B.V.

  13. Oxalic acid complexes: Promising draw solutes for forward osmosis (FO) in protein enrichment

    KAUST Repository

    Ge, Qingchun

    2015-01-01

    Highly soluble oxalic acid complexes (OACs) were synthesized through a one-pot reaction. The OACs exhibit excellent performance as draw solutes in FO processes with high water fluxes and negligible reverse solute fluxes. Efficient protein enrichment was achieved. The diluted OACs can be recycled via nanofiltration and are promising as draw solutes.

  14. The role of nanoparticulate agglomerates in TiO{sub 2} photocatalysis: degradation of oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Irina [Leibniz Universitaet Hannover, Institut fuer Technische Chemie (Germany); Mendive, Cecilia B., E-mail: cbmendive@mdp.edu.ar [Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Departamento de Química (Argentina); Bahnemann, Detlef [Leibniz Universitaet Hannover, Institut fuer Technische Chemie (Germany)

    2016-07-15

    The simultaneous bimodal study of the photocatalytic oxalic acid degradation by aqueous TiO{sub 2} suspensions revealed that particular systems possess the capacity to protect a certain amount of oxalic acid from oxidation, thus hindering, to some extent, the photocatalytic reaction. While measurements of the oxalic acid concentration in the bulk liquid phase indicated full photocatalytic degradation; in situ pH-stat measurements allowed the quantification of the amount of oxalic acid remaining in the part of the nanoparticulate agglomerates where light could apparently not access. An explanation for this phenomenon takes into account the possibility of the formation of TiO{sub 2} agglomerates in which these molecules are hidden from the effect of the light, thus being protected from photocatalytic degradation. Studies of different TiO{sub 2} materials with different particle sizes allowed a deeper exploration of this phenomenon. In addition, because this property of encapsulating pollutant molecules by photocatalytic systems is found to be a reversible phenomenon, P25 appears to be more convenient and advantageous as compared to the use of large surface area photocatalysts.Graphical AbstractFig.: Deaggregation of TiO{sub 2} particle agglomerates upon UV illumination.

  15. Oxalic acid pretreatment of rice straw particles and loblolly pine chips : release of hemicellulosic carbohydrates

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    This study was conducted to evaluate the effect of oxalic acid (OA) pretreatment on carbohydrates released from rice straw particles and wood chips. The results showed that OA treatment accelerated carbohydrates extraction from rice straw particles and wood chips. OA pretreatment dramatically increased the amount of carbohydrates extracted, up to 24 times for wood...

  16. Growth and study of barium oxalate single crystals in agar gel

    Indian Academy of Sciences (India)

    Unknown

    In the present work, agar–agar gel (Brezina and Harvan- kova 1991; Agrawal et al 1999) was preferentially used for the growth of crystals by single and double diffusion tech- niques. A test tube having 25 cm in length and 2⋅5 cm in dia- meter was employed. In single diffusion, hot aqueous agar gel and oxalic acid solution ...

  17. Chemically modified carbon paste electrode for fast screening of oxalic acid levels in soil solutions

    Czech Academy of Sciences Publication Activity Database

    Šestáková, Ivana; Jakl, M.; Jaklová Dytrtová, J.

    2008-01-01

    Roč. 102, - (2008), s. 140-140 E-ISSN 1213-7103. [International Conference on Electroanalysis /12./. 16.06.2008-19.06.2008, Prague] R&D Projects: GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : oxalic acid * carbon paste electrodes * soil solutions Subject RIV: CG - Electrochemistry

  18. Remarkable enhancement of Cu catalyst activity in hydrogenation of dimethyl oxalate to ethylene glycol using gold

    OpenAIRE

    Wang, Ya-nan; Duan, Xinping; Zheng, Jianwei; Lin, Haiqiang; Yuan, Youzhu; Ariga, Hiroko; Takakusagi, Satoru; Asakura, Kiyotaka

    2012-01-01

    The performance of an SBA-15 supported Cu catalyst for hydrogenation of dimethyl oxalate to ethylene glycol is markedly promoted with Au. A key genesis of the high activity of the catalyst is ascribed to the formation of Cu-Au alloy nanoparticles which stabilize the active species and retard their agglomeration during the hydrogenation process.

  19. Copper tolerance of brown-rot fungi : time course of oxalic acid production

    Science.gov (United States)

    Frederick Green; Carol A. Clausen

    2003-01-01

    The increase in the use of non-arsenical copper-based wood preservatives in response to environmental concerns has been accompanied by interest in copper-tolerant decay fungi. Oxalic acid production by brown-rot fungi has been proposed as one mechanism of copper tolerance. Fifteen brown-rot fungi representing the genera Postia, Wolfiporia, Meruliporia, Gloeophyllum,...

  20. Kinetics and mechanism of the oxidation of formic and oxalic acids ...

    Indian Academy of Sciences (India)

    Abstract. Kinetics and mechanism of oxidation of formic and oxalic acids by quinolinium fluorochromate (QFC) have been studied in dimethylsulphoxide. The main product of oxidation is carbon dioxide. The reaction is first-order with respect to. QFC. Michaelis–Menten type of kinetics were observed with respect to the ...

  1. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate.

    Science.gov (United States)

    Warren, L M; Mackenzie, A; Dance, D R; Young, K C

    2013-04-07

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.

  2. Morphology and optical properties of aluminum oxide formed into oxalic electrolyte with addition surface active agents

    International Nuclear Information System (INIS)

    Kazarkin, B; Stsiapanau, A; Smirnov, A; Zhilinski, V; Chernik, A; Bezborodov, V; Kozak, G; Danilovich, S

    2016-01-01

    The article discusses the results of investigations of porous films of alumina, formed into oxalic electrolyte with addition surface active agents, in particular, ordering structure, roughness of a surface, the optical transparency of the electrolyte concentration and surface active agents. Also discusses the features of the formation of porous films of temperature and IR radiation. (paper)

  3. Viscosities of oxalic acid and its salts in water and binary aqueous ...

    Indian Academy of Sciences (India)

    Unknown

    The solution struc- ture is of great importance in understanding the nature of bioactive molecules in the body system. The survey of literature1–20 show that although many studies have been carried out for various electrolytic solutions, little attention has been paid to the behav- iour of oxalic acid and its salts in water and in ...

  4. Growth and study of barium oxalate single crystals in agar gel

    Indian Academy of Sciences (India)

    Barium oxalate was grown in agar gel at ambient temperature. The effect of various parameters like gel concentration, gel setting time and concentration of the reactants on the growth of these crystals was studied. Prismatic platy shaped spherulites and dendrites were obtained. The grown crystals were characterized by ...

  5. Synthesis of CaTiO3 from calcium titanyl oxalate hexahydrate (CTO ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. Calcium titanate, CaTiO3, an importantmicrowave dielectric material and one of major phases in syn- roc (synthetic rock), a titanate ceramic with potential application for fixation of high level nuclear waste was synthesized from calcium titanyl oxalate [CaTiO (C2O4)2⋅6H2O] (CTO) by employing microwave heating ...

  6. Spectroscopic properties of Pr -doped erbium oxalate crystals

    Indian Academy of Sciences (India)

    The absorption spectra have been measured in the region 200–800 nm at room temper- ature. Judd–Ofelt intensity parameters for f–f transitions of the Pr3+ ions have been determined as. 2 = 166.7, 4 = 1.103 and 6 = 2.898. Analyses of the absorption spectra also show a possible energy transfer from the host material to the ...

  7. ROLE OF THE MICROFLORA IN DISTAL INTESTINAL TRACT BY MAINTAINING OXALATE HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Osolodchenko T.P.

    2015-05-01

    Full Text Available Human intestinal microflora is part of the human body and performs numerous function. Considerable research interest is in the field of probiotics for the prevention of kidney stones, which is one of the most common urological diseases.Urolithiasis is one of the most common urological diseases. This is polyetiological disease congenital and acquired character with complex physical and chemical processes that occur not only in the urinary system, but also the whole body. None of the treatments does not guarantee full recovery of the patient and often leads to relapse. The open methods of removal stones yield news minimally invasive the technologys. Development of stone formation depends on the presence of many factors, metabolic disorders, chronic urinary tract infections, genetic disorders and more. Most have the following metabolic disorders as hypercalciuria, hiperurikuria, hipotsytraturia , hyperoxaluria and hipomahniuria. Among all types of urolithiasis kaltsiyoksalatnyy ranked first in the prevalence rate - about 75.0 - 85.0 % of cases. Dietary restriction by oxalates іs the unreliable method of preventing disease. Although there is evidence for the growth inhibition normobiocenosis representatives, which in turn enhances the absorption of salts of oxalic acid oxalate in the application of sodium , magnesium and cobalt in their intragastric administration. Recently published many papers on the impact on the level of oxalate intestinal microflora. The first publications appeared on the influence of gram-negative obligate anaerobes O. formigenes the concentration of oxalate in the urine. This anaerobic bacteria living in the colon, its prevalence - 46.0 % - 77.0 % of the adult population. O. formigenes reveals the symbiotic interaction with the human body by reducing absorption of oxalate in the intestinal cavity with subsequent decrease in their concentration in plasma and urine. O. formigenes has two key enzymes - oksalyl

  8. Correlation between the production of exopolysaccharides and oxalic acid secretion by Ganoderma applanatum and Tyromyces palustris.

    Science.gov (United States)

    Osińska-Jaroszuk, Monika; Wlizło, Kamila; Szałapata, Katarzyna; Jarosz-Wilkołazka, Anna

    2014-12-01

    The secretion of exopolysaccharides and oxalic acid in cultures of a white rot Ganoderma applanatum strain and a brown rot Tyromyces palustris strain were tested in terms of culture time, pH range, and temperature. The high yield of exopolysaccharides (EPS) required a moderate temperature of 28 °C for G. applanatum and 20 °C for T. palustris. G. applanatum and T. palustris accumulated more EPS when the concentration of the carbon source (maltose for G. applanatum and fructose for T. palustris) was 30 g/L. The results indicate that the production of oxalic acid by G. applanatum is correlated with the initial pH value of the culture medium and the concentration of oxalic acid increased to 1.66 ± 0.2 mM at the initial pH of 6.5 during the fungal growth. During the growth of T. palustris, the reduction of the initial pH value of the growing medium lowered the oxalic acid concentration from 7.7 ± 0.6 mM at pH 6.0 to 1.99 ± 0.2 mM at pH 3.5. T. palustris accumulated considerably more oxalic acid than G. applanatum and its presence did not affect significantly the production of exopolysaccharides. We also observed that the maximum amounts of exopolysaccharides secreted during cultivation of G. applanatum and T. palustris were 45.8 ± 1.2 and 19.1 ± 1.2 g/L, respectively.

  9. Kyanoxalite, a new cancrinite-group mineral species with extraframework oxalate anion from the Lovozero alkaline pluton, Kola Peninsula

    Science.gov (United States)

    Chukanov, N. V.; Pekov, I. V.; Olysych, L. V.; Massa, W.; Yakubovich, O. V.; Zadov, A. E.; Rastsvetaeva, R. K.; Vigasina, M. F.

    2010-12-01

    Kyanoxalite, a new member of the cancrinite group, has been identified in hydrothermally altered hyperalkaline rocks and pegmatites of the Lovozero alkaline pluton, Kola Peninsula, Russia. It was found at Mount Karnasurt (holotype) in association with nepheline, aegirine, sodalite, nosean, albite, lomonosovite, murmanite, fluorapatite, loparite, and natrolite and at Mt. Alluaiv. Kyanoxalite is transparent, ranging in color from bright light blue, greenish light blue and grayish light blue to colorless. The new mineral is brittle, with a perfect cleavage parallel to (100). Mohs hardness is 5-5.5. The measured and calculated densitiesare 2.30(1) and 2.327 g/cm3, respectively. Kyanoxalite is uniaxial, negative, ω = 1.794(1), ɛ = 1.491(1). It is pleochroic from colorless along E to light blue along O. The IR spectrum indicates the presence of oxalate anions C2O{4/2-} and water molecules in the absence of CO{3/2-} Oxalate ions are confirmed by anion chromatography. The chemical composition (electron microprobe; water was determined by a modified Penfield method and carbon was determined by selective sorption from annealing products) is as follows, wt %: 19.70 Na2O, 1.92 K2O, 0.17 CaO, 27.41 Al2O3, 38.68 SiO2, 0.64 P2O5, 1.05 SO3, 3.23 C2O3, 8.42 H2O; the total is 101.18. The empirical formula (Z = 1) is (Na6.45K0.41Ca0.03)Σ6.89(Si6.53Al5.46O24)[(C2O4)0.455(SO4)0.13(PO4)0.09(OH)0.01]Σ0.68 · 4.74H2O. The idealized formula is Na7(Al5-6Si6-7O24)(C2O4)0.5-1 · 5H2O. Kyanoxalite is hexagonal, the space group is P63, a = 12.744(8), c = 5.213(6) -ray powder diffraction pattern are as follows, [ d, [A] ( I, %)( hkl)]: 6.39(44) (110), 4.73 (92) (101), 3.679 (72) (300), 3.264 (100) (211, 121), 2.760 (29) (400), 2.618 (36) (002), 2.216, (29) (302, 330). According to the X-ray single crystal study ( R = 0.033), two independent C2O4 groups statistically occupy the sites on the axis 63. The new mineral is the first natural silicate with an additional organic anion and is the most

  10. Fasting urinary calcium-to-creatinine and oxalate-to-creatinine ratios in dogs with calcium oxalate urolithiasis and breed-matched controls.

    Science.gov (United States)

    Furrow, E; Patterson, E E; Armstrong, P J; Osborne, C A; Lulich, J P

    2015-01-01

    Hypercalciuria and hyperoxaluria are risk factors for calcium oxalate (CaOx) urolithiasis, but breed-specific reports of urinary metabolites and their relationship with stone status are lacking. To compare urinary metabolites (calcium and oxalate) and blood ionized calcium (iCa) concentrations between CaOx stone formers and breed-matched stone-free controls for the Miniature Schnauzer, Bichon Frise, and Shih Tzu breeds. Forty-seven Miniature Schnauzers (23 cases and 24 controls), 27 Bichons Frise (14 cases and 13 controls), and 15 Shih Tzus (7 cases and 8 controls). Prospective study. Fasting spot urinary calcium-to-creatinine and oxalate-to-creatinine ratios (UCa/Cr and UOx/Cr, respectively) and blood iCa concentrations were measured and compared between cases and controls within and across breeds. Regression models were used to test the effect of patient and environmental factors on these variables. UCa/Cr was higher in cases than controls for each of the 3 breeds. In addition to stone status, being on a therapeutic food designed to prevent CaOx stone recurrence was associated with higher UCa/Cr. UOx/Cr did not differ between cases and controls for any of the breeds. Blood iCa was higher in cases than controls in the Miniature Schnauzer and Bichon Frise breeds and had a moderate correlation with UCa/Cr. Hypercalciuria is associated with CaOx stone status in the Miniature Schnauzer, Bichon Frise, and Shih Tzu breeds. UOx/Cr did not correlate with stone status in these 3 breeds. These findings may influence breed-specific stone prevention recommendations. Copyright © 2015 by the American College of Veterinary Internal Medicine.

  11. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation

    Science.gov (United States)

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming

    2016-01-01

    Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone

  12. The influence of oxalate-promoted growth of saponite and talc crystals

    Science.gov (United States)

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2013-01-01

    The intercalating growth of new silicate layers or metal hydroxide layers in the interlayer space of other clay minerals is known from various mixed-layer clay minerals such as illite-smectite (I-S), chlorite-vermiculite, and mica-vermiculite. In a recent study, the present authors proposed that smectite-group minerals can be synthesized from solution as new 2:1 silicate layers within the low-charge interlayers of rectorite. That study showed how oxalate catalyzes the crystallization of saponite from a silicate gel at low temperatures (60ºC) and ambient pressure. As an extension of this work the aim of the present study was to test the claim that new 2:1 silicate layers can be synthesized as new intercalating layers in the low-charge interlayers of rectorite and whether oxalate could promote such an intercalation synthesis. Two experiments were conducted at 60ºC and atmospheric pressure. First, disodium oxalate solution was added to a suspension of rectorite in order to investigate the effects that oxalate anions have on the structure of rectorite. In a second experiment, silicate gel of saponitic composition (calculated interlayer charge −0.33 eq/O10(OH)2) was mixed with a suspension of rectorite and incubated in disodium oxalate solution. The synthesis products were extracted after 3 months and analyzed by X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). The treatment of ultrathin sections with octadecylammonium (nC = 18) cations revealed the presence of 2:1 layer silicates with different interlayer charges that grew from the silicate gel. The oxalate-promoted nucleation of saponite and talc crystallites on the rectorite led to the alteration and ultimately to the destruction of the rectorite structure. The change was documented in HRTEM lattice-fringe images. The crystallization of new 2:1 layer silicates also occurred within the expandable interlayers of rectorite but not as new 2:1 silicate layers parallel to the previous 2

  13. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation

    Directory of Open Access Journals (Sweden)

    Gan QZ

    2016-06-01

    Full Text Available Qiong-Zhi Gan,1,2 Xin-Yuan Sun,1,2 Poonam Bhadja,1,2 Xiu-Qiong Yao,1,2 Jian-Ming Ouyang1,2 1Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China; 2Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, People’s Republic of China Background: Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear.Methods: African green monkey renal epithelial (Vero cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD activity, malonaldehyde (MDA content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (ΔΨm were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM and calcium oxalate dihydrate (COD crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry.Results: The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and ΔΨm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production

  14. Crystal structure of a mixed-ligand terbium(III coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology

    Directory of Open Access Journals (Sweden)

    Chainok Kittipong

    2016-01-01

    Full Text Available The title compound, poly[(μ3-formato(μ4-oxalatoterbium(III], [Tb(CHO2(C2O4]n, is a three-dimensional coordination polymer, and is isotypic with the LaIII, CeIII and SmIII analogues. The asymmetric unit contains one TbIII ion, one formate anion (CHO2− and half of an oxalate anion (C2O42−, the latter being completed by application of inversion symmetry. The TbIII ion is nine-coordinated in a distorted tricapped trigonal–prismatic manner by two chelating carboxylate groups from two C2O42− ligands, two carboxylate oxygen atoms from another two C2O42− ligands and three oxygen atoms from three CHO2− ligands, with the Tb—O bond lengths and the O—Tb—O bond angles ranging from 2.4165 (19 to 2.478 (3 Å and 64.53 (6 to 144.49 (4°, respectively. The CHO2− and C2O42− anions adopt μ3-bridging and μ4-chelating-bridging coordination modes, respectively, linking adjacent TbIII ions into a three-dimensional 12-connected fcu topology with point symbol (324.436.56. The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature.

  15. [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4].4[H2O]: A new layered aluminum phosphate-oxalate

    International Nuclear Information System (INIS)

    Peng Li; Li Jiyang; Yu Jihong; Li Guanghua; Fang Qianrong; Xu Ruren

    2005-01-01

    A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H 3 N(CH 2 ) 4 NH 3 ] 2 [Al 4 (C 2 O 4 )(H 2 PO 4 ) 2 (PO 4 ) 4 ].4[H 2 O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31 P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) A, b=8.8608(8) A, c=13.2224(11) A, α=80.830(6) deg. , β=74.965(5) deg. , γ=78.782(6) deg. , Z=2, R 1[ I >2 σ ( I )] =0.0511 and wR 2(alldata) =0.1423. The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions. -- Graphical abstract: The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Oxalate ions are bis-bidentately boned by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra

  16. Oxalic acid as an assisting agent for the electrodialytic remediation of chromated copper arsenate treated timber waste

    DEFF Research Database (Denmark)

    Ribeiro, Alexandra B.; Mateus, Eduardo P.; Ottosen, Lisbeth M.

    1999-01-01

    The electrodialytic process is proposed as a technique for the remediation of chromated copper arsenate treated timber waste, using oxalic acid as assisting agent. The method prowed succesfull 93% Cu, 95% Cr and 99% As was removed from the timber.......The electrodialytic process is proposed as a technique for the remediation of chromated copper arsenate treated timber waste, using oxalic acid as assisting agent. The method prowed succesfull 93% Cu, 95% Cr and 99% As was removed from the timber....

  17. Urinary lithogenic risk profile in recurrent stone formers with hyperoxaluria: a randomized controlled trial comparing DASH (Dietary Approaches to Stop Hypertension)-style and low-oxalate diets.

    Science.gov (United States)

    Noori, Nazanin; Honarkar, Elaheh; Goldfarb, David S; Kalantar-Zadeh, Kamyar; Taheri, Maryam; Shakhssalim, Nasser; Parvin, Mahmoud; Basiri, Abbas

    2014-03-01

    Patients with nephrolithiasis and hyperoxaluria generally are advised to follow a low-oxalate diet. However, most people do not eat isolated nutrients, but meals consisting of a variety of foods with complex combinations of nutrients. A more rational approach to nephrolithiasis prevention would be to base dietary advice on the cumulative effects of foods and different dietary patterns rather than single nutrients. Randomized controlled trial. Recurrent stone formers with hyperoxaluria (urine oxalate > 40 mg/d). The intervention group was asked to follow a calorie-controlled Dietary Approaches to Stop Hypertension (DASH)-style diet (a diet high in fruit, vegetables, whole grains, and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains, sweets, and meat), whereas the control group was prescribed a low-oxalate diet. Study length was 8 weeks. Primary: change in urinary calcium oxalate supersaturation. Changes in 24-hour urinary composition. 57 participants were randomly assigned (DASH group, 29; low-oxalate group, 28). 41 participants completed the trial (DASH group, 21; low-oxalate group, 20). As-treated analysis showed a trend for urinary oxalate excretion to increase in the DASH versus the low-oxalate group (point estimate of difference, 9.0mg/d; 95% CI, -1.1 to 19.1mg/d; P=0.08). However, there was a trend for calcium oxalate supersaturation to decrease in the DASH versus the low-oxalate group (point estimate of difference, -1.24; 95% CI, -2.80 to 0.32; P=0.08) in association with an increase in magnesium and citrate excretion and urine pH in the DASH versus low-oxalate group. Limited sample size, as-treated analysis, nonsignificant results. The DASH diet might be an effective alternative to the low-oxalate diet in reducing calcium oxalate supersaturation and should be studied more. Copyright © 2014. Published by Elsevier Inc.

  18. Silver Oxalate Ink with Low Sintering Temperature and Good Electrical Property

    Science.gov (United States)

    Yang, Wendong; Wang, Changhai; Arrighi, Valeria

    2018-02-01

    Favorable conductivity at low temperature is desirable for flexible electronics technology, where formulation of a suitable ink material is very critical. In this paper, a type of silver organic decomposable ink (10 wt.% silver content) was formulated by using as-prepared silver oxalate and butylamine, producing silver films with good uniformity and conductivity on a polyimide substrate after sintering below 130°C (15.72 μΩ cm) and even at 100°C (36.29 μΩ cm). Silver oxalate powder with good properties and an appropriate solid amine complex with lower decomposition temperature were synthesized, both differing from those reported in the literature. The influence of the factors on the electrical properties of the produced silver films such as sintering temperature and time was studied in detail and the relationship between them was demonstrated.

  19. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    Science.gov (United States)

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  20. Photoelectrocatalytic Degradation of Sodium Oxalate by TiO2/Ti Thin Film Electrode

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chang

    2012-01-01

    Full Text Available The photocatalytically active TiO2 thin film was deposited on the titanium substrate plate by chemical vapor deposition (CVD method, and the photoelectrocatalytic degradation of sodium oxalate was investigated by TiO2 thin film reactor prepared in this study with additional electric potential at 365 nm irradiation. The batch system was chosen in this experiment, and the controlled parameters were pH, different supporting electrolytes, applied additional potential, and different electrolyte solutions that were examined and discussed. The experimental results revealed that the additional applied potential in photocatalytic reaction could prohibit recombination of electron/hole pairs, but the photoelectrocatalytic effect was decreased when the applied electric potential was over 0.25 V. Among the electrolyte solutions added, sodium sulfate improved the photoelectrocatalytic effect most significantly. At last, the better photoelectrocatalytic degradation of sodium oxalate occurred at pH 3 when comparing the pH influence.

  1. Solvent-free synthesis of three layered manganese sulfate-oxalates with different pore apertures

    Science.gov (United States)

    Shi, Jingyu; Guo, Furong; Yang, Meng; Zeng, Hongmei; Lin, Zhien

    2018-01-01

    Three manganese sulfate-oxalates, namely, H2pip·Mn2(SO4)2(ox)(H2O)2·2H2O (1), H3ipaṡMn2(SO4)(ox)2.5·H2O (2), and H3dptaṡMn2(SO4)2(ox)1.5(H2O)3 (3), were prepared under solvent-free conditions, where pip = piperazine, ox = oxalate, ipa = 3,3‧-iminobis(N,N-dimethylpropylamine), and dpta = dipropylenetriamine. These compounds have different layered structures intercalated with organic cations. Their pore apertures range from small 8-membered ring (8 MR) to large 12 MR and extra-large 20 MR. The temperature dependence of the magnetic susceptibility of these compounds were also investigated.

  2. Recovery of vanadium (V) from used catalysts in sulfuric acid production units by oxalic acid

    International Nuclear Information System (INIS)

    Abdulbaki, M.; Shino, O.

    2009-07-01

    Vanadium penta oxide (V 2 O 5 ), is used, in large quantities as a catalyst for the oxidation of SO 2 to SO 3 in sulfuric acid production units, during the oxidation process the level of the oxidation declines with the time because of catalyst poisoning. So the spent catalyst is usually through out in a specified special places by General Fertilizer Company which causes a pollution of the land. The present paper, studies the recovery of vanadium from the spent catalyst by using the oxalic acid. The optimal conditions of spent catalyst leaching have been studied. It has been shown that 2%(w/w) of oxalic acid is the most suitable for leaching process at 70 degree centigrade. The precipitation of vanadium using some alkaline media NH 4 OH has been also studied, it has been shown that ammonium hydroxide was the best at 50 degree centigrade. (author)

  3. Crystal agglomeration of europium oxalate in reaction crystallization using double-jet semi-batch reactor

    International Nuclear Information System (INIS)

    Kim, Woo-Sik; Kim, Woon-Soo; Kim, Kwang-Seok; Kim, Joon-Soo; Ward, Michael D.

    2004-01-01

    The particle agglomeration of europium oxalate was investigated in a double-jet semi-batch reactor over a wide range of operating variables, including the agitation speed, reactant feed rate, and reactant concentration. The size of the agglomerates was directly dictated by the particle collision and supersaturation promoting agglomeration and the fluid shear force inhibiting agglomeration. Thus, with a longer feeding time and higher feed concentration for the reaction crystallization, the mean particle size increased, while the corresponding total particle population decreased due to the enhanced chance of particle agglomeration, resulting from a longer residence time and higher supersaturation in the reactor. Agitation was found to exhibit a rather complicated influence on particle agglomeration. Although both particle collision and turbulent fluid shear were promoted by an increase in the mixing intensity, the crystal agglomeration of europium oxalate was maximized at around 500 rpm of agitation speed due to an optimized balance between particle aggregation and breakage

  4. De-agglomeration of thorium oxalate - a method for the synthesis of sinteractive thoria

    International Nuclear Information System (INIS)

    Ananthasivan, K.; Anthonysamy, S.; Singh, Alok; Vasudeva Rao, P.R.

    2002-01-01

    Thorium oxalate was obtained by precipitation in water and in non-aqueous solvents and de-agglomerated by ultrasonication in both aqueous as well as non-aqueous media. Sinteractive thoria (crystallite size 6-20 nm) obtained from the de-agglomerated thorium oxalate was characterised for residual carbon, crystallite size, specific surface area, particle size distribution and bulk density. Microstructure of the precursor and the product was studied using TEM and HRTEM. The morphology of the sintered pellets was studied using SEM. The reactivity of the calcined powders was determined by measuring the density of the sintered compacts. The solvent used for de-agglomeration was found to have significant influence on the microstructure of the powders. Thoria derived through aqueous precipitation route could be sintered to a density of 9.7 Mg m -3 at 1673 K. It was demonstrated that ultrasonic de-agglomeration could be a useful method for obtaining sinteractive thoria

  5. Synthesis and characterization of nonlinear optical L-arginine semi-oxalate single crystal

    Science.gov (United States)

    Vasudevan, P.; Gokul Raj, S.; Sankar, S.

    2013-04-01

    L-arginine semi-oxalate single crystals have been synthesized by slow evaporation method at room temperature. Single crystal and powder X-ray diffraction analyses has been made to confirm the triclinic structure with non-centrosymmetric space group P1. The presence of functional groups of L-arginine semi-oxalate crystals was identified and confirmed by using the Fourier transform infrared spectroscopy. Molecular structure of the grown crystal was analyzed by 1H NMR and 13C NMR studies. Optical absorption studies carried out in wavelength range from 250 nm to 1200 nm have revealed that the material is completely transparent for the entire wavelength range studied. Thermal characterization using thermogravimetric analysis and differential scanning calorimetry studies show that the crystal is thermally stable up to 146 °C. The presence of second harmonic generation of the grown crystal was tested and its efficiency was determined by using Kurtz and Perry powder technique.

  6. Reevaluation of the plant "gemstones": Calcium oxalate crystals sustain photosynthesis under drought conditions.

    Science.gov (United States)

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G; Kontoyannis, Christos G; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I; Karabourniotis, George

    2016-09-01

    Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path "alarm photosynthesis." The so-far "enigmatic," but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants.

  7. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  8. Effects of dietary interventions on 24-hour urine parameters in patients with idiopathic recurrent calcium oxalate stones

    Directory of Open Access Journals (Sweden)

    Mustafa Kıraç

    2013-02-01

    Full Text Available The aim of this study is to investigate the effects of dietary factors on 24-hour urine parameters in patients with idiopathic recurrent calcium oxalate stones. A total of 108 of idiopathic recurrent calcium oxalate stones were included in the study. A 24-hour urinalysis was performed and metabolic abnormalities were measured for all of the patients. All of the patients were given specialized diets for their 24-hour urine abnormalities. At the end of first month, the same parameters were examined in another 24-hour urinalysis. Hyperoxaluria, hypernatruria, and hypercalciuria were found in 84 (77%, 43 (39.8%, and 38 (35.5% of the patients, respectively. The differences between the oxalate, sodium, volume, uric acid, and citrate parameters before and after the dietary intervention were significant (p < 0.05. The calcium parameters were not significantly different before and after the intervention. We found that oxalate, sodium, volume, uric acid, and citrate—but not calcium—abnormalities in patients with recurrent calcium oxalate stones can be corrected by diet. The metabolic profiles of idiopathic calcium oxalate stone patients should be evaluated and the appropriate dietary interventions should be implemented to decrease stone recurrence.

  9. Oxidation of ferrocene by thiocyanic acid in the presence of ammonium oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Ruslin, Farah bt; Yamin, Bohari M. [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (Malaysia)

    2014-09-03

    A flake-like crystalline salt was obtained from the reaction of ferrocene, oxalic acid and ammonium thiocyanate in ethanol The elemental analysis and spectroscopic data were in agreement with the preliminary X-ray molecular structure. The compound consists of four ferrocenium moieties and a counter anion consisting of two (tetraisothiocyanato)iron(III) linked by an oxalato bridging group in such a way that both iron central atoms adopt octahedral geometries.

  10. Kinetic study of nucleation and crystal growth during oxalic precipitation in the nuclear industry

    International Nuclear Information System (INIS)

    Andrieu, Murielle

    1999-01-01

    In spite of an extensive use in chemical industry, most of precipitation processes are based on global and empirical knowledge. However, in the recent years, fundamental and phenomenological theories have been developed and they can be used to better understand the mechanisms of precipitation of plutonium IV oxalate, which is a significant stage of the irradiated fuel reprocessing. For this reason, appropriate methods were developed to study nucleation and crystal growth kinetics in a nuclear environment under a wide range of operating conditions. Each phenomena was studied individually in order to reduce the free parameters of the System. This study bears on the oxalates of plutonium and elements which simulate plutonium behaviour during the precipitation, neodymium III and uranium IV. A compact apparatus of a specific construction was used for nucleation measurements in accordance with the Nielsen's method. The state of the mixing was characterised at the reactor scale (macro-mixing) and at molecular scale (micro-mixing). The experimental results for the studied oxalates are in good agreement with the Volmer and Weber's theory. We propose primary nucleation kinetic laws over a wide range of operating conditions (temperature, non-stoichiometric conditions, acidity...). An original method, using a high seed charge, was developed for the determination of crystal growth kinetics, in a batch crystallizer. The crystal growth rate is first order with respect to the supersaturation and the kinetic constant follows an Arrhenius type relation with activation energies of 14, 29 and 36 kJ.mol -1 for respectively neodymium III, uranium IV and plutonium IV oxalates. The overall growth process is surface integration controlled, with a screw dislocation mechanism. [fr

  11. Oxalate nephropathy: An important cause of renal failure after bariatric surgery

    Directory of Open Access Journals (Sweden)

    S P Nagaraju

    2013-01-01

    Full Text Available Obesity is a major public health issue all over the world. Bariatric surgery is increasingly becoming popular as a surgical treatment for morbid obesity. Nephrologists need to be aware of possible renal complications after bariatric surgery. We report a 54-year-old male patient who presented with progressive worsening of renal function following a duodenal switch procedure for morbid obesity, and he was found to have oxalate nephropathy on renal biopsy.

  12. Effect of Salt Stress on Purslane and Potential Health Benefits: Oxalic Acid and Fatty Acids Profile

    OpenAIRE

    Carvalho, Isabel S.; Teixeira, Mónica; Brodelius, Maria

    2009-01-01

    Polyunsaturated fatty acids (PUFAs) are crucial for human health and nutrition since they cannot be synthesized in the body and hence must be provided by the diet. Portulaca oleracea L. (purslane) is the eighth most commonly distributed plant in the world. It is a heat- and drought-tolerant plant and our previous study demonstrates that their leaf provide high amounts of antioxidants, minerals, vitamins and proteins. In the present study, we set out to characterize the oxalic acid and the fat...

  13. Synthesis of BaTiO3 powder from barium titanyl oxalate (BTO ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Cubic barium titanate (BaTiO3) powder was synthesized by heating barium titanyl oxalate hydrate,. BaTiO(C2O4)2⋅4H2O (BTO) precursor in microwave heating system in air at 500°C. Heating BTO in micro- wave above 600°C yielded tetragonal form of BaTiO3. Experiments repeated in silicon carbide furnace ...

