WorldWideScience

Sample records for birch forest understory

  1. The Frequency and Fate of Understory Forest Fires in Amazonia

    Science.gov (United States)

    Morton, D. C.; le page, Y.; Wang, D.; Chen, Y.; Randerson, J. T.; Collatz, G. J.; Giglio, L.; Hurtt, G. C.; DeFries, R. S.

    2012-12-01

    Fires for deforestation or agricultural management frequently escape their intended boundaries and burn standing Amazon forests. The extent and frequency of understory forest fires are critical to assess forest carbon emissions and the long-term legacy of understory fires in Amazonia. Patterns of understory fire activity under current climate conditions also offer a blueprint for potential changes in Amazon forests under scenarios of future climate and land use. Here, we estimated of the extent and frequency of understory forest fires for the entire arc of deforestation in southern Amazonia using a time series of annual Moderate Resolution Imaging Spectroradiometer (MODIS) data. Understory forest fires burned more than 80,000 km2 during 1999-2010. Fires were widespread along the southern and eastern extents of Amazon forests during the four years with highest fire activity (1999, 2005, 2007, 2010). The interannual variability in understory fires offered new insights into fire-climate dynamics in Amazonia over a range of temporal scales, based on the combination of burned area, MODIS active fire detections, and reanalysis climate data. Initial fire exposure reduces aboveground carbon stocks, and frequent fires are one possible mechanism for long-term changes the structure of Amazon forests. Repeated burning was concentrated in southeastern Amazonia, and >95% of all repeated fires occurred in the Brazilian states of Mato Grosso and Pará. Forests that burned two or more times during this period accounted for 16% of understory fire activity. Finally, deforestation of burned forests was rare, suggesting that forest degradation from understory fires was an independent source of carbon emissions during this period. Modeling the time scales of carbon loss and recovery in burned forests is therefore critical to estimate the net carbon emissions from these fires. The results of this study suggest that understory fires operate as a large-scale edge effect in Amazonia, as

  2. Examining spring phenology of forest understory using digital photography

    Science.gov (United States)

    Liang Liang; Mark D. Schwartz; Songlin. Fei

    2011-01-01

    Phenology is an important indicator of forest health in relation to energy/nutrient cycles and species interactions. Accurate characterization of forest understory phenology is a crucial part of forest phenology observation. In this study, ground plots set up in a temperate mixed forest in Wisconsin were observed with a visible-light digital camera during spring 2007....

  3. Understory biomass from southern pine forests as a fuel source

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T.T. [Univ. of Arkansas, Monticello, AR (United States); Baker, J.B. [USDA Forest Service, Monticello, AR (United States)

    1993-12-31

    The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2 ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.

  4. Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest, Agricultural and Forest Meteorology

    NARCIS (Netherlands)

    Iida, S.; Ohta, T.; Matsumoto, K.; Nakai, T.; Kuwada, T.; Konovov, A.V.; Maximov, T.C.; van der Molen, M.K.; Dolman, A.J.; Tanaka, H.; Yabuki, H.

    2009-01-01

    We measured evapotranspiration in an eastern Siberian boreal forest, in which the understory was cowberry and the overstory was larch, during the entire growing seasons of 2005 and 2006. We compared evapotranspiration from the understory vegetation above the forest floor E

  5. Driving Factors of Understory Evapotranspiration within a Siberian Larch Forest

    Science.gov (United States)

    Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.; Spawn, S.; Farmer, S.

    2017-12-01

    Amplified rates of climate change are causing alterations in vegetation productivity, hydrologic cycling, and wildfire severity and intensity in arctic ecosystems. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem that are affected by these modifications. These forests cover 2.5 million km2 with densities ranging from spare to thick. The current average canopy cover is at around 17% and is expected to increase with the observed increases in vegetation productivity and wildfire. These projected changes in forest density can alter the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. Low density boreal forests have much higher rates of understory evapotranspiration and can contribute as much as 80% to total ecosystem evapotranspiration, while the understory in high density forests is responsible for only around 15% of total ecosystem evapotranspiration. The objective of this research is to understand why there are changes in understory evapotranspiration with varying overstory density by looking at light levels, biomass, vegetation, and air and soil differences. To better learn about these differences in understory evapotranspiration in boreal larch forests the driving factors of evapotranspiration were measured within a burn scar with varying densities of high, medium, and low. Water fluxes were conducted using the static chamber technique under different environmental conditions. Furthermore, controlling factors of evapotranspiration such as photosynethically active radiation, vapor pressure deficit, soil moisture, moss cover, biomass, and leaf area index were measured or derived. In general, we found that low density areas have highest rates of evapotranspiration due to larger amount of biomass, and increased access to light, despite low levels of soil moisture. These results can help us understand how and why total ecosystem water exchange will change in boreal larch forests

  6. LEAF AREA INDEX (LAI) CHANGE DETECTION ON LOBLOLLY PINE FOREST STANDS WITH COMPLETE UNDERSTORY REMOVAL

    Science.gov (United States)

    The confounding effect of understory vegetation contributions to satellite derived estimates of leaf area index (LAI) was investigated on two loblolly pine (Pinus taeda) forest stands located in the southeastern United States. Previous studies have shown that understory can a...

  7. LBA-ECO CD-05 Forest Understory Fuel Loads, Paragominas, Para, Brazil: 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains estimates of understory fuel loads (forest litter) at six locations near Paragominas in Northeastern Amazonia. Samples were...

  8. Understory species richness in an urban forest fragment, Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Cristina Ramos de Souza

    2009-09-01

    Full Text Available This study characterizes the floristic composition of the understory of Parque Estadual de Dois Irmãos, (08°01’15.1”S and 34°56’3.2”W, an area of about 370ha characterized as a lowland ombrophilous dense forest. The study included individuals with heights of up to 4.0m, such as treelets, shrubs, sub-bushes and terricolous herb plants, in fertile conditions. The collections were made every two weeks along a period of 24 months. A total of 108 species, belonging to 86 genera and 49 families, were recorded. The families with the highest number of species were Rubiaceae (14, Fabaceae (9 Melastomataceae (8, Asteraceae (8, Myrtaceae (6, and Poaceae (4. The Fabaceae, Melastomataceae, Myrtaceae and Rubiaceae presented the highest number of understory species in this fragment. Generally, among the studies made in the Atlantic forest areas in Pernambuco, the presence of a set of tree species common to these forests is evidenced.

  9. Estimating Understory Temperatures Using MODIS LST in Mixed Cordilleran Forests

    Directory of Open Access Journals (Sweden)

    David N. Laskin

    2016-08-01

    Full Text Available Satellite remote sensing provides a rapid and broad-scale means for monitoring vegetation phenology and its relationship with fluctuations in air temperature. Investigating the response of plant communities to climate change is needed to gain insight into the potentially detrimental effects on ecosystem processes. While many studies have used satellite-derived land surface temperature (LST as a proxy for air temperature, few studies have attempted to create and validate models of forest understory temperature (Tust, as it is obscured from these space-borne observations. This study worked to predict instantaneous values of Tust using daily Moderate Resolution Imaging Spectroradiometer (MODIS LST data over a 99,000 km2 study area located in the Rocky Mountains of western Alberta, Canada. Specifically, we aimed to identify the forest characteristics that improve estimates of Tust over using LST alone. Our top model predicted Tust to within a mean absolute error (MAE of 1.4 °C with an overall model fit of R2 = 0.89 over two growing seasons. Canopy closure and the LiDAR-derived standard deviation of canopy height metric were found to significantly improve estimations of Tust over MODIS LST alone. These findings demonstrate that canopy structure and forest stand-type function to differentiate understory air temperatures from ambient canopy temperature as seen by the sensor overhead.

  10. Understory vegetation data quality assessment for the Interior West Forest and Inventory Analysis program

    Science.gov (United States)

    Paul L. Patterson; Renee A. O' Brien

    2011-01-01

    The Interior West Forest Inventory and Analysis (IW-FIA) program of the USDA Forest Service collects field data on understory vegetation structure that have broad applications. In IW-FIA one aspect of quality assurance is assessed based on the repeatability of field measurements. The understory vegetation protocol consists of two suites of measurements; (1) the...

  11. Vegetation of birch and aspen forests in the Pinega State Reserve

    Directory of Open Access Journals (Sweden)

    Sergey Yu. Popov

    2017-05-01

    Full Text Available The Pinega State Nature Reserve (Russia is located in the Arkhangelsk region in the northern taiga subzone. Together with spruce forests and mires, birch forests represent one of the most wide-spread plant communities of its territory. Birch forests cover 24.6% of the Reserve's area. Aspen forests are rare plant communities in the Pinega Reserve. These forests cover only 0.9% of the whole Reserve's area. The birch and aspen forests vegetation has been classified based on 82 relevès. Eleven associations could be distinguished, which represent six groups of associations. Detailed characteristics of these syntaxa are provided including their biodiversity analysis. The analysis allowed establishing that the revealed syntaxa differ in relation to habitat environmental conditions: e.g., soil moisture, trophicity, nitrogen saturation and soil acidity. Sphagnum and blueberry birch forests proved to be the poorest in nitrogen, in contrast to the richest humidoherbaceous and broad-grassed groups of birch forest associations. Broad-grassed birch forests in the Pinega Reserve inhabit the most drained locations, while humidoherbaceous and Sphagnum forests occur in lesser drained locations.

  12. Retrieval of seasonal dynamics of forest understory reflectance from semi-arid to boreal forests using MODIS BRDF data

    Science.gov (United States)

    Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-04-01

    Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated

  13. Understory cover and biomass indices predictions for forest ecosystems of the Northwestern United States

    Science.gov (United States)

    Vasile A. Suchar; Nicholas L. Crookston

    2010-01-01

    The understory community is a critical component of many processes of forest ecosystems. Cover and biomass indices of shrubs and herbs of forested ecosystems of Northwestern United States are presented. Various forest data were recorded for 10,895 plots during a Current Vegetation Survey, over the National Forest lands of entire Pacific Northwest. No significant...

  14. LBA-ECO CD-05 Forest Understory Fuel Loads, Paragominas, Para, Brazil: 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains estimates of understory fuel loads (forest litter) at six locations near Paragominas in Northeastern Amazonia. Samples were collected from...

  15. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  16. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae outbreak in pine forests.

    Directory of Open Access Journals (Sweden)

    Gregory J Pec

    Full Text Available The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae in lodgepole pine (Pinus contorta forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  17. The formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  18. The formation of dense understory layers in the forest worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  19. Birch mixture in spruce forest - a method to reduce the effects of acidification?

    International Nuclear Information System (INIS)

    Maartensson, Kristina.

    1996-01-01

    Acidification has lately been focus of increased attention in the business, industrial and public sectors. One measure that can prevent further acidification is the liming of forest soils. Another strategy would be to increase the admixture of deciduous tree species in conifer forest. This paper deals with the latter problem. From ecological and economical standpoints, the tree species offering the most advantageous admixture in Sweden would be birch, Betula pendula, and Norway spruce, Picea abies. Birch trees help to increase soil pH, while decreasing atmospheric deposition and protecting young spruce seedling from frost. The use of birch admixture need to be 50% or more to get required effect. This will lead to a reduction in spruce wood production. This need not to be a problem, however, since birch pulp will probably become more valuable in the future. The admixed forests have a higher biological diversity and are of greater value for recreation. Although spruce production on acidified sited is still high, further atmospheric deposition could lead to declines in production. Forest soils will eventually sustain serious damage if acid deposition continues to increase, which will require new alternatives for wood production be found. A high admixture of birch can offer a temporary respite if emission and deposition continue, but cannot completely compensate for the acidifying effects of present deposition levels. 26 refs, 2 figs

  20. Infrared heater system for warming tropical forest understory plants and soils

    Science.gov (United States)

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  1. Dry coniferous forest restoration and understory plant diversity: The importance of community heterogeneity and the scale of observation

    Science.gov (United States)

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...

  2. Western dwarf mistletoe infects understory Jeffrey pine seedlings on Cleveland National Forest, California

    Science.gov (United States)

    Robert F. Scharpf; Detlev Vogler

    1986-01-01

    Many young, understory Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were found to be infected by western dwarf mistletoe (Arceuthobium campylopodum Engelm.) on Laguna Mountain, Cleveland National Forest, in southern California. Under heavily infected overstory, about three-fourths of the young pines (about 15 years old on the...

  3. Development of understory tree vegetation after thinning naturally occurring shortleaf pine forests

    Science.gov (United States)

    K.C. Anup; Thomas B. Lynch; Douglas Stevenson; Duncan Wilson; James M. Guldin; Bob Heinemann; Randy Holeman; Dennis Wilson; Keith Anderson

    2015-01-01

    During the 25 years since establishment of more than 200 growth study plots in even-aged, naturally regenerated shortleaf pine (Pinus echinata Mill.) forests, there has been considerable development of hardwood understory trees, shrubs, and some shortleaf pine regeneration. During the period from 1985-1987, even-aged shortleaf pine growth-study...

  4. Vegetation pattern and diversity in S. E. labrador, canada: Betula papyrifera (birch) forest development in relation to fire history and physiography. [Picea mariana; Abies balsamea

    Energy Technology Data Exchange (ETDEWEB)

    Foster, D.R.; King, G.A.

    1986-06-01

    The Betula papyrifera (paper birch) forest of the wilderness of southeastern Labrador is described. B. papyrifera forests range in size from less than 1 ha to several km/sup 2/, display sharp borders with the adjoining conifer forests and are restricted to steep slopes that have burned in the previous 110 years. Floristically, the B papyrifera community is distinguished from conifer forests by the presence of fourteen differential species, by the scarcity of terrestrial cryptograms and by the development of a diverse understory of vascular plants. Three minimum conditions are necessary for B. papyrifera forest development: (i) moist and well-drained soils, (ii) a nearby seed source, and (iii) an open site. The nearly exclusive restriction of B. papyrifera forest to areas that have burned in the last 110 years indicates that the open-site conditions necessary for stand initiation are largely created by lightning fires. Age-structure analysis demonstrates that, following fire, regeneration by B. papyrifera is rapid and results in the formation of an even-aged overstory. Gradual invasion of canopy openings by Picea mariana and Abies balsamea results in the progressive conversion to conifer forest. Fire maintains B. papyrifera and other early post-fire communities in a mosaic pattern and increases regional vegetation diversity. The pattern is not random, but is controlled by species autoecologies, the pattern of fires and physiography. The vegetation of southeastern Labrador is in a state of dynamic equilibrium.

  5. Ecosystem and understory water and energy exchange for a mature, naturally regenerated pine flatwoods forest in north Florida

    Science.gov (United States)

    Thomas L. Powell; Gregory Starr; Kenneth L. Clark; Timothy A. Martin; Henry L. Gholz

    2005-01-01

    Eddy covariance was used to measure energy fluxes from July 2000 - June 2002 above the tree canopy and above the understory in a mature, naturally regenerated slash pine (Pinus elliottii Engelm. var. elliottii) - longleaf pine (Pinus palustris Mill.) flatwoods forest. Understory latent energy (eE) and sensible...

  6. Multi-scale spatial controls of understory vegetation in Douglas-fir–western hemlock forests of western Oregon, USA

    Science.gov (United States)

    Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann

    2014-01-01

    Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...

  7. Understory avifauna exhibits altered mobbing behavior in tropical forest degraded by selective logging.

    Science.gov (United States)

    Hua, Fangyuan; Sieving, Kathryn E

    2016-11-01

    In understanding the impacts of selective logging on biodiversity, relatively little is known about the critical behavioral link between altered forest conditions and population persistence. Predator-mobbing is a widespread anti-predator behavior in birds that expresses a well-known trade-off influencing prey survival under predation risk. Here, we ask whether the predator-mobbing behavior of understory forest birds is altered by selective logging and associated forest structural changes in the highly endangered lowland rainforest of Sumatra. At four study sites spanning a gradient of logging-induced forest degradation, we used standardized mobbing and owl call playbacks with predator model presentation to elicit the predator-mobbing behavior of understory prey birds, compared birds' mobbing intensity across sites, and related variation in this intensity to forest vegetation structure. We found that selective logging altered birds' predator-mobbing intensity (measured by behavioral conspicuousness and propensity to approach the predator) as well as forest structure, and that vegetative changes to canopy and understory were correlated with contrasting responses by the two major bird foraging guilds, gleaning versus flycatching birds. We additionally discuss the implications of our findings for further hypothesis testing pertaining to the impacts of selective logging on the ecological processes underlying prey mobbing behavior, particularly with regards to predator-prey interactions and prey accruement of energy reserves.

  8. On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2006-01-01

    The mechanistic basis underpinning forest succession is the gap-phase paradigm in which overstory disturbance interacts with seedling and sapling shade tolerance to determine successional trajectories. The theory, and ensuing simulation models, typically assume that understory plants have little impact on the advance regeneration layer's composition. We challenge...

  9. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

    Science.gov (United States)

    Hamraz, Hamid; Contreras, Marco A; Zhang, Jun

    2017-07-28

    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

  10. The aspen-gray birch forests of the Anthracite Region

    Science.gov (United States)

    C. F. Burnham; M. J. Ferree; F. E. Cunningham

    1947-01-01

    This paper is a progress report of forest research in the Anthracite Region by personnel of the Station's branch at Kingston, Pa. It is the fourth in a series of seven reports dealing with the principal forest types in the Anthracite Region.

  11. Site quality influence over understory plant diversity in old-growth and harvested Nothofagus pumilio forests

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, E. A.; Lencinas, M. V.; Martinez-Pastur, G. J.

    2013-05-01

    Aim of study: The effects and interactions of shelter wood forest harvesting and site qualities over understory plant species diversity and composition were compared among primary and harvested Nothofagus pumilio forests. Area of study: Tierra del Fuego (Argentina), on three pure conditions (one and six year-old harvested, and primary without previous harvesting forests) and three site qualities (high, medium and low). Material and Methods: Understory richness and cover (%) were registered in five replicates of 1 hectare each per treatment. Taxonomic species were classified in categories (groups, origin and life forms). Two-way ANOVAs and multivariate analyses were conducted. Main results: Shelterwood harvesting and site quality significantly influenced understory cover and richness, which allow the introduction of native and exotic species and increasing of dicot and monocot covers. In dicots, monocots, exotics and total groups, higher richness and covers were related to time. Meanwhile, cover reached similar high values in all site qualities on dicot, native and total groups. On the other hand, monocot and exotic richness and cover remain similar in primary and recently harvested forests, and greatly increased in old harvested forests. Mosses and ferns were among the most sensitive groups. Research highlights: Impacts of shelterwood cut depend on site quality of the stands and time since harvesting occurs. For this, different site quality stands should received differential attention in the development of conservation strategies, as well as variations in the shelterwood implementation (as irregularity and patchiness) should be considered to better promote understory plant species conservation inside managed areas. (Author) 45 refs.

  12. Simulating Various Terrestrial and Uav LIDAR Scanning Configurations for Understory Forest Structure Modelling

    Science.gov (United States)

    Hämmerle, M.; Lukač, N.; Chen, K.-C.; Koma, Zs.; Wang, C.-K.; Anders, K.; Höfle, B.

    2017-09-01

    Information about the 3D structure of understory vegetation is of high relevance in forestry research and management (e.g., for complete biomass estimations). However, it has been hardly investigated systematically with state-of-the-art methods such as static terrestrial laser scanning (TLS) or laser scanning from unmanned aerial vehicle platforms (ULS). A prominent challenge for scanning forests is posed by occlusion, calling for proper TLS scan position or ULS flight line configurations in order to achieve an accurate representation of understory vegetation. The aim of our study is to examine the effect of TLS or ULS scanning strategies on (1) the height of individual understory trees and (2) understory canopy height raster models. We simulate full-waveform TLS and ULS point clouds of a virtual forest plot captured from various combinations of max. 12 TLS scan positions or 3 ULS flight lines. The accuracy of the respective datasets is evaluated with reference values given by the virtually scanned 3D triangle mesh tree models. TLS tree height underestimations range up to 1.84 m (15.30 % of tree height) for single TLS scan positions, but combining three scan positions reduces the underestimation to maximum 0.31 m (2.41 %). Combining ULS flight lines also results in improved tree height representation, with a maximum underestimation of 0.24 m (2.15 %). The presented simulation approach offers a complementary source of information for efficient planning of field campaigns aiming at understory vegetation modelling.

  13. Long-term overstory and understory change following logging and fire exclusion in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    Eric E. Knapp; Carl N. Skinner; Malcolm P. North; Becky L. Estes

    2013-01-01

    In many forests of the western US, increased potential for fires of uncharacteristic intensity and severity is frequently attributed to structural changes brought about by fire exclusion, past land management practices, and climate. Extent of forest change and effect on understory vegetation over time are not well understood, but such information is useful to forest...

  14. Non-native grass invasion associated with increases in insect diversity in temperate forest understory

    Science.gov (United States)

    Metcalf, Judith L.; Emery, Sarah M.

    2015-11-01

    Invasive plants can alter the structure and function of plant communities to such a degree that they can also have significant impacts on the insect communities. Because insects play an important role in many ecosystems, changes in these communities could have important implications, beyond their biodiversity value, for ecosystem function and diversity at other trophic levels. Microstegium vimineum is an annual C4 grass that is invasive in many eastern North American deciduous forests. Because this grass plays an important role in determining the plant community structure in the understory of these forests, it also has the potential to significantly alter understory insect communities. In this study we evaluated the relationship between M. vimineum and understory insect communities in a forest reserve in Kentucky, USA. Total insect abundance, richness and diversity showed a positive association with M. vimineum presence. Trophic analysis showed significantly higher abundances of herbivores where M. vimineum was present. Forb abundance, which serves as the primary food source for herbivorous insects in this system, was lower in sites invaded with M. vimineum. Invasion by this non-native was also associated with significant increases in aboveground plant biomass which was nearly 50% greater in invaded sites. These results indicate that the understory insect community may be responding to increased biomass rather than the loss of native forb food resources, which contradicts other studies that have examined relationships between M. vimineum invasion and insects. Our results provide evidence that invasive plants can provide benefits for other trophic levels, even when native plant biodiversity is lost.

  15. Contrasting structure and composition of the understory in species-rich tropical rain forests.

    Science.gov (United States)

    LaFrankie, James V; Ashton, Peter S; Chuyong, George B; Co, Leonardo; Condit, Richard; Davies, Stuart J; Foster, Robin; Hubbell, Stephen P; Kenfack, David; Lagunzad, Daniel; Losos, Elizabeth C; Nor, Noor Supardi Md; Tan, Sylvester; Thomas, Duncan W; Valencia, Renato; Villa, Gorky

    2006-09-01

    In large samples of trees > or = 1 cm dbh (more than 1 million trees and 3000 species), in six lowland tropical forests on three continents, we assigned species with >30 individuals to one of six classes of stature at maturity (SAM). We then compared the proportional representation of understory trees (1-2 cm dbh) among these classes. The understory of the three Asian sites was predominantly composed of the saplings of large-canopy trees whereas the African and American sites were more richly stocked with trees of the smaller SAM classes. Differences in class representation were related to taxonomic families that were present exclusively in one continent or another. Families found in the Asian plots but not in the American plot (e.g., Dipterocarpaceae, Fagaceae) were predominantly species of the largest SAM classes, whereas families exclusive to the American plots (e.g., Melastomataceae sensu stricto, Piperaceae, and Malvaceae [Bombacacoidea]) were predominantly species of small classes. The African plot was similar to Asia in the absence of those American families rich in understory species, while similar to America in lacking the Asian families rich in canopy species. The numerous understory species of Africa were chiefly derived from families shared with Asia and/or America. The ratio of saplings (1-2 cm dbh) to conspecific canopy trees (>40 cm dbh) was lower in American plots than in the Asian plots. Possible explanations for these differences include phenology, moisture and soil fertility regimes, phyletic constraints, and the role of early successional plants in forest development. These results demonstrate that tropical forests that appear similar in tree number, basal area, and the family taxonomy of canopy trees nonetheless differ in ecological structure in ways that may impact the ecology of pollinators, dispersers, and herbivores and might reflect fundamental differences in canopy tree regeneration.

  16. Breeding biology of an afrotropical forest understory bird community in northeastern Tanzania

    Science.gov (United States)

    Mkongewa, Victor J.; Newmark, William D.; Stanley, Thomas R.

    2013-01-01

    Many aspects of the breeding biology of Afrotropical forest birds are poorly known. Here we provide a description based on the monitoring of 1461 active nests over eight breeding seasons about one or more aspects of the breeding biology for 28 coexisting understory bird species on the Amani Plateau in the East Usambara Mountains, Tanzania. Mean nest height and mean distance of nest from forest edge varied widely among species with most species constructing nests across a broad vertical and forest edge to interior gradient. However, there were important exceptions with all sunbird species and several dove and waxbill species constructing nests in close proximity to the forest edge. For 17 common species for which we recorded two or more active nests, mean clutch size across species was 1.9 eggs per clutch, the lowest site-specific mean clutch size yet reported for a tropical forest bird community. For nine bird species, a subset of the 17 common species, length of breeding season, defined as the difference between the earliest and latest recorded incubation onset date, ranged from 88–139 days. Most of these nine species displayed a unimodal distribution in incubation onset dates across a breeding season which extended from the end of August through middle January. In summary, a wide variation exists in most aspects of the breeding biology within an understory forest bird community in the East Usambara Mountains.

  17. Detecting fragmentation extinction thresholds for forest understory plant species in peninsular Spain.

    Directory of Open Access Journals (Sweden)

    Marta Rueda

    Full Text Available Ecological theory predicts that fragmentation aggravates the effects of habitat loss, yet empirical results show mixed evidences, which fail to support the theory instead reinforcing the primary importance of habitat loss. Fragmentation hypotheses have received much attention due to their potential implications for biodiversity conservation, however, animal studies have traditionally been their main focus. Here we assess variation in species sensitivity to forest amount and fragmentation and evaluate if fragmentation is related to extinction thresholds in forest understory herbs and ferns. Our expectation was that forest herbs would be more sensitive to fragmentation than ferns due to their lower dispersal capabilities. Using forest cover percentage and the proportion of this percentage occurring in the largest patch within UTM cells of 10-km resolution covering Peninsular Spain, we partitioned the effects of forest amount versus fragmentation and applied logistic regression to model occurrences of 16 species. For nine models showing robustness according to a set of quality criteria we subsequently defined two empirical fragmentation scenarios, minimum and maximum, and quantified species' sensitivity to forest contraction with no fragmentation, and to fragmentation under constant forest cover. We finally assessed how the extinction threshold of each species (the habitat amount below which it cannot persist varies under no and maximum fragmentation. Consistent with their preference for forest habitats probability occurrences of all species decreased as forest cover contracted. On average, herbs did not show significant sensitivity to fragmentation whereas ferns were favored. In line with theory, fragmentation yielded higher extinction thresholds for two species. For the remaining species, fragmentation had either positive or non-significant effects. We interpret these differences as reflecting species-specific traits and conclude that although

  18. Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present

    Science.gov (United States)

    E.T. Nilsen; T.T. Lei; S.W. Semones

    2009-01-01

    We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s...

  19. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  20. Estimating individual tree mid- and understory rank-size distributions from airborne laser scanning in semi-arid forests

    Science.gov (United States)

    Tyson L. Swetnam; Donald A. Falk; Ann M. Lynch; Stephen R. Yool

    2014-01-01

    Limitations inherent to airborne laser scanning (ALS) technology and the complex sorting and packing relationships of forests complicate accurate remote sensing of mid- and understory trees, especially in denser forest stands. Self-similarities in rank-sized individual tree distributions (ITD), e.g. bole diameter or height, are a well-understood property of natural,...

  1. Performance and population dynamics of a native understory herb differ between young and old forest stands in the Southern Appalachians

    Science.gov (United States)

    Michelle M. Jackson; Scott M. Pearson; Monica G. Turner

    2013-01-01

    Anthropogenic disturbances (e.g., logging) can strongly affect the composition and structure of forest understory herb communities, with land-use legacies often persisting for decades or even centuries. Many studies of forest plant response to land-use history have focused on species distributions and abundances, and argued broadly for either dispersal or establishment...

  2. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-01-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in

  3. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    Science.gov (United States)

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. © 2013 John Wiley & Sons Ltd.

  4. Impacts of cwd on understory biodiversity in forest ecosystems in the qinling mountains, china

    International Nuclear Information System (INIS)

    Yuan, J.; Wei, X.; Shang, Z.; Cheng, F.; Hu, Z.; Zheng, X.; Zhang, S.

    2015-01-01

    The stocks and characteristics of coarse woody debris (CWD) are expected to reflect forest stand features. However, despite their importance, there have been no reports of CWD stocks and characteristics in the Qinling Mountains. We measured the CWD stocks in different CWD types, decay classes and diameter classes of the five forest types in the Qinling Mountains. The highest biomass of CWD was the Pinus tabulaeformis forest (12.57 t-hm /sup -2/), occupied 5.66 percentage in the biomass of this forest, the lowest occupied 1.03 percentage in Betula albo-sinensis forest (1.82 t-hm /sup -2/). Our results revealed that there was a strong correlation between CWD and forest biomass. When the CWD biomass were 9.9 t-hm /sup -2/ and 11.6 hm /sup -2/, the biomass of Pinus armandi forest and P. tabulaeformis forest reached maximum, respectively. CWD is particularly important for biodiversity, but the importance of CWD in the control of diversity in forest systems has not been fully appreciated and certainly has not been evaluated intensively within China, especially in Qinling forests. In our research, we used species richness (S), Shannon-Wiener index (H), Simpson index (D) and Pielou evenness index (J) to assess the diversity of plant community. According to our analysis, we found 1) the effect of CWD biomass on these a diversity index was dependent on tree, shrub and herb in the five forest types, 2) the impacts of CWD biomass on understory biodiversity were more obvious, 3) With the increase of CWD biomass, the species richness (S), Shannon-Wiener index (H) and Simpson index (D) of understory increased significantly. Our results suggested that there was a relatively lower CWD biomass in the Qinling Mountains, but it had significant effects on forest biomass and diversity of plant community. Reserving CWD was important for eco-forestry, but how many and how characteristic of CWD should be retained need further research. Development of CWD reasonable strategies was

  5. Floristic conservation value, nested understory floras, and the development of second-growth forest.

    Science.gov (United States)

    Spyreas, Greg; Matthews, Jeffrey W

    2006-08-01

    Nestedness analysis can reveal patterns of plant composition and diversity among forest patches. For nested floral assemblages, the plants occupying any one patch are a nested subset of the plants present in successively more speciose patches. Elimination of sensitive understory plants with human disturbance is one of several mechanisms hypothesized to generate nonrandom, nested floral distributions. Hypotheses explaining distributions of understory plants remain unsubstantiated across broad landscapes of varying forest types and disturbance histories. We sampled the vegetation of 51 floodplain and 55 upland forests across Illinois (USA) to examine how the diversity, composition, and nestedness of understory floras related to their overstory growth and structure (basal area), and their overall floristic conservation value (mean C). We found that plant assemblages were nested with respect to site species richness, such that rare plants indicated diverse forests. Floras were also nested with respect to site mean C and basal area (BA). However, in an opposite pattern from what we had expected, floras of high-BA stands were nested subsets of those of low-BA stands. A set of early-successional plants restricted to low-BA stands, and more importantly, the absence of a set of true forest plants in high-BA stands, accounted for this pattern. Additionally, we observed a decrease in species richness with increasing BA. These results are consistent with the hypothesis that recovery of true forest plants does not occur concurrently with overstory regeneration following massive anthropogenic disturbance. Nestedness by site mean C indicates that high conservation value (conservative) plants co-occur in highly diverse stands; these forests are assumed to be less disturbed historically. Because site mean C was uncorrelated with BA, BA-neutral disturbances such as livestock usage are suggested as accounting for between-site differences in mean C. When considered individually

  6. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    Science.gov (United States)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  7. Remote sensing of temperate coniferous forest lead area index - The influence of canopy closure, understory vegetation and background reflectance

    Science.gov (United States)

    Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.

    1990-01-01

    Consideration is given to the effects of canopy closure, understory vegetation, and background reflectance on the relationship between Landsat TM data and the leaf area index (LAI) of temperate coniferous forests in the western U.S. A methodology for correcting TM data for atmospheric conditions and sun-surface-sensor geometry is discussed. Strong inverse curvilinear relationships were found between coniferous forest LAI and TM bands 3 and 5. It is suggested that these inverse relationships are due to increased reflectance of understory vegetation and background in open stands of lower LAI and decreased reflectance of the overstory in closed canopy stands with higher LAI.

  8. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Directory of Open Access Journals (Sweden)

    D. Tian

    2017-07-01

    Full Text Available Reactive nitrogen (N increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m  ×  20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings, and ground-cover plants (ferns according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height of 5–10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha−1 yr−1 and N100 fertilized plots (100 kg N ha−1 yr−1, while the growth of median and large trees with a DBH of  >  10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical

  9. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Science.gov (United States)

    Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun

    2017-07-01

    Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest

  10. Effects of an exotic plant invasion on native understory plants in a tropical dry forest.

    Science.gov (United States)

    Prasad, Ayesha E

    2010-06-01

    The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long-term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry-forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks-livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb-shrub richness in the livestock-free block, but had no effect on that of tree seedlings in either livestock block. Tree-seedling and herb-shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana-free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey-dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long-term protection of these forests as viable tiger habitats.

  11. Comparison of various sampling methods for evaluation of biodiversity of true bugs (Heteroptera) in a birch forest

    Czech Academy of Sciences Publication Activity Database

    Kula, E.; Bryja, Josef

    2002-01-01

    Roč. 21, č. 2 (2002), s. 137-147 ISSN 1335-342X R&D Projects: GA ČR GA526/98/0537; GA MŽP SE/830/3/00 Institutional research plan: CEZ:AV0Z6093917 Keywords : Heteroptera * birch forest * biodiversity Subject RIV: GK - Forestry Impact factor: 0.246, year: 2002

  12. Edge effects on understory epiphytic ferns and epiphyllous bryophytes in moist afromontane forests of Ethiopia

    Directory of Open Access Journals (Sweden)

    Hylander Kristoffer

    2013-12-01

    Full Text Available Most studies on edge effects in tropical forests have been conducted in landscapes with low human population density and in situations where the edges have been left unused after logging of the adjacent area. Here we studied forest margins heavily used by local farmers in a forest/agriculture mosaic landscape in Ethiopia. We compared forest structure and plant species composition across 41 forest-agriculture ecotones from 200 m out into the agricultural area to 200 m into the forest. There are strong edge effects from the edge and into the forest on canopy cover and number of stumps and apparently these forest-agricultural edges are intensively used by humans. They are penetrated by paths, beehives are found in the trees, timber of various dimensions is harvested and there is sometimes substantial cover of perennial wild (or semi-wild crops such as coffee and spices. The number of understory epiphytic fern species as well as number of epiphyllous (i.e., growing on leaves bryophyte species was lower at 20 m than at 75 m from the edge. The number of fern species was higher in newly created edges and thereafter they declined, which indicates an extinction debt. This pattern was not seen for the epiphyllous bryophytes. It is likely that different human management activities are responsible for many of the found edge effects besides wind and sun effects from the edge. Tropical forest margins provide important resources for people in many landscapes. It is important to understand how such use affects the biota of the forests. This study shows that there are substantial edge effects, but that the edge effects do not seem to become worse over time for epiphyllous bryophytes and only slightly so for ferns.

  13. Classification and ordination of understory vegetation using multivariate techniques in the Pinus wallichiana forests of Swat Valley, northern Pakistan

    Science.gov (United States)

    Rahman, Inayat Ur; Khan, Nasrullah; Ali, Kishwar

    2017-04-01

    An understory vegetation survey of the Pinus wallichiana-dominated temperate forests of Swat District was carried out to inspect the structure, composition and ecological associations of the forest vegetation. A quadrat method of sampling was used to record the floristic and phytosociological data necessary for the analysis using 300 quadrats of 10 × 10 m each. Some vegetation parameters viz. frequency and density for trees (overstory vegetation) as well as for the understory vegetation were recorded. The results revealed that in total, 92 species belonging to 77 different genera and 45 families existed in the area. The largest families were Asteraceae, Rosaceae and Lamiaceae with 12, ten and nine species, respectively. Ward's agglomerative cluster analysis for tree species resulted in three floristically and ecologically distinct community types along different topographic and soil variables. Importance value indices (IVI) were also calculated for understory vegetation and were subjected to ordination techniques, i.e. canonical correspondence analysis (CCA) and detrended correspondence analysis (DCA). DCA bi-plots for stands show that most of the stands were scattered around the centre of the DCA bi-plot, identified by two slightly scattered clusters. DCA for species bi-plot clearly identified three clusters of species revealing three types of understory communities in the study area. Results of the CCA were somewhat different from the DCA showing the impact of environmental variables on the understory species. CCA results reveal that three environmental variables, i.e. altitude, slope and P (mg/kg), have a strong influence on distribution of stands and species. Impact of tree species on the understory vegetation was also tested by CCA which showed that four tree species, i.e. P. wallichiana A.B. Jackson, Juglans regia Linn., Quercus dilatata Lindl. ex Royle and Cedrus deodara (Roxb. ex Lamb.) G. Don, have strong influences on associated understory vegetation. It

  14. Effects of a wide gradient of retained tree structure on understory light in coastal Douglas-fir forests

    International Nuclear Information System (INIS)

    Drever, C.R.; Lertzman, K.P.

    2003-01-01

    We characterize understory light of seven stands that varied along a gradient of tree retention. Using hemispherical canopy photographs and digital image, we estimated gap light or solar radiation reaching the understory through the canopy. Using nonlinear regressions, we related gap light to several structural attributes in the examined silvicultural treatments. The silvicultural treatments affected both the median and range of gap light in the understory. As overstory removal increased from uncut second growth to green-tree retention, the median value of light increased from 8 to 68% full sun, while the range of light increased from 3-22% to 26-88% full sun. We found strong, significant, and negative nonlinear relationships between gap light at a particular microsite (0.04 ha) in the understory and the height, diameter at breast height, density, and volume of surrounding retained trees (r a 2 = 0.77-0.94). These relationships can aid planning of treatments that retain forest structure, such as variable retention, by allowing predictions of understory light from commonly used field data. These predictions allow forest managers to understand some of the ecological consequences and tradeoffs associated with retaining structure during harvesting. (author)

  15. Spectral contribution of understory to forest reflectance in a boreal site: an analysis of EO-1 Hyperion data

    Czech Academy of Sciences Publication Activity Database

    Rautianien, M.; Lukeš, Petr

    2015-01-01

    Roč. 171, dec (2015), s. 98-104 ISSN 0034-4257 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : forest reflectance model * hyperspectral * boreal * leaf area index * understory Subject RIV: EH - Ecology, Behaviour Impact factor: 5.881, year: 2015

  16. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-02-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention.

  17. Infrared heater system for warming tropical forest understory plants and soils.

    Science.gov (United States)

    Kimball, Bruce A; Alonso-Rodríguez, Aura M; Cavaleri, Molly A; Reed, Sasha C; González, Grizelle; Wood, Tana E

    2018-02-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest in Puerto Rico. Three replicate heated 4-m-diameter plots were warmed to maintain a 4°C increase in understory vegetation compared to three unheated control plots, as sensed by IR thermometers. The equipment was larger than any used previously and was subjected to challenges different from those of many temperate ecosystem warming systems, including frequent power surges and outages, high humidity, heavy rains, hurricanes, saturated clayey soils, and steep slopes. The system was able to maintain the target 4.0°C increase in hourly average vegetation temperatures to within ± 0.1°C. The vegetation was heterogeneous and on a 21° slope, which decreased uniformity of the warming treatment on the plots; yet, the green leaves were fairly uniformly warmed, and there was little difference among 0-10 cm depth soil temperatures at the plot centers, edges, and midway between. Soil temperatures at the 40-50 cm depth increased about 3°C compared to the controls after a month of warming. As expected, the soil in the heated plots dried faster than that of the control plots, but the average soil moisture remained adequate for the plants. The TRACE heating system produced an adequately uniform warming precisely controlled down to at least 50-cm soil depth, thereby creating a treatment that allows for assessing mechanistic responses of tropical plants and soil to warming, with applicability to other ecosystems. No physical obstacles to scaling the approach to taller vegetation (i.e., trees) and larger plots were observed.

  18. Patterns of Understory Diversity in Mixed Coniferous Forests of Southern California Impacted by Air Pollution

    Directory of Open Access Journals (Sweden)

    Edith B. Allen

    2007-01-01

    Full Text Available The forests of the San Bernardino Mountains have been subject to ozone and nitrogen (N deposition for some 60 years. Much work has been done to assess the impacts of these pollutants on trees, but little is known about how the diverse understory flora has fared. Understory vegetation has declined in diversity in response to elevated N in the eastern U.S. and Europe. Six sites along an ozone and N deposition gradient that had been part of a long-term study on response of plants to air pollution beginning in 1973 were resampled in 2003. Historic ozone data and leaf injury scores confirmed the gradient. Present-day ozone levels were almost half of these, and recent atmospheric N pollution concentrations confirmed the continued air pollution gradient. Both total and extractable soil N were higher in sites on the western end of the gradient closer to the urban source of pollution, pH was lower, and soil carbon (C and litter were higher. The gradient also had decreasing precipitation and increasing elevation from west to east. However, the dominant tree species were the same across the gradient.

  19. Restoring Native Forest Understory: The Influence of Ferns and Light in a Hawaiian Experiment

    Directory of Open Access Journals (Sweden)

    Robert Shallenberger

    2013-03-01

    Full Text Available Ecological restoration is an increasingly important component of sustainable land management. We explore potential facilitative relationships for enhancing the cost-effectiveness of restoring native forest understory, focusing on two factors: (1 overstory shade and (2 possible facilitation by a fern (Dryopteris wallichiana, one of few native colonists of pasture in our montane Hawaiˈi study system. We planted 720 understory tree seedlings and over 4000 seeds of six species under six planting treatments: a full factorial combination of low, medium and high light, situating plantings in either the presence or absence of a mature fern. After three years, 75% of outplanted seedlings survived. Seedling survivorship was significantly higher in the presence of a fern (79% vs. 71% without a fern and in medium and low light conditions (81% vs. 64% in high light. Relative height was highest at low to medium light levels. After 2.2 years, 2.8% of the planted seeds germinated. We observed no significant differences in seed germination relative to light level or fern presence. Analyzing several approaches, we found nursery germination of seeds followed by outplanting ca. 20% less costly than direct seeding in the field. This study opens new questions about facilitation mechanisms that have the potential to increase the extent and effectiveness of restoration efforts.

  20. Soil properties and understory herbaceous biomass in forests of three species of Quercus in Northeast Portugal

    Directory of Open Access Journals (Sweden)

    Marina Castro

    2014-12-01

    Full Text Available Aim of study: This paper aims to characterize some soil properties within the first 25 cm of the soil profile and the herbaceous biomass in Quercus forests, and the possible relationships between soil properties and understory standing biomass.Area of study: Three monoespecific Quercus forests (Q. suber L., Q. ilex subsp. rotundifolia Lam. and Q. pyrenaica Willd in NE Portugal.Material and methods: During 1999 and 2000 soil properties (pH-KCl, total soil nitrogen (N, soil organic carbon (SOC, C/N ratio, available phosphorus (P, and available potassium (K and herbaceous biomass production of three forest types: Quercus suber L., Quercus ilex subsp. rotundifolia Lam. and Quercus pyrenaica Willd were studied.Main results: The results showed a different pattern of soil fertility (N, SOC, P, K in Quercus forests in NE of Portugal. The C/N ratio and the herbaceous biomass confirmed this pattern. Research highlights: There is a pattern of Quercus sp. distribution that correlates with different soil characteristics by soil characteristics in NE Portugal. Q. pyrenaica ecosystems were found in more favoured areas (mesic conditions; Q. rotundifolia developed in nutrient-poor soils (oligotrophic conditions; and Q. suber were found in intermediate zones.Keywords: fertility; biomass; C/N ratio; cork oak; holm oak; pyrenean oak.

  1. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    Directory of Open Access Journals (Sweden)

    Tess Nahanni Grainger

    Full Text Available Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest

  2. [Effect of fire on understory birds of a gallery forest in central Brazil].

    Science.gov (United States)

    Marini, M A; Cavalcanti, R B

    1996-11-01

    Habitat burning may cause significant population and community changes in animals and plants, specially when the humans increase fire frequency. We mist-netted the understory birds of a gallery forest from the cerrado region of central Brazil before and after a fire of unknown cause which burned the Ecological Reserve of the University of Brasília, Brasília, DF, in September 1987. We conducted mist-netting mostly during the morning, using 12 mist-nets distributed on 2.5 ha in the interior and border of the forest. We captured 137 individuals of 37 species, 51 individuals of 21 species during 135.5 net/h before the fire, and 98 individuals of 33 species during 233 net/h after the fire. The bird community as a whole did not change after the fire. The observed changes in the bird community were related to the type of habitat used by some species of birds than to their diet. Species typical to gallery forests are probably less adapted to habitat burning than species that occur in other habitats and may be suffering a decrease or a disturbance in their population structure, revealing an important problem of cerrado bird conservation.

  3. Waste heaps left by historical Zn-Pb ore mining are hotspots of species diversity of beech forest understory vegetation.

    Science.gov (United States)

    Woch, Marcin W; Stefanowicz, Anna M; Stanek, Małgorzata

    2017-12-01

    Metalliferous mining and smelting industries are associated with very high levels of heavy metal(loid) contamination of the environment. Heavy metals have been proved to significantly influence the species diversity and composition of grassland communities, but little is known on their effects on forest understory vegetation. Therefore, the aim of this study was to investigate the effects of the presence of small heaps of waste rock left by historical Zn-Pb ore mining on understory vegetation. The heaps are scattered over vast areas of beech forests in southern Poland. Three types of study plots were established: (1) on waste heaps themselves, (2) in their vicinity (5-10m from the foot of the heaps, with no waste rock but potentially influenced by the heaps through drainage water), and (3) at least 100m from the foot of the heaps (pseudo-control). In all plots vegetation parameters, i.e., plant species number, cover and community composition, life forms and strategies, as well as basic soil properties were assessed. Although the heaps contained high concentrations of metals, namely Cd, Pb and Zn, they were characterised by higher cover and diversity of understory vegetation, including ancient forest and endangered species, in comparison to their surroundings. They were also characterised by the distinct species composition of their plant communities. This might have resulted from the beneficial influence of high pH and Ca content originating from waste rock composed of dolomite and calcite, as well as from increased habitat heterogeneity, e.g. soil skeleton and steeper slopes. Another important factor influencing the richness and composition of understory was tree cover, which relates to the light transmissibility of the canopy. Our study proved that the disturbance brought about by the former mining and processing of metal ores led to the formation of species-rich understory with high frequency and cover of naturally-valuable species. Copyright © 2017 Elsevier B

  4. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

    Science.gov (United States)

    Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph

    2011-01-01

    Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by

  5. The relationship between the understory shrub component of coastal forests and the conservation of forest carnivores

    Science.gov (United States)

    Keith M. Slauson; William J. Zielinski

    2007-01-01

    The physical structure of vegetation is an important predictor of habitat for wildlife species. The coastal forests of the Redwood region are highly productive, supporting structurally-diverse forest habitats. The major elements of structural diversity in these forests include trees, shrubs, and herbaceous plants, which together create three-dimensional complexity. In...

  6. Short-Term Responses of Birds to Forest Gaps and Understory: An Assessment of Reduced-Impact Logging in a Lowland Amazon Forest.

    Science.gov (United States)

    Joseph M. Wunderle Jr.; Luiza Magalli Pinto Henriques; Michael R. Willig

    2006-01-01

    We studied physiognomy-specific (i.e., gaps vs. understory) responses of birds to low harvest (18.7 m3/ha), reduced-impact logging by comparing 3500 mist net captures in control and cut blocks of an Amazonian terra firme forest in Brazil at 20–42 mo postharvest. Species richness did not differ significantly between control (92 species) and cut (85) forest based on...

  7. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2016-04-01

    Full Text Available Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant impact. Total plant species richness and cover decreased with disturbance severity, such that the greatest richness was in low severity burns (average 28 species per 1-m2 quadrat and plant cover was lowest in the high severity burns (average 16%. However, the response of individual plant groups differed. Lichens and bryophytes were most common in low severity burns and were effectively eliminated from the regenerating plant community at higher burn severities. In contrast, graminoid cover and richness were positively related to burn severity, while forbs did not respond significantly to burn severity, but were impacted by changes in soil chemistry with increased cover at pH >4.9. Our results indicate the importance of non-vascular plants to the overall plant community in this harsh environment and that the plant community is environmentally limited rather than recruitment or competition limited, as is often the case in more mesic forest types. If fire frequency and severity increase as predicted, we may see a shift in plant communities from stress-tolerant species, such as lichens and ericaceous shrubs, to more colonizing species, such as certain graminoids.

  8. Phenological synchrony and seasonality of understory Rubiaceae in the Atlantic Forest, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Heitor Scarpati Liuth

    2013-03-01

    Full Text Available In tropical forests with low seasonality, climatic variables generally exert a weak influence on the phenology of species. The seasonality of phenophases in closely related taxa can be controlled by phylogenetic constraints in such environments. In this study, our aim was to describe the phenology of Rubiaceae in the understory of the Atlantic Forest in the southern part of Bahia, Brazil, as well as to evaluate the seasonality and phenological synchrony of this family. For two years, we observed 90 individuals belonging to 13 species, in an area of 0.2 ha. Leaf flushing and leaf fall did not demonstrate any seasonality, were continuous for most species and correlated with few of the climatic variables. Flowering was seasonal and correlated positively with all climatic variables. Species exhibited seasonality for this phenophase with high flowering overlap among species of Psychotria, indicating an aggregated pattern for this genus. Fruiting was also seasonal and correlated with all the climatic variables, unripe fruit development peaking at the beginning of the season during which humidity is highest and fruit ripening peaking in the season during which humidity is slightly lower. The vegetative and flowering patterns observed in the study area are commonly seen in other tropical forests. The reproductive seasonality of this family can facilitate the attraction of biotic agents, as postulated in the facilitation hypothesis. Our results demonstrate that climatic variables influenced the phenological patterns observed here, although the high reproductive seasonality and interspecific synchrony, especially in congeneric species, raises the possibility that phylogenetic proximity plays a role in the pattern of the family Rubiaceae.

  9. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  10. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  11. Functional traits of the understory plant community of a pyrogenic longleaf pine forest across environmental gradients.

    Science.gov (United States)

    Ames, Gregory M; Anderson, Steven M; Ungberg, Eric A; Wright, Justin P

    2017-08-01

    Understanding and predicting the response of plant communities to environmental changes and disturbances such as fire requires an understanding of the functional traits present in the system, including within and across species variability, and their dynamics over time. These data are difficult to obtain as few studies provide comprehensive information for more than a few traits or species, rarely cover more than a single growing season, and usually present only summary statistics of trait values. As part of a larger study seeking to understand the dynamics of plant communities in response to different prescribed fire regimes, we measured the functional traits of the understory plant communities located in over 140 permanent plots spanning strong gradients in soil moisture in a pyrogenic longleaf pine forest in North Carolina, USA, over a four-year period from 2011 and 2014. We present over 120,000 individual trait measurements from over 130 plant species representing 91 genera from 47 families. We include data on the following 18 traits: specific leaf area, leaf dry matter content, leaf area, leaf length, leaf width, leaf perimeter, plant height, leaf nitrogen, leaf carbon, leaf carbon to nitrogen ratio, water use efficiency, time to ignition, maximum flame height, maximum burn temperature, mass-specific burn time, mass-specific smolder time, branching architecture, and the ratio of leaf matter consumed by fire. We also include information on locations, soil moisture, relative elevation, soil bulk density, and fire histories for each site. © 2017 by the Ecological Society of America.

  12. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  13. Distribution and turnover of 137Cs in birch forest ecosystems: influence of precipitation chemistry

    International Nuclear Information System (INIS)

    Thørring, H.; Skuterud, L.; Steinnes, E.

    2012-01-01

    The aim of the present work was to study radioactive caesium in soil and plants from birch forests subject to different chemical climate. Four areas and three types of precipitation regimes were considered, representing a natural climatic range found in Norway: (A) acidic precipitation (southernmost part of the country); (B) precipitation rich in “sea salts”/marine cations (coastal areas); and (C) + (D) low concentrations of sea salts (inland areas). The results showed significant regional differences in plant uptake between the investigated areas. For instance the aggregated soil-to-plant transfer coefficients (Tag) were generally up to 7–8 times higher for the area receiving acid rain. Differences in caesium speciation partly explained the regional variability - e.g. the exchangeable fraction ranged from 1 to 40% (with the largest fraction of exchangeable caesium found in southernmost Norway). Transfer coefficients estimated on the basis of exchangeable fractions showed no significant differences between the areas of highest (A) and lowest (C) Tags. However, exchangeable fractions taken into consideration, the uptake of 137 Cs in plants in the acid rain-influenced area is still about twice that in the sea salt influenced area B. A significantly lower concentration of soluble base cations and a higher share of acid components in soils in area A is a likely explanation for this observation. - Highlights: ► Precipitation quality affects soil chemistry and plant uptake of Cs. ► Soil-to-plant transfer of Cs was highest in a coastal area receiving acid rain. ► Differences in Cs speciation partly explained regional transfer variability.

  14. Chronic over browsing and biodiversity collapse in a forest understory in Pennsylvania: Results from a 60 year-old deer exclusion plot

    Science.gov (United States)

    Chandra Goetsch; Jennifer Wigg; Alejandro A. Royo; Todd Ristau; Walter P. Carson

    2011-01-01

    We evaluated the impact of chronic deer over browsing on the diversity and abundance of understory forbs and shrubs within a forest stand in the Allegheny High Plateau Region of Pennsylvania by comparing vegetation inside a 60-year-old exclosure to vegetation within an adjacent reference site. This is the oldest known exclosure in the Eastern Deciduous Forest. Browsing...

  15. Influence of skid trails and haul roads on understory plant richness and composition in managed forest landscapes in Upper Michigan, USA

    Science.gov (United States)

    David S. Buckley; Thomas R. Crow; Elizabeth A. Nauertz; Kurt E. Schulz

    2003-01-01

    We evaluated impacts of disturbance in interior haul roads and skid trails on understory vegetation by documenting the areal extent of these features and plant composition along 10 m x 100 m belt transects. Ten belt transects were sampled in each of three comparable northern hardwood forests under even-aged management. These forests were approximately 80 years old and...

  16. Warming climate may negatively affect native forest understory plant richness and composition by increasing invasions of non-native plants

    Science.gov (United States)

    Dovciak, M.; Wason, J. W., III; Frair, J.; Lesser, M.; Hurst, J.