  14. Oxalic Acid Sensors Based on Sol-Gel Nanostructured TiO2 Films

    Czech Academy of Sciences Publication Activity Database

    Morozová, Magdalena; Klusoň, Petr; Krýsa, J.; Gwenin, Ch.; Šolcová, Olga

    2011-01-01

    Roč. 58, č. 1 (2011), s. 175-181 ISSN 0928-0707 R&D Projects: GA ČR GD203/08/H032; GA ČR GA104/09/0694; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : titanium oxide * photo-electrochemical oxidation * oxalic acid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.632, year: 2011

  15. Mediation of calcium oxalate crystal growth on human kidney epithelial cells with different degrees of injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen [Graduate School of Southern Medical University, Guangzhou 510515 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Su Zexuan, E-mail: suz2008@126.com [The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Yao Xiuqiong; Peng Hua; Deng Suiping [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Ouyang Jianming, E-mail: toyjm@jnu.edu.cn [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)

    2012-05-01

    The current study examined the role of injured human kidney tubular epithelial cell (HKC) in the mediation of formation of calcium oxalate (CaOxa) crystals by means of scanning electronic microscopy and X-ray diffraction. HKC was injured using different concentrations of H{sub 2}O{sub 2}. Cell injury resulted in a significant decrease in cell viability and superoxide dismutase (SOD) concentration and an increase in the level of malondialdehyde (MDA) and expression of osteopontin (OPN). Injured cells not only promote nucleation and aggregation of CaOxa crystals, but also induce the formation of calcium oxalate monohydrate (COM) crystals that strongly adhere to cells. These results imply that injured HKCs promote stone formation by providing more nucleating sites for crystals, promoting the aggregation of crystals, and inducing the formation of COM crystals. - Graphical abstract: Injured cells promote nucleation and aggregation of CaOxa crystals, induce the formation of calcium oxalate monohydrate (COM) crystals. Highlights: Black-Right-Pointing-Pointer A direct nucleation and growth of CaOxa crystals on both normal and injured cells. Black-Right-Pointing-Pointer Stronger green fluorescence, i.e. OPN expression, was seen on the injury cell surface Black-Right-Pointing-Pointer Injured cells promote nucleation and aggregation of CaOxa crystals. Black-Right-Pointing-Pointer Injured cells induce the formation of calcium oxalate monohydrate crystals. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} decrease cell viability in a dose-dependent manner at 0.1-1 mmol/L.

  16. Isothermal titration calorimetry uncovers substrate promiscuity of bicupin oxalate oxidase from Ceriporiopsis subvermispora

    Directory of Open Access Journals (Sweden)

    Hassan Rana

    2016-03-01

    Full Text Available Isothermal titration calorimetry (ITC may be used to determine the kinetic parameters of enzyme-catalyzed reactions when neither products nor reactants are spectrophotometrically visible and when the reaction products are unknown. We report here the use of the multiple injection method of ITC to characterize the catalytic properties of oxalate oxidase (OxOx from Ceriporiopsis subvermispora (CsOxOx, a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The multiple injection ITC method of measuring OxOx activity involves continuous, real-time detection of the amount of heat generated (dQ during catalysis, which is equal to the number of moles of product produced times the enthalpy of the reaction (ΔHapp. Steady-state kinetic constants using oxalate as the substrate determined by multiple injection ITC are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase-catalyzed oxidation of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid and by membrane inlet mass spectrometry. Additionally, we used multiple injection ITC to identify mesoxalate as a substrate for the CsOxOx-catalyzed reaction, with a kinetic parameters comparable to that of oxalate, and to identify a number of small molecule carboxylic acid compounds that also serve as substrates for the enzyme.

  17. Effect of calcium intake on urinary oxalate excretion in calcium stone-forming patients

    Directory of Open Access Journals (Sweden)

    Nishiura J.L.

    2002-01-01

    Full Text Available Dietary calcium lowers the risk of nephrolithiasis due to a decreased absorption of dietary oxalate that is bound by intestinal calcium. The aim of the present study was to evaluate oxaluria in normocalciuric and hypercalciuric lithiasic patients under different calcium intake. Fifty patients (26 females and 24 males, 41 ± 10 years old, whose 4-day dietary records revealed a regular low calcium intake (<=500 mg/day, received an oral calcium load (1 g/day for 7 days. A 24-h urine was obtained before and after load and according to the calciuria under both diets, patients were considered as normocalciuric (NC, N = 15, diet-dependent hypercalciuric (DDHC, N = 9 or diet-independent hypercalciuric (DIHC, N = 26. On regular diet, mean oxaluria was 30 ± 14 mg/24 h for all patients. The 7-day calcium load induced a significant decrease in mean oxaluria compared to the regular diet in NC and DIHC (20 ± 12 vs 26 ± 7 and 27 ± 18 vs 32 ± 15 mg/24 h, respectively, P<0.05 but not in DDHC patients (22 ± 10 vs 23 ± 5 mg/24 h. The lack of an oxalate decrease among DDHC patients after the calcium load might have been due to higher calcium absorption under higher calcium supply, with a consequent lower amount of calcium left in the intestine to bind with oxalate. These data suggest that a long-lasting regular calcium consumption <500 mg was not associated with high oxaluria and that a subpopulation of hypercalciuric patients who presented a higher intestinal calcium absorption (DDHC tended to hyperabsorb oxalate as well, so that oxaluria did not change under different calcium intake.

  18. Study of the influence of the citric and oxalic acid in the uranyl sorption in ZrP2O7 for their use in contention barriers

    International Nuclear Information System (INIS)

    Garcia G, N.

    2009-01-01

    Countries which produce electricity by nuclear means, such as Mexico, need to develop a technology for that at long term safe containment of nuclear waste that are produced in nuclear power plants, for now, the arrangement of these is made by international companies, as which is extremely expensive. The most accepted proposal for the containment of radioactive waste is the Deep Geological Repository (DGR), which consists of a number of natural barriers and of engineering barriers. Currently, barriers to engineering and materials that the make up are still under study, because must meet a series of structural criteria and chemical such as high insolubility, thermal and chemical stability with ionizing radiation. The surface must have adsorbed features of ions and organic compounds dissolved in infiltration water that could penetrate for a crack in the DGR. This study focuses, as first stage, is the uranyl sorption on zirconium diphosphate in various conditions of time, concentration and ph, then evaluates the influence of citric acid and oxalic acid on the sorption of uranyl on ZrP 2 O 7 , in order to model the behaviour of alpha emitters that are dissolved by percolating water laden with salts and organic matter, that infiltrates might during catastrophic events in the DGR. It was confirmed the purity of the zirconium diphosphate because it was synthesized from sea sand with the physicochemical characterization and superficial. The proposed methodology included elemental analysis by neutron activation and X-ray emission induced by charged particles, functional group analysis with infrared spectroscopy, morphology with scanning electron microscopy, crystallinity with transmission electron microscopy and X-ray diffraction. For properties surface was determined, the specific area using Bet multipoint technique, acidity constants in the FITEQL 4.0 program, the hydration time was obtained from literature, the point of zero charge was identified with a mass titration and

  19. Impact Of Sodium Oxalate, Sodium Aluminosilicate, and Gibbsite/Boehmite on ARP Filter Performance

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodium aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.

  20. Determination of trace transition metals in environmental matrices by chelation ion chromatography.

    Science.gov (United States)

    Murgia, Sandro M; Selvaggi, Roberta; Poletti, Antonio

    2011-03-01

    Trace transition metals (Fe(3+), Mn, Cu, Cd, Co, Zn, Ni) in environmental samples were analyzed by chelation ion chromatography using a mixed bed ion-exchange column with pyridine-2,6-dicarboxylic acid (PDCA) and oxalic acid as eluent and large volume direct injection (1,000 μl). The two eluents, PDCA and oxalic acid, were tested, and repeatability and detection limits were compared. The total analysis time was ~15 min. The separation with PDCA was more successful than that obtained with acid oxalic. It was observed that utilizing PDCA resulted in lower detection limits, higher repeatability, and a quantitative detection of Cd and Mn, which coelute as a single peak when using the oxalic acid. At last, the PDCA calibration graphs resulted linear (r (2) > 0.999) in the range 0.4-1,000 μg/L. The procedure was applied to the analysis of metals in soils and in water samples. The results obtained from the analysis of natural waters have demonstrated that the method is simple and efficient, therefore, can be used for the determination of metals in natural waters using a continuous and automatic monitoring system.

  1. Separation of plutonium oxidation states by ion chromatography

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Jun, Kwan Sik; Kang, Chul Hyung

    2001-01-01

    The ion chromatography for the separation of plutonium species which are suggested to be Pu 3+ , Pu 4+ PuO 2 + and PuO 2 2+ in natural water was studied. Two separation methods were performed; 1) two-column method containing each of SiO - and SiO-SO 3 - cation exchanger, 2) IC with an AG11 column and the eluent of oxalate/nitric acid. Separation conditions for Eu 3+ , Th 4+ , NpO 2 + and UO 2 2+ in place of plutonium species were acquired from preliminary tests. When these conditions were applied to separate the plutonium species, two-column method was separated them successfully. However, the IC method with oxalate eluent was difficult in the separation of plutonium species due to the change of Pu 3+ and PuO 2 2+ to Pu 4+ and PuO 2 + , respectively. (author)

  2. Oxalate Acid-Base Cements as a Means of Carbon Storage

    Science.gov (United States)

    Erdogan, S. T.

    2017-12-01

    Emission of CO2 from industrial processes poses a myriad of environmental problems. One such polluter is the portland cement (PC) industry. PC is the main ingredient in concrete which is the ubiquitous binding material for construction works. Its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. There have long been efforts to reduce the carbon footprint of concrete. Among the many ways, one is to bind CO2 to the phases in the cement-water paste, oxides, hydroxides, and silicates of calcium, during early hydration or while in service. The problem is that obtaining calcium oxide cheaply requires the decarbonation of limestone and the uptake of CO2 is slow and limited mainly to the surface of the concrete due to its low gas permeability. Hence, a faster method to bind more CO2 is needed. Acid-base (AB) cements are fast-setting, high-strength systems that have high durability in many environments in which PC concrete is vulnerable. They are made with a powder base such as MgO and an acid or acid salt, like phosphates. Despite certain advantages over PC cement systems, AB cements are not feasible, due to their high acid content. Also, the phosphoric acid used comes from non-renewable sources of phosphate. A potential way to reduce the drawbacks of using phosphates could be to use organic acids. Oxalic acid or its salts could react with the proper powder base to give concrete that could be used for infrastructure hence that would have very high demand. In addition, methods to produce oxalates from CO2, even atmospheric, are becoming widespread and more economical. The base can also be an industrial byproduct to further lower the environmental impact. This study describes the use of oxalic acid and industrial byproducts to obtain mortars with mechanical properties comparable to those of PC mortars. It is

  3. RISK FACTORS AND MARKERS OF TUBULOINTERSTITIAL NEPHRITIS DEVELOPMENT IN CHILDREN WITH OXALATE-CALCIUM CRYSTALLURIA

    Directory of Open Access Journals (Sweden)

    E. V. Popova

    2017-01-01

    Full Text Available Research objective: to study the clinical and biochemical risk factors and markers for the formation of tubulointerstitial nephritis  in children with oxalate-calcium crystalluria. Methods: 30 children with tubulointerstitial nephritis were examined on a background  of oxalate-calcium crystalluria. Special clinical and laboratory methods of research were used: stable metabolites of nitric oxide-nitrites and activity of superoxide dismutase, albumin in urine were determined in erythrocytes and urine. To determine the clinical  features of the course and identify risk factors for the development of tubulointerstitial nephritis, we analyzed: perinatal and genealogical anamnesis, the age of debut of oxalate-calcium crystalluria and tubulointerstitial nephritis, and ultrasound data from the organs  of the urinary system. Results: In children with tubulointerstitial nephritis, in 22% of cases the signs of oxalate-calcium crystal-luria preceded the underlying disease. For tubulointerstitial nephritis, which occurred against the background of metabolic disturbances, whose debut occurred at an early age, a latent course is typical, and minimal tubular kidney dysfunction, formed at the age  of 4–11 years. The following clinical and anamnestic factors had the greatest impact on the formation of tubulointerstitial nephritis  from a single-factor analysis: a family history with family history and the presence of 2 degrees of kinship of urolithiasis, a threat of termination of pregnancy and gestosis of the first half of pregnancy, hyperechoic inclusions in the renal parenchyma by ultrasound examination of child. In parallel with the processes of antioxidant protection against the background of oxidative stress, there is an increase in the level of metabolites of nitric oxide in the urine, and in combination with albuminuria, an increase in endothelial dysfunction. Conclusion: the leading factors in the formation of tubulointerstitial nephritis in

  4. Glyoxylate is a substrate of the sulfate-oxalate exchanger, sat-1, and increases its expression in HepG2 cells.

    Science.gov (United States)

    Schnedler, Nina; Burckhardt, Gerhard; Burckhardt, Birgitta C

    2011-03-01

    Hyperoxaluria is a major problem causing nephrolithiasis. Little is known about the regulation of oxalate transport from the liver, the main organ for oxalate synthesis, into the circulation. Since the sulfate anion transporter-1(sat-1) is present in the sinusoidal membrane of hepatocytes and translocates oxalate, its impact on increased oxalate synthesis was studied. Sat-1 expressing oocytes were used for cis-inhibition, trans-stimulation, and efflux experiments with labelled sulfate and oxalate to demonstrate the interactions of oxalate, glyoxylate, and glycolate with sat-1. HepG2 cells were incubated with oxalate and its precursors (glycine, hydroxyproline, glyoxylate, and glycolate). Changes in endogenous sat-1 mRNA-expression were examined using real-time PCR. After incubation of HepG2 cells in glyoxylate, sat-1 protein-expression was analysed by Western blotting, and sulfate uptake into HepG2 cells was measured. RT-PCR was used to screen for mRNA of other transporters. While oxalate and glyoxylate inhibited sulfate uptake, glycolate did not. Sulfate and oxalate uptake were trans-stimulated by glyoxylate but not by glycolate. Glyoxylate enhanced sulfate efflux. Glyoxylate was the only oxalate precursor stimulating sat-1 mRNA-expression. After incubation of HepG2 cells in glyoxylate, both sat-1 protein-expression and sulfate uptake into the cells increased. mRNA-expression of other transporters in HepG2 cells was not affected by glyoxylate treatment. The oxalate precursor glyoxylate was identified as a substrate of sat-1. Upregulated expression of sat-1 mRNA and of a functional sat-1 protein indicates that glyoxylate may be responsible for the elevated oxalate release from hepatocytes observed in hyperoxaluria. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. [Clinical, laboratory, and functional characteristic of patients with bronchial asthma and chronic obstructive pulmonary disease with disturbances of oxalic acid metabolism].

    Science.gov (United States)

    Shaĭlieva, L O; Fedoseev, G B; Zorina, M L; Petrova, M A; Trofimov, V I; Kakliugin, A P

    2013-01-01

    We studied the role of oxalate release through the airways as a potential injurious factor in the development of inflammation, bronchial obstruction and cough syndrome (respiratory oxalosis). Detection of oxalates in bronhcoalveolar lavage fluid and daily urine is the most valuable method for diagnostics of oxalates. Systemic effects, such as cholelithiasis, urolithiasis, and spinal osteochondrosis are characteristic clinical signs of respiratory oxalosis, besides purely respiratory symptoms.

  6. Continuous plutonium(IV) oxalate precipitation, filtration, and calcination process. [From product streams from Redox, Purex, or Recuplex solvent extraction plants

    Energy Technology Data Exchange (ETDEWEB)

    Beede, R L

    1956-09-27

    A continuous plutonium (IV) oxalate precipitation, filtration, and calcination process has been developed. Continuous and batch decomposition of the oxalate in the filtrates has been demonstrated. The processes have been demonstrated in prototype equipment. Plutonium (IV) oxalate was precipitated continuously at room temperature by the concurrent addition of plutonium (IV) nitrate feed and oxalic acid into the pan of a modified rotary drum filter. The plutonium (IV) oxalate was calcined to plutonium dioxide, which could be readily hydrofluorinated. Continuous decomposition of the oxalate in synthetic plutonium (IV) oxalate filtrates containing plutonium (IV) oxalate solids was demonstrated using co-current flow in a U-shaped reactor. Feeds containing from 10 to 100 g/1 Pu, as plutonium (IV) nitrate, and 1.0 to 6.5 M HNO/sub 3/, respectively, can be processed. One molar oxalic acid is used as the precipitant. Temperatures of 20 to 35/sup 0/C for the precipitation and filtration are satisfactory. Plutonium (IV) oxalate can be calcined at 300 to 400/sup 0/C in a screw-type drier-calciner to plutonium dioxide and hydrofluorinated at 450 to 550/sup 0/C. Plutonium dioxide exceeding purity requirements has been produced in the prototype equipment. Advantages of continuous precipitation and filtration are: uniform plutonium (IV) oxalate, improved filtration characteristics, elimination of heating and cooling facilities, and higher capacities through a single unit. Advantages of the screw-type drier-calciner are the continuous production of an oxide satisfactory for feed for the proposed plant vibrating tube hydrofluorinator, and ease of coupling continuous precipitation and filtration to this proposed hydrofluorinator. Continuous decomposition of oxalate in filtrates offers advantages in decreasing filtrate storage requirements when coupled to a filtrate concentrator. (JGB)

  7. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    International Nuclear Information System (INIS)

    STALLINGS, MARY

    2004-01-01

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  8. The effect of oxalic acid applied by sublimation on honey bee colony fitness: a comparison with amitraz

    Directory of Open Access Journals (Sweden)

    Ivana Papežíková

    2016-01-01

    Full Text Available Oxalic acid is one of the organic acids used for controlling Varroa destructor, a mite parasitizing the honey bee (Apis mellifera. The aim of this work was to examine the effect of oxalic acid applied by sublimation on honey bee colony fitness, and to compare it with the effect of amitraz, a routinely used synthetic acaricide. Bee colonies of equal strength were randomly divided into two groups. In December 2014, one group was treated with amitraz in the form of aerosol, and the second group was treated with oxalic acid applied by sublimation. The colonies were monitored over winter. Dead bees found at the bottom of the hive were counted regularly and examined microscopically for infection with Nosema sp. (Microsporidia. At the end of March 2015, living foragers from each hive were sampled and individually examined for Nosema sp. infection. Colony strength was evaluated at the beginning of April. No adverse effect of oxalic acid on colony strength was observed despite the fact that the total number of dead bees was non-significantly higher in the oxalic acid-treated group. Examination of dead bees for Nosema infection did not reveal significant differences in spore numbers between the experimental groups. There was a substantial difference in living individuals, however, with a significantly higher amount of spores per bee found in the amitraz-treated colonies compared to the oxalic acid-treated colonies. Compared to amitraz, oxalic acid applied by sublimation showed no adverse effects on bee colony fitness or on successful overwintering.

  9. Risk factors associated with calcium oxalate urolithiasis in dogs evaluated at general care veterinary hospitals in the United States.

    Science.gov (United States)

    Okafor, Chika C; Lefebvre, Sandra L; Pearl, David L; Yang, Mingyin; Wang, Mansen; Blois, Shauna L; Lund, Elizabeth M; Dewey, Cate E

    2014-08-01

    Calcium oxalate urolithiasis results from the formation of aggregates of calcium salts in the urinary tract. Difficulties associated with effectively treating calcium oxalate urolithiasis and the proportional increase in the prevalence of calcium oxalate uroliths relative to other urolith types over the last 2 decades has increased the concern of clinicians about this disease. To determine factors associated with the development of calcium oxalate urolithiasis in dogs evaluated at general care veterinary hospitals in the United States, a retrospective case-control study was performed. A national electronic database of medical records of all dogs evaluated between October 1, 2007 and December 31, 2010 at 787 general care veterinary hospitals in the United States was reviewed. Dogs were selected as cases at the first-time diagnosis of a laboratory-confirmed urolith comprised of at least 70% calcium oxalate (n=452). Two sets of control dogs with no history of urolithiasis diagnosis were randomly selected after the medical records of all remaining dogs were reviewed: urinalysis examination was a requirement in the selection of one set (n=1808) but was not required in the other set (n=1808). Historical information extracted included urolith composition, dog's diet, age, sex, neuter status, breed size category, hospital location, date of diagnosis, and urinalysis results. Multivariable analysis showed that the odds of first-time diagnosis of calcium oxalate urolithiasis were significantly (P30 mg/dL (OR: 1.55, 1.04-2.30). Patient demographics and urinalysis results are important factors that can support risk assessment and early identification of canine oxalate urolithiasis. Therefore, periodic urolith screening and monitoring of urine parameters should be encouraged for dogs at risk of developing these uroliths. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. In situ secondary ion mass spectrometry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  11. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.

    Science.gov (United States)

    Kumar, Vinay; Chattopadhyay, Arnab; Ghosh, Sumit; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-06-01

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme. © 2016 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Adsorption and oxidation of oxalic acid on anatase TiO2 (001) surface: A density functional theory study.

    Science.gov (United States)

    Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun

    2015-09-15

    Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    Science.gov (United States)

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  14. Application of ion chromatography to the determination of water-soluble inorganic and organic ions in atmospheric aerosols.

    Science.gov (United States)

    Yu, Xue-Chun; He, Ke-Bin; Ma, Yong-Liang; Yang, Fu-Mo; Duan, Feng-Kui; Zheng, Ai-Hua; Zhao, Cheng-Yi

    2004-01-01

    A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F- , Cl- , NO2(-), NO3(-), SO3(2-), SO4(2-) , PO4(3-)), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 microg/m3 to 500 microg/m3 ( r = 0.999-0.9999). The relative standard deviation (RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.

  15. Extraction of plutonium and uranium from oxalate bearing solutions using phosphonic acid

    International Nuclear Information System (INIS)

    Godbole, A.G.; Mapara, P.M.; Swarup, Rajendra

    1995-01-01

    A feasibility study on the solvent extraction of plutonium and uranium from solutions containing oxalic and nitric acids using a phosphonic acid extractant (PC88A) was made to explore the possibility of recovering Pu from these solutions. Batch experiments on the extraction of Pu(IV) and U(VI) under different parameters were carried out using PC88A in dodecane. The results indicated that Pu could be extracted quantitatively by PC88A from these solutions. A good separation of Pu from U could be achieved at higher temperatures. (author). 6 refs., 3 tabs

  16. Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dihydrate

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-08-01

    Full Text Available Single crystals of the title molecular salt, C4H7N2+·HC2O4−·2H2O, were isolated from the reaction of 2-methyl-1H-imidazole and oxalic acid in a 1:1 molar ratio in water. In the crystal, the cations and anions are positioned alternately along an infinite [010] ribbon and linked together through bifurcated N—H...(O,O hydrogen bonds. The water molecules of crystallization link the chains into (10-1 bilayers, with the methyl groups of the cations organized in an isotactic manner.

  17. Communication: Remarkable electrophilicity of the oxalic acid monomer: An anion photoelectron spectroscopy and theoretical study

    International Nuclear Information System (INIS)

    Buonaugurio, Angela; Graham, Jacob; Buytendyk, Allyson; Bowen, Kit H.; Ryder, Matthew R.; Gutowski, Maciej; Keolopile, Zibo G.; Haranczyk, Maciej

    2014-01-01

    Our experimental and computational results demonstrate an unusual electrophilicity of oxalic acid, the simplest dicarboxylic acid. The monomer is characterized by an adiabatic electron affinity and electron vertical detachment energy of 0.72 and 1.08 eV (±0.05 eV), respectively. The electrophilicity results primarily from the bonding carbon-carbon interaction in the singly occupied molecular orbital of the anion, but it is further enhanced by intramolecular hydrogen bonds. The well-resolved structure in the photoelectron spectrum is reproduced theoretically, based on Franck-Condon factors for the vibronic anion → neutral transitions

  18. Ion-exchange chromatography/electrospray mass spectrometry for the identification of organic and inorganic species in topiramate tablets.

    Science.gov (United States)

    Xiang, X; Ko, C Y; Guh, H Y

    1996-11-01

    An ion-exchange chromatograph/electrospray ionization mass spectrometer (IC/ESI-MS) was used successfully to identify organic and inorganic species present in topiramate tablets. An ion suppressor is placed between the column and detectors to replace sodium ions in the mobile phase with hydrogen ions supplied by the suppressor. The ensuing combination of the hydrogen ions with the mobile phase hydroxide ions produces water and thus allows simultaneous ion detection by an ion conductivity detector and a mass spectrometer. Analytes, including lactate, glycolate, chloride, formate, sulfate, and oxalate, were unambiguously identified by matching the mass spectra and retention times with those of the authentic compounds. Due to its capability of detecting positive and negative as well as neutral species, ESI-MS provides valuable information which is not available with ion conductivity detection alone. Though the coupling of ion-exchange chromatography to mass spectrometry has been reported previously, this is the first demonstration of IC/ESI-MS for the identification of unknown species in real samples. Finally, with the use of deuterium/carbon-13 labeling and MS/MS techniques, we have confirmed that oxalic acid (HOOC-COOH) is formed from formic acid (HCOOH) at the electrospray interface in the presence of the electric field. This observation not only confirms the identity of an unknown peak, but it also provides new insight into chemistry that can take place during electrospray ionization.

  19. In vitro dissolution of calcium oxalate stones with ethylenediaminetetraacetic acid and snake venom thrombin-like enzyme.

    Science.gov (United States)

    Zhou, Xiang-Jun; Zhang, Jie; Zhang, Ci; Xu, Chang-Geng

    2014-01-01

    The aim of this study was to determine the feasibility of using snake venom thrombin-like enzyme (SVTLE) and/or ethylenediaminetetraacetic acid (EDTA) to dissolve calcium oxalate stones in vitro. Seven calcium oxalate stones were incubated with various chemolytic agents [EDTA, Tris-HCl/EDTA (TE) buffer or SVTLE diluted in TE buffer]. The pH, calcium concentration, stone weight and stone surface integrity were recorded, as well as related pathological changes to bladder mucosae. Compared to all other solutions, those containing SVTLE and buffered EDTA had higher concentrations of mobilized calcium and caused significantly more stone weight loss, stone fragility and gaps in the calcium crystals. Also, there were no adverse pathological effects on rabbit bladder mucosae from any of the solutions. The data indicate that buffered EDTA and SVTLE can be used to dissolve calcium oxalate stones and, at the concentrations used here, do not damage tissue. 2013 S. Karger AG, Basel.

  20. Protective effect of ethyl acetate fraction of Biophytum sensitivum extract against sodium oxalate-induced urolithiasis in rats.

    Science.gov (United States)

    Pawar, Anil T; Vyawahare, Niraj S

    2017-10-01

    The methanolic whole plant extract of Biophytum sensitivum (gǎnyìng cǎo) has been found to possess antiurolithiatic effect. The present study was undertaken to evaluate the antiurolithiatic effect of some fractions of methanolic whole plant extract of B. sensitivum (MBS) in rats as a step toward activity-directed isolation of antiurolithiatic component. The MBS was successively extracted with dichloromethane, ethyl acetate, ethanol and water to obtain fractions. Sodium oxalate (70 mg/kg, i.p.) was administered to rats for seven days to develop calcium oxalate urolithiasis. These rats were treated with two doses (20 and 40 mg/kg, p.o.) of the fractions, 1 h before sodium oxalate injections. Antiurolithiatic activity was assessed by estimating biochemical changes in urine, serum and kidney homogenate along with histological changes in kidney tissue. Sodium oxalate administration caused biochemical alterations in urine which was found to be prevented significantly by the ethyl acetate fraction. Supplementation with ethyl acetate fraction prevented the elevation of serum creatinine, uric acid and blood urea nitrogen levels. The elevated calcium, oxalate and phosphate levels in the kidney tissue homogenate of lithiatic rats were significantly reduced by the treatment with ethyl acetate fraction. The ethyl acetate fraction also caused significant decrease in lipid peroxidation activity, accumulation of calcium oxalate deposits and histological changes in the kidney tissue. The results showed that the antiurolithiatic component of the methanolic whole plant extract of the plant is contained in the ethyl acetate fraction. The effect is attributed to its diuretic, antioxidant, nephroprotective properties and effect on lowering the concentration of urinary stone-forming constituents.

  1. DC resistivity of Ni-Zn ferrites prepared by oxalate precipitation method

    International Nuclear Information System (INIS)

    Shinde, T.J.; Gadkari, A.B.; Vasambekar, P.N.

    2008-01-01

    Polycrystalline ferrites with general formula Ni 1-x Zn x Fe 2 O 4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) were prepared by oxalate precipitation method. The samples were characterized by X-ray diffraction (XRD), IR and scanning electron microscope (SEM) techniques. All compositions show cubic Spinel structure. Lattice constant increases with increase in zinc content, obeying Vegard's law. The physical densities are about 98.14% of their X-ray density. Average crystallite size lies in the range 27.59-31.49 nm. Infrared studies show two absorption bands near about 400 cm -1 and 600 cm -1 for octahedral and tetrahedral sites, respectively. The resistivity of all the samples was studied. It is observed that the resistivity of nickel-zinc ferrites prepared by oxalate precipitation method is higher than that prepared by ceramic and citrate precursor method. It is attributed to greater homogeneity and smaller grain size. Activation energy in paramagnetic region is higher than that of ferrimagnetic region

  2. Mechanism and kinetics of thermal decomposition of ammoniacal complex of copper oxalate

    International Nuclear Information System (INIS)

    Prasad, R.

    2003-01-01

    A complex precursor has been synthesized by dissolving copper oxalate in liquor ammonia followed by drying. The thermal decomposition of the precursor has been studied in different atmospheres, air/nitrogen. The mechanism of decomposition of the precursor in air is not as simple one as in nitrogen. In nitrogen, it involves endothermic deammoniation followed by decomposition to finely divided elemental particles of copper. Whereas in air, decomposition and simultaneous oxidation of the residual products (oxidative decomposition), make the process complex and relatively bigger particle of cupric oxide are obtained as final product. The products of decomposition in different atmospheres have been characterized by X-ray diffraction and particle size analysis. The stoichiometric formula, Cu(NH 3 ) 2 C 2 O 4 of the precursor is established from elemental analysis and TG measurements, and it is designated as copper amino oxalate (CAO). In nitrogen atmosphere, the deammoniation and decomposition have been found to be zero and first order, respectively. The values of activation energy have been found to be 102.52 and 95.38 kJ/mol for deammoniation and decomposition, respectively

  3. Mechanism and kinetics of thermal decomposition of ammoniacal complex of copper oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, R

    2003-11-28

    A complex precursor has been synthesized by dissolving copper oxalate in liquor ammonia followed by drying. The thermal decomposition of the precursor has been studied in different atmospheres, air/nitrogen. The mechanism of decomposition of the precursor in air is not as simple one as in nitrogen. In nitrogen, it involves endothermic deammoniation followed by decomposition to finely divided elemental particles of copper. Whereas in air, decomposition and simultaneous oxidation of the residual products (oxidative decomposition), make the process complex and relatively bigger particle of cupric oxide are obtained as final product. The products of decomposition in different atmospheres have been characterized by X-ray diffraction and particle size analysis. The stoichiometric formula, Cu(NH{sub 3}){sub 2}C{sub 2}O{sub 4} of the precursor is established from elemental analysis and TG measurements, and it is designated as copper amino oxalate (CAO). In nitrogen atmosphere, the deammoniation and decomposition have been found to be zero and first order, respectively. The values of activation energy have been found to be 102.52 and 95.38 kJ/mol for deammoniation and decomposition, respectively.

  4. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells

    Science.gov (United States)

    Sun, Xin-Yuan; Gan, Qiong-Zhi; Ouyang, Jian-Ming

    2017-02-01

    Urinary crystals with various sizes are present in healthy individuals and patients with kidney stone; however, the cellular uptake mechanism of calcium oxalate of various sizes has not been elucidated. This study aims to compare the internalization of nano-/micron-sized (50 nm, 100 nm, and 1 μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The internalization and adhesion of COM and COD crystals to Vero cells were enhanced with decreasing crystal size. Cell death rate was positively related to the amount of adhered and internalized crystals and exhibited higher correlation with internalization than that with adhesion. Vero cells mainly internalized nano-sized COM and COD crystals through clathrin-mediated pathways as well as micron-sized crystals through macropinocytosis. The internalized COM and COD crystals were distributed in the lysosomes and destroyed lysosomal integrity to some extent. The results of this study indicated that the size of crystal affected cellular uptake mechanism, and may provide an enlightenment for finding potential inhibitors of crystal uptake, thereby decreasing cell injury and the occurrence of kidney stones.

  5. Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)?

    Science.gov (United States)

    Brown, Sharon L; Warwick, Nigel W M; Prychid, Christina J

    2013-12-01

    Calcium oxalate (CaOx) crystals are a common natural feature of many plant families, including the Leguminosae. The functional role of crystals and the mechanisms that underlie their deposition remain largely unresolved. In several species, the seasonal deposition of crystals has been observed. To gain insight into the effects of rainfall on crystal formation, the morphology, distribution and accumulation of calcium oxalate crystals in phyllodes of the leguminous Acacia sect. Juliflorae (Benth.) C. Moore & Betche from four climate zones along an aridity gradient, was investigated. The shapes of crystals, which include rare Rosanoffian morphologies, were constant between species from different climate zones, implying that morphology was not affected by rainfall. The distribution and accumulation of CaOx crystals, however, did appear to be climate-related. Distribution was primarily governed by vein density, an architectural trait which has evolved in higher plants in response to increasing aridity. Furthermore, crystals were more abundant in acacias from low rainfall areas, and in phyllodes containing high concentrations of calcium, suggesting that both aridity and soil calcium levels play important roles in the precipitation of CaOx. As crystal formation appears to be calcium-induced, we propose that CaOx crystals in Acacia most likely function in bulk calcium regulation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Cassava Pulp Hydrolysis under Microwave Irradiation with Oxalic Acid Catalyst for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Euis Hermiati

    2014-07-01

    Full Text Available Microwave irradiation is an alternative method of starch hydrolysis that offers a rapid process. The aim of this research was to improve microwave-assisted hydrolysis of cassava pulp by using oxalic acid as a catalyst. Suspension of cassava pulp in 0.5% oxalic acid (1 g/20 mL was subjected to microwave irradiation at 140-230 °C for 5 minutes, with 4 minutes of pre-heating. One gram of fractured activated carbon made of coconut shell was added into a number of suspensions that were subjected to the same conditions of microwave irradiation. The soluble fraction of the hydrolysates was analyzed for its total soluble solids, malto-oligomer distribution, glucose content, pH value, and formation of brown compounds. The effects of the combined severity parameter at a substrate concentration of 5-12.5% on the glucose yield were also evaluated. The highest glucose yield (78% of dry matter was obtained after hydrolysis at 180 °C without activated carbon addition. Heating above 180 °C reduced the glucose yield and increased the pH and the formation of brown compounds. The use of activated carbon in microwave-assisted acid hydrolysis of cassava pulp reduced the glucose yield, but suppressed the formation of brown compounds. The highest glucose yield (70-80% of dry matter was attained at a severity parameter of 1.3-1.5.

  7. Reevaluation of the plant “gemstones”: Calcium oxalate crystals sustain photosynthesis under drought conditions

    Science.gov (United States)

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G.; Kontoyannis, Christos G.; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I.; Karabourniotis, George

    2016-01-01

    ABSTRACT Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path “alarm photosynthesis.” The so-far “enigmatic,” but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants. PMID:27471886

  8. In vitro effects of metal oxide nanoparticles on barley oxalate oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Nidhi [M. D. University, Department of Biochemistry (India); Hooda, Vinita [M. D. University, Department of Botany (India); Pundir, C. S., E-mail: pundircs@rediffmail.com [M. D. University, Department of Biochemistry (India)

    2013-03-15

    Barley oxalate oxidase (OxO), a manganese-containing protein, is largely employed for determination of oxalate in various biologic materials. The present report describes in vitro effects of nanoparticles (NPs) of three metal oxides, i.e., zinc oxide (ZnO), copper oxide (CuO), and manganese oxide (MnO{sub 2}), on the activity and stability of OxO purified from barley roots. The transmission electron microscopy and X-ray diffraction studies of these NPs revealed their very fine crystalline structure with the dimeter in the range 30-70, 50-60, and 20-60 nm for ZnO NPs, CuO NPs, and MnO{sub 2} NPs, respectively. The addition of suspension of these three NPs into assay mixture of enzyme individually, led to the adsorption of OxO over their surface, as confirmed by Fourier transform infrared spectra and UV-Vis spectroscopic studies. Compared to free enzyme, MnO{sub 2} NPs-bound enzyme showed improved activity (35 % stimulation at 2.5 mg/ml concentration), while ZnO NPs- and CuO NPs-bound enzyme had no substantial improvement. The kinetic properties of individually NPs-bound enzyme were studied and compared with those of free enzyme. The MnO{sub 2} NPs-bound enzyme also showed marked improvement in its storage and thermal stability compared to free enzyme.

  9. A novel 3D framework indium phosphite-oxalate based on a pcu-type topology

    Science.gov (United States)

    Zuo, Mengmeng; Zhou, Mingdong; Hu, Dianwen; Gao, Fan; Dong, Sijie; Huang, Liangliang

    2016-05-01

    A new inorganic-organic hybrid indium phosphite-oxalate, formulated as H[In5(HPO3)6(H2PO3)2(C2O4)2]·(C4N2H11)2·H2O 1 has been hydrothermally synthesized in the presence of piperazine acting as a structure directing agent (SDA). The single crystal X-ray diffraction reveals that compound 1 shows three-dimensional open-framework with intersecting 12-ring channels along the [010] and [001] directions, which is constructed from strictly alternating double 6-ring units (D6Rs), [C2O4]2- groups and [H2PO3]- pseudo-pyramids. It is noted that the classical D6R SBU is firstly reported in main metal phosphite/phosphite-oxalate. By regarding D6R as the 6-connected nodes, the inorganic-organic hybrid framework is based on a pcu-type topology. The as-synthesized product was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis (TGA), ICP-AES and elemental analyses.

  10. In vitro effects of metal oxide nanoparticles on barley oxalate oxidase

    Science.gov (United States)

    Chauhan, Nidhi; Hooda, Vinita; Pundir, C. S.

    2013-03-01

    Barley oxalate oxidase (OxO), a manganese-containing protein, is largely employed for determination of oxalate in various biologic materials. The present report describes in vitro effects of nanoparticles (NPs) of three metal oxides, i.e., zinc oxide (ZnO), copper oxide (CuO), and manganese oxide (MnO2), on the activity and stability of OxO purified from barley roots. The transmission electron microscopy and X-ray diffraction studies of these NPs revealed their very fine crystalline structure with the dimeter in the range 30-70, 50-60, and 20-60 nm for ZnO NPs, CuO NPs, and MnO2 NPs, respectively. The addition of suspension of these three NPs into assay mixture of enzyme individually, led to the adsorption of OxO over their surface, as confirmed by Fourier transform infrared spectra and UV-Vis spectroscopic studies. Compared to free enzyme, MnO2 NPs-bound enzyme showed improved activity (35 % stimulation at 2.5 mg/ml concentration), while ZnO NPs- and CuO NPs-bound enzyme had no substantial improvement. The kinetic properties of individually NPs-bound enzyme were studied and compared with those of free enzyme. The MnO2 NPs-bound enzyme also showed marked improvement in its storage and thermal stability compared to free enzyme.

  11. Kidney injury molecule-1 is up-regulated in renal epithelial cells in response to oxalate in vitro and in renal tissues in response to hyperoxaluria in vivo.

    Directory of Open Access Journals (Sweden)

    Lakshmipathi Khandrika

    Full Text Available Oxalate is a metabolic end product excreted by the kidney. Mild increases in urinary oxalate are most commonly associated with Nephrolithiasis. Chronically high levels of urinary oxalate, as seen in patients with primary hyperoxaluria, are driving factor for recurrent renal stones, and ultimately lead to renal failure, calcification of soft tissue and premature death. In previous studies others and we have demonstrated that high levels of oxalate promote injury of renal epithelial cells. However, methods to monitor oxalate induced renal injury are limited. In the present study we evaluated changes in expression of Kidney Injury Molecule-1 (KIM-1 in response to oxalate in human renal cells (HK2 cells in culture and in renal tissue and urine samples in hyperoxaluric animals which mimic in vitro and in vivo models of hyper-oxaluria. Results presented, herein demonstrate that oxalate exposure resulted in increased expression of KIM-1 m RNA as well as protein in HK2 cells. These effects were rapid and concentration dependent. Using in vivo models of hyperoxaluria we observed elevated expression of KIM-1 in renal tissues of hyperoxaluric rats as compared to normal controls. The increase in KIM-1 was both at protein and mRNA level, suggesting transcriptional activation of KIM-1 in response to oxalate exposure. Interestingly, in addition to increased KIM-1 expression, we observed increased levels of the ectodomain of KIM-1 in urine collected from hyperoxaluric rats. To the best of our knowledge our studies are the first direct demonstration of regulation of KIM-1 in response to oxalate exposure in renal epithelial cells in vitro and in vivo. Our results suggest that detection of KIM-1 over-expression and measurement of the ectodomain of KIM-1 in urine may hold promise as a marker to monitor oxalate nephrotoxicity in hyperoxaluria.

  12. Analyte-triggered luminescence of Eu{sup 3+} ions encapsulated in Nafion membranes -preparation of hybrid materials from in membrane chemical reactions-

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Sánchez, Rocío, E-mail: raguilar@ifuap.buap.mx [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Zelocualtecatl-Montiel, Iván [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Gálvez-Vázquez, María de Jesús [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico); Silva-González, Rutilo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico)

    2017-04-15

    The possibility to perform chemical reactions inside polymer materials opens a unique opportunity to control and prepare materials for diverse solid-state applications. Based on the affinity of Eu{sup 3+} ions for oxygen functionalities, in this work we report the luminescence enhancement of Eu{sup 3+} ions inserted in Nafion membranes (Naf/Eu{sup 3+}) by in-situ complexing to oxalate. The formation of a europium-oxalate type complex enhances Eu{sup 3+} luminescence emission, which could be exploited for the construction of devices for oxalate sensing and the fabrication of highly luminescent materials. Possible analytical applications of Naf/Eu{sup 3+} membranes were evaluated by fluorescence spectroscopy through the linear response with concentration. The complex formation was followed by infrared spectroscopy and SEM-EDS analysis. - Highlights: • Luminescence enhancement by complexation of Eu{sup 3+} ions to oxalate inside Nafion. • Performance of chemical reactions inside Nafion/polymer membranes. • An easy and novel method to prepare luminescent solid devices. • Possibility to develop luminescent sensors by analyte-triggered optical response.

  13. Analyte-triggered luminescence of Eu3+ ions encapsulated in Nafion membranes -preparation of hybrid materials from in membrane chemical reactions-

    International Nuclear Information System (INIS)

    Aguilar-Sánchez, Rocío; Zelocualtecatl-Montiel, Iván; Gálvez-Vázquez, María de Jesús; Silva-González, Rutilo

    2017-01-01

    The possibility to perform chemical reactions inside polymer materials opens a unique opportunity to control and prepare materials for diverse solid-state applications. Based on the affinity of Eu 3+ ions for oxygen functionalities, in this work we report the luminescence enhancement of Eu 3+ ions inserted in Nafion membranes (Naf/Eu 3+ ) by in-situ complexing to oxalate. The formation of a europium-oxalate type complex enhances Eu 3+ luminescence emission, which could be exploited for the construction of devices for oxalate sensing and the fabrication of highly luminescent materials. Possible analytical applications of Naf/Eu 3+ membranes were evaluated by fluorescence spectroscopy through the linear response with concentration. The complex formation was followed by infrared spectroscopy and SEM-EDS analysis. - Highlights: • Luminescence enhancement by complexation of Eu 3+ ions to oxalate inside Nafion. • Performance of chemical reactions inside Nafion/polymer membranes. • An easy and novel method to prepare luminescent solid devices. • Possibility to develop luminescent sensors by analyte-triggered optical response.

  14. Modulation of Calcium Oxalate Crystallization by Proteins and Small Molecules Investigated by In Situ Atomic Force Microscopy

    Science.gov (United States)

    Qiu, R.; Orme, C.; Cody, A. M.; Wierzbicki, A.; Hoyer, J.; Nancollas, G.; de Yoreo, J.

    2002-12-01

    Understanding the physical mechanisms by which biological inhibitors control nucleation and growth of inorganic crystals is a major focus of biomineral research. Calcium oxalate monohydrate (COM), which plays a functional role in plant physiology, is also a source of pathogenesis in humans where it causes kidney stone disease. Although a great deal of research has been carried out on the modulation COM by proteins and small molecules, the basic mechanism has not yet been understood. However, because the proteins that play a role in COM growth have been identified and sequenced, COM provides an excellent model system for research into biomineral growth. In this study, in situ atomic force microscopy (AFM) was used to monitor the COM surface under controlled growth conditions both from pure solutions and those doped with citrate and osteopontin (OPN) in order to determine their effects on surface morphology and growth dynamics at the molecular level. As with other solution-grown crystals such as calcite, COM grows on complex dislocation hillocks. In pure solution, while growth on the (010) face is isotropic, hillocks on the (-101) face exhibit anisotropic step kinetics. Steps of [-10-1] and orientation are clearly delineated with the [-10-1] being the fast growing direction. When citrate is added to the solution, both growth rate and morphology are drastically changed on (-101) face, especially along the [-10-1] direction. This results in isotropic disc-shaped hillocks a shape that is then reflected in the macroscopic growth habit. In contrast, no large growth changes were observed on the (010) facet. At the same time, molecular modeling predicts an excellent fit of the citrate ion into the (-101) plane and a poor fit to the (010) face. Here we propose a model that reconciles the step-specific interactions implied by the AFM results with the face-specific predictions of the calculations. Finally, we present the results of doping with aspartic acid as well as OPN, an

  15. A Thermodynamic Model for Acetate, Lactate, and Oxalate Complexation with Am(III), Th(IV), Np(V), and U(VI) Valid to High Ionic Strength

    Energy Technology Data Exchange (ETDEWEB)

    Bynaum, R.V.; Free, S.J.; Moore, R.C.

    1999-01-15

    The organic ligands acetate, lactate, oxalate and EDTA have been identified as components of wastes targeted for disposal in the Waste Isolation Pilot Plant (WIPP) located in Southeastern New Mexico. The presence of these ligands is of concern because complexation of the actinides with the ligands may increase dissolved actinide concentrations and impact chemical retardation during transport. The current work considers the complexation of Am(III), Th (IV), Np(V), and U(W) with two of the organic ligands, acetate and lactate, in NaCl media from dilute through high concentration. A thermodynamic model for actinide complexation with the organic ligands has been developed based on the Pitzer activity coefficient formalism and the Harvie-Moller-Weare, Felmy-Weare database for describing brine evaporite systems. The model was parameterized using first apparent stability constant data from the literature. Because of complexation of other metal ions (Fe, Mg, Ni, Pb, etc.) present in the WIPP disposal room with the organic ligands, preliminary results from model calculations indicate the organic ligands do not significantly increase dissolved actinide concentrations.

  16. Screening of indigenous oxalate degrading lactic acid bacteria from human faeces and South Indian fermented foods: assessment of probiotic potential.

    Science.gov (United States)

    Gomathi, Sivasamy; Sasikumar, Ponnusamy; Anbazhagan, Kolandaswamy; Sasikumar, Sundaresan; Kavitha, Murugan; Selvi, M S; Selvam, Govindan Sadasivam

    2014-01-01

    Lactic acid bacteria (LAB) have the potential to degrade intestinal oxalate and this is increasingly being studied as a promising probiotic solution to manage kidney stone disease. In this study, oxalate degrading LAB were isolated from human faeces and south Indian fermented foods, subsequently assessed for potential probiotic property in vitro and in vivo. Based on preliminary characteristics, 251 out of 673 bacterial isolates were identified as LAB. A total of 17 strains were found to degrade oxalate significantly between 40.38% and 62.90% and were subjected to acid and bile tolerance test. Among them, nine strains exhibited considerable tolerance up to pH 3.0 and at 0.3% bile. These were identified as Lactobacillus fermentum and Lactobacillus salivarius using 16S rDNA sequencing. Three strains, Lactobacillus fermentum TY5, Lactobacillus fermentum AB1, and Lactobacillus salivarius AB11, exhibited good adhesion to HT-29 cells and strong antimicrobial activity. They also conferred resistance to kanamycin, rifampicin, and ampicillin, but were sensitive to chloramphenicol and erythromycin. The faecal recovery rate of these strains was observed as 15.16% (TY5), 6.71% (AB1), and 9.3% (AB11) which indicates the colonization ability. In conclusion, three efficient oxalate degrading LAB were identified and their safety assessments suggest that they may serve as good probiotic candidates for preventing hyperoxaluria.

  17. Screening of Indigenous Oxalate Degrading Lactic Acid Bacteria from Human Faeces and South Indian Fermented Foods: Assessment of Probiotic Potential

    Directory of Open Access Journals (Sweden)

    Sivasamy Gomathi

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB have the potential to degrade intestinal oxalate and this is increasingly being studied as a promising probiotic solution to manage kidney stone disease. In this study, oxalate degrading LAB were isolated from human faeces and south Indian fermented foods, subsequently assessed for potential probiotic property in vitro and in vivo. Based on preliminary characteristics, 251 out of 673 bacterial isolates were identified as LAB. A total of 17 strains were found to degrade oxalate significantly between 40.38% and 62.90% and were subjected to acid and bile tolerance test. Among them, nine strains exhibited considerable tolerance up to pH 3.0 and at 0.3% bile. These were identified as Lactobacillus fermentum and Lactobacillus salivarius using 16S rDNA sequencing. Three strains, Lactobacillus fermentum TY5, Lactobacillus fermentum AB1, and Lactobacillus salivarius AB11, exhibited good adhesion to HT-29 cells and strong antimicrobial activity. They also conferred resistance to kanamycin, rifampicin, and ampicillin, but were sensitive to chloramphenicol and erythromycin. The faecal recovery rate of these strains was observed as 15.16% (TY5, 6.71% (AB1, and 9.3% (AB11 which indicates the colonization ability. In conclusion, three efficient oxalate degrading LAB were identified and their safety assessments suggest that they may serve as good probiotic candidates for preventing hyperoxaluria.

  18. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  19. Queen survival and oxalic acid residues in sugar stores after summer application against Varroa destructor in honey bees (Apis mellifera)

    NARCIS (Netherlands)

    Cornelissen, B.; Donders, J.N.L.C.; Stratum, van P.; Blacquière, T.; Dooremalen, van C.

    2012-01-01

    Methods using oxalic acid (OA) to control Varroa destructor in honey bee (Apis mellifera) colonies are widely applied. In this study, the effects of an OA spray application in early summer on the survival of young and old queens, and on OA residues in sugar stores were investigated. A questionnaire

  20. The acaricidal effect of flumethrin, oxalic acid and amitraz against Varroa destructor in honey bee (Apis mellifera carnica colonies

    Directory of Open Access Journals (Sweden)

    Maja Ivana Smodiš Škerl

    2011-01-01

    Full Text Available During 2007 and 2008, natural mite mortality was recorded in honey bee colonies. These colonies were then treated with various acaricides against Varroa destructor and acaricide efficacies were evaluated. In 2007, experimental colonies were treated with flumethrin and/or oxalic acid and in 2008 the same colonies were treated with flumethrin, oxalic acid or amitraz. The efficacy of flumethrin in 2007 averaged 73.62% compared to 70.12% for three oxalic acid treatments. In 2008, a reduction of 12.52% in mite numbers was found 4 weeks after flumethrin application, while 4 oxalic acid applications produced significantly higher (P < 0.05 mite mortality, an average of 24.13%. Four consecutive amitraz fumigations produced a 93.82% reduction on average in final mite numbers and thus ensure normal colony development and overwintering. The study is important in order to demonstrate that synthetic acaricides should be constantly re-evaluated and the use of flumethrin at low efficacies need to be superseded by appropriate organic treatments to increase the efficacy of mite control in highly-infested colonies during the period of brood rearing.

  1. Genetically modified Medicago truncatula lacking calcium oxalate has increased calcium bioavailability and partially rescues vitamin D receptor knockout mice phenotypes

    Science.gov (United States)

    How the distribution and sequestered form of plant macro/micro-nutrients influence their bioavailability, and ultimately impact human health, is poorly understood. The legume Medicago truncatula has a portion of its tissue calcium sequestered in the form of the calcium oxalate crystal, which reduces...

  2. Oxalate metabolism in liquid cultures of Ceriporiopsis subvermispora : a possible pathway for extracellular H2O2 production

    Science.gov (United States)

    Ulises. Urzua; Claudio. Aguilar; Philip J. Kersten; Rafael. Vicuna

    1998-01-01

    In this work, the source of extracellular hydrogen peroxide in cultures of Ceriporiopsis subvermispora was investigated. A thorough search for the presence in the growth medium of oxidases known to be produced by other fungi gave negative results. We therefore explored the prospect that H2O2 might arise from the oxidation of organic acids by MnP. Both oxalate and...

  3. Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys

    NARCIS (Netherlands)

    M. Asselman (Marino); A. Verhulst; M.E. de Broe; C.F. Verkoelen

    2003-01-01

    textabstractRetention of crystals in the kidney is an essential early step in renal stone formation. Studies with renal tubular cells in culture indicate that hyaluronan (HA) and osteopontin (OPN) and their mutual cell surface receptor CD44 play an important role in calcium oxalate

  4. Dietary and animal-related factors associated with the rate of urinary oxalate and calcium excretion in dogs and cats

    NARCIS (Netherlands)

    Dijcker, J.C.; Hagen-Plantinga, E.A.; Everts, H.; Bosch, G.; Kema, I.P.; Hendriks, W.H.

    2012-01-01

    This paper reports the results of a cohort study and randomised clinical trial (RCT) in cross-over design. In the cohort study, the range of urinary oxalate (Uox) and calcium (Uca) excretion was determined within a sample of the Dutch population of dogs and cats, and dietary and animal-related

  5. Dietary and animal-related factors associated with the rate of urinary oxalate and calcium excretion in dogs and cats

    NARCIS (Netherlands)

    Dijcker, J.C.; Hagen-Plantinga, E.A.; Everts, H.; Bosch, Guido; Kema, I.P.; Hendriks, W.H.

    2012-01-01

    This paper reports the results of a cohort study and randomised clinical trial (RCT) in crossover design. In the cohort study, the range of urinary oxalate (Uox) and calcium (Uca) excretion was determined within a sample of the Dutch population of dogs and cats, and dietary and animal-related

  6. Oxalic acid pretreatment for mechanical pulping greatly improves paper strength while maintaining scattering power and reducing shives and triglycerides

    Science.gov (United States)

    Ross Swaney; Masood Akhtar; Eric Horn; Michael Lentz; John Klungness; Marc Sabourin

    2003-01-01

    In this paper we introduce a new technology based on a mild chemical pretreatment process prior to mechanical pulping. Chips are treated with a dilute solution of oxalic acid (OA) for only 10 minute at 130°C, in a typical example. The properties of the pulp produced by this OA process are quite different from those obtained via conventional chemical pretreatments,...

  7. Extraction and estimation of the quantity of calcium oxalate crystals in the foliage of conifer and hardwood trees

    Science.gov (United States)

    Rakesh Minocha; Bradley Chamberlain; Stephanie Long; Swathi A. Turlapati; Gloria. Quigley

    2015-01-01

    The main goal of this study was to develop a method for the extraction and indirect estimation of the quantity of calcium oxalate (CaOx) in the foliage of trees. Foliar tissue was collected from a single tree of each species (five conifers and five hardwoods) for comparison of extractions in different solvents using 10 replicates per species from the same pool of...

  8. Physical characteristics of calcium oxalate crystals as determinants in structural defense against chewing insects in Medicago truncatula

    Science.gov (United States)

    In addition to the numerous chemical defenses that plants employ to fend off insect herbivores, simple structural components can also play important roles in effective protection. Our investigations have shown that plant crystals of calcium oxalate can function in insect defense. The isolation of ca...

  9. Occurrence, types and distribution of calcium oxalate crystals in leaves and stems of some species of poisonous plants.

    Science.gov (United States)

    Tütüncü Konyar, Sevil; Öztürk, Necla; Dane, Feruzan

    2014-12-01

    Calcium oxalate crystals, which are found in many organs of plants, have different morphological forms: as druses, prism, styloids, raphides and crystal sand. In this study, the distribution, type and specific location of calcium oxalate crystals in the leaves and stems of the eight species of poisonous plants and one species of nonpoisonous plant were investigated with light microscopy. During study special attention was given to the possible correlation between the presence and types of calcium oxalate crystals and toxic plant organs. The plants examined in this study were Hedera helix L. (Araliaceae), Aristolochia clematitis L. (Aristolochiaceae), Humulus lupulus L. (Cannabaceae), Saponaria officinalis L. (Caryophyllaceae), Chelidonium majus L. (Papaveraceae), Hypericum perforatum L. (Hypericaceae), Tribulus terrestris L. (Zygophyllaceae), Cynanchum acutum L. (Asclepiadaceae), and Nerium oleander L. (Apocynaceae). Three types of crystals: druses, prismatic crystals and crystal sands were observed. Druses were identified in the leaves and stems of six species of studied plants. In contrast to druses, crystal sands and prismatic crystals were rare. Prismatic crystals were observed in the leaf mesophlly cells of both Nerium oleander and Cynanchum acutum. However, crystal sands were observed only in the pith tissue of Humulus lupulus. On the other hand, leaves and stems of Chelidonium majus, Aristolochia clematitis and Hypericum perforatum were devoid of crystals. There is no absolute correlation between the presence and type of calcium oxalate crystals and toxic plant organs. However druse crystals may function as main irritant in toxic organs of the plants.

  10. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites

    Directory of Open Access Journals (Sweden)

    S. Vaitheeswari

    2015-06-01

    Full Text Available ABSTRACTPurpose:Calcium oxalate urolithiasis is one of the most common urinary tract diseases and is of high prevalence. The present study proposes to evaluate the antilithiatic property of hydrogen sulfide and its metabolites like thiosulfate & sulfate in an in vitro model.Materials and Methods:The antilithiatic activity of sodium hydrogen sulfide (NaSH, sodium thiosulfate (Na2S2O3 and sodium sulfate (Na2SO4 on the kinetics of calcium oxalate crystal formation was investigated both in physiological buffer and in urine from normal and recurrent stone forming volunteers. The stones were characterized by optical and spectroscopic techniques.Results:The stones were characterized to be monoclinic, prismatic and bipyramidal habit which is of calcium monohydrate and dihydrate nature. The FTIR displayed fingerprint corresponding to calcium oxalate in the control while in NaSH treated, S=O vibrations were visible in the spectrum. The order of percentage inhibition was NaSH>Na2S2O3>Na2SO4.Conclusion:Our study indicates that sodium hydrogen sulfide and its metabolite thiosulfate are inhibitors of calcium oxalate stone agglomeration which makes them unstable both in physiological buffer and in urine. This effect is attributed to pH changes and complexing of calcium by S2O32-and SO42- moiety produced by the test compounds.

  11. The effect of calcium on calcium oxalate monohydrate crystal-induced renal epithelial injury.

    Science.gov (United States)

    Khaskhali, Muhammad H; Byer, Karen J; Khan, Saeed R

    2009-02-01

    Since hypercalciuria is a common feature of idiopathic calcium oxalate (CaOx) nephrolithiasis, renal epithelial cells of stone patients are exposed to various crystals in the presence of high calcium. This study was performed to determine the effect of high calcium levels on CaOx crystal-induced cell injury. We exposed human renal epithelial cell line, HK2 in vitro to CaOx monohydrate crystals at a concentration of 133 microg/cm(2) for 1, 3, 6 or 12 h in the presence or absence of 5 or 10 mM/L calcium Ca(++). We determined the release of lactate dehydrogenase as marker of injury and hydrogen peroxide (H(2)O(2)) and 8-isoprostane (8-IP) as sign of oxidative stress. Cells were also examined after trypan blue and nuclear DNA staining with 4',6-diamidino-2-phenylindole to determine their membrane integrity and apoptosis respectively. Exposure of cells to 5 or 10 mM/L of Ca(++,) for up-to 6 h, resulted in increased trypan blue and DAPI staining and production of H(2)O(2). Similarly an exposure to CaOx crystals also resulted in increased trypan blue and DAPI staining and H(2)O(2) production. An exposure to 5 mM/L Ca or CaOx crystals also resulted in increased production of 8-IP. A combination of the two treatments, Ca and CaOx crystals, did not show anymore changes than exposure to high Ca or CaOx crystals alone, except in the case of a longer exposure of 12 h. Longer exposures of 12 h resulted in cells sloughing from the substrate. These results indicate that exposure to high levels of Ca or CaOx crystals is injurious to renal epithelial cells but the two do not appear to work synergistically. On the other hand, results of our earlier studies suggest that oxalate and CaOx crystals work in synergy, i.e., CaOx crystals are more injurious in the presence of high oxalate. Perhaps Ox and CaOx crystals activate different biochemical pathways while Ca and CaOx crystals affect the identical pathways.

  12. The role of copper and oxalate in the redox cycling of iron in atmospheric waters

    Science.gov (United States)

    Sedlak, David L.; Hoigné, Jürg

    During daytime, the redox cycling of dissolved iron compounds in atmospheric waters, and the related in-cloud transformations of photooxidants, are affected by reactions of Fe and Cu with hydroperoxy (HO 2) and superoxide (O 2-) radicals and the photoreduction of Fe(III)-oxalato complexes. We have investigated several of the important chemical reactions in this redox cycle, through laboratory simulation of the system, using γ-radiation to produce HO 2/O 2-. At concentrations comparable to those measured in atmospheric waters, the redox cycling of Fe was dramatically affected by the presence of oxalate and trace concentrations of Cu. At concentrations more than a hundred times lower than Fe, Cu consumed most of the HO 2/O 2-, and cycled between the Cu(II) and Cu(I) forms. Cu + reacted with FeOH 2+ to produce Fe(II) and Cu(II), with a second order rate constant of approximately 3 × 10 7 M -1s -1. The presence of oxalate resulted in the formation of Fe(III)-oxalato complexes that were essentially unreactive with HO 2/O 2-. Only at high oxalate concentrations was the Fe(II)C 2O 4 complex also formed, and it reacted relatively rapidly with hydrogen peroxide ( k = (3.1 ± 0.6) × 10 4 M -1s -1). Simulations incorporating measurements for other redox mechanisms, including oxidation by ozone, indicate that, during daytime, Fe should be found mostly in the ferrous oxidation state, and that reactions of FeOH 2+ with Cu(I) and HO 2/O 2-, and to a lesser degree, the photolysis of Fe(III)-oxalato complexes, are important mechanisms of Fe reduction in atmospheric waters. The catalytic effect of Cu(II)/Cu(I) and Fe(III)/Fe(II) should also significantly increase the sink function of the atmospheric liquid phase for HO 2 present in a cloud. A simple kinetic model for the reactions of Fe, Cu and HO 2/O 2-, accurately predicted the changes in Fe oxidation states that occurred when authentic fogwater samples were exposed to HO 2/O 2-.

  13. Effect of Postharvest Oxalic Acid and Calcium Chloride on Quality Attributes of Sweet Cherry (Prunus avium L.

    Directory of Open Access Journals (Sweden)

    M. Safa

    2016-02-01

    Full Text Available Introduction: Fruits and vegetables have special importance as a very important part of the human food supply. And from the beginnings of life, man has used these products to supply a part of his food. Nowadays, horticultural products are widely used in the diet. Cherry is one of the deciduous trees in the temperate regions, which is potassium rich. Use of Oxalic acid significantly reduces frost injury in pomegranate fruits during storage at a temperature of 2° C. In fruit trees, the importance of calcium is due to a delay in fruit ripening process and this way products have better portability. Materials and Methods: Firmness test was measured using the FT011 model of penetrometer. For determination of titratable acidity, the 0.1 N sodium hydroxide (NaOH titration method was used. Total Soluble solids content (SSC of fruit was measured by a digital refractometer (PAL-1. For determination of vitamin C in fruit juices, titration method with the indicator, 2,6-di-chlorophenolindophenol was used. Fruit juice pH was measured using pH meter model HI 9811.In order to investigate the effect of postharvest soaking treatment with Oxalic acid on the qualitative specifications and storage life of single grain sweet cherry fruit a research was conducted. This experience was conducted in a completely randomized design with 3 replications separately for the two materials. In this experiment Oxalic acid, in four levels (0,4,6 and 8 mM and Calcium chloride in four levels (0, 40, 55 and 70 mM were applied on the single grain sweet cherry fruit in the form of soaking and sampleswith7-day intervals for a period of 28 days from the fridge out and quanti tate and qualitative traits such as stiffness, weight loss, Titratable acidity, total soluble solids, vitamin C and pH were measured. Results and Discussion: The results showed that compared with control ones all of the concentrations of Oxalic acid and Calcium chloride caused significant differences in the amount

  14. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  15. Effects of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on risk factors for urinary calcium oxalate stones in rats.

    Science.gov (United States)

    Woottisin, Surachet; Hossain, Rayhan Zubair; Yachantha, Chatchai; Sriboonlue, Pote; Ogawa, Yoshihide; Saito, Seiichi

    2011-01-01

    We evaluated the antilithic effect of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on known risk factors for calcium oxalate stones in rats. We divided 30 male Wistar rats into 5 equal groups. Controls were fed a standard diet and the remaining groups received a 3% glycolate diet for 4 weeks to induce hyperoxaluria. One glycolate fed group served as the untreated group and the others were given oral extracts of Orthosiphon grandiflorus, Hibiscus sabdariffa or Phyllanthus amarus at a dose of 3.5 mg daily. We collected 24-hour urine and blood samples. Kidneys were harvested for histological examination. We measured the renal tissue content of calcium and oxalate. The Hibiscus sabdariffa group showed significantly decreased serum oxalate and glycolate, and higher oxalate urinary excretion. The Phyllanthus amarus group showed significantly increased urinary citrate vs the untreated group. Histological examination revealed less CaOx crystal deposition in the kidneys of Hibiscus sabdariffa and Phyllanthus amarus treated rats than in untreated rats. Those rats also had significantly lower renal tissue calcium content than untreated rats. All parameters in the Orthosiphon grandiflorus treated group were comparable to those in the untreated group. Hibiscus sabdariffa and Phyllanthus amarus decreased calcium crystal deposition in the kidneys. The antilithic effect of Hibiscus sabdariffa may be related to decreased oxalate retention in the kidney and more excretion into urine while that of Phyllanthus amarus may depend on increased urinary citrate. In contrast, administering Orthosiphon grandiflorus had no antilithic effect. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    Science.gov (United States)

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The use of microemulsions for the synthesis of oxalate precursors of YBaCuO superconduction oxide

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, Y.; Muhammed, M.

    1992-01-01

    Although emulsion technique has been used as an advanced separation method, little attention has been paid to the particular feature of emulsions as a powerful reaction media for synthesis of powders, e.g., precipitation of fine particles. In the present paper, the authors report the use of some microemulsion systems as a reaction media in a controlled coprecipitation of the oxalate precursors of superconducting YBa 2 Cu 3 O 7-δ ceramics. The phase diagram of the system: oil (hydrocarbon) - surfactant (Aerosol Orange T) - water, in the absence and presence of nitric/oxalic acids and nitrates, have been systematically investigated. Several hydrocarbons, n-hexane, n-haptene and n-octane have been tested. The different stability regions of microemulsions have been determined. The oxalate coprecipitation of Y, Ba and Cu from nitrate solution was studied under various operating conditions, pH, ratio of oil/surfactant/water and ratio of Y/Ba/Cu/.H 2 C 2 O 4 2 . The chemical and morphological properties of the oxalate powders obtained in the microemulsion systems have been examined by different techniques, e.g., ICP, TGA, XRD and SEM. By XRD, the optimum products are found to be amorphous oxalate composite with exact required stoichiometry and high homogeneity. The average size of the dispersed particles is 50-70 nm while the mean diameter of the agglomerates is around 300 nm. The best sinters bulk sample has T, (R = 0) at 92 K. These powders are used as fine precursors for the synthesis of high T c superconducting ceramics as bulk material and particularly thick films

  18. Polyacrylonitrile/manganese acetate composite nanofibers and their catalysis performance on chromium (VI) reduction by oxalic acid

    International Nuclear Information System (INIS)

    Zhang, Chengcheng; Li, Xiang; Bian, Xiujie; Zheng, Tian; Wang, Ce

    2012-01-01

    Highlights: ► We have successfully prepared PAN/Mn(CH 3 COO) 2 composite nanofibers. ► The nanofibers exhibit excellent catalysis performance for Cr(VI) reduction. ► The nanofibers are effective and environment-friendly materials to remove Cr(VI). - Abstract: Polyacrylonitrile(PAN)/manganese acetate(Mn(CH 3 COO) 2 ) composite nanofibers have been fabricated by electrospinning, a simple and effective technology. The obtained composite nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The composite nanofibers are amorphous in structure, continuous, even and smooth. At the same time, the reduction performance of Cr(VI) by oxalic acid in the presence of the composite nanofibers is also investigated. The results indicate that the composite nanofibers have exhibited excellent catalysis performance for Cr(VI) reduction from a Cr 2 O 7 2− -containing solution by oxalic acid. And the critical parameters, such as the catalyst dosage, oxalic acid content, chromium concentration, the pH value of the reaction solution and light have important impact on the reduction process. Under the simulated solar light irradiation, after only 60 min, 1.2 mM initial Cr(VI) solution was reduced absolutely in the presence of PAN/Mn(CH 3 COO) 2 composite nanofibers containing 17.5 wt.% Mn(CH 3 COO) 2 by 0.3 mL 0.5 M oxalic acid. In light, the reduction of Cr(VI) by oxalic acid is markedly accelerated.

  19. Surface activation of MnNb{sub 2}O{sub 6} nanosheets by oxalic acid for enhanced photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junshu; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Li, Hongyi; Li, Yongli; Du, Yucheng; Yang, Yilong; Jia, Xinjian

    2017-05-01

    Graphical abstract: Visible light driven photoreduction of Cr(VI) over MnNb{sub 2}O{sub 6} nanosheets is enhanced via oxalic acid surface complex to generate activation layer. - Highlights: • MnNb{sub 2}O{sub 6} nanosheets are crystallized by a surface capping route of sulfonate groups. • Oxalic acid on MnNb{sub 2}O{sub 6} nanosheets forms an excited surface complex hybrid layer. • Surface activation enhances visible-light induced reduction of Cr(VI) into Cr(III). - Abstract: MnNb{sub 2}O{sub 6} nanosheets (P-MNOs) is selectively crystallized by using surface capping ligand with functional sulfonate group (sodium dodecyl benzene sulphonate), which binds to the (131) surface of MnNb{sub 2}O{sub 6} inducing the morphology-controlled crystallization of MnNb{sub 2}O{sub 6} materials. Surface modification of photoactive P-MNOs with electron-rich oxalic acid ligands establishes an excited surface complex layer on phase-pure P-MNO as evidenced by spectroscopic analyses (FT-IR, UV–vis, Raman, PL, etc.), and thus more efficiently photocatalyzes the reduction of Cr(VI) into Cr(III) than solely P-MNOs or oxalic acid under visible light (λ > 420 nm) via a ligand-to-metal interfacial electron transfer pathway. However, the interaction between oxalic acid and MnNb{sub 2}O{sub 6} is highly dependent upon the morphology of solid MnNb{sub 2}O{sub 6} substrate due to the higher surface-area-to-volume ratio and higher surface activity of (131) planes in the sheet-like morphology. This study could assist the construction of stable niobate material systems to allow a versatile solid surface activation for establishing more energy efficient and robust catalysis process under visible light.