    2016-12-01

    Warming climate is often expected to cause poleward and upslope migrations of native plant species and facilitate the spread of non-native plants, and thus affect the composition and diversity of forest understory plant communities. However, changing climate can often interact with other components of global environmental change, and especially so with land use, which often varies along extant climatic gradients making it more difficult to predict species and biodiversity responses to changing climate. We used large national databases (USDA FIA, NLCD, and PRISM) within GLM and NMDS analytical frameworks to study the effects of climate (temperature and precipitation), and land management (type, fragmentation, time since disturbance) on the diversity and composition of native and non-native plant species in forest understories across large geographical (environmental) gradients of the northeastern United States. We tested how non-native and native species diversity and composition responded to existing climate gradients and land-use drivers, and we approximated how changing climate may affect both native and non-native species composition and richness under different climate change scenarios (+1.5, 2, and 4.8 degrees C). Many understory forest plant communities already contain large proportions of non-native plants, particularly so in relatively warmer and drier areas, at lower elevations, and in areas with more substantial land-use histories. On the other hand, cooler and moister areas, higher elevations, and areas used predominantly for forestry or nature conservation (i.e., large contiguous forest cover) were characterized by a low proportion of non-native plant species in terms of both species cover and richness. In contrast to native plants, non-native plant richness was related positively to mean annual temperature and negatively to precipitation. Mountain areas appeared to serve as refugia for native forest understory species under the current climate, but

  17. Relative role of understory and overstory in carbon and nitrogen cycling in a southern Appalachian spruce-fir forest

    Energy Technology Data Exchange (ETDEWEB)

    Moore, P.T.; Van Miegroet, H. [Utah State Univ., Logan, UT (United States). Dept. of Wildland Resources and the Ecology Center; Nicholas, N.S. [Yosemite National Park, El Portal, CA (United States). Resources Management and Science Div.

    2007-12-15

    This study examined pools and fluxes of biomass, carbon (C) and nitrogen (N) in the overstory and understory of a southern Appalachian red spruce and Fraser fir forest after adelgid-induced fir mortality and spruce windthrow. Standing biomass and fluxes of all growth forms from periodic stand inventories, vegetation surveys, and allometric equations were estimated. Plant- and tissue-specific C and N concentrations were used to calculate total C and N pools and fluxes. Results of the study showed that total aboveground biomass re-attained values observed before the disturbances. Overstory biomass production and N uptake exceeded values observed in earlier reports. The woody overstory accounted for 3 per cent of all aboveground biomass as well as 10 per cent of annual productivity, and 19 per cent of total N uptake. It was concluded that the N-rich understory vegetation plays a significant role in N cycling, and contributed to overall productivity of the system. Further research is needed to examine the relationships between the over- and understories in order to investigate future changes in nutrient cycling. 60 refs., 2 tabs., 4 figs.

  18. Water use by a warm-temperate deciduous forest under the influence of the Asian monsoon: contributions of the overstory and understory to forest water use.

    Science.gov (United States)

    Jung, Eun-Young; Otieno, Dennis; Kwon, Hyojung; Lee, Bora; Lim, Jong-Hwan; Kim, Joon; Tenhunen, John

    2013-09-01

    The warm temperate deciduous forests in Asia have a relatively dense understory, hence, it is imperative that we understand the dynamics of transpiration in both the overstory (E O) and understory (E U) of forest stands under the influence of the Asian monsoon in order to improve the accuracy of forest water use budgeting and to identify key factors controlling forest water use under climate change. In this study, E O and E U of a temperate deciduous forest stand located in South Korea were measured during the growing season of 2008 using sap flow methods. The objectives of this study were (1) to quantify the total transpiration of the forest stand, i.e., overstory and understory, (2) to determine their relative contribution to ecosystem evapotranspiration (E eco), and (3) to identify factors controlling the transpiration of each layer. E O and E U were 174 and 22 mm, respectively. Total transpiration accounted for 55 % of the total E eco, revealing the importance of unaccounted contributions to E eco (i.e., soil evaporation and wet canopy evaporation). During the monsoon period, there was a strong reduction in the total transpiration, likely because of reductions in photosynthetic active radiation, vapor pressure deficit and plant area index. The ratio of E U to E O declined during the same period, indicating an effect of monsoon on the partitioning of E eco in its two components. The seasonal pattern of E O was synchronized with the overstory canopy development, which equally had a strong regulatory influence on E U.

  19. Effect of long-term understory prescribed burning on standing and down dead woody material in dry upland oak forests

    Science.gov (United States)

    Polo, John A.; Hallgren, S.W.; Leslie,, David M.

    2013-01-01

    Dead woody material, long ignored or viewed as a nuisance for forest management, has gained appreciation for its many roles in the forest including wildlife habitat, nutrient storage and cycling, energy for trophic webs, protection of soil, fuel for fire and carbon storage. The growing interest in managing dead woody material has created strong demand for greater understanding of factors controlling amounts and turnover. Prescribed burning, an important management tool, may have strong effects of dead woody material given fire’s capacity to create and consume dead woody material. We determined effects of long-term understory prescribed burning on standing and down woody material in upland oak forests in south-central North America. We hypothesized that as frequency of fire increased in these stands the amount of deadwood would decrease and the fine woody material would decrease more rapidly than coarse woody material. The study was conducted in forests dominated by post oak (Quercus stellata) and blackjack oak (Quercus marilandica) in wildlife management areas where understory prescribed burning had been practiced for over 20 years and the range of burn frequencies was 0 (unburned) fires per decade (FPD) to 4.6 FPD. The amount of deadwood was low compared with more productive forests in southeastern North America. The biomass (24.7 Mg ha-1) and carbon stocks (11.7 Mg ha-1) were distributed among standing dead (22%), coarse woody debris (CWD, dia. > 7.5 cm., 12%), fine woody debris (FWD, dia. of standing and down dead woody material. There were two explanations for the lack of a detectable effect. First, a high incidence of severe weather including ice storms and strong winds that produce large amounts of deadwood intermittently in an irregular pattern across the landscape may preclude detecting a strong effect of understory prescribed burning. Second, fire suppression during the first one-half of the 20th Century may have led to encroachment of woody plants into

  20. Understory vegetation as a useful predictor of natural regeneration and canopy dynamics in Pinus sylvestris forests in Italy

    Science.gov (United States)

    Bucci, Gabriele; Borghetti, Marco

    The relations between understory vegetation, canopy characteristics and natural regeneration have been studied in natural Scots pine forests growing in sub-Mediterranean conditions in Italy. Multivariate ordination techniques (detrended correspondence analysis, DCA, and detrended canonical correspondence analysis, DCCA) have been applied to extract vegetation gradients. The first four DCA axes accounted for 41% of the total variation in vegetation data and DCA ordination patterns have been interpreted by the variability of forest stands, ranging from pioneer pine communities to closed pine stands mixed with hardwood species. Characteristic indicator values (CIVs), computed by understory species abundance using the ELLENBERG'S species scores, have been tentatively used as estimators of environmental variability. Relating vegetation gradients extracted by DCA to CIVs allowed further interpretation of the multivariate ordination patterns. Geographic and edaphic factors had only a minor effect on plant communities in the present study. The competition exerted in mixed stands by hardwood species seems to be the main limiting factor for Scots pine recruitment in the study area. Multivariate synthetic variable and CIVs were found to predict a large proportion of variation in Scots pine recruitment. The application of CIVs for predicting ecological meaningful conditions and their use as a tool for management decisions is discussed.

  1. Recuperation of the Terra Firme Forest Understory Bird Fauna Eight Years after a Wildfire in Eastern Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Tatiana Lemos da Silva

    2015-01-01

    Full Text Available The present study evaluated the characteristics of the understory bird fauna of four fragments of terra firme forest in eastern Acre, Brazil, that were impacted by wildfires in 2005. The study investigated the species richness and the composition of trophic guilds using mist-netting on eight transects (four in burned plots and four in control plots in the same forest fragments. Eight plots (0.12 ha were also established parallel to each transect to record the number of live trees (DBH ≥ 10 cm, palms, and dead trees. Bamboo stems were quantified in 0.024 ha subplots. No significant difference was found between burned and control plots in the species richness or abundance of birds, nor was any significant pattern found in the NMDS ordination of the composition of the communities or guilds. The Principal Components Analysis (PCA found that the burned plots were physiognomically distinct, due principally to the number of bamboo stems and dead trees. Multiple regressions based on the PCA scores and bird species richness and abundance found no significant trends. The findings of the present study indicate that the understory bird assemblage of the areas affected by a single wildfire in 2005 had almost totally recuperated eight years after this event.

  2. Understory Dwarf Bamboo Affects Microbial Community Structures and Soil Properties in a Betula ermanii Forest in Northern Japan.

    Science.gov (United States)

    Kong, Bihe; Chen, Lei; Kasahara, Yasuhiro; Sumida, Akihiro; Ono, Kiyomi; Wild, Jan; Nagatake, Arata; Hatano, Ryusuke; Hara, Toshihiko

    2017-06-24

    In order to understand the relationships between understory bamboo and soil properties, we compared microbial community structures in the soil of a Betula ermanii boreal forest with Sasa kurilensis present and removed using high-throughput DNA sequencing. The presence of understory S. kurilensis strongly affected soil properties, including total carbon, total nitrogen, nitrate, and the C:N ratio as well as relative soil moisture. Marked differences were also noted in fungal and bacterial communities between plots. The relative abundance of the fungal phylum Ascomycota was 13.9% in the Sasa-intact plot and only 0.54% in the Sasa-removed plot. Among the Ascomycota fungi identified, the most prevalent were members of the family Pezizaceae. We found that the abundance of Pezizaceae, known to act as mycorrhizal fungi, was related to the amount of total carbon in the Sasa-intact plot. The relative abundance of Proteobacteria was significantly higher, whereas those of Planctomycetes and Actinobacteria were lower in the Sasa-intact plot than in the Sasa-removed plot. Furthermore, the results obtained suggest that some species of the phylum Planctomycetes are more likely to occur in the presence of S. kurilensis. Collectively, these results indicate that the presence of S. kurilensis affects microbial communities and soil properties in a B. ermanii boreal forest.

  3. Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Springer, C.J. [West Virginia Univ., Morgantown, WV (United States); Thomas, R.B. [Kansas Univ., Lawrence, KS (United States). Dept. of Ecology and Evolutionary Biology

    2007-01-15

    Tree species growing within the forest understory contribute to the overall carbon balance of forest ecosystems in addition to representing many of the species that occur in the overstory of mature ecosystems. This article described a 7 year study investigating the responses of forest understory tree species to increasing concentrations of atmospheric carbon dioxide (CO{sub 2}). The study examined the photosynthetic responses of Acer rubrum L., Carya glabra Mill., Cercis Canadensis L., and Liquidambar styraciflua L. during their seventh year of exposure to elevated CO{sub 2} at the Duke Forest Free Air Carbon Enrichment (FACE) experiment to determine whether photosynthetic down-regulation had occurred, as well as to determine whether the enhancement of photosynthesis observed during the first year of exposure to elevated CO{sub 2} was sustained. The study was conducted to test a previous hypothesis that significant photosynthetic down-regulation would be observed after 7 years of exposure to elevated CO{sub 2}. Photosynthetic CO{sub 2} response and light response curves were measured, as well as chlorophyll fluorescence, chlorophyll concentration and foliar nitrogen (N). Results showed that exposure to elevated CO{sub 2} increased photosynthesis in all species measured after 7 years of treatment. The greatest photosynthetic increase was observed near saturating irradiances. In all species, elevated CO{sub 2} increased electron transport efficiency but did not significantly alter carboxylation efficiency. Quantum yield as estimated by light curves, chlorophyll concentration, and foliar N concentrations was unaffected by elevated CO{sub 2}. It was concluded that there was scant evidence of progressive N limitation of leaf-level processes in the understory species after 7 years of exposure to elevated CO{sub 2} in the experiment. 42 refs., 2 tabs., 4 figs.

  4. Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: Results of 26-year monitoring.

    Science.gov (United States)

    Kozlov, M V; Zverev, V; Zvereva, E L

    2017-12-01

    Both pollution and climate affect insect-plant interactions, but the combined effects of these two abiotic drivers of global change on insect herbivory remain almost unexplored. From 1991 to 2016, we monitored the population densities of 25 species or species groups of insects feeding on mountain birch (Betula pubescens ssp. czerepanovii) in 29 sites and recorded leaf damage by insects in 21 sites in subarctic forests around the nickel-copper smelter at Monchegorsk, north-western Russia. The leaf-eating insects demonstrated variable, and sometimes opposite, responses to pollution-induced forest disturbance and to climate variations. Consequently, we did not discover any general trend in herbivory along the disturbance gradient. Densities of eight species/species groups correlated with environmental disturbance, but these correlations weakened from 1991 to 2016, presumably due to the fivefold decrease in emissions of sulphur dioxide and heavy metals from the smelter. The densities of externally feeding defoliators decreased from 1991 to 2016 and the densities of leafminers increased, while the leaf roller densities remained unchanged. Consequently, no overall temporal trend in the abundance of birch-feeding insects emerged despite a 2-3°C elevation in spring temperatures. Damage to birch leaves by insects decreased during the observation period in heavily disturbed forests, did not change in moderately disturbed forests and tended to increase in pristine forests. The temporal stability of insect-plant interactions, quantified by the inverse of the coefficient of among-year variations of herbivore population densities and of birch foliar damage, showed a negative correlation with forest disturbance. We conclude that climate differently affects insect herbivory in heavily stressed versus pristine forests, and that herbivorous insects demonstrate diverse responses to environmental disturbance and climate variations. This diversity of responses, in combination with the

  5. Direct and indirect effects of a dense understory on tree seedling recruitment in temperate forests: habitat-mediated predation versus competition

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2008-01-01

    In forests characterized by a dense woody and herbaceous understory layer, seedling recruitment is often directly suppressed via interspecific competition. Alternatively, these dense layers may indirectly lower tree recruitment by providing a haven for seed and seedling predators that prey on neighboring plant species. To simultaneously...

  6. Biomass and element pools of understory vegetation in the catchments of Čertovo Lake and Plešné Lake in the Bohemian Forest

    Czech Academy of Sciences Publication Activity Database

    Svoboda, M.; Matějka, K.; Kopáček, Jiří

    2006-01-01

    Roč. 61, Suppl. 20 (2006), S509-S521 ISSN 0006-3088 R&D Projects: GA ČR GA206/03/1583 Grant - others:MA(CZ) NAZV QG50105 Institutional research plan: CEZ:AV0Z60170517 Keywords : Norway spruce forest * understory vegetation Subject RIV: EH - Ecology, Behaviour Impact factor: 0.213, year: 2006

  7. Influence of light conditions on the allometry and growth of the understory palm Geonoma undata subsp. edulis (Arecaceae) of neotropical cloud forests.

    Science.gov (United States)

    Sylvester, Olivia; Avalos, Gerardo

    2013-12-01

    Knowledge on the growth responses of understory palms to changing light conditions within neotropical cloud forests is limited. The low light regime of these environments, in addition to persistent cloudiness, low ambient temperatures, and slow nutrient cycles, imposes significant constraints on biomass accumulation. Here, we evaluate how changes in the understory light conditions influenced the allometry and growth of G. undata subsp. edulis in two cloud forests in Costa Rica. We examined the structural relationships between stem diameter, stem height, and crown area in reproductive and nonreproductive individuals. We related the variation in stem growth and crown area with allometry, leaf production and longevity, and light conditions that we measured using hemispherical photographs over 1 year. The allometric and growth pattern of G. undata subsp. edulis was characterized by its investment in crown area, which was strongly and positively related to increments in palm height and reproduction. Growth, measured as the increase in crown area and stem height, was not explained by the variation in the light regime spanning 1 year. However, reproductive individuals were generally taller, more slender, and had larger leaf areas than nonreproductive individuals. Our results demonstrated that stem growth responses were mostly controlled by initial crown size rather than by temporal differences in the understory light regimes of cloud forests. These results suggest that cloud forest understory palms have a limited capacity to respond to light changes and rely mostly on an opportunistic strategy for biomass accumulation and reproduction.

  8. Annual variation in canopy openness, air temperature and humidity inthe understory of three forested sites in southern Bahia State, Brazil

    Directory of Open Access Journals (Sweden)

    Marayana Prado Pinheiro

    2013-01-01

    Full Text Available Aiming at contributing to the knowledge of physical factors affecting community structure in Atlantic Forest remnants of southern Bahia state, Brazil, we analyzed the annual variation in the understory microclimate of a hillside forest fragment in the ‘Reserva Particular do Patrimônio Natural Serra do Teimoso’ (RST and a rustic cacao agroforestry system (Cabruca, located nearby the RST. Canopy openness (CO, air temperature (Ta, air relative humidity (RH and vapor pressure deficit (VPD data were collected between April, 2005 and April, 2006 at the base (RSTB, 340 m and the top (RSTT, 640 m of the RST and at the Cabruca (CB, 250 m. Data of rainfall, Ta, RH and VPD were also collected in an open area (OA, 270 m. The highest rainfalls (> 100 mm occurred in November, 2005 and April, 2006, whereas October, 2005 was the driest month (< 20 mm. CO ranged between 2.5 % in the CB (April, 2006 and 7.7 % in the RST (October, 2005. Low rainfall in October, 2005 affected VPDmax in all sites. Those effects were more pronounced in OA, followed by CB, RSTB and RSTT. During the period of measurements, the values of Ta, RH and VPD in CB were closer to the values measured in OA than to the values measured inside the forest.

  9. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    Directory of Open Access Journals (Sweden)

    A. Bargsten

    2010-05-01

    Full Text Available Nitric oxide (NO plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification, that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany. We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate. Net potential NO fluxes (in terms of mass of N from soil samples taken under different understories ranged from 1.7–9.8 ng m−2 s−1 (soil sampled under grass and moss cover, 55.4–59.3 ng m−2 s−1 (soil sampled under spruce cover, and 43.7–114.6 ng m−2 s−1 (soil sampled under blueberry cover at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory

  10. Short-term effects of spring prescribed burning on the understory vegetation of a Pinushalepensis forest in Northeastern Spain.

    Science.gov (United States)

    Fuentes, Laura; Duguy, Beatriz; Nadal-Sala, Daniel

    2018-01-01

    Since the 1970s, fire regimes have been modified in the Northern Mediterranean region due to profound landscape changes mostly driven by socioeconomic factors, such as rural abandonment and large-scale plantations. Both fuel accumulation and the increasing vegetation spatial continuity, combined with the expansion of the wildland-urban interface, have enhanced fire risk and the occurrence of large wildfires. This situation will likely worsen under the projected aridity increase resulting from climate change. Higher fire recurrences, in particular, are expected to cause changes in vegetation composition or structure and affect ecosystems' resilience to fire, which may lead to further land degradation. Prescribed burning is a common fuel reduction technique used for fire prevention, but for conservation and restoration purposes as well. It is still poorly accepted in the Mediterranean region since constrained by critical knowledge gaps about, in particular, its effects on the ecosystems (soil, vegetation). We studied the short-term (10months) effects on the understory vegetation of a spring prescribed burning conducted in a Pinushalepensis forest in Mediterranean climate (Northeastern Spain). Our results show that the understory plant community recovered after the burning without short term significant changes in either species richness, diversity, or floristic composition. Most vegetation structural characteristics were modified though. The burning strongly reduced shrub height, shrub and herbaceous percentage covers, and aerial shrub phytomass; especially its living fine fraction, thus resulting in a less flammable community. The treatment proved to be particularly effective for the short term control of Ulexparviflorus, a highly flammable seeder species. Moreover, the strong reduction of seeder shrubs frequency in relation to resprouters' likely promoted the resilience to fire of this plant community. From a fuel-oriented perspective, the burning caused a strong

  11. Characterizing drought-induced changes in active microbial communities and recently assimilated carbon transferred belowground in a forest understory

    Science.gov (United States)

    von Rein, Isabell; Kayler, Zachary; Gessler, Arthur

    2013-04-01

    Greenhouse gas induced global warming is expected to result in droughts of longer duration and higher intensity. Since droughts can disturb ecosystem interconnections, the investigation of ecosystem responses is crucial. Nonetheless, little is known about how changes in water availability affect ecosystem interconnections, e.g. the plant-microorganism response towards a drought event. We hypothesize that there is a shift in the microbial community structure and activity under drought when compared to a well-watered control. Moreover, we assume that changes seen at the microbial level are linked to plant carbon (C) assimilation and transport. We expect reduced C assimilation in plants under drought and a subsequent weakening in the coupling between the plant and belowground processes. How do microbial communities that depend on the rhizodeposited C provided by plants react to a reduction in exudate availability? To answer this question, three intact soil monoliths (70x70x20cm) with their natural understory vegetation were taken from a spruce forest in Hainich, Germany and transferred to a climate chamber. Half of the monoliths are exposed to drought whereas the other half is kept well-watered. The monoliths are pulse labeled with 13CO2 and the label is traced through the plant-soil system. Plants, roots and soil are sampled after labeling and analyzed for their isotopic composition. Pyrosequencing and PLFA-SIP (Phospholipid fatty acids stable isotope probing) are performed to detect changes in the microbial community structure and in the composition of the metabolically active microorganisms, respectively. We will discuss our first results concerning the effects of drought on understory carbon partitioning and the impact of drought on carbon availability to soil microorganisms.

  12. Reintroducing fire into a ponderosa pine forest with and without cattle grazing: understory vegetation response

    Science.gov (United States)

    Becky K. Kerns; Michelle Buonopane; Walter G. Thies; Christine. Niwa

    2011-01-01

    Reestablishing historical fire regimes is a high priority for North American coniferous forests, particularly ponderosa pine (Pinus ponderosa) ecosystems. These forests are also used extensively for cattle (Bos spp.) grazing. Prescribed fires are being applied on or planned for millions of hectares of these forests to reduce...

  13. Effects of dwarf-bamboo understory on tree seedling emergence and survival in a mixed-oak forest in northern Japan: a multi-site experimental study

    Czech Academy of Sciences Publication Activity Database

    Doležal, Jiří; Matsuki, S.; Hara, T.

    2009-01-01

    Roč. 10, č. 2 (2009), s. 225-235 ISSN 1585-8553 R&D Projects: GA ČR GA206/05/0119; GA AV ČR IAA600050802 Institutional research plan: CEZ:AV0Z60050516 Keywords : Dwarf-bamboo understory * Forest regeneration * Seedling recruitment and survival Subject RIV: EF - Botanics Impact factor: 0.792, year: 2009

  14. Variation in Vegetation Structure and Soil Properties, and the Relation Between Understory Plants and Environmental Variables Under Different Phyllostachys pubescens Forests in Southeastern China

    Science.gov (United States)

    Zhang, Changshun; Xie, Gaodi; Fan, Shaohui; Zhen, Lin

    2010-04-01

    Biodiversity maintenance and soil improvement are key sustainable forestry objectives. Research on the effects of bamboo forest management on plant diversity and soil properties are therefore necessary in bamboo-growing regions, such as southeastern China’s Shunchang County, that have not been studied from this perspective. We analyzed the effects of different Phyllostachys pubescens proportions in managed forests on vegetation structure and soil properties using pure Cunninghamia lanceolata forests as a contrast, and analyzed the relation between understory plants and environmental variables (i.e., topography, stand and soil characteristics) by canonical correspondence analysis (CCA). The forest with 80% P. pubescens and 20% hardwoods (such as Phoebe bournei, Jatropha curcas, Schima superba) maintained the highest plant diversity and best soil properties, with significantly higher plant diversity than the C. lanceolata forest, and better soil physicochemical and biological properties. The distribution of understory plants is highly related to environmental factors. Silvicultural disturbance strongly influenced the ability of different bamboo forests to maintain biodiversity and soil quality under extensive management, and the forest responses to management were consistent with the intermediate-disturbance hypothesis (i.e., diversity and soil properties were best at intermediate disturbance levels). Our results suggest that biodiversity maintenance and soil improvement are important management goals for sustainable bamboo management. To achieve those objectives, managers should balance the inputs and outputs of nutrients and protect understory plants by using appropriate fertilizer (e.g., organic fertilizer), adjusting stand structure, modifying utilization model and the harvest time, and controlling the intensity of culms and shoots harvests.

  15. Seventy years of understory development by elevation class in a New Hampshire mixed forest: management implications

    Science.gov (United States)

    William B. Leak

    2009-01-01

    New England forest managers are faced with numerous environmental issues, such as global warming, nutrient depletion, and species declines that could influence the choice of appropriate silvicultural techniques and objectives. On the Bartlett Experimental Forest, New Hampshire, 70 years of change on more than 400 remeasured cruise plots by elevation classes ranging...

  16. Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest

    Science.gov (United States)

    Knapp, E.E.; Schwilk, D.W.; Kane, J.M.; Keeley, J.E.

    2007-01-01

    Although the majority of fires in the western United States historically occurred during the late summer or early fall when fuels were dry and plants were dormant or nearly so, early-season prescribed burns are often ignited when fuels are still moist and plants are actively growing. The purpose of this study was to determine if burn season influences postfire vegetation recovery. Replicated early-season burn, late-season burn, and unburned control units were established in a mixed conifer forest, and understory vegetation was evaluated before and after treatment. Vegetation generally recovered rapidly after prescribed burning. However, late-season burns resulted in a temporary but significant drop in cover and a decline in species richness at the 1 m 2 scale in the following year. For two of the several taxa that were negatively affected by burning, the reduction in frequency was greater after late-season than early-season burns. Early-season burns may have moderated the effect of fire by consuming less fuel and lessening the amount of soil heating. Our results suggest that, when burned under high fuel loading conditions, many plant species respond more strongly to differences in fire intensity and severity than to timing of the burn relative to stage of plant growth. ?? 2007 NRC.

  17. Management of birch for aesthetics and recreation

    Science.gov (United States)

    John H. Noyes

    1969-01-01

    When paper birch and yellow birch are managed for aesthetic and recreation purposes, timber values become secondary, although in some instances compatibility exists among the several objectives. At times, timber and wood-products production is excluded entirely in the interests of aesthetics and recreation. In keying forest-management practices to the appearance...

  18. Mulching fuels treatments promote understory plant communities in three Colorado, USA, coniferous forest types

    Science.gov (United States)

    Paula J. Fornwalt; Monique E. Rocca; Michael Battaglia; Charles C. Rhoades; Michael G. Ryan

    2017-01-01

    Mulching fuels treatments have been increasingly implemented by forest managers in the western USA to reduce crown fire hazard. These treatments use heavy machinery to masticate or chip unwanted shrubs and small-diameter trees and broadcast the mulched material on the ground. Because mulching treatments are relatively novel and have no natural analog, their ecological...

  19. Understory light regimes following silvicultural treatments in central hardwood forests in Kentucky, USA

    Science.gov (United States)

    Stephen F. Grayson; David S. Buckley; Jason G. Henning; Callie J. Schweitzer; Kurt W. Gottschalk; David L. Loftis

    2012-01-01

    Manipulation of the light regime is a primary goal of many silvicultural treatments, but the specific light conditions created remain poorly documented for many forest types and geographic locations. To help quantify effects of silvicultural treatments on light conditions, measurements of basal area, canopy cover, and photosynthetically active radiation (PAR), measured...

  20. The impact of forest roads on understory plant diversity in temperate hornbeam-beech forests of Northern Iran.

    Science.gov (United States)

    Deljouei, Azade; Abdi, Ehsan; Marcantonio, Matteo; Majnounian, Baris; Amici, Valerio; Sohrabi, Hormoz

    2017-08-01

    Forest roads alter the biotic and abiotic components of ecosystems, modifying temperature, humidity, wind speed, and light availability that, in turn, cause changes in plant community composition and diversity. We aim at investigating and comparing the diversity of herbaceous species along main and secondary forest roads in a temperate-managed hornbeam-beech forest, north of Iran. Sixteen transects along main and secondary forest roads were established (eight transects along main roads and eight along secondary roads). To eliminate the effect of forest type, all transects were located in Carpinetum-Fagetum forests, the dominant forest type in the study area. The total length of each transect was 200 m (100 m toward up slope and 100 m toward down slope), and plots were established along it at different distances from road edge. The diversity of herbaceous plant species was calculated in each plot using Shannon-Wiener index, species richness, and Pielou's index. The results showed that diversity index decreased when distance from road edge increases. This decreasing trend continued up to 60 m from forest road margin, and after this threshold, the index slightly increased. Depending on the type of road (main or secondary) as well as cut or fill slopes, the area showing a statistical different plant composition and diversity measured through Shannon-Wiener, species richness, and Pielou's index is up to 10 m. The length depth of the road edge effect found in main and secondary forest roads was small, but it could have cumulative effects on forest microclimate and forest-associated biota at the island scale. Forest managers should account for the effect of road buildings on plant communities.

  1. Influence of primitive Biłgoraj horses on the glossy buckthorn (Frangula alnus)-dominated understory in a mixed coniferous forest

    Science.gov (United States)

    Klich, Daniel

    2018-02-01

    Changes in the understory dominated by glossy buckthorn Frangula alnus via the influence of primitive horses were analyzed in a 28-year-old enclosure in the village of Szklarnia at the Biłgoraj Horse-Breeding Centre near Janów Lubelski (eastern Poland). The analysis was conducted in 20 circular plots (30 m2) defined in adjacent, similar forest stands (enclosed and control). Disturbance by the horses, mainly through trampling, caused numerous paths to form within the glossy buckthorn-dominated understory and led to a decrease in density of stems of lower height classes (30-80 and 81-130 cm, respectively). An increase in species diversity at the expense of glossy buckthorn density was also observed. The horses' trampling caused an increase in Padus avium density and the encroachment of other woody plant species that were less shade-tolerant and grew well in soils rich in nutrients. An increase in the density of woody plants over 180 cm above ground was observed within the enclosure, which was probably the result of the horses' excretion of feces. The results presented here provide new insight into the ecological role that horses play in forest-meadow landscape mosaics, which, via altering the development of vegetation, may contribute to an increase in biodiversity within forest habitats.

  2. Resource Limitations Influence Growth and Vigor of Idaho Fescue, a Common Understory Species in Pacific Northwest Ponderosa Pine Forests

    Directory of Open Access Journals (Sweden)

    Craig A. Carr

    2016-12-01

    Full Text Available Alterations in under-canopy resource availability associated with elevated ponderosa pine (Pinus ponderosa Dougl. abundance can negatively influence understory vegetation. Experimental evidence linking under-canopy resource availability and understory vegetation is scarce. Yet this information would be beneficial in developing management strategies to recover desired understory species. We tested the effects of varying nitrogen (N and light availability on Idaho fescue (Festuca idahoensis Elmer, the dominant understory species in ponderosa pine/Idaho fescue plant associations in eastern Oregon. In a greenhouse experiment, two levels of N (50 kg∙N∙ha−1 and 0 kg∙N∙ha−1 and shade (80% shade and 0% shade were applied in a split-plot design to individual potted plants grown in soil collected from high abundance pine stands. Plants grown in unshaded conditions produced greater root (p = 0.0027 and shoot (p = 0.0017 biomass and higher cover values (p = 0.0378 compared to those in the shaded treatments. The addition of N had little effect on plant growth (p = 0.1602, 0.5129, and 0.0853 for shoot biomass, root biomass, and cover, respectively, suggesting that soils in high-density ponderosa pine stands that lack understory vegetation were not N deficient and Idaho fescue plants grown in these soils were not N limited. Management activities that increase under-canopy light availability will promote the conditions necessary for Idaho fescue recovery. However, successful restoration may be constrained by a lack of residual fescue or the invasion of more competitive understory vegetation.

  3. Understory in the composition and diversity of managed forest areas in Santa Catarina Ixtepeji, Oaxaca

    Directory of Open Access Journals (Sweden)

    Lizbeth Luna-Bautista

    2015-01-01

    Full Text Available Resumen En el presente estudio se investigó el efecto de las prácticas silvícolas sobre la riqueza, composición y diversidad de las especies arbóreas, herbáceas y arbustivas en un bosque de la comunidad de Santa Catarina Ixtepeji, Oaxaca. Para tal fin, los siguientes tratamientos silvícolas fueron evaluados: corta de selección 1998, aclareo ligero 2011 y árboles padre 1998 y 2011. Los índices de diversidad alfa y beta de las comunidades arbórea, arbustiva y herbácea se estimaron, así como el índice de valor de importancia (IVI del estrato arbóreo. Los resultados mostraron que el componente herbáceo es el más diverso tanto en rodales bajo manejo silvícola como sin manejo, seguido del componente arbustivo. De acuerdo con el IVI, la especie de mayor importancia ecológica fue Pinus oaxacana Mirov. en todos los tratamientos evaluados, incluyendo el bosque sin manejo. Los resultados indican que el aprovechamiento forestal modifica la riqueza, diversidad y composición de los estratos arbóreo, arbustivo y herbáceo, siendo los dos últimos estratos los que más contribuyen a la diversidad. Por lo anterior resulta importante evaluar el sotobosque, ya que ayuda a dar una mejor explicación de la diversidad vegetal total del bosque.

  4. Influence of precommercial thinning and herbicides on understory vegetation of young-growth Sitka spruce forest in southeastern Alaska

    Science.gov (United States)

    Elizabeth C. Cole; Thomas A. Hanley; Michael Newton

    2010-01-01

    The effects of precommercial thinning on the understory vegetative cover of 16- to 18-year-old spruce-hemlock (Picea sitchensis (Bong.) Carriere--Tsuga heterophylla (Raf.) Sarg.) stands were studied in seven replicate areas over seven growing seasons postthinning. Vegetative cover was analyzed at the class level, but species-...

  5. Impact of the invasive plant Syzigium jambos (Myrtaceae) on patterns of understory seedling abundance in a Tropical Premontane Forest, Costa Rica.

    Science.gov (United States)

    Avalos, Gerardo; Hoell, Kelly; Gardner, Jocelyn; Anderson, Scott; Lee, Conor

    2006-06-01

    Habitat fragmentation, along with other human-induced disturbances, increase the vulnerability of native habitats to be invaded by aggressive, ecologically released, exotic species. Syzigium jambos (L.) Alston (Myrtaceae, Rose Apple) is an important invader still spreading throughout Hawaii, the Antilles, Central and South America. This study examines the effects of S. jambos on plant understory diversity in a 25 ha Tropical Premontane Moist Forest in Atenas, Alajuela, Costa Rica, a protected watershed that supplies drinking water for several human communities. Our final objective is to develop a management strategy combining water protection with the preservation of a representative sample of the original plant diversity in the area. Thirty 2 x 2 m plots were distributed throughout the Municipal Forest maintaining a minimum of 10 m between plots, and 2 m from trails, to sample all understory seedlings and saplings of S. jambos, Coffea arabica (coffee) and tree seedlings. We found a clear dominance of S. jambos over all other understory plants. Of the total 1,285 sampled plants, S. jambos comprised 51%, coffee seedlings represented 14.78%, being the rest tree seedlings. Syzigium jambos had the highest density (5.46 plants/m2, S.D. = 6.44) compared to tree (3.67 plants/m2, S.D. = 3.44) and coffee seedlings (1.58 plants/m2, S.D. = 2.13). There was a highly significant negative relationship between the relative abundance of S. jambos and tree (r2 = 0.52, p or = 2 m). The results show a clear role of S. jambos as an aggressive, invasive species within the Municipal Forest. This invasion is enhanced by both the ecological characteristics of the species and the fragmentation of the forest by coffee farming around the site. Among a variety of management possibilities, an ecosystem-level approach of manually removing S. jambos over time while replanting native species appears to be the preferred strategy, given the intended continued use of the Municipal Forest as a source

  6. Ectomycorrhizas in vitro between Tricholoma matsutake, a basidiomycete that associates with Pinaceae, and Betula platyphylla var. japonica, an early-successional birch species, in cool-temperate forests.

    Science.gov (United States)

    Murata, Hitoshi; Yamada, Akiyoshi; Maruyama, Tsuyoshi; Neda, Hitoshi

    2015-04-01

    Tricholoma matsutake is an ectomycorrhizal basidiomycete that associates with Pinaceae in the Northern Hemisphere and produces prized "matsutake" mushrooms. We questioned whether the symbiont could associate with a birch that is an early-successional species in boreal, cool-temperate, or subalpine forests. In the present study, we demonstrated that T. matsutake can form typical ectomycorrhizas with Betula platyphylla var. japonica; the associations included a Hartig net and a thin but distinct fungal sheath, as well as the rhizospheric mycelial aggregate "shiro" that is required for fruiting in nature. The in vitro shiro also emitted a characteristic aroma. This is the first report of an ectomycorrhizal formation between T. matsutake and a deciduous broad-leaved tree in the boreal or cool-temperate zones that T. matsutake naturally inhabits.

  7. Analytical approaches to the determination of simple biophenols in forest trees such as Acer (maple), Betula (birch), Coniferus, Eucalyptus, Juniperus (cedar), Picea (spruce) and Quercus (oak).

    Science.gov (United States)

    Bedgood, Danny R; Bishop, Andrea G; Prenzler, Paul D; Robards, Kevin

    2005-06-01

    Analytical methods are reviewed for the determination of simple biophenols in forest trees such as Acer (maple), Betula (birch), Coniferus, Eucalyptus, Juniperus (cedar), Picea (spruce) and Quercus (oak). Data are limited but nevertheless clearly establish the critical importance of sample preparation and pre-treatment in the analysis. For example, drying methods invariably reduce the recovery of biophenols and this is illustrated by data for birch leaves where flavonoid glycosides were determined as 12.3 +/- 0.44 mg g(-1) in fresh leaves but 9.7 +/- 0.35 mg g(-1) in air-dried samples (data expressed as dry weight). Diverse sample handling procedures have been employed for recovery of biophenols. The range of biophenols and diversity of sample types precludes general procedural recommendations. Caution is necessary in selecting appropriate procedures as the high reactivity of these compounds complicates their analysis. Moreover, our experience suggests that their reactivity is very dependent on the matrix. The actual measurement is less contentious and high performance separation methods particularly liquid chromatography dominate analyses whilst coupled techniques involving electrospray ionization are becoming routine particularly for qualitative applications. Quantitative data are still the exception and are summarized for representative species that dominate the forest canopy of various habitats. Reported concentrations for simple phenols range from trace level (<0.1 microg g(-1)) to in excess of 500 microg g(-1) depending on a range of factors. Plant tissue is one of these variables but various biotic and abiotic processes such as stress are also important considerations.

  8. Elevated native terrestrial snail abundance and diversity in association with an invasive understory shrub, Berberis thunbergii, in a North American deciduous forest

    Science.gov (United States)

    Utz, Ryan M.; Pearce, Timothy A.; Lewis, Danielle L.; Mannino, Joseph C.

    2018-01-01

    Invasive terrestrial plants often substantially reshape environments, yet how such invasions affect terrestrial snail assemblages remains understudied. We investigated how snail assemblages in deciduous forest soils with dense Berberis thunbergii (Japanese barberry), an invasive shrub in eastern North America, differ from forest areas lacking the shrub. Leaf litter and soil samples were collected from forest patches with dense B. thunbergii understories and adjacent control areas within two exurban forest tracts in western Pennsylvania, U.S.A. Snails were identified to species and quantified by standard diversity metrics. Contrary to our expectations, snails were significantly more abundant and diverse in B. thunbergii-invaded areas. Despite differences in abundance, the snail community composition did not differ between invaded and control habitats. The terrestrial snail assemblage we observed, which was composed entirely of native species, appears to respond favorably to B. thunbergii invasion and therefore may not be negatively impacted by physicochemical changes to soils typically observed in association with the plant. Such findings could reflect the fact that B. thunbergii likely creates more favorable habitat for snails by creating cooler, more humid, and more alkaline soil environments. However, the snail assemblages we retrieved may consist mostly of species with high tolerance to environmental degradation due to a legacy of land use change and acid deposition in the region.

  9. Composition and diversity of understory plants in the tropical rain ...

    African Journals Online (AJOL)

    The study assessed the composition and diversity pattern of understory in Oban division of CRNP with a view to established the contribution of the understory to diversity of the area. The study was conducted in four land use types: primary forest (core), secondary forest (buffer), farm fallow and plantation. Ten transects of ...

  10. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory

    DEFF Research Database (Denmark)

    Olsrud, Maria; Carlsson, Bengt Å.; Svensson, Brita M.

    2010-01-01

    . To place the belowground results into an ecosystem context we also investigated how plant cover and nutrient concentrations in leaves responded to elevated atmospheric CO2 concentrations and warming. The ErM colonization in ericaceous dwarf shrubs increased under elevated atmospheric CO2 concentrations....... The elevated CO2 did not affect total plant cover but the plant cover was increased under warming, which might be due to increased N availability in soil. FE colonization in grass roots decreased under enhanced CO2 and under warming, which might be due to increased root growth, to which the FE fungi could...

  11. Paper birch decline in the Niobrara River Valley, Nebraska: Weather, microclimate, and birch stand conditions

    Science.gov (United States)

    Stroh, Esther D.; Miller, Joel P.

    2009-01-01

    The Niobrara River Valley in north-central Nebraska supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation, when regional flora was more boreal in nature (Wright 1970, Kaul and others, 1988). Dieback of canopy-sized birch has been observed throughout the Niobrara Valley in recent years, although no onset dates are documented. The current dieback event probably started around or after the early 1980’s. The study objectives were to understand microclimatic conditions in birch stands relative to nearby weather stations and historic weather conditions, and to assess current health conditions of individual birch trees. Temperature was measured every half-hour from June 2005 through October 2007 in 12 birch stands and individual birch tree health was measured as expressed by percent living canopy in these and 13 additional stands in spring 2006 and 2007. Birch site microclimate was compared to data from a National Weather Service station in Valentine, Nebraska, and to an automated weather station at The Nature Conservancy Niobrara Valley Preserve 24 kilometers north of Johnstown, Nebraska. Historic weather data from the Valentine station and another National Weather Service Station at Ainsworth, Nebraska, were used to reconstruct minimum and maximum temperature at The Nature Conservancy and one microclimate monitoring station using Kalman filtering and smoothing algorithms. Birch stand microclimate differed from local weather stations as well as among stands. Birch health was associated with annual minimum temperature regimes; those stands whose annual daily minimum temperature regimes were most like The Nature Conservancy station contained smaller proportions of living trees. Frequency of freeze/thaw conditions capable of inducing rootlet injury and subsequent crown dieback significantly have

  12. Short-Term Effects of Understory and Overstory Management on Breeding Birds in Arkansas Oak-Hickory Forests

    Science.gov (United States)

    Paul G. Rodewald; Kimberly G. Smith

    1998-01-01

    Relatively little is known about the effects of uneven-aged forest management practices on eastern forest birds, despite the fact that such methods are now commonly practiced. In 1993-94, we studied the short-term effects of uneven-aged forest management on bird communities in oak-hickory forests of north-western Arkansas. We estimated bird abundance in mature forests...

  13. Understory succession in post-agricultural oak plantations

    DEFF Research Database (Denmark)

    Brunet, Jörg; Valtinat, Karin; Mayr, Marian Lajos

    2011-01-01

    The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post-agricultural planta......The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post...... forested stands, which maintained differences in species composition. The development of a shrub layer seemed to imply a competitive advantage for forest specialists compared to generalist species. For successful recovery of a rich understory, we suggest that post-arable plantations should be established...

  14. Understory bamboo discrimination using a winter image

    NARCIS (Netherlands)

    Wang, T.; Skidmore, A.K.; Toxopeus, A.G.; Liu, X.

    2009-01-01

    In this study, a new approach is presented that combines forest phenology and Landsat vegetation indices to estimate evergreen understory bamboo coverage in a mixed temperate forest. It was found that vegetation indices, especially the normalized difference vegetation index (NDVI) derived from

  15. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests.

    Directory of Open Access Journals (Sweden)

    Xiaoli Fu

    Full Text Available Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4% than that at Datian (16.7%. This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.

  16. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests.

    Science.gov (United States)

    Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin

    2015-01-01

    Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.

  17. Understory vegetation as an indicator for floodplain forest restoration in the Mississippi River Alluvial Valley, U.S.A

    Science.gov (United States)

    Diane De Steven; Stephen P. Faulkner; Bobby D. Keeland; Michael J. Baldwin; John W. McCoy; Steven C. Hughes

    2015-01-01

    In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespread conversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs have attempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (...

  18. Root-Crown Relations of Young Sugar Maple and Yellow Birch

    Science.gov (United States)

    Carl H. Tubbs

    1977-01-01

    Young forest-grown sugar maple and yellow birch (1 to 6 inches d.b.h.) crowns were mapped and roots excavated. Crown dimensions were compared. Sugar maple roots usually terminated within a few feet of the crown perimeter. Yellow birch roots frequently terminated well outside crown perimeters and roots of birch were more irregularly distributed than those of maple....

  19. Silvical characteristics of sweet birch (Betula lenta)

    Science.gov (United States)

    William B. Leak

    1958-01-01

    Sweet birch (Betula lenta) is also known as black birch and cherry birch. It is commercially less important than the two principal members of the genus, yellow birch (Betula alleghaniensis) and paper birch (Betula papyrifera).

  20. Animal damage to birch

    Science.gov (United States)

    James S. Jordan; Francis M. Rushmore

    1969-01-01

    A relatively few animal species are responsible for most of the reported damage to the birches. White-tailed deer, yellow-bellied sapsuckers, porcupines, moose, and hares are the major animals involved. We will review reports of damage, discuss the underlying causes, and describe possible methods of control. For example, heavy deer browsing that eliminates birch...

  1. Detection probability of forest pests in current inspection protocols - a case study of the bronze birch borer

    Science.gov (United States)

    Bjorn Okland; Robert A. Haack; Gunnar. Wilhelmsen

    2012-01-01

    Increasing inter-continental trade of wood chips for biofuel represents a significant risk of introducing invasive pest species that can cause biome-scale impacts on forest ecosystems. Some potentially invasive species have the capacity to cause high tree mortality on the Eurasian continent and could cause significant impacts on biodiversity and ecosystem functions....

  2. Estimating aboveground live understory vegetation carbon in the United States

    Science.gov (United States)

    Johnson, Kristofer D.; Domke, Grant M.; Russell, Matthew B.; Walters, Brian; Hom, John; Peduzzi, Alicia; Birdsey, Richard; Dolan, Katelyn; Huang, Wenli

    2017-12-01

    Despite the key role that understory vegetation plays in ecosystems and the terrestrial carbon cycle, it is often overlooked and has few quantitative measurements, especially at national scales. To understand the contribution of understory carbon to the United States (US) carbon budget, we developed an approach that relies on field measurements of understory vegetation cover and height on US Department of Agriculture Forest Service, Forest Inventory and Analysis (FIA) subplots. Allometric models were developed to estimate aboveground understory carbon. A spatial model based on stand characteristics and remotely sensed data was also applied to estimate understory carbon on all FIA plots. We found that most understory carbon was comprised of woody shrub species (64%), followed by nonwoody forbs and graminoid species (35%) and seedlings (1%). The largest estimates were found in temperate or warm humid locations such as the Pacific Northwest and southeastern US, thus following the same broad trend as aboveground tree biomass. The average understory aboveground carbon density was estimated to be 0.977 Mg ha-1, for a total estimate of 272 Tg carbon across all managed forest land in the US (approximately 2% of the total aboveground live tree carbon pool). This estimate is more than twice as low as previous FIA modeled estimates that did not rely on understory measurements, suggesting that this pool may currently be overestimated in US National Greenhouse Gas reporting.

  3. Influence of light and soil moisture on Sierran mixed-conifer understory communities.

    Science.gov (United States)

    Malcolm North; Brian Oakley; Rob Fiegener; Andrew Gray; Michael. Barbour

    2005-01-01

    Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with...

  4. Introducing close-range photogrammetry for characterizing forest understory plant diversity and surface fuel structure at fine scales

    Science.gov (United States)

    Benjamin C. Bright; E. Louise Loudermilk; Scott M. Pokswinski; Andrew T. Hudak; Joseph J. O' Brien

    2016-01-01

    Methods characterizing fine-scale fuels and plant diversity can advance understanding of plant-fire interactions across scales and help in efforts to monitor important ecosystems such as longleaf pine (Pinus palustris Mill.) forests of the southeastern United States. Here, we evaluate the utility of close-range photogrammetry for measuring fuels and plant...

  5. Understory dwarf bamboo affects microbial community structures and soil properties in a Betula ermanii forest in northern Japan

    Czech Academy of Sciences Publication Activity Database

    Kong, B.; Chen, L.; Kasahara, Y.; Sumida, A.; Ono, K.; Wild, Jan; Nagatake, A.; Hatano, R.; Hara, T.

    2017-01-01

    Roč. 32, č. 2 (2017), s. 103-111 ISSN 1342-6311 Institutional support: RVO:67985939 Keywords : boreal forest * bacteria * microclimate * Sasa kurilensis * fungi * high-throughput sequencing Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 2.909, year: 2016

  6. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests?

    Science.gov (United States)

    Sven Wirthner; Martin Schutz; Deborah S. Page-Dumroese; Matt D. Busse; James W. Kirchner; Anita C. Risch

    2012-01-01

    Recovering from small fragmented populations, wild boars (Sus scrofa L.) have considerably increased their numbers and their habitat range in many European countries during the past two decades. Although several studies have focused on the impact of wild boar rooting on selected vegetation properties, little is known about effects on entire forest ecosystems. The main...

  7. [Distribution patterns of canopy and understory tree species at local scale in a Tierra Firme forest, the Colombian Amazonia].

    Science.gov (United States)

    Barreto-Silva, Juan Sebastian; López, Dairon Cárdenas; Montoya, Alvaro Javier Duque

    2014-03-01

    The effect of environmental variation on the structure of tree communities in tropical forests is still under debate. There is evidence that in landscapes like Tierra Firme forest, where the environmental gradient decreases at a local level, the effect of soil on the distribution patterns of plant species is minimal, happens to be random or is due to biological processes. In contrast, in studies with different kinds of plants from tropical forests, a greater effect on floristic composition of varying soil and topography has been reported. To assess this, the current study was carried out in a permanent plot of ten hectares in the Amacayacu National Park, Colombian Amazonia. To run the analysis, floristic and environmental variations were obtained according to tree species abundance categories and growth forms. In order to quantify the role played by both environmental filtering and dispersal limitation, the variation of the spatial configuration was included. We used Detrended Correspondence Analysis and Canonical Correspondence Analysis, followed by a variation partitioning, to analyze the species distribution patterns. The spatial template was evaluated using the Principal Coordinates of Neighbor Matrix method. We recorded 14 074 individuals from 1 053 species and 80 families. The most abundant families were Myristicaceae, Moraceae, Meliaceae, Arecaceae and Lecythidaceae, coinciding with other studies from Northwest Amazonia. Beta diversity was relatively low within the plot. Soils were very poor, had high aluminum concentration and were predominantly clayey. The floristic differences explained along the ten hectares plot were mainly associated to biological processes, such as dispersal limitation. The largest proportion of community variation in our dataset was unexplained by either environmental or spatial data. In conclusion, these results support random processes as the major drivers of the spatial variation of tree species at a local scale on Tierra Firme

  8. Long-term understory vegetation dynamics and responses to ungulate exclusion in the dry forest of Mona Island

    Science.gov (United States)

    J. Rojas-Sandoval; E.J. Melendez-Ackerman; J. Fumero-Caban; M. Garcia-Bermudez; J. Sustache; S. Aragon; M. Morales-Vargas; G. Olivieri; D.S. Fernandez

    2016-01-01

    Mona Island protects one of the most important remnants of Caribbean dry forests and hosts a high diversity of rare and endangered plant and animal species. Feral ungulates (goats and pigs) were introduced to the island ~500 y ago, and their populations may be threatening the conservation of Mona Island’s native biodiversity. In this study, we used permanent fenced and...

  9. Paper birch (Wiigwaas) of the Lake States, 1980-2010

    Science.gov (United States)

    W. Keith Moser; Mark H. Hansen; Dale Gormanson; Jonathan Gilbert; Alexandra Wrobel; Marla R. Emery; Michael J. Dockry

    2015-01-01

    Data on paper birch (Betula papyrifera L.; wiigwaas in the Ojibwe language), collected by the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service on forested lands in the Great Lakes region (Michigan, Minnesota, and Wisconsin) from 1980 through 2010, are reported. Also presented are results and analysis of a supplemental inventory...

  10. The effect of increased air humidity on northern deciduous forest ecosystem - a FAHM study.

    Science.gov (United States)

    Ostonen, Ivika; Rosenvald, Katrin; Tullus, Arvo; Parts, Kaarin; Sellin, Arne; Kupper, Priit; Sõber, Jaak; Sõber, Anu; Uri, Veiko; Aosaar, Jürgen; Varik, Mats; Lõhmus, Krista

    2013-04-01

    At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. In 2006 an unique experimental facility for free air humidity manipulation (FAHM) was established in Estonia to study the functioning of deciduous forest ecosystem under altered humidity conditions. The experimental site contains humidified and control plots, each includes four types of forest ecosystem: two overstorey species (planted hybrid aspen (Populus tremula L. × P. tremuloides Michx. and silver birch (Betula pendula Roth.)) both split into two types according to understorey vegetation (diverse "forest" understory and early successional grasses). We investigated the productivity, biomass allocation and functioning of silver birch forest ecosystem in response to elevated atmospheric humidity (on average 7% over the ambient level) during four growing seasons (2008-2011). We hypothesized that elevated air humidity facilitates both above- and below-ground growth and accumulation of plant biomass. During the first three experimental seasons height, stem diameter, and stem volume (D2H) increments of trees, biomass of understory in aboveground and fine root biomass in belowground were similar or significantly reduced in humidified plots. Only the fine root and rhizome biomass of the understory was twice higher in humidified plots. However, fine root turnover speeded up for both tree and understory roots. The trends in above-ground growth changed in 2011, when current annual increments of trees height, diameter, stem volume and fine root biomass were higher in humidified plots. Functionally, trees hydraulic conductance was significantly higher and stem sap flux lower for humidified trees coinciding with significantly higher biomass of primary (in majority ectomycorrhizal) roots, morphologically thinner and longer root tips and higher specific root length. Humidification caused a shift in the root tips colonizing fungal community towards the

  11. Effects of elevated CO{sub 2} and temperature on photosynthesis and leaf traits of an understory dwarf bamboo in subalpine forest zone, China

    Energy Technology Data Exchange (ETDEWEB)

    Yongping Li; Yuanbin Zhang; Xiaolu Zhang; Chunyang Li [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu (China); Korpelainenc, H. [Univ. of Helsinki. Dept. of Agricultural Sciences, Helsinki (Finland); Berningerd, F. [Univ. of Helsinki. Dept. of Forest Sciences, Helsinki (Finland)

    2013-06-01

    The dwarf bamboo (Fargesia rufa Yi), growing understory in subalpine dark coniferous forest, is one of the main foods for giant panda, and it influences the regeneration of subalpine coniferous forests in southwestern China. To investigate the effects of elevated CO{sub 2}, temperature and their combination, the dwarf bamboo plantlets were exposed to two CO{sub 2} regimes (ambient and double ambient CO{sub 2} concentration) and two temperatures (ambient and +2.2 deg. C) in growth chambers. Gas exchange, leaf traits and carbohydrates concentration were measured after the 150-day experiment. Elevated CO{sub 2} significantly increased the net photosynthetic rate (A{sub net}), intrinsic water-use efficiency (WUE{sub i}) and carbon isotope composition ({delta}{sup 13}C) and decreased stomatal conductance (g{sub s}) and total chlorophyll concentration based on mass (Chl{sub m}) and area (Chl{sub a}). On the other hand, elevated CO{sub 2} decreased specific leaf area (SLA), which was increased by elevated temperature. Elevated CO{sub 2} also increased foliar carbon concentration based on mass (C{sub m}) and area (C{sub a}), nitrogen concentration based on area (N{sub a}), carbohydrates concentration (i.e. sucrose, sugar, starch and non-structural carbohydrates) and the slope of the A{sub net}-N{sub a} relationship. However, elevated temperature decreased C{sub m}, C{sub a} and N{sub a}. The combination of elevated CO{sub 2} and temperature hardly affected SLA, C{sub m}, C{sub a}, N{sub m}, N{sub a}, Chl{sub m} and Chl{sub a}. Variables A{sub net} and N{sub a} had positive linear relationships in all treatments. Our results showed that photosynthetic acclimation did not occur in dwarf bamboo at elevated CO{sub 2} and it could adjust physiology and morphology to enable the capture of more light, to increase WUE and improve nutritional conditions. (Author)

  12. Determination of Tree and Understory Water Sources and Residence Times Using Stable Isotopes in a Southern Appalachian Forest

    Science.gov (United States)

    Stewart, A. N.; Knoepp, J.; Miniat, C.; Oishi, A. C.; Emanuel, R. E.

    2017-12-01

    The development of accurate hydrologic models is key to describing changes in hydrologic processes due to land use and climate change. Hydrologic models typically simplify biological processes associated with plant water uptake and transpiration, assuming that roots take up water from the same moisture pool that feeds the stream; however, this assumption is not valid for all systems. Novel combinations of climate and forest composition and structure, caused by ecosystem succession, management decisions, and climate variability, will require a better understanding of sources of water for transpiration in order to accurately estimate impact on forest water yield. Here we examine red maple (Acer rubrum), rhododendron (Rhododendron maximum), tulip poplar (Liriodendron tulipifera), and white oak (Quercus alba) trees at Coweeta Hydrologic Laboratory, a long-term hydrological and ecological research site in western NC, USA, and explore whether source water use differs by species and landscape position. We analyzed stable isotopes of water (18O and 2H) in tree cores, stream water, soil water, and precipitation using laser spectrometry and compare the isotopic composition of the various pools. We place these results in broader context using meteorological and ecophysiological data collected nearby. These findings have implications for plant water stress and drought vulnerability. They also contribute to process-based knowledge of plant water use that better captures the sensitivity of transpiration to physical and biological controls at the sub-catchment scale. This work aims to help establish novel ways to model transpiration and improve understanding of water balance, biogeochemical cycling, and transport of nutrients to streams.

  13. Impact of the invasive plant Syzigium jambos (Myrtaceae on patterns of understory seedling abundance in a Tropical Premontane Forest, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gerardo Avalos

    2006-06-01

    Full Text Available Habitat fragmentation, along with other human-induced disturbances, increase the vulnerability of native habitats to be invaded by aggressive, ecologically released, exotic species. Syzigium jambos (L. Alston (Myrtaceae, Rose Apple is an important invader still spreading throughout Hawaii, the Antilles, Central and South America. This study examines the effects of S. jambos on plant understory diversity in a 25 ha Tropical Premontane Moist Forest in Atenas, Alajuela, Costa Rica, a protected watershed that supplies drinking water for several human communities. Our final objective is to develop a management strategy combining water protection with the preservation of a representative sample of the original plant diversity in the area. Thirty 2 X 2 m plots were distributed throughout the Municipal Forest maintaining a minimum of 10 m between plots, and 2 m from trails, to sample all understory seedlings and saplings of S. jambos, Coffea arabica (coffee and tree seedlings. We found a clear dominance of S. jambos over all other understory plants. Of the total 1 285 sampled plants, S. jambos comprised 51%, coffee seedlings represented 14,78%, being the rest tree seedlings. Syzigium jambos had the highest density (5.46 plants/m2, S.D. = 6.44 compared to tree (3.67 plants/ m2, S.D. = 3.44 and coffee seedlings (1.58 plants/ m2, S.D. = 2.13. There was a highly significant negative relationship between the relative abundance of S. jambos and tree (r2 = 0.52, p La fragmentación del hábitat, junto con otros disturbios antropogénicos, aumentan la vulnerabilidad de los ambientes nativos a la invasión por especies exóticas, agresivas y sin controles ecológicos. Syzigium jambos (L. Alston (Myrtaceae, Manzana Rosa es una invasora importante que todavía está extendiendose en Hawaii, Las Antillas, Centro y Suramérica. Este estudio examina los efectos de S. jambos sobre la diversidad de plantas del sotobosque en un Bosque Húmedo Premontano de 25 ha en

  14. Mapping snags and understory shrubs for LiDAR based assessment of wildlife habitat suitability

    Science.gov (United States)

    Sebastian Martinuzzi; Lee A. Vierling; William A. Gould; Michael J. Falkowski; Jeffrey S. Evans; Andrew T. Hudak; Kerri T. Vierling

    2009-01-01

    The lack of maps depicting forest three-dimensional structure, particularly as pertaining to snags and understory shrub species distribution, is a major limitation for managing wildlife habitat in forests. Developing new techniques to remotely map snags and understory shrubs is therefore an important need. To address this, we first evaluated the use of LiDAR data for...

  15. Tradeoffs in overstory and understory aboveground net primary productivity in southwestern ponderosa pine stands

    Science.gov (United States)

    Kyla E. Sabo; Stephen C. Hart; Carolyn Hull Sieg; John Duff Bailey

    2008-01-01

    Previous studies in ponderosa pine forests have quantified the relationship between overstory stand characteristics and understory production using tree measurements such as basal area. We built on these past studies by evaluating the tradeoff between overstory and understory aboveground net primary productivity (ANPP) in southwestern ponderosa pine forests at the...

  16. Leafcutter Ant Nests Inhibit Low-Intensity Fire Spread in the Understory of Transitional Forests at the Amazon's Forest-Savanna Boundary

    Directory of Open Access Journals (Sweden)

    Karine S. Carvalho

    2012-01-01

    Full Text Available Leaf-cutter ants (Atta spp. remove leaf litter and woody debris—potential fuels—in and around their nests and foraging trails. We conducted single and three annual experimental fires to determine the effects of this leaf-cutter ant activity on the behavior of low-intensity, slow-moving fires. In a transitional forest, where the southern Amazon forest meets the Brazilian savanna, we tested whether leaf-cutter ant nests and trails (i inhibit fire spread due to a lack of fuels, and (ii, thereby, reduce the total burned area during these experimental low-intensity fires, particularly at forest edges where leaf-cutter ant abundance was higher. Fine-medium fuel mass increased with an increase in distance from ant nest, and the mean area of bare soil was greater on nests than on the forest floor. Between 60 to 90 percent of the unburned area was within 30 m of ant nests, and burned area significantly increased with increasing distance to ant nests. In addition, the number of ant nests declined with increasing distance from the forest edge, and, with exception of the first experimental fire, burned area also increased with increasing distance from the edge. The present study provides new insight to fire ecology in Amazon environments.

  17. Winter Birch Trees

    Science.gov (United States)

    Sweeney, Debra; Rounds, Judy

    2011-01-01

    Trees are great inspiration for artists. Many art teachers find themselves inspired and maybe somewhat obsessed with the natural beauty and elegance of the lofty tree, and how it changes through the seasons. One such tree that grows in several regions and always looks magnificent, regardless of the time of year, is the birch. In this article, the…

  18. Timber resource of Minnesota's Aspen-Birch Unit, 1977.

    Science.gov (United States)

    John S. Jr. Spencer; Arnold J. Ostrom

    1979-01-01

    The fourth inventory of Minnesota's Aspen-Birch Unit shows solid gains in growing-stock and sawtimber volumes between 1962 and 1977, but a 13% decline in commercial forest area. This report gives statistical highlights and contains detailed tables of forest area a well as timber volume, growth, mortality, ownership, and use.

  19. BOREAS TE-09 in situ Understory Spectral Reflectance within the NSA

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains forest understory spectral reflectance data collected by BOREAS TE-09 at the ground level in the Old Jack Pine, Young Jack Pine nd Young Aspen boreal forest...

  20. Insect enemies of birch

    Science.gov (United States)

    James G. Conklin

    1969-01-01

    Native birches are subject to attack by insects at all stages of growth from the germinating seedling to the mature tree. All parts of the tree—roots, stem, branches, foliage, and even the developing seed—may be utilized as feeding sites by insects of one kind or another. An enumeration of the many insects recorded in the literature as feeders on...

  1. Evolutionary dynamics of birch (Betula aetnensis Rafin coppices on the Mount Etna (Sicily

    Directory of Open Access Journals (Sweden)

    Bagnato S

    2014-04-01

    Full Text Available Evolutionary dynamics of birch (Betula aetnensis Rafin coppices on the Mount Etna (Sicily. The aim of this paper is to evaluate the dynamics of Etna birch stands (Betula aetnensis Rafin following the cessation of silvicultural activities in the Etna Regional Park (Sicily. We investigated forest structure, natural regeneration, vegetation and deadwood in different forest types. Our findings highlighted three different dynamics for birch populations: stable birch stands in the high mountain area which might represent an edapho-climax forest; progressive dynamic birch stands in the intermediate mountain area, showing a gradual depletion of birch and a concomitant replacement with monospecific stands (calabrian pine, beech, oaks or mixed ones (with birch; pure birch stands (typical that tend to be regressive - especially under stressful conditions - and to be replaced by xerophilous grasslands. Following the cessation of coppicing and with stand ageing, the stumps transformation into more homogeneous stand structures have been increasing. Within the context of protected areas the restoration of coppice selection system (with appropriate adaptations could help to maintain the traditional forest landscape, acting as a silvicultural technique with low environmental and landscape impact.

  2. Early understory biomass response to organic matter removal and soil compaction

    Science.gov (United States)

    Felix Jr. Ponder

    2008-01-01

    In the Missouri Ozarks, 6 and 8 years after treatment, understory biomass differences between bole only harvesting (BO) and whole-tree plus forest floor harvesting were not different; neither were there understory biomass differences between no compaction and severe compaction. Separation of the biomass into broad species categories (trees, shrubs, annuals, perennials...

  3. Dwarf Mistletoe on Red Fir . . . infection and control in understory stands

    Science.gov (United States)

    Robert F. Scharpf

    1969-01-01

    Height and age of understory red fir (Abies magnifica A. Murr.) were related to dwarf mistletoe (Arceuthobiilm campylopodum f. abietinum) infection from the surrounding overstory red fir on four National Forests in California. Percentage of trees infected and intensity of infection increased significantly as height of understory...

  4. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation.

    Science.gov (United States)

    Fu, Xiaoli; Yang, Fengting; Wang, Jianlei; Di, Yuebao; Dai, Xiaoqin; Zhang, Xinyu; Wang, Huimin

    2015-01-01

    Experiments with potted plants and removed understories have indicated that understory vegetation often affects the chemical and microbial properties of soil. In this study, we examined the mechanism and extent of the influence of understory vegetation on the chemical and microbial properties of soil in plantation forests. The relationships between the vegetational structure (diversity for different functional layers, aboveground biomass of understory vegetation, and species number) and soil properties (pH, microbial community structure, and levels of soil organic carbon, total nitrogen, and inorganic nitrogen) were analyzed across six reforestation types (three pure needleleaf forests, a needle-broadleaf mixed forest, a broadleaf forest, and a shrubland). Twenty-seven years after reforestation, soil pH significantly decreased by an average of 0.95 across reforestation types. Soil pH was positively correlated with the aboveground biomass of the understory. The levels of total, bacterial, and fungal phospholipid fatty acids, and the fungal:bacterial ratios were similar in the shrubland and the broadleaf forest. Both the aboveground biomass of the understory and the diversity of the tree layer positively influenced the fungal:bacterial ratio. Improving the aboveground biomass of the understory could alleviate soil acidification. An increase in the aboveground biomass of the understory, rather than in understory diversity, enhanced the functional traits of the soil microbial communities. The replacement of pure plantations with mixed-species stands, as well as the enhancement of understory recruitment, can improve the ecological functions of a plantation, as measured by the alleviation of soil acidification and increased fungal dominance. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.

    Science.gov (United States)

    Delagrange, Sylvain; Messier, Christian; Lechowicz, Martin J; Dizengremel, Pierre

    2004-07-01

    In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller. Copyright 2004 Heron Publishing

  6. BOREAS TE-09 in situ Understory Spectral Reflectance within the NSA

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains forest understory spectral reflectance data collected by BOREAS TE-09 at the ground level in the Old Jack Pine, Young Jack Pine nd Young Aspen...

  7. Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA

    Science.gov (United States)

    John B. Bradford; Douglas N. Kastendick

    2010-01-01

    Forest managers are seeking strategies to create stands that can adapt to new climatic conditions and simultaneously help mitigate increases in atmospheric CO2. Adaptation strategies often focus on enhancing resilience by maximizing forest complexity in terms of species composition and size structure, while mitigation involves sustaining carbon...

  8. UV-B absorbing pigments in spores: biochemical responses to shade in a high-latitude birch forest and implications for sporopollenin-based proxies of past environmental change

    Directory of Open Access Journals (Sweden)

    Terry V. Callaghan

    2011-08-01

    Full Text Available Current attempts to develop a proxy for Earth's surface ultraviolet-B (UV-B flux focus on the organic chemistry of pollen and spores because their constituent biopolymer, sporopollenin, contains UV-B absorbing pigments whose relative abundance may respond to the ambient UV-B flux. Fourier transform infrared (FTIR microspectroscopy provides a useful tool for rapidly determining the pigment content of spores. In this paper, we use FTIR to detect a chemical response of spore wall UV-B absorbing pigments that correspond with levels of shade beneath the canopy of a high-latitude Swedish birch forest. A 27% reduction in UV-B flux beneath the canopy leads to a significant (p<0.05 7.3% reduction in concentration of UV-B absorbing compounds in sporopollenin. The field data from this natural flux gradient in UV-B further support our earlier work on sporopollenin-based proxies derived from sedimentary records and herbaria collections.

  9. Changes in composition, structure and aboveground biomass over seventy-six years (1930-2006) in the Black Rock Forest, Hudson Highlands, southeastern New York state

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, W.S.F. [Black Rock Forest Consortium, Cornwall, NY (United States); Griffin, K.L. [Colombia Univ., Palisades, NY (United States). Lamont-Doherty Earth Observatory; Roth, H. [Barnard College, New York, NY (United States). Dept. of Environmental Science; Turnbull, M.H. [Canterbury Univ., Christchurch (New Zealand). School of Biological Sciences; Whitehead, D. [Landcare Research, Lincoln (New Zealand); Tissue, D.T. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Biology

    2008-04-15

    This study measured changes in tree species composition and structures over a period of 76 years in the Black Rock Forest in southeastern New York. The study used data from periodic forest inventories and long-term plots as well as species-specific allometric equations to estimate aboveground forest biomass (AGB) and carbon content. Sixteen long-term plots were monitored at various forest elevations. Density, basal area, and aboveground biomass were calculated. Allometric regression equations were used to estimate live aboveground tree biomass. Results of the review showed that paper birch, black spruce, and American elm species were extirpated from the forest between the early 1930s and the year 2000. Species that invaded the forest included white poplar, red mulberry, eastern cottonwood, and slippery elm. Red oak and chestnut oaks dominated the forest canopy. The forest understory changed over the period from mixed oak to red maple and black birch. Red oak canopy trees stored carbon at twice the rate of similar-sized canopy trees in the forest. A significant loss of live tree biomass was attributed to canopy tree mortality since 1999. It was concluded that insect outbreaks and droughts are important constraints on long-term biomass growth. 87 refs., 2 tabs., 5 figs.

  10. Ice Nuclei from Birch Trees

    Science.gov (United States)

    Felgitsch, Laura; Seifried, Teresa; Winkler, Philipp; Schmale, David, III; Grothe, Hinrich

    2017-04-01

    While the importance of heterogeneous ice nucleation in the atmosphere is known, we still know very little about the substances triggering these freezing events. Recent findings support the theory that biological ice nuclei (IN) exhibit the ability to play an important role in these processes. Huffman et al. (2013) showed a burst of biological IN over woodlands triggered by rain events. Birch pollen are known to release a high number of efficient IN if incubated in water (Pummer et al. 2012). Therefore birches are of interest in our research on this topic. Plants native to the timberline, such as birch trees, have to cope with very cold climatic conditions, rendering freezing avoidance impossible. These plants trigger freezing in their extracellular spaces to control the freezing process and avoid intracellular freezing, which would have lethal consequences. The plants hereby try to freeze at a temperature well above homogeneous freezing temperatures but still at temperatures low enough to not be effected by brief night frosts. To achieve this, IN are an important tool. The specific objective of our work was to study the potential sources and distribution of IN in birch trees. We collected leaves, fruit, bark, and trunk cores from a series of mature birch trees in Tyrol, Austria at different altitudes and sampling sites. We also collected samples from a birch tree in an urban park in Vienna, Austria. Our data show a sampling site dependence and the distribution of IN throughout the tree. Our data suggest that leaves, bark, and wood of birch can function as a source of IN, which are easily extracted with water. The IN are therefore not restricted to pollen. Hence, the amount of IN, which can be released from birch trees, is tremendous and has been underrated so far. Future work aims to elucidate the nature, contribution, and potential ecological roles of IN from birch trees in different habitats. Huffman, J.A., Prenni, A.J., DeMott, P.J., Pöhlker, C., Mason, R

  11. Potential role of soil calcium in recovery of paper birch following ice storm injury in Vermont, USA

    Science.gov (United States)

    Joshua M. Halman; Paul G. Schaberg; Gary J. Hawley; Christopher F. Hansen

    2011-01-01

    In recent years, an increased number of mature paper birch (Betula papyrifera Marsh.) and heart-leafed paper birch (B. papyrifera var. cordifolia (Regel) Fern.) in northeastern United States forests have exhibited decline symptoms including foliar loss, reduced fine branching, and tree mortality. We assessed crown health, radial...

  12. Are the birch trees in Southern England a source of Betula pollen for North London?

    Science.gov (United States)

    Skjøth, C. A.; Smith, M.; Brandt, J.; Emberlin, J.

    2009-01-01

    Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts ( n = 60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200-0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.

  13. Using traditional ecological knowledge as a basis for targeted forest inventory: paper birch (Betula papyrifera) in the US Great Lakes Region

    Science.gov (United States)

    Marla R. Emery; Alexandra Wrobel; Mark H. Hansen; Michael Dockry; W. Keith Moser; Kekek Jason Stark; Jonathan H. Gilbert

    2014-01-01

    Traditional ecological knowledge (TEK) has been proposed as a basis for enhanced understanding of ecological systems and their management. TEK also can contribute to targeted inventories of resources not included in standard mensuration. We discuss the results of a cooperative effort between the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) and USDA Forest...

  14. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    Science.gov (United States)

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  15. Long-term biological legacies of herbivore density in a landscape-scale experiment: forest understories reflect past deer density treatments for at least 20 years

    Science.gov (United States)

    Tim Nuttle; Todd E. Ristau; Alejandro A. Royo

    2014-01-01

    Ungulate browsers, when at high densities, are major drivers of vegetation change in forests world-wide. Their effects operate via a variety of generalizable mechanisms related to plant palatability and relative growth rate with respect to browsing pressure. Though such impacts are obviously long-lasting when they determine composition of tree regeneration, we document...

  16. Birch regeneration: a stochastic model

    Science.gov (United States)

    William B. Leak

    1968-01-01

    The regeneration of a clearcutting with paper or yellow birch is expressed as an elementary stochastic (probabalistic) model that is computationally similar to an absorbing Markov chain. In the general case, the model contains 29 states beginning with the development of a flower (ament) and terminating with the abortion of a flower or seed, or the development of an...

  17. Over-browsing in Pennsylvania creates a depauperate forest dominated by an understory tree: results from a 60-year-old deer exclosure

    Science.gov (United States)

    Morgan Kain; Loretta Battaglia; Alejandro Royo; Walter P. Carson

    2011-01-01

    We evaluated the impact of long-term over-browsing by white-tailed deer on the diversity and density of trees in a forest in the Allegheny High Plateau region of central Pennsylvania.We compared tree diversity and density inside a 60 year-old deer exclosure to an adjacent reference site. Browsing caused a 55-100% decline in density of four tree species (Prunus...

  18. Changes in habitat use at rainforest edges through succession: A case study of understory birds in the Brazilian Amazon

    Science.gov (United States)

    Luke L. Powell; Gustavo Zurita; Jared D.  Wolfe; Erik I.  Johnson; Philip C  Stouffer

    2015-01-01

    Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio-tracked two...

  19. LBA-ECO CD-05 Understory Fuel Stick Moisture, km 67 Site, Para, Brazil: 1998-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains moisture content measurements for fuel sticks located in the forest understory of the rainfall exclusion experimental site, Tapajos National...

  20. LBA-ECO CD-05 Understory Fuel Stick Moisture, km 67 Site, Para, Brazil: 1998-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains moisture content measurements for fuel sticks located in the forest understory of the rainfall exclusion experimental site, Tapajos...

  1. Maine's forests 2008

    Science.gov (United States)

    George L. McCaskill; William H. McWilliams; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Christopher W. Woodall

    2011-01-01

    The second annual inventory of Maine's forests was completed in 2008 after more than 3,160 forested plots were measured. Forest land occupies almost 17.7 million acres, which represents 82 percent of the total land area of Maine. The dominant forest-type groups are maple/beech/yellow birch, spruce/fir, white/red/jack pine, and aspen/white birch. Statewide volume...

  2. Monoterpene emissions from an understory species, Pteridium aquilinum

    Science.gov (United States)

    Madronich, Monica B.; Greenberg, James P.; Wessman, Carol A.; Guenther, Alex B.

    2012-07-01

    Monoterpene emissions from the dominant understory species Pteridium aquilinum (Bracken fern) in a mixed temperate forest were measured in the field during the summers of 2006, 2007 and 2008. The results showed that Bracken fern emitted monoterpenes at different rates depending if the plants were located in the understory or in open areas. Understory plants emitted monoterpene levels ranging from 0.002 to 13 μgC gdw-1 h-1. Open area plants emitted monoterpene levels ranging from 0.005 to 2.21 μgC gdw-1 h-1. During the summer of 2008 greenhouse studies were performed to complement the field studies. Only 3% of the greenhouse Bracken fern plants emitted substantial amounts of monoterpenes. The average emission, 0.15 μgC gdw-1 h-1 ± 0.9 μgC gdw-1 h-1, was much lower than that observed in the field. The factors controlling monoterpene emissions are not clear, but this study provides evidence of the potential importance of understory vegetation to ecosystem total hydrocarbon emissions and emphasizes the need for longer-term field studies.

  3. The legacy of deer overabundance: long-term delays in herbaceous understory recovery

    Science.gov (United States)

    Thomas H. Pendergast; Shane M. Hanlon; Zachary M. Long; Alex Royo; Walter P. Carson

    2016-01-01

    Decades of white-tailed deer (Odocoileus virginianus (Zimmermann, 1780)) overpopulation have dramatically homogenized forests across much of the eastern United States, creating depauperate forest understory communities. The rate at which these communities recover once deer browsing has been reduced remains an open question. We evaluate overbrowsing...

  4. Changes in Patterns of Understory Leaf Phenology and Herbivory following Hurricane Damage.

    Science.gov (United States)

    Pilar Angulo-Sandoval; H. Fernandez-Marin; J. K. Zimmerman; T. M. Aide

    2004-01-01

    Hurricanes are important disturbance events in many forested ecosystems. They can have strong effects on both forest structure and animal populations, and yet few studies have considered the impacts on plant–animal interactions. Reduction of canopy cover by severe winds increases light availability to understory plants, providing an opportunity for increased growth. An...

  5. Uso de florestas secundárias por aves de sub-bosque em uma paisagem fragmentada na Amazônia central Use of secondary forests by understory birds in a fragmented landscape in central Amazonia

    Directory of Open Access Journals (Sweden)

    João Vitor Campos e Silva

    2012-03-01

    secondary forests that are established in the abandoned areas. The trend is an increase in secondary forests cover, resulting in a mosaic of primary forest (FP and fragments separated by an array of secondary forests (FS. In this scenario, the prediction of a massive extinction could be wrong if many species could survive in the secondary forests. To assess the importance of FS for the understory birds we sampled areas in regeneration and a continuous forest of a fragmented landscape. We conducted mist netting (24 nets/day for six consecutive days/month, for 8 months (May-November in 2009. Some forest species as do not seem to be adapted to the secondary forest environment and their occurrences are restricted to continuous forest environments. But most focal species showed no significant difference in apparent survival rates between the enviroments, suggesting that these species inhabit the secondary forest and the primary forest similarly. Because most of the matrix in fragmented landscapes are composed by secondary forests, such results highlights the conservation value that these habitats present in the long term. Thus, FS should be regarded as dynamic matrix that not only allows the movement of individuals but also function as habitat for many species typical of FP.

  6. Birch's Law for fluid metals

    International Nuclear Information System (INIS)

    Shaner, J.W.; Hixson, R.S.; Winkler, M.A.; Boness, D.A.; Brown, J.M.

    1987-01-01

    By comparing acoustic velocities in fluid metals over a very wide range of densities we have established Birch's Law as an approximate representation over the entire liquid range. For a given liquid metal the acoustic velocity is close to linear in density, with a slope determined by the atomic weight. The measurements include isobaric expansion to less than half normal density, ultrasonics on molten metals at 1 atmosphere, and shock melted metals to greater than twice normal density

  7. Do seasonal changes in light availability influence the inverse leafing phenology of the neotropical dry forest understory shrub Bonellia nervosa (Theophrastaceae?

    Directory of Open Access Journals (Sweden)

    Oscar M Chaves

    2008-03-01

    Full Text Available In tropical dry forests most plants are deciduous during the dry season and flush leaves with the onset of the rains. In Costa Rica, the only species displaying the opposite pattern is Bonellia nervosa. To determine if seasonal changes in light availability are associated with the leaf and reproductive phenology of this species, we monitored leaf production, survival, and life span, as well as flower and fruit production from April 2000 to October 2001 in Santa Rosa National Park. Leaf flushing and flower bud production took place shortly after the autumnal equinox when day length starts to decrease. Leaves began expansion at the end of the wet season, and plants reached 70 % of their maximum leaf area at the beginning of the dry season, maintaining their foliage throughout the entire dry period. Leaf shedding occurred gradually during the first three months of the wet season. Leaf flushing and shedding showed high synchrony, with leaf numbers being related to light availability. Maximum leaf production coincided with peaks in radiation during the middle of the dry season. Decreasing day length induces highly synchronous flower bud emergence in dry forest species, but this is the first study indicating induction of leaf flushing by declining day length. Rev. Biol. Trop. 56 (1: 257-268. Epub 2008 March 31.En los bosques tropicales secos la mayoría de las plantas pierden sus hojas durante la estación seca y las producen con el inicio de las lluvias. En Costa Rica la única especie que muestra el patrón fenológico inverso es Bonellia nervosa. Para determinar si los cambios estacionales en la disponibilidad de luz estaban asociados con la fenología foliar y reproductiva en esta especie, monitoreamos la producción y sobrevivencia de hojas, así como la producción de flores y frutos de abril del 2000 a octubre del 2001 en el Parque Nacional Santa Rosa. La producción de hojas y botones florales ocurrió poco después del equinoccio de oto

  8. Ecological and phytopathological status of birch stands on the territory of Krasnoyarsk group of districts

    Directory of Open Access Journals (Sweden)

    A. I. Tatarintsev

    2015-04-01

    Full Text Available According to inspection data, the health and vital status of birch (Betula pendula Roth. stands in Krasnoyarsk group of lands (southern part of Central Siberia were estimated (established as satisfactory in general; about half of birch stands near urbanized areas were weakened. The condition of stands decreased significantly with increased recreation use, the effect of technogenic pollution was negligible. The most valuable (important representatives of pathogenic biota identified on birch trees were infestations of necrotic cancer and rot diseases. In birch stands the bacterial dropsy was found to be widespread (agent of infection – Erwinia multivora Scz.-Parf, occurrence of the disease ranged from a single ill tree up to 10–38 % of the stands. The birch stands in taiga areas were affected to a greater extent than in forest-steppe; there were high yield class stands on moist soils. Prevalence of bacteriosis rose with increasing stand age and density and not dependent on recreation use level. Trees with dropsy are dead in fact or potentially. In taiga birch forests the infection and rot of roots was caused by honey agaric (Armillaria mellea sensu lato, that lead to single or, rarely, group tree drying and the fungus usually eliminated already weakened trees. Wood biomass was destroyed by complex of aphyllophorous Hymenomycetes, their hemiparasitic species caused stem rots that decreased stand marketability and also resulted in rot-realated wind-break accumulation. Occurrence of rot was significantly higher in second growth birch stands, possibly above 20 %; the relationship between rot prevalence and forest assessment was not revealed.

  9. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Pauli, Gabrielle; Larsen, Tina H; Rak, Sabina

    2008-01-01

    BACKGROUND: Recombinant DNA technology has the potential to produce allergen-specific immunotherapy vaccines with defined composition. OBJECTIVE: To evaluate the effectiveness of a new recombinant birch pollen allergen vaccine in patients with birch pollen allergy. METHODS: A multicenter......, randomized, double-blind, placebo-controlled trial was undertaken to compare the following 3 vaccines in 134 adults with birch pollen allergy: recombinant birch pollen allergen vaccine (rBet v 1a), licensed birch pollen extract, natural purified birch pollen allergen (nBet v 1), and placebo. Patients......-treated group. CONCLUSION: The rBet v 1-based vaccine was safe and effective in treating birch pollen allergy, and induced a highly specific immune response....

  10. CO2 enrichment accelerates successional development of an understory plant community

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Lara [University of Tennessee, Knoxville (UTK); Belote, R. Travis Travis [Wilderness Society, The; Kardol, Paul [ORNL; Weltzin, Jake [ORNL; Norby, Richard J [ORNL

    2010-01-01

    Rising concentrations of atmospheric carbon dioxide ([CO{sub 2}]) may influence forest successional development and species composition of understory plant communities by altering biomass production of plant species of functional groups. Here, we describe how elevated [CO{sub 2}] (eCO{sub 2}) affects aboveground biomass within the understory community of a temperate deciduous forest at the Oak Ridge National Laboratory sweetgum (Liquidambar styraciflua) free-air carbon dioxide enrichment (FACE) facility in eastern Tennessee, USA. We asked if (i) CO{sub 2} enrichment affected total understory biomass and (ii) whether total biomass responses could be explained by changes in understory species composition or changes in relative abundance of functional groups through time. The FACE experiment started in 1998 with three rings receiving ambient [CO{sub 2}] (aCO{sub 2}) and two rings receiving eCO{sub 2}. From 2001 to 2003, we estimated species-specific, woody versus herbaceous and total aboveground biomass by harvesting four 1 x 0.5-m subplots within the established understory plant community in each FACE plot. In 2008, we estimated herbaceous biomass as previously but used allometric relationships to estimate woody biomass across two 5 x 5-m quadrats in each FACE plot. Across years, aboveground biomass of the understory community was on average 25% greater in eCO{sub 2} than in aCO{sub 2} plots. We could not detect differences in plant species composition between aCO{sub 2} and eCO{sub 2} treatments. However, we did observe shifts in the relative abundance of plant functional groups, which reflect important structural changes in the understory community. In 2001-03, little of the understory biomass was in woody species; herbaceous species made up 94% of the total understory biomass across [CO{sub 2}] treatments. Through time, woody species increased in importance, mostly in eCO{sub 2}, and in 2008, the contribution of herbaceous species to total understory biomass was

  11. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    Science.gov (United States)

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).

  12. Sucesso reprodutivo de espécies distílicas de psychotria (rubiaceae em sub-bosque de floresta atlântica Reproductive success of distylous species of psychotria (rubiaceae of understory atlantic forest

    Directory of Open Access Journals (Sweden)

    Celice Alexandre Silva

    2013-04-01

    Full Text Available As espécies distílicas Psychotria conjugens, P. hastisepala e P. sessilis (Rubiaceae são típicas de sub-bosques sombreados. Ocorrem no maior fragmento de Floresta Estacional Semidecidual de Viçosa, Minas Gerais, Sudeste brasileiro - a Mata do Paraíso, com 194 ha. A distilia caracteriza-se pela presença dos morfos florais longistilos (L e brevistilos (B em indivíduos distintos e pela dependência de polinizações intermorfos (L x B ou B x L para a produção de frutos; é esperada a proporção equilibrada (isopletia dos indivíduos na população. Foram objetivos deste trabalho verificar, nas espécies citadas, a proporção dos morfos florais em uma área de 7 ha e a dependência por polinizadores, testando a incompatibilidade intramorfos (L x L e B x B por meio de polinizações manuais in vivo, a viabilidade dos grãos de pólen e dimorfismo dos grãos entre os morfos florais; e quantificar as produções de frutos e de sementes por morfo. Os morfos florais das espécies se encontram em proporções equilibradas. Houve incompatibilidade e a viabilidade dos grãos de pólen foi alta (> 64%. Verificou-se dimorfismo dos grãos, e os maiores diâmetros foram os de B. As produções de frutos e de sementes (uma ou duas dos morfos de P. sessilis e de P. conjugens foram semelhantes e, em P. hastisepala, foram maiores em B. Na Mata do Paraíso, as condições adequadas, como o hábitat, a isopletia e a atuação de polinizadores, são fatores que parecem favorecer o sucesso reprodutivo e, consequentemente, a manutenção local das espécies estudadas.The distylous species of Psychotria conjugens, P. hastisepala e P. sessilis (Rubiaceae are typical of understory shady. It occurs in the largest fragment (194 ha of semideciduous forest in Viçosa, Minas Gerais State, southeastern Brazil, where the present study was carried out. The distyly is characterized by the presence of pin (L and thrum (B floral morphs in different individual and the

  13. Understory vegetation and site factors : implications for a managed Wisconsin landscape

    Science.gov (United States)

    K.D. Brosofske; J. Chen; Thomas R. Crow

    2001-01-01

    We investigated relationships between edaphic and environmental factors (soil, forest floor, topography, and canopy) and understory vegetation (composition, richness, and Shannon-Wiener diversity index, H')among 77 plots representing seven major patch types comprising a landscape in northern Wisconsin that has a long history of human management. Sampled patch...

  14. LEAF AREA INDEX (LAI) CHANGE DETECTION ANALYSIS ON LOBLOLLY PINE (PINUS TAEDA) FOLLOWING COMPLETE UNDERSTORY REMOVAL

    Science.gov (United States)

    The confounding effect of understory vegetation contributions to satellite-derived estimates of leaf area index (LAI) was investigated on two loblolly pine (Pinus taeda) forest stands located in Virginia and North Carolina. In order to separate NDVI contributions of the dominantc...

  15. Post-fire logging produces minimal persistent impacts on understory vegetation in northeastern Oregon, USA

    Science.gov (United States)

    David W. Peterson; Erich Dodson

    2016-01-01

    Post-fire forest management commonly requires accepting some negative ecological impacts from management activities in order to achieve management objectives. Managers need to know, however, whether ecological impacts from post-fire management activities are transient or cause long-term ecosystem degradation. We studied the long-term response of understory vegetation...

  16. Linking dominant Hawaiian tree species to understory development in recovering pastures via impacts on soils and litter

    Science.gov (United States)

    Yelenik, Stephanie G.

    2017-01-01

    Large areas of tropical forest have been cleared and planted with exotic grass species for use as cattle pasture. These often remain persistent grasslands after grazer removal, which is problematic for restoring native forest communities. It is often hoped that remnant and/or planted trees can jump-start forest succession; however, there is little mechanistic information on how different canopy species affect community trajectories. To investigate this, I surveyed understory communities, exotic grass biomass, standing litter pools, and soil properties under two dominant canopy trees—Metrosideros polymorpha (‘ōhi‘a) and Acacia koa (koa)—in recovering Hawaiian forests. I then used structural equation models (SEMs) to elucidate direct and indirect effects of trees on native understory. Native understory communities developed under ‘ōhi‘a, which had larger standing litter pools, lower soil nitrogen, and lower exotic grass biomass than koa. This pattern was variable, potentially due to historical site differences and/or distance to intact forest. Koa, in contrast, showed little understory development. Instead, data suggest that increased soil nitrogen under koa leads to high grass biomass that stalls native recruitment. SEMs suggested that indirect effects of trees via litter and soils were as or more important than direct effects for determining native cover. It is suggested that diverse plantings which incorporate species that have high carbon to nitrogen ratios may help ameliorate the negative indirect effects of koa on natural understory regeneration.

  17. Management of birch for wildlife habitat

    Science.gov (United States)

    Samuel P. Shaw

    1969-01-01

    The list of wildlife species known to prefer paper birch and yellow birch as food ls a long one. To mention a few: beavers and porcupines chew on the bark and wood; sapsuckers feed on the sap; other songbirds—notably the redpoll, pine siskin, and chikadee—relish the seeds; ruffed grouse eat the catkins, buds, and seeds (in northern Maine and Canada...

  18. Carbon and energy fluxes of the understory vegetation of the black spruce ecosystem in interior Alaska

    Science.gov (United States)

    Ikawa, H.; Nakai, T.; Kim, Y.; Busey, R.; Suzuki, R.; Hinzman, L. D.

    2013-12-01

    Underlain by permafrost, understory vegetation in the boreal forest of the high northern latitudes is likely sensitive to climate change. This study investigated the contribution of the understory vegetation of the black spruce forest (Picea mariana) to net ecosystem exchange (NEE) and vertical energy fluxes at the supersite (65deg 07' 24' N, 147deg 29' 15' W) of the JAMSTEC-IARC Collaboration Study (JICS) located within the property of the Poker Flat Research Range of the University of Alaska Fairbanks in interior Alaska [Sugiura et al., 2011; Nakai et al., 2013]. The understory is dominated by a 0 - 20 cm thick layer of peat moss (Sphagnum fuscum) and feather moss (Hylocomium splendens). Eddy covariance measurements were made at 11 m over the canopy and 1.9 m above the ground in summer 2013. The measurement shows that the peak sink of CO2 from understory during the day typically accounted for 80% of the total NEE of (~ 3 μmol m-2s-1) observed over the canopy. Sensible heat flux was nearly identical between the two heights and latent heat flux observed at 1.9m was slightly higher than that observed at 11m. Higher latent heat flux from understory than the total latent heat flux over the canopy is most likely due to the difference in the footprint of the two measurements, and it is necessary to further evaluate the spatial representativeness of the understory fluxes. Nonetheless, these high flux values from the understory suggest an importance of the understory vegetation in evaluating ecosystem flux of the black spruce forest. Acknowledgement This study is funded by the Japan Aerospace Exploration Agency (JAXA) and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) References Nakai, T., Y. Kim, R. C. Busey, R. Suzuki, S. Nagai, H. Kobayashi, H. Park, K. Sugiura, and A. Ito (2013), Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska, Polar Science, 7(2), 136-148, doi:10.1016/j.polar.2013.03.003. Sugiura, K

  19. Identification of scenically preferred forest landscapes

    Science.gov (United States)

    Roberta C. Patey; Richard M. Evans

    1979-01-01

    This study identified manipulated forest landscapes with a low understory shrub density as being esthetic-ally preferred over non-manipulated, dense understory landscapes. This landscape pattern was identified both qualitatively, by preference ratings of respondents, and quantitatively, by measuring the physical components of each landscape. Forest sites were selected...

  20. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    Directory of Open Access Journals (Sweden)

    Long Yang

    Full Text Available For the purposes of forest restoration, carbon (C fixation, and economic improvement, eucalyptus (Eucalyptus urophylla has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm and bottom (0-50 cm of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  1. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    Science.gov (United States)

    Yang, Long; Wang, Jun; Huang, Yuhui; Hui, Dafeng; Wen, Meili

    2014-01-01

    For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm) and bottom (0-50 cm) of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants) than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  2. Can the Understory Affect the Hymenoptera Parasitoids in a Eucalyptus Plantation?

    Directory of Open Access Journals (Sweden)

    Onice Teresinha Dall'Oglio

    Full Text Available The understory in forest plantations can increase richness and diversity of natural enemies due to greater plant species richness. The objective of this study was to test the hypothesis that the presence of the understory and climatic season in the region (wet or dry can increase the richness and abundance of Hymenoptera parasitoids in Eucalyptus plantations, in the municipality of Belo Oriente, Minas Gerais State, Brazil. In each eucalyptus cultivation (five areas of cultivation ten Malaise traps were installed, five with the understory and five without it. A total of 9,639 individuals from 30 families of the Hymenoptera parasitoids were collected, with Mymaridae, Scelionidae, Encyrtidae and Braconidae being the most collected ones with 4,934, 1,212, 619 and 612 individuals, respectively. The eucalyptus stands with and without the understory showed percentage of individuals 45.65% and 54.35% collected, respectively. The understory did not represent a positive effect on the overall abundance of the individuals Hymenoptera in the E. grandis stands, but rather exerted a positive effect on the specific families of the parasitoids of this order.

  3. Providing habitat for native mammals through understory enhancement in forestry plantations.

    Science.gov (United States)

    Simonetti, Javier A; Grez, Audrey A; Estades, Cristián F

    2013-10-01

    The Convention on Biological Diversity (CBD) expects forestry plantations to contribute to biodiversity conservation. A well-developed understory in forestry plantations might serve as a surrogate habitat for native species and mitigate the negative effect of plantations on species richness. We experimentally tested this hypothesis by removing the understory in Monterey pine (Pinus radiata) plantations in central Chile and assessing changes in species richness and abundance of medium-sized mammals. Frequency of occurrence of mammals, including kodkods (Leopardus guigna), culpeo foxes (Pseudalopex culpaeus), lesser grisons (Conepatus chinga), and Southern pudu deer (Pudu puda), was low in forest stands with little to no understory relative to stands with well-developed undergrowth vegetation. After removing the understory, their frequency of occurrence decreased significantly, whereas in control stands, where understory was not removed, their frequency did not change. This result strongly supports the idea that facilitating the development of undergrowth vegetation may turn forestry stands into secondary habitats as opposed to their containing no habitat for native mammals. This forestry practice could contribute to conservation of biological diversity as it pertains to CBD targets. © 2013 Society for Conservation Biology.

  4. Wisconsin's Forests 2009

    Science.gov (United States)

    Charles H. Perry; Vern A. Everson; Brett J. Butler; Susan J. Crocker; Sally E. Dahir; Andrea L. Diss-Torrance; Grant M Domke; Dale D. Gormanson; Sarah K. Herrick; Steven S. Hubbard; Terry R. Mace; Patrick D. Miles; Mark D. Nelson; Richard B. Rodeout; Luke T. Saunders; Kirk M. Stueve; Barry T. Wilson; Christopher W. Woodall

    2012-01-01

    The second full annual inventory of Wisconsin's forests reports more than 16.7 million acres of forest land with an average volume of more than 1,400 cubic feet per acre. Forest land is dominated by the oak/hickory forest-type group, which occupies slightly more than one quarter of the total forest land area; the maple/beech/birch forest-type group occupies an...

  5. Asymptomatic skin sensitization to birch predicts later development of birch pollen allergy in adults

    DEFF Research Database (Denmark)

    Bødtger, Uffe; Poulsen, Lars K; Malling, Hans-Jørgen

    2003-01-01

    a clinical characterization of skin test-positive subjects without symptoms and to ascertain the predictive values of common allergologic tests. METHODS: Asymptomatic adults with positive skin prick test results for birch (n = 15), nonatopic control subjects (n = 25), and birch pollen-allergic patients (n...... = 6) were followed through use of daily diary cards during 3 consecutive birch pollen seasons. At inclusion and at the 3-year follow-up visit, conjunctival and nasal challenges, intradermal late-phase reaction evaluation, and measurement of specific IgE were performed. RESULTS: Asymptomatic sensitized...

  6. Soil Chemical and Microbial Properties in a Mixed Stand of Spruce and Birch in the Ore Mountains (Germany—A Case Study

    Directory of Open Access Journals (Sweden)

    Karoline Schua

    2015-06-01

    Full Text Available A major argument for incorporating deciduous tree species in coniferous forest stands is their role in the amelioration and stabilisation of biogeochemical cycles. Current forest management strategies in central Europe aim to increase the area of mixed stands. In order to formulate statements about the ecological effects of mixtures, studies at the stand level are necessary. In a mixed stand of Norway spruce (Picea abies (L. Karst. and silver birch (Betula pendula Roth in the Ore Mountains (Saxony, Germany, the effects of these two tree species on chemical and microbial parameters in the topsoil were studied at one site in the form of a case study. Samples were taken from the O layer and A horizon in areas of the stand influenced by either birch, spruce or a mixture of birch and spruce. The microbial biomass, basal respiration, metabolic quotient, pH-value and the C and N contents and stocks were analysed in the horizons Of, Oh and A. Significantly higher contents of microbial N were observed in the Of and Oh horizons in the birch and in the spruce-birch strata than in the stratum containing only spruce. The same was found with respect to pH-values in the Of horizon and basal respiration in the Oh horizon. Compared to the spruce stratum, in the birch and spruce-birch strata, significantly lower values were found for the contents of organic C and total N in the A horizon. The findings of the case study indicated that single birch trees have significant effects on the chemical and microbial topsoil properties in spruce-dominated stands. Therefore, the admixture of birch in spruce stands may distinctly affect nutrient cycling and may also be relevant for soil carbon sequestration. Further studies of these functional aspects are recommended.

  7. BOREAS TE-9 In Situ Understory Spectral Reflectance Within the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Supronowicz, Jan; Edwards, Geoffrey; Viau, Alain; Thomson, Keith

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. Spectral reflection coefficients of the forest understory at the ground level, in three boreal forest sites of Northern Manitoba (56 N latitude and 98 W longitude), were obtained and analyzed in 1994. In particular, angular variation of the reflection coefficients in the old jack pine and young jack pine forests, as well as nadir reflection coefficient in the young aspen forest, were investigated. The complexity of understory composition and the light patterns limited quantitative conclusions; however, a number of interesting trends in the behavior of the measured values can be inferred. In particular, the unique spectral profiles of lichens show very strongly in the old jack pine understory, yet are definitely less conspicuous for young jack pine, and virtually absent in the aspen forest. The angular variation of the reflection coefficient by the young pine understory seems to be significantly toned down by fine-structured branches and their shadows. Our study also indicates how difficult the ground reflection coefficient problem in a forest is, compared to certain previously investigated areas that have a more uniform appearance, such as prairie grassland, bare soil, or agricultural crops. This is due to several factors, generally typical of a forest environment, that may influence the overall understory reflection coefficient, including: (1) a strong diversity of the forest floor due to the presence of dead tree trunks, holes in the ground, patches of different types of vegetation or litter, etc.; (2) pronounced 3-D structures at the ground level, such as shrubs, bushes, and young trees; and (3) an irregular shadow mosaic, which not only varies with the time of the day, causing intensity variations, but likely also effectively modifies the spectrum of the

  8. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand

    OpenAIRE

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; L?hmus, Krista; N?lvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bact...

  9. High-Titer Methane from Organosolv-Pretreated Spruce and Birch

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2017-02-01

    Full Text Available The negative impact of fossil fuels and the increased demand for renewable energy sources has led to the use of novel raw material sources. Lignocellulosic biomass could serve as a possible raw material for anaerobic digestion and production of biogas. This work is aimed at using forest biomass, both softwood (spruce and hardwood (birch, as a raw material for anaerobic digestion. We examined the effect of different operational conditions for the organosolv pretreatment (ethanol content, duration of treatment, and addition of acid catalyst on the methane yield. In addition, we investigated the effect of addition of cellulolytic enzymes during the digestion. We found that inclusion of an acid catalyst during organosolv pretreatment improved the yields from spruce, but it did not affect the yields from birch. Shorter duration of treatment was advantageous with both materials. Methane yields from spruce were higher with lower ethanol content whereas higher ethanol content was more beneficial for birch. The highest yields obtained were 185 mL CH4/g VS from spruce and 259.9 mL CH4/g VS from birch. Addition of cellulolytic enzymes improved these yields to 266.6 mL CH4/g VS and 284.2 mL CH4/g VS, respectively.

  10. Effect of preharvest understory treatment and group opening size on four-year survival of advance reproduction in the Boston Mountains of Arkansas

    Science.gov (United States)

    Martin A. Spetich; David L. Graney

    2003-01-01

    The purpose of this study was to examine survival of regeneration in small openings. Six forest stands were located in 1990 and three understory treatments were applied to each in early 1991. In each stand, six sizes of openings were created in 1992 ranging in size from 0.025 ac to 0.50 ac. Understory treatments consisted of: 1) no control of competing regeneration, 2...

  11. Rapid Crustal Uplift at Birch Bay, Washington

    Science.gov (United States)

    Sherrod, B. L.; Kelsey, H. M.; Blakely, R. J.

    2010-12-01

    Geomorphology and coastal marsh stratigraphy suggest late Holocene uplift of the shoreline at Birch Bay, located northwest of Bellingham, Washington, during an earthquake on a shallow fault. LiDAR images show a raised, late Holocene shoreline along Birch Bay, with ~1 m of elevation difference between the modern shoreline and the inferred paleoshoreline. Commercial seismic reflection images reveal an anticline in Tertiary and possibly Quaternary deposits underlying Birch Bay. NW-trending magnetic anomalies are likely associated with the Birch Bay anticline and other nearby structures. Taken together, the geophysical data and lidar images suggest uplift of young deposits along a NW-trending blind reverse fault. Stratigraphy from Terrell Creek marsh, located just south of Birch Bay, shows freshwater peat buried by lower intertidal muds, indicating local submergence ~1300 yr BP. Stratigraphy of a 70-cm sediment core from Birch Bay marsh, sitting astride the anticline imaged with seismic reflection data, shows mud buried by detrital peat. One radiocarbon age from the core places the abrupt change from mud to peat prior to 1520-1700 yr BP. We divide fossil diatom assemblages straddling the mud-peat contact at Birch Bay into three zones. The oldest zone consists primarily of intertidal and marine diatoms, dominated by Paralia sulcata, Scoleoneis tumida, Grammataphora oceanica, and Gyrosigma balticum. An intermediate zone, beginning at the sharp contact between mud and overlying peat, consists of a mixture of brackish marsh and freshwater species, dominated by Diploneis interrupta, with lesser amounts of Aulacoseira sp., Pinnularia viridis, Eunotia pectinalis, and Paralia sulcata. A third and youngest zone lies in the upper half of the peat and is dominated by poorly preserved freshwater diatoms, mostly Aulacoseira cf. crassapuntata, Pinnularia viridis, P. maior, Eunotia pectinalis, and E. praerupta. Paleoecological inferences, based on distributions of modern diatoms

  12. Performance of tropical legumes grown as understory of a eucalypt plantation in a seasonally dry area of the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Maria Luiza F. Nicodemo

    2015-09-01

    Full Text Available Nine tropical legumes were grown outside the canopy and in the understory of an 8-year-old Eucalyptus grandis stand in order to assess their seasonal production and forage quality for 4 evaluation periods. Incident photosynthetically active radiation in the understory was 18% of that outside the canopy. In the understory, production of Lablab purpureus, Centrosema schiedeanum, Clitoria ternatea, Pueraria phaseoloides, Alysicarpus vaginalis, Aeschynomene villosa, Estilosantes Campo Grande (Stylosanthes capitata + S. macrocephala, Calopogonium mucunoides and Arachis pintoi was <1 kg/ha/d for most samples. Even considering this low production, the large area available for animal production in forest plantations might justify the interest in legumes because of their high nutritive value. Lablab purpureus produced the greatest amount of dry matter in the understory in the establishment phase (12.1 kg/ha/d, but did not persist. It could be a suitable candidate for a cover legume species mixture to provide early growth. Centrosema schiedeanum developed rapidly and showed a high capacity for ground cover (>70% and persistence, and had high nitrogen concentration, thus demonstrating good potential for protecting soils and promoting nutrient cycling in forest plantations. Another species with potential is A. pintoi, which established slowly but towards the end of the experiment showed moderate to high understory ground cover.Keywords: Dry matter production, forage quality, shade, silvopastoral system.DOI: 10.17138/TGFT(3151-160

  13. Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand

    NARCIS (Netherlands)

    de Schrijver, A.; Nachtergale, Lieven; Staelens, Jeroen; Luyssaert, S.; De Keersmaeker, Luc

    In Flanders, critical loads for acidification and eutrophication are exceeded in the majority of the forest stands, and many previously nitrogen limited forest ecosystems have become nitrogen saturated. The present study investigates whether a naturally regenerated stand of silver birch (Betula

  14. Understory vegetation response after 30 years of interval prescribed burning in two ponderosa pine sites in northern Arizona, USA

    Science.gov (United States)

    Catherine A. Scudieri; Carolyn Hull Sieg; Sally M. Haase; Andrea E. Thode; Stephen S. Sackett

    2010-01-01

    Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We...

  15. Understory fuel variation at the Carolina Sandhills National Wildlife Refuge: a description of chemical and physical properties

    Science.gov (United States)

    Evelyn S. Wenk; G. Geoff Wang; Joan L. Walker

    2013-01-01

    Upland forest in the Carolina Sandhills National Wildlife Refuge is characterized by a longleaf pine (Pinus palustris) canopy with a variable understory and ground-layer species composition. The system was historically maintained by fire and has been managed with prescribed fire in recent decades. A management goal is to reduce turkey oak (...

  16. Family richness and biomass of understory invertebrates in early and late successional habitats of northern New Hampshire

    Science.gov (United States)

    Matthew K. Wilson; Winsor H. Lowe; Keith Nislow

    2014-01-01

    In the northeastern United States, many vertebrate species rely on early successional forest habitats (ESHs). ESHs may also support higher invertebrate diversity and abundance than late successional habitats (LSHs). We assessed the differences in family-level richness and biomass of understory terrestrial invertebrates during the summer season in paired ESH (3-7 years...

  17. Assessing the Potential Stem Growth and Quality of Yellow Birch Prior to Restoration: A Case Study in Eastern Canada

    Directory of Open Access Journals (Sweden)

    Alexis Achim

    2013-09-01

    Full Text Available Past silvicultural treatments have resulted in the high-grading mixed temperate forests of Québec, Canada. Despite recognition of this issue, the low occurrence of yellow birch (Betula alleghaniensis Britton within current stands raises questions about the potential of the species to grow and eventually constitute a high-quality forest resource. The objective of this study was to assess this potential using tree characteristics, forest structure and additional site and climatic conditions as predictors. A total of 145 trees were sampled in two areas located in the same bioclimatic zone. Lower-Saguenay-Charlevoix was chosen as an area where a restoration plan could be implemented, whereas Portneuf was selected as a reference. We used nonlinear mixed models to investigate which environmental factors are likely to influence the radial growth and stem quality of yellow birch sample trees. Our results suggest that topographic and climatic conditions, as well as the competitive environment of the trees, are important factors to consider in the evaluation of yellow birch production. Despite the limited occurrence of yellow birch, the potential for growth and quality was high in the Lower-Saguenay-Charlevoix area. For equivalent topographic, climatic, and competitive environment conditions, there was no significant difference in either radial growth or stem quality with Portneuf. We suggest that the economic interest of producing high quality timber should be used to justify the implementation of a restoration strategy in the Lower-Saguenay-Charlevoix area.

  18. Responses of Soil Organic Carbon to Long-Term Understory Removal in Subtropical Cinnamomum camphora Stands

    Directory of Open Access Journals (Sweden)

    Yacong Wu

    2014-01-01

    Full Text Available We conducted a study on a 48-year-old Cinnamomum camphora plantation in the subtropics of China, by removing understory gradually and then comparing this treatment with a control (undisturbed. This study analyzed the content and storage soil organic carbon (SOC in a soil depth of 0–60 cm. The results showed that SOC content was lower in understory removal (UR treatment, with a decrease range from 5% to 34%, and a decline of 10.16 g·kg−1 and 8.58 g·kg−1 was noticed in 0–10 cm and 10–20 cm layers, respectively, with significant differences (P<0.05. Carbon storage was reduced in UR, ranging from 2% to 43%, with a particular drastic decline of 15.39 t·hm−2 and 11.58 t·hm−2 in 0–10 cm (P<0.01 and 10–20 cm (P<0.01 layers, respectively. Content of SOC had an extremely significant (P<0.01 correlation with soil nutrients in the two stands, and the correlation coefficients of CK were higher than those of UR. Our data showed that the presence of understory favored the accumulation of soil organic carbon to a large extent. Therefore, long-term practice of understory removal weakens the function of forest ecosystem as a carbon sink.