  20. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles

    Directory of Open Access Journals (Sweden)

    Yuniar Ponco Prananto

    2013-03-01

    Full Text Available Crystal growth of cobalt (II oxalate in silica gel at room temperature as precursor of Co3O4 nano particles has been studied. Specifically, this project is focusing on the use of two different reaction tube types toward crystallization of cobalt (II oxalate in gel. The gel was prepared at pH 5 by reacting sodium metasilicate solution with dilute nitric acid (for U-tube and oxalic acid (for straight tube, with gelling time of 4 days and crystal growth time of 8 (for straight tube and 12 (for U-tube weeks. Result shows that pink crystalline powder was directly formed using straight tube method. The use of different solvents in straight tube method affects crystallization and could delay direct precipitation of the product. In contrast, bigger and better shape of red block crystal was yielded from U-tube method; however, longer growth time was needed. FTIR studies suggest that both growth method produces identical compound of hydrated cobalt (II oxalate. © 2013 BCREC UNDIP. All rights reservedReceived: 25th October 2012; Revised: 30th November 2012; Accepted: 5th December 2012[How to Cite: Y.P. Prananto, M.M. Khunur, D.T. Wahyuni, R.A. Shobirin, Y.R. Nata, E. Riskah, (2013. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 198-204. (doi:10.9767/bcrec.7.3.4066.198-204][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4066.198-204 ] View in  |

  1. Fabrication of granule and pellet heat sources from oxalate-based 238PuO2

    International Nuclear Information System (INIS)

    Bickford, D.F.; Rankin, D.T.

    1975-01-01

    Suitable fuel forms for radioisotopic thermoelectric generators are granules of high internal density (greater than 95 percent of theoretical) or geometric shapes (80 to 90 percent dense) such as pellets or spheres. Both forms can be made from calcined 238 Pu(III) oxalate. The conditions for processing PuO 2 are controlled during fuel form fabrication to ensure pellet integrity; to control density, grain size, and porosity distribution; and to minimize the fraction of potentially respirable fines. The competing phenomena of expansion caused by radiation damage (including helium generation from radioactive decay of plutonium) and shrinkage caused by sintering must be controlled to assure dimensional stability. The variation of microstructure and related physical properties with process parameters is discussed

  2. SYNTHESIS, THERMAL STUDIES AND CRYSTAL STRUCTURE OF 4-AMINOPYRIDINIUM SEMI-OXALATE HEMIHYDRATE

    Directory of Open Access Journals (Sweden)

    CECILIA CHACÓN

    2017-06-01

    Full Text Available The title compound has been synthesized by grinding in an agate mortar. Its structure was characterized by TGA-DSC studies and single-crystal X-ray diffraction. This compound crystallize in the monoclinic system with space group C2/c, Z = 4, and unit cell parameters a = 16.109(2 Å, b = 5.748(7 Å, c = 20.580(3 Å, β = 107.36(1°. The salt, C2HO4-.C5H7N+.0.5 H2O, is an ionic ensemble assisted by hydrogen bonds established between 4-aminopyridinium cations, oxalate anions and water molecules. The three components thus construct a supramolecular assembly with a three-dimensional hydrogen bonded framework.

  3. PLZT (9/65/35) sintering and characterization through the Pechini and partial oxalate processes

    International Nuclear Information System (INIS)

    Cerqueira, Marinalva; Nasar, Ricardo Silveira; Leite, Edson Roberto; Longo, Elson; Varela, Jode Arana

    1996-01-01

    Zr Ti O 4 obtained by the Pechini method was used as precursor for obtaining PLZT. An aqueous solution of oxalic acid was prepared with ZT, Pb (NO 3 ) 2 and La 2 O 3 particles. After the Pb C 2 O 4 and La 2 O 3 precipitation on ZT, the material was calcined and x-ray diffraction (XRD) showed the cubic phase of PLZT. This material was sintered in two steps and density about 8.0 g/cm 3 were obtained. After second sintering XRD showed the occurrence of tetragonal and rhombohedral phases. This was caused by an estequiometric deviation, however the material showed a high optical transparency. (author)

  4. Papillary and Nonpapillary Calcium Oxalate Monohydrate Renal Calculi: Comparative Study of Etiologic Factors

    Directory of Open Access Journals (Sweden)

    Enrique Pieras

    2006-01-01

    Full Text Available Calcium oxalate monohydrate (COM renal calculi can be classified into two groups: papillary and nonpapillary. In this paper, a comparative study between etiologic factors of COM papillary and nonpapillary calculi is performed. The study included 40 patients with COM renal calculi. The urine of these individuals was analyzed. Case history, lifestyle, and dietetic habits were obtained.No significant differences between urinary biochemical data of both groups were observed; 50% of COM papillary stone formers and 40% of COM nonpapillary stone formers had urolithiasis family history. A low consumption of phytate-rich products was observed for both groups. A relationship between profession with occupational exposure to cytotoxic products and COM papillary renal lithiasis was detected.The results suggest that COM papillary calculi would be associated to papillary epithelium alterations together with a crystallization inhibitors deficit, whereas COM nonpapillary calculi would be associated to the presence of heterogeneous nucleants and a crystallization inhibitors deficit.

  5. Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S R; Wierzbicki, A; Salter, E A; Zepeda, S; Orme, C A; Hoyer, J R; Nancollas, G H; Cody, A M; De Yoreo, J J

    2004-10-19

    The majority of human kidney stones are composed primarily of calcium oxalate monohydrate (COM) crystals. Thus, determining the molecular mechanisms by which urinary constituents modulate calcium oxalate crystallization is crucial for understanding and controlling urolithiassis in humans. A comprehensive molecular-scale view of COM shape modification by citrate, a common urinary constituent, obtained through a combination of in situ atomic force microscopy (AFM) and molecular modeling is now presented. We show that citrate strongly influences the growth morphology and kinetics on the (-101) face but has much lower effect on the (010) face. Moreover, binding energy calculations show that the strength of the citrate-COM interaction is much greater at steps than on terraces and is highly step-specific. The maximum binding energy, -166.5 kJ {center_dot} mol{sup -1}, occurs for the [101] step on the (-101) face. In contrast, the value is only -56.9 kJ {center_dot} mol-1 for the [012] step on the (010) face. The binding energies on the (-101) and (010) terraces are also much smaller, -65.4 and -48.9 kJ {center_dot} mol{sup -1} respectively. All other binding energies lie between these extremes. This high selectivity leads to preferential binding of citrate to the acute [101] atomic steps on the (-101) face. The strong citrate-step interactions on this face leads to pinning of all steps, but the anisotropy in interaction strength results in anisotropic reductions in step kinetics. These anisotropic changes in step kinetics are, in turn, responsible for changes in the shape of macroscopic COM crystals. Thus, the molecular scale growth morphology and the bulk crystal habit in the presence of citrate are similar, and the predictions of molecular simulations are fully consistent with the experimental observations.

  6. Nephroprotective effect of Corn Silk extract on oxalic acid-induced nephrocalcinosis in rabbit model

    Directory of Open Access Journals (Sweden)

    Faruk Hassan Al-Jawad

    2012-04-01

    Full Text Available ABSTRACT Background : Nephrocalcinosis is a state of deposition of calcium phosphate or oxalate in the renal parenchyma. It may occur in patients with renal tubular acidosis, vitamin D intoxication, and hyperparathyroidism. Corn silk was used in traditional Chinese medicine to relieve renal pains. Aim: To evaluate the effect of Corn silk aqueous extract in reducing calcium deposits from renal parenchyma in oxalic acid-induced nephrocalcinosis model. Materials and methods: Fourteen healthy rabbits were allocated to two groups. Two hours before induction of nephrocalcinosis, one group received water and the other received aqueous extract of corn silk and continued feeding for ten days. Blood samples were collected for biochemical analysis before induction and in the fifth and tenth post-induction day. Urine samples were taken to estimate urinary ca+2 levels and crystals. The histopathological examination was carried to check for crystal deposits in renal tissues. Results: Corn silk aqueous extract produced a significant reduction of blood urea nitrogen(5.2+/-0.08 vs 7.3+/-0.2 mmol/l, serum creatinine (85.9+/-0.2 vs 97.3+/-0.5 mmol/l and serum Na+ levels (137+/-0.2 vs 142.16+/-0.7 mmol/l with non-significant reduction in serum K+ (4.0+/-0.02 vs 4.2+/-0.05. There is a significant reduction in calcium deposition in renal parenchyma in comparison to the control group after ten days of treatment. Conclusion: Corn silk had a significant diuretic effect that accelerates the excretion of urinary calcium. [J Intercult Ethnopharmacol 2012; 1(2.000: 75-78

  7. Mass spectroscopic characteristics of low molecular weight proteins extracted from calcium oxalate stones: preliminary study.

    Science.gov (United States)

    Chen, Wen-Chi; Lai, Chien-Chen; Lai, Chein-Cheng; Tsai, Yuhsin; Tsai, Yu-Hsin; Lin, Wei-Yong; Tsai, Fuu-Jen

    2008-01-01

    It is believed that boundary compositions of matrix proteins might play a role in stone formation; however, few proteomic studies concerning matrix proteins in urinary stones have been conducted. In this study, we extracted low molecular weight proteins from calcium oxalate stones and measured their characteristic patterns by mass spectroscopy. A total of 10 stones were surgically removed from patients with urolithiasis. Proteins were extracted from the stones and identified by one-dimensional electrophoresis (sodium dodecyl sulfate buffer [SDS]-polyacrylamide gel electrophoresis [SDS-PAGE]). After in-gel digest, samples were analyzed by the surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technique. The peptide sequences were analyzed from the data of mass spectroscopy. Proteins were identified from Database Search (SwissProt Protein Database; Swiss Institute of Bioinformatics; http://www.expasy.org/sprot) on a MASCOT server (Matrix Science Ltd.; http://www.matrixscience.com). A total of three bands of proteins (27, 18, and 14 kDa) were identified from SDS-PAGE in each stone sample. A database search (SwissProt) on a MASCOT server revealed that the most frequently seen proteins from band 1 (27 kDa) were leukocyte elastase precursor, cathepsin G precursor, azurocidin precursor, and myeloblastin precursor (EC 3.4.21.76) (leukocyte proteinase 3); band 2 (18 kDa) comprised calgranulin B, eosinophil cationic protein precursor, and lysozyme C precursor; band 3 (14 kDa) showed neutrophil defensin 3 precursor, calgranulin A, calgranulin C, and histone H4. The modifications and deamidations found from the mass pattern of these proteins may provide information for the study of matrix proteins. Various lower molecular weight proteins can be extracted from calcium oxalate stones. The characteristic patterns and their functions of those proteins should be further tested to investigate their roles in stone formation. (c) 2008 Wiley-Liss, Inc.

  8. Oxalate content of silver beet leaves (Beta vulgaris var. cicla) at different stages of maturation and the effect of cooking with different milk sources.

    Science.gov (United States)

    Simpson, Thomas S; Savage, Geoffrey P; Sherlock, Robert; Vanhanen, Leo P

    2009-11-25

    The work presented here indicates that people who have a tendency to develop kidney stones should avoid consuming regrowth and developed silver beet (Beta vulgaris var. cicla) leaves. Soluble oxalate contents of leaves range from 58% of the total oxalate for the mature leaves up to 89% for the regrowth tissue, with regrowth tissue containing the highest levels of soluble oxalate at 7267+/-307 mg/100 g of dry matter (DM). Leaves cooked in milk contained significantly (pbeet, a low fat milk cooking medium with neutral pH should be utilized.

  9. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  10. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  11. ion irradiation

    Indian Academy of Sciences (India)

    Swift heavy ions interact predominantly through inelastic scattering while traversing any polymer medium and produce excited/ionized atoms. Here samples of the polycarbonate Makrofol of approximate thickness 20 m, spin coated on GaAs substrate were irradiated with 50 MeV Li ion (+3 charge state). Build-in ...

  12. Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji

    Science.gov (United States)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Miyazaki, Yuzo; Wada, Ryuichi; Takahashi, Yoshiyuki; Saigusa, Nobuko; Tani, Akira

    2017-10-01

    To better understand the formation of water-soluble organic aerosols in the forest atmosphere, we measured low molecular weight (LMW) dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, unsaturated fatty acids (UFAs), and water-soluble organic carbon (WSOC) in aerosols from a Larix kaempferi forest located at the northern slope of Mt. Fuji, Japan, in summer 2012. Concentrations of dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and WSOC showed maxima in daytime. Relative abundance of oxalic acid in LMW dicarboxylic acids was on average 52% and its average concentration was 214 ng m-3. We found that diurnal and temporal variations of oxalic acid are different from those of isoprene and α-pinene, whereas biogenic secondary organic aerosols (BSOAs) derived from isoprene and α-pinene showed similar variations with oxalic acid. The mass concentration ratios of oxalic acid/BSOAs were relatively constant, although a large variation in the concentrations of toluene that is an anthropogenic volatile organic compound was observed. These results suggest that formation of oxalic acid is associated with the oxidation of isoprene and α-pinene with O3 and other oxidants in the forest atmosphere. In addition, concentrations of UFAs were observed, for the first time, to decrease dramatically during daytime in the forest. Mass concentration ratios of azelaic acid to UFAs showed a positive correlation with O3, suggesting that UFAs are oxidized to yield azelaic acid, which may be further decomposed to oxalic acid in the forest atmosphere. We found that contributions of oxalic acid to WSOC are significantly high ranging from 3.7 to 9.7% (average 6.0%). This study demonstrates that forest ecosystem is an important source of oxalic acid and other dicarboxylic acids in the atmosphere.

  13. Preparation and characterization of alumina supported nickel-oxalate catalyst for the hydrodeoxygenation of oleic acid into normal and iso-octadecane biofuel

    International Nuclear Information System (INIS)

    Ayodele, O.B.; Togunwa, Olayinka S.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Preparation of nickel oxalate complex as catalyst precursor. • Incorporation of nickel oxalate complex into alumina support. • Characterization of the alumina supported nickel oxalate catalyst. • Hydrodeoxygenation of oleic acid with nickel oxalate catalyst. • Nickel oxalate catalyst reusability studies. - Abstract: In this study, nickel II oxalate complex (NiOx) was prepared by functionalization of nickel with oxalic acid (OxA) and incorporated into Al 2 O 3 to synthesize alumina supported nickel oxalate (NiOx/Al 2 O 3 ) catalyst for the hydrodeoxygenation (HDO) of oleic acid (OA) into biofuel. The synthesized NiOx/Al 2 O 3 was characterized and the X-ray fluorescence and elemental dispersive X-ray results showed that NiOx was successfully incorporated into the structure of Al 2 O 3 . The X-ray diffraction and Raman spectroscopy results confirmed that highly dispersed Ni species are present in the NiOx/Al 2 O 3 due to the functionalization with OxA. The catalytic activity of the NiOx/Al 2 O 3 on the HDO of OA produced a mixture of 21% iso-C18 and 72% n-C18 at a 360 °C, 20 bar, 30 mg NiOx/Al 2 O 3 loading pressure and gas flow rate of 100 mL/min. The presence of i-C 18 was ascribed to the OxA functionalization which increased the acidity of NiOx/Al 2 O 3 . The NiOx/Al 2 O 3 reusability study showed consistent HDO ability after 5 runs. These results are promising for further research into biofuel production for commercialization

  14. Antilithiatic Activity of phlorotannin rich extract of Sarghassum Wightii on Calcium Oxalate Urolithiais – In Vitro and In VivoEvaluation

    Directory of Open Access Journals (Sweden)

    D. Sujatha

    2015-06-01

    Full Text Available ABSTRACTPurpose:Urolithiasis is a common urological disorder responsible for serious human affliction and cost to the society with a high recurrence rate. The aim of the present study was to systematically evaluate the phlorotannin rich extract of Sargassum wightii using suitable in vitro and in vivo models to provide scientific evidence for its antilithiatic activity.Materials and Methods:To explore the effect of Sargassum wightii on calcium oxalate crystallization, in vitro assays like crystal nucleation, aggregation and crystal growth were performed. Calcium oxalate urolithiasis was induced in male Sprague dawley rats using a combination of gentamicin and calculi producing diet (5% ammonium oxalate and rat pellet feed. The biochemical parameters like calcium, oxalate, magnesium, phosphate, sodium and potassium were evaluated in urine, serum and kidney homogenates. Histopathological studies were also done to confirm the biochemical findings.Results:The yield of Sargassum wightii extract was found to be 74.5 gm/kg and confirmed by quantitative analysis. In vitro experiments with Sargassum wightii showed concentration dependent inhibition of calcium oxalate nucleation, aggregation and growth supported by SEM analysis. In the in vivo model, Sargassum wightiireduced both calcium and oxalate supersaturation in urine, serum and deposition in the kidney. The biochemical results were supported by histopathological studies.Conclusion:The findings of the present study suggest that Sargassum wightii has the ability to prevent nucleation, aggregation and growth of calcium oxalate crystals. Sargassum wightii has better preventive effect on calcium oxalate stone formation indicating its strong potential to develop as a therapeutic option to prevent recurrence of urolithiasis.

  15. The effect of citric and oxalic acid doping on the superconducting properties of MgB2

    International Nuclear Information System (INIS)

    Ojha, N; Singla, Rashmi; Varma, G D; Malik, V K; Bernhard, C

    2009-01-01

    In this paper we report the effect of carbon doping on the structural and superconducting properties of MgB 2 using citric and oxalic acids as carbon sources. The bulk polycrystalline samples have been synthesized via a standard solid state reaction route with composition MgB 2 +x wt% of citric and oxalic acids (x = 0, 5 and 10). The x-ray diffraction results reveal the formation of dominantly MgB 2 with only a small amount of impurity phase MgO and substitution of C at the B site of MgB 2 for both dopants. Improvements in the upper critical field (H C2 ), irreversibility field (H irr ) and high field (>2.5 T) critical current density (J C ) have been observed on C doping in the samples. The correlations between superconducting properties and structural characteristics of the samples are described and discussed in this paper.

  16. Effect of feeding various forms of oxalate on the rumen metabolism and the fate of calcium in buffalo (Bubalus bubalis) calves

    International Nuclear Information System (INIS)

    Saddi, L.K.; Ahuja, S.P.; Sareen, V.K.; Singh, Sudarshan; Bhatia, I.S.

    1978-01-01

    The degradation of 45 Ca oxalate in the rumen and the absorption of 45 Ca released (experiment 2), the production of bicarbonates and TVFA in the rumen, and the rumen pH value (experiment 1) were studied in male buffalo calves consuming paddy straw (group 1), wheat straw supplemented with calcium oxalate (group 2) and wheat straw supplemented with calcium oxalate plus potassium oxalate (group 3). The radioactivity 1n the blood appeared with 1 hr in all the animals. Maximum 45 Ca specific activity in the blood was observed at 18,24 and 36 hr in groups 1 to 3, respectively, after intraruminal infusion of 15 mCi 45 Ca oxalate. Paddy-straw feeding caused polyurea. In all the animals the very first micturition showed the presence of radioactivity, and maximum 45 Ca specific activity in the urine and feaces was obtained around 31 and 25 hr, respectively, after infusion. However, during the following 5 days, the decline in 45 Ca specific activity in the feaces was sharper in group 1 than in the other groups indicating less absorption of calcium in group 1. Higher bicarbonates contents and pH of the rumen fluid were observed in group 3. The results indicated a slow and continuous release of oxalates from paddy straw. The ruminal TVFA concentration was lower and pH was relatively higher in group 3. Group 1 showed uniformly higher amounts of TVFA. (auth.)

  17. Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals.

    Science.gov (United States)

    Thurgood, Lauren A; Cook, Alison F; Sørensen, Esben S; Ryall, Rosemary L

    2010-10-01

    Our aim was to examine the attachment to, and incorporation of intact, highly phosphorylated osteopontin (OPN) into inorganic (i) and urinary (u) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals. uCOM and uCOD crystals were precipitated from ultrafiltered (UF) urine containing human milk OPN (mOPN) labelled with Alexa Fluor 647 fluorescent dye at concentrations of 0.1-5.0 mg/L. iCOM and iCOD crystals were generated in aqueous solutions at concentrations of 0.01-0.5 mg/L. Crystals were demineralised with EDTA and the resulting extracts analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis and western blotting, or examined by fluorescent confocal microscopy and field emission scanning electron microscopy before and after washing to remove proteins bound reversibly to the crystal surfaces. Binding of mOPN to pre-formed iCOM crystals was also studied in phosphate-buffered saline (PBS) and ultrafiltered (UF) urine. mOPN attached to the {100} faces and to the {010} sides of the {100}/{010} edges of iCOM crystals was removed by washing, indicating that it was not incorporated into the mineral bulk. In both PBS and urine, mOPN was attached to the {021} faces of pre-formed iCOM crystals as well as to the {100}/{010} edges, but was concentrated at the intersection points of the {100} and {121} faces at the crystal tips. Attachment in UF urine appeared to be greater than in PBS and stronger at higher calcium concentrations than lower calcium concentrations. In uCOM crystals, the distribution of fluorescence and patterns of erosion after washing suggested attachment of mOPN to the four end faces, followed by interment within the mineral phase. Fluorescence distributions of mOPN associated with both iCOD and uCOD crystals were consistent with uniform binding of the protein to all equivalent {101} faces and concentration along the intersections between them. Persistence of fluorescence after washing indicated that most mOPN was incarcerated within

  18. L-Carnitine Protects Renal Tubular Cells Against Calcium Oxalate Monohydrate Crystals Adhesion Through Preventing Cells From Dedifferentiation

    OpenAIRE

    Shujue Li; Wenqi Wu; Wenzheng Wu; Xiaolu Duan; Zhenzhen Kong; Guohua Zeng

    2016-01-01

    Background/Aims: The interactions between calcium oxalate monohydrate (COM) crystals and renal tubular epithelial cells are important for renal stone formation but still unclear. This study aimed to investigate changes of epithelial cell phenotype after COM attachment and whether L-carnitine could protect cells against subsequent COM crystals adhesion. Methods: Cultured MDCK cells were employed and E-cadherin and Vimentin were used as markers to estimate the differentiate state. AlexaFluor-48...

  19. Patterns of calcium oxalate crystals in young tropical leaves: a possible role as an anti-herbivory defense

    OpenAIRE

    David S. Finley

    1999-01-01

    Calcium oxalate crystal formation and leaf toughness were measured and compared in five species, (Cyclanthus subpalmata, Pandanus leram, Crinum amabile, Heliconia longiflora and Guzmania zahnii) pre-selected for known leaf raphide production and toughness. Nine to eleven representative individuals from each species were randomly selected for the same microenvironment. The study was conducted in Las Cruces, Costa Rica. Leaves from each species were classified as two age classes: young and matu...

  20. Column liquid chromatography-ultraviolet and column liquid chromatography/mass spectrometry evaluation of stress degradation behavior of escitalopram oxalate.

    Science.gov (United States)

    Dhaneshwar, Sunil R; Mahadik, Mahadeo V; Kulkarni, Mahesh J

    2009-01-01

    The objective of this work was to study the degradation behavior of escitalopram oxalate under different International Conference on Harmonization (ICH)-recommended stress conditions by column liquid chromatography (LC)-UV and LC/mass spectrometry (LC/MS) and to establish a validated stability-indicating LC assay method. Escitalopram oxalate was subjected to stress conditions of hydrolysis, oxidation, photolysis, and thermal decomposition. Extensive degradation was found to occur in alkaline medium. Mild degradation was observed in acidic and oxidative conditions. Escitalopram oxalate was stable to neutral, photolytic, and thermal stress. Successful separation of the drug from degradation products formed under stress conditions was achieved on a PerfectSil-100 ODS-3 column [C18 (5 microm, 25 cm x 4.6 mm id)] using methanol-0.01 M acetate buffer pH 3.8 adjusted with acetic acid (45 + 55) as the mobile phase. The flow rate was 1 ml/min, and the detection wavelength was 239 nm. The method was validated according to ICH guidelines. Major degradation products formed in hydrolysis and oxidative conditions were isolated, and structural elucidation of degradation products was done by LCIMS and infrared spectrometry studies. The major hydrolysis degradation product was confirmed as 1-(3-dimethylaminopropyl)-1-(4-fluoro- phenyl)-1,3dihydroisobenzofuran-5-carboxylic acid, and the major oxidative degradation product was confirmed as 1-{[3-dimethylamino(oxide)- propyl]-1-(4-fluro-phenyl)}-1,3-dihydro-isobenzofuran- 5-carbonitrile.

  1. Serum estradiol and testosterone levels in kidney stones disease with and without calcium oxalate components in naturally postmenopausal women.

    Science.gov (United States)

    Zhao, Zhijian; Mai, Zanlin; Ou, Lili; Duan, Xiaolu; Zeng, Guohua

    2013-01-01

    Epidemiological data reveal that the overall risk for kidney stones disease is lower for women compared to age-matched men. However, the beneficial effect for the female sex is lost upon menopause, a time corresponding to the onset of fall in estrogen levels. The aim of this study was to describe the serum estradiol (E2) and testosterone (T) characteristics of naturally postmenopausal women with kidney stones. 113 naturally postmenopausal women with newly diagnosed kidney stones (aged 57.4±4.98 years) and 84 age frequency matched stone-free controls (56.9±4.56 years) were validly recruited in the case-control study. The odds ratios (ORs) for the associations between sex hormones and kidney stones were estimated with logistic regression models, adjusting for demographic data and medical history. Patients were also stratified analyzed according to stone components (calcium oxalate stones [COS]; non-calcium oxalate stones [NCOS]). Serum E2 (21.1 vs. 31.1 pg/ml) was significantly lower in kidney stones patients compared to controls. Post-hoc analysis demonstrated that this effect was driven by COS patients (pkidney calcium oxalate stones. However, no correlation was found between serum T level and kidney stones. These findings support the hypothesis that higher postmenopausal endogenous estrogens may protect against kidney stones with ageing.

  2. In situ secondary ion mass spectrometry analysis. 1992 Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  3. Electrorheological Fluids with High Shear Stress Based on Wrinkly Tin Titanyl Oxalate.

    Science.gov (United States)

    Wu, Jinghua; Zhang, Lei; Xin, Xing; Zhang, Yang; Wang, Hui; Sun, Aihua; Cheng, Yuchuan; Chen, Xinde; Xu, Gaojie

    2018-02-21

    Electrorheological (ER) fluids are considered as a type of smart fluids because their rheological characteristics can be altered through an electric field. The discovery of giant ER effect revived the researchers' interest in the ER technological area. However, the poor stability including the insufficient dynamic shear stress, the large leakage current density, and the sedimentation tendency still hinders their practical applications. Herein, we report a facile and scalable coprecipitation method for synthesizing surfactant-free tin titanyl oxalate (TTO) particles with tremella-like wrinkly microstructure (W-TTO). The W-TTO-based ER fluids exhibit enhanced ER activity compared to that of the pristine TTO because of the improved wettability between W-TTO and the silicone oil. In addition, the static yield stress and leakage current of W-TTO ER fluids also show a fine time stability during the 30 day tests. More importantly, the dynamic shear stress of W-TTO ER fluids can remain stable throughout the shear rate range, which is valuable for their use in engineering applications. The results in this work provided a promising strategy to solving the long-standing problem of ER fluid stability. Moreover, this convenient route of synthesis may be considered a green approach for the mass production of giant ER materials.

  4. Inhibition of calcium oxalate crystal deposition on kidneys of urolithiatic rats by Hibiscus sabdariffa L. extract.

    Science.gov (United States)

    Laikangbam, Reena; Damayanti Devi, M

    2012-06-01

    The present study aims at systematic evaluation of the calyces of Hibiscus sabdariffa to establish its scientific validity for anti-urolithiatic property using ethylene glycol-induced hyperoxaluria model in male albino rats. Administration of a mixture of 0.75% ethylene glycol and 2% ammonium chloride resulted in hyperoxaluria as well as increased renal excretion of calcium and phosphate. The decrease in the serum calcium concentration indicates an increased calcium oxalate formation. Supplementation of aqueous extract of H. sabdariffa at different doses (250, 500 and 750 mg/kg body weight) significantly lowered the deposition of stone-forming constituents in the kidneys and serum of urolithiatic rats. These findings have been confirmed through histological investigations. Results of in vivo genotoxicity testing showed no significant chromosomal aberrations in the bone marrow cells of ethylene glycol-induced rats. The plant extracts at the doses investigated induced neither toxic nor lethal effects and are safe. It can be concluded that the calyces of H. sabdariffa are endowed with anti-urolithiatic activity and do not have genotoxic effects. Thus, it can be introduced in clinical practices and medicine in the form of orally administered syrup after further investigations and clinical trials.

  5. Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells.

    Science.gov (United States)

    Chauvet, Magali C; Ryall, Rosemary Lyons

    2005-07-01

    We assessed the effects of intracrystalline urinary proteins on the ability of Type II Madin-Darby canine kidney (MDCK-II) cells to bind and degrade calcium oxalate monohydrate (COM) crystals. Binding of [14C]-labelled inorganic crystals (iCOM), and COM crystals precipitated from centrifuged and filtered (CF) or ultrafiltered (UF) human urine was quantified by radioactive analysis. SDS-PAGE confirmed the presence of intracrystalline proteins > 10 kDa in CF crystals and their absence from UF crystals. Morphological effects were assessed qualitatively by field emission scanning electron microscopy. iCOM crystals bound rapidly and extensively and were resistant to degradation. Binding of CF crystals was weaker than UF crystals, and both had markedly less affinity than iCOM. CF and UF crystals were extensively degraded within 90 min, the effect being more pronounced with CF. These results support our hypothesis that intracrystalline proteins protect against urolithiasis by facilitating intracellular proteolytic digestion and destruction of crystals phagocytosed by urothelial cells.

  6. Hippuric Acid as a Significant Regulator of Supersaturation in Calcium Oxalate Lithiasis: The Physiological Evidence

    Directory of Open Access Journals (Sweden)

    Stoyanka S. Atanassova

    2013-01-01

    Full Text Available At present, the clinical significance of existing physicochemical and biological evidence and especially the results we have obtained from our previous in vitro experiments have been analyzed, and we have come to the conclusion that hippuric acid (C6H5CONHCH2COOH is a very active solvent of Calcium Oxalate (CaOX in physiological solutions. Two types of experiments have been discussed: clinical laboratory analysis on the urine excretion of hippuric acid (HA in patients with CaOX lithiasis and detailed measurements of the kinetics of the dissolution of CaOX calculi in artificial urine, containing various concentrations of HA. It turns out that the most probable value of the HA concentration in the control group is approximately ten times higher than the corresponding value in the group of the stone-formers. Our in vitro analytical measurements demonstrate even a possibility to dissolve CaOX stones in human urine, in which increased concentration of HA have been established. A conclusion can be that drowning out HA is a significant regulator of CaOX supersaturation and thus a regulation of CaOX stone formation in human urine. Discussions have arisen to use increased concentration of HA in urine both as a solubilizator of CaOX stones in the urinary tract and on the purpose of a prolonged metaphylactic treatment.

  7. Hippuric acid as a significant regulator of supersaturation in calcium oxalate lithiasis: the physiological evidence.

    Science.gov (United States)

    Atanassova, Stoyanka S; Gutzow, Ivan S

    2013-01-01

    At present, the clinical significance of existing physicochemical and biological evidence and especially the results we have obtained from our previous in vitro experiments have been analyzed, and we have come to the conclusion that hippuric acid (C6H5CONHCH2COOH) is a very active solvent of Calcium Oxalate (CaOX) in physiological solutions. Two types of experiments have been discussed: clinical laboratory analysis on the urine excretion of hippuric acid (HA) in patients with CaOX lithiasis and detailed measurements of the kinetics of the dissolution of CaOX calculi in artificial urine, containing various concentrations of HA. It turns out that the most probable value of the HA concentration in the control group is approximately ten times higher than the corresponding value in the group of the stone-formers. Our in vitro analytical measurements demonstrate even a possibility to dissolve CaOX stones in human urine, in which increased concentration of HA have been established. A conclusion can be that drowning out HA is a significant regulator of CaOX supersaturation and thus a regulation of CaOX stone formation in human urine. Discussions have arisen to use increased concentration of HA in urine both as a solubilizator of CaOX stones in the urinary tract and on the purpose of a prolonged metaphylactic treatment.

  8. Electrochemical oxidation of oxalic acid in the presence of halides at boron doped diamond electrode

    International Nuclear Information System (INIS)

    Martinez-Huitle, C.A.; Ferro, S.; Battisti, A. de; Reyna, S.; Cerro-Lopez, M.; Quiroz, M.A.

    2008-01-01

    Aim of this work is to discuss the electrochemical oxidation of oxalic acid (OA), analyzing the influence of NaCl and NaBr. Experiments were carried out at boron-doped diamond (BDD) electrodes, in alkaline media. BDD electrodes have a poor superficial adsorptivity so their great stability toward oxidation allows the reaction to take place with reactants and intermediates in a non-adsorbed state. The process is significantly accelerated by the presence of a halogen salt in solution; interestingly, the mediated process does not depend on applied current density. Based on the results, bromide was selected as a suitable mediator during OA oxidation at BDD. Br - primarily acts in the volume of the solution, with the formation of strong oxidants; while Cl - action has shown lower improvements in the OA oxidation rate at BDD respect to the results reported using Pt electrode. Finally, the parameters of removal efficiency and energy consumption for the electrochemical incineration of OA were calculated. (author)

  9. Does the use of chitosan contribute to oxalate kidney stone formation?

    Science.gov (United States)

    Fernandes Queiroz, Moacir; Melo, Karoline Rachel Teodosio; Sabry, Diego Araujo; Sassaki, Guilherme Lanzi; Rocha, Hugo Alexandre Oliveira

    2014-12-29

    Chitosan is widely used in the biomedical field due its chemical and pharmacological properties. However, intake of chitosan results in renal tissue accumulation of chitosan and promotes an increase in calcium excretion. On the other hand, the effect of chitosan on the formation of calcium oxalate crystals (CaOx) has not been described. In this work, we evaluated the antioxidant capacity of chitosan and its interference in the formation of CaOx crystals in vitro. Here, the chitosan obtained commercially had its identity confirmed by nuclear magnetic resonance and infrared spectroscopy. In several tests, this chitosan showed low or no antioxidant activity. However, it also showed excellent copper-chelating activity. In vitro, chitosan acted as an inducer mainly of monohydrate CaOx crystal formation, which is more prevalent in patients with urolithiasis. We also observed that chitosan modifies the morphology and size of these crystals, as well as changes the surface charge of the crystals, making them even more positive, which can facilitate the interaction of these crystals with renal cells. Chitosan greatly influences the formation of crystals in vitro, and in vivo analyses should be conducted to assess the risk of using chitosan.

  10. Specificity in calcium oxalate adherence to papillary epithelial cells in culture

    International Nuclear Information System (INIS)

    Riese, R.J.; Riese, J.W.; Kleinman, J.G.; Wiessner, J.H.; Mandel, G.S.; Mandel, N.S.

    1988-01-01

    Attachment of microcystallites to cellular membranes may be an important component of the pathophysiology of many diseases including urolithiasis. This study attempts to characterize the interaction of calcium oxalate (CaOx) crystals and apatite (AP) crystals with renal papillary collecting tubule (RPCT) cells in primary culture. Primary cultures of RPCT cells showed the characteristic monolayer growth with sporadically interspersed clumped cells. Cultures were incubated with [ 14 C]CaOx crystals, and the crystals that bound were quantified by microscopy and adherent radioactivity. Per unit of cross-sectional area, 32 times more CaOx crystals were bound to the clumps than to the monolayer. CaOx adherence demonstrated concentration-dependent saturation with a β value (fraction of cell culture area binding CaOx crystals) of 0.179 and a 1/α ox value of 287 μg/cm 2 . On incubation with AP crystals, CaOx binding demonstrated concentration-dependent inhibition with a 1/α AP value of 93 μg/cm 2 . Microcystallite adherence to RPCT cells demonstrates selectivity for cellular clumps, saturation, and inhibition. These features suggest specific binding

  11. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation?