  19. Impact of oil palm agriculture on understory amphibians and reptiles: A Mesoamerican perspective

    Directory of Open Access Journals (Sweden)

    Nina Gallmetzer

    2015-07-01

    Full Text Available Oil palm plantations expand rapidly in tropical regions, including the Neotropics. This study, quantifies the impact on the herpetofauna of the Pacific lowlands of Costa Rica. Amphibians and reptiles were sampled along transects in forest interior (FI, at forest margins (FM and in oil palm plantations (OP. While no significant difference in species richness was found between FI and FM, OP were characterized by a strongly impoverished fauna. Total species richness of amphibians and reptiles was reduced to 45.3% and 49.8% compared to FI, respectively. Species assemblages in OP differed from forest habitats and were characterized by disturbance-tolerant species and a severe loss of endemic species. In amphibians, functional diversity declined dramatically towards OP indicating a decrease of their ecological function. The almost complete absence of leaf litter, understory vegetation and woody debris and the more open canopy may be responsible for the depauperate herpetofauna in OP. Enhancing understory vegetation could help making plantations a less hostile environment for some species. Still, those management measures might not be enough to promote forest specialists. Therefore, to maintain a diverse herpetofauna in tropical human-modified landscapes, the protection of any forested habitats such as secondary forests and strips of gallery forests is essential.

  20. Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species.

    Science.gov (United States)

    Naumburg, Elke; Ellsworth, David S

    2002-04-01

    Instantaneous measurements of photosynthesis are often implicitly or explicitly scaled to longer time frames to provide an understanding of plant performance in a given environment. For plants growing in a forest understory, results from photosynthetic light response curves in conjunction with diurnal light data are frequently extrapolated to daily photosynthesis (A(day)), ignoring dynamic photosynthetic responses to light. In this study, we evaluated the importance of two factors on A(day) estimates: dynamic physiological responses to photosynthetic photon flux density (PPFD); and time-resolution of the PPFD data used for modeling. We used a dynamic photosynthesis model to investigate how these factors interact with species-specific photosynthetic traits, forest type, and sky conditions to affect the accuracy of A(day) predictions. Increasing time-averaging of PPFD significantly increased the relative overestimation of A(day) similarly for all study species because of the nonlinear response of photosynthesis to PPFD (15% with 5-min PPFD means). Depending on the light environment characteristics and species-specific dynamic responses to PPFD, understory tree A(day) can be overestimated by 6-42% for the study species by ignoring these dynamics. Although these overestimates decrease under cloudy conditions where direct sunlight and consequently understory sunfleck radiation is reduced, they are still significant. Within a species, overestimation of A(day) as a result of ignoring dynamic responses was highly dependent on daily sunfleck PPFD and the frequency and irradiance of sunflecks. Overall, large overestimates of A(day) in understory trees may cause misleading inferences concerning species growth and competition in forest understories with sunlight. We conclude that comparisons of A(day) among co-occurring understory species in deep shade will be enhanced by consideration of sunflecks by using high-resolution PPFD data and understanding the physiological

  1. Impacts of Elevated Atmospheric CO2 and O3 on Paper Birch (Betula papyrifera: Reproductive Fitness

    Directory of Open Access Journals (Sweden)

    Joseph N. T. Darbah

    2007-01-01

    Full Text Available Atmospheric CO2 and tropospheric O3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO3 and O3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment site in Rhinelander, WI. Elevated CO2 increased both male and female flower production, while elevated O3 increased female flower production compared to trees in control rings. Interestingly, very little flowering has yet occurred in combined treatment. Elevated CO2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO2 increased germination rate of birch by 110% compared to ambient CO2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination, while the opposite was true of elevated O3 (elevated O3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%. Under elevated CO2, plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO2, while the reverse was true for seedlings from seeds produced under the elevated O3. Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO2 and O3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.

  2. The Banyan and the Birch Tree

    DEFF Research Database (Denmark)

    Lorenzen, Mark; Taeube, Florian A.

    Theoretical and empirical research on entrepreneurial networks is largely outcome-oriented and little integrated with family firm research. In this paper, we draw on social network and entrepreneurship literatures in order to investigate how family businesses build and make use of a variety of em...... compared to the plain structure of a birch tree describing Hollywood, where embedded ties can be different from familial ties....

  3. Quantitative DNA Analyses for Airborne Birch Pollen.

    Directory of Open Access Journals (Sweden)

    Isabell Müller-Germann

    Full Text Available Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR, which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8 and the other for a multi-copy gene (ITS. The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm, the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future.

  4. Wisconsin's forest resources in 2001.

    Science.gov (United States)

    John S. Vissage; Gery J. Brand; Manfred E. Mielke

    2003-01-01

    Results of the 2001 annual inventory of Wisconsin show about 15.8 million acres of forest land, more than 21.6 billion cubic feet of live volume on forest land, and nearly 584 million dry tons of all live aboveground tree biomass on timberland. Gypsy moth, forest tent caterpillar, twolined chestnut borer, bronze birch borer, ash yellows, and white pine blister rust...

  5. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China.

    Science.gov (United States)

    Zhou, Lili; Cai, Liping; He, Zongming; Wang, Rongwei; Wu, Pengfei; Ma, Xiangqing

    2016-12-01

    Sustainable forestry requires adopting more ecosystem-informed perspectives. Tree thinning improves forest productivity by encouraging the development of the understory, which in turn improves species diversity and nutrient cycling, thereby altering the ecophysiological environment of the stand. This study aimed to quantify tree growth, understory vegetation, and soil quality of 9- and 16-year-old Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations in South China, 1-7 years after pre-commercial thinning. The quadratic mean diameter (QMD) and individual tree volume were greatly increased and compensated for the reduced stand yield in thinned stands. In 2011, the stand volume in unthinned and thinned stands were 276.33 and 226.46 and 251.30 and 243.64 m 3  ha -1 , respectively, for young and middle stage. Therefore, we predicted that over time, the stand volume in thinned stands should exceed that in unthinned stands. The composition, diversity, and biomass of understory vegetation of the plantation monocultures significantly increased after thinning. The effects of thinning management on understory development were dynamic and apparent within 1-2 years post-thinning. Some light-demanding plant species such as Styrax faberi, Callicarpa formosana, Lophatherum gracile, and Gahnia tristis emerged in the shrub and herb layer and became dominant with the larger gaps in the canopy in thinned stands. The trigger effects of thinning management on understory and tree growth were more pronounced in the young stage. The beneficial effects on soil physical and chemical properties were measurable at later stages (7 years after thinning). The strong positive relationship between understory biomass and volume increment (at the tree and stand levels) indicated that understory improvement after thinning did not restrict productivity within Chinese fir stands but rather, benefited soil water content and nutrient status and promoted tree growth.

  6. Influência da cobertura e do solo na composição florística do sub-bosque em uma floresta estacional semidecidual em Viçosa, MG, Brasil Cover and soil influence at understory of a Seasonal Tropical Forest, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    João Augusto Alves Meira-Neto

    2005-09-01

    ésio e potássio estavam correlacionados positivamente entre si e negativamente aos teores de alumínio. A cobertura revelou-se correlacionada negativamente aos teores de alumínio. Foram detectados cinco grupos de espécies segundo as preferências que apresentaram aos teores de cálcio, magnésio, potássio, alumínio e a valores de cobertura. Os teores de alumínio revelaram-se os maiores determinantes da variação encontrada na vegetação de sub-bosque. As variáveis pedológicas mostraram-se mais importantes que a variação de cobertura encontrada no sub-bosque para determinar alterações estruturais no estrato herbáceo-arbustivo.Plant-light ecological relations have been studied since the early 20th century. Light within forests has been studied since then. At community level, light environment analysis has been carried out by indirect cover measurement, but without any photogrammetric methods. This work aims to apply the canopy photogrammetric method in light environment studies of understory. Correlations among edaphic, cover and species variations were investigated to understand the understory environment. These studies were carried out in a sampled area for understory phytosociological analysis. The black and white canopy photographs were taken for cover estimation. Photographs were taken in dry and rainy seasons at 100 sample quadrats. Soil samples were taken at these quadrats. The cover average for sampled species was calculated and "t" student test was applied for testing the significance of difference between specific and populational means. Correspondence Canonical Analysis was applied to determine correlations among species, edaphic factors and cover. Cover was not significantly different in dry and rainy seasons. Only three species Heisteria silviani, Calathea brasiliensis and Psychotria conjugens, had mean cover greater than the populational mean. Other three species, Olyra micrantha, Lacistema pubescens and Pteris denticulata, had mean cover

  7. Development of old-growth northern hardwoods on Bartlett Experimental Forest - a 22-year record

    Science.gov (United States)

    Stanley M. Filip; David A. Marquis; William B. Leak

    1960-01-01

    Northern hardwood forests provide the industries of New England with their most valuable woods: yellow birch and sugar maple for veneer, paper birch for turning stock, and other hardwood species for a variety of specialty products. As a result of recent developments in hardwood pulping, these northern hardwood forests now represent a tremendous reservoir of raw...

  8. Impact of ectohumus application in birch and pine nurseries on the presence of soil mites (Acari, Oribatida in particular

    Directory of Open Access Journals (Sweden)

    Klimek Andrzej

    2016-03-01

    Full Text Available Intensively used forest nurseries are characterised by degradation processes that lead to a drop in the quality of seedlings. The main reason of this problem is a decrease in biological soil diversity. Therefore, an attempt of nursery soil enrichment by introducing ectohumus – as compost and fresh litter – from the pine forest was carried out. The research was carried out in 2009–2011 in the Bielawy forest nursery near the city of Toruń, Poland. The objective of the study was to determine the impact of organic fertilisation (compost made up of forest humus and mulching using fresh ectohumus on the density and community composition of Acari mites and on species composition of oribatid mites (Oribatida in the nurseries of silver birch and Scots pine. Mites, especially oribatid mites, were treated as bioindicators of soil biological activity. Research has shown that mulching using fresh ectohumus caused a multiple increase in the density of mites, especially in saprophagous mites Oribatida. Oribatid mites were clearly more numerous in birch cultivation than in that of pine. Overall, 27 species of oribatid mites were found. Mulching resulted in a significant growth in species diversity in both cultivations. The most numerous oribatid mite in the area under the study was Oribatula tibialis. This species was present in all plots and showed clear preference for birch cultivation. Tectocepheus velatus and Oppiella nova, common and known to be present in a variety of environments, were slightly less numerous.

  9. Birch pollen allergy: molecular characterization and hypoallergenic products

    NARCIS (Netherlands)

    Schenk, M.F.

    2008-01-01

    Allergic diseases, such as hay fever and food allergy, affect a substantial part of the population in westernized countries. Pollen of the European white birch (Betula pendula) is a considerable cause of hay fever (seasonal allergic rhinitis) in northern and central Europe. The major birch pollen

  10. Oral allergy syndrome to chicory associated with birch pollen allergy

    NARCIS (Netherlands)

    Cadot, P.; Kochuyt, A.-M.; van Ree, R.; Ceuppens, J. L.

    2003-01-01

    BACKGROUND: A few cases of IgE-mediated chicory allergy with oral, cutaneous, and/or respiratory symptoms are reported. We present 4 patients with inhalant birch pollen allergy and oral allergy syndrome to chicory. IgE-binding proteins in chicory and cross-reactivity with birch pollen were studied.

  11. Expression of bgt gene in transgenic birch (Betula platyphylla Suk ...

    African Journals Online (AJOL)

    Study on the characteristics of integration and expression is the basis of genetic stability of foreign genes in transgenic trees. To obtain insight into the relationship of transgene copy number and expression level, we screened 22 transgenic birch lines. Southern blot analysis of the transgenic birch plants indicated that the ...

  12. Expression of bgt gene in transgenic birch (Betula platyphylla Suk.)

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Study on the characteristics of integration and expression is the basis of genetic stability of foreign genes in transgenic trees. To obtain insight into the relationship of transgene copy number and expression level, we screened 22 transgenic birch lines. Southern blot analysis of the transgenic birch.

  13. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor.

    Science.gov (United States)

    Fagan, Matthew E; DeFries, Ruth S; Sesnie, Steven E; Arroyo-Mora, J Pablo; Chazdon, Robin L

    2016-07-01

    Re-establishing connectivity between protected areas isolated by habitat clearing is a key conservation goal in the humid tropics. In northeastern Costa Rica, payments for environmental services (PES) and a government ban on deforestation have subsidized forest protection and reforestation in the San Juan-La Selva Biological Corridor (SJLSBC), resulting in a decline in mature forest loss and the expansion of tree plantations. We use field studies and graph models to assess how conservation efforts have altered functional connectivity over the last 25 years for four species of insectivorous understory birds. Field playback studies assessed how reforestation habitat quality affected the willingness of Myrmeciza exsul, Henicorhina leucosticta, Thamnophilus atrinucha, and Glyphorynchus spirurus to travel outside forest habitat for territorial defense. Observed travel distances were greatest in nonnative and native tree plantations with high understory stem density, regardless of overstory composition. In contrast, tree plantations with low stem density had travel responses comparable to open pasture for three of the four bird species. We modeled landscape connectivity for each species using graph models based on varying possible travel distances in tree plantations, gallery forests, and pastures. From 1986 to 2011, connectivity for all species declined in the SJLSBC landscape (5825 km 2 ) by 14% to 21% despite only a 4.9% net loss in forest area and the rapid expansion of tree plantations over 2% of the landscape. Plantation placement in the landscape limited their potential facilitation of connectivity because they were located either far from forest cover or within already contiguous forest areas. We mapped current connectivity bottlenecks and identified priority areas for future reforestation. We estimate that reforestation of priority areas could improve connectivity by 2% with only a 1% gain in forest cover, an impressive gain given the small area reforested

  14. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand.

    Science.gov (United States)

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch ( Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N 2 O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.

  15. BIRCH: A user-oriented, locally-customizable, bioinformatics system

    Directory of Open Access Journals (Sweden)

    Fristensky Brian

    2007-02-01

    Full Text Available Abstract Background Molecular biologists need sophisticated analytical tools which often demand extensive computational resources. While finding, installing, and using these tools can be challenging, pipelining data from one program to the next is particularly awkward, especially when using web-based programs. At the same time, system administrators tasked with maintaining these tools do not always appreciate the needs of research biologists. Results BIRCH (Biological Research Computing Hierarchy is an organizational framework for delivering bioinformatics resources to a user group, scaling from a single lab to a large institution. The BIRCH core distribution includes many popular bioinformatics programs, unified within the GDE (Genetic Data Environment graphic interface. Of equal importance, BIRCH provides the system administrator with tools that simplify the job of managing a multiuser bioinformatics system across different platforms and operating systems. These include tools for integrating locally-installed programs and databases into BIRCH, and for customizing the local BIRCH system to meet the needs of the user base. BIRCH can also act as a front end to provide a unified view of already-existing collections of bioinformatics software. Documentation for the BIRCH and locally-added programs is merged in a hierarchical set of web pages. In addition to manual pages for individual programs, BIRCH tutorials employ step by step examples, with screen shots and sample files, to illustrate both the important theoretical and practical considerations behind complex analytical tasks. Conclusion BIRCH provides a versatile organizational framework for managing software and databases, and making these accessible to a user base. Because of its network-centric design, BIRCH makes it possible for any user to do any task from anywhere.

  16. BIRCH: a user-oriented, locally-customizable, bioinformatics system.

    Science.gov (United States)

    Fristensky, Brian

    2007-02-09

    Molecular biologists need sophisticated analytical tools which often demand extensive computational resources. While finding, installing, and using these tools can be challenging, pipelining data from one program to the next is particularly awkward, especially when using web-based programs. At the same time, system administrators tasked with maintaining these tools do not always appreciate the needs of research biologists. BIRCH (Biological Research Computing Hierarchy) is an organizational framework for delivering bioinformatics resources to a user group, scaling from a single lab to a large institution. The BIRCH core distribution includes many popular bioinformatics programs, unified within the GDE (Genetic Data Environment) graphic interface. Of equal importance, BIRCH provides the system administrator with tools that simplify the job of managing a multiuser bioinformatics system across different platforms and operating systems. These include tools for integrating locally-installed programs and databases into BIRCH, and for customizing the local BIRCH system to meet the needs of the user base. BIRCH can also act as a front end to provide a unified view of already-existing collections of bioinformatics software. Documentation for the BIRCH and locally-added programs is merged in a hierarchical set of web pages. In addition to manual pages for individual programs, BIRCH tutorials employ step by step examples, with screen shots and sample files, to illustrate both the important theoretical and practical considerations behind complex analytical tasks. BIRCH provides a versatile organizational framework for managing software and databases, and making these accessible to a user base. Because of its network-centric design, BIRCH makes it possible for any user to do any task from anywhere.

  17. Establishing an Alaskan birch syrup industry: Birch Syrup—It’s the Un-maple!TM

    Science.gov (United States)

    Marlene. Cameron

    2001-01-01

    Ten years ago a small group of Alaskans began commercial production of birch syrup from the sap of the paper birch, Betula papyrifera, and established an industry that is expanding in response to demand and has the potential to make a significant contribution to Alaska's economy. There are still many problems to be solved; research and...

  18. 75 FR 51987 - Birch Power Company and Sorenson Engineering; Birch Power Company and Sorenson Leasing L.L.C...

    Science.gov (United States)

    2010-08-24

    ... Company and Sorenson Engineering; Birch Power Company and Sorenson Leasing L.L.C.; Notice of Application... Leasing, L.L.C. (transferees) filed an application for transfer of license for the Birch Creek... Sorenson Leasing L.L.C., 5203 South 11th East, Idaho Falls, Idaho 83404, phone (208) 589-6908. FERC Contact...

  19. Forests

    Science.gov (United States)

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  20. Concentrations of Ca and Mg in early stages of sapwood decay in red spruce, eastern hemlock, red maple, and paper birch

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Jody Jellison; Jon Connolly; Jonathan Schilling

    2007-01-01

    The decay of coarse woody debris is a key component in the formation of forest soil and in the biogeochemical cycles of Ca and Mg. We tracked changes in density and concentration of Ca and Mg in sapwood of red maple (Acer rubrum L.), red spruce (Picea rubens Sarg.), paper birch (Betula papyrifera Marsh.), and...

  1. Measuring and modeling the spatial pattern of understory bamboo across landscapes: Implications for giant panda habitat

    Science.gov (United States)

    Linderman, Marc Alan

    We examined an approach to classifying understory bamboo, the staple food of the giant panda (Ailuropoda melanoleuca), from remote sensing imagery in the Wolong Nature Reserve, China. We also used these data to estimate the landscape-scale distribution of giant panda habitat, and model the human effects on forest cover and the spatio-temporal dynamics of bamboo and the resulting implications for giant panda habitat. The spatial distribution of understory bamboo was mapped using an artificial neural network and leaf-on remote sensing data. Training on a limited set of ground truth data and using widely available Landsat TM data as input, a non-linear artificial neural network achieved a classification accuracy of 80% despite the presence of co-occurring mid-story and understory vegetation. Using information on the spatial distribution of bamboo in Wolong, we compared the results of giant panda habitat analyses with and without bamboo information. Total amount of habitat decreased by 29--56% and overall habitat patch size decreased by 16--48% after bamboo information was incorporated into the analyses. The decreases in the quantity of panda habitat and increases in habitat fragmentation resulted in decreases of 41--60% in carrying capacity. Using a spatio-temporal model of bamboo dynamics and human activities, we found that local fuelwood collection and household creation will likely reduce secondary habitat relied upon by pandas. Human impacts would likely contribute up to an additional 16% loss of habitat. Furthermore, these impacts primarily occur in the habitat relied upon by giant pandas during past bamboo die-offs. Decreased total area of habitat and increased fragmentation from human activities will likely make giant pandas increasingly sensitive to natural disturbances such as cyclical bamboo die-offs. Our studies suggest that it is necessary to further examine approaches to monitor understory vegetation and incorporate understory information into wildlife

  2. Responses of a Federally Endangered Songbird to Understory Thinning in Oak-Juniper Woodlands

    Science.gov (United States)

    Long, Ashley M.; Marshall, Mike E.; Morrison, Michael L.; Hays, K. Brian; Farrell, Shannon L.

    2017-04-01

    Wildlife conservation and management on military lands must be accomplished in the context of military readiness, which often includes ground-based training that is perceived to conflict with wildlife needs and environmental regulations. From 2008‒2012, we examined territory density, pairing success, and fledging success of the federally endangered golden-cheeked warbler ( Setophaga chrysoparia; hereafter warbler) in relation to removal of small-diameter trees from the understory of mature oak-juniper ( Quercus-Juniperus) woodland at the 87,890 ha Fort Hood Military Reservation in central Texas. Understory thinning created troop maneuver lanes, but left canopy vegetation intact. Warbler density, pairing success, and fledging success were similar across thinned and control sites. We found that warbler pairing and fledging success were best predicted by Ecological site (hereafter Ecosite), an indicator of hardwood tree species composition. Warbler pairing and fledging success were about 1.5 and 1.6 times higher, respectively, for territories dominated by the Low Stony Hill Ecosite than territories dominated by the Redlands Ecosite. Our results indicate that understory thinning for military training purposes did not have a negative effect on warblers at Fort Hood in the manner tested, and suggest that removal of smaller trees from the understory in a way that replicates historic conditions may elicit neutral responses from this forest-dependent songbird. Quantifying wildlife responses to military activities provides the Department of Defense and US Fish and Wildlife Service with data to guide conservation of threatened and endangered species on Department of Defense facilities while maintaining the military mission, and supports wildlife management efforts on other public and private lands.

  3. How does molecular-assisted identification affect our estimation of α, β and γ biodiversity? An example from understory red seaweeds (Rhodophyta) of Laminaria kelp forests in Brittany, France.

    Science.gov (United States)

    Robuchon, Marine; Valero, Myriam; Gey, Delphine; Le Gall, Line

    2015-04-01

    Using two distinct identification methods, one based on morphological characters only and the other combining morphological and molecular characters (integrative identification method), we investigated the differences in the biodiversity patterns of red seaweed communities associated with kelp forests at various spatial scales: the regional diversity of Brittany, France (γ-diversity), the local diversity at different Breton sites (α-diversity) and the differentiation in species diversity and abundances among those sites (β-diversity). To characterise α and β diversities, we conducted an initial survey in winter 2011 at 20 sites belonging to four different sub-regions, with specimens collected from six quadrats of 0.10 m(2) at each site, three in the tidal zone dominated by Laminaria digitata and three in the zone dominated by Laminaria hyperborea. To further characterise the regional diversity, we carried out another survey combining several sampling methods (quadrats and visual census) in different seasons (winter, spring and summer) and different years (2011 and 2012). In all, we collected 1990 specimens that were assigned to 76 taxa with the identification method based on morphological characters and 139 taxa using the integrative method. For γ and α diversity, the use of molecular characters revealed several cases of cryptic diversity and both increased the number of identified taxa and improved their taxonomic resolution. However, the addition of molecular characters for specimen identification only slightly affected estimates of β-diversity.

  4. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in 4 northern hardwood tree species

    International Nuclear Information System (INIS)

    Sefcik, L.T.; Zak, D.R.; Ellsworth, D.S.

    2006-01-01

    Stimulation of photosynthesis in response to elevated carbon dioxide (CO 2 ) varies among tree species and species groups. In this study, seedling responses to elevated atmospheric carbon dioxide (CO 2 ) concentrations and solar irradiance over 2 growing seasons were investigated for shade tolerant Acer saccharum Marsh.; Fagus grandifolia J.F. Ehrh; and shade-intolerant Prunus serotina. Seedlings were exposed to a combination of elevated and ambient concentrations of CO 2 and understory shade in open-top chambers placed in a forest understory. It was observed that the elevated CO 2 treatment increased mean light-saturated net photosynthetic rates by 63 per cent in the shade-tolerant species and 67 per cent in the shade-intolerant species. When measured at the elevated CO 2 , long-term enhancement of photosynthesis was 10 per cent lower than the instantaneous enhancement observed in ambient-CO 2 -grown plants. As the growth irradiance increased, proportional enhancement due to elevated CO 2 decreased from 97 per cent for plants grown in deep shade to 47 per cent for plants grown in moderate shade. Results indicated that in nitrogen (N) limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO 2 enriched atmosphere than trees growing in more moderate shade, due to greater down-regulation. It was concluded that if elevated CO 2 levels promote the survival of shade-intolerant species in dim understory light, the future composition and dynamics of successional forest communities may be altered. 70 refs., 2 tabs., 3 figs

  5. Discerning responses of down wood and understory vegetation abundance to riparian buffer width and thinning treatments: an equivalence-inequivalence approach

    Science.gov (United States)

    Paul D. Anderson; Mark A. Meleason

    2009-01-01

    We investigated buffer width and thinning effects on the abundance of down wood and understory vegetation in headwater stream catchments of 40- to 65-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests in western Oregon, USA. Small-wood cover became more homogeneous among stream reaches within 5 years following thinning, primarily...

  6. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    Science.gov (United States)

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  7. Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.

    Science.gov (United States)

    Brantley, Steven; Ford, Chelcy R; Vose, James M

    2013-06-01

    Infestation of eastern hemlock (Tsuga canadensis (L.) Carr.) with hemlock woolly adelgid (HWA, Adelges tsugae) has caused widespread mortality of this key canopy species throughout much of the southern Appalachian Mountains in the past decade. Because eastern hemlock is heavily concentrated in riparian habitats, maintains a dense canopy, and has an evergreen leaf habit, its loss is expected to have a major impact on forest processes, including transpiration (E(t)). Our goal was to estimate changes in stand-level E(t) since HWA infestation, and predict future effects of forest regeneration on forest E(t) in declining eastern hemlock stands where hemlock represented 50-60% of forest basal area. We used a combination of community surveys, sap flux measurements, and empirical models relating sap flux-scaled leaf-level transpiration (E(L)) to climate to estimate the change in E(t) after hemlock mortality and forecast how forest E(t) will change in the future in response to eastern hemlock loss. From 2004 to 2011, eastern hemlock mortality reduced annual forest E(t) by 22% and reduced winter E(t) by 74%. As hemlock mortality increased, growth of deciduous tree species--especially sweet birch (Betula lenta L.), red maple (Acer rubrum L.), yellow poplar (Liriodendron tulipifera L.), and the evergreen understory shrub rosebay rhododendron (Rhododendron maximum L.)--also increased, and these species will probably dominate post-hemlock riparian forests. All of these species have higher daytime E(L) rates than hemlock, and replacement of hemlock with species that have less conservative transpiration rates will result in rapid recovery of annual stand E(t). Further, we predict that annual stand E(t) will eventually surpass E(t) levels observed before hemlock was infested with HWA. This long-term increase in forest E(t) may eventually reduce stream discharge, especially during the growing season. However, the dominance of deciduous species in the canopy will result in a

  8. Long-Term Storage of Yellow and Paper Birch Seed

    Science.gov (United States)

    Knud E. Clausen

    1975-01-01

    Storage of yellow and paper birch seeds for 12 years does not appear practical but seed visibility can usually be maintained for at least 8 years, if the seeds are kept in closed containers at 36? to 40?F.

  9. Gnomonia canker, shoot blight, and leaf spot of yellow birch.

    Science.gov (United States)

    Kenneth J. Jr. Kessler

    1978-01-01

    Describes a canker, shoot blight, and leaf spot disease of yellow birch seedlings in the northern Great Lakes region and tells how and when trees become infected by the fungal causal agent, Gnomonia setacea.

  10. Characterizing forest vegetation of the Tanana Valley: what can forest inventory and analysis deliver?

    Science.gov (United States)

    Bethany Schulz

    2015-01-01

    Vegetation profile data were collected as part of a forest inventory project in the Tanana Valley in interior Alaska, providing a means of characterizing the forest vegetation. The black spruce forest type was most common, followed by Alaska paper birch, and white spruce, quaking aspen, and balsam poplar. For individual tree species, black spruce was recorded on 68...

  11. Features of secondary birch young stands in low mountain Pokuttya (Ukrainian Carpathian mts.

    Directory of Open Access Journals (Sweden)

    S. Y. Milevskaya

    2015-06-01

    Full Text Available Forest landscapes of the region during the last 3–5 centuries undergone the profound anthropogenic transformation. Secondary young stands occupy 25% of the total forest area. The problem of derivatives is particularly relevant for the modern forest typology in the Carpathian region. It requires the reflection in its dynamic trends shaping the stands, especially mixed young stands. The aim of our study consisted in getting the knowledge of the structural features of the secondary phytocoenosis of birch young stands in this area.The object of the study was age class I saplings growing in the mountainous part of Pokuttya, particularly in the basin of the Lutshka River. The conceptual basis of our study is the modern dynamic vision that every forest type is a consecutive series of forest plant communities within each type of homogeneous growing conditions. We apply methods of ecological-floristic research of the Brown-Blanke school in the interpretation of the Polish school phytosociology. However we also take into account both syntaxonomy generalizations of the Ukrainian scientists. The actual material comprises the original geobotanical studies with fixation of the vast majority of species in plant communities. Mainly the species having diagnostic value to separate syntaxons were taken into account in the analytical processing. Young forest stands (with the height of 8–12 m and crown cover of 70% together form the trees Betula pendula and B. pubescens. Fairly numerous admixture is formed by trees Alnus incana; besides, there are Fagus sylvatica, Populus tremula, Quercus robur, Padus avium. For dominants, they can be called “grey-alder birch blackberry sedge bracken fern” – Betula pendula+Alnus incana–Rubus caesius–Carex brizoides+Pteridium aquilinum. It is rich in floristic composition of the plant communities. They contain at least 12 species of trees, 3 species of shrubs, 4 species of bushes and 89 species of herbs. Diagnostic

  12. Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction

    International Nuclear Information System (INIS)

    Darbah, Joseph N.T.; Kubiske, Mark E.; Nelson, Neil; Oksanen, Elina; Vapaavuori, Elina; Karnosky, David F.

    2008-01-01

    We studied the effects of long-term exposure (nine years) of birch (Betula papyrifera) trees to elevated CO 2 and/or O 3 on reproduction and seedling development at the Aspen FACE (Free-Air Carbon Dioxide Enrichment) site in Rhinelander, WI. We found that elevated CO 2 increased both the number of trees that flowered and the quantity of flowers (260% increase in male flower production), increased seed weight, germination rate, and seedling vigor. Elevated O 3 also increased flowering but decreased seed weight and germination rate. In the combination treatment (elevated CO 2 + O 3 ) seed weight is decreased (20% reduction) while germination rate was unaffected. The evidence from this study indicates that elevated CO 2 may have a largely positive impact on forest tree reproduction and regeneration while elevated O 3 will likely have a negative impact. - In this study, we found that elevated CO 2 enhances and elevated O 3 decreases birch reproduction and early seedling growth

  13. The effect of land-use on the diversity and mass-abundance relationships of understory avian insectivores in Sri Lanka and southern India.

    Science.gov (United States)

    Sreekar, Rachakonda; Srinivasan, Umesh; Mammides, Christos; Chen, Jin; Manage Goodale, Uromi; Kotagama, Sarath Wimalabandara; Sidhu, Swati; Goodale, Eben

    2015-06-25

    Understory avian insectivores are especially sensitive to deforestation, although regional differences in how these species respond to human disturbance may be linked to varying land-use histories. South Asia experienced widespread conversion of forest to agriculture in the nineteenth century, providing a comparison to tropical areas deforested more recently. In Sri Lanka and the Western Ghats of India, we compared understory insectivores to other guilds, and to insectivores with different vertical strata preferences, both inside mixed-species flocks and for the whole bird community. Overall species richness did not change across the land-use gradient, although there was substantial turnover in species composition between land-use types. We found that the proportion of species represented by insectivores was ~1.14 times higher in forest compared to agriculture, and the proportion of insectivores represented by understory species was ~1.32 times higher in forests. Mass-abundance relationships were very different when analyzed on mixed-species flocks compared to the total community, perhaps indicating reduced competition in these mutualisms. We show that South Asia fits the worldwide pattern of understory insectivores declining with increased land-use intensity, and conclude that these species can be used globally as indicator and/or umbrella species for conservation across different disturbance time scales.

  14. Trophic flexibility and the persistence of understory birds in intensively logged rainforest.

    Science.gov (United States)

    Edwards, David P; Woodcock, Paul; Newton, Rob J; Edwards, Felicity A; Andrews, David J R; Docherty, Teegan D S; Mitchell, Simon L; Ota, Takahiro; Benedick, Suzan; Bottrell, Simon H; Hamer, Keith C

    2013-10-01

    Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable-isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic-niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic-niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic-niche widths in degraded forest. Species with narrow trophic-niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species' trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. © 2013 Society for Conservation Biology.

  15. Edge effects on growth and biomass partitioning of an Amazonian understory herb (Heliconia acuminata; Heliconiaceae).

    Science.gov (United States)

    Bruna, Emilio M; de Andrade, Ana Segalin

    2011-10-01

    After deforestation, environmental changes in the remaining forest fragments are often most intense near the forest edge, but few studies have evaluated plant growth or plasticity of plant growth in response to edge effects. In a 2-year common garden experiment, we compared biomass allocation and growth of Heliconia acuminata with identical genotypes grown in 50 × 35 m common gardens on a 25-year-old edge and in a forest interior site. Genetically identical plants transplanted to the forest edge and understory exhibited different patterns of growth and biomass allocation. However, individuals with identical genotypes in the same garden often had very different responses. Plants on forest edges also had higher growth rates and increased biomass at the end of the experiment, almost certainly due to the increased light on the forest edge. With over 70000 km of forest edge created annually in the Brazilian Amazon, phenotypic plasticity may play an important role in mediating plant responses to these novel environmental conditions.

  16. On the Effect of Thinning on Tree Growth and Stand Structure of White Birch (Betula platyphylla Sukaczev and Siberian Larch (Larix sibirica Ledeb. in Mongolia

    Directory of Open Access Journals (Sweden)

    Alexander Gradel

    2017-03-01

    Full Text Available The forests of North Mongolia are largely dominated either by larch (Larix sibirica Ledeb. or birch (Betula platyphylla Sukaczev. The increasing demand for timber and firewood is currently met by removal of wood from these forest stands. Therefore, silvicultural approaches that account for both utilization and protection are needed. Thinning trials were established in the research area Altansumber, in the mountain forest steppe west of the town of Darkhan. We analyzed the response of non-spatial and spatial structure and growth of birch and larch stands on thinning. Before thinning, spatial tree distribution was largely clumped. Thinning promoted regular tree distribution. Ingrowth of new stems after thinning tended to redirect stand structure towards clumping. Both relative and absolute tree growth and competition were evaluated before, directly after, and three years after the thinning. Competition played a significant role in tree growth before thinning. A reduction in competition after thinning triggered significantly increased growth of both birch and larch. The observed positive growth response was valid in absolute and relative terms. A methodically based forest management strategy, including thinning operations and selective cuttings, could be established, even under the harsh Mongolian conditions. Our findings could initiate the development of broader forest management guidelines for the light-taiga dominated stands.

  17. Stable isotope-based approach to validate effects of understory vegetation on shallow soil water movement in a Japanese cypress plantation

    Science.gov (United States)

    Sakashita, W.; Onda, Y.; Boutefnouchet, M. R.; Kato, H.; Gomi, T.

    2017-12-01

    Evapotranspiration is an important controlling factor of the hydrological cycle in forested watershed. In general, the evapotranspiration is partitioned into three components (evaporation, transpiration, and interception). In a Japanese cypress plantation, our previous work using hydrometric method revealed that total evapotranspiration rate was 47.5% of the total rainfall amount during the growing season. This research also provided the contribution rates of three evapotranspiration components. Our previous study reported the difference of forest floor evaporation between pre-thinning and post-thinning periods (pre-thinning: Nov 2010-Oct 2011; post-thinning: Nov 2011-Oct 2012), indicating that a significant change appeared in the evaporation flux after the thinning. To examine the long-term changes of evapotranspiration, we have to consider the influence of increased understory vegetation. However, hydrometric-based method using such as weighting lysimeter is sensitive to vegetation conditions inside and outside lysimeter. This disadvantage makes it difficult to evaluate the contribution rates of each evapotranspiration components. In this study, we focus on the isotope-based method to obtain each flux of evapotranspiration under the condition including understory vegetation. Our study site is Mt. Karasawa, Tochigi Prefecture, in central Japan (139°36'E, 36°22'N; 198 m a.s.l.), and we prepare both sparse and dense areas of understory vegetation. In these two plots, we collect soil water samples from shallow depth profiles after various intensity precipitation events. Throughfall and understory-intercepted water are also obtained. Stable water isotope measurements of these samples may provide information about (a) effects of understory vegetation on shallow soil water movement and (b) interception flux of understory vegetation. In this paper, we report the results and interpretations of our measurements.

  18. Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera.

    Directory of Open Access Journals (Sweden)

    Gabriel Theriault

    Full Text Available White birch (Betula papyrifera is a dominant tree species of the Boreal Forest. Recent studies have shown that it is fairly resistant to heavy metal contamination, specifically to nickel. Knowledge of regulation of genes associated with metal resistance in higher plants is very sketchy. Availability and annotation of the dwarf birch (B. nana enables the use of high throughout sequencing approaches to understanding responses to environmental challenges in other Betula species such as B. papyrifera. The main objectives of this study are to 1 develop and characterize the B. papyrifera transcriptome, 2 assess gene expression dynamics of B. papyrifera in response to nickel stress, and 3 describe gene function based on ontology. Nickel resistant and susceptible genotypes were selected and used for transcriptome analysis. A total of 208,058 trinity genes were identified and were assembled to 275,545 total trinity transcripts. The transcripts were mapped to protein sequences and based on best match; we annotated the B. papyrifera genes and assigned gene ontology. In total, 215,700 transcripts were annotated and were compared to the published B. nana genome. Overall, a genomic match for 61% transcripts with the reference genome was found. Expression profiles were generated and 62,587 genes were found to be significantly differentially expressed among the nickel resistant, susceptible, and untreated libraries. The main nickel resistance mechanism in B. papyrifera is a downregulation of genes associated with translation (in ribosome, binding, and transporter activities. Five candidate genes associated to nickel resistance were identified. They include Glutathione S-transferase, thioredoxin family protein, putative transmembrane protein and two Nramp transporters. These genes could be useful for genetic engineering of birch trees.

  19. Airborne laser scanner (LiDAR) proxies for understory light conditions

    DEFF Research Database (Denmark)

    Alexander, Cici; Moeslund, Jesper Erenskjold; Bøcher, Peder Klith

    2013-01-01

    on the average Ellenberg indicator values for light for the plant species present in a given plot. The correlations of Ellenberg values with ALS-based canopy closure were higher (r2: 0.47) than those with ALS-based canopy cover (r2: 0.26) and densiometer readings (r2: 0.41) for the forest sites. ALS-based canopy......Canopy cover and canopy closure are two closely related measures of vegetation structure. They are used for estimating understory light conditions and their influence on a broad range of biological components in forest ecosystems, from the demography and population dynamics of individual species...... to community structure. Angular canopy closure is more closely related to the direct and indirect light experienced by a plant or an animal than vertical canopy cover, but more challenging to estimate. We used airborne laser scanner (ALS) data to estimate canopy cover for 210 5-m radius vegetation plots...

  20. Dynamic Behaviour of Birch and Sequoia at High Strain Rates

    Science.gov (United States)

    Bragov, A. M.; Lomunov, A. K.; Sergeichev, I. V.; Gray, G. T.

    2006-07-01

    This paper presents results of the dynamic mechanical response of for two structural woods, i.e. birch and sequoia. Monotonic and cyclic compression testing at room temperature of these materials was performed using a modified Kolsky method; a 20-mm diameter split-Hopkinson pressure bar (SHPB). The birch and sequoia specimens were loaded parallel and orthogonal to the grain of the wood, as well as, at other angles relative to the wood grain. The dynamic mechanical behavior of the two woods was measured as a function of loading orientation under a uniaxial stress state as well as under circumferential confinement using a collar surrounding the sample to quantify the effect of lateral confinement on mechanical behavior. The loading and unloading responses of both woods were found to exhibit nonlinear behavior and a strong dependency on the strain rate of loading. The dynamic stress-strain responses of the birch and sequoia showed a strong influence of grain orientation of the flow stress and fracture behavior. Examination of the damage evolution and fracture responses of the birch and sequoia displayed a strong dependence on grain orientation. Cyclic dynamic loading data, obtained using a modification of the original SHPB testing method, is also presented for the two structural woods studied. In addition to the SHPB tests, plane-wave Shockwave loading experiments were conducted and the shock adiabates for birch was obtained.

  1. Food allergy to apple and specific immunotherapy with birch pollen

    DEFF Research Database (Denmark)

    Hansen, Kirsten Skamstrup; Khinchi, Marianne Søndergaard; Skov, Per Stahl

    2004-01-01

    Conflicting results concerning the effect of specific pollen immunotherapy (SIT) on allergy to plant foods have been reported. The aim of this study was to investigate the effect of SIT using a birch pollen extract on food allergy with focus on allergy to apple. Seventy-four birch pollen-allergic......Conflicting results concerning the effect of specific pollen immunotherapy (SIT) on allergy to plant foods have been reported. The aim of this study was to investigate the effect of SIT using a birch pollen extract on food allergy with focus on allergy to apple. Seventy-four birch pollen......-allergic patients were included in a double-blind, double-dummy, and placebo-controlled comparison of sublingual-swallow (SLIT) and subcutaneous (SCIT) administration of a birch pollen extract. Sixty-nine percent of these patients reported allergy to apple. The clinical reactivity to apple was evaluated by open...... oral challenges with fresh apple and a questionnaire. The immunoglobulin E (IgE)-reactivity was assessed by skin prick test (SPT), specific IgE, and leukocyte histamine release (HR). Forty patients were included in the final evaluation of the effect of SIT. The challenges were positive in 9 (SCIT), 6...

  2. Budburst phenology of white birch in industrially polluted areas

    International Nuclear Information System (INIS)

    Kozlov, Mikhail V.; Eraenen, Janne K.; Zverev, Vitali E.

    2007-01-01

    Effects of environmental contamination on plant seasonal development have only rarely been properly documented. Monitoring of leaf growth in mountain birch, Betula pubescens subsp. czerepanovii, around a nickel-copper smelter at Monchegorsk hinted advanced budburst phenology in most polluted sites. However, under laboratory conditions budburst of birch twigs cut in late winter from trees naturally growing around three point polluters (nickel-copper smelter at Monchegorsk, aluminium factory at Kandalaksha, and iron pellet plant at Kostomuksha) showed no relationship with distance from the emission source. In a greenhouse experiment, budburst phenology of mountain birch seedlings grown in unpolluted soil did not depend on seedling origin (from heavily polluted vs. clean sites), whereas seedlings in metal-contaminated soil demonstrated delayed budburst. These results allow to attribute advanced budburst phenology of white birch in severely polluted sites to modified microclimate, rather than to pollution impact on plant physiology or genetics. - Advanced budburst phenology in white birch in severely polluted sites is explained by modified microclimate, not by pollution impact on plant physiology

  3. Elastic and Strength Properties of Heat-Treated Beech and Birch Wood

    Directory of Open Access Journals (Sweden)

    Vlastimil Borůvka

    2018-04-01

    Full Text Available This paper deals with the impact of heat treatment on the elastic and strength properties of two diffuse porous hardwoods, namely Fagus sylvatica and Betula pendula. Two degrees of the heat treatment were used at temperatures of 165 °C and 210 °C. The dynamic and static elasticity modulus, bending strength, impact toughness, hardness, and density were tested. It is already known that an increase in treatment temperature decreases the mechanical properties and, on the other hand, leads to a better shape and dimensional stability. Higher temperatures of the heat treatment correlated with lower elastic and strength properties. In the case of higher temperature treatments, the decline of tested properties was noticeable as a result of serious changes in the chemical composition of wood. It was confirmed that at higher temperature stages of treatment, there was a more pronounced decrease in beech properties compared to those of the birch, which was the most evident in their bending strength and hardness. Our research confirmed that there is no reason to consider birch wood to be of a lesser quality, although it is regarded by foresters as an inferior tree species. After the heat treatment, the wood properties are almost the same as in the case of beech wood.

  4. Carbon emissions associated with forest fires in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, A.; Nepstad, D.; Moutinho, P. [Instituto de Pesquisa Ambiental da Amazonia, Belem, Para (Brazil)

    2005-07-01

    Forest fires or 'understory fires' that burn beneath forest canopies are one of the most important types of forest impoverishment in the Amazon causing large emissions of carbon to the atmosphere. The occurrence and the damage intensity of these fire events are related to the synergetic influence of selective logging, forest fragmentation and severe droughts especially such as that associated with El Nino Southern Oscillation (ENSO) episodes. In addition, forest fires occurrence also depends on landscape variables and forest structure. In this chapter we review the feedbacks that increase the susceptibility of the forest to understory fires, evaluate the impact of the fire events on forest biomass, analyze the spatial relationship of these forest fires with landscape characteristics for different regions along the arc of deforestation and estimate the area affected by forest fires in El Nino and non El Nino years. The results indicate that the area of forest burned by understory forest fire during the severe drought (ENSO) year (approximately 43.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation. Our estimate of aboveground forest carbon that will eventually be released to the atmosphere through decomposition of dead trees due to understory fires in the Amazon arc of deforestation ranged from 0.024 to 0.165 Pg during the ENSO and from 0.001 to 0.011 Pg during the non ENSO years.

  5. Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China

    International Nuclear Information System (INIS)

    Lu Xiankai; Mo Jiangming; Gilliam, Frank S.; Yu Guirui; Zhang Wei; Fang Yunting; Huang Juan

    2011-01-01

    Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (with harvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha -1 yr -1 , and 100 kg N ha -1 yr -1 . Nitrogen additions did not significantly affect understory plant richness, density, and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in this forest. In the rehabilitated forest, species richness and density showed no significant response to N additions; however, understory cover decreased significantly in the N-treated plots, largely a function of a significant increase in canopy closure. Our results suggest that responses of plant diversity to N deposition may vary with different land-use history, and rehabilitated forests may be more sensitive to N deposition. - Highlights: → Nitrogen addition had no significant effect on understory plant diversity in the disturbed forest. → Nitrogen addition significantly decreased understory plant cover. → Nitrogen addition had no effect on richness and density in the rehabilitated forest. → The decrease is largely a function of a significant increase in canopy closure. → Land-use practices may dominate the responses of plant diversity to N addition. - Research in disturbed forests of southeastern China demonstrates that land-use history can substantially alter effects of excess nitrogen deposition on plant diversity of tropical forest ecosystems.

  6. Consumer preferences and willingness to pay for character-marked cabinets from Alaska birch.

    Science.gov (United States)

    Geof Donovan; David. Nicholls

    2003-01-01

    Alaska birch lumber has a higher occurrence of defects (knots, bark pockets, flecks, spalting, etc.) when compared to competing hardwoods. These defects are a disadvantage when birch lumber is graded under standard National Hardwood Lumber Association (NHLA) grading rules. This paper examines whether defects and other character markings found in birch lumber may be an...

  7. Mycobionta of birch and birch stump roots and its possible effect on the infection by Armillaria spp. I.

    Directory of Open Access Journals (Sweden)

    Hanna Kwaśna

    2014-08-01

    Full Text Available Zygorhynchus moelleri was the dominating species on/in roots of 2 year-old stumps of the 49 year-old birches. Trichoderma viride was more frequently found in the fine roots of living birches than in the fine roots of stumps though its population increased in thick roots of stumps. Occasionally the fungus also occurred on the surface of fine roots of stumps. Z. moelleri is known to produce indole 3-ethanol and indole-3 acetic acid which stimulate the growth of A. ostoyae rhizomorphs and phenoloxidizing enzymes which play an important role in the degradation of the wood. It seems that the accumulation of Z. moelleri and absence of bigger populations of T. viride on/in roots of 2-year-old stumps of the 49 year-old birches may result in an increase of their susceptibility to Armillaria infection.

  8. Forest land wildlife habitat resources of South-Central Ohio

    Science.gov (United States)

    Robert T. Brooks

    1986-01-01

    As part of the third survey of Ohio's forest resources, measures for assessing wildlife habitat were taken in the State's 10 southern counties. This publication reports on the analysis of some of that data, describing the status of land use patterns, forest area, forest ownership, mast-producing trees, potential snag trees, and understory woody stems. Certain...

  9. Some physical and mechanical properties of African birch ...

    African Journals Online (AJOL)

    The use of locally manufactured or waste materials in structural buildings without loss of performance is very crucial to the growth of developing countries. This report provides the results of some physical and mechanical property tests carried out on air dried African birch (Anogeissus leiocarpus) timber grown in Nigeria.

  10. Shortleaf pine (Pinus echinata Mill.) and hardwood regeneration after thinning natural shortleaf pine forests in southern United States

    Science.gov (United States)

    Anup KC; Thomas B. Lynch; James M. Guldin

    2016-01-01

    Understory pine and hardwood regeneration in the Ozark and Ouachita National Forests were measured in 1995 for the first time following thinning and hardwood control at plot establishment 1985-87. Red maple (Acer rubrum), shortleaf pine and flowering dogwood (Cornus florida) were the most frequently recorded species. Understory shortleaf pine stems have declined...

  11. The environment, not space, dominantly structures the landscape patterns of the richness and composition of the tropical understory vegetation.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Hu

    Full Text Available The mechanisms driving the spatial patterns of species richness and composition are essential to the understanding of biodiversity. Numerous studies separately identify the contributions of the environment (niche process and space (neutral process to the species richness or composition at different scales, but few studies have investigated the contributions of both types of processes in the two types of data at the landscape scale. In this study, we partitioned the spatial variations in all, exotic and native understory plant species richness and composition constrained by environmental variables and space in 134 plots that were spread across 10 counties in Hainan Island in southern China. The 134 plots included 70 rubber (Hevea brasiliensis plantation plots, 50 eucalyptus (Eucalyptus urophylla plantation plots, and 14 secondary forest plots. RDA based variation partitioning was run to assess the contribution of environment and space to species richness and composition. The results showed that the environmental variables alone explained a large proportion of the variations in both the species richness and composition of all, native, and exotic species. The RDA results indicated that overstory composition (forest type here plays a leading role in determining species richness and composition patterns. The alpha and beta diversities of the secondary forest plots were markedly higher than that of the two plantations. In conclusion, niche differentiation processes are the principal mechanisms that shape the alpha and beta diversities of understory plant species in Hainan Island.

  12. Long-term demographic consequences of habitat fragmentation to a tropical understory bird community

    Science.gov (United States)

    Korfanta, N.M.; Newmark, W.D.; Kauffman, M.J.

    2012-01-01

    Tropical deforestation continues to cause population declines and local extinctions in centers of avian diversity and endemism. Although local species extinctions stem from reductions in demographic rates, little is known about how habitat fragmentation influences survival of tropical bird populations or the relative importance of survival and fecundity in ultimately shaping communities. We analyzed 22 years of mark-recapture data to assess how fragmentation influenced apparent survival, recruitment, and realized population growth rate within 22 forest understory bird species in the Usambara Mountains, Tanzania. This represents the first such effort, in either tropical or temperate systems, to characterize the effect of deforestation on avian survival across such a broad suite of species. Long-term demographic analysis of this suite of species experiencing the same fragmented environment revealed considerable variability in species' responses to fragmentation, in addition to general patterns that emerged from comparison among species. Across the understory bird community as a whole, we found significantly lower apparent survival and realized population growth rate in small fragments relative to large, demonstrating fragmentation effects to demographic rates long after habitat loss. Demographic rates were depressed across five feeding guilds, suggesting that fragmentation sensitivity was not limited to insectivores. Seniority analyses, together with a positive effect of fragmentation on recruitment, indicated that depressed apparent survival was the primary driver of population declines and observed extinctions. We also found a landscape effect, with lower vital rates in one mountain range relative to another, suggesting that fragmentation effects may add to other large-scale drivers of population decline. Overall, realized population growth rate (λ) estimates were < 1 for most species, suggesting that future population persistence even within large forest

  13. Little response of true fir saplings to understory shrub removal

    Science.gov (United States)

    William W. Oliver; Fabian C.C. Uzoh

    2002-01-01

    The ability of white fir and California red fir to become established, persist, and eventually dominate montane shrub fields is well known. When the firs have eventually dominated do the understory shrubs continue to inhibit growth? In a small study in the southern Cascade Range of northeastern California, we tested the growth response of a thinned stand of saplings to...

  14. The spiders (Araneae of pure pine and birch stands on restored open dump sites in Saxony and Brandenburg (Germany

    Directory of Open Access Journals (Sweden)

    Ratschker, Ulrich M.

    2005-06-01

    Full Text Available The spider communities of four restored, afforested pure stands of first generation pine, birch and birch-robinia in the postmining landscape and one natural pine forest of the Lower Lusatia (Germany: Saxony and Brandenburg were investigated. From 1997-98 a total of 6,368 spiders were caught using stemeclectors and pitfall traps. More than 50% of the specimens collected were juveniles. The remaining individuals were identified and represent 123 from 23 families. Among them are several taxa listed in the Red Data Lists of Germany (n = 16, Brandenburg (n = 13 and Saxony (n = 14. One species, Clubiona leucaspis is rare for Germany and new to Saxony. When comparing afforested stands of pine on postmining areas with natural ones the species Coelotes terrestris (Amaurobiidae was observed exclusively in the latter. The absence of this species on restored sites seems to indicate a disturbance of the soil up to almost 60 years after the end of restoration. According to pitfall trapping in three pine forests the increasing biomass of spiders indicates a high predation rate at the oldest site, whereas the highest species diversity was found on younger, rehabilitated sites.

  15. Wood ants and a geometrid defoliator of birch: predation outweighs beneficial effects through the host plant.

    Science.gov (United States)

    Karhu, Kari J; Neuvonen, Seppo

    1998-02-01

    Soil amelioration by a wood-ant species and its consequences for the larval performance of autumnal moths feeding on mountain birch were studied at various distances from the nest mound. Soil nitrate and ammonium nitrogen did not show any clear relationship with distance. However, trees growing in the mound had over 20% more foliar nitrogen than more distant trees. When moth larvae were experimentally protected from predation, their survival rate and final weight tended to decrease with increasing distance. In a laboratory experiment with detached leaves, the relative growth rate of larvae was roughly 30% higher on leaves from trees located on the mound. Differences in larval performance refute the Plant Stress Hypothesis proposed by T.C.R. White and support P.W. Price's Plant Vigor Hypothesis. Predation by ants was examined along the same gradient in trees with and without a glue band that excluded ants from the canopy. Reduction in the daily survival rate of larvae attributable to ant predation was about 35% in trees growing in the mound and around 5% at a distance of 20 m. Other things being equal, about 25 times more larvae entering the penultimate instar would achieve the pupal stage outside the wood-ant territory than in the vicinity of the mound. While both the fertilizing and predatory influence of wood ants is clear, the domain of predation is much larger than the area where trees and their herbivores can exploit enhanced nutrient levels in and around ant mounds. The existence of undamaged green islands around ant mounds in otherwise totally defoliated mountain-birch forests cannot be explained by soil amelioration by wood ants but rather by their predatory activity.