    Directory of Open Access Journals (Sweden)

    Moacir Fernandes Queiroz

    2014-12-01

    Full Text Available Chitosan is widely used in the biomedical field due its chemical and pharmacological properties. However, intake of chitosan results in renal tissue accumulation of chitosan and promotes an increase in calcium excretion. On the other hand, the effect of chitosan on the formation of calcium oxalate crystals (CaOx has not been described. In this work, we evaluated the antioxidant capacity of chitosan and its interference in the formation of CaOx crystals in vitro. Here, the chitosan obtained commercially had its identity confirmed by nuclear magnetic resonance and infrared spectroscopy. In several tests, this chitosan showed low or no antioxidant activity. However, it also showed excellent copper-chelating activity. In vitro, chitosan acted as an inducer mainly of monohydrate CaOx crystal formation, which is more prevalent in patients with urolithiasis. We also observed that chitosan modifies the morphology and size of these crystals, as well as changes the surface charge of the crystals, making them even more positive, which can facilitate the interaction of these crystals with renal cells. Chitosan greatly influences the formation of crystals in vitro, and in vivo analyses should be conducted to assess the risk of using chitosan.

  12. Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes

    KAUST Repository

    Ge, Qingchun

    2017-06-11

    Forward osmosis (FO) has demonstrated its merits in hybrid FO seawater desalination. However, FO may have a potential for other applications if suitable draw solutes are available. In this study, a series of novel draw solutes based on oxalic acid (OA)-transitional metal complexes are presented. Influential factors of FO performance have been systematically investigated by varying the transitional metals, cations of the complex draw solutes as well as the experimental conditions. Compared to NaCl and other recently synthesized draw solutes, the OA complexes show superior FO performance in terms of high water fluxes up to 27.5 and 89.1 LMH under the respective FO and PRO (pressure retarded osmosis) modes, both with negligible reverse solute fluxes. The features of octahedral geometry, abundant hydrophilic groups and ionic species are crucial for the OA complexes as appropriate draw solutes with satisfactory FO performance. Among the synthesized OA complexes, the ammonium salt of chromic complex (NH4-Cr-OA) outperforms others due to the presence of more ionic species in its complex system. NH4-Cr-OA also performs better than the typical NaCl draw solute in FO oily wastewater treatment with higher water recovery and negligible reverse fluxes. Dilute solutions of OA complexes have been reconcentrated through membrane distillation (MD) and reused to new round of FO processes. The OA complexes have demonstrated their suitability and superiority as a novel class of draw solutes for the FO process in this study.

  13. Distribution of calcium oxalate crystals in floral organs of Araceae in relation to pollination strategy.

    Science.gov (United States)

    Coté, Gary G; Gibernau, Marc

    2012-07-01

    Many flowers are pollinated by potentially hungry insects, yet flowers also contain gametes and embryos which must be protected from predation. Microscopic calcium oxalate crystals in plant tissues have been proposed to protect against herbivory. Aroids, which have an unusual diversity of such crystals, also exhibit diverse pollination strategies. Many species have pollinators that do not feed while visiting the flowers, while other species, especially those pollinated by beetles, offer sterile staminodia as food rewards. We examined flowers of 21 aroid species with various pollination strategies to test the hypothesis that crystals protect vital gametes and embryos while allowing consumption of food bribes. Aroid inflorescences collected from the field or from greenhouse material were sectioned, cleared, and examined by bright field and polarization microscopy. All species examined, regardless of pollination strategy, arrayed crystals around unshed pollen and ovules. Less vital tissues, such as odoriferous appendages, had few crystals. Staminodia offered as food to beetle pollinators, however, differed greatly between species in their crystal contents. Some had minimal crystals; some had crystals in patterns suggesting they limit beetle feeding; still others had abundant crystals in no obvious pattern. The results are consistent with crystals protecting against insect predation of gametes and embryos. However, the role of crystals in food-bribe staminodia is unclear. They may limit and direct feeding by beetles in some species, while in others they might have no protective role.

  14. Effect of aqueous extract of Tribulus terrestris on oxalate-induced oxidative stress in rats

    Science.gov (United States)

    Kamboj, P.; Aggarwal, M.; Puri, S.; Singla, S. K.

    2011-01-01

    The present study was aimed at studying the effect of Tribulus terrestris on different parameters of oxidative stress and gene expression profiles of antioxidant enzymes in renal tissues of male wistar rats after induction of hyperoxaluria. The animals were divided into three groups. The animals in group I (control) were administered vehicle only. In group II, the animals were treated with ethylene glycol (hyperoxaluric agent) and those in group III were administered T. terrestris plant extract in addition to ethylene glycol. All treatments were continued for a period of seven weeks. Ethylene glycol feeding resulted in hyperoxaluria as well as increased excretion of calcium and phosphate. Serum creatinine, uric acid and blood urea nitrogen levels were also altered in hyperoxaluric animals. Various oxidative stress parameters viz. lipid peroxidation and activity of antioxidant enzymes were used to confirm the peroxidant state. Reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to confirm whether steady-state transcription level of different antioxidant enzymes was altered. T. terrestris significantly reduced the excretion of oxalate, calcium, and phosphate along with decreased levels of blood urea nitrogen, uric acid and creatinine in serum. T. terrestris also reduced hyperoxaluria- caused oxidative stress, and restored antioxidant enzyme activity and their expression profile in kidney tissue. Histological analysis depicted that T. terrestris treatment decreased renal epithelial damage, inflammation, and restored normal glomerular morphology. PMID:21886973

  15. Associations of diet and breed with recurrence of calcium oxalate cystic calculi in dogs.

    Science.gov (United States)

    Allen, Heidi S; Swecker, William S; Becvarova, Iveta; Weeth, Lisa P; Werre, Stephen R

    2015-05-15

    To evaluate the long-term risk of recurrence of calcium oxalate (CaOx) cystic calculi in dogs of various breeds fed 1 of 2 therapeutic diets. Retrospective cohort study. Animals-135 dogs with a history of CaOx cystic calculi. Medical records for 4 referral hospitals were searched to identify dogs that had had CaOx cystic calculi removed. Owners were contacted and medical records evaluated to obtain information on postoperative diet, recurrence of signs of lower urinary tract disease, and recurrence of cystic calculi. Dogs were grouped on the basis of breed (high-risk breeds, low-risk breeds, and Miniature Schnauzers) and diet fed after removal of cystic calculi (diet A, diet B, and any other diet [diet C], with diets A and B being therapeutic diets formulated to prevent recurrence of CaOx calculi). Breed group was a significant predictor of calculi recurrence (as determined by abdominal radiography or ultrasonography), with Miniature Schnauzers having 3 times the risk of recurrence as did dogs of other breeds. Dogs in diet group A had a lower prevalence of recurrence than did dogs in diet group C, but this difference was not significant in multivariable analysis. Results indicated that Miniature Schnauzers had a higher risk of CaOx cystic calculi recurrence than did dogs of other breeds. In addition, findings suggested that diet may play a role in decreasing recurrence, but future prospective studies are needed to validate these observations.

  16. Energy transfer and thermal studies of Pr 3+ doped cerium oxalate ...

    Indian Academy of Sciences (India)

    The analysis of energy level diagrams of cerium and praseodymium ions indicates that the energy gap between the sensitizer and the activator ions varies in a small range suggesting a possible energy transfer from the Ce3+ to Pr3+. The emission and absorption spectra of these crystals were recorded. The overlapping of ...

  17. Studies on Some Physical, Chemical and Sorption Properties of Some Inorganic ion Exchangers and Their Application to Radioactive Isotopes Removal

    International Nuclear Information System (INIS)

    El-Sweify, F.H.; Shehata, M.K.K.; El-Shazly, E.A.A.

    1999-01-01

    In the present work, amorphous zirconium phosphate, zirconium titanium phosphate and ceric tungstate have been synthesised. Solubility of the prepared ion exchangers in different media has been examined. These media were mineral acids, aqueous solutions of organic acids: oxalic, citric and tartaric as well as ammonium and potassium carbonate solutions of different molarities. I.R. analysis is applied on some samples of the prepared ion exchangers. Sorption behaviour of different metal ion species, of elements of nuclear significance on the prepared ion exchangers has been studied from aqueous media of different compositions and concentration under different experimental conditions. The studied metal ions are, Ce(III) and Eu(III), as representative for the trivalent lanthanides, Co(II), Zr(IV), Nb(V), Hf(IV), Te(IV), Ce(IV), Th(IV) and U(V I). Optimization of the conditions for the isolation and separation of the desired element species highlighted

  18. Removal of azo dye C.I. acid red 14 from contaminated water using Fenton, UV/H(2)O(2), UV/H(2)O(2)/Fe(II), UV/H(2)O(2)/Fe(III) and UV/H(2)O(2)/Fe(III)/oxalate processes: a comparative study.

    Science.gov (United States)

    Daneshvar, N; Khataee, A R

    2006-01-01

    The decolorization of the solution containing a common textile and leather dye, C.I. Acid Red 14 (AR14), at pH 3 by hydrogen peroxide photolysis, Fenton, Fenton-like and photo-Fenton processes was studied. The dark and light reactions were carried out in stirred batch photoreactor equipped with an UV-C lamp (30 W) as UV light source. The experiments showed that the dye was resistant to the UV illumination, but was oxidized when one of Fe(II), Fe(III) and H(2)O(2) compounds was present. It was also found that UV light irradiation can accelerate significantly the rate of AR14 decolorization in the presence of Fe(III)/H(2)O(2) or Fe(II)/H(2)O(2), comparing to that in the dark. The effect of different system variables like initial concentration of the azo dye, effect of UV light irradiation, initial concentration of Fe(II) or Fe(III) and added oxalate ion has been investigated. The results showed that the decolorization efficiency of AR14 at the reaction time of 2 min follows the decreasing order: UV/H(2)O(2)/Fe(III)/oxalate > UV/H(2)O(2)/Fe(III) > UV/H(2)O(2)/Fe(II) > UV/H(2)O(2). Our results also showed that the UV/H(2)O(2)/Fe(III)/oxalate process was appropriate as the effective treatment method for decolorization of a real dyeing and finishing. The mechanism for each process is also discussed and linked together for understanding the observed differences in reactivity.

  19. Roles of Macrophage Exosomes in Immune Response to Calcium Oxalate Monohydrate Crystals

    Directory of Open Access Journals (Sweden)

    Nilubon Singhto

    2018-02-01

    Full Text Available In kidney stone disease, macrophages secrete various mediators via classical secretory pathway and cause renal interstitial inflammation. However, whether their extracellular vesicles, particularly exosomes, are involved in kidney stone pathogenesis remained unknown. This study investigated alterations in exosomal proteome of U937-derived macrophages (by phorbol-12-myristate-13-acetate activation after exposure to calcium oxalate monohydrate (COM crystals for 16-h using 2-DE-based proteomics approach. Six significantly altered proteins in COM-treated exosomes were successfully identified by nanoscale liquid chromatography–electrospray ionization–electron transfer dissociation tandem mass spectrometry as proteins involved mainly in immune processes, including T-cell activation and homeostasis, Fcγ receptor-mediated phagocytosis, interferon-γ (IFN-γ regulation, and cell migration/movement. The decreased heat shock protein 90-beta (HSP90β and increased vimentin were confirmed by Western blotting. ELISA showed that the COM-treated macrophages produced greater level of interleukin-1β (IL-1β, one of the markers for inflammasome activation. Functional studies demonstrated that COM-treated exosomes enhanced monocyte and T-cell migration, monocyte activation and macrophage phagocytic activity, but on the other hand, reduced T-cell activation. In addition, COM-treated exosomes enhanced production of proinflammatory cytokine IL-8 by monocytes that could be restored to its basal level by small-interfering RNA targeting on vimentin (si-Vimentin. Moreover, si-Vimentin could also abolish effects of COM-treated exosomes on monocyte and T-cell migration as well as macrophage phagocytic activity. These findings provided some implications to the immune response during kidney stone pathogenesis via exosomal pathway of macrophages after exposure to COM crystals.

  20. A structural investigation of the interaction of oxalic acid with Cu(110)

    Science.gov (United States)

    White, T. W.; Duncan, D. A.; Fortuna, S.; Wang, Y.-L.; Moreton, B.; Lee, T.-L.; Blowey, P.; Costantini, G.; Woodruff, D. P.

    2018-02-01

    The interaction of oxalic acid with the Cu(110) surface has been investigated by a combination of scanning tunnelling microscopy (STM), low energy electron diffraction (LEED), soft X-ray photoelectron spectroscopy (SXPS), near-edge X-ray absorption fine structure (NEXAFS) and scanned-energy mode photoelectron diffraction (PhD), and density functional theory (DFT). O 1s SXPS and O K-edge NEXAFS show that at high coverages a singly deprotonated monooxalate is formed with its molecular plane perpendicular to the surface and lying in the [ 1 1 bar 0 ] azimuth, while at low coverage a doubly-deprotonated dioxalate is formed with its molecular plane parallel to the surface. STM, LEED and SXPS show the dioxalate to form a (3 × 2) ordered phase with a coverage of 1/6 ML. O 1s PhD modulation spectra for the monooxalate phase are found to be simulated by a geometry in which the carboxylate O atoms occupy near-atop sites on nearest-neighbour surface Cu atoms in [ 1 1 bar 0 ] rows, with a Cusbnd O bondlength of 2.00 ± 0.04 Å. STM images of the (3 × 2) phase show some centred molecules attributed to adsorption on second-layer Cu atoms below missing [001] rows of surface Cu atoms, while DFT calculations show adsorption on a (3 × 2) missing row surface (with every third [001] Cu surface row removed) is favoured over adsorption on the unreconstructed surface. O 1s PhD data from dioxalate is best fitted by a structure similar to that found by DFT to have the lowest energy, although there are some significant differences in intramolecular bondlengths.

  1. Mechanisms involved in calcium oxalate endocytosis by Madin-Darby canine kidney cells

    Directory of Open Access Journals (Sweden)

    A.H. Campos

    2000-01-01

    Full Text Available Calcium oxalate (CaOx crystals adhere to and are internalized by tubular renal cells and it seems that this interaction is related (positively or negatively to the appearance of urinary calculi. The present study analyzes a series of mechanisms possibly involved in CaOx uptake by Madin-Darby canine kidney (MDCK cells. CaOx crystals were added to MDCK cell cultures and endocytosis was evaluated by polarized light microscopy. This process was inhibited by an increase in intracellular calcium by means of ionomycin (100 nM; N = 6; 43.9% inhibition; P<0.001 or thapsigargin (1 µM; N = 6; 33.3% inhibition; P<0.005 administration, and via blockade of cytoskeleton assembly by the addition of colchicine (10 µM; N = 8; 46.1% inhibition; P<0.001 or cytochalasin B (10 µM; N = 8; 34.2% inhibition; P<0.001. Furthermore, CaOx uptake was reduced when the activity of protein kinase C was inhibited by staurosporine (10 nM; N = 6; 44% inhibition; P<0.01, or that of cyclo-oxygenase by indomethacin (3 µM; N = 12; 17.2% inhibition; P<0.05; however, the uptake was unaffected by modulation of potassium channel activity with glibenclamide (3 µM; N = 6, tetraethylammonium (1 mM; N = 6 or cromakalim (1 µM; N = 6. Taken together, these data indicate that the process of CaOx internalization by renal tubular cells is similar to the endocytosis reported for other systems. These findings may be relevant to cellular phenomena involved in early stages of the formation of renal stones.

  2. Gently reduced graphene oxide incorporated into cobalt oxalate rods as bifunctional oxygen electrocatalyst

    International Nuclear Information System (INIS)

    Phihusut, Doungkamon; Ocon, Joey D.; Jeong, Beomgyun; Kim, Jin Won; Lee, Jae Kwang; Lee, Jaeyoung

    2014-01-01

    Graphical abstract: - Abstract: Water-oxygen electrochemistry is at the heart of key renewable energy technologies (fuel cells, electrolyzers, and metal-air batteries) due to the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although much effort has been devoted to the development of improved bifunctional electrocatalysts, an inexpensive, highly active oxygen electrocatalyst, however, remains to be a challenge. In this paper, we present a facile and robust method to create gently reduced graphene oxide incorporated into cobalt oxalate microstructures (CoC 2 O 4 /gRGO) and demonstrate its excellent and stable electrocatalytic activity in both OER and ORR, arising from the inherent properties of the components and their physicochemical interaction. Our synthesis technique also explores a single pot method to partially reduce graphene oxide and form CoC 2 O 4 structures while maintaining the solution processability of reduced graphene oxide. While the OER activity of CoC 2 O 4 /gRGO is exclusively due to CoC 2 O 4 , which transformed into OER-active Co species, the combination with gRGO significantly improves OER stability. On the other hand, CoC 2 O 4 /gRGO exhibits synergistic effect towards ORR, via a quasi-four-electron pathway, leading to a slightly higher ORR limiting current than Pt/C. Remarkably, gRGO offers dual functionality, contributing to ORR activity via the N-functional groups and also enhancing OER stability through the gRGO coating around CoC 2 O 4 structures. Our results suggest a new class of metal-carbon composite that has the potential to be alternative bifunctional catalysts for regenerative fuel cells and metal-air batteries

  3. Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes.

    Science.gov (United States)

    Ge, Qingchun; Amy, Gary Lee; Chung, Tai-Shung

    2017-10-01

    Forward osmosis (FO) has demonstrated its merits in hybrid FO seawater desalination. However, FO may have a potential for other applications if suitable draw solutes are available. In this study, a series of novel draw solutes based on oxalic acid (OA)-transitional metal complexes are presented. Influential factors of FO performance have been systematically investigated by varying the transitional metals, cations of the complex draw solutes as well as the experimental conditions. Compared to NaCl and other recently synthesized draw solutes, the OA complexes show superior FO performance in terms of high water fluxes up to 27.5 and 89.1 LMH under the respective FO and PRO (pressure retarded osmosis) modes, both with negligible reverse solute fluxes. The features of octahedral geometry, abundant hydrophilic groups and ionic species are crucial for the OA complexes as appropriate draw solutes with satisfactory FO performance. Among the synthesized OA complexes, the ammonium salt of chromic complex (NH 4 -Cr-OA) outperforms others due to the presence of more ionic species in its complex system. NH 4 -Cr-OA also performs better than the typical NaCl draw solute in FO oily wastewater treatment with higher water recovery and negligible reverse fluxes. Dilute solutions of OA complexes have been reconcentrated through membrane distillation (MD) and reused to new round of FO processes. The OA complexes have demonstrated their suitability and superiority as a novel class of draw solutes for the FO process in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of body condition score and urinalysis variables between dogs with and without calcium oxalate uroliths

    Science.gov (United States)

    Kennedy, Stephanie M.; Lulich, Jody P.; Ritt, Michelle G.; Furrow, Eva

    2017-01-01

    OBJECTIVE To compare body condition score (BCS) and urinalysis variables between dogs with and without calcium oxalate (CaOx) uroliths. DESIGN Case-control study. ANIMALS 46 Miniature Schnauzers, 16 Bichons Frises, and 6 Shih Tzus. PROCEDURES Medical records were reviewed for Miniature Schnauzers, Bichons Frises, and Shih Tzus that were examined between January 2001 and November 2014 for another urolithiasis study or for a urolith removal procedure. Dogs with CaOx uroliths were classified as cases. Dogs without a history of urinary tract disease and with no evidence of radiopaque uroliths on abdominal radiographs were classified as controls. Each case was matched with 1 control on the basis of age (± 2 years), sex, and breed. Body condition score and urinalysis results were compared between cases and controls, and the relationship between BCS and urine pH was analyzed. RESULTS Median BCS was significantly greater for cases than controls, although the proportion of overweight dogs did not differ significantly between the 2 groups. Urine pH was negatively associated with age, but was not associated with BCS or the presence of CaOx uroliths. Cases infrequently had acidic urine or CaOx crystalluria but frequently had hematuria and proteinuria. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that dogs with CaOx uroliths had a greater median BCS than control dogs, but the clinical importance of that finding was unclear. Acidic urine and CaOx crystalluria were uncommon and not adequate predictors of CaOx urolith status. Hematuria and proteinuria were commonly observed in dogs with CaOx urolithiasis, but they are not pathognomonic for that condition. PMID:27875079

  5. Chronic stress and calcium oxalate stone disease: influence on blood cortisol and urine composition.

    Science.gov (United States)

    Arzoz-Fàbregas, Montserrat; Ibarz-Servio, Luis; Fernández-Castro, Jordi; Valiente-Malmagro, Manuel; Roca-Antonio, Josep; Edo-Izquierdo, Sílvia; Buisan-Rueda, Oscar

    2013-12-01

    To evaluate the influence of chronic stress (CS) on urine composition of calcium oxalate (CaOx) stone patients and controls. This case-control study enrolled 128 patients during a period of 20 months. The cases were CaOx stone formers with a recent stone episode. Controls were matched by sex and age. Dimensions of CS were evaluated in cases and controls by validated self-report questionnaires measuring stressful life events, perceived stress, anxiety, depression, burnout, and satisfaction with life. Blood and urine samples were collected to determine cortisol levels and urinary composition. More relations between CS dimensions and blood and urine parameters were observed in cases than in controls. In cases, the blood cortisol level was related positively with the number of stressful life events (P = .03), intensity of these events (P = .04), and anxiety (P = .04). In addition, urinary magnesium (P = .03) and pyrophosphate (P = .05) levels were positively related with satisfaction with life and burnout, respectively. In contrast, urinary magnesium levels were negatively related with perceived stress (P = .01), anxiety (P = .016), and depression (P = .03). In controls, the number of stressful life events and the intensity of stressful life events was related positively with magnesium (P = .06, P = .02) levels and negatively with blood cortisol levels (P = .03, P = .004). Based on the variation between cases and controls in relations between CS dimensions and biochemical parameters, we hypothesize that CS may trigger a differential biological response in CaOx stone formers and controls, which in turn may promote or protect against CaOx stone formation. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Sonocatalytic degradation of malachite green oxalate by a semiconductor metal oxide nanocatalyst.

    Science.gov (United States)

    Bhavani, R; Sivasamy, A

    2016-12-01

    Advanced Oxidation Process (AOP) technologies are considered to be better technique for the degradation or mineralization of many recalcitrant compounds and pollutants. In the present study heterogeneous sonocatalytic degradation of a model organic compound such as Malachite green oxalate (MGO) was carried out in the aqueous phase. Zinc oxide nanorods were prepared by precipitation method employing zinc acetates as precursors and were characterized by FT-IR, XRD, FE-SEM and EDAX analysis. Degradation of MGO in the aqueous phase was studied in detail under the sonocatalytic process. Effects of pH, dye concentration, oxidant concentration, kinetics and effect of electrolytes on dye degradation were carried out to check the efficiency of the sonocatalyst. Effect of energy input on the degradation processes was also investigated. The degradation of dye molecules were monitored by UV-visible spectrophotometer and Chemical Oxygen demand (COD). The dye molecules were readily degraded at above 90% in the pH range 5.0-7.0 under ultrasound with zinc oxide nanorods. The interference of electrolytes like NaCl, KCl, Na 2 CO 3 , NaHCO 3 and MgSO 4 on the degradation of dye molecules were also studied on the sonocatalytic degradation of MGO. From the kinetic studies it was observed that at lower initial concentration of dye molecules the degradation efficiency was above 90%. The rate of the reaction decreased on increasing the initial dye concentrations of the dye molecules. It was observed that the complete mineralization of dye molecules was achieved without the formation of toxic by-products. The reusability of the catalyst also showed the effective degradation of the dye molecules up to five cycles without loss of the catalytic activities. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A Study of Biomolecules as Growth Modifiers of Calcium Oxalate Crystals

    Science.gov (United States)

    Kwak, Junha John

    Crystallization processes are ubiquitous in nature, science, and technology. Controlling crystal growth is pivotal in many industries as material properties and functions can be tailored by tuning crystal habits (e.g. size, shape, phase). In biomineralization, organisms exert excellent control over bottom-up synthesis and assembly of inorganic-organic structures (e.g. bones, teeth, exoskeletons). This is made possible by growth modifiers that range from small molecules to macromolecules, such as proteins. Molecular recognition of the mineral phase allows proteins to function as nucleation templates, matrices, and growth inhibitors or promoters. We are interested in taking a biomimetic approach to control crystallization via biomolecular growth modifiers. We investigated calcium oxalate monohydrate (COM), found in plants and kidney stones, as a model system of crystallization. We studied the effects of four common proteins on COM crystallization: bovine serum albumin (BSA), transferrin, lactoferrin, and lysozyme. Through kinetic studies of COM crystallization, we classified BSA and lysozyme as COM growth inhibitor and promoter respectively. Their inhibition and promotion effects were also evident in the macroscopic crystal habit. Through adsorption and microscopy experiments, we showed that BSA exhibits binding specificity for the apical surfaces of macroscopic COM crystals. Lysozyme, on the other, functions via a non-binding mechanism at the surface to accelerate the growth of the apical surfaces. We also synthesized and studied peptides derived from the protein primary sequences to identify putative domains responsible for these inhibition and promotion effects. Collectively, our study of physiologically relevant biomolecules suggests potential roles of COM modifiers in pathological crystallization and helps to develop guidelines for rational design of biomolecular growth modifiers for applications in crystal engineering.

  8. Ion source

    International Nuclear Information System (INIS)

    1979-01-01

    The ion source comprises a cylindrically shaped chamber with a longitudinal outlet slot formed therein and two uniform anode wires which extend along the length of the chamber in the middle region thereof and which are symmetrically introduced with respect to the length axis of the chamber and the outlet groove, characterised in that at each outer end of the outlet groove at a nearly null potential or direct potential is introduced a mask, whereby the lowest distance between the inner and outer ends of the mask is equivalent to the breadth of the ion beam emitted from the source. (G.C.)

  9. Mode of Action: Oxalate Crystal-Induced Renal Tubule Degeneration and Glycolic Acid-Induced Dysmorphogenesis—Renal and Developmental Effects of Ethylene Glycol

    Energy Technology Data Exchange (ETDEWEB)

    Corley, Rick A.; Meek, M E.; Carney, E W.

    2005-10-01

    Ethylene glycol can cause both renal and developmental toxicity, with metabolism playing a key role in the mode of action (MOA) for each form of toxicity. Renal toxicity is ascribed to the terminal metabolite oxalic acid, which precipitates in the kidney in the form of calcium oxalate crystals and is believed to cause physical damage to the renal tubules. The human relevance of the renal toxicity of ethylene glycol is indicated by the similarity between animals and humans of metabolic pathways, the observation of renal oxalate crystals in toxicity studies in experimental animals and human poisonings, and cases of human kidney and bladder stones related to dietary oxalates and oxalate precursors. High-dose gavage exposures to ethylene glycol also cause axial skeletal defects in rodents (but not rabbits), with the intermediary metabolite, glycolic acid, identified as the causative agent. However, the mechanism by which glycolic acid perturbs development has not been investigated sufficiently to develop a plausible hypothesis of mode of action, nor have any cases of ethylene glycol-induced developmental effects been reported in humans. Given this, and the variations in sensitivity between animal species in response, the relevance to humans of ethylene glycol-induced developmental toxicity in animals is unknown at this time.

  10. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao

    2012-06-01

    Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate degradation in reaction with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic or alkaline. Moreover, bicarbonate, a ubiquitous hydroxyl radical scavenger in natural waters, significantly improved the catalytic degradation of oxalate. Therefore, the degradation relies on neither hydroxyl radical oxidation nor acid assistance, two pathways usually proposed for catalytic ozonation. These special characters of the catalyst make it suitable to be potentially used for practical degradation of refractory hydrophilic organic matter and compounds in water and wastewater. With in situ characterization, the new surface Cu(II) formed from ozone oxidation of the trace Cu(I) of the catalyst was found to be an active site in coordination with oxalate forming multi-dentate surface complex. It is proposed that the complex can be further oxidized by molecular ozone and then decomposes through intra-molecular electron transfer. The ceria support enhanced the activity of the surface Cu(I)/Cu(II) in this process. © 2012 Elsevier B.V.

  11. Detailed modeling of oxalic acid degradation by UV-TiO2nanoparticles: Importance of light scattering and photoreactor scale-up.

    Science.gov (United States)

    Santoro, Domenico; Crapulli, Ferdinando; Turolla, Andrea; Antonelli, Manuela

    2017-09-15

    A detailed computational fluid dynamics model is presented that integrates reactor hydrodynamics with advanced light models and UV-TiO 2 advanced oxidation kinetics to yield the degradation of oxalic acid in a dispersed-phase photoreactor. Model predictions were first compared against experimental data obtained from the literature and subsequently used in a parametric study for investigating scale-up effects associated with both process and photoreactor variables. Investigated variables included: TiO 2 concentration (5-400 mg L -1 ), initial oxalic acid concentration (0.9-32 mg L -1 ), lamp irradiance (100-10,000 W m -2 ), background fluid absorbance (0-30 m -1 ), reactor size (1/4-4 as relative scaling factor), lamp orientation (0-360°) and flowrate (2.5-10 m 3  h -1 ). The analysis revealed that an optimum in oxalic acid degradation is observed when the TiO 2 concentration was controlled in the 20-40 mg L -1 range (depending on lamp irradiance). While lamp orientation showed minimal impact, reactor size and flowrate emerged as key variables for photoreactor design. Moreover, an increase in initial oxalic acid concentration substantially reduced oxalic acid degradation performance observed at high loadings. Also, TiO 2 activation and photoreactor degradation performance were impacted negatively by light competition with background fluid absorbance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of Sulfated Polysaccharides from the Brown Seaweed Dictyopteris Justii as Antioxidant Agents and as Inhibitors of the Formation of Calcium Oxalate Crystals

    Directory of Open Access Journals (Sweden)

    Karoline Rachel Teodosio Melo

    2013-11-01

    Full Text Available Oxalate crystals and other types of crystals are the cause of urolithiasis, and these are related to oxidative stress. The search for new compounds with antioxidant qualities and inhibitors of these crystal formations is therefore necessary. In this study, we extracted four sulfated polysaccharides, a fucoglucoxyloglucuronan (DJ-0.3v, a heterofucan (DJ-0.4v, and two glucans (DJ-0.5v and DJ-1.2v, from the marine alga Dictyopteris justii. The presence of sulfated polysaccharides was confirmed by chemical analysis and FT-IR. All the sulfated polysaccharides presented antioxidant activity under different conditions in some of the in vitro tests and inhibited the formation of calcium oxalate crystals. Fucan DJ-0.4v was the polysaccharide that showed the best antioxidant activity and was one of the best inhibitors of the crystallization of calcium oxalate. Glucan DJ-0.5v was the second most potent inhibitor of the formation of oxalate crystals, as it stabilized dehydrated oxalate crystals (less aggressive form, preventing them from transforming into monohydrate crystals (more aggressive form. The obtained data lead us to propose that these sulfated polysaccharides are promising agents for use in the treatment of urolithiasis.

  13. Inorganic ion exchangers based on manganese and potassium for recovery and removal of pollutant metals of aqueous effluents

    International Nuclear Information System (INIS)

    Santos, Jacinete Lima dos

    2001-01-01

    This work presents a study on the synthesis, characterization and ion exchange properties of inorganic ion exchangers based on manganese and potassium. The ion exchangers were synthesized by calcination of the mixture of manganese(II) oxalate and potassium oxalate and were characterized by granulometer distribution analysis, X-ray powder diffraction, infrared spectroscopy and scanning electron microscopic. From the data obtained in characterization it was observed that exist two distinguished groups of these materials. The first group belong to ion exchangers with up to 30% w/w potassium and the second group formed by the ion exchangers with more than 30% w / w of content of potassium in their compositions. The studies of adsorption of these materials showed that the adsorption of Cd 2+ is a function of the following parameters as pH, concentration of Cd 2+ , time of contact between the ion exchangers the concentration of the Cd 2+ solution and the interference of other ions like Ni 2+ . The great pH of adsorption for these materials occur in pH 9, the study of the influence of the cadmium concentration in the adsorption showed that for a group of exchangers the adsorption decreases with the increase of cadmium concentration and for the other group the adsorption increases with the increase of cadmium concentration. The kinetics of adsorption occur in a contact time between the ion exchangers and the Cd 2+ solutions relatively short, at about 15 minutes is necessary to establish the equilibrium. The presence of Ni 2+ as interfering ion decreases the adsorption of cadmium of 99,7% to 65%. These inorganic ion exchangers showed be good exchangers for Cd 2+ . (author)

  14. Size distribution of ions in atmospheric aerosols

    Science.gov (United States)

    Krivácsy, Z.; Molnár, Á.

    The aim of this paper is to present data about the concentration and size distribution of ions in atmospheric aerosol under slightly polluted urban conditions in Hungary. Concentration of inorganic cations (ammonium, sodium, potassium, calcium, magnesium), inorganic anions (sulfate, nitrate, chloride, carbonate) and organic acids (oxalic, malonic, succinic, formic and acetic acid) for 8 particle size range between 0.0625 and 16 μm were determined. As was the case for ammonium, sulfate and nitrate, the organic acids were mostly found in the fine particle size range. Potassium and chloride were rather uniformly distributed between fine and coarse particles. Sodium, calcium, magnesium and carbonate were practically observed in the coarse mode. The results obtained for the summer and the winter half-year were also compared. The mass concentrations were recalculated in equivalents, and the ion balance was found to be reasonable in most cases. Measurement of the pH of the aerosol extracts indicates that the aerosol is acidic in the fine mode, but alkaline in the coarse particle size range.

  15. Association Study of Klotho Gene Polymorphism With Calcium Oxalate Stones in The Uyghur Population of Xinjiang, China.

    Science.gov (United States)

    Ali, Abdusamat; Tursun, Halmurat; Talat, Alim; Abla, Akpar; Muhtar, Erpan; Zhang, Tao; Mahmut, Murat

    2017-01-18

    The aim of the present study was to investigate the correlation between Klotho gene polymorphisms andcalcium oxalate stones in Xinjiang Uyghur people. We compared 128 patients with calcium oxalate stones (case group) and 94 healthypeople (control group), detected the genotype and allele distributions of single-nucleotide polymorphisms (SNPs)of the Klotho gene (rs3752472, rs650439, and rs1207568) by reverse transcription polymerase chain reaction. The distributions of the genotype and allele frequencies of the SNPs were consistent with the Hardy-Weinberg equilibrium in the two groups. There were statistically significant differences between the genotype andallele distributions of rs3752472 between the case and control groups; the allele frequencies in the case/controlgroups were C = 240 (93.7%)/151 (80.3%) and T = 16 (6.3%)/37 (19.7%). There was no statistically significantdifference in the genotype distribution of rs650439 between the case and control groups, but there was a differencein the allele distribution; the allele frequencies in the case/control groups were A = 202 (78.9%)/143 (57.2%) andT = 54 (21.1%)/107 (42.8%). There were no statistically significant differences in genotype and allele distributionsbetween the case and control groups of rs1207568; the allele frequencies in the case/control groups were C = 194(71.3%)/145 (77.1%) and T = 78 (28.7%)/43 (22.9%). In rs3752472, the risk for patients with the C and A allelesincreased by 3.675 and 2.799 times, respectively. The rs3752472 and rs650439 SNPs are related to the risk of calcium oxalate stones in Xinjiang Uyghurpeople, and might be one of the risk factors.