  16. Stand restoration burning in oak-pine forests in the southern Applachians: effects on aboveground biomass and carbon and nitrogen cycling

    Science.gov (United States)

    Robert M. Hubbard; James M. Vose; Barton D. Clinton; Katherine J. Elliott; Jennifer D. Knoepp

    2004-01-01

    Understory prescribed burning is being suggested as a viable management tool for restoring degraded oak–pine forest communities in the southern Appalachians yet information is lacking on how this will affect ecosystem processes. Our objectives in this study were to evaluate the watershed scale effects of understory burning on total aboveground biomass, and the carbon...

  17. Canopy arthropod responses to thinning and burning treatments in old-growth mixed-conifer forest in the Sierra Nevada, California

    Science.gov (United States)

    Thomas Rambo; Timothy Schowalter; Malcolm North

    2014-01-01

    We compared canopy arthropod responses to common fuels reduction treatments at Teakettle Experimental Forest in the south-central Sierra Nevada of California. We sampled arthropod communities among four dominant overstory conifer species and three dominant understory angiosperm species before and after overstory or understory thinning or no thinning treatments followed...

  18. Acute toxicity of birch tar oil on aquatic organisms

    Directory of Open Access Journals (Sweden)

    M. HAGNER

    2008-12-01

    Full Text Available Birch tar oil (BTO is a by-product of processing birch wood in a pyrolysis system. Accumulating evidence suggests the suitability of BTO as a biocide or repellent in terrestrial environments for the control of weeds, insects, molluscs and rodents. Once applied as biocide, BTO may end up, either through run-off or leaching, in aquatic systems and may have adverse effects on non-target organisms. As very little is known about the toxicity of BTO to aquatic organisms, the present study investigated acute toxicity (LC50/EC50 of BTO for eight aquatic organisms. Bioassays with the Asellus aquaticus (crustacean, Lumbriculus variegatus (oligochaeta worm, Daphnia magna (crustacean, Lymnea sp. (mollusc, Lemna minor (vascular plant, Danio rerio (fish, Scenedesmus gracilis (algae, and Vibrio fischeri (bacterium were performed according to ISO, OECD or USEPA-guidelines. The results indicated that BTO was practically nontoxic to most aquatic organisms as the median effective BTO concentrations against most organisms were >150 mg L-1. In conclusion, our toxicity tests showed that aquatic organisms are to some extent, invariably sensitive to birch tar oil, but suggest that BTO does not pose a severe hazard to aquatic biota. We deduce that, unless BTOs are not applied in the immediate vicinity of water bodies, no special precaution is required.;

  19. Evaluation and differentiation of the Betulaceae birch bark species and their bioactive triterpene content using analytical FT-vibrational spectroscopy and GC-MS.

    Science.gov (United States)

    Cîntă-Pînzaru, Simona; Dehelean, Cristina A; Soica, Codruta; Culea, Monica; Borcan, Florin

    2012-07-18

    Aiming to obtain the highest triterpene content in the extraction products, nine bark samples from the forest abundant flora of Apuseni Mountains, Romania were Raman spectroscopically evaluated. Three different natural extracts from Betula pendula Roth birch bark have been obtained and characterized using Fourier transform vibrational spectra. This study shows that principal components of the birch tree extract can be rapidly recognized and differentiated based on their vibrational fingerprint band shape and intensity. The vibrational spectroscopy results are supported by the GC-MS data. Based on IR and Raman analysis, one can conclude that all the extracts, independent on the solvent(s) used, revealed dominant betulin species, followed by lupeol. Since Raman measurements could also be performed on fresh plant material, we demonstrated the possibility to apply the present results for the prediction of the highest triterpene content in bark species, for the selection of harvesting time or individual genotypes directly in the field, with appropriate portable Raman equipment.

  20. Phenology of tropical understory trees: patterns and correlates

    Directory of Open Access Journals (Sweden)

    W. Alice Boyle

    2012-12-01

    Full Text Available Reproductive phenologies of plants are constrained by climate in highly seasonal regions. In contrast, plants growing in wet tropical forests are freed from many abiotic constraints, which in canopy tree communities lead to a rich diversity of phenological patterns within and among individuals, species and communities. However, basic descriptions of tropical phenological patterns and the processes that shape them are rare. Here, we document the individual-, population-, and landscape-level phenological patterns of two dominant families of understory woody plants important to avian frugivores, the Melastomataceae and Rubiaceae, along an elevational transect in Costa Rica. The 226 individual plants belonging to 35 species in this study, varied in the number of reproductive bouts/year, and the timing, duration, and synchrony of reproductive stages. This variation was not related to factors related to their interactions with mutualists and antagonists, nor did it appear to be constrained by phylogeny. Diverse phenological patterns among species led to relatively aseasonal patterns at the community and landscape level. Overall, evidence for biotic processes shaping temporal patterns of fruiting phenology was weak or absent. These findings reveal a number of unexplained patterns, and suggest that factors shaping phenology in relatively aseasonal forests operate in idiosyncratic ways at the species level.En regiones con marcada estacionalidad, los patrones fenológicos de las plantas están limitados por el clima. Por el contrario, las plantas que crecen en bosques húmedos tropicales, no tienen tantas limitaciones abióticas y es por esto que el dosel presenta una diversidad muy rica en los patrones fenológicos de individuos, especies y comunidades. Sin embargo, es muy escasa la información sobre la descripción básica de los patrones fenológicos tropicales y de los procesos que los afectan. En este documento, presentamos los patrones fenol

  1. Mycobionta of birch and birch stump roots and its possible effect on the infection by Armillaria spp. II.

    Directory of Open Access Journals (Sweden)

    Hanna Kwaśna

    2014-08-01

    Full Text Available This paper presents the differences in size and structure of mycobionta communities occurring in soil and on/i n roots of a 30 year-old birch and its stumps 2 years after cutting of the trees. Special attention was paid to the occurrence of Zygorhynchus moelleri and Trichoderma viride. The first species due to the metabolites produced may presumably stimulate the infection by Armlllaria. The second species is a well-known antagonist of Armillaria, Z. moelleri accounted only for 2.6, l.3 and 9.l % of the total number of isolates in rhizoplane as well as in the fine and thick roots of stumps, respectively. Trlchodcrma viride and T. virens were present in roots of Hve birch and its stumps only occasionally. The relatively big population of Mycelium radicis atrovirens- particularly in the fine roots of stumps is attributed to their high vitality and relatively lower level of root decomposition. It seems that the rate of stump root decomposilion does not favour their colonization by Z. moelleri and its supposed contribution in enhancing the infection by Armillaria might not be so distinct as on stumps of 49-year-old birches.

  2. Condition varies with habitat choice in postbreeding forest birds

    Science.gov (United States)

    Scott H. Stoleson

    2013-01-01

    Many birds that are experiencing population declines require extensive tracts of mature forest habitat for breeding. Recent work suggests that at least some may shift their habitat use to early-successional areas after nesting but before migration. I used constant-effort mist netting in regenerating clearcuts (4-8 years postcut) and dense mature-forest understories to...

  3. Forest wildlife habitat statistics for Maryland and Delaware--1986

    Science.gov (United States)

    Robert T. Brooks; Dawn M. DiGiovanni; Dawn M. DiGiovanni

    1989-01-01

    A statistical report on the forest wildlife habitat survey of Maryland and Delaware (1986). Findings are displayed in 11 8 tables covering forest area, landscape pattern, mast potential, standing dead and cavity trees; and understory woody-stemmed vegetation. Data are presented at county and/or unit and state levels of resolution.

  4. Carbon and nitrogen cycling in southwestern ponderosa fine forests

    Science.gov (United States)

    Stephen C. Hart; Paul C. Selmants; Sarah I. Boyle; Steven T. Overby

    2007-01-01

    Ponderosa pine forests of the southwestern United States were historically characterized by relatively open, parklike stands with a bunchgrass-dominated understory. This forest structure was maintained by frequent, low-intensity surface fires. Heavy livestock grazing, fire suppression, and favorable weather conditions following Euro-American settlement in the late 19th...

  5. Emerald ash borer aftermath forests: the future of ash ecosystems

    Science.gov (United States)

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms

    2011-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...

  6. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula

    Directory of Open Access Journals (Sweden)

    Arne eSellin

    2015-10-01

    Full Text Available As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees’ resource allocation in silver birch (Betula pendula Roth in response to elevated air relative humidity (RH. A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem-wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (KR to increase, while KR (expressed per unit leaf area decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation.

  7. Forest habitats and the nutritional ecology of Sitka black-tailed deer: a research synthesis with implications for forest management.

    Science.gov (United States)

    T.A. Hanley; C.T. Robbins; D.E. Spalinger

    1989-01-01

    Research on forest habitats and the nutritional ecology of Sitka black-tailed deer conducted during 1981 through 1986 is reviewed and synthesized. The research approach was based on the assumption that foraging efficiency is the best single measure of habitat quality for an individual deer. Overstory-understory relations and the influence of forest overstory on snow...

  8. Long-term demographic consequences of habitat fragmentation to a tropical understory bird community.

    Science.gov (United States)

    Korfanta, Nicole M; Newmark, William D; Kauffman, Matthew J

    2012-12-01

    Tropical deforestation continues to cause population declines and local extinctions in centers of avian diversity and endemism. Although local species extinctions stem from reductions in demographic rates, little is known about how habitat fragmentation influences survival of tropical bird populations or the relative importance of survival and fecundity in ultimately shaping communities. We analyzed 22 years of mark-recapture data to assess how fragmentation influenced apparent survival, recruitment, and realized population growth rate within 22 forest understory bird species in the Usambara Mountains, Tanzania. This represents the first such effort, in either tropical or temperate systems, to characterize the effect of deforestation on avian survival across such a broad suite of species. Long-term demographic analysis of this suite of species experiencing the same fragmented environment revealed considerable variability in species' responses to fragmentation, in addition to general patterns that emerged from comparison among species. Across the understory bird community as a whole, we found significantly lower apparent survival and realized population growth rate in small fragments relative to large, demonstrating fragmentation effects to demographic rates long after habitat loss, Demographic rates were depressed across five feeding guilds, suggesting that fragmentation sensitivity was not limited to insectivores. Seniority analyses, together with a positive effect of fragmentation on recruitment, indicated that depressed apparent survival was the primary driver of population declines and observed extinctions. We also found a landscape effect, with lower vital rates in one mountain range relative to another, suggesting that fragmentation effects may add to other large-scale drivers of population decline. Overall, realized population growth rate (lambda) estimates were fragments, is uncertain in this biodiversity hotspot.

  9. Estrutura do sub-bosque herbáceo-arbustivo da mata da silvicultura, uma floresta estacional semidecidual no município de Viçosa-MG Understory structure of Silvicultura forest, a seasonal tropical forest in Viçosa, Brazil

    Directory of Open Access Journals (Sweden)

    João Augusto Alves Meira Neto

    2003-08-01

    o outro, pelas espécies que investem recursos energéticos preferencialmente no sistema fotossintético.Forest community studies traditionally investigate arboreal structure and composition. Herb-shrub layers have little or no importance in these works. Initial information on herb-shrub layers of Brazilian forests was provided as a complement to arboreal studies. However, herb-shrub layers have recently gained a central importance in some works. The main objective of this study was to describe the phytosociological structure of the Silvicultura forest's herb-shrub layer to understand the synecological relations and study the populational dynamic processes involved. The phytosociological parameters used were obtained from 1 m² split plots of 100 m² samples. All individuals with less than 10cm PBH (perimeter at breast height or over 20 cm were sampled. Dynamic processes were evaluated by using the size frequency distribution of sampled populations. The herb-shrub phytosociological structure consisted of 1193 individuals of 109 species of 41 families in samples of 100 m². The Shannon diversity index (H' was equal to 3.38 nats/individual and the equability (J' was equal to 0.72, both showing high heterogeneity under herb-shrub conditions. The most important species (VI were Piper lucaeanum, Psychotria conjugens, Olyra micrantha, Psychotria sessilis, Siparuna guianensis, Bambusa tuldoides, Ottonia leptostachya, Aparisthmium cordatum and Psychotria hastisepala. The most important (VI families were Rubiaceae, Piperaceae, Poaceae, Monimiaceae, Leguminosae (Mimosoideae, Myrtaceae, Euphorbiaceae, Meliaceae, Lauraceae and Flacourtiaceae. The size frequency distribution analysis raised the hypothesis that there were two species groups, with different strategies. One group would consist of species allocating photosynthates preferentially to their photosynthetic system, and the other group of species allocating photosynthates preferentially to their trunks.

  10. Impact of urbanization of the proteome of birch pollen and its chemotactic activity on human granulocytes

    NARCIS (Netherlands)

    Bryce, M.; Drews, O.; Schenk, M.F.; Menzel, A.; Estrella, N.; Weichenmeier, I.; Smulders, M.J.M.; Buters, J.; Ring, J.; Gorg, A.; Behrendt, H.; Traidl-Hoffmann, C.

    2010-01-01

    Background: Epidemiologic studies reveal a dramatic increase in allergies in the last decades. Air pollution is considered to be one of the factors responsible for this augmentation. The aim of this study was to analyze the impact of urbanization on birch pollen. The birch pollen proteome was

  11. Assessing urban forest effects and values, Scranton's urban forest

    Science.gov (United States)

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Jack C. Stevens; Vincent. Cotrone

    2010-01-01

    An analysis of trees in the urbanized portion of Scranton, PA, reveals that this area has about 1.2 million trees with canopies that cover 22.0 percent of the area. The most common tree species are red maple, gray birch, black cherry, northern red oak, and quaking aspen. Scranton's urban forest currently store about 93,300 tons of carbon valued at $1.9 million. In...

  12. Geochemistry of the Birch Creek Drainage Basin, Idaho

    Science.gov (United States)

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.

    2003-01-01

    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide

  13. Interactions between plant size and canopy openness influence vital rates and life-history tradeoffs in two neotropical understory herbs.

    Science.gov (United States)

    Westerband, Andrea C; Horvitz, Carol C

    2015-08-01

    • For tropical forest understory plants, the ability to grow, survive, and reproduce is limited by the availability of light. The extent to which reproduction incurs a survival or growth cost may change with light availability, plant size, and adaptation to shade, and may vary among similar species.• We estimated size-specific rates of growth, survival, and reproduction (vital rates), for two neotropical understory herbs (order Zingiberales) in a premontane tropical rainforest in Costa Rica. During three annual censuses we monitored 1278 plants, measuring leaf area, number of inflorescences, and canopy openness. We fit regression models of all vital rates and evaluated them over a range of light levels. The best fitting models were selected using Akaike's Information Criterion.• All vital rates were significantly influenced by size in both species, but not always by light. Increasing light resulted in higher growth and a higher probability of reproduction in both species, but lower survival in one species. Both species grew at small sizes but shrank at larger sizes. The size at which shrinkage began differed among species and light environments. Vital rates of large individuals were more sensitive to changes in light than small individuals.• Increasing light does not always positively influence vital rates; the extent to which light affects vital rates depends on plant size. Differences among species in their abilities to thrive under different light conditions and thus occupy distinct niches may contribute to the maintenance of species diversity. © 2015 Botanical Society of America, Inc.

  14. Whole-plant water flux in understory red maple exposed to altered precipitation regimes.

    Science.gov (United States)

    Wullschleger, Stan D.; Hanson, Paul J.; Tschaplinski, Tim J.

    1998-02-01

    Sap flow gauges were used to estimate whole-plant water flux for five stem-diameter classes of red maple (Acer rubrum L.) growing in the understory of an upland oak forest and exposed to one of three large-scale (0.64 ha) manipulations of soil water content. This Throughfall Displacement Experiment (TDE) used subcanopy troughs to intercept roughly 30% of the throughfall on a "dry" plot and a series of pipes to move this collected precipitation across an "ambient" plot and onto a "wet" plot. Saplings with a stem diameter larger than 10 cm lost water at rates 50-fold greater than saplings with a stem diameter of 1 to 2 cm (326 versus 6.4 mol H(2)O tree(-1) day(-1)). These size-class differences were driven largely by differences in leaf area and cross-sectional sapwood area, because rates of water flux expressed per unit leaf area (6.90 mol H(2)O m(-2) day(-1)) or sapwood area (288 mol H(2)O dm(-2) day(-1)) were similar among saplings of the five size classes. Daily and hourly rates of transpiration expressed per unit leaf area varied throughout much of the season, as did soil matrix potentials, and treatment differences due to the TDE were observed during two of the seven sampling periods. On July 6, midday rates of transpiration averaged 1.88 mol H(2)O m(-2) h(-1) for saplings in the "wet" plot, 1.22 mol H(2)O m(-2) h(-1) for saplings in the "ambient" plot, and 0.76 mol H(2)O m(-2) h(-1) for saplings in the "dry" plot. During the early afternoon of August 28, transpiration rates were sevenfold lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 2.5-fold lower compared to saplings in the "ambient" plot. Treatment differences in crown conductance followed a pattern similar to that of transpiration, with values that averaged 60% lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 35% lower compared to saplings in the "ambient" plot. Stomatal and boundary layer conductances were roughly equal in magnitude

  15. Comparative physiology of a central hardwood old-growth forest canopy and forest gap

    Science.gov (United States)

    A. R. Gillespie; J. Waterman; K. Saylors

    1993-01-01

    Concerns of poor oak regeneration, changing climate, biodiversity patterns, and carbon cycling in the Central Hardwoods have prompted ecological and physiological studies of old-growth forests and their role in maintaining the landscape. To examine the effects of old-growth canopy structure on the physiological productivity of overstory and understory species, we...

  16. Modeling below-ground biomass to improve sustainable management of Actaea racemosa, a globally important medicinal forest product

    Science.gov (United States)

    James L. Chamberlain; Gabrielle Ness; Christine J. Small; Simon J. Bonner; Elizabeth B. Hiebert

    2013-01-01

    Non-timber forest products, particularly herbaceous understory plants, support a multi-billion dollar industry and are extracted from forests worldwide for their therapeutic value. Tens of thousands of kilograms of rhizomes and roots of Actaea racemosa L., a native Appalachian forest perennial, are harvested every year and used for the treatment of...

  17. Origin, development, and impact of mountain laurel thickets on the mixed-oak forests of the central Appalachian Mountains, USA

    Science.gov (United States)

    Patrick H. Brose

    2016-01-01

    Throughout forests of the northern hemisphere, some species of ericaceous shrubs can form persistent understories that interfere with forest regeneration processes. In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) may interfere in the regeneration of mixed-oak (Quercus spp.) forests. To...

  18. Overstory and understory development in thinned and underplanted Oregon Coast Range Douglas-fir stands.

    Science.gov (United States)

    S.S. Chan; D.J. Larson; K.G. Maas-Hebner; W.H. Emmingham; S.R. Johnston; D.A. Mikowski

    2006-01-01

    This study examined thinning effects on overstory and understory development for 8 years after treatment. Three 30- to 33-year-old Oregon Coast Range plantations were partitioned into four overstory treatments: (1) unthinned (~550 trees/ha) (2) light thin (~250 trees/ha), (3) moderate thin (~150 trees/ha), and (4) heavy thin (~75 trees/ha). Two understory treatments...

  19. Assessing tolerance of longleaf pine understory herbaceous plants to herbicide applications in a container nursery

    Science.gov (United States)

    D. Paul Jackson; Scott A. Enebak; James West; Drew Hinnant

    2015-01-01

    Renewed efforts in longleaf pine (Pinus palustris Mill.) ecosystem restoration has increased interest in the commercial production of understory herbaceous species. Successful establishment of understory herbaceous species is enhanced when using quality nursery-grown plants that have a better chance of survival after outplanting. Nursery growing practices have not been...

  20. Wood and understory production under a range of ponderosa pine stocking levels, Black Hills, South Dakota

    Science.gov (United States)

    Daniel W. Uresk; Carleton B. Edminster; Kieth E. Severson

    2000-01-01

    Stemwood and understory production (kg ha-1) were estimated during 3 nonconsecutive years on 5 growing stock levels of ponderosa pine including clearcuts and unthinned stands. Stemwood production was consistently greater at mid- and higher pine stocking levels, and understory production was greater in stands with less pine; however, there were no...

  1. Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia acuminata.

    Science.gov (United States)

    Côrtes, Marina C; Uriarte, María; Lemes, Maristerra R; Gribel, Rogério; Kress, W John; Smouse, Peter E; Bruna, Emilio M

    2013-11-01

    In theory, conservation genetics predicts that forest fragmentation will reduce gene dispersal, but in practice, genetic and ecological processes are also dependent on other population characteristics. We used Bayesian genetic analyses to characterize parentage and propagule dispersal in Heliconia acuminata L. C. Richard (Heliconiaceae), a common Amazonian understory plant that is pollinated and dispersed by birds. We studied these processes in two continuous forest sites and three 1-ha fragments in Brazil's Biological Dynamics of Forest Fragments Project. These sites showed variation in the density of H. acuminata. Ten microsatellite markers were used to genotype flowering adults and seedling recruits and to quantify realized pollen and seed dispersal distances, immigration of propagules from outside populations, and reproductive dominance among parents. We tested whether gene dispersal is more dependent on fragmentation or density of reproductive plants. Low plant densities were associated with elevated immigration rates and greater propagule dispersal distances. Reproductive dominance among inside-plot parents was higher for low-density than for high-density populations. Elevated local flower and fruit availability is probably leading to spatially more proximal bird foraging and propagule dispersal in areas with high density of reproductive plants. Nevertheless, genetic diversity, inbreeding coefficients and fine-scale spatial genetic structure were similar across populations, despite differences in gene dispersal. This result may indicate that the opposing processes of longer dispersal events in low-density populations vs. higher diversity of contributing parents in high-density populations balance the resulting genetic outcomes and prevent genetic erosion in small populations and fragments.

  2. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    Science.gov (United States)

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    , less than 10 milligrams per liter, in median suspended-sediment concentration for either basin. During low-flow conditions in 2004 and 2005, previously mined areas investigated on Harrison Creek and on Frying Pan Creek did not contribute substantial suspended sediments to sample sites downstream from the mined areas. No substantial mining-related water- or sediment-quality problems were detected at any of the sites investigated in the upper Birch Creek watershed during low-flow conditions. Average annual streamflow and precipitation were near normal in 2002 and 2003. Drought conditions, extreme forest fire impact, and low annual streamflow set apart the 2004 and 2005 summer seasons. Daily mean streamflow for upper Birch Creek varied throughout the period of record-from maximums of about 1,000 cubic feet per second to minimums of about 20 cubic feet per second. Streamflow increased and decreased rapidly in response to rainfall and rapid snowmelt events because the steep slopes, thin soil cover, and permafrost areas in the watershed have little capacity to retain runoff. Median suspended-sediment concentrations for the 115 paired samples from Frying Pan Creek and 101 paired samples from Harrison Creek were less than the 20 milligrams per liter total maximum daily load. The total maximum daily load was set by the U.S. Environmental Protection Agency for the upper Birch Creek basin in 1996. Suspended-sediment paired-sample data were collected using automated samplers in 2004 and 2005, primarily during low-flow conditions. Suspended-sediment concentrations in grab samples from miscellaneous sites ranged from less than 1 milligram per liter during low-flow conditions to 1,386 milligrams per liter during a high-flow event on upper Birch Creek. Streambed-sediment samples were collected at six sites on Harrison Creek, two sites on Frying Pan Creek, and one site on upper Birch Creek. Trace-element concentrations of mercury, lead, and zinc in streambed sedimen

  3. Stomatal regulation, structural acclimation and metabolic shift towards defensive compounds reduce O3 load in birch under chronic O3 stress

    Science.gov (United States)

    Oksanen, E.; Riikonen, J.; Kontunen-Soppela, S.; Maenpaa, M.; Rousi, M.

    2009-12-01

    Northern forests are encountering new threats due to continuously increasing load of oxidative stress, e.g. due to rising tropospheric O3 levels, and simultaneous climate warming, which is more intense in northern latitudes as compared to global means. The proportion of silver birch (Betula pendula) in Finnish forests is expected to increase with climate warming. Unfortunately, we have growing evidence that the vitality and the carbon sink strength of birch trees are weakened under chronic O3 stress. In this study we investigated the effects of slightly elevated O3 concentration (1.3 x the ambient), temperature (T) and their combination on the antioxidant defense, gas exchange and leaf growth of Betula pendula saplings (clone 12) growing in open-field conditions over two growing seasons. The plants were measured for SLA (specific leaf area), total leaf area, net photosynthesis (Pn), stomatal conductance (gs), maximum rate of carboxylation (Vc,max), maximum rate of electron transport (Jmax), relative stomatal limitation to photosynthesis (ls), dark respiration (Rd), apoplastic concentrations of AA (ascorbic acid), DHA (dehydroascobate) and total ascorbate, the redox state of apoplastic ascorbate, and total antioxidant capacity. Elevated O3 enhanced the total antioxidant capacity in the apoplast in the first year of the experiment at the ambient T. However, during the second year of the experiment, the saplings responded to elevated O3 level by closing the stomata and by developing leaves with a lower leaf area per mass, rather than by accumulating ascorbate in the apoplast. O3 did not affect the total leaf area, whereas Pn was slightly and gs significantly reduced in the second year. Elevated T enhanced the total leaf area, Pn and Vc,max, redox state of ascorbate and total antioxidant capacity in the apoplast. The effects of T and O3 on total leaf area and net photosynthesis were counteractive. We were not able to detect significant differences in Rd between the

  4. Usability of multiangular imaging spectroscopy data for analysis of vegetation canopy shadow fraction in boreal forest

    Science.gov (United States)

    Markiet, Vincent; Perheentupa, Viljami; Mõttus, Matti; Hernández-Clemente, Rocío

    2016-04-01

    Imaging spectroscopy is a remote sensing technology which records continuous spectral data at a very high (better than 10 nm) resolution. Such spectral images can be used to monitor, for example, the photosynthetic activity of vegetation. Photosynthetic activity is dependent on varying light conditions and varies within the canopy. To measure this variation we need very high spatial resolution data with resolution better than the dominating canopy element size (e.g., tree crown in a forest canopy). This is useful, e.g., for detecting photosynthetic downregulation and thus plant stress. Canopy illumination conditions are often quantified using the shadow fraction: the fraction of visible foliage which is not sunlit. Shadow fraction is known to depend on view angle (e.g., hot spot images have very low shadow fraction). Hence, multiple observation angles potentially increase the range of shadow fraction in the imagery in high spatial resolution imaging spectroscopy data. To investigate the potential of multi-angle imaging spectroscopy in investigating canopy processes which vary with shadow fraction, we obtained a unique multiangular airborne imaging spectroscopy data for the Hyytiälä forest research station located in Finland (61° 50'N, 24° 17'E) in July 2015. The main tree species are Norway spruce (Picea abies L. karst), Scots pine (Pinus sylvestris L.) and birch (Betula pubescens Ehrh., Betula pendula Roth). We used an airborne hyperspectral sensor AISA Eagle II (Specim - Spectral Imaging Ltd., Finland) mounted on a tilting platform. The tilting platform allowed us to measure at nadir and approximately 35 degrees off-nadir. The hyperspectral sensor has a 37.5 degrees field of view (FOV), 0.6m pixel size, 128 spectral bands with an average spectral bandwidth of 4.6nm and is sensitive in the 400-1000 nm spectral region. The airborne data was radiometrically, atmospherically and geometrically processed using the Parge and Atcor software (Re Se applications Schl

  5. The impact of forest structure and light utilization on carbon cycling in tropical forests

    Science.gov (United States)

    Morton, D. C.; Longo, M.; Leitold, V.; Keller, M. M.

    2015-12-01

    Light competition is a fundamental organizing principle of forest ecosystems, and interactions between forest structure and light availability provide an important constraint on forest productivity. Tropical forests maintain a dense, multi-layered canopy, based in part on abundant diffuse light reaching the forest understory. Climate-driven changes in light availability, such as more direct illumination during drought conditions, therefore alter the potential productivity of forest ecosystems during such events. Here, we used multi-temporal airborne lidar data over a range of Amazon forest conditions to explore the influence of forest structure on gross primary productivity (GPP). Our analysis combined lidar-based observations of canopy illumination and turnover in the Ecosystem Demography model (ED, version 2.2). The ED model was updated to specifically account for regional differences in canopy and understory illumination using lidar-derived measures of canopy light environments. Model simulations considered the influence of forest structure on GPP over seasonal to decadal time scales, including feedbacks from differential productivity between illuminated and shaded canopy trees on mortality rates and forest composition. Finally, we constructed simple scenarios with varying diffuse and direct illumination to evaluate the potential for novel plant-climate interactions under scenarios of climate change. Collectively, the lidar observations and model simulations underscore the need to account for spatial heterogeneity in the vertical structure of tropical forests to constrain estimates of tropical forest productivity under current and future climate conditions.

  6. Effect of birch (Betula spp.) and associated rhizoidal bacteria on the degradation of soil polyaromatic hydrocarbons, PAH-induced changes in birch proteome and bacterial community

    Energy Technology Data Exchange (ETDEWEB)

    Tervahauta, Arja I. [Department of Biosciences, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio (Finland)], E-mail: arja.tervahauta@uku.fi; Fortelius, Carola [EVTEK University of Applied Sciences, Vantaa (Finland); Tuomainen, Marjo [Department of Biosciences, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio (Finland); Akerman, Marja-Leena [EVTEK University of Applied Sciences, Vantaa (Finland); Rantalainen, Kimmo [Department of Biosciences, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio (Finland); Sipilae, Timo [Department of Biological and Environmental Sciences, University of Helsinki (Finland); Lehesranta, Satu J.; Koistinen, Kaisa M.; Kaerenlampi, Sirpa [Department of Biosciences, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio (Finland); Yrjaelae, Kim [Department of Biological and Environmental Sciences, University of Helsinki (Finland)

    2009-01-15

    Two birch clones originating from metal-contaminated sites were exposed for 3 months to soils (sand-peat ratio 1:1 or 4:1) spiked with a mixture of polyaromatic hydrocarbons (PAHs; anthracene, fluoranthene, phenanthrene, pyrene). PAH degradation differed between the two birch clones and also by the soil type. The statistically most significant elimination (p {<=} 0.01), i.e. 88% of total PAHs, was observed in the more sandy soil planted with birch, the clearest positive effect being found with Betula pubescens clone on phenanthrene. PAHs and soil composition had rather small effects on birch protein complement. Three proteins with clonal differences were identified: ferritin-like protein, auxin-induced protein and peroxidase. Differences in planted and non-planted soils were detected in bacterial communities by 16S rRNA T-RFLP, and the overall bacterial community structures were diverse. Even though both represent complex systems, trees and rhizoidal microbes in combination can provide interesting possibilities for bioremediation of PAH-polluted soils. - Birch can enhance degradation of PAH compounds in the rhizosphere.

  7. ESTABLISHMENT TECHNIQUES FOR TROPICAL LEGUMES IN THE UNDERSTORY OF A EUCALYPTUS PLANTATION

    Directory of Open Access Journals (Sweden)

    Maria Luiza Franceschi Nicodemo

    2015-04-01

    Full Text Available This study evaluated establishment methods for a mixture of herbaceous forage legumes [Centrosema acutifolium, Clitoria ternatea, Pueraria phaseoloides, Stylosanthes Campo Grande (Stylosanthes capitata + S. macrocephala, Calopogonium mucunoides, Lablab purpureus, Arachis pintoi, and Aeschynomene villosa] under the shade of an Eucalyptus grandis plantation submitted to thinning (40% 8 years after planting in Anhembi, São Paulo (22°40'S, 48°10'W, altitude of 455 m. The experiment started in December 2008 and consisted of the comparison of the following four types of seed incorporation by light disc harrowing: (1 broadcast sowing without seed incorporation; disc harrowing before (2 or after (3 planting, and (4 disc harrowing before and after planting. Ninety days after planting, the number of legume plants/m2 and the percentage of ground cover by the plants varied between the treatments tested; however, the treatments had no effect on the dry matter accumulation of forage legumes. Disc harrowing before planting yielded superior results compared to the treatments without disc harrowing and disc harrowing after planting. At the end of the experimental period, the plots contained Arachis, Centrosema, Stylosanthes, and Pueraria. The dry matter accumulated by Centrosema corresponded to 73% of total dry matter yield of the plots. The participation of Arachis, Centrosema and Stylosanthes in final dry matter composition of the plots varied according to establishment method. The advantages of the use of species mixtures rather than monocultures in the understory of forest plantations were discussed.

  8. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    Directory of Open Access Journals (Sweden)

    Antonio Rigueiro-Rodríguez

    2012-02-01

    Full Text Available Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener and beta (Jaccard and Magurran biodiversity for a period of four years in a P. radiata silvopastoral system. The experiment consisted of a randomized block design of two treatments (continuous and rotational grazing. Biomass, and species abundances were measured - biodiversity metrics were calculated based on these results for a two years of grazing and two years of post-grazing periods. Both continuous and rotational grazing systems were useful tools for reducing biomass and, therefore, fire risk. The rotational grazing system caused damage to the U. europaeus shrub, limiting its recovery once grazing was stopped. However, the more intensive grazing of U. europaeus plants under rotational had a positive effect on both alpha and beta biodiversity indexes due to the low capacity of food selection in the whole plot rather than continuous grazing systems. Biomass was not affected by the grazing system; however the rotational grazing system is more appropriate to reduce U. europaeus biomass and therefore forest fire risk at a long term and to enhance pasture biodiversity than the continuous grazing system.

  9. Season and light affect constitutive defenses of understory shrub species against folivorous insects

    Science.gov (United States)

    Karolewski, Piotr; Giertych, Marian J.; Żmuda, Michał; Jagodziński, Andrzej M.; Oleksyn, Jacek

    2013-11-01

    Understory shrubs contribute to overall species diversity, providing habitat and forage for animals, influence soil chemistry and forest microclimate. However, very little is known about the chemical defense of various shrub species against folivorous insects. Using six shrub species, we tested how seasonal changes and light conditions affect their constitutive defense to insect damage. We monitored leaf perforation, concentrations of total phenols, condensed tannins, nitrogen (N), and total nonstructural carbohydrates (TNC). Leaf damage caused by insects was low in Sambucus nigra, Cornus sanguinea, and Frangula alnus, intermediate in Corylus avellana and Prunus serotina, and high in Prunus padus. Leaves of all the species, when growing in high light conditions, had high concentrations of defense metabolites. Except for C. avellana, leaves of the other shrub species growing in full sun were less injured than those in shade. This may be due to higher concentrations of defense metabolites and lower concentrations of nitrogen. Similar patterns of the effects of light on metabolites studied and N were observed for leaves with varying location within the crown of individual shrubs (from the top of the south direction to the bottom of the north), as for leaves from shrubs growing in full sun and shrubs in the shade of canopy trees. A probable cause of the greater damage of more sunlit leaves of C. avellana was the fact that they were herbivorized mostly by Altica brevicollis, a specialist insect that prefers plant tissues with a high TNC level and is not very sensitive to a high level of phenolic compounds.

  10. A model of wind-influenced leaf litterfall in a mixed hardwood forest

    NARCIS (Netherlands)

    Staelens, Jeroen; Nachtergale, Lieven; Luyssaert, Sebastiaan; Lust, Noël

    2003-01-01

    Litterfall is an important ecological process in forest ecosystem functioning. Some attempts have been made to develop spatially explicit models of litterfall, but wind influence has never been included. Therefore, we studied the effect of wind on litterfall in an intimately mixed birch-oak forest

  11. Estimating carbon emissions from forest fires during 1980 to 1999 in ...

    African Journals Online (AJOL)

    white birch (Betula platyphylla Suk.), mixed broadleaved-conifer (L. gmelinii & B. platyphylla) and Mongolian oak (Quercus mongolica Fish.) forests were 437 947, 20 939, 142 527, 168 532 and 1 375 hm2 during 1980 to 1999 period, respectively. The fuel consumed based on these forests were 29.0 to 46.5, 16.7 to 26.5, ...

  12. Respiration of wood ant nest material affected by material and forest stand characteristics

    Czech Academy of Sciences Publication Activity Database

    Jílková, Veronika; Domisch, T.; Hořická, Zuzana; Frouz, J.

    2013-01-01

    Roč. 68, č. 6 (2013), s. 1193-1197 ISSN 0006-3088 R&D Projects: GA MŠk LC06066 Institutional support: RVO:60077344 Keywords : Formica aquilonia * birch forest * pine forest * moisture * carbon content Subject RIV: EH - Ecology, Behaviour Impact factor: 0.696, year: 2013

  13. Intra-annual Dynamics of Xylem Formation in Liquidambar formosana Subjected to Canopy and Understory N Addition

    Directory of Open Access Journals (Sweden)

    Shaokang Zhang

    2018-02-01

    Full Text Available Increasing N deposition caused by intensive anthropogenic activities is expected to affect forest growth. However, the effects of N deposition on trees are still controversial due to the wide variability in results and experimental methods used. We conducted an experiment involving both canopy and understory N addition to investigate the effects of N-addition on intra-annual xylem formation of Chinese sweetgum (Liquidambar formosana in a warm-temperate forest of Central China. Since 2013, 50 kg N ha-1 year-1 (2.5 times the current natural N deposition was applied monthly from April to December. In 2014 and 2015, the timing and dynamics of xylem formation were monitored weekly during March–December by microcoring the stems of control and treated trees. Similar dynamics of wood formation were observed between canopy and understory N addition. Xylem formation of all the experimental trees started in March and lasted for 119–292 days. Compared to the control, no change was observed in the timing and dynamics of wood formation in N-treated trees. Tree ring-width ranged between 1701 and 4774 μm, with a rate of xylem production of 10.52–26.64 μm day-1. The radial growth of trees was not modified by the treatments. Our findings suggest that short-term N addition is unable to affect the dynamics of xylem formation in Chinese sweetgum in Central China. The effects of N on tree growth observed in previous studies might be related to the duration of the experiment or the imbalance between the amount of natural deposition and N added during treatments.

  14. Intra-annual Dynamics of Xylem Formation inLiquidambar formosanaSubjected to Canopy and Understory N Addition.

    Science.gov (United States)

    Zhang, Shaokang; Rossi, Sergio; Huang, Jian-Guo; Jiang, Shaowei; Yu, Biyun; Zhang, Wei; Ye, Qing

    2018-01-01

    Increasing N deposition caused by intensive anthropogenic activities is expected to affect forest growth. However, the effects of N deposition on trees are still controversial due to the wide variability in results and experimental methods used. We conducted an experiment involving both canopy and understory N addition to investigate the effects of N-addition on intra-annual xylem formation of Chinese sweetgum ( Liquidambar formosana ) in a warm-temperate forest of Central China. Since 2013, 50 kg N ha -1 year -1 (2.5 times the current natural N deposition) was applied monthly from April to December. In 2014 and 2015, the timing and dynamics of xylem formation were monitored weekly during March-December by microcoring the stems of control and treated trees. Similar dynamics of wood formation were observed between canopy and understory N addition. Xylem formation of all the experimental trees started in March and lasted for 119-292 days. Compared to the control, no change was observed in the timing and dynamics of wood formation in N-treated trees. Tree ring-width ranged between 1701 and 4774 μm, with a rate of xylem production of 10.52-26.64 μm day -1 . The radial growth of trees was not modified by the treatments. Our findings suggest that short-term N addition is unable to affect the dynamics of xylem formation in Chinese sweetgum in Central China. The effects of N on tree growth observed in previous studies might be related to the duration of the experiment or the imbalance between the amount of natural deposition and N added during treatments.

  15. Intra-annual Dynamics of Xylem Formation in Liquidambar formosana Subjected to Canopy and Understory N Addition

    Science.gov (United States)

    Zhang, Shaokang; Rossi, Sergio; Huang, Jian-Guo; Jiang, Shaowei; Yu, Biyun; Zhang, Wei; Ye, Qing

    2018-01-01

    Increasing N deposition caused by intensive anthropogenic activities is expected to affect forest growth. However, the effects of N deposition on trees are still controversial due to the wide variability in results and experimental methods used. We conducted an experiment involving both canopy and understory N addition to investigate the effects of N-addition on intra-annual xylem formation of Chinese sweetgum (Liquidambar formosana) in a warm-temperate forest of Central China. Since 2013, 50 kg N ha-1 year-1 (2.5 times the current natural N deposition) was applied monthly from April to December. In 2014 and 2015, the timing and dynamics of xylem formation were monitored weekly during March–December by microcoring the stems of control and treated trees. Similar dynamics of wood formation were observed between canopy and understory N addition. Xylem formation of all the experimental trees started in March and lasted for 119–292 days. Compared to the control, no change was observed in the timing and dynamics of wood formation in N-treated trees. Tree ring-width ranged between 1701 and 4774 μm, with a rate of xylem production of 10.52–26.64 μm day-1. The radial growth of trees was not modified by the treatments. Our findings suggest that short-term N addition is unable to affect the dynamics of xylem formation in Chinese sweetgum in Central China. The effects of N on tree growth observed in previous studies might be related to the duration of the experiment or the imbalance between the amount of natural deposition and N added during treatments. PMID:29467775

  16. Influence of understory cover on soil water and evaporation fluxes: a trial

    Science.gov (United States)

    Jiménez-Rodríguez, César; Magdalena Warter, Maria; Coenders-Gerrits, Miriam

    2017-04-01

    Within a forest ecosystem the litter layer is an important hydrological component and contributes towards the water and energy exchange between the sub-canopy and the soil. Evaporation within a forest is made up of different fractions coming from the dry soil, vegetation and litter layers. The quantification and partitioning of each fraction remains difficult as there is hard to estimate correctly the amount of water moved by evaporation or percolation at ecosystem level. With the aim to determine the influence of forest understory on the evaporation fluxes, four ground cover types were selected from the Speulderbos forest in the Netherlands. The mosses species of "Thamariskmoss" (Thuidium thamariscinum), "Rough Stalked Feathermoss" (Brachythecium rutabulum), and "Haircapmoss" (Polytrichum commune) were compared with a litter layer made up of Douglas-Fir needles (Pseudotsuga menziesii). Four PVC basins with 40cm x 60cm were filled with forest soil and sheltered with the selected ground covers. Each box was equipped with a soil moisture sensor, and a set Temperature and Relative Humidity sensors to determine the VPD during the study period. The study period lasts 4 weeks, while the percolation rates were measured in a daily basis. The rainfall events were simulated in the lab, applying the same rain event to each box at the same time. A total amount of 43.12 mm of rain were added to the boxes during the 4 weeks of the experiment, and distributed in 11 rain events which differ in amount and timing between events. The percolation in all the boxes was more than the 50% of the rain events due to the sandy condition of the soil, while the evaporation rates were affected not only by the room atmospheric conditions, but for the cover type present in each box. Except for the Polytrichum moss, a moss known for its water conducting abilities, all cover types showed a decline before and increase after a rain event. This species showed a steady increase in soil water content

  17. Daily home measurements of exhaled nitric oxide in asthmatic children during natural birch pollen exposure

    DEFF Research Database (Denmark)

    Vahlkvist, Signe; Sinding, Marianne; Skamstrup, Kirsten

    2006-01-01

    BACKGROUND: Fractional exhaled nitric oxide (FENO) is a sensitive marker of eosinophilic airway inflammation in asthma. Available methods have restricted measurements to the clinic, giving only a snapshot of the disease, which by nature is highly variable. OBJECTIVES: We sought to investigate...... the feasibility, repeatability, accuracy, sensitivity, and biologic plausibility of new handheld equipment for FENO measurements. We studied day-to-day home measurements of FENO during the birch pollen season in children with allergy to birch pollen and a history of mild asthma and rhinoconjunctivitis during...... this season, as well as in nonatopic children. METHODS: Eleven children with mild asthma and allergy to birch pollen, performed daily home measurements of FENO for 6 weeks before and during the birch pollen season by using a handheld FENO monitor (NIOX MINO). Additionally, FENO (chemiluminescence equipment...

  18. Vegetation assessment of forests of Pagan Island, Commonwealth of the Northern Mariana Islands

    Science.gov (United States)

    Pratt, Linda W.

    2011-01-01

    As part of the Marianas Expedition Wildlife Surveys-2010, the forest vegetation of the island of Pagan, Commonwealth of the Northern Mariana Islands (CNMI), was sampled with a series of systematic plots along 13 transects established for monitoring forest bird populations. Shrubland and grassland were also sampled in the northern half of the island. Data collected were woody plant density, tree diameter at breast height, woody plant density in height classes below 2 m, and ground cover measured with the point-intercept method. Coconut forests (Cocos nucifera) were generally found to have low native tree diversity, little regeneration of trees and shrubs in the forest understory, and little live ground cover. The sole exception was a coconut-dominated forest of the northeast side of the island that exhibited high native tree diversity and a large number of young native trees in the understory. Ironwood (Casuarina equisetifolia) forests on the northern half of the island were nearly monocultures with almost no trees other than ironwood in vegetation plots, few woody plants in the understory, and low ground cover dominated by native ferns. Mixed native forests of both northern and southern sections of the island had a diversity of native tree species in both the canopy and the sparse understory. Ground cover of native forests in the north had a mix of native and alien species, but that of the southern half of the island was dominated by native ferns and woody plants.

  19. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps

    Science.gov (United States)

    Christopher E. Moorman; Liessa T. Woen; John C. Kilgo; James L. Hanula; Scott Horn; Michael D. Ulyshen

    2012-01-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and...

  20. Huckleberry abundance, stand conditions, and use in western Oregon: evaluating the role of forest management.

    Science.gov (United States)

    Becky K Kerns; Susan J. Alexander; John D. Bailey

    2004-01-01

    Huckleberries are major components of the understory vegetation in coniferous Pacific Northwest forests of the United States. Vaccinium species also have a long history of human use. However, little research has been done to ascertain how they respond to common forest management practices. We used data obtained from old-growth, young thinned, and...

  1. [Oral Allergy Syndrome Following Soy Milk Ingestion in Patients with Birch Pollen Allergy].

    Science.gov (United States)

    Yamamoto, Tetsuo; Asakura, Kohji; Shirasaki, Hideaki; Himi, Tetsuo

    2015-09-01

    Persons allergic to birch pollen often report oral and pharyngeal hypersensitivity to fruit and vegetables, due to immunological cross-reactivity between pollen and foods. This phenomenon is referred to as the oral allergy syndrome (GAS). Such cross-reactive antigen reactions mainly involve Bet v 1, which is the major birch-pollen allergen, and partially involve birch-pollen profilin Bet v 2. Soybean contains Bet v 1-related antigen (Gly m 4), and soy milk often causes the OAS with severe symptoms such as precordial and abdominal burning sensation because soy milk undergoes little denaturation, and this water-soluble liquid is consumed by most people rather quickly. We evaluated the frequency of the oAS after ingestion of soymilk and examined IgE antibodies to various allergens. A total of 167 patients [122 women, 45 men; age range, 4-72 years (mean age, 32 years)], who had experienced GAS episodes and had IgE birch--pollen antibodies, were interviewed. Using the CAP system, we examined IgE antibodies to birch pollen and other allergens. Of 167 patients, 161 were examined for IgE antibodies to Bet v 1, Bet v 2, Gly m 4, and soybean. We evaluated the frequency of the GAS after soy milk ingestion based on reports by GAS patients with birch pollen allergy, and evaluated the positive rates of some of the IgE antibodies. Among the 167 patients with birch-pollen allergy and GAS on ingestion of any of the foods, there were 16 cases (10%) with OAS following soy milk ingestion. In addition, the foods that caused OAS most often were apples (123 cases, 74%), peaches (67%), and cherries (55%), followed by pears (37%) and kiwi (37%). A higher CAP class for birch pollen, Bet v 1, Gly m 4, and soybean was associated with a higher prevalence of OAS to soy milk. Of 15 patients who had GAS on ingestion of soy milk and had birch-pollen allergy, 47% (7cases) were CAP class 1 for soybean and only 7% (case) was CAP class c2, whereas 93% (14cases) were CAP class 1 for Gly m 4, and 87% (3

  2. Performance of moth larvae on birch in relation to altitude, climate, host quality and parasitoids

    OpenAIRE

    Virtanen, T.; Neuvonen, S.

    1999-01-01

    Abstract We studied topographical and year-to-year variation in the performance (pupal weights, survival) and larval parasitism of Epirrita autumnata larvae feeding on mountain birch in northernmost Finland in 1993-1996. We found differences in both food plant quality and parasitism between sites ranging from 80 m to 320 m above sea level. Variation in food plant quality had particularly marked effects on larval survival. The advanced phenology of the birches in relation to the start of the l...

  3. Study on the Modification of Bleached Eucalyptus Kraft Pulp Using Birch Xylan

    Science.gov (United States)

    Wenjia Han; Chuanshan Zhao; Thomas Elder; Rendang Yang; Dongho Kim; Yunqiao Pu; Jeffery Hsieh; Arthur J. Ragauskas

    2012-01-01

    In this study, birch xylan was deposited onto elementally chlorine free (ECF) bleached eucalyptus kraft pulp, and the corresponding changes in physical properties were determined. An aqueous 5% birch xylan solution at pH 9 was added to 5 wt% slurry of bleached kraft eucalyptus fibers, with stirring at 70 C for 15 min after which the pH was adjusted to 5–6. The xylan...

  4. Effects of tornado damage, prescribed fire, and salvage logging on natural oak (Quercus spp.) regeneration in a xeric southern USA Coastal Plain oak/pine forest

    Science.gov (United States)

    Jeffery B. Cannon; J. Stephen Brewer

    2013-01-01

    Due in large part to fire exclusion, many oak-dominated (Quercus spp.) forests, woodlands, and savannas throughout eastern North America are being replaced by less diverse forest ecosystems. In the interior coastal plain of the southern United States, these forests are dominated in the mid- and understory by mesophytic species such as Acer...

  5. Comparative life history and physiology of two understory Neotropical herbs.

    Science.gov (United States)

    Mulkey, Stephen S; Smith, Alan P; Wright, S Joseph

    1991-10-01

    Demography and physiology of two broad-leaved understory tropical herbs (Marantaceae) were studied in gaps and shaded understory in large-scale irrigated and control treatments during the dry season at Barro Colorado Island (BCI), Panama. Because photosynthetic acclimation potential may not predict light environments where tropical species are found, we studied a suite of physiological features to determine if they uniquely reflect the distribution of each species. Calathea inocephala and Pleiostachya pruinosa grow and reproduce in gaps, persist in shade, and have equivalent rates of leaf production. Calathea leaves survived 2 to 3 times as long as leaves of Pleiostachya and plants of Pleiostachya were 6 to 8 times more likely to die as plants of Calathea during 3.5 years of study. Pleiostachya had lowest survival in shade and when not irrigated during the dry season, while Calathea survived well in both habitats and both treatments. Pleiostachya had higher photosynthetic capacity and stomatal conductance than Calathea and acclimated to gaps by producing leaves with higher photosynthetic capacity. Calathea had lower mesophyll CO 2 concentrations than Pleiostachya. Both species had similar dark respiration rates and light compensation points, and water-use and nitrogen-use efficiencies were inversely related between species. Species showed no differences in leaf osmotic potentials at full turgor. Calathea roots were deeper and had tuberous swellings.Leaf-level assimilation and potential water loss are consistent with where these species are found, but photosynthetic acclimation to high light does not reflect both species' abilities to grow and reproduce in gaps. Pleiostachya's gap-dependent, rapid growth and reproduction require high rates of carbon gain in short-lived leaves, which can amortize their cost quickly. High rates of water loss are associated with reduced longevity during drought. Calathea's roots may confer greater capacitance, while its leaves are

  6. Transpirational water loss in invaded and restored semiarid riparian forests

    Science.gov (United States)

    Georgianne W. Moore; M. Keith Owens

    2011-01-01

    The invasive tree, Tamarix sp., was introduced to the United States in the 1800s to stabilize stream banks. The riparian ecosystem adjacent to the middle Rio Grande River in central NewMexico consists of mature cottonwood (Populus fremontii ) gallery forests with a dense Tamarix understory. We hypothesized that Populus would compensate for reduced competition by...

  7. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland.

    Science.gov (United States)

    Lara, Mark J; Genet, Hélène; McGuire, Anthony D; Euskirchen, Eugénie S; Zhang, Yujin; Brown, Dana R N; Jorgenson, Mark T; Romanovsky, Vladimir; Breen, Amy; Bolton, William R

    2016-02-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  8. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    Science.gov (United States)

    Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  9. Efeitos da exploração madeireira de baixo impacto sobre uma comunidade de aves de sub-bosque na Floresta Nacional do Tapajós, Pará, Brasil Effects of low impact selective logging on an understory bird community in the Tapajós National Forest, Pará, Brazil

    Directory of Open Access Journals (Sweden)

    Luiza Magalli Pinto Henriques

    2008-01-01

    Full Text Available Este estudo compara a resposta de uma comunidade aves à exploração madeireira de baixo impacto através da distribuição das espécies em floresta controle e manejada ao longo de cinco anos com amostragem pré e pós-exploração. O procedimento de ordenação mostrou que a similaridade da comunidade de aves após a exploração madeireira foi menor que a similaridade entre as amostras do período de pré-exploração. Além disso, a ordem das abundâncias das 43 espécies mais comuns foi alterada entre o período anterior à exploração e 3 a 4 anos após a exploração na floresta manejada. A exploração afetou as taxas de captura de 20 espécies, diretamente ou através de uma interação com o tempo. Os insetívoros terrícolas e os insetívoros que seguem bandos mistos foram as guildas mais afetadas pela exploração madeireira. Ambas as guildas mostraram declínio, correlacionado com o tempo, em suas abundâncias em floresta manejada. Insetívoros seguidores de formigas e insetívoros arborícolas não apresentaram diferenças entre a floresta manejada e controle, apesar de algumas espécies dessas guildas terem apresentado efeitos relacionados ao manejo florestal, diretamente ou através de uma interação entre o tempo e o manejo. Frugívoros também não apresentaram efeitos significativos relacionados ao manejo florestal. Nectarívoros aumentaram tanto na floresta explorada como na floresta controle. Efeitos temporais de aumento ou declínio observados em guildas e em 12 espécies ocorreram tanto na floresta controle como na floresta explorada. Este resultado sugere que mudanças temporais na área explorada podem estar relacionadas à sucessão enquanto que mudanças temporais na floresta controle podem estar relacionados à exploração com intensidade de 40m³/ha de parcelas adjacentes.This study compares the avian response to low impact selective logging by comparing bird species distribution in control and cut forest during

  10. Attempting to restore herbaceous understories in Wyoming big sagebrush communities with mowing and seeding

    Science.gov (United States)

    Shrub steppe communities with depleted perennial herbaceous understories need to be restored to increase resilience, provide quality wildlife habitat, and improve ecosystem function. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) steppe...

  11. Static terrestrial laser scanning of juvenile understory trees for field phenotyping

    Science.gov (United States)

    Wang, Huanhuan; Lin, Yi

    2014-11-01

    This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.

  12. Damping properties of sequoia and birch under shock loading

    International Nuclear Information System (INIS)

    Bolshakov, A.P.; Gerdjukov, N.N.; Zotov, E.V.; Novikov, S.A.; Sinitsin, V.A.; Scherbak, Y.I.