  16. Atmospheric oxalic acid and related secondary organic aerosols in Qinghai Lake, a continental background site in Tibet Plateau

    Science.gov (United States)

    Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Cao, Junji

    2013-11-01

    Summertime PM2.5 aerosols collected from Qinghai Lake (3200 m a.s.l.), a remote continental site in the northeastern part of Tibetan Plateau, were analyzed for dicarboxylic acids (C2-C11), ketocarboxylic acids and α-dicarbonyals. Oxalic acid (C2) is the dominant dicarboxylic acid in the samples, followed by malonic, succinic and azelaic acids. Total dicarboxylic acids (231 ± 119 ng m-3), ketocarboxylic acids (8.4 ± 4.3 ng m-3), and α-dicarbonyls (2.7 ± 2.1 ng m-3) at the Tibetan background site are 2-5 times less than those detected in lowland areas such as 14 Chinese megacities. Compared to those in other urban and marine areas enhancements in relative abundances of C2/total diacids and diacids-C/WSOC of the PM2.5 samples suggest that organic aerosols in the region are more oxidized due to strong solar radiation. Molecular compositions and air mass trajectories demonstrate that the above secondary organic aerosols in the Qinghai Lake atmosphere are largely derived from long-range transport. Ratios of oxalic acid, glyoxal and methylglyoxal to levoglucosan in PM2.5 aerosols emitted from household burning of yak dung, a major energy source for Tibetan in the region, are 30-400 times lower than those in the ambient air, which further indicates that primary emission from biomass burning is a negligible source of atmospheric oxalic acid and α-dicarbonyls at this background site.

  17. Photodegradation of 2-mercaptobenzothiazole in the γ-Fe2O3/oxalate suspension under UVA light irradiation

    International Nuclear Information System (INIS)

    Wang Xugang; Liu Chengshuai; Li Xiaomin; Li Fangbai; Zhou Shungui

    2008-01-01

    The aim of this study is to investigate the effect of various factors on the photodegradation of organic pollutants in natural environment with co-existence of iron oxides and oxalic acid. 2-Mercaptobenzothiazole (MBT) was selected as a model pollutant, while γ-Fe 2 O 3 was selected as iron oxide. The crystal structure and morphology of the prepared γ-Fe 2 O 3 was determined by X-ray diffractograms (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area was 14.36 m 2 /g by Brunauer-Emmett-Teller (BET) method. The adsorption behavior of γ-Fe 2 O 3 was evaluated by Langmuir model. The effect of the dosage of iron oxide, initial concentration of oxalic acid (C ox 0 ), initial pH value, the light intensity and additional transition metal cations on MBT photodegradation was investigated in the γ-Fe 2 O 3 /oxalate suspension under UVA light irradiation. The optimal γ-Fe 2 O 3 dosage was 0.4 g/L and the optimal C ox 0 was 0.8 mM with the UVA light intensity of 1800 mW/cm 2 . And the optimal dosage of γ-Fe 2 O 3 and C ox 0 for MBT degradation also depended strongly on the light intensity. The optimal γ-Fe 2 O 3 dosage was 0.1, 0.25 and 0.4 g/L, and the optimal C ox 0 was 1.0, 0.8, and 0.8 mM with the light intensity of 600, 1200 and 1800 mW/cm 2 , respectively. The optimal initial pH value was at 3.0. The additional transition metal cations including Cu 2+ , Ni 2+ or Mn 2+ could significantly accelerate MBT degradation. This investigation will give a new insight to understanding the MBT photodegradation in natural environment

  18. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  19. Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis.

    Directory of Open Access Journals (Sweden)

    Kanu Priya Aggarwal

    Full Text Available BACKGROUND: The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal-membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure. METHODS: Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin-Darby Canine Kidney (MDCK renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated. RESULTS: Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. CONCLUSIONS: We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone

  20. Reentrant superconductivity in a composite formed by YBa$_2$Cu$_3$O$ _{7-\\delta}$ and Ammonium Terbium Oxalate

    OpenAIRE

    López-Romero, Rodolfo E.; Medina, Dulce Y.; Escudero, R.

    2017-01-01

    We present a study of reentrant behavior in a composite formed by a Hight-T$ _{c} $ superconductor, YBa$_2$Cu$_3$O$ _{7-\\delta}$ and Ammonium Terbium Oxalate, Tb(H$_2$O)(C$ _2$O$_4$)$_2$ $\\cdot $NH$_4$. The composite has a transition temperature about 92 K, and it presents a reentrant behaviour resulting of the coexistence between superconductivity and magnetism. According to this study the values and shape of the critical magnetic fields were dramatically reduced in a similar form as in othe...

  1. Correlation between air pollution and crystal pattern of calcium oxalate in plant leaves of street trees in Itami City. [Ginkgo biloba; Salix babylonica; Aphananthe aspera; Robinia pseudoacacia

    Energy Technology Data Exchange (ETDEWEB)

    Umemoto, K.; Tatsumi, S.

    1975-01-01

    A characteristic difference in calcium oxalate crystal patterns in leaves of roadside trees planted in relatively unpolluted northern parts of Itami City and in parts of the city polluted by automobile exhaust was discovered. The species of trees examined were Ginkgo biloba, Salix babylonica, Aphananthe aspera, Robinia pseudoacacia, and Poplar. The leaves of trees grown in relatively less air polluted areas displayed crystal aggregates of calcium oxalate (50-80 micron) that were arranged in rows on both sides of the central vein; some scattered crystal aggregates between veins were observed. Trees grown in air polluted areas showed irregular crystal patterns and more scattering of the crystals between veins. The cause of the observed differences in the pattern of crystal aggregates was attributed to the difference in metabolism of trees under different environmental conditions. Air pollutants disturb the normal metabolism of the tree and cause hyperproduction of calcium oxalate.

  2. Highly selective oxalate-membrane electrode based on 2,2'-[1,4-butandiyle bis(nitrilo propylidine)]bis-1-naphtholato copper(II).

    Science.gov (United States)

    Ardakani, M Mazloum; Jalayer, M; Naeimi, H; Heidarnezhad, A; Zare, H R

    2006-01-15

    A new oxalate-selective electrode based on the complex 2,2'-[1,4-butandiyle bis(nitrilo propylidine)]bis-1-naphtholato copper(II) (CuL) as the membrane carrier was developed. The electrode exhibited a good Nernstian slope of -29.2+/-0.6 mV/decade (mean value+/-standard deviation, n=5) and a linear range of 5.0 x 10(-8) to 1.0 x 10(-1)M for oxalate. The limit of detection was 5.0 x 10(-8)M. This electrode represents a fast response time (i.e. 10-15s) and could be used for more than 3 months. The selectivity coefficients were determined by the fixed interference method (FIM) and could be used in the pH range of 2.0-7.0. It was employed as an indicator electrode for the determination of oxalate in water samples.

  3. The Principle of Pooled Calibrations and Outlier Retainment Elucidates Optimum Performance of Ion Chromatography

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Mikolajczak, Maria; Wojtachnio-Zawada, Katarzyna Olga

    A new principle of statistical data treatment is presented. Since the majority of scientists and costumers are interested in determination of the true amount of analyte in real samples, the focus of attention should be directed towards the concept of accuracy rather than precision. By exploiting...... the principle of pooled calibrations retaining all outliers it was possible to obtain full correspondence between uncertainty of calibration and uncertainty of repetition, which for the first time evidences statistical control in experiments of ion chromatography. Chloride, bromide and oxalate were determined...

  4. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification

    Science.gov (United States)

    Ferraz, Natalia; Carlsson, Daniel O.; Hong, Jaan; Larsson, Rolf; Fellström, Bengt; Nyholm, Leif; Strømme, Maria; Mihranyan, Albert

    2012-01-01

    Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility. PMID:22298813

  5. Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization.

    Science.gov (United States)

    Siener, R; Jahnen, A; Hesse, A

    2004-02-01

    To evaluate the effect of a mineral water rich in magnesium (337 mg/l), calcium (232 mg/l) and bicarbonate (3388 mg/l) on urine composition and the risk of calcium oxalate crystallization. A total of 12 healthy male volunteers participated in the study. During the baseline phase, subjects collected two 24-h urine samples while on their usual diet. Throughout the control and test phases, lasting 5 days each, the subjects received a standardized diet calculated according to the recommendations. During the control phase, subjects consumed 1.4 l/day of a neutral fruit tea, which was replaced by an equal volume of a mineral water during the test phase. On the follow-up phase, subjects continued to drink 1.4 l/day of the mineral water on their usual diet and collected 24-h urine samples weekly. During the intake of mineral water, urinary pH, magnesium and citrate excretion increased significantly on both standardized and normal dietary conditions. The mineral water led to a significant increase in urinary calcium excretion only on the standardized diet, and to a significantly higher urinary volume and decreased supersaturation with calcium oxalate only on the usual diet. The magnesium and bicarbonate content of the mineral water resulted in favorable changes in urinary pH, magnesium and citrate excretion, inhibitors of calcium oxalate stone formation, counterbalancing increased calcium excretion. Since urinary oxalate excretion did not diminish, further studies are necessary to evaluate whether the ingestion of calcium-rich mineral water with, rather than between, meals may complex oxalate in the gut thus limiting intestinal absorption and urinary excretion of calcium and oxalate.

  6. Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Lee, Sang Il; Lee, Keon Jin; Chun, Ho Hyun; Ha, Sanghyun; Gwak, Hyun Jung; Kim, Ho Myeong; Lee, Jong-Hee; Choi, Hak-Jong; Kim, Hyeong Hwan; Shin, Teak Soo; Park, Hae Woong; Kim, Jin-Cheol

    2018-03-01

    Oxalic acid has potent nematicidal activity against the root-knot nematode Meloidogyne incognita. In this study, fermentation parameters for oxalic acid production in submerged culture of Aspergillus niger F22 at 23, 25, and 30 °C were optimized in 5-L jar fermenters. The viscosity of the culture broth increased with increasing temperature. There was a negative correlation between oxalic acid production and the apparent viscosity; high volumetric productivity of oxalic acid was obtained at low apparent viscosity (less than 1000 cP), with a productivity of more than 100 mg/L h. When the apparent viscosity was over 2500 cP, the volumetric productivity decreased below 50 mg/L h. In addition, the volumetric mass transfer coefficient, K L a, positively correlated with volumetric productivity. When the K L a value increased from 0.0 to 0.017 /s, the volumetric productivity proportionally increased up to 176 mg/L h. When the temperature decreased, K L a increased due to the decrease in viscosity, leading to increased volumetric productivity. The highest productivity of 7453.3 mg/L was obtained at the lowest temperature, i.e., 23 °C. The nematicidal activity of culture filtrate was proportional to the content of oxalic acid. Based on a constant impeller tip speed, oxalic acid production was successfully scaled up to a 500-L pilot vessel, producing a final concentration comparable to that in the 5-L jar.

  7. The study of the inhibitory effect of calcium oxalate monohydrate's crystallization by two medicinal and aromatic plants: Ammi visnaga and Punica granatum.

    Science.gov (United States)

    Kachkoul, R; Sqalli Houssaini, T; Miyah, Y; Mohim, M; El Habbani, R; Lahrichi, A

    2018-03-01

    Urinary lithiasis is a recurrent disease defined by the presence of calculi in the urinary tract. Most urinary calculi have as a major component calcium oxalate which occurs mainly in two crystalline forms: Calcium oxalate monohydrate (whewellite) and calcium oxalate dihydrate (weddellite). The target behind, this work is to study the inhibiting effect of the calcium oxalate's crystallization by the extract of the Ammi visnaga and the Punica granatum. The inhibition of crystallization has been studied in vitro with both the absence and the presence of the different concentrations of the extracts of the two plants. This study consists in measurement, with the UV-Visible spectrophotometer, the temporal evolution of the optical density at λ equal to 620nm corresponding to the formation of the crystals due to the mixing of metastable solutions of calcium and oxalate. The characterization of the crystals is carried out in parallel by both the Fourier transform infrared spectra (FT-IR) and the observation of the crystals with the help of an optical microscope. In this respect, the inhibition percentages were calculated from the turbidity slopes in the presence and absence of the extract. The results obtained were more effective, especially for Punica granatum with percentages of 97.8±0.12 and 83.46±1.34% against nucleation and aggregation, respectively, the order of Ammi visnaga was as follow: 73.25±0.81 and 59.44±3.3%. Thus, all correlation coefficients are greater than 0.95 and all coefficients of variation are less than 10%. The prevention and treatment of urinary lithiasis and especially in the case of recurrence by plants remains an alternative choice for medical methods. This study justified the efficacy of the plants Ammi visnaga and in particular Punica granatum against the crystallization of calcium oxalate. 3. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Recovery of Iron from Pyrolusite Leaching Slag by a Lab-Scale Circulation Process of Oxalic Acid Leaching and Ultraviolet Irradiation

    Directory of Open Access Journals (Sweden)

    Biao Deng

    2017-12-01

    Full Text Available Pyrolusite leaching slag is a Fe-containing slag generated from pyrolusite leaching process with SO2. Recovery of iron from the slag not only has economic benefit, but also prevents the secondary pollution to the environment. A novel lab-scale cyclic process for recovering iron from pyrolusite leaching slag was introduced. The process contains two steps: (1 iron was leached with oxalic acid and [Fe(C2O4n](3−2n+ solution was generated; (2 the [Fe(C2O4n](3−2n+ solution was irradiated by ultraviolet and ferrous oxalate precipitation were obtained. The effect of operation parameter on leaching and irradiation process were studied separately. In the leaching process, the optimal solid/liquid ratio, oxalic acid concentration, leaching temperature, stirring rate, and leaching time are 1:50, 0.40 mol/L, 95 °C, 300 r/min, and 3 h, respectively. In the irradiation process, the best irradiation wavelength, Fe/oxalic acid molar ratio and irradiation time are 254 nm, 1:4, and 30 min. Besides, a test of 9 continuous cycles was carried out and the performance and material balance of the combined process were investigated. The results showed that the cyclic process is entirely feasible and prove to be stable producing, and ferrous oxalate of 99.32% purity. Material balance indicated that 95.17% of iron was recovered in the form of FeC2O4·2H2O, and the recovery efficiency of oxalic acid was 58.52%.

  9. The effect of intracrystalline and surface-bound osteopontin on the attachment of calcium oxalate dihydrate crystals to Mandin-Darby canine kidney (MDCK) cells in ultrafiltered human urine

    DEFF Research Database (Denmark)

    Thurgood, Lauren A.; Sørensen, Esben Skipper; Ryall, Rosemary L.

    2012-01-01

    Osteopontin has been shown to both promote and inhibit the attachment of calcium oxalate monohydrate crystals to cultured renal epithelial cells in aqueous media. In this study we examined the role of OPN on the growth and attachment of calcium oxalate dihydrate crystals, to which it more readily...

  10. Can Randall's plug composed of calcium oxalate form via the free particle mechanism?

    Science.gov (United States)

    Grases, F; Söhnel, O

    2017-09-08

    The likelihood of a Randall's plug composed of calcium oxalate monohydrate (COM) forming by the free particle mechanism in a model of kidney with a structure recently described by Robertson was examined at the most favourable conditions for the considered mechanism. The Robertson model of the kidney is used in the following development. The classical theory of crystallization was used for calculations. Initial COM nuclei were assumed to form at the beginning of the ascending loop of Henle where the supersaturation with respect to COM has been shown to reach the threshold level for spontaneous nucleation. Nucleation proceeds by a heterogeneous mechanism. The formed particles are transported in the nephron by a laminar flow of liquid with a parabolic velocity profile. Particles travel with a velocity dependent on their position in the cross-section of the nephron assumed to be straight tubule with smooth walls and without any sharp bends and kinks. These particles move faster with time as they grow as a result of being surrounded by the supersaturated liquid. Individual COM particles (crystals) can reach maximum diameter of 5.2 × 10 -6  m, i.e. 5.2 μm, at the opening of the CD and would thus always be washed out of the CD into the calyx regardless of the orientation of the CD. Agglomeration of COM crystals forms a fractal object with an apparent density lower than the density of solid COM. The agglomerate that can block the beginning of the CD is composed of more crystals than are available even during crystaluria. Moreover the settling velocity of agglomerate blocking the opening of the CD is lower than the liquid flow and thus such agglomerate would be washed out even from upward-draining CD. The free particle mechanism may be responsible for the formation of a Randall's plug composed by COM only in specific infrequent cases such as an abnormal structure of kidney. Majority of incidences of Randall's plug development by COM are caused by mechanism different

  11. LAB-SCALE DEMONSTRATION OF PLUTONIUM PURIFICATION BY ANION EXCHANGE, PLUTONIUM (IV) OXALATE PRECIPITATION, AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, M.; Pierce, R.

    2012-08-22

    H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed test conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series of small Pu(IV) oxalate precipitation tests with different digestion times were conducted to better understand the effect of digestion time on particle size, filtration efficiency and other factors. To test the recommended process conditions, researchers performed two nearly-identical larger-scale precipitation and calcination tests. The calcined batches of PuO{sub 2} were characterized for density, specific surface area (SSA), particle size, moisture content, and impurities. Because the 3013 Standard requires that the calcination (or stabilization) process eliminate organics, characterization of PuO{sub 2} batches monitored the

  12. ION VATAMANU

    Directory of Open Access Journals (Sweden)

    l. Povar

    2012-12-01

    Full Text Available Ion Vatamanu was a chemist, writer and public figure. He was equally passionate about both his chosen fields of activity: chemistry and poetry. Chemistry, with its perfect equilibrium of logic and precision, provided inspiration for lyrical creativity, whereas poetry writing enlivened his imagination and passion for chemistry. He loved his parents. He adored his wife Elena, whom he often gifted a sea of flowers. He loved his daughters Mihaela, Mariana, and Leontina. He loved life, and he loved people.

  13. Influence of oxalic acid on the agglomeration process and total soda content in precipitated Al(OH) 3

    Science.gov (United States)

    Nikolić, I.; Blec̆ić, D.; Blagojević, N.; Radmilović, V.; Kovac̆ević, K.

    2003-05-01

    Decomposition of caustic soda solutions is an important part of Bayer process for alumina production. The physico-chemical properties of precipitated Al(OH) 3 are dependent on several processes that take place simultaneously during the decomposition process and they are: nucleation, agglomeration and Al(OH) 3 crystals. An important industrial requirement is increase of Al(OH) 3 crystal grain size, and hence agglomeration and growth of Al(OH) 3 crystals become important processes and they enable increase of particle size. The influence of oxalic acid concentration on the agglomeration process and total soda content in precipitated Al(OH) 3 at different temperatures and caustic soda concentrations has been investigated. The results have shown that the agglomeration process is increased with increase of temperature and decrease of caustic soda concentration. Total soda content in precipitated Al(OH) 3 is changed in the same way. Besides, agglomeration process of Al(OH) 3 particles is favored in the presence of oxalic acid.

  14. Applications in environmental bioinorganic: Nutritional and ultrastructural evaluation and calculus of thermodynamic and structural properties of metal-oxalate complexes.

    Science.gov (United States)

    Tolentino, Terezinha Alves; Bertoli, Alexandre Carvalho; dos Santos Pires, Maíra; Carvalho, Ruy; Labory, Claudia Regina Gontijo; Nunes, Janaira Santana; Bastos, Ana Rosa Ribeiro; de Freitas, Matheus Puggina

    2015-01-01

    Lead (Pb) is known by its toxicity both for animals and plants. In order to evaluate its toxicity, plants of Brachiaria brizantha were cultivated on nutritive solution of Hoagland during 90 days and submitted to different concentrations of Pb. The content of macro and micronutrients was evaluated and there was a reduction on root content of Ca, besides the lowest dosages of Pb had induced an increase of N, S, Mn, Cu, Zn and Fe. The cell ultrastructure of leaves and roots were analyzed by transmission electronic microscopy (TEM). Among the main alterations occurred there were invaginations on cell walls, the presence of crystals on the root cells, accumulation of material on the interior of cells and vacuolar compartmentalization. On the leaves the degradation of chloroplasts was observed, as well as the increase of vacuoles. Structures for the formation of oxalate crystals were proposed through molecular modeling and thermodynamic stability. Calculi suggest the formation of highly stable metal-oxalate complexes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Concomitant carboxylate and oxalate formation from the activation of CO{sub 2} by a thorium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Formanuik, Alasdair; Ortu, Fabrizio; Mills, David P. [School of Chemistry, The University of Manchester (United Kingdom); Inman, Christopher J. [Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Brighton (United Kingdom); Kerridge, Andrew [Department of Chemistry, Lancaster University (United Kingdom); Castro, Ludovic; Maron, Laurent [LPCNO, CNRA et INSA, Universite Paul Sabatier, Toulouse (France)

    2016-12-12

    Improving our comprehension of diverse CO{sub 2} activation pathways is of vital importance for the widespread future utilization of this abundant greenhouse gas. CO{sub 2} activation by uranium(III) complexes is now relatively well understood, with oxo/carbonate formation predominating as CO{sub 2} is readily reduced to CO, but isolated thorium(III) CO{sub 2} activation is unprecedented. We show that the thorium(III) complex, [Th(Cp''){sub 3}] (1, Cp''={C_5H_3(SiMe_3)_2-1,3}), reacts with CO{sub 2} to give the mixed oxalate-carboxylate thorium(IV) complex [{Th(Cp'')_2[κ"2-O_2C{C_5H_3-3,3'-(SiMe_3)_2}]}{sub 2}(μ-κ{sup 2}:κ{sup 2}-C{sub 2}O{sub 4})] (3). The concomitant formation of oxalate and carboxylate is unique for CO{sub 2} activation, as in previous examples either reduction or insertion is favored to yield a single product. Therefore, thorium(III) CO{sub 2} activation can differ from better understood uranium(III) chemistry. (copyright 2016 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  16. Enhanced stabilization of Pb, Zn, and Cd in contaminated soils using oxalic acid-activated phosphate rocks.

    Science.gov (United States)

    Zhang, Zhuo; Guo, Guanlin; Wang, Mei; Zhang, Jia; Wang, Zhixin; Li, Fasheng; Chen, Honghan

    2018-01-01

    Phosphate amendments, especially phosphate rock (PR), are one of the most commonly used materials to stabilize heavy metals in contaminated soils. However, most of PR reserve consists of low-grade ore, which limits the efficiency of PR for stabilizing heavy metals. This study was to enhance the stabilization of heavy metals through improving the available phosphorous (P) release of PR by oxalic acid activation. Raw PR and activated PR (APR) were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analysis, and laser diffraction to determine the changes of structure and composition of APR. The stabilization effectiveness of lead (Pb), zinc (Zn), and cadmium (Cd) in soils by APR was investigated through toxicity leaching test and speciation analysis. The results indicated that after treatment by oxalic acid, (1) the crystallinity of the fluorapatite phase of PR transformed into the weddellite phase; (2) the surface area of PR increased by 37%; (3) the particle size of PR became homogenized (20-70 μm); and (4) the available P content in PR increased by 22 times. These changes of physicochemical characteristics of PR induced that APR was more effective to transform soil heavy metals from the non-residual fraction to the residual fraction and enhance the stabilization efficiency of Pb, Zn, and Cd than PR. These results are significant for the future use of low-grade PR to stabilize heavy metals.

  17. BaTiO3 thick fi lms obtained by tape casting from powders prepared by the oxalate route

    Directory of Open Access Journals (Sweden)

    Adelina Ianculescu

    2009-06-01

    Full Text Available BaTiO3 powders were prepared by co-precipitation via oxalate route. The size, morphology and particle size distribution of the oxalate powders have been optimized by the control of different synthesis parameters during the precipitation reaction (nature of salts, concentration of different solutions, aging time. The single phase BaTiO3 oxide particles were obtained after a thermal decomposition of the as-synthesized powders at 850°C for 4 hours under air atmosphere. Oxide powders with a suitable specifi c surface area were selected in order to obtain thick fi lms by the tape casting technique. The microstructure and dielectric properties of the thick films varied obviously depending on the deposition-calcination-sintering cycle used. A double depositioncalcination cycle followed by sintering, as well as a two step deposition-calcination-sintering procedure was used in order to improve the compactness and therefore, the dielectric behaviour. A higher dielectric constant value (~ 750 and lower dielectric losses (~ 2 % were achieved at room temperature and at 1 kHz frequency for the dense, double-deposited fi lm obtained after two deposition-calcination-sintering cycles. For this film, a superior value of the dielectric constant (~ 1100, almost frequency independent in the frequency range of 100 Hz – 10 kHz was gained also at the ferroelectric-paraelectric phase transition temperature of 130°C.

  18. Full factorial experimental design applied to oxalic acid photocatalytic degradation in TiO2 aqueous suspension

    Directory of Open Access Journals (Sweden)

    N. Barka

    2014-11-01

    Full Text Available Full factorial experimental design technique was used to study the main effects and the interaction effects between operational parameters in the photocatalytic degradation of oxalic acid in a batch photo-reactor using TiO2 aqueous suspension. The important parameters which affect the removal efficiency of oxalic acid such as agitation, initial concentration, volume of the solution and TiO2 dosage were investigated. The parameters were coded as X1, X2, X3 and X4, consecutively, and were investigated at two levels (−1 and +1. The effects of individual variables and their interaction effects for dependent variables, namely, photocatalytic degradation efficiency (% were determined. From the statistical analysis, the most effective parameters in the photocatalytic degradation efficiency were initial concentration and volume of solution. The interaction between initial concentration, volume of solution and TiO2 dosage was the most influencing interaction. However, the interaction between agitation, initial concentration and volume of solution was the least influencing parameter.

  19. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    Science.gov (United States)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  20. Ion source

    International Nuclear Information System (INIS)

    Saito, Fusao; Okuyama, Toshihisa; Suzuki, Yasuo.

    1996-01-01

    In a negative ion source having magnetic filters, bisecting magnetic fields are formed using electromagnets disposed at the outside of a plasma source. The position of the electromagnets is made adjustable and removable to optimize a negative ion generation efficiency. Further, a plurality of electromagnets are disposed in longitudinal direction of the plasma source, and the intensity of the magnetic fields of the filters in the longitudinal direction is made adjustable to control a beam distribution. Since uniform magnetic fields which bisect the plasma source can be formed by the electromagnets, and magnetomotive force of the electromagnets can be increased easily compared with that of permanent magnets, the magnetomotive force is changed to obtain appropriate filter magnetic fields easily. Then, optimum magnetic fields corresponding to the state of source plasmas can be generated by the control of the power source of the electromagnets, which also increases the negative ion drawing current density, thereby enabling to reduce the drawing area and size of the plasma source. (N.H.)

  1. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  2. Kinetics and mechanism of the oxidation of formic and oxalic acids ...

    Indian Academy of Sciences (India)

    Unknown

    In the complexes (A) and (B), the formal oxidation state of iodine is +1. Despite the lack of evidence for the existence of discrete I+ ions, its stable complexes with donors have been known for a long time 11,12. The formation of positive iodine species in the sulphuric acid medium has been reported recently 13. Acetic acid is ...

  3. A study on complex formation of cadmium (II) ions, 9

    International Nuclear Information System (INIS)

    Matsui, Haruo

    1984-01-01

    Formation constants of cadmium (11) complexes with dicarboxylic acids such as oxalic, malonic, methylmalonic, succinic, and glutaric acids were determined in aqueous solutions containing 3 mol.dm -3 LiClO 4 as a constan ionic medium at 25 0 C by potentiometric titrations. It was reported in the previous works that cadmium (11)- aspartic acid complexes contained two chelate rings. However, a problem remained whether the second chelate ring could be formed by six membered-ring containing -O-Cd-N- bond or by seven membered-ring containing -O-Cd-O- bond. The results of the present work suggested that it would be formed by a six membered ring. Cadmium (11) ions were coordinated with a carboxylic group of the dicarboxylic acids studied, and formed no chelate ring within the complexes. The white precipitate appeared in the solution containing cadmium (11) ion and oxalic acid, in the pH range below 3.0, therefore, the chelate formation was not ascertained in this case. The formation constants, log βsub(pr)= log([Cdsub(p)Lsub(r)sup((2p-2r)+)]/([Cd 2+ ]sup(p)[L 2- ]sup(r))), of the complexes were: log β 11 = 1.98, log β 12 = 3.05 for cadmium (11)-malonic acid; log β 11 = 2.28, log β 12 = 3.06 for cadmium (11)-methylmalonic acid; log β 11 = 1.78, log β 12 = 3.08 for cadmium (11)-succinic acid; log β 11 = 1.85, log β 12 = 3.28 for cadmium (11)-glutaric acid complexes. (author)

  4. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?

    Science.gov (United States)

    Anstoetz, Manuela; Rose, Terry J; Clark, Malcolm W; Yee, Lachlan H; Raymond, Carolyn A; Vancov, Tony

    2015-01-01

    A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF) was investigated as a microbially-induced slow-release nitrogen (N) and phosphorus (P) fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investigated using OPA-MOF vs standard P (triple-superphosphate) and N (urea) fertilizers in an acidic Ferralsol at two application rates (equivalent 120 and 40 kg N ha(-1)). While urea hydrolysis in the OPA-MOF treatment was rapid, conversion of ammonium to nitrate was significantly inhibited compared to urea treatment. Reduced wheat growth in OPA-MOF treatments was not caused by N-deficiency, but by limited P-bioavailability. Two likely reasons were slow P-mobilisation from the OPA-MOF or rapid P-binding in the acid soil. P-uptake and yield in OPA-MOF treatments were significantly higher than in nil-P controls, but significantly lower than in conventionally-fertilised plants. OPA-MOF showed potential as enhanced efficiency N fertilizer. However, as P-bioavailability was insufficient to meet plant demands, further work should determine if P-availability may be enhanced in alkaline soils, or whether central ions other than Fe, forming the inorganic metal-P framework in the MOF, may act as a more effective P-source in acid soils.

  5. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs: Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?

    Directory of Open Access Journals (Sweden)

    Manuela Anstoetz

    Full Text Available A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF was investigated as a microbially-induced slow-release nitrogen (N and phosphorus (P fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investigated using OPA-MOF vs standard P (triple-superphosphate and N (urea fertilizers in an acidic Ferralsol at two application rates (equivalent 120 and 40 kg N ha(-1. While urea hydrolysis in the OPA-MOF treatment was rapid, conversion of ammonium to nitrate was significantly inhibited compared to urea treatment. Reduced wheat growth in OPA-MOF treatments was not caused by N-deficiency, but by limited P-bioavailability. Two likely reasons were slow P-mobilisation from the OPA-MOF or rapid P-binding in the acid soil. P-uptake and yield in OPA-MOF treatments were significantly higher than in nil-P controls, but significantly lower than in conventionally-fertilised plants. OPA-MOF showed potential as enhanced efficiency N fertilizer. However, as P-bioavailability was insufficient to meet plant demands, further work should determine if P-availability may be enhanced in alkaline soils, or whether central ions other than Fe, forming the inorganic metal-P framework in the MOF, may act as a more effective P-source in acid soils.

  6. Brood removal or queen caging combined with oxalic acid treatment to control varroa mites (Varroa destructor) in honey bee colonies (Apis mellifera)

    Science.gov (United States)

    Few studies of honey bee colonies exist where varroa mite control is achieved by integrating broodless conditions, through either total brood removal or queen caging, in combination with oxalic acid (OA) applications. We observed significant varroa mortality after applications of OA in obtaining bro...

  7. Pre-storage application of oxalic acid alleviates chilling injury in mango fruit by modulating proline metabolism and energy status under chilling stress.

    Science.gov (United States)

    Li, Peiyan; Zheng, Xiaolin; Liu, Yan; Zhu, Yuyan

    2014-01-01

    Effects of oxalic acid on chilling injury, proline metabolism and energy status in mango fruit were investigated after mango fruit (Mangifera indica L. cv. Zill) were dipped in 5mM oxalic acid solution for 10min at 25°C and then stored at low temperature (10±0.5°C) for 49days thereafter transferred to 25°C for 4days. Pre-storage application of oxalic acid apparently inhibited the development of chilling injury, notably elevated proline accumulation actually associated with increase in Δ(1)-pyrroline-5-carboxylate synthetase (P5CS) activity and decrease in proline dehydrogenase (PDH) activity in the peel and the flesh, without activation of ornithine-δ-aminotransferase (OAT) activity, and maintained high ATP level and energy charge in the flesh during storage. It was suggested that these effects of oxalic acid might collectively contribute to improving chilling tolerance, thereby alleviating chilling injury and maintaining quality of mango fruit in long term cold storage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Expression of an oxalate decarboxylase impairs the necrotic effect induced by Nep1-like protein (NLP) of Moniliophthora perniciosa in transgenic tobacco.

    Science.gov (United States)

    da Silva, Leonardo F; Dias, Cristiano V; Cidade, Luciana C; Mendes, Juliano S; Pirovani, Carlos P; Alvim, Fátima C; Pereira, Gonçalo A G; Aragão, Francisco J L; Cascardo, Júlio C M; Costa, Marcio G C

    2011-07-01

    Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).

  9. Heavy ions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  10. Heavy ions

    CERN Multimedia

    CERN. Geneva; Antinori, Federico

    2001-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  11. ION GUN

    Science.gov (United States)

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  12. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling; Precipitation turbulente d'oxalate d'uranium en reacteur vortex - etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer de Gelicourt, Y

    2004-03-15

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  13. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater

    Directory of Open Access Journals (Sweden)

    K. Kolo

    2005-01-01

    Full Text Available This study investigates the in vitro formation of Ca-oxalates and glushinskite through fungal interaction with carbonate substrates and seawater as a process of biologically induced metal recycling and neo-mineral formation. The study also emphasizes the role of the substrates as metal donors. In the first experiment, thin sections prepared from dolomitic rock samples of Terwagne Formation (Carboniferous, Viséan, northern France served as substrates. The thin sections placed in Petri dishes were exposed to fungi grown from naturally existing airborne spores. In the second experiment, fungal growth and mineral formation was monitored using only standard seawater (SSW as a substrate. Fungal growth media consisted of a high protein/carbohydrates and sugar diet with demineralized water for irrigation. Fungal growth process reached completion under uncontrolled laboratory conditions. The newly formed minerals and textural changes caused by fungal attack on the carbonate substrates were investigated using light and scanning electron microscopy (SEM-EDX, x-ray diffraction (XRD and Raman spectroscopy. The fungal interaction and attack on the dolomitic and seawater substrates resulted in the formation of Ca-oxalates (weddellite CaC2O4·2(H2O, whewellite (CaC2O4·(H2O and glushinskite MgC2O4·2(H2O associated with the destruction of the original hard substrates and their replacement by the new minerals. Both of Ca and Mg were mobilized from the experimental substrates by fungi. This metal mobilization involved a recycling of substrate metals into newly formed minerals. The biochemical and diagenetic results of the interaction strongly marked the attacked substrates with a biological fingerprint. Such fingerprints are biomarkers of primitive life. The formation of glushinskite is of specific importance that is related, besides its importance as a biomineral bearing a recycled Mg, to the possibility of its transformation through diagenetic pathway into an

  14. In female rats, ethylene glycol treatment elevates protein expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) without inducing hyperoxaluria.

    Science.gov (United States)

    Breljak, Davorka; Brzica, Hrvoje; Vrhovac, Ivana; Micek, Vedran; Karaica, Dean; Ljubojević, Marija; Sekovanić, Ankica; Jurasović, Jasna; Rašić, Dubravka; Peraica, Maja; Lovrić, Mila; Schnedler, Nina; Henjakovic, Maja; Wegner, Waja; Burckhardt, Gerhard; Burckhardt, Birgitta C; Sabolić, Ivan

    2015-10-01

    To investigate whether the sex-dependent expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) changes in a rat model of ethylene glycol (EG)-induced hyperoxaluria. Rats were given tap water (12 males and 12 females; controls) or EG (12 males and 12 females; 0.75% v/v in tap water) for one month. Oxaluric state was confirmed by biochemical parameters in blood plasma, urine, and tissues. Expression of sat-1 and rate-limiting enzymes of oxalate synthesis, alcohol dehydrogenase 1 (Adh1) and hydroxy-acid oxidase 1 (Hao1), was determined by immunocytochemistry (protein) and/or real time reverse transcription polymerase chain reaction (mRNA). EG-treated males had significantly higher (in μmol/L; mean±standard deviation) plasma (59.7±27.2 vs 12.9±4.1, Psat-1 protein and mRNA expression did not differ significantly between these groups. EG-treated females, in comparison with controls had significantly higher (in μmol/L) serum oxalate levels (18.8±2.9 vs 11.6±4.9, Psat-1 protein, but not mRNA. The mRNA expression of Adh1 was female-dominant and that of Hao1 male-dominant, but both were unaffected by EG treatment. An increased expression of hepatic and renal oxalate transporting protein sat-1 in EG-treated female rats could protect from hyperoxaluria and oxalate urolithiasis.