    1998-01-01

    The decrease mechanic effect on loads being transported, shock load limiters (dampers) are being widely used today. Usually, the materials having 'stress-strain' diagrams (σ-ε) of compression with a substantial portion, where σ = const., are used as dampers. Most widely used are dampers made of foam polystyrene having just the same compression diagram. Similar strain diagrams can be enlisted for some porous materials, timber under cross compression, perforated metallic crushers and some others. By selecting damper material, the level of transmitted to the protected object pressures can be varied from several to hundreds MPa. Timber, as being widely used and featuring good technologic properties together with low cost, becomes an attractive material to be used as the limiter of shock loads. This paper presents the results of stress-strain sequoia properties (USA deliverable) and birch properties (Volgo-Vyatski region) at dynamic (v = 10 m/s) and quasistatic (v ≅ 10 -4 m/s) loading rates. The samples (diameter 25 x 25 mm) cut at 0, 5, 10, 15, 30, 45 and 90 deg. angle relative to their fibre were tested on one-axis compression at -30, +20 and +65 deg. C and fixed humidity (ω = 6-7%). Dynamic tests employed Kolsky method performed at the facility including Hopkinson's compound rod (Zukas et al.,1985). Sample loading was executed by trapezoidal pulsed pressure created by the explosive device. Samples were heated and cooled by special thermostats. (authors)

  13. The impact of birch seedlings on evapotranspiration from a mined peatland: an experimental study in southern Quebec, Canada

    Directory of Open Access Journals (Sweden)

    E. Fay

    2009-03-01

    Full Text Available Dense stands of birch (Betula spp. on abandoned peat workings have often been identified as potential barriers to site restoration, but little research has been conducted to evaluate their impact on water resources. The objective of this experimental study was to determine whether birch seedlings established on an abandoned mined peatland in eastern Canada had a significant impact on evapotranspiration. Transpiration rates from birch seedlings planted in containers filled with Sphagnum compost were measured gravimetrically. Unplanted containers were used to similarly measure evaporation rates from bare peat. On average, the measured rates of evaporation (per unit area from peat were 2.5 times the rates of transpiration from birch leaves. However, if the total leaf area of a dense birch population established on an abandoned mined peatland is considered, the total amount of water lost through birch transpiration could be higher than that lost by evaporation from the peat surface. This study provides a rough estimate of potential water losses due to birch seedling transpiration, and indicates that a dense population of birch on a mined peatland may influence site hydrology even at the early establishment phase (seedlings. Consequently, recently abandoned mined peatlands should be restored rapidly to prevent the establishment of birch trees.

  14. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations.

    Science.gov (United States)

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Zhang, Ling; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality.

  15. Dynamics of the evergreen understory at Coweeta Hydrologic Laboratory, North Carolina

    Science.gov (United States)

    Dobbs, Marion Mcnamara

    Much attention today is directed toward vegetation dynamics and related issues of biotic diversity. Both environmental gradients and disturbance/land use history are important determinants of both the distributional pattern and the dynamics of many plant species. The southern Appalachian Mountains constitute a region of high plant and animal diversity and rapidly increasing development pressure with its consequent changes in land use. The remaining forested areas commonly include a significant evergreen understory (undergreen) composed of ericaceous shrubs, predominately Rhododendron maximum , which is believed to be expanding and exerting an inhibitory effect on the establishment of other species, thus impacting forest structure and composition. This study was an attempt to characterize this forest component, temporally and spatially, at the Coweeta Hydrologic Laboratory, North Carolina, in terms of a variety of topographic gradients as well as long-term (century) and short-term (decade) disturbance history, verify expansion, develop a surrogate soil moisture index for use in an explanatory model for undergreen pattern, and examine the feasibility of predicting the pattern of undergreen at one time based on knowledge of topographic relationships gained at an earlier time. A GIS was used for visual and areal comparisons; logistic regression was used for developing spatiotemporal explanatory models. Results indicate that aspect, stream proximity, and elevation are all important in explaining distributional pattern and dynamics of the undergreen at Coweeta, with R. maximum showing preference for moister areas and its common associate, Kalmia latifolia found more frequently in drier areas. The influence of these environmental factors differs between the larger Coweeta Basin, the site of experimental manipulations at the small watershed level since the 1930's, and the physically similar Dryman Fork Basin, relatively undisturbed since that time. There is an apparent

  16. Effects of prescribed fire intervals on carbon and nitrogen in forest soils of the Mogollon Rim, Arizona

    Science.gov (United States)

    Daniel G. Neary; Steven T. Overby; Sally M. Haase

    2003-01-01

    The pre-European settlement ponderosa pine forests of the Mogollon Rim consisted of open stands of uneven-aged trees with a significant grass-forb understory. Light surface-fires occurred on an average interval of 2 to 12 years in Arizona and New Mexico (Dietrich 1980). These fires consumed forest floor material, burned most of the young regeneration, and promoted...

  17. A closer look: decoupling the effects of prescribed fire and grazing on vegetation in a ponderosa pine forests

    Science.gov (United States)

    Marie Oliver; Becky K. Kerns; Michelle Buonopane

    2012-01-01

    Scientists have had little information about how prescribed fire and cattle grazing—common practices in many Western ponderosa pine forests—affects plant abundance and reproduction in the forest understory. Pacific Northwest Research Station scientists began to explore how these practices affect vegetation in a five-year study of postfire vegetation in eastern Oregon...

  18. Promoting and maintaining diversity in contemporary hardwood forests: Confronting contemporary drivers of change and the loss of ecological memory

    Science.gov (United States)

    Christopher R. Webster; Yvette L. Dickinson; Julia I. Burton; Lee E. Frelich; Michael A. Jenkins; Christel C. Kern; Patricia Raymond; Michael R. Saunders; Michael B. Walters; John L. Willis

    2018-01-01

    Declines in the diversity of herbaceous and woody plant species in the understory of eastern North American hardwood forests are increasingly common. Forest managers are tasked with maintaining and/or promoting species diversity and resilience; however, the success of these efforts depends on a robust understanding of past and future system dynamics and identification...

  19. Thinning impacts on the resilience of wildlife habitat quality under climate change in coniferous forests of western Oregon

    Science.gov (United States)

    Andrew R. Neill; Klaus J. Puettmann; Adrian. Ares

    2013-01-01

    To understand the impacts of overstory density reductions on resilience of forest ecosystems (i.e., the capacity of an ecosystem to maintain desired ecosystem functions in a fl uctuating environment), we examined overstory basal area and understory vegetation cover and richness collected 6 years after thinning in seven 40- to 60-year-old forests dominated by Douglas-fi...

  20. Understory plant diversity assessment of Szemao pine (Pinus kesiya var. langbianensis plantations in Yunnan, China

    Directory of Open Access Journals (Sweden)

    Qiu, J. X.

    2012-12-01

    Full Text Available Sustainability is a key objective for managers of both natural forests and plantations, and biodiversity assessments are important tools to improve conservation of endangered species. Szemao pine (Pinus kesiya var. langbianensis is a native Chinese tree species used in plantations. This study evaluated differences in understory diversity among Szemao pine plantations (SP and other local current vegetation types: secondary evergreen forests (SE and abandoned farmlands (AF in Yunnan Province. Sampling was performed at three elevation ranges, where species richness, species cover, and environmental variables in the herb and shrub layers were measured. We found that indexes for average richness and Shannon–Wiener diversity were higher in SE than in SP, which were in turn higher than in AF, while the index for evenness was higher in SP. These indexes increased with elevation in SP and AF, but were higher at low and medium elevations in SE. Inclusion of environmental factors highlighted elevation differences, with water content (at herb layer and soil type (at shrub layer being the most significant variables. In conclusion, plantations of Szemao pine negatively affect understory diversity in Yunnan, and furthermore, only a few rare or threatened species could be found in the plantations. Nature reserves and transplanting could protect threatened species if established before plantations.La sostenibilidad es un objetivo clave para la gestión tanto de bosques naturales como de plantaciones, mientras que los estudios sobre biodiversidad constituyen herramientas muy útiles para mejorar la conservación de especies amenazadas. El pino Szemao (Pinus kesiya var. langbianensis es un árbol nativo de China que se usa en plantaciones. Este estudio evalúa la diversidad del sotobosque en plantaciones de pino Szemao (SP y otros tipos de vegetación local, como bosques secundarios perennifolios (SE y tierras de cultivo abandonadas (AF, en la provincia de

  1. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide

    International Nuclear Information System (INIS)

    Darbah, Joseph N.T.; Sharkey, Thomas D.; Calfapietra, Carlo; Karnosky, David F.

    2010-01-01

    The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO 2 and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO 2 protected photosynthesis of both species against moderate heat stress. Elevated CO 2 increased carboxylation capacity, photosynthetic electron transport capacity, and triose phosphate use in both birch and aspen trees. High temperature (36-39 deg. C) decreased all of these parameters in birch regardless of CO 2 treatment, but only photosynthetic electron transport and triose phosphate use at ambient CO 2 were reduced in aspen. Among the two aspen clones tested, 271 showed higher thermotolerance than 42E possibly because of the higher isoprene-emission, especially under elevated CO 2 . Our results indicate that isoprene-emitting trees may have a competitive advantage over non-isoprene emitting ones as temperatures rise, indicating that biological diversity may be affected in some ecosystems because of heat tolerance mechanisms. - We report that elevated CO 2 confers increased thermotolerance on both aspen and birch trees while isoprene production in aspen confers further thermotolerance in aspen.

  2. m-BIRCH: an online clustering approach for computer vision applications

    Science.gov (United States)

    Madan, Siddharth K.; Dana, Kristin J.

    2015-03-01

    We adapt a classic online clustering algorithm called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), to incrementally cluster large datasets of features commonly used in multimedia and computer vision. We call the adapted version modified-BIRCH (m-BIRCH). The algorithm uses only a fraction of the dataset memory to perform clustering, and updates the clustering decisions when new data comes in. Modifications made in m-BIRCH enable data driven parameter selection and effectively handle varying density regions in the feature space. Data driven parameter selection automatically controls the level of coarseness of the data summarization. Effective handling of varying density regions is necessary to well represent the different density regions in data summarization. We use m-BIRCH to cluster 840K color SIFT descriptors, and 60K outlier corrupted grayscale patches. We use the algorithm to cluster datasets consisting of challenging non-convex clustering patterns. Our implementation of the algorithm provides an useful clustering tool and is made publicly available.

  3. The Puzzling Origin of the Acquaintance between Charlotte Lennox and Thomas Birch

    Directory of Open Access Journals (Sweden)

    Patricia L. Hamilton

    2015-03-01

    Full Text Available Scholars have puzzled over the origin of the relationship between Charlotte Lennox and Thomas Birch. That the two shared a cordial professional relationship in 1759 is not surprising, but it is unclear how and when Birch obtained the poem "The Dream, an ode by Miss Ramsey of 15" (ca. 1744-45 for his manuscript collection. Possibly Edward Cave, publisher of The Gentleman’s Magazine, or other professional associates such as Samuel Johnson or Samuel Richardson supplied it. But archival evidence indicates that Lady Isabella Finch, Lennox’s earliest patroness, was in contact with Birch in 1749, raising the question of whether she could have given Birch the poem. However, a different type of connection between Lennox and Birch is suggested by Lennox’s first novel, The Life of Harriot Stuart, written by Herself (1750, which mentions William Chillingworth, Isaac Barrow, and John Tillotson as theological influences. Lennox may have known of these three seventeenth-century divines through Birch’s biographical work on them.

  4. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps.

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Christopher, E.; Bowen, Liessa T.; Kilgo, John, C.; Hanula, James, L.; Horn, Scott; Ulyshen, Michael, D.

    2012-03-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and fall migration). Foliage arthropod densities were greatest in the forest understory in all four seasons, but understory vegetation density was greatest in gaps. Foliage-gleaning bird abundance was positively associated with foliage-dwelling arthropods during the breeding (F = 18.5, P < 0.001) and post-breeding periods (F = 9.4, P = 0.004), and negatively associated with foliage-dwelling arthropods during fall migration (F = 5.4, P = 0.03). Relationships between birds and arthropods were inconsistent, but the arthropod prey base seemed to be least important during migratory periods. Conversely, bird captures were positively correlated with understory vegetation density during all four periods (P < 0.001). Our study suggests high bird abundance associated with canopy gaps during the non-breeding period resulted less from high arthropod food resource availability than from complex understory and midstory vegetation structure.

  5. Evaluation and differentiation of the Betulaceae birch bark species and their bioactive triterpene content using analytical FT-vibrational spectroscopy and GC-MS

    Directory of Open Access Journals (Sweden)

    Cîntă-Pînzaru Simona

    2012-07-01

    Full Text Available Abstract Background Aiming to obtain the highest triterpene content in the extraction products, nine bark samples from the forest abundant flora of Apuseni Mountains, Romania were Raman spectroscopically evaluated. Three different natural extracts from Betula pendula Roth birch bark have been obtained and characterized using Fourier transform vibrational spectra. Results This study shows that principal components of the birch tree extract can be rapidly recognized and differentiated based on their vibrational fingerprint band shape and intensity. The vibrational spectroscopy results are supported by the GC-MS data. Based on IR and Raman analysis, one can conclude that all the extracts, independent on the solvent(s used, revealed dominant betulin species, followed by lupeol. Conclusions Since Raman measurements could also be performed on fresh plant material, we demonstrated the possibility to apply the present results for the prediction of the highest triterpene content in bark species, for the selection of harvesting time or individual genotypes directly in the field, with appropriate portable Raman equipment.

  6. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States

    Science.gov (United States)

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G.

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %-248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  7. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores.

    Science.gov (United States)

    Coverdale, Tyler C; Kartzinel, Tyler R; Grabowski, Kathryn L; Shriver, Robert K; Hassan, Abdikadir A; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2016-11-01

    Positive indirect effects of consumers on their resources can stabilize food webs by preventing overexploitation, but the coupling of trophic and non-trophic interactions remains poorly integrated into our understanding of community dynamics. Elephants engineer African savanna ecosystems by toppling trees and breaking branches, and although their negative effects on trees are well documented, their effects on small-statured plants remain poorly understood. Using data on 117 understory plant taxa collected over 7 yr within 36 1-ha experimental plots in a semi-arid Kenyan savanna, we measured the strength and direction of elephant impacts on understory vegetation. We found that elephants had neutral effects on most (83-89%) species, with a similar frequency of positive and negative responses among the remainder. Overall, estimated understory biomass was 5-14% greater in the presence of elephants across a range of rainfall levels. Whereas direct consumption likely accounts for the negative effects, positive effects are presumably indirect. We hypothesized that elephants create associational refuges for understory plants by damaging tree canopies in ways that physically inhibit feeding by other large herbivores. As predicted, understory biomass and species richness beneath elephant-damaged trees were 55% and 21% greater, respectively, than under undamaged trees. Experimentally simulated elephant damage increased understory biomass by 37% and species richness by 49% after 1 yr. Conversely, experimentally removing elephant damaged branches decreased understory biomass by 39% and richness by 30% relative to sham-manipulated trees. Camera-trap surveys revealed that elephant damage reduced the frequency of herbivory by 71%, whereas we detected no significant effect of damage on temperature, light, or soil moisture. We conclude that elephants locally facilitate understory plants by creating refuges from herbivory, which countervails the direct negative effects of

  8. Understory Changes in Fraxinus excelsior Stands in Response to Dieback in Latvia

    Directory of Open Access Journals (Sweden)

    Pušpure Ilze

    2016-06-01

    Full Text Available Intense dieback of Fraxinus excelsior L. has been causing rapid changes in advance growth of trees and understory shrub growth of the affected stands. In this study, changes in composition and density of understory were studied in 15 permanent plots (each 235.6 m2, repeatedly sampled in 2005, 2010, and 2015. Within each plot, the number and average height of understory individuals were determined. The successional changes in understory were assessed by Detrended Correspondence Analysis. In total, 11 advance growth and 20 undergrowth species were recorded. A significant increase in the density of understory was observed only in 2015, mainly due to understorey growth of Corylus avellana L., Padus avium Mill., and Lonicera xylosteum L. Regarding advanced growth, the highest density was observed for Ulmus glabra Huds., F. excelsior and Acer platanoides L.; the density of A. platanoides and F. excelsior increased particularly in the period from 2010–2015. The observed successional changes suggested individuality of development of the affected stands according to the composition of the remaining and neighbouring canopy trees.

  9. Effects of understory vegetation and litter on plant nitrogen (N, phosphorus (P, N:P ratio and their relationships with growth rate of indigenous seedlings in subtropical plantations.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Establishing seedlings in subtropical plantations is very important for forest health, succession and management. Information on seedling nutrient concentrations is essential for both the selection of suitable indigenous tree species to accelerate succession of the established plantation and sustainable forest management. In this study, we investigated the concentrations of nitrogen ([N], phosphorus ([P], and N:P ratio in leaves, stems and roots of seedlings of three indigenous tree species (Castanopsis chinensis, Michelia chapensis and Psychotria rubra transplanted with removing or retaining understory vegetation and litter at two typical subtropical forest plantations (Eucalyptus plantation and native species plantation. We also measured the relative growth rate (RGR of seedling height, and developed the relationships between RGR and leaf [N], [P] and N:P ratio. Results showed that treatments of understory vegetation and associated litter (i.e. removal or retained generally had no significant effects on leaf [N], [P], N:P ratio and RGR of the transplanted tree seedlings for the experimental period. But among different species, there were significant differences in nutrient concentrations. M. chapensis and P. rubra had higher [N] and [P] compared to C. chinensis. [N] and [P] also varied among different plant tissues with much higher values in leaves than in roots for all indigenous species. RGR of indigenous tree seedlings was mostly positively correlated with leaf [N] and [P], but negatively correlated with leaf N:P ratio. Considering the low [P] and high N:P ratio observed in the introduced indigenous tree seedlings, we propose that the current experimental plantations might be P limited for plant growth.

  10. Impact of ozone on understory plants of the aspen zone

    Energy Technology Data Exchange (ETDEWEB)

    Harward, M.R.; Treshow, M.

    1971-01-01

    The purpose of this study was to learn how ozone might affect the growth and reproduction of understory species of the aspen community, and thereby influence its stability and composition. Plants of 15 representative species of the aspen community were grown in chambers and fumigated 4 hours each day, 5 days per week throughout their growing seasons. These included: Achillea millifolium, Chenopodium album, Chenopodium fremontii, Cruciferae sp., Descurainia pinnata, Descurainia sp., Geranium fremontii, Isatis tinctoria, Ligusticum porteri, Lepidium virginicum, Madia glomerata, Polygonum aviculare, Polygonum douglasii, Phacelia heterophylla, Viola italica. Plants were exposed to 30 pphm, 15 pphm, ambient air reaching 5-7 pphm for 2 hours per day, and filtered air. The study was repeated for 3 seasons. Ambient air caused a significant reduction of total plant weight only of Lepidium virginicum. Six species produced fruit and seeds. At 15 pphm, seed production by Madia glomerata and Polygonum douglasii was significantly reduced. At 30 pphm, seed production was also reduced in Polygonum aviculare and Lepidium virginicum. The two most significant conclusions to emerge from the study were first that several species were more sensitive to ozone than might have been suspected. Second, this sensitivity varied sufficiently that major shifts in community composition would be probable following only a year or two of exposure. More tolerant species have no doubt already become dominant over more sensitive species in natural plant communities exposed to elevated ozone concentrations. It must be stressed that the species studied did not necessarily represent the most ozone sensitive members of the community, or the most tolerant.

  11. Leaf N resorption efficiency and litter N mineralization rate have a genotypic tradeoff in a silver birch population.

    Science.gov (United States)

    Mikola, Juha; Silfver, Tarja; Paaso, Ulla; Possen, Boy J M H; Rousi, Matti

    2018-02-07

    Plants enhance N use efficiency by resorbing N from senescing leaves. This can affect litter N mineralization rate due to the C:N-ratio requirements of microbial growth. We examined genotypic links between leaf N resorption and litter mineralization by collecting leaves and litter from 19 Betula pendula genotypes and following the N release of litter patches on forest ground. We found significant genotypic variation for N resorption efficiency, litter N concentration, cumulative three-year patch N-input and litter N release with high broad-sense heritabilities (H 2  = 0.28-0.65). The genotype means of N resorption efficiency varied from 46% to 65% and correlated negatively with the genotype means of litter N concentration, cumulative patch N-input and litter N release. NH 4 + yield under patches had a positive genotypic correlation with the cumulative patch N-input. During the first year of litter decomposition, genotypes varied from N immobilization (max 2.71 mg/g dry litter) to N release (max 1.41 mg/g dry litter), creating a genotypic tradeoff between the N conserved by resorption and the N available for root uptake during the growing season. We speculate that this tradeoff is one likely reason for the remarkably wide genotypic range of N resorption efficiencies in our birch population. © 2018 by the Ecological Society of America.

  12. Vascular plant checklist of the Chimney Spring and Limestone Flats prescribed burning study areas within ponderosa pine experimental forests in northern Arizona (P-53)

    Science.gov (United States)

    Catherine Scudieri; James Fowler; Carolyn Hull Sieg; Laura Williams; Sally Haase

    2008-01-01

    This paper presents a vascular plant species list for two sites that are part of a long-term study exploring the effects of varying fire intervals on forest characteristics including the abundance and composition of understory vegetation. The Chimney Spring study area is on the Fort Valley Experimental Forest near Flagstaff, AZ and the Limestone Flats study area is on...

  13. Vascular plant checklist of the Chimney Spring and Limestone Flats Prescribed Burning Study Areas within ponderosa pine experimental forests in northern Arizona

    Science.gov (United States)

    Catherine Scudieri; James F. Fowler; Carolyn Hull Sieg; Laura Williams; Sally M. Haase

    2008-01-01

    This paper presents a vascular plant species list for two sites that are part of a long-term study exploring the effects of varying fire intervals on forest characteristics including the abundance and composition of understory vegetation. The Chimney Spring study area is on the Fort Valley Experimental Forest near Flagstaff, AZ, and the Limestone Flats study area is on...

  14. Gap formation and carbon cycling in the Brazilian Amazon: measurement using high-resolution optical remote sensing and studies in large forest plots

    Science.gov (United States)

    F. D. B. Espirito-Santo; M. M. Keller; E. Linder; R. C. Oliveira Junior; C. Pereira; C. G. Oliveira

    2013-01-01

    Background: The dynamics of gaps plays a role in the regimes of tree mortality, production of coarse woody debris (CWD) and the variability of light in the forest understory. Aims: To quantify the area affected by, and the carbon fluxes associated with, natural gap-phase disturbances in a tropical lowland evergreen rain forest by use of ground measurements and high-...

  15. Evaluating the role of cutting treatments, fire and soil seed banks in an experimental framework in ponderosa pine forests of the Black Hills, South Dakota

    Science.gov (United States)

    Cody L. Wienk; Carolyn Hull Sieg; Guy R. McPherson

    2004-01-01

    Pinus ponderosa Laws. (ponderosa pine) forests have changed considerably during the past century, partly because recurrent fires have been absent for a century or more. A number of studies have explored the influence of timber harvest or burning on understory production in ponderosa pine forests, but study designs incorporating cutting and prescribed...

  16. Antioxidants from slow pyrolysis bio-oil of birch wood: Application for biodiesel and biobased lubricants

    Science.gov (United States)

    Birch wood was slowly pyrolyzed to produce bio-oil and biochar. Slow pyrolysis conditions including reaction temperature, residence time, and particle size of the feed were optimized to maximize bio-oil yield. Particle size had an insignificant effect, whereas yields of up to 56% were achieved using...

  17. The population and seasonal dynamics of weevils developing in the soil of birch stands

    Science.gov (United States)

    E. Kula

    2003-01-01

    Curculionidae developing in the soil of birch stands in an air-polluted region were classified using the method of soil photoeclectors on the basis of their population dynamics (1986-2000) and phenology of their emergence from where they developed. In the course of 15 years we saw two evident culminations in the population density of Polydrusus undatus...

  18. Growth Response of Seedling Yellow Birch to Humus-Soil Mixtures

    Science.gov (United States)

    Carl H. Tubbs; Robert R. Oberg

    1966-01-01

    Previous observations of the establishment of yellow birch have cited the importance of mixed humus-mineral soil seedbeds. Godman and Krefting pointed out that both germination and growth were enhanced. Subsequent studies have shown that while germination in the absence of competition is adequate on mineral soil of a Podzol A under a wide variety of light and...

  19. MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe

    NARCIS (Netherlands)

    Sofiev, M.; Berger, U.; Prank, M.; Vira, J.; Arteta, J.; Belmonte, J.; Bergmann, K.C.; Chéroux, F.; Elbern, H.; Friese, E.; Galan, C.; Gehrig, R.; Khvorostyanov, D.; Kranenburg, R.; Kumar, U.; Marécal, V.; Meleux, F.; Menut, L.; Pessi, A.M.; Robertson, L.; Ritenberga, O.; Rodinkova, V.; Saarto, A.; Segers, A.; Severova, E.; Sauliene, I.; Siljamo, P.; Steensen, B.M.; Teinemaa, E.; Thibaudon, M.; Peuch, V.H.

    2015-01-01

    This paper presents the first ensemble modelling experiment in relation to birch pollen in Europe. The seven-model European ensemble of MACC-ENS, tested in trial simulations over the flowering season of 2010, was run through the flowering season of 2013. The simulations have been compared with

  20. Estimating the spread rate of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer using fluorescence

    Science.gov (United States)

    Toni Antikainen; Anti Rohumaa; Christopher G. Hunt; Mari Levirinne; Mark Hughes

    2015-01-01

    In plywood production, human operators find it difficult to precisely monitor the spread rate of adhesive in real-time. In this study, macroscopic fluorescence was used to estimate spread rate (SR) of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer. This method could be an option when developing automated real-time SR measurement for...

  1. 78 FR 50410 - Birch Power Company; Notice of Proposed Restricted Service List for a Programmatic Agreement

    Science.gov (United States)

    2013-08-19

    ... Project] Birch Power Company; Notice of Proposed Restricted Service List for a Programmatic Agreement Rule..., the Secretary may establish a restricted service list for a particular phase or issue in a proceeding. The restricted service list should contain the names of persons on the service list who, in the...

  2. Study of the betulin enriched birch bark extracts effects on human carcinoma cells and ear inflammation

    Directory of Open Access Journals (Sweden)

    Dehelean Cristina A

    2012-11-01

    Full Text Available Abstract Background Pentacyclic triterpenes, mainly betulin and betulinic acid, are valuable anticancer agents found in the bark of birch tree. This study evaluates birch bark extracts for the active principles composition. Results New improved extraction methods were applied on the bark of Betula pendula in order to reach the maximum content in active principles. Extracts were analyzed by HPLC-MS, Raman, SERS and 13C NMR spectroscopy which revealed a very high yield of betulin (over 90%. Growth inhibiting effects were measured in vitro on four malignant human cell lines: A431 (skin epidermoid carcinoma, A2780 (ovarian carcinoma, HeLa (cervix adenocarcinoma and MCF7 (breast adenocarcinoma, by means of MTT assay. All of the prepared bark extracts exerted a pronounced antiproliferative effect against human cancer cell lines. In vivo studies involved the anti-inflammatory effect of birch extracts on TPA-induced model of inflammation in mice. Conclusions The research revealed the efficacy of the extraction procedures as well as the antiproliferative and anti-inflammatory effects of birch extracts.

  3. The distribution of lignin in white birch wood as determined by bromination with TEM-EDXA

    International Nuclear Information System (INIS)

    Saka, S.; Goring, D.A.I.

    1988-01-01

    Ultraviolet absorbance and bromine uptake were measured on various morphological regions of birch wood. To facilitate precise comparison, observations were made on identical locations in successive cross sections. From the data, the concentration of lignin and the ratio of the guaiacyl to syringyl residues were determined. The results obtained were then compared with the previous findings from the use of UV microscopy alone

  4. Polyoxometalate delignification of birch kraft pulp and effect on residual lignin

    Science.gov (United States)

    Biljana Bujanovic; Richard S. Reiner; Sally A. Ralph; Rajai H. Atalla

    2011-01-01

    To advance the understanding of delignification with polyoxometalates (POMs) that have been explored for use in bleaching of chemical pulps, the transformation of lignin during anaerobic treatment of birch kraft pulp with an equilibrated POM mixture composed of Na5(+2)[SiV1(-0.1)MoW10(+0.1)O

  5. Shading and root-shoot relations in saplings of silver birch, pedunculate oak and beech

    NARCIS (Netherlands)

    Hees, van A.F.M.; Clerkx, A.P.P.M.

    2003-01-01

    Silver birch (Betula pendula Roth), pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) can regenerate successfully under a canopy of Scots pine (Pinus sylvestris L.). Shading reduces plant growth and modifies plant form, two related aspects. This study focuses on the effects of

  6. Influence of edging practices on cutting yields of Alaska birch lumber

    Science.gov (United States)

    David L. Nicholls; J.W. Funck; C.C. Brunner; J.E. Reeb

    2009-01-01

    Birch lumber is often characterized by a high degree of knots, bark pockets, heartwood, and other features which force sawmill owners to decide whether to edge and trim boards to produce standard grade lumber vs. proprietary grade character-marked lumber. In addition, the edging strategies used with irregularly shaped flitches can greatly influence cut-stock recovery....

  7. Multiple environmental changes drive forest floor vegetation in a temperate mountain forest.

    Science.gov (United States)

    Helm, Norbert; Essl, Franz; Mirtl, Michael; Dirnböck, Thomas

    2017-04-01

    Human-induced changes of the environment and their possible impacts on temperate forest understory plant communities have been examined in many studies. However, the relative contribution of individual environmental factors to these changes in the herb layer is still unclear. In this study, we used vegetation survey data covering a time period of 21 years and collected from 143 permanent plots in the Northern Limestone Alps, Austria. Data on soil chemistry (49 plots), light condition (51 plots), soil temperature and moisture (four and six plots), disturbance (all plots), climate (one station in a clearing area), and airborne sulfur (S) and nitrogen (N) deposition (two forest stands) were available for analyses. We used these data together with plot mean Ellenberg indicator values in a path analysis to attribute their relative contributions to observed vegetation changes. Our analysis reveals a strong directional shift of the forest understory plant community. We found strong evidence for a recovery of the ground-layer vegetation from acidification as response to decreased S deposition. We did not observe a community response to atmospheric N deposition, but we found a response to altered climatic conditions (thermophilization and drying). The path analysis revealed that changes in the light regime, which were related to small-scale disturbances, had most influence on herb layer community shifts. Thermophilization and drying were identified as drivers of understory community changes independent of disturbance events.

  8. Recombinant Mal d 1 facilitates sublingual challenge tests of birch pollen-allergic patients with apple allergy.

    Science.gov (United States)

    Kinaciyan, T; Nagl, B; Faustmann, S; Kopp, S; Wolkersdorfer, M; Bohle, B

    2016-02-01

    It is still unclear whether allergen-specific immunotherapy (AIT) with birch pollen improves birch pollen-related food allergy. One reason for this may be the lack of standardized tests to assess clinical reactions to birch pollen-related foods, for example apple. We tested the applicability of recombinant (r) Mal d 1, the Bet v 1-homolog in apple, for oral challenge tests. Increasing concentrations of rMal d 1 in 0.9% NaCl were sublingually administered to 72 birch pollen-allergic patients with apple allergy. The dose of 1.6 μg induced oral allergy syndromes in 26.4%, 3.2 μg in 15.3%, 6.3 μg in 27.8%, 12.5 μg in 8.3%, 25 μg in 11.1%, and 50 μg in 4.2% of the patients. No severe reactions occurred. None of the patients reacted to 0.9% NaCl alone. Sublingual administration of 50 μg of rMal d 1 induced no reactions in three nonallergic individuals. Our approach allows straight forward, dose-defined sublingual challenge tests in a high number of birch pollen-allergic patients that inter alia can be applied to evaluate the therapeutic efficacy of birch pollen AIT on birch pollen-related food allergy. © 2015 The Authors. Allergy Published by John Wiley & Sons Ltd.

  9. Synergy between land use and climate change increases future fire risk in Amazon forests

    Science.gov (United States)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  10. The spatial distribution of Hymenoptera parasitoids in a forest reserve in Central Amazonia, Manaus, AM, Brazil

    Directory of Open Access Journals (Sweden)

    RB. Querino

    Full Text Available Parasitoids are of great importance to forest ecosystems due to their ecological role in the regulation of the population of other insects. The species richness and abundance of parasitoids in the forest canopy and understory, both on the borders and in the interior of a tropical forest reserve in Central Amazonia were investigated. For a 12-month period, specimen collections were made every 15 days from suspended traps placed in the forest canopy and in the understory strata, both on the border and in the interior of forest areas. A total of 12,835 Hymenoptera parasitoids from 23 families were acquired. Braconidae, Diapriidae, Mymaridae, Eulophidae, and Scelionidae were the most represented in the area and strata samples. The results indicate that there were no significant differences in the species richness or abundance of Hymenoptera between the forest borders and the inner forest. The data does show that the presence of Hymenoptera is significantly greater in the understory in both the border and interior areas than in the canopy (vertical stratification. Aphelinidae and Ceraphronidae were significantly associated with the inner forest, while the other seven families with the border of the reserve. The abundance of Hymenoptera parasitoids presented seasonal variations during the year related to the rainy and dry seasons.

  11. Exotic Invasive Shrub Glossy Buckthorn Reduces Restoration Potential for Native Forest Herbs

    Directory of Open Access Journals (Sweden)

    Caroline Hamelin

    2017-02-01

    Full Text Available Invasive glossy buckthorn could reduce restoration potential for understory native forest herbs by compromising their growth and biodiversity. Few studies of glossy buckthorn’s effects on forest herbs exist, and none were done in early-successional, partially open hardwood forests. This study was conducted in a mature hybrid poplar plantation invaded by buckthorn, located in southeastern Québec. We tested the effect of buckthorn removal on the growth of three forest herb species, whether this effect varied among species, and if canopy type (two poplar clones influenced this effect. Forest herbs were planted in herbicide (buckthorn removed and control treatments in the plantation understory, an environment similar to that of early-successional hardwood forests. Over the first two growing seasons, species showed specific reactions to buckthorn cover. Mean relative growth rate (RGR for Asarum canadense and Polygonatum pubescens was increased in the herbicide treatment (48% and 33%, respectively and decreased in the control treatment (−35% and −33%, respectively. Sanguinaria canadensis growth was the highest among species, with no difference between treatments. No effects of canopy type were detected. Results suggest that planting forest herbs for restoration purposes may be unsuccessful if buckthorn is present. Important changes in understory flora biodiversity are likely to occur over the long term in forests invaded by buckthorn.

  12. Vertical stratification of ichneumonid wasp communities: the effects of forest structure and life-history traits.

    Science.gov (United States)

    Di Giovanni, Filippo; Cerretti, Pierfilippo; Mason, Franco; Minari, Emma; Marini, Lorenzo

    2015-10-01

    Parasitoid wasp communities of the canopy of temperate forests are still largely unexplored. Very little is known about the community composition of parasitoids between canopy and understory and how much of this difference is related to forest structure or parasitoid biological strategies. In this study we investigated upon the difference in the community composition of the parasitic wasps Ichneumonidae between canopy and understory in a lowland temperate forest in northern Italy. We used general linear models to test whether parasitic strategy modifies species vertical stratification and the effect of forest structure. We also tested differences in β-diversity between canopy and understory traps and over time within single forest layers. We found that stand basal area was positively related to species richness, suggesting that the presence of mature trees can influence local wasp diversity, providing a higher number of microhabitats and hosts. The ichneumonid community of the canopy was different from that of the understory, and the β-diversity analysis showed higher values for the canopy, due to a higher degree of species turnover between traps. In our analyses, the vertical stratification was different between groups of ichneumonids sharing different parasitic strategies. Idiobiont parasitoids of weakly or deeply concealed hosts were more diverse in the understory than in the canopy while parasitoids of spiders were equally distributed between the two layers. Even though the ichneumonid community was not particularly species-rich in the canopy of the temperate forests, the extension of sampling to that habitat significantly increased the number of species recorded. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  13. Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest

    Science.gov (United States)

    Montti, Lía; Villagra, Mariana; Campanello, Paula I.; Gatti, M. Genoveva; Goldstein, Guillermo

    2014-01-01

    Many woody bamboo species are forest understory plants that become invasive after disturbance. They can grow rapidly forming a dense, nearly monospecific understory that inhibits tree regeneration. The principal aim of this study was to understand what functional traits of bamboos allow them to outcompete tree seedlings and saplings and become successful species in the semideciduous Atlantic Forests of northeastern Argentina. We studied leaf and whole-plant functional traits of two bamboo species of the genus Chusquea and five co-occurring saplings of common tree species growing under similar solar radiation and soil nutrient availabilities. Nutrient addition had no effect on bamboo or tree sapling survival and growth after two years. Tree species with high-light requirements had higher growth rates and developed relatively thin leaves with high photosynthetic capacity per unit leaf area and short leaf life-span when growing in gaps, but had lower survival rates in the understory. The opposite pattern was observed in shade-tolerant species that were able to survive in the understory but had lower photosynthetic capacity and growth than light-requiring species in gaps. Bamboos exhibited a high plasticity in functional traits and leaf characteristics that enabled them to grow rapidly in gaps (e.g., higher photosynthetic capacity per unit dry mass and clonal reproduction in gaps than in the understory) but at the same time to tolerate closed-canopy conditions (they had thinner leaves and a relatively longer leaf life-span in the understory compared to gaps). Photosynthetic capacity per unit dry mass was higher in bamboos than in trees. Bamboo plasticity in key functional traits, such as clonal reproduction at the plant level and leaves with a relatively low C cost and high photosynthesis rates, allows them to colonize disturbed forests with consequences at the community and ecosystem levels. Increasing disturbance in some forests worldwide will likely enhance bamboo

  14. An investigation of the possible immunological relationship between allergen extracts from birch pollen, hazelnut, potato and apple

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Løwenstein, H

    1978-01-01

    In a retrospective study on selected group of patients, the coincidence of birch pollen allergy and a clinically relevant positive prick test reaction to apples and potatoes was confirmed. Immunochemical comparison using the crossed line immunoelectrophoresis technique (CLIE) confirmed partial...... identity between birch pollen and hazelnut. By the same method no partial immunological identity between birch pollen and extracts and fresh peel from apples and potatoes was found. However, both apples and potatoes gave rise to non-immunological affinity precipitates. On this basis it is discussed...

  15. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India.

    Science.gov (United States)

    Dar, Javid Ahmad; Sundarapandian, Somaiah

    2015-02-01

    An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha(-1) in BU forest to 294.8 Mg ha(-1) for the AP forest. The understory biomass ranged from 0.16 Mg ha(-1) in PD forest to 2.36 Mg ha(-1) in PW forest. Deadwood biomass ranged from 1.5 Mg ha(-1) in PD forest to 14.9 Mg ha(-1) for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha(-1) in BU and JR forests to 3.1 Mg ha(-1) in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha(-1) across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1-91.4 Mg ha(-1), respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0-30-cm soil, about 55 % was stored in the upper 0-10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is

  16. Patterns of primary succession of native and introduced plants in lowland wet forests in eastern Hawaii

    Science.gov (United States)

    Naupaka Zimmerman; Flint 1 Hughes; Patrick Hart; Heather Kalei Chang; David Perez; Ryan Kaipoalohaakala Like; Rebecca. Ostertag

    2008-01-01

    The majority of Hawaii's lowland wet forests no longer exist, with many of the last remaining patches found on the eastern, windward sides of the largest islands. To better understand successional patterns and invasion in these native systems, we quantified basal area (BA) and densities of woody species and understory cover at nine sites in the Puna district on...

  17. Fire and fire surrogate treatments in mixed-oak forests: Effects on herbaceous layer vegetation

    Science.gov (United States)

    Ross Phillips; Todd Hutchinson; Lucy Brudnak; Thomas Waldrop

    2007-01-01

    Herbaceous layer vegetation responses to prescribed fire and fire surrogate treatments (thinning and understory removal) were examined. Results from 3 to 4 years following treatment are presented for the Ohio Hills Country and the Southern Appalachian Mountain sites of the National Fire and Fire Surrogate Study. At the Ohio Hills site, changes in forest structure were...

  18. A polar grid estimator of forest canopy structure metrics using airborne laser scanning data

    Science.gov (United States)

    Nicholas R. Vaughn; Greg P. Asner; Christian P. Giardina

    2013-01-01

    The structure of a forest canopy is the key determinant of light transmission, use and understory availability. Airborne light detection and ranging (LiDAR) has been used successfully to measure multiple canopy structural properties, thereby greatly reducing the fieldwork required to map spatial variation in structure. However, lidar metrics to date do not reflect the...

  19. Amazon forest structure generates diurnal and seasonal variability in light utilization

    Science.gov (United States)

    Douglas C. Morton; Jeremy Rubio; Bruce D. Cook; Jean-Philippe Gastellu-Etchegorry; Marcos Longo; Hyeungu Choi; Maria Hunter; Michael Keller

    2016-01-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART...

  20. Diurnal roosts of male evening bats (Nycticeius humeralis) in diversely managed pine-hardwood forests

    Science.gov (United States)

    Roger W. Perry; Ronald E. Thill

    2008-01-01

    We examined attributes of 45 roost sites used by 17 adult male evening bats (Nycticeius humeralis) in a diverse forested landscape within the Ouachita Mountains, Arkansas. Bats roosted in a diverse array of substrates, including live or dead Pinus echinata $15 cm diam at breast height (29% of roosts) and small (,10 cm) understory or midstory...

  1. Short-term dynamics of second-growth mixed mesophytic forest strata in West Virginia

    Science.gov (United States)

    Cynthia C. Huebner; Steven L. Stephenson; Harold S. Adams; Gary W. Miller

    2007-01-01

    The short-term dynamics of mixed mesophytic forest strata in West Virginia were examined using similarity analysis and linear correlation of shared ordination space. The overstory tree, understory tree, shrub/vine, and herb strata were stable over a six year interval, whereas the tree seedling and sapling strata were unstable. All strata but the shrub/vine and tree...

  2. Evaporation and the sub-canopy energy environment in a flooded forest

    Science.gov (United States)

    The combination of canopy cover and a free water surface makes the sub-canopy environment of flooded forested wetlands unlike other aquatic or terrestrial systems. The sub-canopy vapor flux and energy budget are not well understood in wetlands, but they importantly control water level and understory...

  3. Estimating forest structure parameters within Fort Lewis Military Reservation using airborne laser scanner (LIDAR) data.

    Science.gov (United States)

    Hans-Erik Andersen; Jeffrey R. Foster; Stephen E. Reutebuch

    2003-01-01

    Three-dimensional (3-D) forest structure information is critical to support a variety of ecosystem management objectives on the Fort Lewis Military Reservation, including habitat assessment, ecological restoration, fire management, and commercial timber harvest. In particular, the Forestry Program at Fort Lewis requires measurements of shrub, understory, and overstory...

  4. Sustained efficacy and safety of a 300IR daily dose of a sublingual solution of birch pollen allergen extract in adults with allergic rhinoconjunctivitis: results of a double-blind, placebo-controlled study

    OpenAIRE

    Worm, Margitta; Rak, Sabina; de Blay, Frédéric; Malling, Hans-Jorgen; Melac, Michel; Cadic, Véronique; Zeldin, Robert K

    2014-01-01

    Background Allergic rhinoconjunctivitis (ARC) due to birch pollen is a growing health concern in Europe. Here, we report the efficacy and safety of 300IR birch pollen sublingual solution administered discontinuously for 2 consecutive years to patients with birch-associated allergic rhinoconjunctivitis. Methods Birch pollen-allergic adults were randomized in this double blind study to 300IR birch pollen sublingual solution or placebo, daily, starting 4 months before and continuing through the ...

  5. Influence of microtopography on soil chemistry and understory riparian vegetation

    Science.gov (United States)

    Irene M. Unger; Rose-Marie Muzika

    2008-01-01

    The success of riparian forest restoration efforts depends in part on an understanding of the relationship between soil characteristics and vegetation patterns and how these change with site conditions. To examine these relationships for floodplains in northern Missouri, we chose three unchannelized streams as study areas. A sampling grid was established at two plots...

  6. Long-Term Responses of Understory Vegetation on a Highly Erosive Louisiana Soil to Fertilization

    Science.gov (United States)

    James D. Haywood; Ronald E. Thill

    1995-01-01

    Responses of vegetation on highly eroded Kisatchie soils to a broadcast application of 600 lb/acre of 16-30-l 3 granular fertilizer were monitored for 12 years. Understory woody and herbaceous vegetation responded to fertilization immediately, and thus the soil surface was protected from erosion sooner in the fertilized area than in the two unfertilized areas. After 1...

  7. Post-Fire Peat Land Understory Plant in Rimba Panjang, Sumatera, Indonesia

    Science.gov (United States)

    Firdaus, L. N.; Nursal; Wulandari, Sri; Syafi'i, Wan; Fauziah, Yuslim

    2017-12-01

    The existence of understory plants during early post-fire succession is essential in term of natural post-fire ecological restoration. More than fifty percent of fire incidents in Riau, Sumatera, Indonesia occurred in shallow peat lands which have the huge impact on vegetation damage. This study aims to explore the understory plants species and diversity in post-fire peat land at Rimba Panjang, Kampar Regency, Sumatera, Indonesia. By using survey method, the observations were conducted on 150 plots which were distributed randomly over four locations based on the year after fire: 2009, 2014, 2015 and 2016. We found respectively 12, 14, 19 and 17 species at that sites with respective Shannon Wiener diversity index were 1.72, 2.00, 2.14 and 2.40. All the sites were dominated by Stenochlaena palustris (Burm.). Coverage percentage of understory vegetation were respectively 28.87%, 25.50%, 51.60% and 54.13%. Overall, we found 31 species of 17 familia. The result showed that the species composition, diversity index and coverage percentage of understory plant are likely to decrease in line with the length of time after the fire. Post peatland fires in Rimba Panjang are still having the characteristics of the peat swamp habitat which was dominated by Stenochlaena palustris (Burm.). Ecological restoration of that habitat is still possible, but it is necessary to consider technological and socio-economical aspects of local communities.

  8. Understory response following varying levels of overstory removal in mixed conifer stands

    Science.gov (United States)

    Fabian C.C. Uzoh; Leroy K. Dolph; John R. Anstead

    1997-01-01

    Diameter growth rates of understory trees were measured for periods both before and after overstory removal on six study areas in northern California. All the species responded with increased diameter growth after adjusting to their new environments. Linear regression equations that predict post treatment diameter growth increment of the residual trees are presented...

  9. Fuels planning: science synthesis and integration; environmental consequences fact sheet 10: The Understory Response Model

    Science.gov (United States)

    Steve Sutherland; Melanie Miller

    2005-01-01

    The Understory Response Model is a species-specific computer model that qualitatively predicts change in total species biomass for grasses, forbs, and shrubs after thinning, prescribed fire, or wildfire. The model examines the effect of fuels management on plant survivorship and reproduction. This fact sheet identifies the intended users and uses, required inputs, what...

  10. Maintenance of a living understory enhances soil carbon sequestration in subtropical orchards.

    Science.gov (United States)

    Liu, Zhanfeng; Lin, Yongbiao; Lu, Hongfang; Ding, Mingmao; Tan, Yaowen; Xu, Shejin; Fu, Shenglei

    2013-01-01

    Orchard understory represents an important component of the orchards, performing numerous functions related to soil quality, water relations and microclimate, but little attention has been paid on its effect on soil C sequestration. In the face of global climate change, fruit producers also require techniques that increase carbon (C) sequestration in a cost-effective manner. Here we present a case study to compare the effects of understory management (sod culture vs. clean tillage) on soil C sequestration in four subtropical orchards. The results of a 10-year study indicated that the maintenance of sod significantly enhanced the soil C stock in the top 1 m of orchard soils. Relative to clean tillage, sod culture increased annual soil C sequestration by 2.85 t C ha(-1), suggesting that understory management based on sod culture offers promising potential for soil carbon sequestration. Considering that China has the largest area of orchards in the world and that few of these orchards currently have sod understories, the establishment and maintenance of sod in orchards can help China increase C sequestration and greatly contribute to achieving CO2 reduction targets at a regional scale and potentially at a national scale.

  11. Fauna and stratification of male orchid bees (Hymenoptera: Apidae) and their preference for odor baits in a forest fragment.

    Science.gov (United States)

    Ferreira, M G; de Pinho, O C; Balestieri, J B P; Faccenda, O

    2011-01-01

    This is a study of the population fluctuation of euglossine species, as well as their preferences for scent baits (cineole, eugenol, vanillin and methyl salicylate) in two forest strata (canopy and understory) at the Reserva Florestal do Azulão, a forest fragment located in the municipality of Dourados, MS, Brazil (22°12'S, 54°55'W). We collected a total of 529 males from four genera and eight species. Diversity and equitability for both strata (understory: H' = 1.195 and J' = 0.6139; canopy: H' = 1.193 and J' = 0.6131) did not show a significant difference and a high similarity index was found (P = 87.5%). On the other hand, abundance was substantially higher in the canopy (n = 358) than in the understory (n = 171). From the scents used, eugenol attracted a larger number of individuals (n = 225), but cineole and vanillin attracted a higher number of species.

  12. Patterns in Abundance and Seasonality of Insects in the Siruvani Forest of Western Ghats, Nilgiri Biosphere Reserve, Southern India

    Directory of Open Access Journals (Sweden)

    P. R. Arun

    2004-01-01

    Full Text Available The seasonal abundance patterns of insects inhabiting the understory vegetation of a mixed deciduous forest were examined with the help of the sweep-net sampling method. During the study period of 2 years, insects were sampled regularly from the understory vegetation of the three selected habitats (moist-deciduous, riverine, and teak plantation of the mixed deciduous forest. Insect abundance was maximum in the moist-deciduous habitat and minimum in the teak plantation. Generally, insect abundance was the highest during the southwest monsoon in all habitats. The temporal pattern of fluctuations in the insect abundance followed more or less the same pattern in all the three habitats studied. The insect abundance of the understory vegetation varied among the habitats studied, while the pattern of seasonal fluctuations in insect abundance was comparable among habitats. Composition of the insect community also indicated prominent seasonal changes within habitats than interhabitat changes within a season.

  13. Networked web-cameras monitor congruent seasonal development of birches with phenological field observations

    Science.gov (United States)

    Peltoniemi, Mikko; Aurela, Mika; Böttcher, Kristin; Kolari, Pasi; Loehr, John; Karhu, Jouni; Kubin, Eero; Linkosalmi, Maiju; Melih Tanis, Cemal; Nadir Arslan, Ali

    2017-04-01

    Ecosystems' potential to provide services, e.g. to sequester carbon is largely driven by the phenological cycle of vegetation. Timing of phenological events is required for understanding and predicting the influence of climate change on ecosystems and to support various analyses of ecosystem functioning. We established a network of cameras for automated monitoring of phenological activity of vegetation in boreal ecosystems of Finland. Cameras were mounted on 14 sites, each site having 1-3 cameras. In this study, we used cameras at 11 of these sites to investigate how well networked cameras detect phenological development of birches (Betula spp.) along the latitudinal gradient. Birches are interesting focal species for the analyses as they are common throughout Finland. In our cameras they often appear in smaller quantities within dominant species in the images. Here, we tested whether small scattered birch image elements allow reliable extraction of color indices and changes therein. We compared automatically derived phenological dates from these birch image elements to visually determined dates from the same image time series, and to independent observations recorded in the phenological monitoring network from the same region. Automatically extracted season start dates based on the change of green color fraction in the spring corresponded well with the visually interpreted start of season, and field observed budburst dates. During the declining season, red color fraction turned out to be superior over green color based indices in predicting leaf yellowing and fall. The latitudinal gradients derived using automated phenological date extraction corresponded well with gradients based on phenological field observations from the same region. We conclude that already small and scattered birch image elements allow reliable extraction of key phenological dates for birch species. Devising cameras for species specific analyses of phenological timing will be useful for

  14. Hydrogenated graphenes by birch reduction: influence of electron and proton sources on hydrogenation efficiency, magnetism, and electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Eng, A.Y.S.; Sofer, Z.; Huber, Š.; Bouša, D.; Maryško, Miroslav; Pumera, M.

    2015-01-01

    Roč. 21, č. 7 (2015), 16828-16838 ISSN 0947-6539 Institutional support: RVO:68378271 Keywords : hydrogenated graphenes * birch reduction * magnetism * electrochemistry * hydrogenation efficiency Subject RIV: CA - Inorganic Chemistry Impact factor: 5.771, year: 2015

  15. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments

    Directory of Open Access Journals (Sweden)

    Ivika eOstonen

    2013-09-01

    Full Text Available Morphological plasticity of ectomycorrhizal (EcM short roots (known also as first and second order roots with primary development allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits of short-living EcM roots, such as specific root length (SRL and area, root tip frequency per mass unit (RTF, root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48°N–68°N in Norway spruce (Picea abies (L. Karst and (53°N -66°N birch (Betula pendula Roth., B. pubescens Ehrh. forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate, the tools to achieve the appropriate morphological acclimation are tree species-specific.Long-term (1994-2010 measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL (plasticity index (PI =0.60, while spruce EcM roots became adjusted by modifying RTF (PI=0.68. Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean plasticity index of all morphological traits did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, towards temperate forests with more favourable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages.

  16. Using the ratio of optical channels in satellite image decoding in monitoring biodiversity of boreal forests

    Science.gov (United States)

    Rozhkov, Yurj P.; Kondakova, Maria Y.

    2013-10-01

    The study contains the results of forest monitoring at three levels: the forests condition assessment at the time of recording or mapping for this indicator, the seasonal changes assessment in the forests condition, mainly during the vegetation period and the evaluation of long-term changes in the values of the studied parameters on the example of the forests recovery after a fire. The use of two indices - NDVI and Image Difference in the boreal forests monitoring is treated. NDVI assesses the state of plant biomass and its productivity. The rate of Image Difference characterizes the optical density and allows estimate the density of the forest stand. In addition, by identifying Image Difference on summer and autumn pictures it can makes a distinction of different wood species, to divide forest areas, which consist of deciduous and coniferous species and larch which shedded needles at the end of the vegetation period. Therefore, it is possible to differentiate the pine, cedar, spruce forests on the one side and birch, larch, alder on the other side. The optical density of the forest decreases after the needles- and the leaf sheddings. Using the index Image Difference in estimates of long-term changes of the forest stand shows the trend of changes of the forest density and the tree species composition. The results of the analysis of the recovery process of the forest after a fire in the period from 1995 to 2009 showed how shoots of birch, larch and pine recover wastelands.

  17. Importance of Coarse Woody Debris to Avian Communities in Loblolly Pine Forests

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, S.M.; Gauthreaux, S.A.; Kilgo, J.C.

    2001-06-14

    Investigates the importance of standing and down coarse woody debris to bird communities in loblolly pine forests, researchers compared breeding and nonbreeding responses of birds among two coarse woody debris removal and control treatments. Quantification of vegetation layers to determine their effects on the experimental outcome coarse woody debris removal had no effect on the nonbreeding bird community. Most breeding and nonbreeding species used habitats with sparse midstory and well-developed understory, where as sparse canopy cover and dense midstory were important to some nonbreeding species. Snag and down coarse woody debris practices that maintain a dense understory, sparse midstory and canopy will create favorable breeding habitat.

  18. Prescribed grazing for management of invasive vegetation in a hardwood forest understory

    Science.gov (United States)

    Ronald A. Rathfon; Songlin Fei; Jason Tower; Kenneth Andries; Michael. Neary

    2014-01-01

    Land managers considering prescribed grazing (PG) face a lack of information on animal stocking rates, timing of grazing, and duration of grazing to achieve desired conditions in natural ecosystems under invasion stress from a variety of nonnative invasive plant (NNIP) species. In this study we tested PG treatments using goats for reducing NNIP brush species and...

  19. Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems

    Science.gov (United States)

    J. Kevin Hiers; Joseph J. O' Brien; Rodney E. Will; Robert J. Mitchell

    2007-01-01

    Longleaf pine (Pinus palustris) woodlands and savannas are among the most frequently burned ecosystems in the world with fire return intervals of 1–10 years. This fire regime has maintained high levels of biodiversity in terms of both species richness and endemism. Land use changes have reduced the area of this ecosystem by .95%, and inadequate fire...

  20. Understory vegetation in reclaimed and unreclaimed post-mining forest stands

    Czech Academy of Sciences Publication Activity Database

    Mudrák, Ondřej; Frouz, J.; Velichová, V.

    2010-01-01

    Roč. 36, č. 6 (2010), s. 783-790 ISSN 0925-8574 Institutional research plan: CEZ:AV0Z60050516 Keywords : coal * restoration * succession Subject RIV: EH - Ecology, Behaviour Impact factor: 2.203, year: 2010

  1. Frugivory in Lacistema hasslerianum Chodat (Lacistemaceae), a gallery forest understory treelet in Central Brazil.

    Science.gov (United States)

    Melo, C; Oliveira, P E

    2009-02-01

    The objectives of this study were to know and to characterize the behavioural patterns of frugivorous birds in Lacistema hasslerianum. The study was carried out in the Panga Ecological Station (Uberlândia, Minas Gerais State). During the frutification time (September-October), L. hasslerianum was observed for 31.25 hours and received 58 visits by five species of birds. Tyrannidae was the best represented family (2 species). Pipridae was the most frequent visitor in L. hasslerianum (68.97% of visits). The number of consumed fruits was correlated with the time of permanence on the plant. The main foraging tactic was 'Stalling' (58.62%) and the most frequent fruit consumption strategy was 'swallower' (45.25%), which indicates a high seed dispersal potential. Antilophia galeata (Pipridae), although a territorial bird, presented the best dispersal efficiency for Lacistema hasslerianum, because of its consumption rate (2.82 whole fruits consumed/minute).

  2. Frugivory in Lacistema hasslerianum Chodat (Lacistemaceae, a gallery forest understory treelet in Central Brazil

    Directory of Open Access Journals (Sweden)

    C. Melo

    Full Text Available The objectives of this study were to know and to characterize the behavioural patterns of frugivorous birds in Lacistema hasslerianum. The study was carried out in the Panga Ecological Station (Uberlândia, Minas Gerais State. During the frutification time (September-October, L. hasslerianum was observed for 31.25 hours and received 58 visits by five species of birds. Tyrannidae was the best represented family (2 species. Pipridae was the most frequent visitor in L. hasslerianum (68.97% of visits. The number of consumed fruits was correlated with the time of permanence on the plant. The main foraging tactic was "Stalling" (58.62% and the most frequent fruit consumption strategy was "swallower" (45.25%, which indicates a high seed dispersal potential. Antilophia galeata (Pipridae, although a territorial bird, presented the best dispersal efficiency for Lacistema hasslerianum, because of its consumption rate (2.82 whole fruits consumed/minute.

  3. [Characteristics of the distribution of Ixodes persulcatus in the forest-park area of Novosibirsk].

    Science.gov (United States)

    Sapegina, V F; Dorontsova, V A; Telegin, V I; Ibleva, N G; Dobrotvorskiĭ, A K

    1985-01-01

    Only one species of ixodid ticks Ixodes persulcatus occurs in the forest-park zone. Conditions of foliage forests with high grass, where occur hosts of all developmental phases of ticks (elks, hares, rodents, insectivores), are most favourable for I. persulcatus. Preimaginal phases of I. persulcatus feed, in general, on dominant species (common shrew, redbacked and narrow-skulled voles, field mouse and northern birch mouse).

  4. Variation in Carbon Storage and Its Distribution by Stand Age and Forest Type in Boreal and Temperate Forests in Northeastern China

    Science.gov (United States)

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J.; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and forests respectively, and thus play a minor role in total forest C storage in NE China. PMID:23977252

  5. Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance.

    Science.gov (United States)

    Bryant, J P; Chapin, F S; Reichardt, P B; Clausen, T P

    1987-07-01

    Plant carbon/nutrient balance has been implicated as an important factor in plant defensive chemistry and palatability to herbivores. We tested this hypothesis by fertilizing juvenile growth form Alaska paper birch and green alder with N, P and N-plus-P in a balanced 2x2 factorial experiment. Additionally, we shaded unfertilized plants of both species. Fertilization with N and N-plus-P increased growth of Alaska paper birch, reduced the concentration of papyriferic acid in internodes and increased the palatability of birch twigs to snowshoe hares. Shading decreased birch growth, decreased the concentration of papyriferic acid in internodes and increased twig palatability. These results indicate that the defensive chemistry and palatability of winter-dormant juvenile Alaska paper birch are sensitive to soil fertility and shade. Conversely the defensive chemistry and palatability of green alder twigs to snowshoe hares were not significantly affected by soil fertility or shade. The greater sensitivity of Alaska paper birch defensive chemistry and palatability to snowshoe hares in comparison to green alder is in agreement with the hypothesis that early successional woody plants that are adapted to high resource availability are more plastic in their chemical responses to the physical environment than are species from less favorable environments.

  6. Community structures of Mesostigmata, Prostigmata and Oribatida in broad-leaved regeneration forests and conifer plantations of various ages.

    Science.gov (United States)

    Hasegawa, Motohiro; Okabe, Kimiko; Fukuyama, Kenji; Makino, Shun'ichi; Okochi, Isamu; Tanaka, Hiroshi; Goto, Hideaki; Mizoguchi, Takeo; Sakata, Tadashi

    2013-04-01

    The community structures of Mesostigmata, Prostigmata, and Oribatida in the soil of broad-leaved regeneration forests and conifer plantations of various ages were assessed alongside soil and plant environmental variables using three response metrics (density, species richness, and species-abundance distribution). The density and species richness of mites recovered swiftly after clear-cutting or replanting. Oribatid mites dominated the soil mite communities in terms of densities and species richness for both forest types. Soil mite communities in broad-leaved forests was related to forest age, the crown tree communities index, and forest-floor litter weight. In contrast, soil mite communities in the conifer plantation sites were related to various indices of understory plants. The development of the understory plants was synchronized with the silvicultural schedules, including a closed canopy and thinning. Such a conifer plantation management may affect indirectly the community of mites.

  7. Stability of transgenes in long-term micropropagation of plants of transgenic birch (Betula platyphylla).

    Science.gov (United States)

    Zeng, Fansuo; Qian, Jingjing; Luo, Wei; Zhan, Yaguang; Xin, Ying; Yang, Chuanping

    2010-01-01

    The stability of integration and expression level of transgenes in long-term micropropagation clones of transgenic birch (Betula platyphylla Suk.) was examined. Multiplexed PCR and reverse primer PCR demonstrated stable integration of transgenes into regenerated plants. Expression levels of the bgt and gus genes among shoot plantlets, subcultured 4, 7, 9 and 15 times, were significantly different. The transcriptional expression level of extraneous genes in regenerated plants decreased with increasing subculture number. Transcriptional gene silencing (TGS) occured in regenerated transgenic lines. The silencing rate of GUS in the 5th subculture plants was 22-65%. TGS in regenerated plants could be reactivated with 5-azacytidine (Azac) at 50-200 microM. GUS and BGT protein expression was reactivated in the micropropagated transgenic birch plants when treated with Azac. A decrease in expression level with increasing number of subcultures is thus associated with DNA methylation.

  8. Morphological and molecular characteristics of foliar nematode attacking silver birch (Betula pendula Roth in Poland

    Directory of Open Access Journals (Sweden)

    Chałańska A.

    2017-09-01

    Full Text Available Aphelenchoides fragariae (Ritzema Bos, 1890 Christie, 1932 was isolated from leaves of silver birch (Betula pendula Roth seedlings proving that the source of infection was anemones plants. This is the first report to our best knowledge showing that the source of nematode infection of a woody plant could be a perennial plant. A. fragariae was identified by morphometric and molecular analyses. Morphological diagnosis based on the bending shape of the tail of males and pronounced apex and rostrum proved to be the most accurate reliable characteristic. On the opposite, the high variability of the mucron shape in female tails made the identification by microscopic analyses difficult. Identification of the species was confirmed by analysis of 28S rDNA sequences. The morphometric data of adults extracted from silver birch was compared with that of nematodes isolated from Anemone hupehensis (Lemoine Lemoine. Males body length varied highly in samples collected from both host plant species.

  9. Effect of Different Pretreatment Methods on Birch Outer Bark: New Biorefinery Routes

    Directory of Open Access Journals (Sweden)

    Anthi Karnaouri

    2016-03-01

    Full Text Available A comparative study among different pretreatment methods used for the fractionation of the birch outer bark components, including steam explosion, hydrothermal and organosolv treatments based on the use of ethanol/water media, is reported. The residual solid fractions have been characterized by ATR-FTIR, 13C-solid-state NMR and morphological alterations after pretreatment were detected by scanning electron microscopy. The general chemical composition of the untreated and treated bark including determination of extractives, suberin, lignin and monosaccharides was also studied. Composition of the residual solid fraction and relative proportions of different components, as a function of the processing conditions, could be established. Organosolv treatment produces a suberin-rich solid fraction, while during hydrothermal and steam explosion treatment cleavage of polysaccharide bonds occurs. This work will provide a deeper fundamental knowledge of the bark chemical composition, thus increasing the utilization efficiency of birch outer bark and may create possibilities to up-scale the fractionation processes.

  10. Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Blomfeldt, Thomas O. J.; Hedenqvist, Mikael S.

    2012-01-01

    Xylans, an important sub-class of hemicelluloses, represent a largely untapped resource for new renewable materials derived from biomass. As with other carbohydrates, nanocellulose reinforcement of xylans is interesting as a route to new bio-materials. With this in mind, birch wood xylan was comb......Xylans, an important sub-class of hemicelluloses, represent a largely untapped resource for new renewable materials derived from biomass. As with other carbohydrates, nanocellulose reinforcement of xylans is interesting as a route to new bio-materials. With this in mind, birch wood xylan...... was combined with nanofibrillated cellulose (NFC) and films were cast with and without glycerol, sorbitol or methoxypolyethylene glycol (MPEG) as plasticizers. Microscopy revealed some NFC agglomeration in the composite films as well as a layered nanocellulose structure. Equilibrium moisture content...

  11. Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest

    Science.gov (United States)

    Lang, K.D.; Schulte, L.A.; Guntenspergen, G.R.

    2009-01-01

    Although the initial response to salvage (also known as, post-disturbance or sanitary) logging is known to vary among system components, little is known about longer term forest recovery. We examine forest overstory, understory, soil, and microtopographic response 25 years after a 1977 severe wind disturbance on the Flambeau River State Forest in Wisconsin, USA, a portion of which was salvage logged. Within this former old-growth hemlock-northern hardwoods forest, tree dominance has shifted from Eastern hemlock (Tsuga canadensis) to broad-leaf deciduous species (Ulmus americana, Acer saccharum, Tilia americana, Populus tremuloides, and Betula alleghaniensis) in both the salvaged and unsalvaged areas. While the biological legacies of pre-disturbance seedlings, saplings, and mature trees were initially more abundant in the unsalvaged area, regeneration through root suckers and stump sprouts was common in both areas. After 25 years, tree basal area, sapling density, shrub layer density, and seedling cover had converged between unsalvaged and salvaged areas. In contrast, understory herb communities differed between salvaged and unsalvaged forest, with salvaged forest containing significantly higher understory herb richness and cover, and greater dominance of species benefiting from disturbance, especially Solidago species. Soil bulk density, pH, organic carbon content, and organic nitrogen content were also significantly higher in the salvaged area. The structural legacy of tip-up microtopography remains more pronounced in the unsalvaged area, with significantly taller tip-up mounds and deeper pits. Mosses and some forest herbs, including Athyrium filix-femina and Hydrophyllum virginianum, showed strong positive responses to this tip-up microrelief, highlighting the importance of these structural legacies for understory biodiversity. In sum, although the pathways of recovery differed, this forest appeared to be as resilient to the compound disturbances of windthrow

  12. Early flowering and seed production in a yellow birch progeny test

    Science.gov (United States)

    Knud E. Clausen

    1976-01-01

    Trees in a yellow birch progeny test began to bear seed when 7 years old and the proportion of fruiting trees increased in the following 2 years. Male catkins were produced at age 8 and the number of trees with males increased greatly the following years. Although there is much variation between and within families in earliness of flowering and in number of flowers and...

  13. Shelf life extension and sensory evaluation of birch tree sap using chemical preservatives

    Directory of Open Access Journals (Sweden)

    Maciej Bilek

    2016-10-01

    Full Text Available The aim of this study was to assess the stability of the birch tree sap, depending on the addition and concentration of two chemical factors, ie. potassium sorbate and acids: malic, citric or lactic. As in our previous studies we found that the optimal physical parameter to assess the stability of birch sap is turbidity measurement, we used turbidimeter for estimate the effectiveness of shelf life extending. Sensory evaluation was carried out by university sensory panel with 8 skilled people (students and teachers with pre-selection and basic training of sensory methodology. On the other hand artificial perception measurements were realized by electronic nose. Birch tree sap stability without addition of preservatives, both room temperature and refrigerated, is less than three days. The effectiveness of preservation of birch tree sap depends on the concentration of acids. Independently of storage temperature, samples that received stability during the whole one-month storage period, were those with potassium sorbate and three acids in the highest concentrations, ie. malic acid at 0.3%, citric acid at 0.5% and lactic acid at 0.5%. Unfortunately, concentrations of acids, which allow extension of shelf life at least for one month in a room temperature, are characterized by the worst sensory evaluation rating. Thus, they should be corrected by the use of additives for improving the flavor, such as fruit syrups or herbal extracts. On the other hand, additionally storage in a refrigerated conditions allows one-month-stability for the sample with the highest sensory evaluation rating, ie. with the addition of lactic acid at 0.1% and potassium sorbate, which taste not need to be corrected.

  14. Growth and Yield of 15-Year Plantations of Pine, Spruce and Birch in Agricultural Land

    Directory of Open Access Journals (Sweden)

    Daugaviete Mudrite

    2017-07-01

    Full Text Available The growth data and the potential returns from 15-year-old plantations of pine Pinus sylvestris L. (6 trial sites, spruce Picea abies Karst L. (9 trial sites and silver birch Betula pendula Roth (13 trial sites, established in abandoned agricultural lands in a variety of soil types (sod calcareous, anthrosols, podzolic, podzols, gley, podzolic gley, alluvial, using the planting density 2,500 and 3,300 and also 5,000 trees/ha are analysed.

  15. Root biomass production in young birch stands planted at four spacings on two different sites

    OpenAIRE

    Johansson, Tord

    2009-01-01

    The spatial distribution of trees above ground influences on the amount of root biomass and a low root biomass might decrease the total biomass production. The amount of biomass for fractions and distribution of downy and silver birch root systems was studied including the root distribution in cardinal points. The allometric relationship between stump diameter (DSH) and stump weight and between DSH and root weight and length for the two species was quantified. The 12-year-old trees had been g...

  16. Emission of volatile organic compounds from two silver birch ( Betula pendula Roth) clones grown under ambient and elevated CO 2 and different O 3 concentrations

    Science.gov (United States)

    Vuorinen, Terhi; Nerg, Anne-Marja; Vapaavuori, Elina; Holopainen, Jarmo K.

    We analysed the emission of volatile organic compounds (VOCs) from two clones (4 and 80) of silver birch ( Betula pendula Roth) trees exposed to doubled ambient CO 2 and O 3 singly and in combination, in open-top chambers. VOCs were collected in July and in August from detached twigs. The effect of twig detachment as such on emissions was separately studied, and it increased the emissions of green leaf volatiles. The emission in July from both clones was dominated by sesquiterpenes (SQTs) germacrene D, ( E,E)- α-farnesene, α-copaene and β-bourbonene, while in August, the emission was dominated by monoterpenes (MTs) ( E)- β-ocimene and ( Z)-ocimene. Elevated CO 2 concentration marginally decreased total MT emission in July, while in August the total MT emission was enhanced by elevated CO 2. O 3 or CO 2+O 3-exposure did not have any effect on total MT or total SQT emissions. In general clones 4 and 80 emitted total quantified VOCs (19 compounds) 12520 and 8590 ng g -1 fw h -1 in July, and 4640 and 4990 ng g -1 fw h -1 in August, respectively. Clone 4 emitted more β-pinene+myrcene, ( Z)-ocimene and ( E)- β-ocimene in July than clone 80, which emitted more linalool in July, and hexanal in August than clone 4. Elevated CO 2 tended to decrease the emissions of nonanal and ( E)- β-ocimene in July, while O 3 and CO 2+O 3 had no effects on emissions. Our results indicate that elevated CO 2 and O 3 concentrations do not have considerable effect on silver birch emissions by increasing the carbon allocation to VOCs or by inducing the emission of novel compounds. Other factors, such as temperature, light and herbivores might conceal the effects of these atmospheric gases. High SQT proportion in emission profile suggests that B. pendula may have substantial role in biogenic aerosol formation in boreal forests.

  17. Mountain birch – potentially large source of sesquiterpenes into high latitude atmosphere

    Directory of Open Access Journals (Sweden)

    A. Arneth

    2009-11-01

    Full Text Available Emissions of volatile organic compounds (VOCs from mountain birches were measured in Abisko, northern Sweden. Mountain birches make up the majority of the tree biomass in Scandinavian high latitudes, a region subject to significant climate warming. The measurements were carried out in two growing seasons. The emissions of four branches, each from a different individual tree, were measured in June–August 2006 and one of them again in July 2007. The measurements were conducted using a dynamic flow through chamber covered with Teflon film. The studied mountain birches were found to emit substantial amounts of linalool, monoterpenes and sesquiterpenes. The monoterpene emission was dominated by sabinene. The magnitude and composition of the sesquiterpene emission changed dramatically between the years. For example, the average α-farnesene emission potential in 2006 was almost 2600 ng gdw−1 h−1 (3.5 pmol gdw−1 s−1 while in 2007 α-farnesene was not detected at all. Also the emissions of other sesquiterpenes decreased in 2007 to a fraction of that in 2006. One possible explanation for the change in emissions is the herbivory damage that occurred in the area in 2004. Herbivory is known to enhance the emissions of sesquiterpenes, especially those of α-farnesene, and the effect may last for several years.

  18. Inter- and intra-specific responses to elevated ozone and chamber climate in northern birches

    International Nuclear Information System (INIS)

    Manninen, S.; Huttunen, S.; Vanhatalo, M.; Pakonen, T.; Haemaelaeinen, A.

    2009-01-01

    We studied the responses of micropropagated, northern provenances of downy, mountain and silver birches to elevated ozone (O 3 ) and changing climate using open-top chambers (OTCs). Contrary to our hypothesis, northern birches were sensitive to O 3 , i.e. O 3 levels of 31-36 ppb reduced the leaf and root biomasses by -10%, whereas wood biomass was affected to a lesser extent. The warmer and drier OTC climate enhanced growth in general, though there were differences among the species and clones, e.g. in bud burst and biomass production. Inter- and intra-specific responses to O 3 and changing climate relate to traits such as allocation patterns between the above- and belowground parts (i.e. root/shoot ratio), which further relate to nutrient and water economy. Our experiments may have mimicked future conditions quite well, but only long-term field studies can yield the information needed to forecast responses at both tree and ecosystem levels. - Northern birches are responsive to ambient ozone levels.

  19. Vertical distribution of epiphytic bryophytes in Atlantic Forest fragments in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Hermeson Cassiano de Oliveira

    Full Text Available ABSTRACT The microclimatic gradient established from the forest understory to the canopy provides a range of different conditions for the establishment of bryophytes along the height of a tree. We investigated epiphytic bryophyte communities of four fragments of Atlantic Forest with the aim of describing their vertical zonation and assessing differentiation among the communities of the different fragments. In each fragment, five host trees were selected from which bryophyte samples were collected in four height zones from the base to the canopy. Furthermore, 10 plots were demarcated in each fragment where bryophytes were collected from the understory. In total, 114 bryophyte species were found on the 20 sampled phorophytes, plus an additional 51 species in the understory, for a total of 165 species. Species composition of height zones differed significantly between communities of the trunk base and the canopy. The samples from the understory included 77% of all species. Among all species found, 10 showed a significant preference for a specific height. Around 70% of the bryophyte species grew as mats; this life form occurred in all trees and height zones. The results showed a weak, yet significant, vertical gradient, which differs from what is usually found in the Atlantic Forest.

  20. An individual-based forest model links canopy dynamics and shade tolerances along a soil moisture gradient.

    Science.gov (United States)

    Liénard, Jean; Strigul, Nikolay

    2016-02-01

    Understanding how forested ecosystems respond to climatic changes is a challenging problem as forest self-organization occurs simultaneously across multiple scales. Here, we explore the hypothesis that soil water availability shapes above-ground competition and gap dynamics, and ultimately alters the dominance of shade tolerant and intolerant species along the moisture gradient. We adapt a spatially explicit individual-based model with simultaneous crown and root competitions. Simulations show that the transition from xeric to mesic soils is accompanied by an increase in shade-tolerant species similar to the patterns documented in the North American forests. This transition is accompanied by a change from water to sunlight competitions, and happens at three successive stages: (i) mostly water-limited parkland, (ii) simultaneously water- and sunlight-limited closed canopy forests featuring a very sparse understory, and (iii) mostly sunlight-limited forests with a populated understory. This pattern is caused by contrasting successional dynamics that favour either shade-tolerant or shade-intolerant species, depending on soil moisture and understory density. This work demonstrates that forest patterns along environmental gradients can emerge from spatial competition without physiological trade-offs between shade and growth tolerance. Mechanistic understanding of population processes involved in the forest-parkland-desert transition will improve our ability to explain species distributions and predict forest responses to climatic changes.

  1. Plant component features of forest-bog ecotones of eutrophic paludification in the south of boreal forest zone of West Siberia

    Science.gov (United States)

    Klimova, N. V.; Chernova, N. A.; Pologova, N. N.

    2018-03-01

    Paludified forests formed in transitional forest-bog zone aren’t studied enough, inspite of its high expected diversity and large areas in the south of boreal forest zone of West Siberia. In this article wet birch (Betula pubescens) forests of forest-bog ecotones of eutrophic paludification are investigated on Vasyugan plain with nutrient-rich calcareous clays as soil-forming rocks. Species diversity and ecocoenotic structure of these phytocoenoses are discussed. They correlated with wetness and nutrient-availability of habitats evaluated with indicator values of plants. The participation of hydrophylous species is increasing as wetness of habitats increasing in the forest-to-bog direction like in mesotrophic paludification series. However the number of species is higher in the phytocoenoses of eutrophic paludification. The share of species required to nutrient availability is also higher, both in number and in abundance. A lot of these species are usual for eutrophic boreal forested swamps with groundwater input and absent in forests of mesotrophic paludification. Accordingly the nutrient-availability of habitats is also higher. All these features we connect with birch to be a forest forming species instead of dark-coniferous and with the influence of nutrient-rich parent rocks, which is evident in forest-bog ecotones of Vasyugan plain gradually decreasing together with peat horizon thickening.

  2. Results of forest insect and disease surveys in the central region of Ontario, 1992. Information report No. O-X-427. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.G.

    1993-01-01

    Report for 1992 summarizing forest damage by insects, diseases and abiotic conditions in the Central Region of Ontario. Textual descriptions of pests are accompanied by maps and statistical tables. Pest conditions covered include pine false webworm, bronze birch borer, early aspen leafcutter, armillaria root rot and other diseases and insects. Abiotic damage reported on covers forest decline, frost injury, salt and wind damage, and winter drying. Forest health reports and special surveys are also described.

  3. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation

    Science.gov (United States)

    Proença, Vânia; Pereira, Henrique M.; Vicente, Luís

    2010-11-01

    The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest ( Quercus robur, Ilex aquifolium) and pine plantation ( Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.

  4. Shrub seed banks in mixed conifer forests of northern California and the role of fire in regulating abundance

    Science.gov (United States)

    Eric E. Knapp; Phillip C. Weatherspoon; Carl N. Skinner

    2012-01-01

    Understory shrubs play important ecological roles in forests of the western US, but they can also impede early tree growth and lead to fire hazard concerns when very dense. Some of the more common genera (Ceanothus, Arctostaphylos, and Prunus) persist for long periods in the seed bank, even in areas where plants have been...

  5. The influence of bark beetles outbreak vs. salvage logging on ground layer vegetation in Central European mountain spruce forests

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Magda; Prach, Karel

    2008-01-01

    Roč. 141, č. 6 (2008), s. 1525-1535 ISSN 0006-3207 R&D Projects: GA AV ČR KJB600870701 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z60050516 Keywords : bark beetle * salvage logging * understory vegetation * mountain spruce forests, disturbance Subject RIV: EF - Botanics Impact factor: 3.566, year: 2008

  6. Restoring forest herb communities through landscape-level deer herd reductions: Is recovery limited by legacy effects?

    Science.gov (United States)

    Alejandro A. Royo; Susan L. Stout; David S. deCalesta; Timothy G. Pierson

    2010-01-01

    White-tailed deer (Odocoileus virginianus) overbrowsing has altered plant species diversity throughout deciduous forest understories in eastern North America. Here we report on a landscape-level (306 km2) project in Pennsylvania, USA that tracked the herbaceous community response to deer herd reductions. From 2001 to 2007, we...

  7. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Science.gov (United States)

    Luke L. Powell; Jared D. Wolfe; Erik I. Johnson; James E. Hines; James D. Nichols; Philip C Stouffer

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with...

  8. Field test of foliar-spray herbicides to control mountain laurel in mature mixed-oak forests in western Maryland

    Science.gov (United States)

    Gary W. Miller; Patrick H. Brose; Jeffrey D. Kochenderfer; James N. Kochenderfer; Kurt W. Gottschalk; John R. Denning

    2016-01-01

    Successful oak (Quercus spp.) regeneration requires the presence of competitive sources of oak reproduction before parent oaks are harvested. Mountain laurel (Kalmia latifolia) in the understory of many Appalachian forests prevents new oak seedlings from receiving adequate sunlight to survive and grow into competitive size classes. This study examined the efficacy of...

  9. Fuel treatment effects on soil chemistry and foliar physiology of three coniferous species at the Teakettle Experimental Forest, California, USA

    Science.gov (United States)

    Rakesh Minocha; Swathi A. Turlapati; Stephanie Long; Malcolm. North

    2013-01-01

    A full factorial design crossing overstory (O) and understory (U) thinning and prescribed burning (B) was started at Teakettle Experimental Forest, California, in 2001 with the aim of achieving shifts in species composition to favor fire-resistant pines over fir. The goal of the present study was to evaluate the use of metabolic changes as early indicators for...

  10. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    OpenAIRE

    Zaidett Barrientos

    2012-01-01

    Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were ...

  11. Above-ground and below-ground plant responses to fertilization in two subarctic ecosystems

    NARCIS (Netherlands)

    Veen, G.F.; Sundqvist, Maja K.; Metcalfe, D.; Wilson, S.D.

    2015-01-01

    Soil nutrient supply is likely to change in the Arctic due to altered process rates associated with climate change. Here, we compare the responses of herbaceous tundra and birch forest understory to fertilization, considering both above- and below-ground responses. We added nitrogen and phosphorus

  12. Movements, cover-type selection, and survival of fledgling Ovenbirds in managed deciduous and mixed coniferous-deciduous forests

    Science.gov (United States)

    Streby, Henry M.; Andersen, David E.

    2013-01-01

    We used radio telemetry to monitor movements, cover-type selection, and survival for fledglings of the mature-forest nesting Ovenbird (Seiurus aurocapilla) at two managed forest sites in north-central Minnesota. Both sites contained forested wetlands, regenerating clearcut stands of various ages, and logging roads, but differed in mature forest composition; one deciduous with open understory, and the other mixed coniferous-deciduous with dense understory. We used compositional analysis, modified to incorporate age-specific limitations in fledgling movements, to assess cover-type selection by fledglings throughout the dependent (on adult care) post-fledging period. Compared to those that were depredated, fledglings from nests in deciduous forest that survived the early post-fledging period had more older (sapling-dominated) clearcut available, directed movements toward older clearcuts and forested wetlands, and used older clearcuts more than other cover types relative to availability. Fledglings that were depredated had more young (shrub-dominated) clearcut and unpaved logging road available, and used mature forest and roads more than expected based on availability. For birds from nests in mixed mature forest with dense understory, movements and cover-type selection were similar between fledglings that survived and those that were depredated. However, fledglings that were depredated at that site also had more young clearcut available than fledglings that survived. We conclude that Ovenbird fledgling survival is influenced by distance of their nest to various non-nesting cover types, and by the subsequent selection among those cover types, but that the influence of non-nesting cover types varies depending on the availability of dense understory vegetation in mature forest.

  13. Mistblowing a hardwood understory in West Virginia with "D-T" herbicide

    Science.gov (United States)

    H. Clay Smith; George R., Jr. Trimble

    1970-01-01

    A 40-pound ahg solution of 2,4-D and 2,4,5-T herbicide was successfully mistblown on an undesirable hardwood understory on a good site in West Virginia. After 2 years, many of the stems 1 to 15 feet tall had been killed or severely damaged. The possibilities of obtaining desirable shade-intolerant reproduction on the site were improved by the application of this "...

  14. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    OpenAIRE

    Rigueiro-Rodríguez,Antonio; Mouhbi,Rabia; Santiago-Freijanes,José Javier; González-Hernández,María del Pilar; Mosquera-Losada,María Rosa

    2012-01-01

    Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener) and beta (Jaccard and Magurran) biodiversity for a period of four years in a P. radiata silvopastoral system....

  15. Floristic composition of the dry tropical forest in biological reserve (sanctuary "Los Besotes" and phenology of the dominant arboreal species (Valledupar, Cesar, Colombia

    Directory of Open Access Journals (Sweden)

    Mary Lee Berdugo Lattke

    2015-01-01

    Full Text Available Based on the floristic composition and structural aspects, the formation tropical dry forest of the reserve "Los Besotes" (Valledupar, Cesar; 248 y 1046m of altitude was characterized. In 35 individuals from nine dominant tree species in two forest types, the phenological characteristics were assessed. Seven monitoring were performed along one year according to the scheme of distribution of rainfall. The leaf fall in the forests of Myrcianthes aff. fragrans and Brosimum alicastrum did not exceed 20% regardless of the climatic period (drought or rainy seasons. In others dominant understory species the leaf fall was less than 40%, thus species of the canopy are classified as evergreen while those of the understory as semideciduous. Blooming peaked during the dry season while fruit production peaked during the two rainy seasons. In the forest ofBursera simaruba and Pterocarpus acapulcensis the leaf fall exceeded 60% in the dry season, while in the rainy season was only 30%. The leaf fall increased to 60% in others dominant understory species. Both canopy as well as understory species are deciduous. Blooming was observed during the dry season (December to March, and July, but it is also likely to occur in October; fruit production was observed at the end of the rainy season. In the tropical dry forest formation evergreen plant communities with low values of leaf fall (40% and deciduous communities with values greater than 60% are recognized.

  16. Spatial Autocorrelation Patterns of Understory Plant Species in a Subtropical Rainforest at Lanjenchi, Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Su-Wei Fan

    2010-06-01

    Full Text Available Many studies described relationships between plant species and intrinsic or exogenous factors, but few quantified spatial scales of species patterns. In this study, quantitative methods were used to explore the spatial scale of understory species (including resident and transient species, in order to identify the influential factors of species distribution. Resident species (including herbaceous species, climbers and tree ferns < 1 m high were investigated on seven transects, each 5-meter wide and 300-meter long, at Lanjenchi plot in Nanjenshan Reserve, southern Taiwan. Transient species (seedling of canopy, subcanopy and shrub species < 1 cm diameter at breast height were censused in three of the seven transects. The herb coverage and seedling abundance were calculated for each 5 × 5 m quadrat along the transects, and Moran’s I and Galiano’s new local variance (NLV indices were then used to identify the spatial scale of autocorrelation for each species. Patterns of species abundance of understory layer varied among species at fine scale within 50 meters. Resident species showed a higher proportion of significant autocorrelation than the transient species. Species with large size or prolonged fronds or stems tended to show larger scales in autocorrelation. However, dispersal syndromes and fruit types did not relate to any species’ spatial patterns. Several species showed a significant autocorrelation at a 180-meter class which happened to correspond to the local replicates of topographical features in hilltops. The spatial patterns of understory species at Lanjenchi plot are mainly influenced by species’ intrinsic traits and topographical characteristics.

  17. Modeling Forest Succession among Ecological Land Units in Northern Minnesota

    Directory of Open Access Journals (Sweden)

    George Host

    1998-12-01

    Full Text Available Field and modeling studies were used to quantify potential successional pathways among fine-scale ecological classification units within two geomorphic regions of north-central Minnesota. Soil and overstory data were collected on plots stratified across low-relief ground moraines and undulating sand dunes. Each geomorphic feature was sampled across gradients of topography or soil texture. Overstory conditions were sampled using five variable-radius point samples per plot; soil samples were analyzed for carbon and nitrogen content. Climatic, forest composition, and soil data were used to parameterize the sample plots for use with LINKAGES, a forest growth model that simulates changes in composition and soil characteristics over time. Forest composition and soil properties varied within and among geomorphic features. LINKAGES simulations were using "bare ground" and the current overstory as starting conditions. Northern hardwoods or pines dominated the late-successional communities of morainal and dune landforms, respectively. The morainal landforms were dominated by yellow birch and sugar maple; yellow birch reached its maximum abundance in intermediate landscape positions. On the dune sites, pine was most abundant in drier landscape positions, with white spruce increasing in abundance with increasing soil moisture and N content. The differences in measured soil properties and predicted late-successional composition indicate that ecological land units incorporate some of the key variables that govern forest composition and structure. They further show the value of ecological classification and modeling for developing forest management strategies that incorporate the spatial and temporal dynamics of forest ecosystems.

  18. Exposure to high doses of birch pollen during pregnancy, and risk of sensitization and atopic disease in the child.

    Science.gov (United States)

    Kihlström, A; Lilja, G; Pershagen, G; Hedlin, G

    2003-09-01

    The role of maternal allergen exposure during pregnancy in sensitization and development of atopic disease in the child remains controversial. In the spring of 1993, extremely high levels of birch pollen were recorded in Stockholm, Sweden. In 1994, the corresponding pollen levels were low. The aim of this study was to assess the influence of exposure during pregnancy to high/low doses of birch pollen on the risk of sensitization and development of atopic disease in children. In addition, a comparison was made with children exposed to birch pollen in early infancy. Three hundred and eighty-seven children with atopic heredity, born in Stockholm in July-October 1993 or 1994 (mothers exposed during pregnancy), were investigated at age 4.5 years. The children were clinically examined and were skin prick tested (SPT) with inhalant and food allergens. IgE antibodies (RAST) against birch pollen and recombinant birch pollen allergen (rBet v 1) were analysed in serum. A comparison was made with a similar group of children exposed during the same incident, but in the first 3 months of life, in 1993. The children of mothers high-dose exposed during pregnancy in 1993 tended to be more sensitized (SPT > or = 3 mm) to birch pollen than the children with low-dose exposure during the corresponding period in 1994 (7.6 and 4.6%, respectively, OR: 1.7; 95% CI: 0.7-4.1). A similar but weak tendency was seen for positive RAST analyses (> or =0.35 kU/l) against birch pollen and rBet v 1. Children of mothers high-dose exposed during pregnancy were significantly less sensitized to birch pollen than the children high-dose exposed in early infancy (17.9%, OR: 0.4; 95% CI: 0.2-0.7). There was an overall trend towards a slightly increased prevalence of bronchial asthma, allergic rhinoconjunctivitis and atopic dermatitis in the group with mothers high-dose exposed during pregnancy, compared to those with low exposure. Exposure of the mother during pregnancy to high levels of birch pollen

  19. Upper canopy pollinators of Eucryphia cordifolia Cav., a tree of South American temperate rain forest

    Directory of Open Access Journals (Sweden)

    Cecilia Smith-Ramírez

    2016-05-01

    Full Text Available Ecological processes in the upper canopy of temperate forests have been seldom studied because of the limited accessibility. Here, we present the results of the first survey of the pollinator assemblage and the frequency of insect visits to flowers in the upper branches of ulmo, Eucryphia cordifolia Cav., an emergent 30-40 m-tall tree in rainforests of Chiloé Island, Chile. We compared these findings with a survey of flower visitors restricted to lower branches of E. cordifolia 1- in the forest understory, 2- in lower branches in an agroforestry area. We found 10 species of pollinators in canopy, and eight, 12 and 15 species in understory, depending of tree locations. The main pollinators of E. cordifolia in the upper canopy differed significantly from the pollinator assemblage recorded in lower tree branches. We conclude that the pollinator assemblages of the temperate forest canopy and interior are still unknown.

  20. Herbivory enhances the resistance of mangrove forest to cordgrass invasion.

    Science.gov (United States)

    Zhang, Yihui; Meng, Hanyu; Wang, Yi; He, Qiang

    2018-04-01

    The biotic resistance hypothesis proposes that biotic interactions, such as competition and herbivory, resist the establishment and spread of non-native species. The relative and interactive role of competition and herbivory in resisting plant invasions, however, remains poorly understood. We investigated the interactive role of competition and herbivory (by the native rodent Rattus losea) in resisting Spartina alterniflora (cordgrass) invasions into mangrove forests. In southern China, although exotic cordgrass numerically dominates intertidal mudflats and open gaps in mangrove forests, intact forests appear to be highly resistant to cordgrass invasion. A field transplant and rodent exclusion experiment showed that while the impact of rodent grazing on cordgrass was weak on mangrove forest edges and open mudflats, rodent grazing strongly suppressed cordgrass in mangrove understory habitats. A greenhouse experiment confirmed a synergistic interaction between grazing and light availability (a proxy for mangrove shading and light competition) in suppressing cordgrass establishment, with the strongest impacts of grazing in low light conditions that likely weakened cordgrass to survive and resprout. When both were present, as in mangrove understory habitats, grazing and low light acted in concert to eliminate cordgrass establishment, resulting in resistance of mangrove forests to cordgrass invasion. Our results reveal that grazing by native herbivores can enhance the resistance of mangrove forests to cordgrass invasion in southern China, and suggest that investigating multifactor interactions may be critical to understanding community resistance to exotic invasions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    Science.gov (United States)

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  2. PRESERVATION OF PRIMARY FOREST CHARACTERISTICS DESPITE FRAGMENTATION AND ISOLATION IN A FOREST REMNANT FROM VIÇOSA, MG, BRAZIL1

    Directory of Open Access Journals (Sweden)

    Markus Gastauer

    2015-12-01

    Full Text Available According to its owners, the Forest of Seu Nico (FSN from the Viçosa municipality, Minas Gerais, Brazil, never has been logged and is therefore considered a primary forest. Nevertheless, the forest patch suffered impacts due to selective wood and non-timber extraction, fragmentation and isolation. Aim of this study was to test if the FSN, despite impacts, preserved characteristics of primary forests, which are elevated percentages of non-pioneer (>90%, animal-dispersed (>80 %, understory (>50% and endemic species (~40%. For that, all trees with diameter at breast height equal or major than 3.2 cm within a plot of 100 x 100 m were identified. With 218 tree species found within this hectare, the FSN's species richness is outstanding for the region. The percentages of non-pioneer (92 %, animal-dispersed (85 %, understory (55 % and endemic species (39.2 % from the FSN fulfill the criteria proposed for primary forest. Therefore, we conclude that the FSN maintained its characteristics as a primary forest which highlights its importance for the conservation of biotic resources in the region, where similar fragments are lacking or not described yet.

  3. Long-term Responses of Canopy-understorey Interactions to Disturbance Severity in Primary Picea abies Forests

    Czech Academy of Sciences Publication Activity Database

    Bače, R.; Schurman, J.S.; Brabec, Marek; Čada, V.; Deprés, T.; Janda, P.; Lábusová, J.; Mikoláš, M.; Morrissey, R. C.; Mrhalová, H.; Nagel, T.A.; Nováková, M. H.; Seedre, M.; Synek, M.; Trotsiuk, V.; Svoboda, M.

    2017-01-01

    Roč. 28, č. 6 (2017), s. 1128-1139 ISSN 1100-9233 Grant - others:GA ČR(CZ) GA15-14840S Institutional support: RVO:67985807 Keywords : Disturbance regime * Natural regeneration * Primary forest * Picea abies (L.) Karst * Windstorms * Bark beetle * Understory light availability * Saplings and poles * Canopy openness * Mountain forest Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 2.924, year: 2016

  4. Ventilation scheme, room location and meteorological factors influence indoor birch pollen concentrations

    Science.gov (United States)

    Jochner, Susanne; Matiu, Michael; Michaelis, Rico; Menzel, Annette

    2017-04-01

    Allergenic pollen, often in co-occurrence with air pollutants from traffic and industries aggravating its pollen allergenicity, constitutes a major health risk for the urban population during the pollen season. Airborne pollen concentrations are traditionally monitored with fixed pollen traps mounted >10 m above ground on flat roof tops. However, the personal exposure of allergic people mostly depends on their main residences and the local emission patterns. Consequently, the assessment of indoor pollen is essential for human health since people stay most of the day inside buildings. In our study, hourly indoor birch pollen concentrations were measured on eight days in April 2015 with portable pollen traps in five rooms of a university building at Freising, Germany. A traditional pollen trap on the roof of the building provided the background birch pollen concentration which was compared to the respective outdoor values right in front of the rooms. The office and lab rooms were characterised by different aspects and window ventilation schemes. Meteorological data were equally measured at a nearby climate station and directly in front of the windows. The observed flowering phenology of 56 birch trees in the nearer surrounding partly explained daily peaks in airborne pollen concentrations. As expected, outdoor pollen concentrations were larger than indoor concentrations: Mean indoor/outdoor (I/O) ratio was highest (0.75) in a south oriented room with fully opened window and additional mechanical ventilation, followed by two rooms with fully opened windows orientated to the west and north (0.35, 0.12) and lowest in east oriented neighbouring rooms with tilted window (0.19) and with windows only opened for short ventilation (0.07). The latter two rooms even had a birch tree directly flowering in front of the façade. Hourly I/O ratios depended on meteorology and increased with outside temperature and wind speed oriented perpendicular to the window opening. As also

  5. Super earth interiors and validity of Birch's Law for ultra-high pressure metals and ionic solids

    Science.gov (United States)

    Ware, Lucas Andrew

    2015-01-01

    Super Earths, recently detected by the Kepler Mission, expand the ensemble of known terrestrial planets beyond our Solar System's limited group. Birch's Law and velocity-density systematics have been crucial in constraining our knowledge of the composition of Earth's mantle and core. Recently published static diamond anvil cell experimental measurements of sound velocities in iron, a key deep element in most super Earth models, are inconsistent with each other with regard to the validity of Birch's Law. We examine the range of validity of Birch's Law for several metallic elements, including iron, and ionic solids shocked with a two-stage light gas gun into the ultra-high pressure, temperature fluid state and make comparisons to the recent static data.

  6. Biomass Accumulation and Net Primary Production during the Early Stage of Secondary Succession after a Severe Forest Disturbance in Northern Japan

    Directory of Open Access Journals (Sweden)

    Tomotsugu Yazaki

    2016-11-01

    Full Text Available Quantitative evaluations of biomass accumulation after disturbances in forests are crucially important for elucidating and predicting forest carbon dynamics in order to understand the carbon sink/source activities. During early secondary succession, understory vegetation often affects sapling growth. However, reports on biomass recovery in naturally-regenerating sites are limited in Japan. Therefore, we traced annual or biennial changes in plant species, biomass, and net primary production (NPP in a naturally regenerating site in Japan after windthrow and salvage-logging plantation for nine years. The catastrophic disturbance depleted the aboveground biomass (AGB from 90.6 to 2.7 Mg·ha−1, changing understory dominant species from Dryopteris spp. to Rubus idaeus. The mean understory AGB recovered to 4.7 Mg·ha−1 in seven years with the dominant species changing to invasive Solidago gigantea. Subsequently, patches of deciduous trees (mainly Betula spp. recovered whereas the understory AGB decreased. Mean understory NPP increased to 272 g·C·m−2·year−1 within seven years after the disturbance, but decreased thereafter to 189 g·C·m−2·year−1. Total NPP stagnated despite increasing overstory NPP. The biomass accumulation is similar to that of naturally regenerating sites without increase of trees in boreal and temperate regions. Dense ground vegetation and low water and nutrient availability of the soil in the study site restrict the recovery of canopy-forming trees and eventually influence the biomass accumulation.

  7. A Passive Microwave L-Band Boreal Forest Freeze/Thaw and Vegetation Phenology Study

    Science.gov (United States)

    Roy, A.; Sonnentag, O.; Pappas, C.; Mavrovic, A.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Lemay, J.; Helgason, W.; Barr, A.; Black, T. A.; Derksen, C.; Toose, P.

    2016-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitute an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. The effective retrieval of seasonal F/T state from L-Band radiometry was demonstrated using satellite mission. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the soil surface to the satellite signal remains challenging. Here we present initial results from a radiometer field campaign to improve our understanding of the L-Band derived boreal forest F/T signal and vegetation phenology. Two L-Band surface-based radiometers (SBR) are installed on a micrometeorological tower at the Southern Old Black Spruce site in central Saskatchewan over the 2016-2017 F/T season. One radiometer unit is installed on the flux tower so it views forest including all overstory and understory vegetation and the moss-covered ground surface. A second radiometer unit is installed within the boreal forest overstory, viewing the understory and the ground surface. The objectives of our study are (i) to disentangle the L-Band F/T signal contribution of boreal forest overstory from the understory and ground surface, (ii) to link the L-Band F/T signal to related boreal forest structural and functional characteristics, and (iii) to investigate the use of the L-Band signal to characterize boreal forest carbon, water and energy fluxes. The SBR observations above and within the forest canopy are used to retrieve the transmissivity (γ) and the scattering albedo (ω), two parameters that describe the emission of the forest canopy though the F/T season. These two forest parameters are compared with boreal forest structural and functional

  8. Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy

    NARCIS (Netherlands)

    Mittag, D.; Akkerdaas, J.; Ballmer-Weber, B.K.; Vogel, L.; Wensing, M.; Becker, W.M.; Koppelman, S.J.; Knulst, A.C.; Helbling, A.; Hefle, S.L.; Ree, R. van; Vieths, S.

    2004-01-01

    We recently described patients with soybean allergy mainly mediated by cross-reactivity to birch pollen allergens. A majority of those patients were reported to have peanut allergy. We sought to study the occurrence of peanut allergy in patients allergic to birch pollen and characterized the Bet v

  9. Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy

    NARCIS (Netherlands)

    Mittag, Diana; Akkerdaas, Jaap; Ballmer-Weber, Barbara K.; Vogel, Lothar; Wensing, Marjolein; Becker, Wolf-Meinhard; Koppelman, Stef J.; Knulst, André C.; Helbling, Arthur; Hefle, Susan L.; van Ree, Ronald; Vieths, Stefan

    2004-01-01

    BACKGROUND: We recently described patients with soybean allergy mainly mediated by cross-reactivity to birch pollen allergens. A majority of those patients were reported to have peanut allergy. OBJECTIVE: We sought to study the occurrence of peanut allergy in patients allergic to birch pollen and

  10. The safety and efficacy of subcutaneous birch pollen immunotherapy - a one-year, randomised, double-blind, placebo-controlled study

    DEFF Research Database (Denmark)

    Bødtger, Uffe; Poulsen, L K; Jacobi, H H

    2002-01-01

    BACKGROUND: There is only very limited documentation of the efficacy and safety of high-dose subcutaneous birch pollen immunotherapy (IT) in double-blind, placebo-controlled (DBPC) studies. Birch pollen is a major cause of allergic morbidity in northern Europe and in eastern parts of North America...

  11. Cooking birch pollen-related food: divergent consequences for IgE- and T cell-mediated reactivity in vitro and in vivo

    NARCIS (Netherlands)

    Bohle, Barbara; Zwölfer, Bettina; Heratizadeh, Annice; Jahn-Schmid, Beatrice; Antonia, Yuliya Dall; Alter, Mareike; Keller, Walter; Zuidmeer, Laurian; van Ree, Ronald; Werfel, Thomas; Ebner, Christof

    2006-01-01

    BACKGROUND: The major birch pollen allergen Bet v 1 cross-reacts with homologous food allergens, resulting in IgE-mediated oral allergy syndromes (OASs). To avoid this food, allergy allergologists and guidebooks advise patients to consume birch pollen-related foods after heating. OBJECTIVE: We

  12. Diagnostic value of scratch-chamber test, skin prick test, histamine release and specific IgE in birch-allergic patients with oral allergy syndrome to apple

    DEFF Research Database (Denmark)

    Osterballe, M; Scheller, R; Stahl Skov, P

    2003-01-01

    BACKGROUND: The aim of the study was to examine the diagnostic value of skin prick test (SPT), scratch-chamber test (SCT), histamine release (HR) and specific immunoglobulin E (IgE) in birch-allergic patients with oral allergy syndrome to apple. METHODS: Ten birch-allergic patients with oral...

  13. The safety and efficacy of subcutaneous birch pollen immunotherapy - a one-year, randomised, double-blind, placebo-controlled study

    DEFF Research Database (Denmark)

    Bødtger, U; Poulsen, Lars K.; Jacobi, H H

    2002-01-01

    There is only very limited documentation of the efficacy and safety of high-dose subcutaneous birch pollen immunotherapy (IT) in double-blind, placebo-controlled (DBPC) studies. Birch pollen is a major cause of allergic morbidity in northern Europe and in eastern parts of North America....

  14. Root-associated ectomycorrhizal fungi shared by various boreal forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses

    Science.gov (United States)

    Elizabeth Bent; Preston Kiekel; Rebecca Brenton; D.Lee. Taylor

    2011-01-01

    The role of common mycorrhizal networks (CMNs) in postfire boreal forest successional trajectories is unknown. We investigated this issue by sampling a 50-m by 40-m area of naturally regenerating black spruce (Picea mariana), trembling aspen, (Populus tremuloides), and paper birch (Betula papyrifera)...

  15. Mimotopes for Api g 5, a Relevant Cross-reactive Allergen, in the Celery-Mugwort-Birch-Spice Syndrome.

    Science.gov (United States)

    Lukschal, Anna; Wallmann, Julia; Bublin, Merima; Hofstetter, Gerlinde; Mothes-Luksch, Nadine; Breiteneder, Heimo; Pali-Schöll, Isabella; Jensen-Jarolim, Erika

    2016-03-01

    In the celery-mugwort-birch-spice syndrome, a significant proportion of IgE is directed against high molecular weight (HMW) glycoproteins, including the celery allergen Api g 5. BIP3, a monoclonal antibody originally raised against birch pollen, recognizes HMW allergens in birch and mugwort pollens, celery, and Apiaceae spices. Our aim was to generate mimotopes using BIP3 for immunization against the HMW allergens relevant in the celery-mugwort-birch-spice cross reactivity syndrome. Mimotopes were selected from a random-peptide display library by BIP3 and applied in IgE inhibition assays. The 3 phage clones with the highest inhibitory capacity were chosen for immunization of BALB/c mice. Mouse immune sera were tested for IgG binding to blotted birch pollen extract and used for inhibiting patients' IgE binding. Furthermore, sera were tested for binding to Api g 5, to horseradish peroxidase (HRP) as a second glycoprotein, or to non-glycosylated control allergen Phl p 5 in ELISA, and the specific Api g 5-specific IgG titers were determined. Three rounds of biopanning resulted in phage clones exhibiting 7 different sequences including 1 dominant, 1-6-cyclo-CHKLRCDKAIA. Three phage clones had the capacity to inhibit human IgE binding and induced IgG to the HMW antigen when used for immunizing BALB/c mice. The induced BIP3-mimotope IgG reached titers of 1:500 specifically to Api g 5, but hardly reacted to glycoprotein HRP, revealing a minor role of carbohydrates in their epitope. The mimotopes characterized in this study mimic the epitope of BIP3 relevant for Api g 5, one of the cross-reactive HMW allergens relevant in the celery-mugwort-birch-spice syndrome. BIP3 mimotopes may be used in the future for hyposensitization in this clinical syndrome by virtue of good and specific immunogenicity.

  16. The Bonobo Pan paniscus (Mammalia: Primates: Hominidae nesting patterns and forest canopy layers in the Lake Tumba forests and Salonga National Park, Democratic Republic of Congo

    Directory of Open Access Journals (Sweden)

    Bila-Isia Inogwabini

    2015-10-01

    Full Text Available The description and differentiation of habitat types is a major concern in ecology.  This study examined relationships between Bonobo Pan paniscus nesting patterns and forest structure in the Lake Tumba Swampy Forests. Data on presence of fresh Bonobo nests, canopy cover, canopy structure, tree densities and tree basal areas were collected systematically along 134 transects at 400m and 800m intervals, and the leaf-covered area (LCA was calculated for each of seven forest types. I observed a significant correlation between bonobo nests and mixed mature forest/closed understory forest type (r=-0.730, df = 21, p <0.05, but not mixed mature forest/open understory, old secondary forest and young secondary forest.  Basal areas of non-nesting trees along transects did not differ significantly from those in sites where bonobos nested.  Higher LCA (55% and 55% occurred in nesting sites when compared with non-nesting sites (39% and 42% at elevations 4–8 m and 8–16 m above the soil.  There was greater leaf cover in the understorey at sites where bonobos did not nest, while there was greater leaf cover in the mid-storey at sites where bonobos did nest.  

  17. Diversity, richness, and vertical stratification of bat species in an Atlantic Forest remnant in the Brazilian southern region

    Directory of Open Access Journals (Sweden)

    Marta Elena Fabián

    2013-11-01

    Full Text Available In this study, we evaluated the diversity, richness, and composition of bat species in the canopy and understory of an Atlantic Forest remnant in the Brazilian southern region, in the municipally of Porto Alegre, Rio Grande do Sul. Between July 2010 and June 2011, bats were captured by means of 10 mist nets, 5 in the canopy and 5 in the understory. We calculated the Shannon-Wiener diversity index (H’, the expected richness (Chao 1 and Jackknife 2, and the constancy index of species for the entire area. We applied Fisher’s Exact test to check if the catches were different in the canopy and understory. We captured 107 chiropteran specimens, 20 individuals of 5 species in the canopy and 87 individuals of 7 species in the understory. The diversity index was 1,481 and the expected richness was 9 (Chao 1 and 10 (Jackknife 2. The constancy index showed that Sturnira lilium and Glossophaga soricina are relatively common in the study area. The registered richness represents about 22% of bat species listed for the state of Rio Grande do Sul. Vertical stratification analysis showed that some species are more frequent in the canopy and others in the understory.

  18. Big sagebrush in pinyon-juniper woodlands: Using forest inventory and analysis data as a management tool for quantifying and monitoring mule deer habitat

    Science.gov (United States)

    Chris Witt; Paul L. Patterson

    2011-01-01

    We used Interior West Forest Inventory and Analysis (IW-FIA) data to identify conditions where pinyon-juniper woodlands provide security cover, thermal cover, and suitable amounts of big sagebrush (Artemisia tridentata spp.) forage to mule deer in Utah. Roughly one quarter of Utah's pinyon-juniper woodlands had a big sagebrush component in their understory....

  19. Long-term (13-year) effects of repeated prescribed fires on stand structure and tree regeneration in mixed-oak forests

    Science.gov (United States)

    Todd F. Hutchinson; Daniel A. Yaussy; Robert P. Long; Joanne Rebbeck; Elaine Kennedy. Sutherland

    2012-01-01

    The survival and growth of oak advance regeneration is often limited by shade-tolerant species that are abundant in the understory of oak stands. Evidence of historic burning has prompted the use of prescribed fire as a tool to improve the competitive status of oak regeneration in mature stands. A primary shortfall of fire effects research in oak forests has been a...