  15. Correlation between the development of calcium oxalate stones and polymorphisms in the fibronectin gene in the Uighur population of the Xinjiang region of China.

    Science.gov (United States)

    Murat, M; Aekeper, A; Yuan, L Y; Alim, T; Du, G J; Abdusamat, A; Wu, G W; Aniwer, Y

    2015-10-29

    Here, we have investigated the correlation between calcium oxalate stone formation and Fn gene polymorphisms in urinary calculi patients among the Uighur population (Xinjiang region). In this case control study, genomic DNA extracted from the peripheral blood of 129 patients with calcium oxalate stones (patient group) and 94 normal people (control group) was used to genotype polymorphisms in the rs6725958, rs10202709, and rs35343655 sites of the Fn gene by polymerase chain reaction-restriction fragment length polymorphism. Subsequently, the association between different genotypes and susceptibility to calcium oxalate stone formation was compared among the patient and control groups. Single nucleotide polymorphisms (SNPs) were detected in the rs6725958, rs10202709, and rs35343655 sites of the Fn gene among the patient and control groups. The genotype distributions of the three loci complied with the Hardy-Weinberg equilibrium. The results of allele frequencies of the patient/control group for polymorphisms in the rs6725958 site of the Fn gene were C = 179 (69.92%)/119 (63.30%) and A = 77 (30.08%)/69 (36.70%), in the rs10202709 site were C = 245 (95.70%)/176 (93.63%) and T = 11 (4.30%)/12 (6.38%), and in the rs35343655 site of the Fn gene were A = 139 (54.30%)/87 (46.28%) and G = 117 (45.70%)/101 (53.72%). We observed no significant differences between the three SNPs and development of calcium oxalate stones. Polymorphisms in rs6725958, rs10202709, and rs35343655 of the Fn gene had no obvious effect on the susceptibility to the development of calcium oxalate stones in the Uighur population, residing in the Xinjiang region of China.

  16. Studies on the mechanical performance of the steel containers intended as storage casks for thorium oxalate disposal

    International Nuclear Information System (INIS)

    Herzig, J.; Liewers, P.

    1995-08-01

    The tests have shown that the steel containers give considerable protection against mechanical impacts from the top if emplaced as a stack (3 containers in a vertical stack, on a stacking pallet). Even in the worst case, only relatively low amounts of thorium oxalate will escape from the casks. Care has to be taken that the material used for fixing the casks on the pallet is fire resistant (non-shrinking subject to heat for example), so that in the case of mechanical plus fire impacts, the containers in the stack will not turn over or tip out of the stack. There is no danger of containers bursting under fire impacts due to volume increase of contents as a result of transformation processes. The early, design-based failure of the container lid sealing observed in all tests will prevent the buildup of pressure. No thorium will be released, but the thorium emanation can be blown out. (orig./HP) [de

  17. Oxalate oxidase and non-enzymatic compounds of the antioxidative system in young Serbian spruce plants exposed to cadmium stress

    Directory of Open Access Journals (Sweden)

    Dučić Tanja

    2008-01-01

    Full Text Available We studied changes in the concentrations of ascorbate and glutathione, composition of soluble phenolics, and activity of oxalate oxidase in 75-day-old Serbian spruce plants after exposure to 5 μM and 50μM cadmium for 6-48 h. The presence of OxOxactivity in a conifer species is here demonstrated for the first time. Both Cd concentrations induced a decrease of OxOxactivity in treated plants in comparison with the control at all sampling dates. The concentrations of reduced glutathione, its oxidized form, and reduced ascorbate in the plants decreased during 48-h treatment with cadmium. Among simple phenolics, only catechin increased significantly during Cd treatment.

  18. Solubility, inhibition of crystallization and microscopic analysis of calcium oxalate crystals in the presence of fractions from Humulus lupulus L.

    Science.gov (United States)

    Frąckowiak, Anna; Koźlecki, Tomasz; Skibiński, PrzemysŁaw; GaweŁ, WiesŁaw; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna; Gancarz, Roman

    2010-11-01

    Procedures for obtaining noncytotoxic and nonmutagenic extracts from Humulus lupulus L. of high potency for inhibition and dissolving of model (calcium oxalate crystals) and real kidney stones, obtained from patients after surgery, are presented. Multistep extraction procedures were performed in order to obtain the preparations with the highest calcium complexing properties. The composition of obtained active fractions was analyzed by GC/MS and NMR methods. The influence of preparations on inhibition of formation and dissolution of model and real kidney stones were evaluated based on conductrometric titration, flame photometry and microscopic analysis. The "fraction soluble in methanol" obtained from water-alkaline extracts contains sugar alcohols and organic acids, and is effective in dissolving the kidney stones. The "fraction insoluble in methanol" contains only sugar derivatives and it changes the morphology of the crystals, making them "jelly-like". Both fractions are potentially effective in kidney stone therapy.

  19. Kinetic isotope effect in dehydration of ionic solids. II. The kinetics of dehydration of calcium oxalate monohydrate

    International Nuclear Information System (INIS)

    Manche, E.P.; Carroll, B.

    1977-01-01

    The kinetics of the isothermal dehydration of the protonated and deuterated monohydrate of calcium oxalate has been investigated at 120, 150, and 170 0 C. The rate of dehydration for these salts was found to be k/sub H//k/sub D/ = 1.025 +- 0.012. This result rules out the enormous kinetic isotope effect as given in the literature. An isotope effect of a few percent is not ruled out; this magnitude is in keeping with that found by Heinzinger in other dehydration processes. An estimated difference of about 150 cal/mol between the heat of desorption for H 2 O and D 2 O should have led to a ratio, k/sub h//k/sub D/ = 1.20. The smaller observed ratio has been explained on the basis of a compensation effect and may be considered an example of the Barclay--Butler correlation

  20. In-situ oxidation of block copolymer for producing copper oxalate or copper oxide nanowires in mesoporous channels

    Science.gov (United States)

    Li, Jiang; Kong, AiGuo; Wang, WenJuan; Zhao, XinHua; Yang, Fan; Shan, YongKui

    2009-10-01

    Copper oxalate nanowires inside the channels of mesoporous SBA-15 are created by in-situ oxidation of block copolymer in as-prepared SBA-15 samples. The pyrolysis of CuC 2O 4/SBA-15 composites under different conditions results in the formation of CuO or Cu 2O nanowires encapsulated in the nanoscale channels. The appearance, structure and composition of these materials are characterized by the X-ray power diffraction, transmission electron microscopy, N 2 adsorption-desorption isotherms, infrared spectra and inductive coupled plasma emission spectra. CuC 2O 4, CuO and Cu 2O nanomaterials filled in the channels of SBA-15 have been proven to possess the electrochemical hydrogen storage capacities of 102, 165 and 231 mAh/g in the second cycle, respectively, and are expected to have a high potential for use in practical applications.

  1. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    International Nuclear Information System (INIS)

    Loon, L. van; Hummel, W.

    1995-10-01

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu 2+ and Ni 2+ showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu 3+ showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs

  2. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    Energy Technology Data Exchange (ETDEWEB)

    Loon, L. van; Hummel, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu{sup 2+} and Ni{sup 2+} showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu{sup 3+} showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs.

  3. Mechanistic insight into chromium(VI) reduction by oxalic acid in the presence of manganese(II)

    Energy Technology Data Exchange (ETDEWEB)

    Wrobel, Katarzyna; Corrales Escobosa, Alma Rosa; Gonzalez Ibarra, Alan Alexander; Mendez Garcia, Manuel; Yanez Barrientos, Eunice; Wrobel, Kazimierz, E-mail: kazimier@ugto.mx

    2015-12-30

    Over the past few decades, reduction of hexavalent chromium (Cr(VI)) has been studied in many physicochemical contexts. In this research, we reveal the mechanism underlying the favorable effect of Mn(II) observed during Cr(VI) reduction by oxalic acid using liquid chromatography with spectrophotometric diode array detector (HPLC–DAD), nitrogen microwave plasma atomic emission spectrometry (HPLC–MP-AES), and high resolution mass spectrometry (ESI–QTOFMS). Both reaction mixtures contained potassium dichromate (0.67 mM Cr(VI)) and oxalic acid (13.3 mM), pH 3, one reaction mixture contained manganese sulfate (0.33 mM Mn(II)). In the absence of Mn(II) only trace amounts of reaction intermediates were generated, most likely in the following pathways: (1) Cr(VI) → Cr(IV) and (2) Cr(VI) + Cr(IV) → 2Cr(V). In the presence of Mn(II), the active reducing species appeared to be Mn(II) bis-oxalato complex (J); the proposed reaction mechanism involves a one-electron transfer from J to any chromium compound containing Cr=O bond, which is reduced to Cr−OH, and the generation of Mn(III) bis-oxalato complex (K). Conversion of K to J was observed, confirming the catalytic role of Mn(II). Since no additional acidification was required, the results obtained in this study may be helpful in designing a new, environmentally friendly strategy for the remediation of environments contaminated with Cr(VI).

  4. Inhibitory effects of taraxasterol and aqueous extract of Taraxacum officinale on calcium oxalate crystallization: in vitro study.

    Science.gov (United States)

    Yousefi Ghale-Salimi, Mahboubeh; Eidi, Maryam; Ghaemi, Nasser; Khavari-Nejad, Ramezan Ali

    2018-11-01

    We investigated and compared the effects of taraxasterol, aqueous extract of T. officinale (AET) aerial part, and potassium citrate (PC) on calcium oxalate (CaOx) crystallization in vitro. CaOx crystallization was induced by adding sodium oxalate to synthetic urine. Taraxasterol (2.5, 5, 7.5 and 12.5 μg/mL), extract (1, 2, 4 and 8 mg/mL), and PC (100, 150, 200 and 350 mg/mL) were subjected to anti-crystallization activities. The absorbance and %inhibition of nucleation of CaOx crystals were evaluated by spectrophotometer at 2, 4, 6, 8, 10, 20, 30, 40, 50 and 60 min and the number and morphology of crystals were studied by light microscopy after 60 min. Presence of taraxasterol, extract and PC decreased absorbance in experimental samples compared to control, significantly. The nucleation of crystals is inhibited by taraxasterol, extract, and PC (26-64, 55-63 and 60-70%, respectively). The number of CaOx crystals were decreased in presence of taraxasterol (p < .01), extract (p < .001), and PC (p < .001) in a dose-dependent manner. Presence of taraxasterol, extract, and PC decreased the number of CaC 2 O 4 monohydrate, while increased CaC 2 O 4 dihydrate crystals, significantly. Also, the diameter of CaC 2 O 4 dihydrate crystals was decreased in presence of taraxasterol, extract and PC, significantly. This research indicated that taraxasterol and extract have anti-crystallization activities and effectiveness of the extract is more potent than taraxasterol. It could be because of another constituent in the extract with the synergistic effect.

  5. Renal Epithelial Cell Injury Induced by Calcium Oxalate Monohydrate Depends on their Structural Features: Size, Surface, and Crystalline Structure.

    Science.gov (United States)

    Sun, Xin-Yuan; Ouyang, Jian-Ming; Gan, Qiong-Zhi; Liu, Ai-Jie

    2016-11-01

    Urinary crystals in normal and kidney stone patients often differ in crystal sizes and surface structures, but the effects of different crystal properties on renal tubular epithelial cells remain unclear. This study aimed to compare the cytotoxicity of micron/nano-calcium oxalate monohydrate (COM) crystals with sizes of 50 nm, 200 nm, 1 μm, 3 μm, and 10 μm to African green monkey renal epithelial (Vero) cells, to reveal the effect of crystal size and surface structure on cell injury, and to investigate the pathological mechanism of calcium oxalate kidney stones. Cell viability, cellular biochemical parameters, and internalized crystal amount in Vero cells were closely associated with the size of COM crystals. At the same concentration (200 μg/mL), COM-1 μm induced the most serious injury to Vero cells and caused the most significant change to cellular biochemical parameters, which were related to the specific porous structure and highest internalized amount in Vero cells. By contrast, COM-50 nm and COM-200 nm crystals lost their small size effect because of serious aggregation and weakened their toxicity to cells. COM-3 μm and COM-10 μm crystals were too large for cells to completely internalize; these crystals also exhibited a low specific surface area and thus weakened their toxicity. The excessive expression of intracellular ROS and reduction of the free-radical scavenger SOD were the main reasons for cell injury and eventually caused necrotic cell death. Crystal size, surface structure, aggregation, and internalization amount were closely related to the cytotoxicity of COM crystals.

  6. SaRNA-mediated activation of TRPV5 reduces renal calcium oxalate deposition in rat via decreasing urinary calcium excretion.

    Science.gov (United States)

    Zeng, Tao; Duan, Xiaolu; Zhu, Wei; Liu, Yang; Wu, Wenqi; Zeng, Guohua

    2017-08-03

    Hypercalciuria is a main risk factor for kidney stone  formation. TRPV5 is the gatekeeper protein for mediating calcium transport and reabsorption in the kidney. In the present study, we tested the effect of TRPV5 activation with small activating RNA (saRNA), which could induce gene expression by targeting the promoter of the gene, on ethylene glycol (EG)-induced calcium oxalate (CaOx) crystals formation in rat kidney. Five pairs of RNA activation sequences targeting the promoter of rat TRPV5 were designed and synthesized. The synthesized saRNA with the strongest activating effect was selected, and transcellular calcium transportation was tested by Fura-2 analysis. Subsequently, Sprague-Dawley rats were equally divided into three groups and fed with water, 1% EG for 28 days after injecting the negative control saRNA, 1% EG for 28 days after injecting the selected TRPV5-saRNA, respectively. The CaOx crystal formation and the 24-h urine components were assessed. In vitro study, saRNA ds-320 could significantly activate the expression of TRPV5 and transcellular calcium transportation. In vivo study, after 28 days treatment of EG, rats pre-infected with saRNA ds-320 had lower urinary calcium excretion and renal CaOx crystals formation as compared to that pre-infected with negative control saRNA. Activation of TRVP5 with saRNA ds-320 could inhibit EG-induced calcium oxalate crystals formation via promoting urine calcium reabsorption and decreasing urine calcium excretion in rats.

  7. Regulation of bone mineral density in the grey squirrel, Sciurus carolinensis: Bioavailability of calcium oxalate, and implications for bark stripping.

    Science.gov (United States)

    Nichols, C P; Gregory, N G; Goode, N; Gill, R M A; Drewe, J A

    2018-02-01

    The damage caused when grey squirrels strip the outer bark off trees and ingest the underlying phloem can result in reduced timber quality or tree death. This is extremely costly to the UK forestry industry and can alter woodland composition, hampering conservation efforts. The calcium hypothesis proposes that grey squirrels ingest phloem to ameliorate a seasonal calcium deficiency. Calcium in the phloem predominantly takes the form of calcium oxalate (CaOx), however not all mammals can utilise CaOx as a source of calcium. Here, we present the results of a small-scale study to determine the extent to which grey squirrels can utilise CaOx. One of three custom-made diets containing calcium in varying forms and quantities (CaOx diet, Low-calcium carbonate (CaCO 3 ) diet and Control diet) were fed to three treatment groups of six squirrels for 8 weeks. Bone densitometric properties were measured at the end of this time using peripheral quantitative computed tomography and micro-computed tomography. Pyridinoline-a serum marker of bone resorption-was measured regularly throughout the study. Bone mineral density and cortical mineralisation were lower in squirrels fed the CaOx diet compared to the Control group but similar to that of those on the Low-calcium diet, suggesting that calcium from calcium oxalate was not effectively utilised to maintain bone mineralisation. Whilst no differences were observed in serum pyridinoline levels between individuals on different diets, females had on average higher levels than males throughout the study. Future work should seek to determine if this apparent lack of ability to utilise CaOx is common to a large sample of grey squirrels and if so, whether it is consistent across all areas and seasons. © 2017 The Authors. Journal of Animal Physiology and Animal Nutrition published by Blackwell Verlag GmbH.

  8. Sobresaturacion urinaria del Oxalato de Calcio más alla de la Nefrolitiasis: La relación con el daño tubulointersticial Urinary calcium oxalate supersaturation beyond nephrolithiasis: Relationship with tubulointerstitial damage

    Directory of Open Access Journals (Sweden)

    J. E. Toblli

    2003-04-01

    Full Text Available Numerosos estudios han demostrado que el producto de la actividad iónica (PAI de oxalato de calcio (OxCa en la orina, como indicador de sobresaturación (SS urinaria, es mayor en pacientes formadores de cálculos que en sujetos normales. Más allá de la relación entre SS urinaria del OxCa y litogénesis, la exposición de OxCa al epitelio tubular puede ocasionar lesiones en la célula tubular y en el intersticio renal. Nuestro objetivo fue evaluar la posible relación entre SS urinaria de OxCa y el daño tubulointersticial (TI en un modelo animal de hiperoxaluria. Durante cuatro semanas, ratas Sprague-Dawley machos, divididas en dos grupos recibieron: grupo 1 Control [G1], (n= 8 agua, grupo 2 [G2], (n = 8 etilenglicol (ETG al 1% en el agua de beber. La SS urinaria de OxCa se valoró mediante el PAI del OxCa. Las lesiones TI se analizaron al finalizar el estudio por microscopía óptica e inmunohistoquímica. El G2 (ETG presentó valores mayores (pA number of studies have demonstrated that the urinary ion activity product (IAP of calcium oxalate (CaOx, as an index of urinary CaOx supersaturation (SS, is higher in renal stone formers than in normal subjects. Besides, the relation between CaOx SS and lithogenesis, crystal CaOx exposition can produce tubular cell as well as renal interstitial lesions. The aim of our study was to evaluate the possible relationship between CaOx SS and tubulointerstitial (TI damage in an animal model of hyperoxaluria. During four weeks, male Sprague-Dawley rats received: G1 (n=8 control regular water, and G2 (n= 8 1% ethylene glycol (ETG (precursor for oxalates in drinking water. In order to evaluate urinary CaOx SS, IAP assessed by Tisselius formula was performed. At the end of the study, renal lesions were evaluated by light microscopy and immunohistochemistry. Animals from G2 (ETG presented higher (p< 0.01 values of: a urinary oxalate excretion; b urinary CaOx SS; c crystalluria score; d proteinuria; and lower (p

  9. Ion beam monitoring

    International Nuclear Information System (INIS)

    McKinney, C.R.

    1980-01-01

    An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)

  10. Ion funnel ion trap and process

    Science.gov (United States)

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  11. Separation of strontium-90 and yttrium-90 in the presence of thorium-234 by dynamic ion chromatography

    International Nuclear Information System (INIS)

    Borai, E.H.; El-Sofany, E.A.

    2004-01-01

    A relatively rapid ( 90 Sr and 90 Y in the presence of 234 Th. The method joins ion-chromatography and on-line scintillation detection. Experiments were performed to characterize separation of the three radionuclides in an Ion Pac CS5 ion-exchange column under the influence of the following eluents: oxalic acid, diglycolic acid (DGA), α-hydroxy isobuteric acid (HIBA), and a mixture of hydrochloric acid and ammonium sulfate. Ammonium sulfate was the most effective of the eluents tested, yielding a resolution of 2.04 for strontium/yttrium and 1.03 for strontium/thorium. Within the limits of experimental uncertainty, the recoveries were quantitative for 90 Sr and 90 Y in the presence of 17 to 262 Bq x ml of 234 Th. (author)

  12. Solubility Determination of Uranium (IV) Oxalates U(C2O4)2.6H2O and M2U2(C2O4)5.nH2O (M = mono-charged cation)

    International Nuclear Information System (INIS)

    Costenoble, Sylvain; Grandjean, Stephane; Arab-Chapelet, Benedicte; Abraham, Francis

    2008-01-01

    The solubility of uranium (IV) oxalate compounds was studied in order to have a precise insight of the behaviour of An(IV)-An(III) (An(IV) = U, Np or Pu and An(III) = Pu or Am) mixed oxalate in the context of oxalic co-conversion for actinide co-management. Concepts of thermodynamics of aqueous-solid solution are reviewed by introducing LIPPMANN theory and THORSTENSON and PLUMMER 'stoichiometric saturation' model in a way to understand and model the system of interest. Different analytical techniques have been developed in order to titrate uranium and/or other actinides at trace levels in solution. This thorough investigation is the basis of further experiments on the solubility of mixed U(IV)- An(III) oxalate solid solutions as a function of the nature of the trivalent actinide and the An(III)/U(IV) ratio. (authors)

  13. Potentiometric Sensor for Gadolinium(III Ion Based on Zirconium(IV Tungstophosphate as an Electroactive Material

    Directory of Open Access Journals (Sweden)

    Harish K. Sharma

    2009-01-01

    Full Text Available A new inorganic ion exchanger has been synthesized namely Zirconium(IV tungstophosphate [ZrWP]. The synthesized exchanger was characterized using ion exchange capacity and distribution coefficient (Kd. For further studies, exchanger with 0.35 meq/g ion-exchange capacity was selected. Electrochemical studies were carried out on the ion exchange membranes using epoxy resin as a binder. In case of ZrWP, the membrane having the composition; Zirconium(IV tugstophosphate (40% and epoxy resin (60% exhibits best performance. The membrane works well over a wide range of concentration from 1×10-5 to 1×10-1 M of Gd(III ion with an over- Nernstian slope of 30 mv/ decade. The response time of the sensor is 15 seconds. For this membrane, effect of internal solution has been studied and the electrode was successfully used in partially non-aqueous media too. Fixed interference method and matched potential method has been used for determining selectivity coefficient with respect to alkali, alkaline earth, some transition and rare earth metal ions that are normally present along with Gd(III in its ores. The electrode can be used in the pH range 4.0-10.0 for 10-1 M and 3.0-7.0 for 10-2 M concentration of target ion. These sensors have been used as indicator electrodes in the potentiometric titration of Gd(III ion against EDTA and oxalic acid.

  14. Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by Aspergillus niger W78C in submerged batch cultures with sucrose as a carbon source.

    Science.gov (United States)

    Walaszczyk, Ewa; Podgórski, Waldemar; Janczar-Smuga, Małgorzata; Dymarska, Ewelina

    2018-01-01

    The pH of the medium is the key environmental parameter of chemical selectivity of oxalic acid biosynthesis by Aspergillus niger . The activity of the enzyme oxaloacetate hydrolase, which is responsible for decomposition of oxaloacetate to oxalate and acetate inside the cell of the fungus, is highest at pH 6. In the present study, the influence of pH in the range of 3-7 on oxalic acid secretion by A. niger W78C from sucrose was investigated. The highest oxalic acid concentration, 64.3 g dm -3 , was reached in the medium with pH 6. The chemical selectivity of the process was 58.6% because of the presence of citric and gluconic acids in the cultivation broth in the amount of 15.3 and 30.2 g dm -3 , respectively. Both an increase and a decrease of medium pH caused a decrease of oxalic acid concentration. The obtained results confirm that pH 6 of the carbohydrate medium is appropriate for oxalic acid synthesis by A. niger , but the chemical selectivity of the process described in this paper was high in comparison to values reported previously in the literature.

  15. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  16. The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi

    Science.gov (United States)

    Anne Christine Steenkjaer Hastrup; Bo Jensen; Carol Clausen; Frederick Green

    2006-01-01

    The dry rot fungus, Serpula lacrymans, is one of the most destructive copper-tolerant fungi causing timber decay in buildings in temperate regions. Calcium and oxalic acid have been shown to play important roles in the mechanism of wood decay. The effect of calcium on growth and decay was evaluated for 12 strains of S. lacrymans and compared to five brown-rot fungi....

  17. Oral administration of oxalate-enriched spinach extract as an improved methodology for the induction of dietary hyperoxaluric nephrocalcinosis in experimental rats.

    Science.gov (United States)

    Albert, Abhishek; Tiwari, Vidhi; Paul, Eldho; Ponnusamy, Sasikumar; Ganesan, Divya; Prabhakaran, Rajkumar; Mariaraj Sivakumar, Selvi; Govindan Sadasivam, Selvam

    2018-03-01

    Experimental induction of hyperoxaluria by ethylene glycol (EG) administration is disapproved as it causes metabolic acidosis while the oral administration of chemically synthesized potassium oxalate (KOx) diet does not mimic our natural system. Since existing models comprise limitations, this study is aimed to develop an improved model for the induction of dietary hyperoxaluria, and nephrocalcinosis in experimental rats by administration of naturally available oxalate rich diet. Male albino Wistar rats were divided into five groups. Group I, control; group II rats received 0.75% EG, group III rats fed with 5% KOx diet and group IV and V rats were administered with spinach extract of 250 and 500 mg soluble oxalate/day respectively, for 28 d. Urine and serum biochemistry were analyzed. After the experimental period, rats were sacrificed, liver and kidney tissue homogenates were used for antioxidant and lipid peroxidation assay. Relative change in expression of kidney injury molecule-1 (KIM-1) and crystal modulators genes in kidney tissues were evaluated. Tissue damage was assessed by histology studies of liver and kidney. Experimental group rats developed hyperoxaluria and crystalluria. Urine parameters, serum biochemistry, antioxidant profile, lipid peroxidation levels and gene expression analysis of experimental group II and III rats reflected acute kidney damage compared to group V rats. Histopathology results showed moderate hyperplasia in liver and severe interstitial inflammation in kidneys of group II and III than group V rats. Ingestion of naturally available oxalate enriched spinach extract successfully induced dietary hyperoxaluria and nephrocalcinosis in rats with minimal kidney damage.

  18. Calcium oxalate crystal production and density at different phenological stages of soybean plants (Glycine max L.) from the southeast of the Pampean Plain, Argentina

    OpenAIRE

    Borrelli, Natalia L.; Benvenuto, María Laura; Osterrieth, Margarita

    2016-01-01

    • Glycine max L. (soybean) is one of the major crops of the world. Although the process of biomineralisation has been reported in some organs of soybean, we now report the description and quantification of calcium oxalate crystals in vegetative and reproductive organs of soybean during its life cycle, as they act as an important source of calcium to the soil, once the harvesting is finished. • Through diaphanisation, cross-sectioning, optical and scanning electron microscopy analysi...

  19. Multiple calcium oxalate stone formation in a patient with glycogen storage disease type I (von Gierke's disease) and renal tubular acidosis type I: a case report

    OpenAIRE

    兼松, 明弘; 清川, 岳彦; 筧, 善行; 竹内, 秀雄

    1993-01-01

    A case of multiple urinary stones in a patient with glycogen storage disease type 1 (GSD-1) is reported. In spite of the presence of hyperuricemia, these stones did not consist of uric acid, but mainly of calcium oxalate. Laboratory studies revealed distal renal tubular acidosis and hypocitraturia, but no significant abnormality in calcium metabolism. We discussed the mechanism of calcium stone formation in our case, and its prophylactic treatment by oral administration of citrate compound.

  20. Microfabricated ion frequency standard

    Science.gov (United States)

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  1. Determination of trimethylselenonium ion in urine by ion chromatography and inductively coupled plasma mass spectrometry detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jessen, K.D.; Kristensen, F.H.

    2000-01-01

    The selenium species selenite, selenate, selenomethionine (SeMet), and trimethylselenonium iodide (TMSe+) were separated in aqueous solution by ion chromatography. The separation was performed on an Ionpac CS5 cation exchange column by elution with 10 mM oxalic acid and 20 mM potassium sulphate, p......-eluted with the selenate signal. The calibration curve was linear in the range 5-50 mu g l(-1) TMSe+ determined by spiking a urine pool. The precision at the 30 mu g l(-1) level was 1.9%. The limit of detection and determination were 0.8 and 2.6 mu g l(-1), respectively. All calculation are based on the Se-82 isotope....... In urine, a large interference was observed close to the retention time of TMSe+ when monitoring the Se-78 isotope. The interference was ascribed to the sodium content of the urine. Thus, the Se-82 isotope should be used for selenium speciation in urine on this chromatographic system. Urine samples from...

  2. Interactions of calcium ions with weakly acidic active ingredients slow cuticular penetration: a case study with glyphosate.

    Science.gov (United States)

    Schönherr, Jörg; Schreiber, Lukas

    2004-10-20

    Potassium and calcium salts of glyphosate were obtained by titrating glyphosate acid with the respective bases to pH 4.0, and rates of penetration of these salts across isolated astomatous cuticular membranes (CMs) were measured at 20 degrees C and 70, 80, 90, and 100% humidity. K-glyphosate exhibited first-order penetration kinetics, and rate constants (k) increased with increasing humidity. Ca-glyphosate penetrated only when the humidity above the salt residue was 100%. At 90% humidity and below, Ca-glyphosate formed a solid residue on the CMs and penetration was not measurable. With Ca-glyphosate, the k value at 100% humidity decreased with time and the initial rates were lower than for K-glyphosate by a factor of 3.68. After equimolar concentrations of ammonium oxalate were added to Ca-glyphosate, high penetration rates close to those measured with K-glyphosate were measured at all humidities. Adding ammonium sulfate or potassium carbonate also increased rates between 70 and 100% humidity, but they were not as high as with ammonium oxalate. The data indicate that at pH 4.0 one Ca2+ ion is bound to two glyphosate anions. This salt has its deliquescence point near 100% humidity. Therefore, it is a solid at lower humidity and does not penetrate. Its molecular weight is 1.82 times larger than that of K-glyphosate, and this greatly slows down rates of penetration, even at 100% humidity. The additives tested have low solubility products and form insoluble precipitates with Ca2+ ions, but only ammonium oxalate binds Ca2+ quantitatively. The resulting ammonium salt of glyphosate penetrates at 70-100% humidity and at rates comparable to K-glyphosate. The results contribute to a better understanding of the hard water antagonism observed with glyphosate. It is argued that other pesticides and hormones with carboxyl functions are likely to respond to Ca2+ ions in a similar fashion. In all of these cases, ammonium oxalate is expected to overcome hard water antagonism

  3. Pulsed electric field processing reduces the oxalate content of oca (Oxalis tuberosa) tubers while retaining starch grains and the general structural integrity of tubers.

    Science.gov (United States)

    Liu, Tingting; Burritt, David John; Eyres, Graham T; Oey, Indrawati

    2018-04-15

    The aims of this research were to investigate if pulsed electric field (PEF) treatments caused cellular/structural alterations in Oxalis tuberosa (oca) tubers and if PEF treatment could reduce tuber oxalate levels. Whole oca tubers were treated with PEF at different electric field strengths up to 1.2 kV/cm. PEF treatments above 0.5 kV/cm caused tubers to soften, but differences in the electrical properties of the tuber tissues led to an uneven PEF effect with the tuber inner cores softening more than the middle regions. Cell viability tests confirmed the unevenness of the PEF effect, however PEF caused no changes in overall tuber/tissue structure. Even at high electric field strengths the cell remained largely intact and most starch grains were retained within the cells. Despite the retention of starch, PEF treatment reduced tuber oxalate contents by almost 50% in some tissues and could potentially aid the development of low oxalate oca-based foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Structure and reactivity of oxalate surface complexes on lepidocrocite derived from infrared spectroscopy, DFT-calculations, adsorption, dissolution and photochemical experiments

    Science.gov (United States)

    Borowski, Susan C.; Biswakarma, Jagannath; Kang, Kyounglim; Schenkeveld, Walter D. C.; Hering, Janet G.; Kubicki, James D.; Kraemer, Stephan M.; Hug, Stephan J.

    2018-04-01

    Oxalate, together with other ligands, plays an important role in the dissolution of iron(hdyr)oxides and the bio-availability of iron. The formation and properties of oxalate surface complexes on lepidocrocite were studied with a combination of infrared spectroscopy (IR), density functional theory (DFT) calculations, dissolution, and photochemical experiments. IR spectra measured as a function of time, concentration, and pH (50-200 μM oxalate, pH 3-7) showed that several surface complexes are formed at different rates and in different proportions. Measured spectra could be separated into three contributions described by Gaussian line shapes, with frequencies that agreed well with the theoretical frequencies of three different surface complexes: an outer-sphere complex (OS), an inner-sphere monodentate mononuclear complex (MM), and a bidentate mononuclear complex (BM) involving one O atom from each carboxylate group. At pH 6, OS was formed at the highest rate. The contribution of BM increased with decreasing pH. In dissolution experiments, lepidocrocite was dissolved at rates proportional to the surface concentration of BM, rather than to the total adsorbed concentration. Under UV-light (365 nm), BM was photolyzed at a higher rate than MM and OS. Although the comparison of measured spectra with calculated frequencies cannot exclude additional possible structures, the combined results allowed the assignment of three main structures with different reactivities consistent with experiments. The results illustrate the importance of the surface speciation of adsorbed ligands in dissolution and photochemical reactions.

  5. Influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation with calcium oxalate and struvite in healthy cats.

    Science.gov (United States)

    Bartges, Joseph W; Kirk, Claudia A; Cox, Sherry K; Moyers, Tamberlyn D

    2013-10-01

    To evaluate the influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation (URSS) with calcium oxalate and struvite in healthy cats. 6 castrated male and 6 spayed female cats. 3 groups of 4 cats each were fed diets for 12 months that differed only in acidifying or alkalinizing properties (alkalinizing, neutral, and acidifying). Body composition was estimated by use of dual energy x-ray absorptiometry, and 48-hour urine samples were collected for URSS determination. Urine pH differed significantly among diet groups, with the lowest urine pH values in the acidifying diet group and the highest values in the alkalinizing diet group. Differences were not observed in other variables except urinary ammonia excretion, which was significantly higher in the neutral diet group. Calcium oxalate URSS was highest in the acidifying diet group and lowest in the alkalinizing diet group; struvite URSS was not different among groups. Diet was not significantly associated with bone mineral content or density. Urinary undersaturation with calcium oxalate was achieved by inducing alkaluria. Feeding an alkalinizing diet was not associated with URSS with struvite. Bone mineral density and calcium content were not adversely affected by diet; therefore, release of calcium from bone caused by feeding an acidifying diet may not occur in healthy cats.