  20. Performance of moth larvae on birch in relation to altitude, climate, host quality and parasitoids.

    Science.gov (United States)

    Virtanen, Tarmo; Neuvonen, Seppo

    1999-07-01

    We studied topographical and year-to-year variation in the performance (pupal weights, survival) and larval parasitism of Epirrita autumnata larvae feeding on mountain birch in northernmost Finland in 1993-1996. We found differences in both food plant quality and parasitism between sites ranging from 80 m to 320 m above sea level. Variation in food plant quality had particularly marked effects on larval survival. The advanced phenology of the birches in relation to the start of the larval period reduced pupal weights. Parasitism rates were different between years and between sites. The clearest site differences were in the proportions of different parasitoid species: Eulophus larvarum was most abundant at the lowest-altitude sites, and Cotesia jucunda at the highest. Differences in the performance of E. autumnata were related to temperature conditions: at higher temperatures, survival and the egg production index were lower, and larval parasitism was higher than at lower temperatures. The higher parasitism at higher temperatures was probably due to greater parasitoid activity during warmer days. In the comparison of different sources of spatial and annual variation in the performance of E. autumnata, the most important factor appeared to be egg mortality related to minimum winter temperature, followed by parasitism and, finally, the variation in food plant quality. If, as predicted, the climate gradually warms up, the effects of warmer summers on the outbreaks of E. autumnata suggest a decrease in outbreak intensity.

  1. NMR resonance assignments of a hypoallergenic isoform of the major birch pollen allergen Bet v 1.

    Science.gov (United States)

    Ahammer, Linda; Grutsch, Sarina; Wallner, Michael; Ferreira, Fatima; Tollinger, Martin

    2017-10-01

    In Northern America and Europe a great number of people are suffering from birch pollen allergy and pollen related food allergies. The trigger for these immunological reactions is the 17.5 kDa major birch pollen allergen Bet v 1, which belongs to the family of PR-10 (pathogenesis-related) proteins. In nature, Bet v 1 occurs as a mixture of various isoforms that possess different immunological properties despite their high sequence identities. Bet v 1.0102 (Bet v 1d), which is investigated here, is a hypoallergenic isoform of Bet v 1 and a potential candidate for allergen-specific immunotherapy. We assigned the backbone and side chain 1 H, 13 C and 15 N resonances of this protein and predicted its secondary structure. The NMR-chemical shift data indicate that Bet v 1.0102 is composed of three α-helices and a seven stranded β-sheet, in agreement with the known structure of the hyperallergenic isoform Bet v 1.0101 (Bet v 1a). Our resonance assignments create the foundation for detailed characterization of the dynamic properties of Bet v 1 isoforms by NMR relaxation measurements.

  2. Inter- and intra-specific responses to elevated ozone and chamber climate in northern birches.

    Science.gov (United States)

    Manninen, S; Huttunen, S; Vanhatalo, M; Pakonen, T; Hämäläinen, A

    2009-05-01

    We studied the responses of micropropagated, northern provenances of downy, mountain and silver birches to elevated ozone (O(3)) and changing climate using open-top chambers (OTCs). Contrary to our hypothesis, northern birches were sensitive to O(3), i.e. O(3) levels of 31-36 ppb reduced the leaf and root biomasses by -10%, whereas wood biomass was affected to a lesser extent. The warmer and drier OTC climate enhanced growth in general, though there were differences among the species and clones, e.g. in bud burst and biomass production. Inter- and intra-specific responses to O(3) and changing climate relate to traits such as allocation patterns between the above- and belowground parts (i.e. root/shoot ratio), which further relate to nutrient and water economy. Our experiments may have mimicked future conditions quite well, but only long-term field studies can yield the information needed to forecast responses at both tree and ecosystem levels.

  3. Quantification of Model Uncertainty in Modeling Mechanisms of Soil Microbial Respiration Pulses to Simulate Birch Effect

    Science.gov (United States)

    Elshall, A. S.; Ye, M.; Niu, G. Y.; Barron-Gafford, G.

    2014-12-01

    A Bayesian framework is developed to quantify predictive uncertainty in environmental modeling caused by uncertainty in modeling scenarios, model structures, model parameters, and data. An example of using the framework to quantify model uncertainty is presented to simulate soil microbial respiration pulses in response to episodic rainfall pulses (the "Birch effect"). A total of five models are developed; they evolve from an existing four-carbon (C) pool model to models with additional C pools and recently developed models with explicit representations of soil moisture controls on C degradation and microbial uptake rates. Markov chain Monte Carlo (MCMC) methods with generalized likelihood function (not Gaussian) are used to estimate posterior parameter distributions of the models, and the posterior parameter samples are used to evaluate probabilities of the models. The models with explicit representations of soil moisture controls outperform the other models. The models with additional C pools for accumulation of degraded C in the dry zone of the soil pore space result in a higher probability of reproducing the observed Birch pulses. A cross-validation is conducted to explore predictive performance of model averaging and of individual models. The Bayesian framework is mathematically general and can be applied to a wide range of environmental problems.

  4. Topoedaphic and Forest Controls on Post-Fire Vegetation Assemblies Are Modified by Fire History and Burn Severity in the Northwestern Canadian Boreal Forest

    OpenAIRE

    Ellen Whitman; Marc-André Parisien; Dan K. Thompson; Mike D. Flannigan

    2018-01-01

    Wildfires, which constitute the most extensive natural disturbance of the boreal biome, produce a broad range of ecological impacts to vegetation and soils that may influence post-fire vegetation assemblies and seedling recruitment. We inventoried post-fire understory vascular plant communities and tree seedling recruitment in the northwestern Canadian boreal forest and characterized the relative importance of fire effects and fire history, as well as non-fire drivers (i.e., the topoedaphic c...

  5. Soil metal concentrations and productivity of Betula populifolia (gray birch) as measured by field spectrometry and incremental annual growth in an abandoned urban Brownfield in New Jersey

    International Nuclear Information System (INIS)

    Gallagher, Frank J.; Pechmann, Ildiko; Bogden, John D.; Grabosky, Jason; Weis, Peddrick

    2008-01-01

    A forested brownfield within Liberty State Park, Jersey City, New Jersey, USA, has soils with arsenic, chromium, lead, zinc and vanadium at concentrations above those considered ambient for the area. Using both satellite imagery and field spectral measurements, this study examines plant productivity at the assemblage and individual specimen level. Longer term growth trends (basal area increase in tree cores) were also studied. Leaf chlorophyll content within the hardwood assemblage showed a threshold model for metal tolerance, decreasing significantly beyond a soil total metal load (TML) of 3.0. Biomass production (calculated with RG - Red/Green Ratio Index) in Betula populifolia (gray birch), the co-dominant tree species, had an inverse relationship with the Zn concentration in leaf tissue during the growing season. Growth of B. populifolia exhibited a significant relationship with TML. Assemblage level NDVI and individual tree NDVI also had significant decreases with increasing TML. Ecosystem function measured as plant production is impaired at a critical soil metal load. - Ecosystem function as measured by plant production is impaired at a critical soil metal load (TML above 3) in northern hardwood assemblages growing in a metal-contaminated brownfield

  6. The influence of log soaking temperature on surface quality and integrity performance of birch (Betula pendula Roth) veneer

    Science.gov (United States)

    Anti Rohumaa; Toni Antikainen; Christopher G. Hunt; Charles R. Frihart; Mark Hughes

    2016-01-01

    Wood material surface properties play an important role in adhesive bond formation and performance. In the present study, a test method was developed to evaluate the integrity of the wood surface, and the results were used to understand bond performance. Materials used were rotary cut birch (Betula pendula Roth) veneers, produced from logs soaked at 20 or 70 °C prior...

  7. 78 FR 69848 - Birch Power Company; Notice of Proposed Revised Restricted Service List for a Programmatic Agreement

    Science.gov (United States)

    2013-11-21

    ...] Birch Power Company; Notice of Proposed Revised Restricted Service List for a Programmatic Agreement..., the Secretary may establish a restricted service list for a particular phase or issue in a proceeding. The restricted service list should contain the names of persons on the service list who, in the...

  8. Birch Bark Dry Extract by Supercritical Fluid Technology: Extract Characterisation and Use for Stabilisation of Semisolid Systems

    Directory of Open Access Journals (Sweden)

    Markus Armbruster

    2017-03-01

    Full Text Available Triterpene compounds like betulin, betulinic acid, erythrodiol, oleanolic acid and lupeol are known for many pharmacological effects. All these substances are found in the outer bark of birch. Apart from its pharmacological effects, birch bark extract can be used to stabilise semisolid systems. Normally, birch bark extract is produced for this purpose by extraction with organic solvents. Employing supercritical fluid technology, our aim was to develop a birch bark dry extract suitable for stabilisation of lipophilic gels with improved properties while avoiding the use of toxic solvents. With supercritical carbon dioxide, three different particle formation methods from supercritical solutions have been tested. First, particle deposition was performed from a supercritical solution in an expansion chamber. Second, the Rapid Expansion of Supercritical Solutions (RESS method was used for particle generation. Third, a modified RESS-procedure, forming the particles directly into the thereby gelated liquid, was developed. All three methods gave yields from 1% to 5.8%, depending on the techniques employed. The triterpene composition of the three extracts was comparable: all three gave more stable oleogels compared to the use of an extract obtained by organic solvent extraction. Characterizing the rheological behaviour of these gels, a faster gelling effect was seen together with a lower concentration of the extract required for the gel formation with the supercritical fluid (SCF-extracts. This confirms the superiority of the supercritical fluid produced extracts with regard to the oleogel forming properties.

  9. Academic Success for Students of Color . . . At What Cost? The Importance of School Context at Birch High School

    Science.gov (United States)

    Chambers, Terah T. Venzant; Tabron, Lolita A.

    2013-01-01

    Kiara, an African American rising freshman, has aspirations to become a medical doctor. She enrolls at Birch High School because of the reputation of the principal, Mr. Brown, whose vision for academic excellence permeates every corner of the school. Kiara graduates from high school with top honors, but realizes her success may have come at a…

  10. Glutathione-S-transferase: a minor allergen in birch pollen due to limited release from hydrated pollen.

    Directory of Open Access Journals (Sweden)

    Stephan Deifl

    Full Text Available Recently, a protein homologous to glutathione-S-transferases (GST was detected in prominent amounts in birch pollen by proteomic profiling. As members of the GST family are relevant allergens in mites, cockroach and fungi we investigated the allergenic relevance of GST from birch (bGST.bGST was expressed in Escherichia coli, purified and characterized by mass spectrometry. Sera from 217 birch pollen-allergic patients were tested for IgE-reactivity to bGST by ELISA. The mediator-releasing activity of bGST was analysed with IgE-loaded rat basophil leukaemia cells (RBL expressing human FcεRI. BALB/c mice were immunized with bGST or Bet v 1. Antibody and T cell responses to either protein were assessed. IgE-cross-reactivity between bGST with GST from house dust mite, Der p 8, was studied with murine and human sera in ELISA. The release kinetics of bGST and Bet v 1 from birch pollen were assessed in water, simulated lung fluid, 0.9% NaCl and PBS. Eluted proteins were quantified by ELISA and analysed by immunoblotting.Only 13% of 217 birch pollen-allergic patients showed IgE-reactivity to bGST. In RBL assays bGST induced mediator release. Immunization of mice with bGST induced specific IgE and a Th2-dominated cellular immune response comparably to immunization with Bet v 1. bGST did not cross-react with Der p 8. In contrast to Bet v 1, only low amounts of bGST were released from pollen grains upon incubation in water and the different physiological solutions.Although bGST is abundant in birch pollen, immunogenic in mice and able to induce mediator release from effector cells passively loaded with specific IgE, it is a minor allergen for birch pollen-allergic patients. We refer this discrepancy to its limited release from hydrated pollen. Hence, bGST is an example demonstrating that allergenicity depends mainly on rapid elution from airborne particles.

  11. The role of terrestrial bromeliads in determining the spatial organization of plant life forms in a tropical coastal forest

    Directory of Open Access Journals (Sweden)

    Celio M. Lopes

    Full Text Available ABSTRACT The interplay between plant-plant interactions and light heterogeneity in the understory of tropical forests has rarely been examined. We aimed to identify the relative importance of the understory light environment and terrestrial bromeliads in explaining the abundance and spatial organization of different plant life forms along a coastal forest gradient from seashore inland in southeastern Brazil. We estimated the abundance of various life forms (herbs, woody plants, bromeliads, climbers, and palms and the degree of light availability using hemispherical photographs in 165 plots (1 m2 within a 1.75 ha site. We used ordination methods, partial redundancy analysis (pRDA, spatial filtering using Moran’s eigenvector mapping, and Moran’s I splines. Forest cover was highly heterogeneous, but did not explain variation in abundance of life forms. Spatially, bromeliads were negatively associated with woody saplings, herbs and climbing plants at scales between 5-20 m, while the distance to seashore was found to be unrelated to these patterns. Our findings revealed that terrestrial bromeliads play an important role in the spatial organization of various life forms near the forest floor. Overall, the presence of terrestrial bromeliads and the plant area index better explained the understory vegetation than forest cover and distance to seashore.

  12. Results of forest insect and disease surveys in the northeast region of Ontario, 1993. Information report No. O-X-436

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Report summarizing forest damage by insects, diseases and abiotic conditions in the Northeast Region of Ontario. Textual descriptions of pests are accompanied by maps and statistical tables. Pest conditions covered include pine spittlebug, birch skeletonizer, eastern spruce budworm, armillaria root rot, spruce needle rusts, and other diseases and insects. Abiotic damage reported on covers frost damage, ice damage, and winter drying. Forest health reports and special surveys are also described.

  13. Results of forest insect and disease surveys in the northeast region of Ontario, 1994. Information report No. O-X-447. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.G.

    1995-12-31

    Report summarizing forest damage by insects, diseases and abiotic conditions in the Northeast Region of Ontario. Textual descriptions of pests are accompanied by maps and statistical tables. Pest conditions covered include pine spittlebug, birch skeletonizer, eastern spruce budworm, armillaria root rot, spruce needle rusts, and other diseases and insects. Abiotic damage reported on covers frost damage, ice damage, and winter drying. Forest health reports and special surveys are also described.

  14. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange.

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C; Costa E Silva, Filipe; Pereira, Joao S; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought.

  15. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  16. Synergy between land use and climate change increases future fire risk in Amazon forests

    Directory of Open Access Journals (Sweden)

    Y. Le Page

    2017-12-01

    Full Text Available Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  17. Synergy between land use and climate change increases future fire risk in Amazon forests

    Energy Technology Data Exchange (ETDEWEB)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Pereira, José Miguel Cardoso; Hurtt, George; Asrar, Ghassem

    2017-01-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  18. Soil Properties Control Glyphosate Sorption in Soils Amended with Birch Wood Biochar

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo, Marcos

    2016-01-01

    Abstract Despite a contemporary interest in biochar application to agricultural fields to improve soil quality and long-term carbon sequestration, a number of potential side effects of biochar incorporation in field soils remain poorly understood, e.g., in relation to interactions...... with agrochemicals such as pesticides. In a fieldbased study at two experimental sites in Denmark (sandy loam soils at Risoe and Kalundborg), we investigated the influence of birch wood biochar with respect to application rate, aging (7–19 months), and physico- chemical soil properties on the sorption coefficient......, Kd (L kg−1), of the herbicide glyphosate. We measured Kd in equilibrium batch sorption experiments with triplicate soil samples from 20 field plots that received biochar at different application rates (0 to 100 Mg ha−1). The results showed that pure biochar had a lower glyphosate Kd value as compared...

  19. Numerical simulation of birch pollen dispersion with an operational weather forecast system.

    Science.gov (United States)

    Vogel, Heike; Pauling, Andreas; Vogel, Bernhard

    2008-11-01

    We included a parameterisation of the emissions of pollen grains into the comprehensive model system COSMO-ART. In addition, a detailed density distribution of birch trees within Switzerland was derived. Based on these new developments, we carried out numerical simulations of the dispersion of pollen grains for an episode that occurred in April 2006 over Switzerland and the adjacent regions. Since COSMO-ART is based on the operational forecast model of the German Weather Service, we are presenting a feasibility study of daily pollen forecast based on methods which have been developed during the last two decades for the treatment of anthropogenic aerosol. A comparison of the model results and very detailed pollen counts documents the current possibilities and the shortcomings of the method and gives hints for necessary improvements.

  20. Breeding increases the efficacy of Chondrostereum purpureum in the sprout control of birch.

    Directory of Open Access Journals (Sweden)

    Leena Hamberg

    Full Text Available We tested whether the pairing of selected isolates could be used to increase the efficiency of a decay fungus Chondrostereum purpureum (Pers. Ex Fr. Pouzar to control hardwood sprouting in Finland. We paired C. purpureum strains efficient in sprout control or highly active in laccase production, and tested the efficacy of their progeny in spout control experiments. This procedure resulted in a strain with an efficacy superior to that of the parental strains. The mortality of birch (Betula pendula Roth. and B. pubescens Ehrh. 1 cm in stump diameter was 78%, 56% and 9% for the best progeny, the best parental strain and the control, respectively. Mortality was only slightly higher for B. pendula than for B. pubescens but no significant differences were found between the number or maximum height of stump sprouts. Our results showed that cross breeding of this decay fungus is a good alternative in attempts to produce efficient biocontrol agents against hardwood sprouting.

  1. Oxidative Processing Lowers the Ice Nucleation Activity of Birch and Alder Pollen

    Science.gov (United States)

    Gute, Ellen; Abbatt, Jonathan P. D.

    2018-02-01

    Pollen carry water extractable compounds with ice nucleating (IN) activity. This study investigates whether the hydroxyl radical, as the major atmospheric oxidant, can affect the IN activity of silver birch and grey alder subpollen particles under in-cloud conditions for deposition freezing mode conditions at 234 K. It is found that oxidation increases the supersaturation ratio with respect to ice necessary for the onset of ice nucleation and decreases the fraction of particles which initiate ice nucleation. This reduction of IN activity under equivalent oxidation conditions does not occur with a mineral dust sample (Arizona Test Dust). Chemical analysis of fresh and oxidized pollen material indicates a change of molecular structure with a loss of conjugation and an increase in oxidized functional groups, such as carbonyls. This is the first demonstration that in-cloud oxidation may lower the IN abilities of biological particles such as pollen.

  2. Influence of Afforestation on the Species Diversity of the Soil Seed Bank and Understory Vegetation in the Hill-Gullied Loess Plateau, China.

    Science.gov (United States)

    Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli

    2017-10-24

    The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m², and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land.

  3. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China.

    Directory of Open Access Journals (Sweden)

    Jun Ma

    Full Text Available The aboveground carbon sequestration rate (ACSR reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0 was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species.

  4. CO 2 elevation improves photosynthetic performance in progressive warming environment in white birch seedlings.

    Science.gov (United States)

    Zhang, Shouren; Dang, Qing-Lai

    2013-01-01

    White birch (Betula paperifera Mash) seedlings were exposed to progressively warming in greenhouses under ambient and elevated CO 2 concentrations for 5 months to explore boreal tree species' potential capacity to acclimate to global climate warming and CO 2 elevation. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured at temperatures of 26 (o)C and 37 (o)C. Elevated CO 2 significantly increased net photosynthetic rate (Pn) at both measurement temperatures, and Pn at 37 (o)C was higher than that at 26 (o)C under elevated CO 2. Stomatal conductance (gs) was lower at 37 (o)C than at 26 (o)C, while transpiration rate (E) was higher at 37 (o)C than that at 26 (o)C. Elevated CO 2 significantly increased instantaneous water-use efficiency (WUE) at both 26 (o)C and 37 (o)C, but WUE was markedly enhanced at 37 (o)C under elevated CO 2. The effect of temperature on maximal carboxylation rate (Vcmax), PAR-saturated electron transport rate (Jmax) and triose phosphate utilization (TPU) varied with CO 2, and the Vcmax and Jmax were significantly higher at 37 (o)C than at 26 (o)C under elevated CO 2. However, there were no significant interactive effects of CO 2 and temperature on TPU. The actual photochemical efficiency of PSII (DF/ Fm'), total photosynthetic linear electron transport rate through PSII (JT) and the partitioning of JT to carboxylation (Jc) were higher at 37 (o)C than at 26 (o)C under elevated CO 2. Elevated CO 2 significantly suppressed the partitioning of JT to oxygenation (Jo/JT). The data suggest that the CO 2 elevation and progressive warming greatly enhanced photosynthesis in white birch seedlings in an interactive fashion.

  5. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in Eucalyptus monocultures.

    Science.gov (United States)

    Zhao, Jie; Wan, Songze; Zhang, Chenlu; Liu, Zhanfeng; Zhou, Lixia; Fu, Shenglei

    2014-01-01

    Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA) and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon-Wiener diversity index (H') and Pielou evenness index (J) and the increase in Simpson dominance index (λ) after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.

  6. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in Eucalyptus monocultures.

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    Full Text Available Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon-Wiener diversity index (H' and Pielou evenness index (J and the increase in Simpson dominance index (λ after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.

  7. Historical jigsaw puzzles: piecing together the understory of Garry Oak (Quercus garryana) ecosystems and the implications for restoration

    Science.gov (United States)

    Carrina Maslovat

    2002-01-01

    Ecosystem restoration requires a set of reference vegetation conditions which are difficult to find for Garry oak (Quercus garryana) ecosystems in Canada because contemporary sites have been drastically altered. A survey of historical information provides only limited clues about the original understory vegetation. Although there is considerable...

  8. Understory Vegetation 3 Years after Implementing Uneven-Aged Silviculture in a Shortleaf Pine-Oak Stand

    Science.gov (United States)

    Michael G. Shelton; Paul A. Murphy

    1997-01-01

    The effects of retaining overstory hardwoods on understory vegetation were determined after implementing uneven-aged silviculture usingsingle-tree selection in a shortleaf pine-oak stand (Pinus echinata Mill. and Quercus spp.) in the Ouachita Mountains. Treatments were the following hardwood basal areas (square feet per acre) and...

  9. Preliminary Results: Effects of Fertilization, Herbicide Application, and Prescribed Burning on Understory Regeneration on Pine Plantations in East Texas

    Science.gov (United States)

    Betsy Ott; Brian Oswald; Hans Williams; Kenneth Farrish

    2002-01-01

    Biodiversity and species rareness are increasingly the focal points for assessment of habitat quality. Managed pine plantations are often viewed as monocultures with little of value beyond their timber crop. The purpose of this study is to assess vegetative biodiversity in the understory of two pine plantations in which different vegetative control mechanisms are...

  10. Prevention of birch pollen-related food allergy by mucosal treatment with multi-allergen-chimers in mice.

    Directory of Open Access Journals (Sweden)

    Elisabeth Hoflehner

    Full Text Available Among birch pollen allergic patients up to 70% develop allergic reactions to Bet v 1-homologue food allergens such as Api g 1 (celery or Dau c 1 (carrot, termed as birch pollen-related food allergy. In most cases, specific immunotherapy with birch pollen extracts does not reduce allergic symptoms to the homologue food allergens. We therefore genetically engineered a multi-allergen chimer and tested if mucosal treatment with this construct could represent a novel approach for prevention of birch pollen-related food allergy.BALB/c mice were poly-sensitized with a mixture of Bet v 1, Api g 1 and Dau c 1 followed by a sublingual challenge with carrot, celery and birch pollen extracts. For prevention of allergy sensitization an allergen chimer composed of immunodominant T cell epitopes of Api g 1 and Dau c 1 linked to the whole Bet v 1 allergen, was intranasally applied prior to sensitization.Intranasal pretreatment with the allergen chimer led to significantly decreased antigen-specific IgE-dependent β-hexosaminidase release, but enhanced allergen-specific IgG2a and IgA antibodies. Accordingly, IL-4 levels in spleen cell cultures and IL-5 levels in restimulated spleen and cervical lymph node cell cultures were markedly reduced, while IFN-γ levels were increased. Immunomodulation was associated with increased IL-10, TGF-β and Foxp3 mRNA levels in NALT and Foxp3 in oral mucosal tissues. Treatment with anti-TGF-β, anti-IL10R or anti-CD25 antibodies abrogated the suppression of allergic responses induced by the chimer.Our results indicate that mucosal application of the allergen chimer led to decreased Th2 immune responses against Bet v 1 and its homologue food allergens Api g 1 and Dau c 1 by regulatory and Th1-biased immune responses. These data suggest that mucosal treatment with a multi-allergen vaccine could be a promising treatment strategy to prevent birch pollen-related food allergy.

  11. Prevention of birch pollen-related food allergy by mucosal treatment with multi-allergen-chimers in mice.

    Science.gov (United States)

    Hoflehner, Elisabeth; Hufnagl, Karin; Schabussova, Irma; Jasinska, Joanna; Hoffmann-Sommergruber, Karin; Bohle, Barbara; Maizels, Rick M; Wiedermann, Ursula

    2012-01-01

    Among birch pollen allergic patients up to 70% develop allergic reactions to Bet v 1-homologue food allergens such as Api g 1 (celery) or Dau c 1 (carrot), termed as birch pollen-related food allergy. In most cases, specific immunotherapy with birch pollen extracts does not reduce allergic symptoms to the homologue food allergens. We therefore genetically engineered a multi-allergen chimer and tested if mucosal treatment with this construct could represent a novel approach for prevention of birch pollen-related food allergy. BALB/c mice were poly-sensitized with a mixture of Bet v 1, Api g 1 and Dau c 1 followed by a sublingual challenge with carrot, celery and birch pollen extracts. For prevention of allergy sensitization an allergen chimer composed of immunodominant T cell epitopes of Api g 1 and Dau c 1 linked to the whole Bet v 1 allergen, was intranasally applied prior to sensitization. Intranasal pretreatment with the allergen chimer led to significantly decreased antigen-specific IgE-dependent β-hexosaminidase release, but enhanced allergen-specific IgG2a and IgA antibodies. Accordingly, IL-4 levels in spleen cell cultures and IL-5 levels in restimulated spleen and cervical lymph node cell cultures were markedly reduced, while IFN-γ levels were increased. Immunomodulation was associated with increased IL-10, TGF-β and Foxp3 mRNA levels in NALT and Foxp3 in oral mucosal tissues. Treatment with anti-TGF-β, anti-IL10R or anti-CD25 antibodies abrogated the suppression of allergic responses induced by the chimer. Our results indicate that mucosal application of the allergen chimer led to decreased Th2 immune responses against Bet v 1 and its homologue food allergens Api g 1 and Dau c 1 by regulatory and Th1-biased immune responses. These data suggest that mucosal treatment with a multi-allergen vaccine could be a promising treatment strategy to prevent birch pollen-related food allergy.

  12. Impacts of Invasive Pests on Forest Carbon and Nitrogen Dynamics

    Science.gov (United States)

    Lovett, G. M.; Crowley, K. F.

    2014-12-01

    Forests of the U.S. have been subject to repeated invasions of destructive insects and diseases imported from other continents. Like other disturbances, these pests can produce short-term ecosystem effects due to tree mortality, but unlike other disturbances, they often target individual species and therefore can cause long-term species change in the forest. Because tree species vary in their influence on carbon (C) and nitrogen (N) cycles, pest-induced species change can radically alter the biogeochemistry of a forest. In this paper we use both data and modeling to examine how pest-induced species change may alter the C and N cycling in forests of the eastern U.S. We describe a new forest ecosystem model that distinguishes individual tree species and allows species composition to shift over the course of the model run. Results indicate that the mortality of eastern hemlock (Tsuga canadensis) by hemlock woolly adelgid and its replacement by faster-growing species such as black birch (Betula lenta) will reduce forest floor C stocks but increase productivity as the birch become established. Decline of American beech (Fagus grandifolia) from beech bark disease and its replacement by sugar maple (Acer saccharum) is likely to decrease soil C storage and increase N leaching from the ecosystem. Responses to other invasive pests will also be discussed. The magnitude of these species-specific effects on C and N cycling is in many cases larger than direct effects expected from changes in climate and atmospheric N deposition, indicating that species change should be included in models that predict forest ecosystem function under future environmental conditions.

  13. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    Science.gov (United States)

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  14. The role of novel forest ecosystems in the conservation of wood-inhabiting fungi in boreal broadleaved forests.

    Science.gov (United States)

    Juutilainen, Katja; Mönkkönen, Mikko; Kotiranta, Heikki; Halme, Panu

    2016-10-01

    The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood-associated species. This is especially alarming given the important role wood-inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad-leaved-dominated, herb-rich forests are threatened habitats which have high wood-inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man-made afforested fields are novel habitats that could potentially be important for wood-inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood-inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb-rich forests, four birch-dominated wood pastures, and four birch-dominated afforested field sites in central Finland. As predicted, natural herb-rich forests were the most species-rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications : In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man-made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood

  15. Differences in Plant Traits among N-fixing Trees in Hawaii Affect Understory Nitrogen Cycling

    Science.gov (United States)

    August-Schmidt, E.; D'Antonio, C. M.

    2016-12-01

    Nitrogen (N) fixing trees are frequently used to restore soil functions to degraded ecosystems because they can increase soil organic matter and N availability. Although N-fixers are lumped into a single functional group, the quality and quantity of the plant material they produce and the rate at which they accrete and add N to the cycling pool likely vary. This talk will focus on the questions: (1) How does N-cycling differ among N-fixing tree species? And (2) Which plant traits are most important in distinguishing the soil N environment? To address these questions, we investigated planted stands of two Hawaiian native N-fixing trees (Acacia koa and Sophora chrysophylla) and `natural' stands of an invasive N-fixing tree (Morella faya) in burned seasonal submontane woodlands in Hawaii Volcanoes National Park. We measured the relative availability of nitrogen in the soil pool and understory plant community as well as characterizing the rate and amount of N cycling in these stands both in the field and using long term soil incubations in the laboratory. We found that N is cycled very differently under these three N-fixers and that this correlates with differences in their leaf traits. S. chrysophylla had the highest foliar %N and highest specific leaf area, and stands of these trees are associated with faster N-cycling, resulting in greater N availability compared to all other site types. Incubated S. chrysophylla soils mineralized almost twice as much N as any other soil type over the course of the experiment. The comparatively high-N environment under S. chrysophylla suggests that litter quality may be more important than litter quantity in determining nitrogen availability to the understory community.

  16. Effects of reforestation practices on Staphylinid beetles (Coleoptera: Staphylinidae) in Southwestern China forests.

    Science.gov (United States)

    Luo, Tian-Hong; Yu, Xiao-Dong; Zhou, Hong-Zhang

    2013-02-01

    In 2004, Staphylinid beetle (Coleoptera) assemblages were studied via pitfall trapping to examine the effects of reforestation in southwestern China forests. Sites included two 100-yr-old mature forest types (hemlock-spruce forest and birch forest), and three 40-yr-old forest types established after harvesting (spruce plantation, larch plantation, and natural broad-leaved forest). Staphylinid species richness was greater in natural broad-leaved forests than those in hemlock-spruce forests and spruce plantations, but no significant difference was found in abundance among the five forest types. Beetle assemblages from young forest stands were significantly different from those in older forest stands, and some environmental characteristics, i.e., elevation, proportion of broad-leaved trees, and coarse woody debris, significantly affected species abundances. Moreover, some staphylinid species predominantly found only in older forest stands indicate that mature forest specialists might be threatened by loss of habitat. So it is necessary to retain adequate patches of older successional stages for conserving these beetle assemblages.

  17. The Major Birch Pollen Allergen Bet v 1 Induces Different Responses in Dendritic Cells of Birch Pollen Allergic and Healthy Individuals

    Science.gov (United States)

    Smole, Ursula; Radauer, Christian; Lengger, Nina; Svoboda, Martin; Rigby, Neil; Bublin, Merima; Gaier, Sonja; Hoffmann-Sommergruber, Karin; Jensen-Jarolim, Erika; Mechtcheriakova, Diana; Breiteneder, Heimo

    2015-01-01

    Dendritic cells play a fundamental role in shaping the immune response to allergens. The events that lead to allergic sensitization or tolerance induction during the interaction of the major birch pollen allergen Bet v 1 and dendritic cells are not very well studied. Here, we analyzed the uptake of Bet v 1 and the cross-reactive celery allergen Api g 1 by immature monocyte-derived dendritic cells (iMoDCs) of allergic and normal donors. In addition, we characterized the allergen-triggered intracellular signaling and transcriptional events. Uptake kinetics, competitive binding, and internalization pathways of labeled allergens by iMoDCs were visualized by live-cell imaging. Surface-bound IgE was detected by immunofluorescence microscopy and flow cytometry. Allergen- and IgE-induced gene expression of early growth response genes and Th1 and Th2 related cytokines and chemokines were analyzed by real-time PCR. Phosporylation of signaling kinases was analyzed by Western blot. Internalization of Bet v 1 by iMoDCs of both donor groups, likely by receptor-mediated caveolar endocytosis, followed similar kinetics. Bet v 1 outcompeted Api g 1 in cell surface binding and uptake. MoDCs of allergic and healthy donors displayed surface-bound IgE and showed a pronounced upregulation of Th2 cytokine- and NFκB-dependent genes upon non-specific Fcε receptor cross-linking. In contrast to these IgE-mediated responses, Bet v 1-stimulation increased transcript levels of the Th2 cytokines IL-4 and IL-13 but not of NFκB-related genes in MoDCs of BP allergic donors. Cells of healthy donors were either unresponsive or showed elevated mRNA levels of Th1-promoting chemokines. Moreover, Bet v 1 was able to induce Erk1/2 and p38 MAPK activation in BP allergics but only a slight p38 activation in normal donors. In conclusion, our data indicate that Bet v 1 favors the activation of a Th2 program only in DCs of BP allergic individuals. PMID:25635684

  18. The major birch pollen allergen Bet v 1 induces different responses in dendritic cells of birch pollen allergic and healthy individuals.

    Directory of Open Access Journals (Sweden)

    Ursula Smole

    Full Text Available Dendritic cells play a fundamental role in shaping the immune response to allergens. The events that lead to allergic sensitization or tolerance induction during the interaction of the major birch pollen allergen Bet v 1 and dendritic cells are not very well studied. Here, we analyzed the uptake of Bet v 1 and the cross-reactive celery allergen Api g 1 by immature monocyte-derived dendritic cells (iMoDCs of allergic and normal donors. In addition, we characterized the allergen-triggered intracellular signaling and transcriptional events. Uptake kinetics, competitive binding, and internalization pathways of labeled allergens by iMoDCs were visualized by live-cell imaging. Surface-bound IgE was detected by immunofluorescence microscopy and flow cytometry. Allergen- and IgE-induced gene expression of early growth response genes and Th1 and Th2 related cytokines and chemokines were analyzed by real-time PCR. Phosporylation of signaling kinases was analyzed by Western blot. Internalization of Bet v 1 by iMoDCs of both donor groups, likely by receptor-mediated caveolar endocytosis, followed similar kinetics. Bet v 1 outcompeted Api g 1 in cell surface binding and uptake. MoDCs of allergic and healthy donors displayed surface-bound IgE and showed a pronounced upregulation of Th2 cytokine- and NFκB-dependent genes upon non-specific Fcε receptor cross-linking. In contrast to these IgE-mediated responses, Bet v 1-stimulation increased transcript levels of the Th2 cytokines IL-4 and IL-13 but not of NFκB-related genes in MoDCs of BP allergic donors. Cells of healthy donors were either unresponsive or showed elevated mRNA levels of Th1-promoting chemokines. Moreover, Bet v 1 was able to induce Erk1/2 and p38 MAPK activation in BP allergics but only a slight p38 activation in normal donors. In conclusion, our data indicate that Bet v 1 favors the activation of a Th2 program only in DCs of BP allergic individuals.

  19. Effects of long-term elevated ultraviolet-B radiation on phytochemicals in the bark of silver birch (Betula pendula)

    Energy Technology Data Exchange (ETDEWEB)

    Tegelberg, R.; Julkunen-Tiitto, R. [Joensuu Univ., Dept. of Biology, Joensuu (Finland); Aphalo, P. J. [Joensuu Univ., Faculty of Forestry, Joensuu (Finland)

    2002-12-01

    The effects of long-term ultraviolet-B radiation on the concentrations of secondary metabolites such as phenolics and terpenoids in the bark of silver birch saplings were studied. The effects of ultraviolet-B on the concentrations of the main soluble sugars such as sucrose, raffinose, and glucose in silver birch stem were also investigated, given that they are involved in the transpiration and allocation of assimilated carbon, and UV-B-induced changes may affect tree growth. Concentrations of sucrose, raffinose and glucose in bark were found to be higher in UV-treated saplings than in saplings grown in ambient radiation, indicating that stem carbohydrate metabolism was changed by long-term exposure to elevated UV radiation. Saplings in elevated UV-A + UV-B radiation treatment and UV-A radiation control treatment had shown significantly increased concentrations of certain UV-absorbing phenolics compared with saplings in ambient radiation. No effect of radiation treatment was observed on non-UV-B-absorbing terpenoids. These observations led to the conclusion that plant parts accumulate specific phenolic UV-filters in response to UV radiation exposure. The accumulation of sugars in the stems of silver birch saplings in response to UV radiation is believed to affect tree growth, possibly because of a reduction of alpha-cellulose content and consequent reduction in cell wall production. 36 refs., 1 tab., 2 figs.

  20. Guanaco’s diet and forage preferences in Nothofagus forest environments of Tierra del Fuego, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Quinteros, C.P.; Bava, J.; Gobbi, M.E.; Defossé, G.E.

    2017-11-01

    Aim of study: Guanaco (Lama guanicoe Müller), is a South American native ungulate widely distributed in Patagonia, which in the island of Tierra del Fuego (TF), extends its habitat into Nothofagus spp. forests. Within these forests, guanacos consume lenga (Nothofagus pumilio) leaves and twigs, and other understory species. The aim of this work was to determine: 1) the spring and summer diet of free ranging guanacos, and 2) which plants, grown in the forest understory, guanacos do prefer, or avoid, in these seasons of great forage abundance. Area of study: Tierra del Fuego (Argentina), on three representative areas which combined Nothofagus forests and adjacent meadows (vegas). Material and Methods: uanacos’ diet was determined by comparing epidermal and non-epidermal plant fragments with micro-histological analyses of feces. The analysis was made from composite samples of fresh feces, collected at the seasons of maximum forage productivity (spring and summer). Main results: During spring, 48% of guanacos’ diet was composed of lenga leaves, 30% of grass-like species, 15% of grasses, and less than 7% of herbs, shrubs, and lichens. In summer, 40% of the diet was composed of grasses, 30% of lenga leaves, 25% of grass-like species and the rest corresponded to herbs, shrubs, and lichens. Within the forest understory, guanaco selected lenga leaves and twigs, grass species were consumed according to their availability (or sometimes rejected), while other herbs were not consumed at all. Research highlights: Guanacos’ consumption preference for lenga, even considering the high availability of other forages, could adversely affect forest regeneration.

  1. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Science.gov (United States)

    Hines, James; Powell, Luke L.; Wolfe, Jared D.; Johnson, Erik l.; Nichols, James D.; Stouffer, Phillip C.

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with radiotelemetry data to determine the successional stage at which within-day movement probabilities of Amazonian birds in secondary forest are similar to those in primary forest. We radio-tracked three common understory insectivore species in primary and secondary forest at the Biological Dynamics of Forest Fragments project near Manaus, Brazil: two woodcreepers, Glyphorynchus spirurus (n = 19) andXiphorhynchus pardalotus (n = 18), and the terrestrial antthrush Formicarius colma(n = 19). Forest age was a strong predictor of fidelity to a given habitat. All three species showed greater fidelity to primary forest than to 8–14-year-old secondary forest, indicating the latter’s relatively poor quality. The two woodcreeper species used 12–18-year-old secondary forest in a manner comparable to continuous forest, but F. colmaavoided moving even to 27–31-year-old secondary forest—the oldest at our site. Our results suggest that managers concerned with less sensitive species can assume that forest reserves connected by 12–18-year-old secondary forest corridors are effectively connected. On the other hand, >30 years are required after land abandonment before secondary forest serves as a primary forest-like conduit for movement by F. colma; more sensitive terrestrial insectivores may take longer still.

  2. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  3. Structural Equation Modeling: Theory and Applications in Forest Management

    Directory of Open Access Journals (Sweden)

    Tzeng Yih Lam

    2012-01-01

    Full Text Available Forest ecosystem dynamics are driven by a complex array of simultaneous cause-and-effect relationships. Understanding this complex web requires specialized analytical techniques such as Structural Equation Modeling (SEM. The SEM framework and implementation steps are outlined in this study, and we then demonstrate the technique by application to overstory-understory relationships in mature Douglas-fir forests in the northwestern USA. A SEM model was formulated with (1 a path model representing the effects of successively higher layers of vegetation on late-seral herbs through processes such as light attenuation and (2 a measurement model accounting for measurement errors. The fitted SEM model suggested a direct negative effect of light attenuation on late-seral herbs cover but a direct positive effect of northern aspect. Moreover, many processes have indirect effects mediated through midstory vegetation. SEM is recommended as a forest management tool for designing silvicultural treatments and systems for attaining complex arrays of management objectives.

  4. Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest.

    Science.gov (United States)

    Wilson, Sarah Jane; Rhemtulla, Jeanine M

    2016-01-01

    Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.

  5. Forest health in Canada, Atlantic Maritime ecozone 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.E.; Loo, J.; DesRochers, P.; Hirvonen, H.

    2004-07-01

    This paper describes the key forest health issues affecting Canada's Atlantic Maritime ecozone which includes 9 main forest types known collectively as the Acadian Forest. In order to protect and conserve biological diversity, the Canadian Council of Forest Ministers adopted national criteria to measure sustainable forest management. This report describes the Acadian Forest landscape conditions, pre-industrial ecological influences, current ecological influences, and the impact of invasive alien insects and diseases on the diversity of tree species. Spruce trees in the Atlantic Maritime ecozone are threatened by the brown spruce longhorn beetle and pine trees are threatened by a pine shoot beetle recently introduced to North America from Asia. Diseases are also attacking the butternut, beech and dutch trees. The impact of land use practices such as forest harvesting on forest structure and composition was also addressed along with the impact of air pollution and climate change. It was noted that there is a direct relationship between deteriorating air quality and decline in mountain paper birch. Some of the anticipated impacts from climate change include a greater incidence of vector borne diseases resulting from the migration of new insect species in a warmer Canadian climate. An increase in extreme weather events such as ice storms may also weaken trees. refs., tabs., figs.

  6. Potential occurrence of the birch mouse (Sicista betulina) in the Bohemian Forest (Šumava): A geographical information system approach

    Czech Academy of Sciences Publication Activity Database

    Weiter, L.; Heřman, Michal; Sedláček, František; Zemek, František

    2002-01-01

    Roč. 51, č. 1 (2002), s. 133-144 ISSN 0139-7893 Institutional research plan: CEZ:AV0Z6087904 Keywords : model of occurrence * preferences of ecological factors Subject RIV: EH - Ecology, Behaviour Impact factor: 0.234, year: 2002

  7. Urban Forests

    Science.gov (United States)

    David Nowak

    2016-01-01

    Urban forests (and trees) constitute the second forest resource considered in this report. We specifically emphasize the fact that agricultural and urban forests exist on a continuum defined by their relationship (and interrelationship) with a given landscape. These two forest types generally serve different purposes, however. Whereas agricultural forests are...

  8. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen

    Directory of Open Access Journals (Sweden)

    B. G. Pummer

    2012-03-01

    Full Text Available The ice nucleation of bioaerosols (bacteria, pollen, spores, etc. is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate, is not yet fully understood. Here we show that pollen of different species strongly differ in their ice nucleation behaviour. The average freezing temperatures in laboratory experiments range from 240 to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. Far more intriguingly, it has turned out that water, which has been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. The ice nuclei have to be easily-suspendable macromolecules located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so presumably augment the impact of pollen on ice cloud formation even in the upper troposphere. Our experiments lead to the conclusion that pollen ice nuclei, in contrast to bacterial and fungal ice nucleating proteins, are non-proteinaceous compounds.

  9. Mathematical Modeling of the High Temperature Treatment of Birch in a Prototype Furnace

    Directory of Open Access Journals (Sweden)

    Duygu Kocaefe

    2013-01-01

    Full Text Available In recent years, various wood modification technologies have been commercialized as alternatives to the traditional chemical treatments for wood preservation. The high temperature heat treatment of wood is one of these commercially viable and environmentally friendly alternative wood modification technologies. During this treatment, wood is heated to temperatures above 200°C by contacting it with hot gas. The chemical structure of wood changes leading to increased dimensional stability and resistance to microorganisms. Wood darkens making it aesthetically more attractive. However, it loses some of its elasticity. Therefore, the high temperature heat treatment has to be optimized for each species and each technology. The mathematical modeling is an important tool for optimization. It can also be used as a powerful tool for furnace modification and design. A reliable and predictive model was developed to simulate numerically the heat treatment process. Heat treatment experiments were carried out in the prototype furnace of the University of Quebec at Chicoutimi. The model was validated by comparing the predictions with the experimental data. In this paper, the results of the model applied to birch heat treatment are presented. The model predictions are in good agreement with the data.

  10. Spectral Properties of Coniferous Forests: A Review of In Situ and Laboratory Measurements

    Directory of Open Access Journals (Sweden)

    Miina Rautiainen

    2018-01-01

    Full Text Available Coniferous species are present in almost all major vegetation biomes on Earth, though they are the most abundant in the northern hemisphere, where they form the northern tree and forest lines close to the Arctic Circle. Monitoring coniferous forests with satellite and airborne remote sensing is active, due to the forests’ great ecological and economic importance. We review the current understanding of spectral behavior of different components forming coniferous forests. We look at the spatial, directional, and seasonal variations in needle, shoot, woody element, and understory spectra in coniferous forests, based on measurements. Through selected case studies, we also demonstrate how coniferous canopy spectra vary at different spatial scales, and in different viewing angles and seasons. Finally, we provide a synthesis of gaps in the current knowledge on spectra of elements forming coniferous forests that could also serve as a recommendation for planning scientific efforts in the future.

  11. Alaska biological control program directed at amber-marked birch leaf miner.

    Science.gov (United States)

    J.E. Lundquist; K.F. Zogas; C.L. Snyder; B.K. Schulz

    2008-01-01

    Nonnative invasive insects are having major impacts on the economics and ecology of forests nationwide. Until recently, Alaska was fortunately mostly free of these pests. Because of the remoteness of much of Alaska's native forests, an invasive pest infestation would be extremely difficult to control. Global markets, global climate change, and the ever-increasing...

  12. Resource-use strategies of native and invasive plants in Eastern North American forests.

    Science.gov (United States)

    Heberling, J Mason; Fridley, Jason D

    2013-10-01

    Studies in disturbed, resource-rich environments often show that invasive plants are more productive than co-occurring natives, but with similar physiological tradeoffs. However, in resource-limited habitats, it is unclear whether native and invasive plants have similar metabolic constraints or if invasive plants are more productive per unit resource cost - that is, use resources more efficiently. Using a common garden to control for environment, we compared leaf physiological traits relating to resource investments, carbon returns, and resource-use efficiencies in 14 native and 18 nonnative invasive species of common genera found in Eastern North American (ENA) deciduous forest understories, where growth is constrained by light and nutrient limitation. Despite greater leaf construction and nitrogen costs, invaders exhibited greater instantaneous photosynthetic energy-use efficiency (PEUE) and marginally greater photosynthetic nitrogen-use efficiency (PNUE). When integrated over leaf lifespan (LL), these differences were magnified. Differences in efficiency were driven by greater productivity per unit leaf investment, as invaders exhibited both greater photosynthetic abilities and longer LL. Our results indicate that woody understory invaders in ENA forests are not constrained to the same degree by leaf-based metabolic tradeoffs as the native understory flora. These strategy differences could be attributable to pre-adaptation in the native range, although other explanations are possible. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Simulation of water-surface elevations for a hypothetical 100-year peak flow in Birch Creek at the Idaho National Engineering and Environmental Laboratory, Idaho

    International Nuclear Information System (INIS)

    Berenbrock, C.; Kjelstrom, L.C.

    1997-01-01

    Delineation of areas at the Idaho National Engineering and Environmental Laboratory that would be inundated by a 100-year peak flow in Birch Creek is needed by the US Department of Energy to fulfill flood-plain regulatory requirements. Birch Creek flows southward about 40 miles through an alluvium-filled valley onto the northern part of the Idaho National Engineering and Environmental laboratory site on the eastern Snake River Plain. The lower 10-mile reach of Birch Creek that ends in Birch Creek Playa near several Idaho National Engineering and Environmental Laboratory facilities is of particular concern. Twenty-six channel cross sections were surveyed to develop and apply a hydraulic model to simulate water-surface elevations for a hypothetical 100-year peak flow in Birch Creek. Model simulation of the 100-year peak flow (700 cubic feet per second) in reaches upstream from State Highway 22 indicated that flow was confined within channels even when all flow was routed to one channel. Where the highway crosses Birch Creek, about 315 cubic feet per second of water was estimated to move downstream--115 cubic feet per second through a culvert and 200 cubic feet per second over the highway. Simulated water-surface elevation at this crossing was 0.8 foot higher than the elevation of the highway. The remaining 385 cubic feet per second flowed southwestward in a trench along the north side of the highway. Flow also was simulated with the culvert removed. The exact location of flood boundaries on Birch Creek could not be determined because of the highly braided channel and the many anthropogenic features (such as the trench, highway, and diversion channels) in the study area that affect flood hydraulics and flow. Because flood boundaries could not be located exactly, only a generalized flood-prone map was developed

  14. Effects of climate and forest structure on palms, bromeliads and bamboos in Atlantic Forest fragments of Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    R. R. Hilário

    Full Text Available Abstract Palms, bromeliads and bamboos are key elements of tropical forests and understanding the effects of climate, anthropogenic pressure and forest structure on these groups is crucial to forecast structural changes in tropical forests. Therefore, we investigated the effects of these factors on the abundance of these groups in 22 Atlantic forest fragments of Northeastern Brazil. Abundance of bromeliads and bamboos were assessed through indexes. Palms were counted within a radius of 20 m. We also obtained measures of vegetation structure, fragment size, annual precipitation, precipitation seasonality and human population density. We tested the effects of these predictors on plant groups using path analysis. Palm abundance was higher in taller forests with larger trees, closed canopy and sparse understory, which may be a result of the presence of seed dispersers and specific attributes of local palm species. Bromeliads were negatively affected by both annual precipitation and precipitation seasonality, what may reflect adaptations of these plants to use water efficiently, but also the need to capture water in a regular basis. Bamboos were not related to any predictor variable. As climate and forest structure affected the abundance of bromeliads and palms, human-induced climatic changes and disturbances in forest structure may modify the abundance of these groups. In addition, soil properties and direct measurements of human disturbance should be used in future studies in order to improve the predictability of models about plant groups in Northeastern Atlantic Forest.

  15. Trait variation and functional diversity maintenance of understory herbaceous species coexisting along an elevational gradient in Yulong Mountain, Southwest China

    Directory of Open Access Journals (Sweden)

    Yahuang Luo

    2016-12-01

    Full Text Available Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence. However, little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly, especially in understory herbaceous communities. Here we partitioned the variance of four functional traits (maximum height, leaf thickness, leaf area and specific leaf area across four nested biological scales: individual, species, plot, and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance. We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain. We found interspecific trait variation was the main trait variation component for leaf traits, although intraspecific trait variation ranged from 10% to 28% of total variation. In particular, maximum height exhibited high plasticity, and intraspecific variation accounted for 44% of the total variation. Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient, there was little variance at our largest (elevation scale in leaf traits and functional diversity remained constant along the elevational gradient, indicating that traits responded to smaller scale influences. External filtering was only observed at high elevations. However, strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities, possibly due to competition. Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes. This approach –– integrating different

  16. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities

    Science.gov (United States)

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; Collins, Cathy D.; Hahn, Philip G.; Mattingly, W. Brett; Veldman, Joseph W.; Walker, Joan L.

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  17. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    Directory of Open Access Journals (Sweden)

    Lars A Brudvig

    Full Text Available Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities, and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes. Our study demonstrates

  18. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    Energy Technology Data Exchange (ETDEWEB)

    Brudvig, Lars A. [Department of Plant Biology, Michigan State University; Orrock, John L. [Department of Zoology, University of Wisconsin; Damschen, Ellen I. [Department of Zoology, University of Wisconsin; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  19. An experience and contemporary status of forest recultivation in Kuzbass

    Directory of Open Access Journals (Sweden)

    V. I. Ufimtsev

    2017-08-01

    Full Text Available Reforestation is the main direction of rehabilitation of the degraded lands by the coal industry. The substratum of dumps of the coal industry is characterized by sharp deficiency of elements and the expressed xeromorphy. During more than 40 years on the dumps were created over 15 thousand ha of wood plantings, the agrotechnological and scientific foundation of forest recultivation is laid. Biological features of several tens types are studied, their suitability for the purposes of afforestation of dumps is estimated. Scots pine Pinus sylvestris L., a common sea-buckthorn Hippophaë rhamnoídes L. and a silver birch Betula pendula Tristis appeared certainly suitable, 10 more types are recognized as the perspective. In 1989 and 2005 under the leadership of L. P. Barannik are prepared and approved for application at the regional level of the recommendation about reforestation. Now experiments on selection of types proceed, work on optimization of technologies of forest recultivation taking into account an assessment of the created plantings of the I–II class of age is conducted. The main square of reforestation, about 11 thousand hectares, the scots pine which is capable to grow on the highest classes of site class without decrease in growth processes in the senior age groups borrows. Pure sea-buckthorn plantings are created on the area about 3 thousand hectares, they are used by the population as berry-pickers, the ecological value of a sea-buckthorn consists in fast development of a surface of dumps, unpretentiousness. Joint landings of these two tree species are widely used. The birch hung, along with a birch fluffy, is presented, mainly, in the form of natural renewal. In recent years, in connection with reduction of nurseries on cultivation of seedlings of a pine, the birch began to be used actively at artificial afforestation of dumps, especially in urban areas. The main problems of forest recultivation are: non-selective formation of

  20. Prescribed burning and clear-cutting effects on understory vegetation in a Pinus canariensis stand (Gran Canaria).

    Science.gov (United States)

    Arévalo, José Ramón; Fernández-Lugo, Silvia; García-Domínguez, Celia; Naranjo-Cigala, Agustín; Grillo, Federico; Calvo, Leonor

    2014-01-01

    Prescribed fires are a powerful tool for reducing fire hazards by decreasing amounts of fuel. The main objective is to analyze the effects of prescribed burning on the understory vegetation composition as well as on the soil characteristics of a reforested stand of Pinus canariensis. The study attempts to identify the effects of the preburning treatment of cutting understory vegetation on the floristic parameters of the vegetation community. This study was carried out for two years following a prescribed fire in a Canarian pine stand. Cutting and burning treatment affected species composition and increased diversity. Burnt and cut plots were characterized by a diverse array of herbaceous species and by a lower abundance of Teline microphylla (endemic legume), although burning apparently induced its germination. Cut treatment was more consistently differentiated from the control plots than burnt treatment. Soil K decreased after both treatments, pH slightly decreased after cutting, while P and Ca increased after fire. From an ecological point of view, prescribed burning is a better management practice than cutting the woody species of the understory. However, long-term studies would be necessary to evaluate the effects of fire intensity, season and frequency in which the prescribed burning is applied.