  6. Photocatalytic H2 Production Using Pt-TiO2 in the Presence of Oxalic Acid: Influence of the Noble Metal Size and the Carrier Gas Flow Rate

    Science.gov (United States)

    Kmetykó, Ákos; Mogyorósi, Károly; Gerse, Viktória; Kónya, Zoltán; Pusztai, Péter; Dombi, András; Hernádi, Klára

    2014-01-01

    The primary objective of the experiments was to investigate the differences in the photocatalytic performance when commercially available Aeroxide P25 TiO2 photocatalyst was deposited with differently sized Pt nanoparticles with identical platinum content (1 wt%). The noble metal deposition onto the TiO2 surface was achieved by in situ chemical reduction (CRIS) or by mixing chemically reduced Pt nanoparticle containing sols to the aqueous suspensions of the photocatalysts (sol-impregnated samples, CRSIM). Fine and low-scale control of the size of resulting Pt nanoparticles was obtained through variation of the trisodium citrate concentration during the syntheses. The reducing reagent was NaBH4. Photocatalytic activity of the samples and the reaction mechanism were examined during UV irradiation (λmax = 365 nm) in the presence of oxalic acid (50 mM) as a sacrificial hole scavenger component. The H2 evolution rates proved to be strongly dependent on the Pt particle size, as well as the irradiation time. A significant change of H2 formation rate during the oxalic acid transformation was observed which is unusual. It is probably regulated both by the decomposition rate of accumulated oxalic acid and the H+/H2 redox potential on the surface of the catalyst. The later potential is influenced by the concentration of the dissolved H2 gas in the reaction mixture. PMID:28788229

  7. Photocatalytic H2 Production Using Pt-TiO2 in the Presence of Oxalic Acid: Influence of the Noble Metal Size and the Carrier Gas Flow Rate

    Directory of Open Access Journals (Sweden)

    Ákos Kmetykó

    2014-10-01

    Full Text Available The primary objective of the experiments was to investigate the differences in the photocatalytic performance when commercially available Aeroxide P25 TiO2 photocatalyst was deposited with differently sized Pt nanoparticles with identical platinum content (1 wt%. The noble metal deposition onto the TiO2 surface was achieved by in situ chemical reduction (CRIS or by mixing chemically reduced Pt nanoparticle containing sols to the aqueous suspensions of the photocatalysts (sol-impregnated samples, CRSIM. Fine and low-scale control of the size of resulting Pt nanoparticles was obtained through variation of the trisodium citrate concentration during the syntheses. The reducing reagent was NaBH4. Photocatalytic activity of the samples and the reaction mechanism were examined during UV irradiation (λmax = 365 nm in the presence of oxalic acid (50 mM as a sacrificial hole scavenger component. The H2 evolution rates proved to be strongly dependent on the Pt particle size, as well as the irradiation time. A significant change of H2 formation rate during the oxalic acid transformation was observed which is unusual. It is probably regulated both by the decomposition rate of accumulated oxalic acid and the H+/H2 redox potential on the surface of the catalyst. The later potential is influenced by the concentration of the dissolved H2 gas in the reaction mixture.

  8. Infusum Daun Alpukat Sebagai Inhibitor Kristalisasi Kalsium Oksalat pada Ginjal (THE AVOCADO LEAVES INFUSUM AS INHIBITOR ON RENAL CALCIUM OXALATE CRYSTALIZATION

    Directory of Open Access Journals (Sweden)

    Rini Madyastuti

    2016-01-01

    Full Text Available Urine crystal is a crystal nucleus which tend to form urine stone. The case of urine stone seems to beincreased every year. Crystallization could induce acute tubular necrosis which impact on renal dysfunction.The signs of this condition are high level of urea, creatinine and decrease glomerulus filtration rate. Theobjective of this research was to evaluate the effects of infusum Persea americana Mill as an inhibitorcrystallization which induced by ethylene glycol on white male rats. 20 male rats were divided into 4groups; K1 as negative group received only distilled water ad libitum, K2 as positive group receiveddistilled water containing ethylene glycol, K3 (dose 5% and K4 (dose 10% as treatment groups receivedwater containing ethylene glycol and avocado leaves infusion. Phytochemsitry screening of infusion avocadoleaves consisted of flavonoid, saponin, tanine and quinone. Result of analysis showed that the level ofureum and creatinine on K2 was higher than K3 and K4 group. The increased level could be inhibited byinfusion avocado leaves. The measurement of glomerular filtration rate in treatment groups wassignificantly different (p<0.05. Descriptive histopathology observation showed that renal lesio in grouptreatment (K3 and K4 were declined. Large crystal calcium oxalate on K2 group was observed by usingpolarized microscope, whereas small crystal calcium oxalate were seen in the infusion of avocado leavesgroups. These result showed the ability of infusion of avocado leaves as an inhibitor on the growth ofcrystallization calcium oxalate

  9. Silver ion-enhanced particle-specific cytotoxicity of silver nanoparticles and effect on the production of extracellular secretions of Phanerochaete chrysosporium.

    Science.gov (United States)

    Huang, Zhenzhen; Xu, Piao; Chen, Guiqiu; Zeng, Guangming; Chen, Anwei; Song, Zhongxian; He, Kai; Yuan, Lei; Li, Hui; Hu, Liang

    2018-04-01

    This study investigated the influence of silver ions (Ag + ) on the cytotoxicity of silver nanoparticles (AgNPs) in Phanerochaete chrysosporium and noted the degree of extracellular secretions in response to the toxicant's stress. Oxalate production was elicited with moderate concentrations of 2,4-dichlorophenol (2,4-DCP) and AgNPs reaching a plateau at 10 mg/L and 10 μM, respectively. Increased oxalate accumulation was accompanied by higher activities of manganese peroxidase (MnP) and lignin peroxidase (LiP). However, the secretion of oxalate, MnP and LiP was significantly inhibited owing to Ag + incorporation into AgNP solution. Production of extracellular polymeric substances (EPS) significantly elevated with an increase in 2,4-DCP concentrations; however, after 24 h of exposure to 100 mg/L 2,4-DCP, an obvious decrease in EPS occurred, indicating that part of EPS could be consumed as carbon and energy sources to ameliorate biological tolerance to toxic stress. Furthermore, AgNP-induced "particle-specific" cytotoxicity was substantially enhanced with additional Ag + as evidenced by its significant negative impact on cellular growth, plasma membrane integrity, and morphological preservation compared with AgNPs at equal Ag concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Negative ion sources

    International Nuclear Information System (INIS)

    Ishikawa, Junzo; Takagi, Toshinori

    1983-01-01

    Negative ion sources have been originally developed at the request of tandem electrostatic accelerators, and hundreds of nA to several μA negative ion current has been obtained so far for various elements. Recently, the development of large current hydrogen negative ion sources has been demanded from the standpoint of the heating by neutral particle beam injection in nuclear fusion reactors. On the other hand, the physical properties of negative ions are interesting in the thin film formation using ions. Anyway, it is the present status that the mechanism of negative ion action has not been so fully investigated as positive ions because the history of negative ion sources is short. In this report, the many mechanisms about the generation of negative ions proposed so far are described about negative ion generating mechanism, negative ion source plasma, and negative ion generation on metal surfaces. As a result, negative ion sources are roughly divided into two schemes, plasma extraction and secondary ion extraction, and the former is further classified into the PIG ion source and its variation and Duoplasmatron and its variation; while the latter into reflecting and sputtering types. In the second half of the report, the practical negative ion sources of each scheme are described. If the mechanism of negative ion generation will be investigated more in detail and the development will be continued under the unified know-how as negative ion sources in future, the development of negative ion sources with which large current can be obtained for any element is expected. (Wakatsuki, Y.)

  11. Renal papillary calcification and the development of calcium oxalate monohydrate papillary renal calculi: a case series study.

    Science.gov (United States)

    Grases, Fèlix; Costa-Bauzá, Antonia; Prieto, Rafel M; Conte, Antonio; Servera, Antonio

    2013-03-11

    The objective of this study is to determine in a case series (four patients) how calcified deposits in renal papillae are associated with the development of calcium oxalate monohydrate (COM) papillary calculi. From the recently collected papillary calculi, we evaluated retrospectively patients, subjected to retrograde ureteroscopy, with COM papillary lithiasis. The COM papillary calculi were found to result from subepithelial injury. Many of these lesions underwent calcification by hydroxyapatite (HAP), with calculus morphology and the amount of HAP in the concave zone dependent on the location of the calcified injury. Most of these HAP deposits grew, eroding the epithelium covering the renal papillae, coming into contact with urine and starting the development of COM calculi. Subepithelial HAP plaques may alter the epithelium covering the papillae, resulting in the deposit of COM crystals directly onto the epithelium. Tissue calcification depends on a pre-existing injury, the continuation of this process is due to modulators and/or crystallization inhibitors deficiency. Since calculus morphology and the amount of detected HAP are dependent on the location and widespread of calcified injury, all types of papillary COM calculi can be found in the same patient. All patients had subepithelial calcifications, with fewer papillary calculi, demonstrating that some subepithelial calcifications did not further evolve and were reabsorbed. A high number of subepithelial calcifications increases the likelihood that some will be transformed into COM papillary calculi.

  12. A novel oxalate-based three-dimensional coordination polymer showing magnetic ordering and high proton conductivity.

    Science.gov (United States)

    Mon, Marta; Vallejo, Julia; Pasán, Jorge; Fabelo, Oscar; Train, Cyrille; Verdaguer, Michel; Ohkoshi, Shin-Ichi; Tokoro, Hiroko; Nakagawa, Kosuke; Pardo, Emilio

    2017-11-07

    A novel three-dimensional (3D) coordination polymer with the formula (C 3 N 2 H 5 ) 4 [MnCr 2 (ox) 6 ]·5H 2 O (2), where ox = oxalate and C 3 N 2 H 5 = imidazolium cation, is reported. Single crystal X-ray diffraction reveals that this porous coordination polymer adopts a chiral three-dimensional quartz-like architecture, with the guest imidazolium cations and water molecules being hosted in its pores. This novel multifunctional material exhibits both a ferromagnetic ordering at T C = 3.0 K, related to the host MnCr 2 network, and high proton conductivity [1.86 × 10 -3 S cm -1 at 295 K and 88% relative humidity (RH)] due to the presence of the acidic imidazolium cations and free water molecules. The similarity of the structure of compound 2 to that of the previously reported analogous compound (NH 4 ) 4 [MnCr 2 (ox) 6 ]·4H 2 O, (1), also allows us to analyse, to a certain extent, the effect of the acidity of the proton donating guest molecules on proton conduction properties. 2 hosts, in one-dimensional (1D) channels, imidazolium cations, which are more acidic than the ammonium ones in 1 and, as a consequence, 2 shows higher proton conduction than 1, highlighting the effect of the pK a of the proton donating guest molecules on proton conductivity.

  13. Isostructural crystal hydrates of rare-earth metal oxalates at high pressure. From strain anisotropy to dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Boris A.; Matvienko, Alexander A. [Russian Academy of Ssciences, Novosibirsk (Russian Federation). Inst. of Solid State Chemistry and Mechanochemistry; Novosibirsk State Univ. (Russian Federation); Gribov, Pavel A.; Boldyreva, Elena V. [Russian Academy of Ssciences, Novosibirsk (Russian Federation). Inst. of Solid State Chemistry and Mechanochemistry

    2017-07-01

    The crystal structures of a series of isostructural rare-earth metal oxalates, (REE){sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O (REE=Sm, Y) and a 1:1 YSm(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O solid solution, have been studied in situ by single-crystal X-ray diffraction and optical microscopy. The structures were followed from ambient pressure to 6 GPa in a DAC with paraffin as the hydrostatic fluid. Bulk compressibilities, anisotropic lattice strain on hydrostatic compression and the corresponding changes in the atomic coordinates were followed. Discontinuities/sharp changes in the slopes of the pressure dependences of volume and selected cell parameters have been observed for yttrium-containing salts at ∝3.5 GPa. This may be related to the re-distribution of water molecules within the crystal structure. Y{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O undergoes a partial dehydration at 1 GPa, forming monoclinic Y{sub 2}(C{sub 2}O{sub 4}){sub 3}.6H{sub 2}O as single-crystalline inclusions in the original phase.

  14. Effects of oxalate desensitizer with different resin cement-retained indirect composite inlays on fracture resistance of teeth.

    Science.gov (United States)

    Shafiei, Fereshteh; Alavi, Ali Asghar; Karimi, Fatemeh; Ansarifard, Elham

    2013-06-01

    This study investigated whether the tubular occluding effect of oxalate desensitizer (OX) during adhesive cementation (three resin cements) influenced fracture resistance of teeth restored with adhesive inlays. Ninety intact maxillary premolars were randomly divided into 9 groups of 10 each. The two control groups were Gr 1, intact teeth and Gr 2, mesio-occlusodistal preparation only. In six experimental groups, the composite inlays were cemented with ED Primer II/Panavia F 2.0, Excite DSC/Variolink II, and One-Step Plus/Duolink according to manufacturers' instructions (Groups 3, 5, and 7, respectively) or with OX during cementation (Groups 4, 6, and 8, respectively). In Group 9, inlays were cemented with a resin cement without adhesive system. After thermocycling, fracture strength was tested. The data were analyzed using two-way and one-way ANOVA and LSD post hoc tests (α = 0.05). Fracture resistance of the six groups were significantly affected by OX (p = 0.002) but not by the resin cement type (p > 0.05). The interaction of the two factors was statistically significant (p = 0.052). A statistically significant difference between all groups was found (p inlay cemented with Panavia F2.0 and Variolink II, but it had no significant effect when cemented with Duolink. © 2012 by the American College of Prosthodontists.

  15. The production of rare earth elements group via tributyl phosphate extraction and precipitation stripping using oxalic acid

    Directory of Open Access Journals (Sweden)

    Esmaeil Jorjani

    2016-11-01

    Full Text Available In this study, solvent extraction and precipitation stripping were used to produce rare earth elements (REEs. Tributyl phosphate (TBP was used to extract yttrium, lanthanum, cerium, and neodymium from an aqueous solution produced by nitric acid leaching of apatite concentrate. In the extraction stage, the effects of TBP concentration, pH, contact time, temperature, and phase ratio were investigated. The results show that about 95%, 90%, 87% and 80% of neodymium, cerium, lanthanum, and yttrium, respectively, can be extracted in optimum conditions of extraction. Hot, deionized water was used to scrub the impurities from the loaded organic phase. The results showed that three stages of scrubbing with a phase ratio (Va/Vo of five removed about 80%, 30%, 27%, and 15% of Ca, Mg, Fe, and P, respectively, from loaded TBP, while less than 9% of total REEs was lost. The effects on precipitation stripping of oxalic acid concentration, contact time, and phase ratio were investigated. The results showed that precipitation stripping is a viable alternative to traditional acid stripping in the REEs production process. Mixed REEs oxide with an assay of about 90% can be achieved as a final product.

  16. Renal papillary calcification and the development of calcium oxalate monohydrate papillary renal calculi: a case series study

    Science.gov (United States)

    2013-01-01

    Background The objective of this study is to determine in a case series (four patients) how calcified deposits in renal papillae are associated with the development of calcium oxalate monohydrate (COM) papillary calculi. Methods From the recently collected papillary calculi, we evaluated retrospectively patients, subjected to retrograde ureteroscopy, with COM papillary lithiasis. Results The COM papillary calculi were found to result from subepithelial injury. Many of these lesions underwent calcification by hydroxyapatite (HAP), with calculus morphology and the amount of HAP in the concave zone dependent on the location of the calcified injury. Most of these HAP deposits grew, eroding the epithelium covering the renal papillae, coming into contact with urine and starting the development of COM calculi. Subepithelial HAP plaques may alter the epithelium covering the papillae, resulting in the deposit of COM crystals directly onto the epithelium. Tissue calcification depends on a pre-existing injury, the continuation of this process is due to modulators and/or crystallization inhibitors deficiency. Conclusions Since calculus morphology and the amount of detected HAP are dependent on the location and widespread of calcified injury, all types of papillary COM calculi can be found in the same patient. All patients had subepithelial calcifications, with fewer papillary calculi, demonstrating that some subepithelial calcifications did not further evolve and were reabsorbed. A high number of subepithelial calcifications increases the likelihood that some will be transformed into COM papillary calculi. PMID:23497010

  17. Urinary excretion of calcium, magnesium, phosphate, citrate, oxalate, and uric acid by healthy schoolchildren using a 12-h collection protocol.

    Science.gov (United States)

    Sáez-Torres, Concepción; Rodrigo, Dolores; Grases, Félix; García-Raja, Ana M; Gómez, Cristina; Lumbreras, Javier; Frontera, Guiem

    2014-07-01

    Improving knowledge about normal urine composition in children is important for early prevention of lithiasis. We describe urinary excretion values of calcium (Ca), magnesium (Mg), phosphate (P), citrate (Cit), uric acid (Ur), and oxalate (Ox) in healthy children with and without a family history of lithiasis, using a 12-h urine collection protocol. Urine samples were obtained from 184 children (5-12 years): a spot sample collected in the afternoon, and a 12-h overnight sample. Solute/creatinine (Cr) and 12-h solute excretion was calculated. Urinary excretion values of the studied solutes are presented as percentile values, separately for each type of sample. Due to age-related differences in the solute/creatinine ratios, except for Ca and Cit, results are described according to the child's age. The presence of excretion values related to an increased risk of lithiasis was more common in children with a family history. We report data from urine samples collected by using a simplified collection protocol. The observed differences between children with and without a family history of lithiasis could justify that in population studies aimed at setting reference values, the former are excluded.

  18. Thin films containing oxalate-capped iron oxide nanomaterials deposited on glass substrate for fast Fenton degradation of some micropollutants.

    Science.gov (United States)

    Rambu, Alicia Petronela; Nadejde, Claudia; Schneider, Rudolf J; Neamtu, Mariana

    2018-03-01

    The main goal of the study was to evaluate the catalytic activity of two hybrid nanocatalysts consisting in Fe 3 O 4 nanoparticles modified with either chitosan (CS) or polyethylene glycol (PEG)/ferrous oxalate (FO), and further deposited on solid substrate as thin films. X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) were employed for the structural and morphological characterizations of the heterogeneous catalysts. The degradation kinetic studies of two reactive azo dye (Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84)) as well as Bisphenol A (BPA) solutions were carried out using Fenton-like oxidation, in the presence of different concentrations of H 2 O 2 , at initial near-neutral pH and room temperature. The results indicated that a low amount of catalytic material (0.15 g/L), deposited as thin film, was able to efficiently trigger dye degradation in solution in the presence of 6.5 mmol/L H 2 O 2 for RB5 and of only 1.6 mmol/L H 2 O 2 in the case of BPA and RY84. In the presence of complex matrices such as WWTP waters, the removal of BPA was low (only 24% for effluent samples). Our findings recommend the studied immobilized nanocatalysts as promising economical tools for the pre-treatment of wastewaters using advanced oxidation processes (AOPs).

  19. L-Carnitine Protects Renal Tubular Cells Against Calcium Oxalate Monohydrate Crystals Adhesion Through Preventing Cells From Dedifferentiation.

    Science.gov (United States)

    Li, Shujue; Wu, Wenqi; Wu, Wenzheng; Duan, Xiaolu; Kong, Zhenzhen; Zeng, Guohua

    2016-01-01

    The interactions between calcium oxalate monohydrate (COM) crystals and renal tubular epithelial cells are important for renal stone formation but still unclear. This study aimed to investigate changes of epithelial cell phenotype after COM attachment and whether L-carnitine could protect cells against subsequent COM crystals adhesion. Cultured MDCK cells were employed and E-cadherin and Vimentin were used as markers to estimate the differentiate state. AlexaFluor-488-tagged COM crystals were used in crystals adhesion experiment to distinguish from the previous COM attachment, and adhesive crystals were counted under fluorescence microscope, which were also dissolved and the calcium concentration was assessed by flame atomic absorption spectrophotometry. Dedifferentiated MDCK cells induced by transforming growth factor β1 (TGF-β1) shown higher affinity to COM crystals. After exposure to COM for 48 hours, cell dedifferentiation were observed and more subsequent COM crystals could bind onto, mediated by Akt/GSK-3β/Snail signaling. L-carnitine attenuated this signaling, resulted in inhibition of cell dedifferentiation and reduction of subsequent COM crystals adhesion. COM attachment promotes subsequent COM crystals adhesion, by inducing cell dedifferentiation via Akt/GSK-3β/Snail signaling. L-carnitine partially abolishes cell dedifferentiation and resists COM crystals adhesion. L-carnitine, may be used as a potential therapeutic strategy against recurrence of urolithiasis. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. Alpha-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor

    Science.gov (United States)

    Fong-Ngern, Kedsarin; Thongboonkerd, Visith

    2016-10-01

    To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase antibody, not isotype-controlled IgG, dramatically reduced cell-crystal adhesion. Immunofluorescence staining also confirmed the direct binding of purified α-enolase to COM crystals at {121} > {100} > {010} crystal faces. Coating COM crystals with urinary proteins diminished the crystal binding capacity to cells and purified α-enolase. Moreover, α-enolase selectively bound to COM, not other crystals. Chemico-protein interactions analysis revealed that α-enolase interacted directly with Ca2+ and Mg2+. Incubating the cells with Mg2+ prior to cell-crystal adhesion assay significantly reduced crystal binding on the cell surface, whereas preincubation with EDTA, a divalent cation chelator, completely abolished Mg2+ effect, indicating that COM and Mg2+ competitively bind to α-enolase. Taken together, we successfully confirmed the role of α-enolase as a COM crystal receptor to mediate COM crystal adhesion at apical membrane of renal tubular cells. It may also serve as a target for stone prevention by blocking cell-crystal adhesion and stone nidus formation.

  1. Topology of OxlT, the oxalate transporter of Oxalobacter formigenes, determined by site-directed fluorescence labeling.

    Science.gov (United States)

    Ye, L; Jia, Z; Jung, T; Maloney, P C

    2001-04-01

    The topology of OxlT, the oxalate:formate exchange protein of Oxalobacter formigenes, was established by site-directed fluorescence labeling, a simple strategy that generates topological information in the context of the intact protein. Accessibility of cysteine to the fluorescent thiol-directed probe Oregon green maleimide (OGM) was examined for a panel of 34 single-cysteine variants, each generated in a His(9)-tagged cysteine-less host. The reaction with OGM was readily scored by examining the fluorescence profile after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of material purified by Ni2+ linked affinity chromatography. A position was assigned an external location if its single-cysteine derivative reacted with OGM added to intact cells; a position was designated internal if OGM labeling required cell lysis. We also showed that labeling of external, but not internal, positions was blocked by prior exposure of cells to the impermeable and nonfluorescent thiol-specific agent ethyltrimethylammonium methanethiosulfonate. Of the 34 positions examined in this way, 29 were assigned unambiguously to either an internal or external location; 5 positions could not be assigned, since the target cysteine failed to react with OGM. There was no evidence of false-positive assignment. Our findings document a simple and rapid method for establishing the topology of a membrane protein and show that OxlT has 12 transmembrane segments, confirming inferences from hydropathy analysis.

  2. The crystal structure of paramagnetic copper(ii) oxalate (CuC2O4):

    DEFF Research Database (Denmark)

    Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel

    2014-01-01

    the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(ii) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar...... diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting...... crystal structure is described in the monoclinic space group P21/c (#14) in the P121/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data...

  3. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.).

    Science.gov (United States)

    Martínez-Esplá, Alejandra; Zapata, Pedro Javier; Valero, Daniel; García-Viguera, Cristina; Castillo, Salvador; Serrano, María

    2014-04-16

    Trees of 'Sweet Heart' and 'Sweet Late' sweet cherry cultivars (Prunus avium L.) were treated with oxalic acid (OA) at 0.5, 1.0, and 2.0 mM at 98, 112, and 126 days after full blossom. Results showed that all treatments increased fruit size at harvest, manifested by higher fruit volume and weight in cherries from treated trees than from controls, the higher effect being found with 2.0 mM OA (18 and 30% higher weight for 'Sweet Heart' and 'Sweet Late', respectively). Other quality parameters, such as color and firmness, were also increased by OA treatments, although no significant differences were found in total soluble solids or total acidity, showing that OA treatments did not affect the on-tree ripening process of sweet cherry. However, the increases in total anthocyanins, total phenolics, and antioxidant activity associated with the ripening process were higher in treated than in control cherries, leading to fruit with high bioactive compounds and antioxidant potential at commercial harvest (≅45% more anthocyanins and ≅20% more total phenolics). In addition, individual anthocyanins, flavonols, and chlorogenic acid derivatives were also increased by OA treatment. Thus, OA preharvest treatments could be an efficient and natural way to increase the quality and functional properties of sweet cherries.

  4. Comparison of Physicochemical Properties of Nano- and Microsized Crystals in the Urine of Calcium Oxalate Stone Patients and Control Subjects

    Directory of Open Access Journals (Sweden)

    Jie Gao

    2014-01-01

    Full Text Available Purpose. To compare the properties of different sizes of urinary crystallites between calcium oxalate (CaOx calculi patients and healthy controls. Methods. We studied the average particle size, size distribution, intensity-autocorrelation curve, zeta potential (ζ, conductivity, mobility, aggregation state, and stability of different sizes of urinary crystallites by nanoparticle size analysis and transmission electron microscopy after filtration through a microporous membrane with an aperture size from 0.22 μm to 0.45, 1.2, 3, and 10 μm. Results. The urinary crystallites of the CaOx calculi patients were uneven and much easy to aggregate than those of controls. The number of large-sized crystallites of the patients was significantly more than that of the controls. The main components of the nanosized urinary crystallites in patients were CaOx monohydrate (COM, uric acid, and β-calcium phosphate, and these components were basically similar to those of the microsized urinary crystallites. The urinary crystallites of the calculi patients were easier to aggregate than that of the controls, and the small-sized urinary crystallites were much easier to agglomerate. Conclusions. The urinary system of CaOx calculi patients is unstable and highly susceptible to urinary crystallite aggregation. The rapid aggregation of urinary crystallites may be the key factor affecting urolithiasis formation.

  5. Substitutional Carbon-Modified Anatase TiO2 Decahedral Plates Directly Derived from Titanium Oxalate Crystals via Topotactic Transition.

    Science.gov (United States)

    Niu, Ping; Wu, Tingting; Wen, Lei; Tan, Jun; Yang, Yongqiang; Zheng, Shijian; Liang, Yan; Li, Feng; Irvine, John Ts; Liu, Gang; Ma, Xiuliang; Cheng, Hui-Ming

    2018-03-30

    Changing the composition and/or structure of some metal oxides at the atomic level can significantly improve their performance in different applications. Although many strategies have been developed, the introduction of heteroatoms, particularly anions to the internal part of metal oxide particles, is still not adequate. Here, an effective strategy is demonstrated for directly preparing polycrystalline decahedral plates of substitutional carbon-doped anatase TiO 2 from titanium (IV) oxalate by a thermally induced topotactic transition in an inert atmosphere. Because of the carbon concentration gradient introduced in side of the plates, the carbon-doped TiO 2 (TiO 2- x C x ) shows an increased visible light absorption and a two orders of magnitude higher electrical conductivity than pure TiO 2 . Consequently, it can be used as a photocatalyst and an active material for lithium storage and shows much superior activity in generating hydroxyl radicals under visible light and greatly increased electrical-specific capacity at high charge-discharge rates. The strategy developed could also be applicable to the atomic-scale modification of other metal oxides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley.

    Science.gov (United States)

    El-Zaeddi, Hussein; Calín-Sánchez, Ángel; Nowicka, Paulina; Martínez-Tomé, Juan; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2017-07-01

    The effects of a preharvest treatment with malic (MA), oxalic (OA), or acetylsalicylic (ASA) acid at three concentrations (1, 2 and 3mM) on the bioactivity and antioxidant capacity of coriander, dill, and parsley were investigated. The antioxidant capacity of the herbs extracts was assayed by spectrophotometric methods by using three different analytical methods: ORAC, FRAP, and ABTS; the effects of treatments were very positive in coriander, produced intermediate results in dill, and no effects were found in parsley plants. Polyphenol compounds were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. Thirty phenolic compounds were identified in these three herbs. The major compounds were (i) coriander: dimethoxycinnamoyl hexoside and quercetin-3-O-rutinoside, (ii) dill: neochlorogenic acid and quercetin glucuronide, and (iii) parsley: apigenin-7-apiosylglucoside (apiin) and isorhamnetin-3-O-hexoside. The application of these three organic acids favored the accumulation of phenolic compounds in coriander plants, but had no significant positive effects on dill and parsley. The treatments leading to the best results in all three plants were the application of MA or OA at 1mM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Time-dependent subcellular structure injuries induced by nano-/micron-sized calcium oxalate monohydrate and dihydrate crystals.

    Science.gov (United States)

    Sun, Xin-Yuan; Yu, Kai; Ouyang, Jian-Ming

    2017-10-01

    Comparative studies were conducted to investigate the time effect of cell injury induced by nano-sized (50nm) and micron-sized (10μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The effects of nano-/micron-sized COM and COD exposure on Vero cells were investigated by detecting the cell viability, cell morphology, LDH release, reactive oxygen species, mitochondrial membrane potential, cell cycle, and cell apoptosis, as well as the intracellular and extracellular crystal distribution. Nano-/micron-sized COM and COD exposure lead to subcellular organelle injury in varying degrees, but the injury sequence of various organelles differed. The time sequence of organelle injury presenting significant variation was described as follows: cell membrane injury (1h)crystals lead organelle injury faster than micron-sized crystals, and COM crystals showed more obvious time-dependent effects than the same-sized COD crystals. This study may provide insights into the damage to renal epithelial cells induced by urinary crystals and the formation mechanism of kidney stones. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Study of the temperature influence during the uranium (Vi) sorption on surface of ZrP2O7 in presence of oxalic and salicylic acid

    International Nuclear Information System (INIS)

    Garcia G, N.

    2013-01-01

    This work studies the effect of temperature on the uranium (Vi) sorption onto zirconium diphosphate in the presence of organic acids (oxalic and salicylic acids). Zirconium diphosphate was synthesized by a chemical condensation reaction and characterized using several analytical techniques, in order to check its purity. This point is very important because the presence of any impurities or secondary phases may interfere with the hydration and sorption process. Prior to the sorption experiments, three batches of zirconium diphosphate were pre-equilibrated with NaClO 4 , oxalic acid or salicylic acid solutions. The hydrated solids were washed and dried and then again characterized in order to study the interactions between organic acids and zirconium diphosphate surface. Uranium sorption onto zirconium diphosphate (pre-equilibrated with NaClO 4 , oxalic acid and salicylic acid solutions) was investigated as a function of ph, organic acid and temperature (20, 40 y 60 grades C). Thermodynamic parameters for the sorption reactions (enthalpy change, entropy change and Gibbs free energy change) were determined from temperature dependence of distribution coefficient by using the Vant Hoff equation. Solids characterization after hydration shows that exist an interaction between organic acids and ZrP 2 O 7 . This fact was confirmed with the microcalorimetry study, the reaction heat for hydration of zirconium diphosphate in NaClO 4 solution was exothermic (-269.59 mJ) and for hydration of zirconium diphosphate in oxalic acid solution was endothermic (53.64 mJ). The experimental results showed important differences in the sorption mechanisms for the reaction of Uranium with ZrP 2 O 7 in the presence and absence of organic acids. For the zirconium diphosphate hydrated with oxalic acid, the sorption percentage was 50% from lowest ph values. For the zirconium diphosphate hydrated with salicylic acid, the initial concentration of uranium was 6 x 10 -4 M and a percentage of 10% was

  9. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  10. Inorganic ion exchangers based on manganese and potassium for recovery and removal of pollutant metals of aqueous effluents; Trocadores ionicos inorganicos a base de manganes e potassio para recuperacao e remocao de metais poluentes de efluentes aquosos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jacinete Lima dos

    2001-07-01

    This work presents a study on the synthesis, characterization and ion exchange properties of inorganic ion exchangers based on manganese and potassium. The ion exchangers were synthesized by calcination of the mixture of manganese(II) oxalate and potassium oxalate and were characterized by granulometer distribution analysis, X-ray powder diffraction, infrared spectroscopy and scanning electron microscopic. From the data obtained in characterization it was observed that exist two distinguished groups of these materials. The first group belong to ion exchangers with up to 30% w/w potassium and the second group formed by the ion exchangers with more than 30% w / w of content of potassium in their compositions. The studies of adsorption of these materials showed that the adsorption of Cd{sup 2+} is a function of the following parameters as pH, concentration of Cd{sup 2+}, time of contact between the ion exchangers the concentration of the Cd{sup 2+} solution and the interference of other ions like Ni{sup 2+}. The great pH of adsorption for these materials occur in pH 9, the study of the influence of the cadmium concentration in the adsorption showed that for a group of exchangers the adsorption decreases with the increase of cadmium concentration and for the other group the adsorption increases with the increase of cadmium concentration. The kinetics of adsorption occur in a contact time between the ion exchangers and the Cd{sup 2+} solutions relatively short, at about 15 minutes is necessary to establish the equilibrium. The presence of Ni{sup 2+} as interfering ion decreases the adsorption of cadmium of 99,7% to 65%. These inorganic ion exchangers showed be good exchangers for Cd{sup 2+}. (author)

  11. Radioactive Ion Sources

    CERN Document Server

    Stora, T

    2013-01-01

    This chapter provides an overview of the basic requirements for ion sources designed and operated in radioactive ion beam facilities. The facilities where these sources are operated exploit the isotope separation online (ISOL) technique, in which a target is combined with an ion source to maximize the secondary beam intensity and chemical element selectivity. Three main classes of sources are operated, namely surface-type ion sources, arc discharge-type ion sources, and finally radio-frequency-heated plasma-type ion sources.

  12. Ions and light

    CERN Document Server

    Bowers, Michael T

    2013-01-01

    Gas Phase Ion Chemistry, Volume 3: Ions and Light discusses how ions are formed by electron impact, ion-molecule reactions, or electrical discharge. This book discusses the use of light emitted by excited molecules to characterize either the chemistry that formed the excited ion, the structure of the excited ion, or both.Organized into 10 chapters, this volume begins with an overview of the extension of the classical flowing afterglow technique to include infrared and chemiluminescence and laser-induced fluorescence detection. This text then examines the experiments involving molecules that ar

  13. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Junmin; Han, Dongmei; Zuo, Xiaoxi [Department of Chemistry, South China Normal University, Guangzhou 510631 (China)

    2005-12-01

    This paper describes a new recycling process of metal values from spent lithium-ion batteries (LIBs). After the dismantling of the spent batteries steel crusts, the leaching of battery internal substances with alkaline solution and the dissolving of the residues with H{sub 2}SO{sub 4} solution were carried out. Then mass cobalt was chemically deposited as oxalate, and Acorga M5640 and Cyanex272 extracted the small quantities of copper and cobalt, respectively. Lithium was recovered as deposition of lithium carbonate. It is shown that about 90% cobalt was deposited as oxalate with less than 0.5% impurities, and Acorga M5640 and Cyanex272 were efficient and selective for the extraction of copper and cobalt in sulfate solution. Over 98% of the copper and 97% of the cobalt was recovered in the given process. In addition, the waste solution was treated innocuously, and LiCoO{sub 2} positive electrode material with good electrochemical performance was also synthesized by using the recovered compounds of cobalt and lithium as precursors. The process is feasible for the recycling of spent LIBs in scale-up. (author)

  14. Single Cathode Ion Thruster

    Data.gov (United States)

    National Aeronautics and Space Administration — Objective is to design an electrostatic ion thruster that is more efficient, simpler, and lower cost than the current gridded ion thruster. Initial objective is to...

  15. Applications of decelerated ions

    International Nuclear Information System (INIS)

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed

  16. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  17. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  18. Negative Ion Density Fronts

    International Nuclear Information System (INIS)

    Igor Kaganovich

    2000-01-01

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas

  19. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate

    Directory of Open Access Journals (Sweden)

    X. Wang

    2017-10-01

    Full Text Available Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA and mixed particles composed of ammonium sulfate (AS and OA with different organic to inorganic molar ratios (OIRs have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH, and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH for mixed OA ∕ AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH of AS in mixed OA ∕ AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA ∕ AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4 and ammonium hydrogen sulfate (NH4HSO4 from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA ∕ AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH42SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA

  20. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate

    Science.gov (United States)

    Wang, Xiaowei; Jing, Bo; Tan, Fang; Ma, Jiabi; Zhang, Yunhong; Ge, Maofa

    2017-10-01

    Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH), and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA / AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH) of AS in mixed OA / AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA / AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA / AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA / AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth