WorldWideScience

Sample records for bipolar transistor structures

  1. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Directory of Open Access Journals (Sweden)

    Patrik Nemec

    2014-01-01

    Full Text Available Loop heat pipes (LHPs are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements’ influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT have been made.

  2. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Science.gov (United States)

    Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  3. Dose enhancement effects of X ray radiation in bipolar transistors

    International Nuclear Information System (INIS)

    Chen Panxun

    1997-01-01

    The author has presented behaviour degradation and dose enhancement effects of bipolar transistors in X ray irradiation environment. The relative dose enhancement factors of X ray radiation were measured in bipolar transistors by the experiment methods. The mechanism of bipolar device dose enhancement was investigated

  4. Neutrality in bipolar structures

    DEFF Research Database (Denmark)

    Montero, Javier; Rodríguez, J. Tinguaro; Franco, Camilo

    2014-01-01

    In this paper, we want to stress that bipolar knowledge representation naturally allows a family of middle states which define as a consequence different kinds of bipolar structures. These bipolar structures are deeply related to the three types of bipolarity introduced by Dubois and Prade, but our...... approach offers a systematic explanation of how such bipolar structures appear and can be identified....

  5. Impact of Process Technologies on ELDRS of Bipolar Transistors

    International Nuclear Information System (INIS)

    Lu Wu; Ren Diyuan; Guo Qi; Yu Xuefeng; Zheng Yuzhan

    2010-01-01

    Radiation effects under different dose rates and annealing behaviors of domestic bipolar transistors, with same manufacture technology, were investigated.These transistors include NPN transistors of various emitter area, and LPNP transistors with different doping concentrations in emitter. It is shown that different types of transistors have different radiation responses. The results of NPN transistors show that more degradation occurs at less emitter area. Yet, the results of LPNP transistors demonstrate that transistors with lightly doped emitter are more sensitive to radiation, compared with heavily doped emitter. Finally,the mechanisms of the difference between various radiation responses were analyzed. (authors)

  6. Simulation of Heating of an Oil-Cooled Insulated Gate Bipolar Transistors Converter Model

    National Research Council Canada - National Science Library

    Ovrebo, Gregory

    2004-01-01

    I used SolidWorks a three-dimensional modeling software, and FloWorks, a fluid dynamics analysis tool, to simulate oil flow and heat transfer in a heat sink structure attached to three insulated gate bipolar transistors...

  7. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  8. Controlled ion-beam transformation of silicon bipolar microwave power transistor's characteristics

    International Nuclear Information System (INIS)

    Solodukha, V.A.; Snitovskij, Yu.P.

    2015-01-01

    In this article, a method for changing the silicon bipolar microwave power transistor's characteristics in a direct and deliberate manner by modifying the chemical composition at the molybdenum - silicon boundary, the electro-physical properties of molybdenum - silicon contacts, and the electrophysical characteristics of transistor structure areas by the phosphorus ions irradiation of generated ohmic molybdenum - silicon contacts to the transistor emitters is proposed for the first time. The possibilities of this method are investigated and confirmed experimentally. (authors)

  9. Single-event burnout of epitaxial bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kuboyama, S.; Sugimoto, K.; Shugyo, S.; Matsuda, S. [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan); Hirao, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan)

    1998-12-01

    Single-Event Burnout (SEB) of bipolar junction transistors (BJTs) has been observed nondestructively. It was revealed that all the NPN BJTs, including small signal transistors, with thinner epitaxial layers were inherently susceptible to the SEB phenomenon. It was demonstrated that several design parameters of BJTs were responsible for SEB susceptibility. Additionally, destructive and nondestructive modes of SEB were identified.

  10. Single-event burnout of epitaxial bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kuboyama, Satoshi; Sugimoto, Kenji; Matsuda, Sumio [National Space Development Agency of Japan, Ysukuba, Ibaraki (Japan); Hirao, Toshio

    1998-10-01

    Single-event burnout (SEB) of bipolar junction transistors (BJTs) has been observed nondestructively. It was revealed that all the NPN BJTs including small signal transistors with thinner epitaxial layer were inherently susceptible to the SEB phenomenon. It was demonstrated that several design parameters of BJTs were responsible for SEB susceptibility. Additionally, destructive and nondestructive modes of SEB were identified. (author)

  11. Neutron Radiation Effect On 2N2222 And NTE 123 NPN Silicon Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Oo, Myo Min; Rashid, N K A Md; Hasbullah, N F; Karim, J Abdul; Zin, M R Mohamed

    2013-01-01

    This paper examines neutron radiation with PTS (Pneumatic Transfer System) effect on silicon NPN bipolar junction transistors (2N2222 and NTE 123) and analysis of the transistors in terms of electrical characterization such as current gain after neutron radiation. The key parameters are measured with Keithley 4200SCS. Experiment results show that the current gain degradation of the transistors is very sensitive to neutron radiation. The neutron radiation can cause displacement damage in the bulk layer of the transistor structure. The current degradation is believed to be governed by increasing recombination current between the base and emitter depletion region

  12. Electrical characterization of commercial NPN bipolar junction transistors under neutron and gamma irradiation

    Directory of Open Access Journals (Sweden)

    OO Myo Min

    2014-01-01

    Full Text Available Electronics components such as bipolar junction transistors, diodes, etc. which are used in deep space mission are required to be tolerant to extensive exposure to energetic neutrons and ionizing radiation. This paper examines neutron radiation with pneumatic transfer system of TRIGA Mark-II reactor at the Malaysian Nuclear Agency. The effects of the gamma radiation from Co-60 on silicon NPN bipolar junction transistors is also be examined. Analyses on irradiated transistors were performed in terms of the electrical characteristics such as current gain, collector current and base current. Experimental results showed that the current gain on the devices degraded significantly after neutron and gamma radiations. Neutron radiation can cause displacement damage in the bulk layer of the transistor structure and gamma radiation can induce ionizing damage in the oxide layer of emitter-base depletion layer. The current gain degradation is believed to be governed by the increasing recombination current in the base-emitter depletion region.

  13. Bipolar Transistors Can Detect Charge in Electrostatic Experiments

    Science.gov (United States)

    Dvorak, L.

    2012-01-01

    A simple charge indicator with bipolar transistors is described that can be used in various electrostatic experiments. Its behaviour enables us to elucidate links between 'static electricity' and electric currents. In addition it allows us to relate the sign of static charges to the sign of the terminals of an ordinary battery. (Contains 7 figures…

  14. Experiments with Charge Indicator Based on Bipolar Transistors

    Science.gov (United States)

    Dvorak, Leos; Planinsic, Gorazd

    2012-01-01

    A simple charge indicator with bipolar transistors described recently enables us to perform a number of experiments suitable for high-school physics. Several such experiments are presented and discussed in this paper as well as some features of the indicator important for its use in schools, namely its sensitivity and robustness, i.e. the…

  15. The effect and mechanism of the bipolar junction transistor in different temperature

    International Nuclear Information System (INIS)

    Wang Dong; Lu Wu; Ren Diyuan; Li Aiwu; Kuang Zhibing

    2007-01-01

    The annealing-effect of bipolar junction transistor in different temperature is investigated. It is found that the anneal of the bipolar transistor is related to the annealing-temperature, and the annealing-effect of the different type transistor is dissimilar. The possible mechanism is discussed. (authors)

  16. Modeling of charge transport in ion bipolar junction transistors.

    Science.gov (United States)

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  17. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    Science.gov (United States)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  18. DEVELOPMENT OF CONTROLLED RECTIFIERS BASED ON THE BIPOLAR WITH STATIC INDUCTION TRANSISTORS (BSIT

    Directory of Open Access Journals (Sweden)

    F. I. Bukashev

    2016-01-01

    Full Text Available Aim. The aim of this study is to develop one of the most perspective semiconductor device suitable for creation and improvement of controlled rectifiers, bipolar static induction transistor.Methods. Considered are the structural and schematic circuit controlled rectifier based on bipolar static induction transistor (BSIT, and the criterion of effectiveness controlled rectifiers - equivalent to the voltage drop.Results. Presented are the study results of controlled rectifier layout on BSIT KT698I. It sets the layout operation at an input voltage of 2.0 V at a frequency up to 750 kHz. The efficiency of the studied layouts at moderate current densities as high as 90 % .Offered is optimization of technological route microelectronic controlled rectifier manufacturing including BSIT and integrated bipolar elements of the scheme management.Conclusion. It is proved that the most efficient use of the bipolar static induction transistor occurs at the low voltage controlled rectifiers 350-400 kHz, at frequencies in conjunction with a low-voltage control circuit.It is proved that the increase of the functional characteristics of the converters is connected to the expansion of the input voltage and output current ranges

  19. Shootthrough fault protection system for bipolar transistors in a voltage source transistor inverter

    International Nuclear Information System (INIS)

    Wirth, W.F.

    1982-01-01

    Faulted bipolar transistors in a voltage source transistor inverter are protected against shootthrough fault current, from the filter capacitor of the d-c voltage source which drives the inverter over the d-c bus, by interposing a small choke in series with the filter capacitor to limit the rate of rise of that fault current while at the same time causing the d-c bus voltage to instantly drop to essentially zero volts at the beginning of a shootthrough fault. In this way, the load lines of the faulted transistors are effectively shaped so that they do not enter the second breakdown area, thereby preventing second breakdown destruction of the transistors

  20. Wide bandgap collector III-V double heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Flitcroft, R.M.

    2000-10-01

    This thesis is devoted to the study and development of Heterojunction Bipolar Transistors (HBTs) designed for high voltage operation. The work concentrates on the use of wide bandgap III-V semiconductor materials as the collector material and their associated properties influencing breakdown, such as impact ionisation coefficients. The work deals with issues related to incorporating a wide bandgap collector into double heterojunction structures such as conduction band discontinuities at the base-collector junction and results are presented which detail, a number of methods designed to eliminate the effects of such discontinuities. In particular the use of AlGaAs as the base material has been successful in eliminating the conduction band spike at this interface. A method of electrically injecting electrons into the collector has been employed to investigate impact ionisation in GaAs, GaInP and AlInP which has used the intrinsic gain of the devices to extract impact ionisation coefficients over a range of electric fields beyond the scope of conventional optical injection techniques. This data has enabled the study of ''dead space'' effects in HBT collectors and have been used to develop an analytical model of impact ionisation which has been incorporated into an existing Ebers-Moll HBT simulator. This simulator has been shown to accurately reproduce current-voltage characteristics in both the devices used in this work and for external clients. (author)

  1. Single-event burnout of power bipolar junction transistors

    International Nuclear Information System (INIS)

    Titus, J.L.; Johnson, G.H.; Schrimpf, R.D.; Galloway, K.F.

    1991-01-01

    Experimental evidence of single-event burnout of power bipolar junctions transistors (BJTs) is reported for the first time. Several commercial power BJTs were characterized in a simulated cosmic ray environment using mono-energetic ions at the tandem Van de Graaff accelerator facility at Brookhaven National Laboratory. Most of the device types exposed to this simulated environment exhibited burnout behavior. In this paper the experimental technique, data, and results are presented, while a qualitative model is used to help explain those results and trends observed in this experiment

  2. A photocurrent compensation method of bipolar transistors under high dose rate radiation and its experimental research

    International Nuclear Information System (INIS)

    Yin Xuesong; Liu Zhongli; Li Chunji; Yu Fang

    2005-01-01

    Experiment using discrete bipolar transistors has been performed to verify the effect of the photocurrent compensation method. The theory of the dose rate effects of bipolar transistors and the photocurrent compensation method are introduced. The comparison between the response of hardened and unhardened circuits under high dose rate radiation is discussed. The experimental results show instructiveness to the hardness of bipolar integrated circuits under transient radiation. (authors)

  3. Radiation effects on junction field-effect transistors (JFETS), MOSFETs, and bipolar transistors, as related to SSC circuit design

    International Nuclear Information System (INIS)

    Kennedy, E.J.; Alley, G.T.; Britton, C.L. Jr.; Skubic, P.L.; Gray, B.; Wu, A.

    1990-01-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular, at currents ≤1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier

  4. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors

    International Nuclear Information System (INIS)

    Wang, Chenhui; Chen, Wei; Liu, Yan; Jin, Xiaoming; Yang, Shanchao; Qi, Chao

    2016-01-01

    The effects of gamma irradiation on neutron displacement sensitivity of four types of lateral PNP bipolar transistors (LPNPs) with different neutral base widths, emitter widths and the doping concentrations of the epitaxial base region are studied. The physical mechanisms of the effects are explored by defect analysis using deep level transient spectroscopy (DLTS) techniques and numerical simulations of recombination process in the base region of the lateral PNP bipolar transistors, and are verified by the experiments on gate-controlled lateral PNP bipolar transistors (GCLPNPs) manufactured in the identical commercial bipolar process with different gate bias voltage. The results indicate that gamma irradiation increases neutron displacement damage sensitivity of lateral PNP bipolar transistors and the mechanism of this phenomenon is that positive charge induced by gamma irradiation enhances the recombination process in the defects induced by neutrons in the base region, leading to larger recombination component of base current and greater gain degradation.

  5. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn; Chen, Wei; Liu, Yan; Jin, Xiaoming; Yang, Shanchao; Qi, Chao

    2016-09-21

    The effects of gamma irradiation on neutron displacement sensitivity of four types of lateral PNP bipolar transistors (LPNPs) with different neutral base widths, emitter widths and the doping concentrations of the epitaxial base region are studied. The physical mechanisms of the effects are explored by defect analysis using deep level transient spectroscopy (DLTS) techniques and numerical simulations of recombination process in the base region of the lateral PNP bipolar transistors, and are verified by the experiments on gate-controlled lateral PNP bipolar transistors (GCLPNPs) manufactured in the identical commercial bipolar process with different gate bias voltage. The results indicate that gamma irradiation increases neutron displacement damage sensitivity of lateral PNP bipolar transistors and the mechanism of this phenomenon is that positive charge induced by gamma irradiation enhances the recombination process in the defects induced by neutrons in the base region, leading to larger recombination component of base current and greater gain degradation.

  6. Radiation effect of doping and bias conditions on NPN bipolar junction transistors

    International Nuclear Information System (INIS)

    Xi Shanbin; Wang Yiyuan; Xu Fayue; Zhou Dong; Li Ming; Wang Fei; Wang Zhikuan; Yang Yonghui; Lu Wu

    2011-01-01

    In this paper,we investigate 60 Co γ-ray irradiation effects and annealing behaviors of NPN bipolar junction transistors of the same manufacturing technology but different doping concentrations. The transistors of different doping concentrations differ in responses of the radiation effect. More degradation was observed with the transistors of low concentration-doped NPN transistors than the high concentration-doped NPN transistors. The results also demonstrate that reverse-biased transistors are more sensitive to radiation than the forward-biased ones. Mechanisms of the radiation responses are analyzed. (authors)

  7. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  8. Photovoltaic Cells Improvised With Used Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Akintayo, J. A

    2002-01-01

    The understanding of the underlying principle that the solar cell consists of a p-n junction is exploited to adapt the basic NPN or PNP Bipolar Junction Transistors (BJT) to serve as solar cells. In this mode the in improvised solar cell have employed just the emitter and the base sections with an intact emitter/base junction as the active PN area. The improvised devices tested screened and sorted are wired up in strings, blocks and modules. The photovoltaic modules realised tested as close replica of solar cells with output voltage following insolation level. Further work need be done on the modules to make them generate usable levels of output voltage and current

  9. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  10. Performance enhancement of a heterojunction bipolar transistor (HBT) by two-step passivation

    International Nuclear Information System (INIS)

    Fu, S.-I.; Lai, P.-H.; Tsai, Y.-Y.; Hung, C.-W.; Yen, C.-H.; Cheng, S.-Y.; Liu, W.-C.

    2006-01-01

    An interesting two-step passivation (with ledge structure and sulphide based chemical treatment) on base surface, for the first time, is demonstrated to study the temperature-dependent DC characteristics and noise performance of an InGaP/GaAs heterojunction bipolar transistor (HBT). Improved transistor behaviors on maximum current gain β max , offset voltage ΔV CE , and emitter size effect are obtained by using the two-step passivation. Moreover, the device with the two-step passivation exhibits relatively temperature-independent and improved thermal stable performances as the temperature is increased. Therefore, the two-step passivationed device can be used for high-temperature and low-power electronics applications

  11. Study on ionizing radiation effects of bipolar transistor with BPSG films

    International Nuclear Information System (INIS)

    Lu Man; Zhang Xiaoling; Xie Xuesong; Sun Jiangchao; Wang Pengpeng; Lu Changzhi; Zhang Yanxiu

    2013-01-01

    Background: Because of the damage induced by ionizing radiation, bipolar transistors in integrated voltage regulator could induce the current gain degradation and increase leakage current. This will bring serious problems to electronic system. Purpose: In order to ensure the reliability of the device work in the radiation environments, the device irradiation reinforcement technology is used. Methods: The characteristics of 60 Co γ irradiation and annealing at different temperatures in bipolar transistors and voltage regulators (JW117) with different passive films for SiO 2 +BPSG+SiO 2 and SiO 2 +SiN have been investigated. Results: The devices with BPSG film enhanced radiation tolerance significantly. Because BPSG films have better absorption for Na + in SiO 2 layer, the surface recombination rate of base region in a bipolar transistor and the excess base current have been reduced. It may be the main reason for BJT with BPSG film having a good radiation hardness. And annealing experiments at different temperatures after irradiation ensure the reliability of the devices with BPSG films. Conclusions: A method of improving the ionizing irradiation hardness of bipolar transistors is proposed. As well as the linear integrated circuits which containing bipolar transistors, an experimental basis for the anti-ionizing radiation effects of bipolar transistors is provided. (authors)

  12. Evaluation of temperature-enhanced gain degradation of verticle npn and lateral pnp bipolar transistors

    International Nuclear Information System (INIS)

    Witczak, S.C.; Lacoe, R.C.; Galloway, K.F.

    1997-01-01

    The effect of dose rate on radiation-induced gain degradation is compared for verticle npn and lateral pnp bipolar transistors. High dose rate irradiations at elevated temperatures are more effective at simulating low dose rate degradation in the lateral pnp transistors

  13. Total dose effects on elementary transistors of a comparator in bipolar technology

    International Nuclear Information System (INIS)

    Sarrabayrouse, G.; Guerre, F.X.

    1995-01-01

    In the present work we investigate elementary transistors behaviour of an Integrated Circuit using junction isolation bipolar technology. Polarization conditions and dose rate effects on the main elementary transistor types are analysed. Furthermore, the IC electronic function degradations are studied. Finally, a comparison between the function degradations and the elementary component ones is attempted. (author)

  14. Radiation effects on JFETS, MOSFETS, and bipolar transistors, as related to SSC circuit design

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, E J; Gray, B; Wu, A [Dept. of Electrical and Computer Engineering, Univ. of Tennessee, Knoxville, TN (United States); Alley, G T; Britton, Jr, C L [Oak Ridge National Lab., TN (United States); Skubic, P L [Univ. of Oklahoma, Dept. of Physics and Astronomy, Norman, OK (United States)

    1991-10-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular at currents {<=} 1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier. (orig.).

  15. Application of accelerated simulation method on NPN bipolar transistors of different technology

    International Nuclear Information System (INIS)

    Fei Wuxiong; Zheng Yuzhan; Wang Yiyuan; Chen Rui; Li Maoshun; Lan Bo; Cui Jiangwei; Zhao Yun; Lu Wu; Ren Diyuan; Wang Zhikuan; Yang Yonghui

    2010-01-01

    With different radiation methods, ionizing radiation response of NPN bipolar transistors of six different processes was investigated. The results show that the enhanced low dose rate sensitivity obviously exists in NPN bipolar transistors of the six kinds of processes. According to the experiment, the damage of decreasing temperature in step during irradiation is obviously greater than the result of irradiated at high dose rate. This irradiation method can perfectly simulate and conservatively evaluate low dose rate damage, which is of great significance to radiation effects research of bipolar devices. Finally, the mechanisms of the experimental phenomena were analyzed. (authors)

  16. Radiation induced deep level defects in bipolar junction transistors under various bias conditions

    International Nuclear Information System (INIS)

    Liu, Chaoming; Yang, Jianqun; Li, Xingji; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-01-01

    Bipolar junction transistor (BJT) is sensitive to ionization and displacement radiation effects in space. In this paper, 35 MeV Si ions were used as irradiation source to research the radiation damage on NPN and PNP bipolar transistors. The changing of electrical parameters of transistors was in situ measured with increasing irradiation fluence of 35 MeV Si ions. Using deep level transient spectroscopy (DLTS), defects in the bipolar junction transistors under various bias conditions are measured after irradiation. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions can affect the concentration of deep level defects, and the radiation damage induced by heavy ions.

  17. Recent advances in understanding total-dose effects in bipolar transistors

    International Nuclear Information System (INIS)

    Schrimpf, R.D.

    1996-01-01

    Gain degradation in irradiated bipolar transistors can be a significant problem, particularly in linear integrated circuits. In many bipolar technologies, the degradation is greater for irradiation at low dose rates than it is for typical laboratory dose rates. Ionizing radiation causes the base current in bipolar transistors to increase, due to the presence of net positive charge in the oxides covering sensitive device areas and increases in surface recombination velocity. Understanding the mechanisms responsible for radiation-induced gain degradation in bipolar transistors is important in developing appropriate hardness assurance methods. This paper reviews recent modeling and experimental work, with the emphasis on low-dose-rate effects. A promising hardness assurance method based on irradiation at elevated temperatures is described

  18. Validation of Nonlinear Bipolar Transistor Model by Small-Signal Measurements

    DEFF Research Database (Denmark)

    Vidkjær, Jens; Porra, V.; Zhu, J.

    1992-01-01

    A new method for the validity analysis of nonlinear transistor models is presented based on DC-and small-signal S-parameter measurements and realistic consideration of the measurement and de-embedding errors and singularities of the small-signal equivalent circuit. As an example, some analysis...... results for an extended Gummel Poon model are presented in the case of a UHF bipolar power transistor....

  19. An accurate two-dimensional LBIC solution for bipolar transistors

    Science.gov (United States)

    Benarab, A.; Baudrand, H.; Lescure, M.; Boucher, J.

    1988-05-01

    A complete solution of the diffusion problem of carriers generated by a located light beam in the emitter and base region of a bipolar structure is presented. Green's function method and moment method are used to solve the 2-D diffusion equation in these regions. From the Green's functions solution of these equations, the light beam induced currents (LBIC) in the different junctions of the structure due to an extended generation represented by a rectangular light spot; are thus decided. The equations of these currents depend both on the parameters which characterise the structure, surface states, dimensions of the emitter and the base region, and the characteristics of the light spot, that is to say, the width and the wavelength. Curves illustrating the variation of the various LBIC in the base region junctions as a function of the impact point of the light beam ( x0) for different values of these parameters are discussed. In particular, the study of the base-emitter currents when the light beam is swept right across the sample illustrates clearly a good geometrical definition of the emitter region up to base end of the emitter-base space-charge areas and a "whirl" lateral diffusion beneath this region, (i.e. the diffusion of the generated carriers near the surface towards the horizontal base-emitter junction and those created beneath this junction towards the lateral (B-E) junctions).

  20. Combined effects of 60Co dose and high frequency interferences on a discrete bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Raoult, J.; Jarrix, S.; Blain, A.; Dusseau, L.; Hoffmann, P.; Chatry, N.; Calvel, P.

    2012-01-01

    This paper concerns bipolar transistors subject to a double aggression: dose irradiation and high-frequency interference. The electromagnetic interference is injected in a contactless way in the near-field zone around the device. Parameters of the interference are power and frequency, the latter largely out of band of operation of the transistors. The output voltage of the transistor exhibits changes, due to rectification and to some extent to current crowding. The importance of the base bias set-up for the type of change occurring in voltage is displayed. After irradiation with a 60 Co source, the voltage output will change under electromagnetic interference but sometimes in an opposite way as initially measured. The impact of the irradiation with respect to electromagnetic susceptibility is highlighted from a physical point of view. Finally preliminary results of simulation for susceptibility prediction are given and a discussion is given on the limits of the transistor model used. (authors)

  1. Low-frequency noise behavior of polysilicon emitter bipolar junction transistors: a review

    Science.gov (United States)

    Deen, M. Jamal; Pascal, Fabien

    2003-05-01

    For many analog integrated circuit applications, the polysilicon emitter bipolar junction transistor (PE-BJT) is still the preferred choice because of its higher operational frequency and lower noise performance characteristics compared to MOS transistors of similar active areas and at similar biasing currents. In this paper, we begin by motivating the reader with reasons why bipolar transistors are still of great interest for analog integrated circuits. This motivation includes a comparison between BJT and the MOSFET using a simple small-signal equivalent circuit to derive important parameters that can be used to compare these two technologies. An extensive review of the popular theories used to explain low frequency noise results is presented. However, in almost all instances, these theories have not been fully tested. The effects of different processing technologies and conditions on the noise performance of PE-BJTs is reviewed and a summary of some of the key technological steps and device parameters and their effects on noise is discussed. The effects of temperature and emitter geometries scaling is reviewed. It is shown that dispersion of the low frequency noise in ultra-small geometries is a serious issue since the rate of increase of the noise dispersion is faster than the noise itself as the emitter geometry is scaled to smaller values. Finally, some ideas for future research on PE-BJTs, some of which are also applicable to SiGe heteorjunction bipolar transistors and MOSFETs, are presented after the conclusions.

  2. The free electron gas primary thermometer using an ordinary bipolar junction transistor approaches ppm accuracy

    Science.gov (United States)

    Mimila-Arroyo, J.

    2017-06-01

    In this paper, it is demonstrated that the free electron gas primary thermometer based on a bipolar junction transistor is able to provide the temperature with an accuracy of a few parts per million. Its simple functioning principle exploits the behavior of the collector current when properly biased to extract the temperature. Using general purpose silicon transistors at the water triple point (273.16 K) and gallium melting point (302.9146), an accuracy of a few parts per million has been reached, constituting the simplest and the easiest to operate primary thermometer, that might be considered even for the redefinition of Kelvin.

  3. The Bipolar Field-Effect Transistor: XIII. Physical Realizations of the Transistor and Circuits (One-Two-MOS-Gates on Thin-Thick Pure-Impure Base)

    International Nuclear Information System (INIS)

    Sah, C.-T.; Jie Binbin

    2009-01-01

    This paper reports the physical realization of the Bipolar Field-Effect Transistor (BiFET) and its one-transistor basic building block circuits. Examples are given for the one and two MOS gates on thin and thick, pure and impure base, with electron and hole contacts, and the corresponding theoretical current-voltage characteristics previously computed by us, without generation-recombination-trapping-tunneling of electrons and holes. These examples include the one-MOS-gate on semi-infinite thick impure base transistor (the bulk transistor) and the impurethin-base Silicon-on-Insulator (SOI) transistor and the two-MOS-gates on thin base transistors (the FinFET and the Thin Film Transistor TFT). Figures are given with the cross-section views containing the electron and hole concentration and current density distributions and trajectories and the corresponding DC current-voltage characteristics.

  4. One bipolar transistor selector - One resistive random access memory device for cross bar memory array

    Science.gov (United States)

    Aluguri, R.; Kumar, D.; Simanjuntak, F. M.; Tseng, T.-Y.

    2017-09-01

    A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.

  5. Electrical characteristics of SiGe-base bipolar transistors on thin-film SOI substrates

    International Nuclear Information System (INIS)

    Liao, Shu-Hui; Chang, Shu-Tong

    2010-01-01

    This paper, based on two-dimensional simulations, provides a comprehensive analysis of the electrical characteristics of the Silicon germanium (SiGe)-base bipolar transistors on thin-film siliconon-insulator (SOI) substrates. The impact of the buried oxide thickness (T OX ), the emitter width (W E ), and the lateral distance between the edge of the intrinsic base and the reach-through region (L col ) on both the AC and DC device characteristics was analyzed in detail. Regarding the DC characteristics, the simulation results suggest that a thicker T OX gives a larger base-collector breakdown voltage (BV CEO ), whereas reducing the T OX leads to an enhanced maximum electric field at the B-C junction. As for the AC characteristics, cut-off frequency (f T ) increases slightly with increasing buried oxide thickness and finally saturates to a constant value when the buried oxide thickness is about 0.15 μm. The collector-substrate capacitance (C CS ) decreases with increasing buried oxide thickness while the maximum oscillation frequency (f max ) increases with increasing buried oxide thickness. Furthermore, the impact of self-heating effects in the device was analyzed in various areas. The thermal resistance as a function of the buried oxide thickness indicates that the thermal resistance of the SiGe-base bipolar transistor on a SOI substrate is slightly higher than that of a bulk SiGe-base bipolar transistor. The thermal resistance is reduced by ∼37.89% when the emitter width is increased by a factor of 5 for a fixed buried oxide thickness of 0.1 μm. All the results can be used to design and optimize SiGe-base bipolar transistors on SOI substrates with minimum thermal resistance to enhance device performance.

  6. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

    Science.gov (United States)

    2015-02-01

    executed with SolidWorks Flow Simulation , a computational fluid-dynamics code. The graph in Fig. 2 shows the timing and amplitudes of power pulses...defined a convective flow of air perpendicular to the bottom surface of the mounting plate, with a velocity of 10 ft/s. The thermal simulations were...Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210

  7. A novel technique for CAD-optimization of analog circuits with bipolar transistors

    Directory of Open Access Journals (Sweden)

    B. Dimov

    2009-05-01

    Full Text Available In this paper, a novel approach for robust automatic optimization of analog circuits with bipolar transistors is presented. It includes additional formal parameters into the device model cards, which sweep the model parameters smoothly between the different device types. In this way, not only the sizing, but also the choice of the device type is committed to the optimization tool, thus improving the efficiency of the design process significantly.

  8. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon

    KAUST Repository

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Li, Ming-Yang; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L.; Lan, Yann-Wen

    2017-01-01

    High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.

  9. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon

    KAUST Repository

    Lin, Che-Yu

    2017-10-04

    High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.

  10. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon.

    Science.gov (United States)

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L; Lan, Yann-Wen

    2017-11-28

    High-frequency operation with ultrathin, lightweight, and extremely flexible semiconducting electronics is highly desirable for the development of mobile devices, wearable electronic systems, and defense technologies. In this work, the experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe 2 -MoS 2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density, and flexible electronics.

  11. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    Science.gov (United States)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  12. Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors

    Institute of Scientific and Technical Information of China (English)

    Jin Dong-Yue; Zhang Wan-Rong; Chen Liang; Fu Qiang; Xiao Ying; Wang Ren-Qing; Zhao Xin

    2011-01-01

    The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.

  13. Structured-gate organic field-effect transistors

    International Nuclear Information System (INIS)

    Aljada, Muhsen; Pandey, Ajay K; Velusamy, Marappan; Burn, Paul L; Meredith, Paul; Namdas, Ebinazar B

    2012-01-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO 2 ) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends. (paper)

  14. Structured-gate organic field-effect transistors

    Science.gov (United States)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  15. An improved bipolar junction transistor model for electrical and radiation effects

    International Nuclear Information System (INIS)

    Kleiner, C.T.; Messenger, G.C.

    1982-01-01

    The use of bipolar technology in hardened electronic design requires an in-depth understanding of how the Bipolar Junction Transistor (BJT) behaves under normal electrical and radiation environments. Significant improvements in BJT process technology have been reported, and the successful use of sophisticated Computer Aided Design (CAD) tools has aided implementation with respect to specific families of hardened devices. The most advanced BJT model used to date is the Improved Gummel-Poon (IGP) model which is used in CAA programs such as the SPICE II and SLICE programs. The earlier Ebers-Moll model (ref 1 and 2) has also been updated to compare with the older Gummel-Poon model. This paper describes an adaptation of an existing computer model which incorporates the best features of both models into a new, more accurate model called the Improved Bipolar Junction Transistor model. This paper also describes a unique approach to data reduction for the B(I /SUB c/) and V /SUB BE/(ACT) vs I /SUB c/characterizations which has been successfully programmed in Basic using a Commodore PET computer. This model is described in the following sections

  16. Paired structures and bipolar knowledge representation

    DEFF Research Database (Denmark)

    Montero, Javier; Bustince, Humberto; Franco, Camilo

    In this strictly positional paper we propose a general approach to bipolar knowledge representation, where the meaning of concepts can be modelled by examining their decomposition into opposite and neutral categories. In particular, it is the semantic relationship between the opposite categories...... and at the same time the type of neutrality rising in between opposites. Based on this first level of bipolar knowledge representation, paired structures in fact offer the means to characterize a specific bipolar valuation scale depending on the meaning of the concept that has to be verified. In this sense...

  17. Gamma Irradiation Performance Tests of the Bipolar Junction Transistor (BJT) for Medical Dosimetry Purposes

    International Nuclear Information System (INIS)

    Nazififard, Mohammad; Suh, Kune Y.; Faghihi, Reyhaneh; Norov, Enkhbat

    2014-01-01

    Two basic radiation damage mechanisms may affect semiconductor devices which are Displacement damage and Ionization damage. In displacement damage mechanism, the incident radiation displaces silicon atoms from their lattice sites. The resulting defects alter the electronic characteristics of the crystal. In ionization damage mechanism, the absorbed energy by electronic ionization in insulating layers liberates charge carriers, which diffuse or drift to other locations where they are trapped, leading to unintended concentrations of charge and, as a consequence, parasitic fields. Both mechanisms are important in detectors, transistors and integrated circuits. Hardly a system is immune to either one phenomenon and most are sensitive to both. This paper investigates the behavior of Bipolar Junction Transistors (BJTs), exposed to radiation in order to establish their applicability in a radiation environment

  18. Gamma Irradiation Performance Tests of the Bipolar Junction Transistor (BJT) for Medical Dosimetry Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nazififard, Mohammad; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of); Faghihi, Reyhaneh [Kashan Univ. of Medical Science, Kashan (Iran, Islamic Republic of); Norov, Enkhbat [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Two basic radiation damage mechanisms may affect semiconductor devices which are Displacement damage and Ionization damage. In displacement damage mechanism, the incident radiation displaces silicon atoms from their lattice sites. The resulting defects alter the electronic characteristics of the crystal. In ionization damage mechanism, the absorbed energy by electronic ionization in insulating layers liberates charge carriers, which diffuse or drift to other locations where they are trapped, leading to unintended concentrations of charge and, as a consequence, parasitic fields. Both mechanisms are important in detectors, transistors and integrated circuits. Hardly a system is immune to either one phenomenon and most are sensitive to both. This paper investigates the behavior of Bipolar Junction Transistors (BJTs), exposed to radiation in order to establish their applicability in a radiation environment.

  19. Anomalous dose rate effects in gamma irradiated SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Banerjee, G.; Niu, G.; Cressler, J.D.; Clark, S.D.; Palmer, M.J.; Ahlgren, D.C.

    1999-01-01

    Low dose rate (LDR) cobalt-60 (0.1 rad(Si)/s) gamma irradiated Silicon Germanium (SiGe) Heterojunction Bipolar Transistors (HBTs) were studied. Comparisons were made with devices irradiated with 300 rad(Si)/s gamma radiation to verify if LDR radiation is a serious radiation hardness assurance (RHA) issue. Almost no LDR degradation was observed in this technology up to 50 krad(Si). The assumption of the presence of two competing mechanisms is justified by experimental results. At low total dose (le20 krad), an anomalous base current decrease was observed which is attributed to self-annealing of deep-level traps to shallower levels. An increase in base current at larger total doses is attributed to radiation induced generation-recombination (G/R) center generation. Experiments on gate-assisted lateral PNP transistors and 2D numerical simulations using MEDICI were used to confirm these assertions

  20. Collector modulation in high-voltage bipolar transistor in the saturation mode: Analytical approach

    Science.gov (United States)

    Dmitriev, A. P.; Gert, A. V.; Levinshtein, M. E.; Yuferev, V. S.

    2018-04-01

    A simple analytical model is developed, capable of replacing the numerical solution of a system of nonlinear partial differential equations by solving a simple algebraic equation when analyzing the collector resistance modulation of a bipolar transistor in the saturation mode. In this approach, the leakage of the base current into the emitter and the recombination of non-equilibrium carriers in the base are taken into account. The data obtained are in good agreement with the results of numerical calculations and make it possible to describe both the motion of the front of the minority carriers and the steady state distribution of minority carriers across the collector in the saturation mode.

  1. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    Science.gov (United States)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  2. Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor

    Energy Technology Data Exchange (ETDEWEB)

    Curry, M. J. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico 87123 (United States); England, T. D.; Bishop, N. C.; Ten-Eyck, G.; Wendt, J. R.; Pluym, T.; Lilly, M. P.; Carroll, M. S. [Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico 87123 (United States); Carr, S. M. [Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico 87123 (United States)

    2015-05-18

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  3. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Chen, Wei; Yao, Zhibin; Jin, Xiaoming; Liu, Yan; Yang, Shanchao [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Wang, Zhikuan [State Key Laboratory of Analog Integrated Circuit, Chongqing 400060 (China)

    2016-09-21

    A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to do experimental validations and studies on the ionizing/displacement synergistic effects in the lateral PNP bipolar transistor. The individual and mixed irradiation experiments of gamma rays and neutrons are accomplished on the transistors. The common emitter current gain, gate sweep characteristics and sub-threshold sweep characteristics are measured after each exposure. The results indicate that under the sequential irradiation of gamma rays and neutrons, the response of the gate-controlled lateral PNP bipolar transistor does exhibit ionizing/displacement synergistic effects and base current degradation is more severe than the simple artificial sum of those under the individual gamma and neutron irradiation. Enough attention should be paid to this phenomenon in radiation damage evaluation. - Highlights: • A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to facilitate the analysis of ionizing/displacement synergistic effects induced by the mixed irradiation of gamma and neutron. • The difference between ionizing/displacement synergistic effects and the simple sum of TID and displacement effects is analyzed. • The physical mechanisms of synergistic effects are explained.

  4. Lateral n-p-n bipolar transistors by ion implantation into semi-insulating GaAs

    International Nuclear Information System (INIS)

    Canfield, P.; Forbes, L.

    1988-01-01

    GaAs bipolar transistors have not seen the major development effort that GaAs MESFETs have due primarily to the short minority carrier lifetimes in GaAs. The short minority carrier lifetimes require that the base region be very thin which, if done by implantation, requires that the doping be high to obtain a well defined base profile. These requirements are very difficult to achieve in GaAs and typically, if high current gain and high speed are desired for a bipolar technology, then heterostructure bipolars are the appropriate technology, although the cost of heterostructure devices will be prohibitive for some time to come. For applications requiring low current gain, more modest fabrication rules can be followed. Lateral bipolars are particularly attractive since they would be easier to fabricate than a planar bipolar or a heterojunction bipolar. Lateral bipolars do not require steps or deep contacts to make contact with the subcollector or highly doped very thin epilayers for the base region and they can draw upon the semi-insulating properties of the GaAs substrates for device isolation. Bipolar transistors are described and shown to work successfully. (author)

  5. The Aluminum-Free P-n-P InGaAsN Double Heterojunction Bipolar Transistors

    Energy Technology Data Exchange (ETDEWEB)

    CHANG,PING-CHIH; LI,N.Y.; BACA,ALBERT G.; MONIER,C.; LAROCHE,J.R.; HOU,H.Q.; REN,F.; PEARTON,S.J.

    2000-08-01

    The authors have demonstrated an aluminum-free P-n-P GaAs/InGaAsN/GaAs double heterojunction bipolar transistor (DHBT). The device has a low turn-on voltage (V{sub ON}) that is 0.27 V lower than in a comparable P-n-p AlGaAs/GaAs HBT. The device shows near-ideal D. C. characteristics with a current gain ({beta}) greater than 45. The high-speed performance of the device are comparable to a similar P-n-p AlGaAs/GaAs HBT, with f{sub T} and f{sub MAX} values of 12 GHz and 10 GHz, respectively. This device is very suitable for low-power complementary HBT circuit applications, while the aluminum-free emitter structure eliminates issues typically associated with AlGaAs.

  6. An analog front-end bipolar-transistor integrated circuit for the SDC silicon tracker

    International Nuclear Information System (INIS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1994-01-01

    Since 1989 the Solenoidal Detector Collaboration (SDC) has been developing a general purpose detector to be operated at the Superconducting Super Collider (SSC). A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDS silicon tracker. The IC was designed and tested at LBL and was fabricated using AT and T's CBIC-U2, 4 GHz f T complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 μm pitch double-sided silicon strip detector. The chip measures 6.8 mm x 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16nsec time-walk for 1.25 to 10 fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a φ = 10 14 protons/cm 2 have been performed on the JC, demonstrating the radiation hardness of the complementary bipolar process

  7. A study of process-related electrical defects in SOI lateral bipolar transistors fabricated by ion implantation

    Science.gov (United States)

    Yau, J.-B.; Cai, J.; Hashemi, P.; Balakrishnan, K.; D'Emic, C.; Ning, T. H.

    2018-04-01

    We report a systematic study of process-related electrical defects in symmetric lateral NPN transistors on silicon-on-insulator (SOI) fabricated using ion implantation for all the doped regions. A primary objective of this study is to see if pipe defects (emitter-collector shorts caused by locally enhanced dopant diffusion) are a show stopper for such bipolar technology. Measurements of IC-VCE and Gummel currents in parallel-connected transistor chains as a function of post-fabrication rapid thermal anneal cycles allow several process-related electrical defects to be identified. They include defective emitter-base and collector-base diodes, pipe defects, and defects associated with a dopant-deficient region in an extrinsic base adjacent its intrinsic base. There is no evidence of pipe defects being a major concern in SOI lateral bipolar transistors.

  8. Study of an Insulated Gate Bipolar Transistor (IGBT) and its connection in series. Application at a chopper 1500V-5A-10kHz

    International Nuclear Information System (INIS)

    Gros, P.

    1993-01-01

    In the frame of the tokamak ITER (International Thermonuclear Experimental Reactor) we have studied, for neutral particle injection, a converter with at least two static interrupters by Mosfet transistor, bipolar transistor or Insulated Gate Bipolar Transistor (IGBT). After a comparison between these three types of transistors, by the simulating software MICROCAP, a serial of tests has shown the advantages of the IGBT. A command, associated with two IGBT of equivalent characteristics, has given a simple and efficacious solution. The performances are: (1) between two blockages: 50 ns without overvoltage, (2) between two cut-off: 60 ns. 40 figs; 30 refs; 10 annexes

  9. Application of Bipolar Fuzzy Sets in Graph Structures

    Directory of Open Access Journals (Sweden)

    Muhammad Akram

    2016-01-01

    Full Text Available A graph structure is a useful tool in solving the combinatorial problems in different areas of computer science and computational intelligence systems. In this paper, we apply the concept of bipolar fuzzy sets to graph structures. We introduce certain notions, including bipolar fuzzy graph structure (BFGS, strong bipolar fuzzy graph structure, bipolar fuzzy Ni-cycle, bipolar fuzzy Ni-tree, bipolar fuzzy Ni-cut vertex, and bipolar fuzzy Ni-bridge, and illustrate these notions by several examples. We study ϕ-complement, self-complement, strong self-complement, and totally strong self-complement in bipolar fuzzy graph structures, and we investigate some of their interesting properties.

  10. Fluid phase passivation and polymer encapsulation of InP/InGaAs heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Oxland, R K; Rahman, F

    2008-01-01

    This paper reports on the development of effective passivation techniques for improving and stabilizing the characteristics of InP/InGaAs heterojunction bipolar transistors. Two different methods for carrying out sulfur-based surface passivations are compared. These include exposure to gaseous hydrogen sulfide and immersion treatment in an ammonium sulfide solution. The temporal behaviour of effects resulting from such passivation treatments is reported. It is shown that liquid phase passivation has a larger beneficial effect on device performance than gas phase passivation. This is explained in terms of the polarity of passivating species and the exposed semiconductor surface. Finally, device encapsulation in a novel chalcogenide polymer is shown to be effective in preserving the benefits of surface passivation treatments. The relevant properties of this encapsulation material are also discussed

  11. Thermal stability improvement of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations using non-uniform finger spacing

    International Nuclear Information System (INIS)

    Chen Liang; Zhang Wan-Rong; Jin Dong-Yue; Shen Pei; Xie Hong-Yun; Ding Chun-Bao; Xiao Ying; Sun Bo-Tao; Wang Ren-Qing

    2011-01-01

    A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions. (interdisciplinary physics and related areas of science and technology)

  12. A study of s new power semiconductor insulated gate bipolar transistor (IGBT) characteristics and its application to automotive ignition

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1995-05-01

    Assessment has been made of the problem of the on-resistance and temperature effects in the three power transistor combinations, such as Darlington-types or IGBT. The IGBT is a device in which the drain of the MOSFET feeds the bipolar base in monolithic (IC and Power on the same chip) to give it both the MOS and bipolar advantages. The high temperature operating characteristics of the device are discussed and compared to that of power bipolar transistor. Unlike the power bipolar transistor whose operating current density shows current crowding at above forward collector current of 4Amps and forward voltage drop above 0.4V, the IGBT is found to maintain its high current density above forward collector of current 1Amp (or a forward voltage drop above 1.2V). The results also indicate that these devices (IGBTs) can be interdigited (paralleled) without current hogging problems if the forward conduction occurs at forward voltage drops in excess of 1.2V, and this makes it the best candidate for automotive ignition power switches. (author). 20 refs, 10 figs, 1 tab

  13. The effect of fluorine in low thermal budget polysilicon emitters for SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Schiz, F.J.W.

    1999-03-01

    This thesis investigates the behaviour of fluorine in two types of polysilicon emitter. In the first type the emitter is deposited at 610 deg. C as polycrystalline silicon (p-Si). In the second type the emitter is deposited at 560 deg. C as amorphous silicon (α-Si). The amorphous silicon 1 then regrows to polysilicon during subsequent high temperature anneals. Remarkably different behaviour of fluorine is seen in as-deposited α-Si and as-deposited p-Si emitter bipolar transistors. In the most extreme case, fluorine-implanted as-deposited p-Si devices show a base current increase by a factor of 1.5 and equivalent α-Si devices a base current decrease by a factor of 10.0 compared to unimplanted devices. Cross-section TEM observations are made to study the structure of the polysilicon/silicon interface and SIMS measurements to study the distribution of the fluorine in the polysilicon. The TEM results correlate well with the electrical results and show that fluorine accelerates interfacial oxide breakup. Furthermore, they show that for a given thermal budget, more interfacial oxide breakup and thus more epitaxial regrowth is obtained for transistors with p-Si polysilicon emitters. This results in a lower emitter resistance, for example as low as 12Ωμm 2 for as-deposited p-Si devices. The base current suppression for as-deposited α-Si devices is explained by fluorine passivation of trapping states at the interface. Analysis of the fluorine SIMS profiles suggests that they do not resemble normal diffusion profiles, but are due to fluorine trapped at defects. It is shown that a reciprocal relationship exists between the fluorine dose in the bulk polysilicon layer and the fluorine dose at the interface. In as-deposited α-Si devices, there is more fluorine trapped at defects in the bulk polysilicon layer, so less is available to diffuse to the interface. As a result there is less interfacial oxide breakup and more passivation in the as-deposited α-Si devices. These

  14. Effects of microwave pulse-width damage on a bipolar transistor

    International Nuclear Information System (INIS)

    Ma Zhen-Yang; Chai Chang-Chun; Ren Xing-Rong; Yang Yin-Tang; Chen Bin; Zhao Ying-Bo

    2012-01-01

    This paper presents a theoretical study of the pulse-width effects on the damage process of a typical bipolar transistor caused by high power microwaves (HPMs) through the injection approach. The dependences of the microwave damage power, P, and the absorbed energy, E, required to cause the device failure on the pulse width τ are obtained in the nanosecond region by utilizing the curve fitting method. A comparison of the microwave pulse damage data and the existing dc pulse damage data for the same transistor is carried out. By means of a two-dimensional simulator, ISE-TCAD, the internal damage processes of the device caused by microwave voltage signals and dc pulse voltage signals are analyzed comparatively. The simulation results suggest that the temperature-rising positions of the device induced by the microwaves in the negative and positive half periods are different, while only one hot spot exists under the injection of dc pulses. The results demonstrate that the microwave damage power threshold and the absorbed energy must exceed the dc pulse power threshold and the absorbed energy, respectively. The dc pulse damage data may be useful as a lower bound for microwave pulse damage data. (interdisciplinary physics and related areas of science and technology)

  15. Base profile design for high-performance operation of bipolar transistors at liquid-nitrogen temperature

    International Nuclear Information System (INIS)

    Stork, J.M.C.; Harame, D.L.; Meyerson, B.S.; Nguyen, T.N.

    1989-01-01

    The base profile requirements of Si bipolar junction transistors (BJT's) high-performance operation at liquid-nitrogen temperature are examined. Measurements of thin epitaxial-base polysilicon-emitter n-p-n transistors with increasing base doping show the effects of bandgap narrowing, mobility changes, and carrier freezeout. At room temperature the collector current at low injection is proportional to the integrated base charge, independent of the impurity distribution. At temperatures below 150 Κ, however, minority injection is dominated by the peak base doping because of the greater effectiveness of bandgap narrowing. When the peak doping in the base approaches 10 19 cm -3 , the bandgap difference between emitter and base is sufficiently small that the current gain no longer monotonically decreases with lower temperature but instead shows a maximum as low as 180 Κ. The device design window appears limited at the low-current end by increased base-emitter leakage due to tunneling and by resistance control at the high-current end. Using the measured dc characteristics, circuit delay calculations are made to estimate the performance of an ECL ring oscillator at room and liquid-nitrogen temperatures. It is shown that if the base doping can be raised to 10 19 cm -3 while keeping the base thickness constant, the minimum delay at liquid nitrogen can approach the delay of optimized devices at room temperature

  16. Measurement of low-frequency base and collector current noise and coherence in SiGe heterojunction bipolar transistors using transimpedance amplifiers

    NARCIS (Netherlands)

    Bruce, S.P.O.; Vandamme, L.K.J.; Rydberg, A.

    1999-01-01

    Transimpedance amplifiers have been used for direct study of current noise in silicon germanium (SiGe) heterojunction bipolar transistors (HBT's) at different biasing conditions. This has facilitated a wider range of resistances in the measurement circuit around the transistor than is possible when

  17. Effect of germanium concentrations on tunnelling current calculation of Si/Si1-xGex/Si heterojunction bipolar transistor

    Science.gov (United States)

    Hasanah, L.; Suhendi, E.; Khairrurijal

    2018-05-01

    Tunelling current calculation on Si/Si1-xGex/Si heterojunction bipolar transistor was carried out by including the coupling between transversal and longitudinal components of electron motion. The calculation results indicated that the coupling between kinetic energy in parallel and perpendicular to S1-xGex barrier surface affected tunneling current significantly when electron velocity was faster than 1x105 m/s. This analytical tunneling current model was then used to study how the germanium concentration in base to Si/Si1-xGex/Si heterojunction bipolar transistor influenced the tunneling current. It is obtained that tunneling current increased as the germanium concentration given in base decreased.

  18. Silicon-on-Insulator Lateral-Insulated-Gate-Bipolar-Transistor with Built-in Self-anti-ESD Diode

    Directory of Open Access Journals (Sweden)

    Xiaojun Cheng

    2014-05-01

    Full Text Available Power SOI (Silicon-On-Insulator devices have an inherent sandwich structure of MOS (Metal-Oxide-Semiconductor gate which is very easy to suffer ESD (Electro-Static Discharge overstress. To solve this reliability problem, studies on design and modification of a built-in self-anti-ESD diode for a preliminarily optimized high voltage SOI LIGBT (Lateral-Insulated-Gate-Bipolar-Transistor were carried out on the Silvaco TCAD (Technology-Computer-Aided-Design platform. According to the constrains of the technological process, the new introduction of the N+ doped region into P-well region that form the built-in self-anti-ESD diode should be done together with the doping of source under the same mask. The modifications were done by adjusting the vertical impurity profile in P-well into retrograde distribution and designing a cathode plate with a proper length to cover the forward depletion terminal and make sure that the thickness of the cathode plate is the same as that of the gate plate. The simulation results indicate that the modified device structure is compatible with the original one in process and design, the breakdown voltage margin of the former was expanded properly, and both the transient cathode voltages are clamped low enough very quickly. Therefore, the design and optimization results of the modified device structure of the built-in self-anti-ESD diode for the given SOI LIGBT meet the given requirements.

  19. Enhanced low dose rate radiation effect test on typical bipolar devices

    International Nuclear Information System (INIS)

    Liu Minbo; Chen Wei; Yao Zhibin; He Baoping; Huang Shaoyan; Sheng Jiangkun; Xiao Zhigang; Wang Zujun

    2014-01-01

    Two types of bipolar transistors and nine types bipolar integrated circuit were selected in the irradiation experiment at different "6"0Co γ dose rate. The base current of bipolar transistor and input bias current of amplifier and comparator was measured, low dose enhance factor of test device was obtained. The results show that bipolar device have enhanced low dose rate sensitivity, enhancement factor of bipolar integrated circuit was bigger than that of transistor, and enhanced low dose rate sensitivity greatly varied with different structure and process of bipolar device. (authors)

  20. Analysis of collector-emitter offset voltage of InGaP/GaAs composite collector double heterojunction bipolar transistor

    Science.gov (United States)

    Lew, K. L.; Yoon, S. F.

    2002-04-01

    The Ebers-Moll-like terminal current expressions of a composite collector double heterojunction bipolar transistor (DHBT), which takes the recombination effect into account, have been formulated and an expression for collector-emitter offset voltage [VCE(offset)] has been derived. Factors affecting the VCE(offset) of a composite collector DHBT are investigated and good agreement between the calculated and reported experimental results is shown. Analytical results showed that the transmission coefficient of the base-collector (B-C) junction does not have a considerable effect on the VCE(offset), provided that the B-C junction is of good quality. Thus, despite its asymmetric structure, the VCE(offset) of an optimally designed composite collector DHBT could be as low as that of a conventional DHBT. Hence a composite collector DHBT with low saturation voltage and negligible VCE(offset) is possible if the two conditions: (i) good quality B-C junction, (ii) base transport factor, α≈1, are fulfilled.

  1. High-performance indium gallium phosphide/gallium arsenide heterojunction bipolar transistors

    Science.gov (United States)

    Ahmari, David Abbas

    Heterojunction bipolar transistors (HBTs) have demonstrated the high-frequency characteristics as well as the high linearity, gain, and power efficiency necessary to make them attractive for a variety of applications. Specific applications for which HBTs are well suited include amplifiers, analog-to-digital converters, current sources, and optoelectronic integrated circuits. Currently, most commercially available HBT-based integrated circuits employ the AlGaAs/GaAs material system in applications such as a 4-GHz gain block used in wireless phones. As modern systems require higher-performance and lower-cost devices, HBTs utilizing the newer, InGaP/GaAs and InP/InGaAs material systems will begin to dominate the HBT market. To enable the widespread use of InGaP/GaAs HBTs, much research on the fabrication, performance, and characterization of these devices is required. This dissertation will discuss the design and implementation of high-performance InGaP/GaAs HBTs as well as study HBT device physics and characterization.

  2. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    Science.gov (United States)

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Technique for electronic measurement of semi-reduction layer using bipolar transistor of junction

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.; Barros, Fabio R.; Santos, Marcus A.P.; Monte, David S.; Santos, Jose A.P.

    2014-01-01

    Recommendations of the International Commission on Radiological Protection (ICRP), the World Health Organization (WHO) and also of the International Atomic Energy Agency (IAEA) suggest equipment for X-rays diagnosis are checked for conformance to their parameters, such as Layer Semi-Reduction (CSR). The importance of verification of diagnostic radiology in parameters is because of have records that forces patients undergoing radiation doses in some clinics, up to 300% the reference values suggested by international agencies which doses are considered unnecessary, and even harmful, either because of physical or variable greatness of being out of control nominal specification, or the fact of having to repeat the radiographs. In this context, the purpose of this study was an innovative methodology that is the use of bipolar transistor junction (TBJ) to measure the aluminum CSR in diagnostic X-ray equipment beams. Although the TBJ be a device invented in the last century, only in recent years have explored their potential as X-ray sensor applied to diagnosis. The study indicates that the tested device can operating the detection of X-rays is properly polarized with electrical signals that can detect interference of the interaction of X-ray photons with the PN junction formed by the base and emitter terminals. The result of the developed technique was compared to CSR measurements obtained with detection systems standards and it was found that the BJT provides values for aluminum CSR relative errors less than 5%

  4. Influence of the flux density on the radiation damage of bipolar silicon transistors by protons and electrons

    International Nuclear Information System (INIS)

    Bannikov, Y.; Gorin, B.; Kozhevnikov, V.; Mikhnovich, V.; Gusev, L.

    1981-01-01

    It was found experimentally that the radiation damage of bipolar n-p-n transistors increased by a factor of 8--12 when the proton flux density was reduced from 4.07 x 10 10 to 2.5 x 10 7 cm -2 sec -1 . In the case of p-n-p transistors the effect was opposite: there was a reduction in the radiation damage by a factor of 2--3 when the dose rate was lowered between the same limits. A similar effect was observed for electrons but at dose rates three orders of magnitude greater. The results were attributed to the dependences of the radiation defect-forming reactions on the charge state of defects which was influenced by the formation of disordered regions in the case of proton irradiation

  5. Electrical properties of InP/InGaAs heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Ouacha, A.

    1993-01-01

    In recent years, there has been considerable interest in indium phosphide (InP) and In-based III-V compounds because of their applications in many electronic and photonic devices. The issues involved in processing high quality InP-based devices have been widely explored during the last decade. Realization of highly reliable, high speed, and long distance fiber-optics communication systems requires good quality of the material growth, characterization techniques and reproducible device processing concepts. All these three elements should be included in the manufacturing sequence in order to produce devices of high quality. Until recently, most of the InP related technologies and advances have been focused around optical fiber communications (1.3-1.55 μm) where Si and GaAs could not compete. The main obstacle to rapid growth of InP based technology in the 80s was the enormous investment and interest of large companies and commercial research organizations in GaAs technology. Supporting and financing InP related devices and material was at best minimal. As a consequence, there has been a much slower perhaps more realistic development curve for non-optical InP-based devices and technologies. InP technology has survived solely on the basic of its technical performance, despite the financial problems. In this thesis, we investigate the static behaviour of InP/InGaAs heterojunction bipolar transistors (HBTs) which have attracted a significant amount of attention. (20 refs., 5 figs., 3 tabs.)

  6. Characteristics of Novel InGaAsN Double Heterojunction Bipolar Transistors

    Energy Technology Data Exchange (ETDEWEB)

    LI,N.Y.; CHANG,PING-CHIH; BACA,ALBERT G.; LAROCHE,J.R.; REN,F.; ARMOUR,E.; SHARPS,P.R.; HOU,H.Q.

    2000-08-01

    The authors demonstrate, for the first time, both functional Pnp AlGaAs/InGaAsN/GaAs (Pnp InGaAsN) and Npn InGaP/InGaAsN/GaAs (Npn InGaAsN) double heterojunction bipolar transistors (DHBTs) using a 1.2 eV In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} as the base layer for low-power electronic applications. The Pnp InGaAsN DHBT has a peak current gain ({beta}) of 25 and a low turn-on voltage (V{sub ON}) of 0.79 V. This low V{sub ON} is {approximately} 0.25 V lower than in a comparable Pnp AlGAAs/GaAs HBT. For the Npn InGaAsN DHBT, it has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in an InGaP/GaAs HBT. A peak {beta} of 7 with nearly ideal I-V characteristics has been demonstrated. Since GaAs is used as the collector of both Npn and Pnp InGaAsN DHBTs, the emitter-collector breakdown voltage (BV{sub CEO}) are 10 and 12 V, respectively, consistent with the BV{sub CEO} of Npn InGaP/GaAs and Pnp AlGaAs/GaAs HBTs of comparable collector thickness and doping level. All these results demonstrate the potential of InGaAsN DHBTs as an alternative for application in low-power electronics.

  7. Synergetic effects of radiation stress and hot-carrier stress on the current gain of npn bipolar junction transistors

    International Nuclear Information System (INIS)

    Witczak, S.C.; Kosier, S.L.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    The combined effects of ionizing radiation and hot-carrier stress on the current gain of npn bipolar junction transistors were investigated. The analysis was carried out experimentally by examining the consequences of interchanging the order in which the two stress types were applied to identical transistors which were stressed to various levels of damage. The results indicate that the hot-carrier response of the transistor is improved by radiation damage, whereas hot-carrier damage has little effect on subsequent radiation stress. Characterization of the temporal progression of hot-carrier effects revealed that hot-carrier stress acts initially to reduce excess base current and improve current gain in irradiated transistors. PISCES simulations show that the magnitude of the peak electric-field within the emitter-base depletion region is reduced significantly by net positive oxide charges induced by radiation. The interaction of the two stress types is explained in a qualitative model based on the probability of hot-carrier injection determined by radiation damage and on the neutralization and compensation of radiation-induced positive oxide charges by injected electrons. The result imply that a bound on damage due to the combined stress types is achieved when hot-carrier stress precedes any irradiation

  8. A comparative study on electrical characteristics of 1-kV pnp and npn SiC bipolar junction transistors

    Science.gov (United States)

    Okuda, Takafumi; Kimoto, Tsunenobu; Suda, Jun

    2018-04-01

    We investigate the electrical characteristics of 1-kV pnp SiC bipolar junction transistors (BJTs) and compare them with those of npn SiC BJTs. The base resistance, current gain, and blocking capability are characterized. It is found that the base resistance of pnp SiC BJTs is two orders of magnitude lower than that of npn SiC BJTs. However, the obtained current gains are low below unity in pnp SiC BJTs, whereas npn SiC BJTs exhibit a current gain of 14 without surface passivation. The reason for the poor current gain of pnp SiC BJTs is discussed.

  9. Experimental study on short-circuit characteristics of the new protection circuit of insulated gate bipolar transistor

    International Nuclear Information System (INIS)

    Ji, In-Hwan; Choi, Young-Hwan; Ha, Min-Woo; Han, Min-Koo; Choi, Yearn-Ik

    2006-01-01

    A new protection circuit employing the collector to emitter voltage (V CE ) sensing scheme for short-circuit withstanding capability of the insulated gate bipolar transistor (IGBT) is proposed and verified by experimental results. Because the current path between the gate and collector can be successfully eliminated in the proposed protection circuit, the power consumption can be reduced and the gate input impedance can be increased. Previous study is limited to dc characteristics. However, experimental results show that the proposed protection circuit successfully reduces the over-current of main IGBT by 80.4% under the short-circuit condition

  10. On the choice of a head element for low-noise bipolar transistor amplifier

    International Nuclear Information System (INIS)

    Krasnokutskij, R.N.; Kurchaninov, L.L.; Fedyakin, N.N.; Shuvalov, R.S.

    1988-01-01

    The measurement results of equivalent noise charge (ENC) for KT382 transistor depending on detector capacity, formation duration and collector current are given. It is shown that the measurement results for this transistor in good agreement with calculations according to the noise model, time-consuming ENC measurements can be replaced by preliminary transistor rejection according to the distributed base resistance, current gain and simple calculations. In applications in the field of nuclear electronics the KT382 transistor enables to attain the same noise parameters as NE578, NE021 transistors (Japan) and it can be recommended for using as a head element of amplifiers

  11. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    Science.gov (United States)

    Shaheed, M. Reaz

    1995-01-01

    Higher speed at lower cost and at low power consumption is a driving force for today's semiconductor technology. Despite a substantial effort toward achieving this goal via alternative technologies such as III-V compounds, silicon technology still dominates mainstream electronics. Progress in silicon technology will continue for some time with continual scaling of device geometry. However, there are foreseeable limits on achievable device performance, reliability and scaling for room temperature technologies. Thus, reduced temperature operation is commonly viewed as a means for continuing the progress towards higher performance. Although silicon CMOS will be the first candidate for low temperature applications, bipolar devices will be used in a hybrid fashion, as line drivers or in limited critical path elements. Silicon -germanium-base bipolar transistors look especially attractive for low-temperature bipolar applications. At low temperatures, various new physical phenomena become important in determining device behavior. Carrier freeze-out effects which are negligible at room temperature, become of crucial importance for analyzing the low temperature device characteristics. The conventional Pearson-Bardeen model of activation energy, used for calculation of carrier freeze-out, is based on an incomplete picture of the physics that takes place and hence, leads to inaccurate results at low temperatures. Plasma -induced bandgap narrowing becomes more pronounced in device characteristics at low temperatures. Even with modern numerical simulators, this effect is not well modeled or simulated. In this dissertation, improved models for such physical phenomena are presented. For accurate simulation of carrier freeze-out, the Pearson-Bardeen model has been extended to include the temperature dependence of the activation energy. The extraction of the model is based on the rigorous, first-principle theoretical calculations available in the literature. The new model is shown

  12. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion.

    Science.gov (United States)

    Martí, A; Luque, A

    2015-04-22

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.

  13. InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor

    International Nuclear Information System (INIS)

    Chang, P. C.; Baca, A. G.; Li, N. Y.; Xie, X. M.; Hou, H. Q.; Armour, E.

    2000-01-01

    We have demonstrated a functional NpN double-heterojunction bipolar transistor (DHBT) using InGaAsN for the base layer. The InGaP/In 0.03 Ga 0.97 As 0.99 N 0.01 /GaAs DHBT has a low V ON of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs heterojunction bipolar transistor (HBT). The lower turn-on voltage is attributed to the smaller band gap (1.20 eV) of metalorganic chemical vapor deposition-grown In 0.03 Ga 0.97 As 0.99 N 0.01 base layer. GaAs is used for the collector; thus the breakdown voltage (BV CEO ) is 10 V, consistent with the BV CEO of InGaP/GaAs HBTs of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger conduction band discontinuity between InGaAsN and GaAs, a graded InGaAs layer with δ doping is inserted at the base-collector junction. The improved device has a peak current gain of seven with ideal current-voltage characteristics. (c) 2000 American Institute of Physics

  14. Sub-bandgap photonic base current method for characterization of interface states at heterointerfaces in heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Shin, H. T.; Kim, K. H.; Kim, K. S.

    2004-01-01

    In this paper, we propose a novel photonic base current analysis method to characterize the interface states in heterojunction bipolar transistors (HBTs) by using the photonic I-V characteristics under sub-bandgap photonic excitation. For the photonic current-voltage characterization of HBTs, an optical source with a photon energy less than the bandgap energy of Al 0.3 Ga 0.7 As and GaAs (E ph = 0.95 eV g,AlGaAs = 1.79 eV, E g,GaAs = 1.45 eV) is employed for the characterization of the interface states distributed in the photo-responsive energy band (E C - 0.95 ≤ E it ≤ E C ) in emitter-base heterojunction at HBTs. The proposed novel method, which is applied to bipolar junction transistors for the first time, is simple, and an accurate analysis of interface traps in HBTs is possible. By using the photonic base-current and the dark-base-current, we qualitatively analyze the interface trap at the Al 0.3 Ga 0.7 As/GaAs heterojunction interface in HBTs.

  15. An investigation of group IV alloys and their applications in bipolar transistors

    International Nuclear Information System (INIS)

    Anteney, I.M.

    2000-09-01

    This thesis investigates the use of carbon in group IV alloys and their potential uses in bipolar transistors. The first part of the thesis investigates the ability of carbon to suppress transient enhanced diffusion in SiGe heterojunction bipolar transistors, whilst the second part deals with the impact of carbon incorporation on the electrical properties of polycrystalline silicon and silicon-germanium films. A background doping concentration (10 20 cm -3 ) of C has been introduced into the base of SiGe HBTs with the aim of studying the effects of C on TED of B from the base. An electrical method is used to extract the bandgap narrowing in the base of SiGe and SiGe:C HBTs through measurements of the temperature dependence of I c at different C/B reverse biases. The method is very sensitive to small amounts of dopant out-diffusion from the base and hence is ideal for determining the effect of C on TED. Extracted BGN values of 115meV and 173meV were obtained for the SiGe and SiGe:C HBTs respectively, for a C/B reverse bias of 0V. Increasing the C/B reverse bias to 1V increased the extracted BGN of the SiGe HBT to 145meV, but left the SiGe:C value unchanged. This demonstrates that no parasitic energy barrier exists in the SiGe:C HBT and that TED has been suppressed. The effect of carbon position and concentration has been studied by introducing a peak C concentration of 10 20 cm -3 in the collector and 1.1x10 19 cm -3 or 1.5x10 19 cm -3 C in the base. From these measurements it has been shown that TED is only suppressed in the device with 1.5x10 19 cm -3 C in the base, indicating that a C concentration of 1.5x10 19 cm -3 is needed to suppress TED and that the C needs to be co-located with the B profile. The effects of carbon on the electrical properties of polycrystalline Si and SiGe films have been investigated. The resistivity, Hall mobility (μ H ) and effective carrier concentration (N EFF ) of n- and p-type polySi 1-y C y and polySi 0.82-y Ge 0.18 C y layers

  16. Simulation of a spintronic transistor: A study of its performance

    International Nuclear Information System (INIS)

    Pela, R.R.; Teles, L.K.

    2009-01-01

    We study theoretically the magnetic bipolar transistor, and compare its performance with common bipolar transistor. We present not only the simulation results for the characteristic curves, but also other relevant parameters related with its performance, such as: the current amplification factor, the open-loop gain, the hybrid parameters and the cutoff frequency. We noted that the spin-charge coupling introduces new phenomena that enrich the functionality characteristics of the magnetic bipolar transistor. Among other things, it has an adjustable band structure, which may be modified during the device operation; it exhibits the already known spin-voltaic effect. On the other hand, we observed that it is necessary a large g-factor to analyze the influence of the field B over the transistor. Nevertheless, we consider the magnetic bipolar transistor as a promising device for spintronic applications

  17. Materials Growth and Optimization of InP/InGaAs and InAlAs/InGaAs Heterojunction Bipolar Transistor Structures by MOCVD Utilizing Carbon and Zinc Base Layer Dopants

    National Research Council Canada - National Science Library

    Givens, Michael

    1996-01-01

    The work in this Phase I program will examine the effect of base dopant species and various structural modifications on the material properties, device performance, and thermal stability of InP based HBTs...

  18. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    Science.gov (United States)

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  19. MOSFET-BJT hybrid mode of the gated lateral bipolar junction transistor for C-reactive protein detection.

    Science.gov (United States)

    Yuan, Heng; Kwon, Hyurk-Choon; Yeom, Se-Hyuk; Kwon, Dae-Hyuk; Kang, Shin-Won

    2011-10-15

    In this study, we propose a novel biosensor based on a gated lateral bipolar junction transistor (BJT) for biomaterial detection. The gated lateral BJT can function as both a BJT and a metal-oxide-semiconductor field-effect transistor (MOSFET) with both the emitter and source, and the collector and drain, coupled. C-reactive protein (CRP), which is an important disease marker in clinical examinations, can be detected using the proposed device. In the MOSFET-BJT hybrid mode, the sensitivity, selectivity, and reproducibility of the gated lateral BJT for biosensors were evaluated in this study. According to the results, in the MOSFET-BJT hybrid mode, the gated lateral BJT shows good selectivity and reproducibility. Changes in the emitter (source) current of the device for CRP antigen detection were approximately 0.65, 0.72, and 0.80 μA/decade at base currents of -50, -30, and -10 μA, respectively. The proposed device has significant application in the detection of certain biomaterials that require a dilution process using a common biosensor, such as a MOSFET-based biosensor. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effect of random inhomogeneities in the spatial distribution of radiation-induced defect clusters on carrier transport through the thin base of a heterojunction bipolar transistor upon neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Puzanov, A. S.; Obolenskiy, S. V., E-mail: obolensk@rf.unn.ru; Kozlov, V. A. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation)

    2016-12-15

    We analyze the electron transport through the thin base of a GaAs heterojunction bipolar transistor with regard to fluctuations in the spatial distribution of defect clusters induced by irradiation with a fissionspectrum fast neutron flux. We theoretically demonstrate that the homogeneous filling of the working region with radiation-induced defect clusters causes minimum degradation of the dc gain of the heterojunction bipolar transistor.

  1. Extreme Temperature Performance of Automotive-Grade Small Signal Bipolar Junction Transistors

    Science.gov (United States)

    Boomer, Kristen; Damron, Benny; Gray, Josh; Hammoud, Ahmad

    2018-01-01

    Electronics designed for space exploration missions must display efficient and reliable operation under extreme temperature conditions. For example, lunar outposts, Mars rovers and landers, James Webb Space Telescope, Europa orbiter, and deep space probes represent examples of missions where extreme temperatures and thermal cycling are encountered. Switching transistors, small signal as well as power level devices, are widely used in electronic controllers, data instrumentation, and power management and distribution systems. Little is known, however, about their performance in extreme temperature environments beyond their specified operating range; in particular under cryogenic conditions. This report summarizes preliminary results obtained on the evaluation of commercial-off-the-shelf (COTS) automotive-grade NPN small signal transistors over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these transistors and to determine suitability for use outside their recommended temperature limits.

  2. Optically switched graphene/4H-SiC junction bipolar transistor

    Science.gov (United States)

    Chandrashekhar, MVS; Sudarshan, Tangali S.; Omar, Sabih U.; Brown, Gabriel; Shetu, Shamaita S.

    2018-05-08

    A bi-polar device is provided, along with methods of making the same. The bi-polar device can include a semiconductor substrate doped with a first dopant, a semiconductor layer on the first surface of the semiconductor substrate, and a Schottky barrier layer on the semiconductor layer. The method of forming a bi-polar device can include: forming a semiconductor layer on a first surface of a semiconductor substrate, where the semiconductor substrate comprises a first dopant and where the semiconductor layer comprises a second dopant that has an opposite polarity than the first dopant; and forming a Schottky barrier layer on a first portion of the semiconductor layer while leaving a second portion of the semiconductor layer exposed.

  3. Impact of total ionizing dose on the electromagnetic susceptibility of a single bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Jarrix, S.; Raoult, J.; Blain, A.; Dusseau, L.; Chatry, N.; Calvel, P.; Hoffmann, P.

    2012-01-01

    Space or military electronic components are subject to both electromagnetic fields and total ionizing dose. This paper deals with the electromagnetic susceptibility of a discrete low frequency transistor subject to total ionizing dose deposition. The electromagnetic susceptibility is investigated on both non-irradiated and irradiated transistors mounted in common emitter configuration. The change in susceptibility to 100 MHz-1.5 GHz interferences lights up a synergy effect between near field electromagnetic waves and total ionizing dose. Physical mechanisms leading to changes in signal output are detailed. (authors)

  4. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  5. Electrical characterisation of SiGe heterojunction bipolar transistors and Si pseudo-HBTS

    Science.gov (United States)

    De Barros, O.; Le Tron, B.; Woods, R. C.; Giroult-Matlakowski, G.; Vincent, G.; Brémond, G.

    1996-08-01

    This paper reports an electrical characterisation of the emitter-base junction of Si pseudo-HBTs and SiGe HBTs fabricated in a CMOS compatible single polysilicon self-aligned process. From the reverse characteristics it appears that the definition of the emitter-base junction by plasma etching induces peripheral defects that increase the base current of the transistors. Deep level transient spectroscopy measurements show a deep level in the case of SiGe base, whose spatial origin is not fully determinate up to now.

  6. Models for the structure and origin of bipolar nebulae

    International Nuclear Information System (INIS)

    Morris, M.

    1981-01-01

    The appearance of bipolar nebulae-symmetric reflection nebulae centered on evolved, mass-losing stars-can most simply be accounted for in terms of an axisymmetric distribution of outflowing dust in which the dust is concentrated towards an equatorial plane and declines monotonically with latitude above that plane. The symmetrically placed ''horns'' that can be seen radiating out of some bipolar nebulae, notably GL 2688, are a natural consequence of such a dust distribution if, at some latitude, the radial optical depth to starlight falls rapidly below unity. Several models of bipolar nebulae are presented. These structural models for bipolar nebulae lead in turn to an investigation of how such a geometry might arise. Although nonradial pulsation, rotationally forced mass ejection by a single star, and mass loss from a common envelope binary are all considered, the most attractive origin for bipolar nebulae is a binary star system in which the primary is evolving up the red giant branch to the point at which its radius approaches its tidal radius. If this occurs before corotation of the primary with the secondary's orbit can be achieved, then matter from the primary's enveloped can be gravitationally ejected from the system by the secondary, the ejected material being concentrated toward the system's equatorial plane. Numerical models of this phenomenon show that gravitational ejection from an asynchronous binary system easily leads to terminal outflow velocities in the observed range (20--50 km s -1 ), and that the rate of mass loss and the time scale over which the mass ejection takes place are consistent with observations if the particle density in the outer layers of the primary's atmosphere from which the material is extracted is in the range 10 14 --10 15 cm -3 . If this hypothesis is applicable, bipolar nebulae will probably become planetary nebulae, as previously suggested on observational grounds

  7. DC modeling and characterization of AlGaAs/GaAs heterojunction bipolar transistors for high-temperature applications

    International Nuclear Information System (INIS)

    Dikmen, C.T.; Dogan, N.S.; Osman, M.A.

    1994-01-01

    There is currently a demand for active electronic devices operating reliably over wide range of temperatures. Potential applications for the high-temperature devices and integrated circuits are in the areas of jet engine and control instrumentation for nuclear power plants. Here, the large signal dc characteristics of AlGaAs/GaAs heterojunction bipolar transistors (HBT) at high temperatures (27--300 C) are reported. A high-temperature SPICE model is developed which includes the recombination-generation current components and avalanche multiplication which become extremely important at high temperatures. The effect of avalanche breakdown is also included to model the current due to thermal generation of electron/hole pairs causing breakdown at high temperatures. A parameter extraction program is developed used to extract the model parameters of HBT's at different temperatures. Fitting functions for the model parameters as a function of temperature are developed. These parameters are then used in the SPICE Ebers-Moll model for the dc characterization of the HBT at any temperature between (27--300 C)

  8. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder

    Science.gov (United States)

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies. PMID:26412064

  9. Characterization of a power bipolar transistor as high-dose dosimeter for 1.9-2.2 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [ISOF-CNR Institute, Via P. Gobetti 101, I-40129, Bologna (Italy); Lavalle, M.; Corda, U. [ISOF-CNR Institute, Via P. Gobetti 101, I-40129, Bologna (Italy); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France); Gombia, E. [IMEM-CNR Institute, Viale delle Scienze 37 A, Loc. Fontanini, 43010 Parma (Italy)

    2010-04-15

    Results of the characterization studies on a power bipolar transistor investigated as a possible radiation dosimeter under laboratory condition using electron beams of energies from 2.2 to 8.6 MeV and gamma rays from a {sup 60}Co source and tested in industrial irradiation plants having high-activity {sup 60}Co gamma-source and high-energy, high-power electron beam have previously been reported. The present paper describes recent studies performed on this type of bipolar transistor irradiated with 1.9 and 2.2 MeV electron beams in the dose range 5-50 kGy. Dose response, post-irradiation heat treatment and stability, effects of temperature during irradiation in the range from -104 to +22 deg. C, dependence on temperature during reading in the range 20-50 deg. C, and the difference in response of the transistors irradiated from the plastic side and the copper side are reported. DLTS measurements performed on the irradiated devices to identify the recombination centres introduced by radiation and their dependence on dose and energy of the electron beam are also reported.

  10. Electro-Thermo-Mechanical Analysis of High-Power Press-Pack Insulated Gate Bipolar Transistors under Various Mechanical Clamping Conditions

    DEFF Research Database (Denmark)

    Hasmasan, Adrian Augustin; Busca, Cristian; Teodorescu, Remus

    2014-01-01

    With the continuously increasing demand for energy and the limited supply of fossil fuels, renewable power sources are becoming ever more important. Knowing that future energy demand will grow, manufacturers are increasing the size of new wind turbines (WTs) in order to reduce the cost of energy...... production. The reliability of the components has a large impact on the overall cost of a WT, and press-pack (PP) insulated gate bipolar transistors (IGBTs) could be a good solution for future multi-megawatt WTs because of advantages like high power density and reliability. When used in power converters, PP...

  11. Problems posed by the model of bipolar transistor used and the measurement of the parameters associated in the IMAG.1 program

    International Nuclear Information System (INIS)

    Imbrechts, Claude; Le Ber, Jacques

    1969-02-01

    The IMAG-1 program uses, for diodes and transistors, bipolar models of the Ebers and Moll modified type. This model is already used in the US NET.1 program. The object of this paper is essentially to pose the problem of the measurement of the parameters associated with the Ebers and Moll model. However, the authors' ambition is not to solve it but to attract attention to the need to speak the same language to define the model, the methods of measuring the associated parameters and their dispersions in order to better appreciate inaccuracies due to the model's approximations

  12. Analysis of the Nonlinear Characteristics of Microwave Power Heterojunction Bipolar Transistors and Optoelectronic Integrated Circuits.

    Science.gov (United States)

    Samelis, Apostolos

    A physical basis for large-signal HBT modeling was established in terms of transit times using a Monte Carlo analysis of AlGaAs/GaAs and GaInP/GaAs designs. Static carriers located in the collector-subcollector interface were found to prohibit accurate evaluation of transit times from electron velocity profiles. These carriers also influence the bias dependence of device capacitances. Analytical parameter extraction techniques for DC, thermal and high frequency HBT parameters were developed and applied to HBT large-signal modeling. The "impedance block" conditioned optimization technique was introduced to facilitate parameter extraction. Physical analysis of HBTs by means of Volterra Series techniques showed that C_{bc } dominates nonlinear distortion in high gain amplifiers. Designs with that C_{bc }-V_{cb} characteristics i.e. p -n collector HBTs lead to more than 10 dB IP3 improvement over n-collector HBTs. Nonlinear current cancellation was found to improve intermodulation distortion. A Gummel -Poon-based HBT large-signal model incorporating self-heating effects was developed and applied to AlGaAs/GaAs HBTs. Maximum power drive was shown to occur using constant V _{be} father than I_ {b} bias. The device temperature of constant I_{b} biased HBTs decreases at increased rf-drive levels ensuring in this case safer device operation. A large-signal model incorporating "soft" -breakdown effects typical of InP/InGaAs HBTs was developed and found to model succesfully the power characteristics of OEICs built with them. The effective large-signal transimpedance of a cascode transimpedance preamplifier was evaluated using this model and found to degrade by 3dBOmega for a variation of P_{in} from -65 to -5 dBm. Self-bias of individual transistors was studied and found to be related to variations of the amplifier characteristics at higher rf-drive levels. The power characteristics of CE and CB AlGaAs/GaAs HBTs were investigated using an on -wafer source/load pull setup

  13. Design method for a digitally trimmable MOS transistor structure

    DEFF Research Database (Denmark)

    Ning, Feng; Bruun, Erik

    1996-01-01

    A digitally trimmable MOS transistor is a MOS transistor consisting of a drain, a source, and a main gate as well as several subgates. The transconductance of the transistor is tunabledigitally by means of connecting subgates either to the main gate or to the source terminal. In this paper, a sys...

  14. Brain structure and the relationship with neurocognitive functioning in schizophrenia and bipolar disorder : MRI studies

    OpenAIRE

    Hartberg, Cecilie Bhandari

    2011-01-01

    Brain structural abnormalities as well as neurocognitive dysfunction, are found in schizophrenia and in bipolar disorder. Based on the fact that both brain structure and neurocognitive functioning are significantly heritable and affected in both schizophrenia and bipolar disorder, relationships between them are expected. However, previous studies report inconsistent findings. Also, schizophrenia and bipolar disorder are classified as separate disease entities, but demonstrate overlap with reg...

  15. Spectrum and the structure of the bipolar nebula S 106

    Energy Technology Data Exchange (ETDEWEB)

    Solf, J [Max-Planck-Institut fuer Astronomie, Heidelberg (Germany, F.R.)

    1980-12-01

    Optically the compact region S 106 appears as a bipolar nebula with the exciting stellar source located between the lobes and embedded in a flat disk of material of high visual extinction. Associated with the nebula is a massive molecular cloud exhibiting a rotating disk-like structure, the axis of rotation being observed in the same direction as the bipolar axis of the nebula. We analyse new optical and near-infrared spectra obtained with an image-tube spectrograph. The emission line spectrum of both lobes resembles that of the Orion nebula and indicates high electron density throughout. The nebular continuum discovered in both lobes is interpreted as originating from an early-type stellar source between the lobes, and scattered by dust particles coexisting with the ionized gas within the lobes. The Hsub(..cap alpha..) radial velocity field indicates supersonic motion of ionized material flowing radially outward through the lobes. The shape and kinematic structure of the lobes are in qualitative agreement with the predictions of the champagne model of Tenorio-Tagle (1979) applied to the case of star formation near the center of a disk-shaped dense cloud.

  16. Characterization of ionizing radiation effects in MOS structures by study of bipolar operation; Caracterisation des effets induits par irradiations ionisantes dans des structures MOS a partir de leur fonctionnement en regime bipolaire

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiar, H. [Univ. Teknologi Malaysia, Dept. of Physics, Johor (Malaysia); Picard, C.; Brisset, C. [CEA Saclay, Lab. d' Electronique et de Technologie de l' Informatique, LETI, 91 - Gif-sur-Yvette (France); Bakhtiar, H.; Hoffmann, A.; Charles, J.P. [Metz Univ., LICM-CLOES-Supelec, 57 (France)

    1999-07-01

    This work presents an original method to characterize radiation effects of micronic transistors. The characterization includes a study of the transistor substrate-drain junction and current gain variation of the bipolar transistor (drain-substrate-source as emitter-base-collector) for different gate voltages. (author000.

  17. Broad Beam and Ion Microprobe Studies of Single-Event Upsets in High Speed 0.18micron Silicon Germanium Heterojunction Bipolar Transistors and Circuits

    Science.gov (United States)

    Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam

    2003-01-01

    SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT

  18. Genetic structure of personality factors and bipolar disorder in families segregating bipolar disorder.

    Science.gov (United States)

    Hare, Elizabeth; Contreras, Javier; Raventos, Henriette; Flores, Deborah; Jerez, Alvaro; Nicolini, Humberto; Ontiveros, Alfonso; Almasy, Laura; Escamilla, Michael

    2012-02-01

    Bipolar disorder (BPD) has been associated with variations in personality dimensions, but the nature of this relationship has been unclear. In this study, the heritabilities of BPD and the Big Five personality factors and the genetic correlations between BPD and personality factors are reported. The participants in this study were 1073 individuals from 172 families of Mexican or Central American ancestry. Heritabilities and genetic correlations were calculated under a polygenic model using the maximum-likelihood method of obtaining variance components implemented in the SOLAR software package. Heritabilities of 0.49, 0.43, and 0.43 were found for the narrowest phenotype (schizoaffective bipolar and bipolar I), the intermediate phenotype (schizoaffective bipolar, bipolar I, and bipolar II), and the broadest phenotype (schizoaffective bipolar, bipolar I, bipolar II, and recurrent depression), respectively. For the Big Five personality factors, heritabilities were 0.25 for agreeableness, 0.24 for conscientiousness, 0.24 for extraversion, 0.23 for neuroticism, and 0.32 for openness to experience. For the narrowest phenotype, a significant negative correlation (-0.32) with extraversion was found. For the broadest phenotype, negative correlations were found for agreeableness (-0.35), conscientiousness (-0.39), and extraversion (-0.44). A positive correlation (0.37) was found with neuroticism. It is not possible to determine whether aspects of personality are factors in the development of bipolar disorder or vice versa. The short form of the NEO does not provide the ability to examine in detail which facets of extraversion are most closely related to bipolar disorder or to compare our results with studies that have used the long version of the scale. This study establishes a partial genetic basis for the Big Five personality factors in this set of families, while the environmental variances demonstrate that non-genetic factors are also important in their influence on

  19. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  20. Germanium content and base doping level influence on extrinsic base resistance and dynamic performances of SiGe:C heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Ramirez-Garcia, E; Valdez-Monroy, L A; Rodriguez-Mendez, L M; Valdez-Perez, D; Galaz-Larios, M C; Enciso-Aguilar, M A; Zerounian, N; Aniel, F

    2014-01-01

    We describe a reliable technique to separate the different contributions to the apparent base resistance (R B  = R Bx  + X R Bi ) of silicon germanium carbon (SiGe:C) heterojunction bipolar transistors (HBTs). The extrinsic base resistance (R Bx ) is quantified using small-signal measurements. The base-collector junction distribution factor (X) and the intrinsic base resistance (R Bi ) are extracted from high frequency noise (MWN) measurements. This method is applied to five different SiGe:C HBTs varying in base doping level and germanium content. The results show that high doping levels improve high frequency noise performances while germanium gradient helps to maintain outstanding dynamic performances. This method could be used to elucidate the base technological configuration that ensures low noise together with remarkable dynamic performances in state-of-the-art SiGe:C HBTs. (paper)

  1. Procedure to derive analytical models for microwave noise performances of Si/SiGe:C and InP/InGaAs heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Ramirez-Garcia, E; Enciso-Aguilar, M A; Aniel, F P; Zerounian, N

    2013-01-01

    We present a useful procedure to derive simplified expressions to model the minimum noise factor and the equivalent noise resistance of Si/SiGe:C and InP/InGaAs heterojunction bipolar transistors (HBTs). An acceptable agreement between models and measurements at operation frequencies up to 18 GHz and at several bias points is demonstrated. The development procedure includes all the significant microwave noise sources of the HBTs. These relations should be useful to model F min and R n for state-of-the-art IV-IV and III–V HBTs. The method is the first step to derive noise analyses formulas valid for operation frequencies near the unitary current gain frequency (f T ); however, to achieve this goal a necessary condition is to have access to HFN measurements up to this frequency regime. (paper)

  2. On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye–Huckel Limit

    Directory of Open Access Journals (Sweden)

    Weiyu Liu

    2018-02-01

    Full Text Available We present herein a novel method of bipolar field-effect control on DC electroosmosis (DCEO from a physical point of view, in the context of an intelligent and robust operation tool for stratified laminar streams in microscale systems. In this unique design of the DC flow field-effect-transistor (DC-FFET, a pair of face-to-face external gate terminals are imposed with opposite gate-voltage polarities. Diffuse-charge dynamics induces heteropolar Debye screening charge within the diffuse double layer adjacent to the face-to-face oppositely-polarized gates, respectively. A background electric field is applied across the source-drain terminal and forces the face-to-face counterionic charge of reversed polarities into induced-charge electroosmotic (ICEO vortex flow in the lateral direction. The chaotic turbulence of the transverse ICEO whirlpool interacts actively with the conventional plug flow of DCEO, giving rise to twisted streamlines for simultaneous DCEO pumping and ICEO mixing of fluid samples along the channel length direction. A mathematical model in thin-layer approximation and the low-voltage limit is subsequently established to test the feasibility of the bipolar DC-FFET configuration in electrokinetic manipulation of fluids at the micrometer dimension. According to our simulation analysis, an integrated device design with two sets of side-by-side, but upside-down gate electrode pair exhibits outstanding performance in electroconvective pumping and mixing even without any externally-applied pressure difference. Moreover, a paradigm of a microdevice for fully electrokinetics-driven analyte treatment is established with an array of reversed bipolar gate-terminal pairs arranged on top of the dielectric membrane along the channel length direction, from which we can obtain almost a perfect liquid mixture by using a smaller magnitude of gate voltages for causing less detrimental effects at a small Dukhin number. Sustained by theoretical

  3. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  4. Contribution to the study of fluctuations in transistors (bipolar and junction field effect types); Contribution a l'etude des fluctuations dans les transistors (bipolaires et a effet champ a jonctions)

    Energy Technology Data Exchange (ETDEWEB)

    Borel, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    A brief review of the basic theory of fluctuations in semiconductors is given: shot, thermal low frequency noise. A measuring set has been built to draw noise spectrums (current or voltage). Noise parameters of bipolar transistors are given, mainly noise voltage. Noise current, noise factor and correlation between noise sources are also calculated. Measurements of noise parameters fit well with theory for various devices made in different technologies: alloyed, mesa, planar. Then we give results of the calculation of noise parameters in a FET starting from a simplified model of the device. Low frequency noise is taken into account. Measurements of the parameters and of the spectrum agree fairly well with the theory. Studies of low frequency noise versus temperature give the density and energy of traps located in the space charge layers and an idea of the impurity encountered in these space charge layers. [French] On rappelle les notions de base de la theorie des fluctuations dans les semiconducteurs: bruit de grenaille, bruit thermique, bruit basse frequence. Un appareillage mis au point pour tracer un spectre de bruit est decrit. On presente ensuite le calcul des parametres de bruit d'un transistor bipolaire en insistant plus particulierement sur la tension de bruit ramenee a l'entree de l'element. Le courant de bruit, le facteur de bruit et la correlation entre les sources de bruit sont calcules. La mesure des parametres de bruit est faite sur divers elements realises dans diverses technologies: alliee, mesa et plane. Les mesures confirment tres bien la theorie. On presente ensuite le calcul des parametres de bruit d'un transistor a effet de champ en definissant un schema equivalent simple de l'element. Le calcul theorique des fluctuations basse frequence est aussi fait. La mesure du spectre de bruit confirme tres bien les calculs theoriques. L'etude du bruit basse frequence en fonction de la temperature permet de remonter a la densite et a l'energie des pieges

  5. The Fault Detection, Localization, and Tolerant Operation of Modular Multilevel Converters with an Insulated Gate Bipolar Transistor (IGBT Open Circuit Fault

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-04-01

    Full Text Available Reliability is one of the critical issues for a modular multilevel converter (MMC since it consists of a large number of series-connected power electronics submodules (SMs. In this paper, a complete control strategy including fault detection, localization, and tolerant operation is proposed for the MMC under an insulated gate bipolar transistor (IGBT open circuit fault. According to the output characteristics of the SM with the open-circuit fault of IGBT, a fault detection method based on the circulating current and output current observation is used. In order to further precisely locate the position of the faulty SM, a fault localization method based on the SM capacitor voltage observation is developed. After the faulty SM is isolated, the continuous operation of the converter is ensured by adopting the fault-tolerant strategy based on the use of redundant modules. To verify the proposed fault detection, fault localization, and fault-tolerant operation strategies, a 900 kVA MMC system under the conditions of an IGBT open circuit is developed in the Matlab/Simulink platform. The capabilities of rapid detection, precise positioning, and fault-tolerant operation of the investigated detection and control algorithms are also demonstrated.

  6. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology

    International Nuclear Information System (INIS)

    Li Ou-Peng; Zhang Yong; Xu Rui-Min; Cheng Wei; Wang Yuan; Niu Bing; Lu Hai-Yan

    2016-01-01

    Design and characterization of a G-band (140–220 GHz) terahertz monolithic integrated circuit (TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm InGaAs/InP double heterojunction bipolar transistor (DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the InP substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are −2.688 dBm at 210 GHz and −2.88 dBm at 220 GHz, respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. (paper)

  7. Effects of irradiation on device characteristics of transistor structures based on AlGaN/GaN

    International Nuclear Information System (INIS)

    Kargin, N.I.; Gromov, D.V.; Kuznetsov, A.L.; Grekhov, M.M.

    2014-01-01

    A technologic scheme was developed, and transistor structures, based on hetero-structures AlGaN/GaN, were made. Current-voltage characteristics of the transistor structures and current-amplification and power-amplification cutoff frequencies have been presented in the paper [ru

  8. Brain structure in schizophrenia vs. psychotic bipolar I disorder: A VBM study.

    Science.gov (United States)

    Nenadic, Igor; Maitra, Raka; Langbein, Kerstin; Dietzek, Maren; Lorenz, Carsten; Smesny, Stefan; Reichenbach, Jürgen R; Sauer, Heinrich; Gaser, Christian

    2015-07-01

    While schizophrenia and bipolar disorder have been assumed to share phenotypic and genotypic features, there is also evidence for overlapping brain structural correlates, although it is unclear whether these relate to shared psychotic features. In this study, we used voxel-based morphometry (VBM8) in 34 schizophrenia patients, 17 euthymic bipolar I disorder patients (with a history of psychotic symptoms), and 34 healthy controls. Our results indicate that compared to healthy controls schizophrenia patients show grey matter deficits (pright dorsolateral prefrontal, as well as bilaterally in ventrolateral prefrontal and insular cortical areas, thalamus (bilaterally), left superior temporal cortex, and minor medial parietal and parietooccipital areas. Comparing schizophrenia vs. bipolar I patients (pleft dorsolateral prefrontal cortex, and left cerebellum. Compared to healthy controls, the deficits in bipolar I patients only reached significance at prights reserved.

  9. Electric field with bipolar structure during magnetic reconnection without a guide field

    Science.gov (United States)

    Guo, Jun

    2014-05-01

    We present a study on the polarized electric field during the collisionless magnetic reconnection of antiparallel fields using two dimensional particle-in-cell simulations. The simulations demonstrate clearly that electron holes and electric field with bipolar structure are produced during magnetic reconnection without a guide field. The electric field with bipolar structure can be found near the X-line and on the separatrix and the plasma sheet boundary layer, which is consistent with the observations. These structures will elongate electron's time staying in the diffusion region. In addition, the electric fields with tripolar structures are also found in our simulation.

  10. Factor analysis of regional brain activation in bipolar and healthy individuals reveals a consistent modular structure.

    Science.gov (United States)

    Fleck, David E; Welge, Jeffrey A; Eliassen, James C; Adler, Caleb M; DelBello, Melissa P; Strakowski, Stephen M

    2018-07-01

    The neurophysiological substrates of cognition and emotion, as seen with fMRI, are generally explained using modular structures. The present study was designed to probe the modular structure of cognitive-emotional processing in bipolar and healthy individuals using factor analysis and compare the results with current conceptions of the neurophysiology of bipolar disorder. Exploratory factor analysis was used to assess patterns of covariation among brain regions-of-interest activated during the Continuous Performance Task with Emotional and Neutral Distractors in healthy and bipolar individuals without a priori constraints on the number or composition of latent factors. Results indicated a common cognitive-emotional network consisting of prefrontal, medial temporal, limbic, parietal, anterior cingulate and posterior cingulate modules. However, reduced brain activation to emotional stimuli in the frontal, medial temporal and limbic modules was apparent in the bipolar relative to the healthy group, potentially accounting for emotional dysregulation in bipolar disorder. This study is limited by a relatively small sample size recruited at a single site. The results have yet to be validated on a larger independent sample. Although the modular structure of cognitive-emotional processing is similar in bipolar and healthy individuals, activation in response to emotional/neutral cues varies. These findings are not only consistent with recent conceptions of mood regulation in bipolar disorder, but also suggest that regional activation can be considered within tighter modular structures without compromising data interpretation. This demonstration may serve as a template for data reduction in future region-of-interest analyses to increase statistical power. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  12. The bipolar silicon microstrip detector: A proposal for a novel precision tracking device

    International Nuclear Information System (INIS)

    Horisberger, R.

    1990-01-01

    It is proposed to combine the technology of fully depleted microstrip detectors fabricated on n doped high resistivity silicon with the concept of the bipolar transistor. This is done by adding a n ++ doped region inside the normal p + implanted region of the reverse biased p + n diode. The resulting structure has amplifying properties and is referred to as bipaolar pixel transistor. The simplest readout scheme of a bipolar pixel array by an aluminium strip bus leads to the bipolar microstrip detector. The bipolar pixel structure is expected to give a better signal-to-noise performance for the detection of minimum ionizing charged particle tracks than the normal silicon diode strip detector and therefore should allow in future the fabrication of thinner silicon detectors for precision tracking. (orig.)

  13. Structural brain network analysis in families multiply affected with bipolar I disorder

    NARCIS (Netherlands)

    Forde, Natalie J.; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J.; Cannon, Dara M.; Murray, Robin M.; McDonald, Colm

    2015-01-01

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its

  14. Abnormal white matter integrity as a structural endophenotype for bipolar disorder.

    Science.gov (United States)

    Sarıçiçek, A; Zorlu, N; Yalın, N; Hıdıroğlu, C; Çavuşoğlu, B; Ceylan, D; Ada, E; Tunca, Z; Özerdem, A

    2016-05-01

    Several lines of evidence suggest that bipolar disorder (BD) is associated with white matter (WM) pathology. Investigation of unaffected first-degree relatives of BD patients may help to distinguish structural biomarkers of genetic risk without the confounding effects of burden of illness, medication or clinical state. In the present study, we applied tract-based spatial statistics to study WM changes in patients with BD, unaffected siblings and controls. A total of 27 euthymic patients with BD type I, 20 unaffected siblings of bipolar patients and 29 healthy controls who did not have any current or past diagnosis of Axis I psychiatric disorders were enrolled in the study. Fractional anisotropy (FA) was significantly lower in BD patients than in the control group in the corpus callosum, fornix, bilateral superior longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, anterior thalamic radiation, posterior thalamic radiation, cingulum, uncinate fasciculus, superior corona radiata, anterior corona radiata and left external capsule. In region-of-interest (ROI) analyses, we found that both unaffected siblings and bipolar patients had significantly reduced FA in the left posterior thalamic radiation, the left sagittal stratum, and the fornix compared with healthy controls. Average FA for unaffected siblings was intermediate between the healthy controls and bipolar patients within these ROIs. Decreased FA in the fornix, left posterior thalamic radiation and left sagittal stratum in both bipolar patients and unaffected siblings may represent a potential structural endophenotype or a trait-based marker for BD.

  15. Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder.

    Science.gov (United States)

    Amann, B L; Canales-Rodríguez, E J; Madre, M; Radua, J; Monte, G; Alonso-Lana, S; Landin-Romero, R; Moreno-Alcázar, A; Bonnin, C M; Sarró, S; Ortiz-Gil, J; Gomar, J J; Moro, N; Fernandez-Corcuera, P; Goikolea, J M; Blanch, J; Salvador, R; Vieta, E; McKenna, P J; Pomarol-Clotet, E

    2016-01-01

    Brain structural changes in schizoaffective disorder, and how far they resemble those seen in schizophrenia and bipolar disorder, have only been studied to a limited extent. Forty-five patients meeting DSM-IV and RDC criteria for schizoaffective disorder, groups of patients with 45 matched schizophrenia and bipolar disorder, and 45 matched healthy controls were examined using voxel-based morphometry (VBM). Analyses comparing each patient group with the healthy control subjects found that the patients with schizoaffective disorder and the patients with schizophrenia showed widespread and overlapping areas of significant volume reduction, but the patients with bipolar disorder did not. A subsequent analysis compared the combined group of patients with the controls followed by extraction of clusters. In regions where the patients differed significantly from the controls, no significant differences in mean volume between patients with schizoaffective disorder and patients with schizophrenia in any of five regions of volume reduction were found, but mean volumes in the patients with bipolar disorder were significantly smaller in three of five. The findings provide evidence that, in terms of structural gray matter brain abnormality, schizoaffective disorder resembles schizophrenia more than bipolar disorder. © 2015 The Authors. Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  16. Contribution to the study of the behaviour of silicon planar transistors exposed to the {sup 60}Co {gamma} rays; Contribution a l'etude du comportement des transistors silicium a structure plane soumis aux rayons {gamma} du {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Le Ber, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-05-15

    This report gives an account of studies carried out on bipolar silicon planar transistors irradiated by {sup 60}Co {gamma} rays. The author describes the interactions on the matter of the different types of particles and he gives a brief bibliographical recall of foreign studies. The technological structure of the planar transistors is then described in order to help the understanding of the phenomena, general comments are made about the choice of measured parameters and on the statistical interpretation of results. An automatic instrument for the measurement of the gain is described and the reproducibility of the results is stated The complexity of the problem and the difficulty to predict the behaviour of the semiconductors components are clearly shown. It is stated that the observed dispersions depend on: - the electrical bias during irradiation - the injection level in the emitter-base junction during the measurement - the manufacturer for a given type - the instantaneous dose rate - the geometry used The problem is then examined from the reliability point of view and methods are given to evaluate the reliability for a given dose - 'Worst case' method - moment method - Monte Carlo method. (author) [French] Ce rapport rend compte du travail effectue sur les transistors bipolaires au silicium irradies au rayons {gamma} du cobalt 60. On passe en revue les mecanismes d'interaction des differents rayonnements avec la matiere et on fait un bref rappel bibliographique des etudes effectuees a l'etranger. On decrit ensuite la structure technologique du transistor pour aider a la comprehension des phenomenes, puis on donne des generalites sur le choix des parametres mesures et l'interpretation statistique des resultats. On decrit l'ensemble du systeme de mesure de gain et on s'attache a montrer la reproductibilite des mesures. Les resultats experimentaux mentionnes etablissent clairement la complexite du probleme et la difficulte qu'il y a de faire des previsions. On

  17. The validity and internal structure of the Bipolar Depression Rating Scale: data from a clinical trial of N-acetylcysteine as adjunctive therapy in bipolar disorder.

    Science.gov (United States)

    Berk, Michael; Dodd, Seetal; Dean, Olivia M; Kohlmann, Kristy; Berk, Lesley; Malhi, Gin S

    2010-10-01

    Berk M, Dodd S, Dean OM, Kohlmann K, Berk L, Malhi GS. The validity and internal structure of the Bipolar Depression Rating Scale: data from a clinical trial of N-acetylcysteine as adjunctive therapy in bipolar disorder. The phenomenology of unipolar and bipolar disorders differ in a number of ways, such as the presence of mixed states and atypical features. Conventional depression rating instruments are designed to capture the characteristics of unipolar depression and have limitations in capturing the breadth of bipolar disorder. The Bipolar Depression Rating Scale (BDRS) was administered together with the Montgomery Asberg Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) in a double-blind randomised placebo-controlled clinical trial of N-acetyl cysteine for bipolar disorder (N = 75). A factor analysis showed a two-factor solution: depression and mixed symptom clusters. The BDRS has strong internal consistency (Cronbach's alpha = 0.917), the depression cluster showed robust correlation with the MADRS (r = 0.865) and the mixed subscale correlated with the YMRS (r = 0.750). The BDRS has good internal validity and inter-rater reliability and is sensitive to change in the context of a clinical trial.

  18. Personality in proportion : A bipolar proportional scale for personality assessments and its consequences for trait structure

    NARCIS (Netherlands)

    Hofstee, W.K.B.; Ten Berge, J.M.F.

    2004-01-01

    Trait structures resulting from personality assessments on Likert scales are affected by the additive and multiplicative transformations implied in interval scaling and correlational analysis. The effect comes into view on selecting a plausible alternative scale. To this end, we propose a bipolar

  19. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    Science.gov (United States)

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family

  20. Evolution of the MOS transistor - From conception to VLSI

    International Nuclear Information System (INIS)

    Sah, C.T.

    1988-01-01

    Historical developments of the metal-oxide-semiconductor field-effect-transistor (MOSFET) during the last sixty years are reviewed, from the 1928 patent disclosures of the field-effect conductivity modulation concept and the semiconductor triodes structures proposed by Lilienfeld to the 1947 Shockley-originated efforts which led to the laboratory demonstration of the modern silicon MOSFET thirty years later in 1960. A survey is then made of the milestones of the past thirty years leading to the latest submicron silicon logic CMOS (Complementary MOS) and BICMOS (Bipolar-Junction-Transistor CMOS combined) arrays and the three-dimensional and ferroelectric extensions of Dennard's one-transistor dynamic random access memory (DRAM) cell. Status of the submicron lithographic technologies (deep ultra-violet light, X-ray, electron-beam) are summarized. Future trends of memory cell density and logic gate speed are projected. Comparisons of the switching speed of the silicon MOSFET with that of silicon bipolar and GaAs field-effect transistors are reviewed. Use of high-temperature superconducting wires and GaAs-on-Si monolithic semiconductor optical clocks to break the interconnect-wiring delay barrier is discussed. Further needs in basic research and mathematical modeling on the failure mechanisms in submicron silicon transistors at high electric fields (hot electron effects) and in interconnection conductors at high current densities and low as well as high electric fields (electromigration) are indicated

  1. Si/Ge hetero-structure nanotube tunnel field effect transistor

    KAUST Repository

    Hanna, A. N.

    2015-01-07

    We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd-=-1-V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60-mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5-V.

  2. Si/Ge hetero-structure nanotube tunnel field effect transistor

    KAUST Repository

    Hanna, A. N.; Hussain, Muhammad Mustafa

    2015-01-01

    We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd-=-1-V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60-mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5-V.

  3. SnTe field effect transistors and the anomalous electrical response of structural phase transition

    International Nuclear Information System (INIS)

    Li, Haitao; Zhu, Hao; Yuan, Hui; Li, Qiliang; You, Lin; Kopanski, Joseph J.; Richter, Curt A.; Zhao, Erhai

    2014-01-01

    SnTe is a conventional thermoelectric material and has been newly found to be a topological crystalline insulator. In this work, back-gate SnTe field-effect transistors have been fabricated and fully characterized. The devices exhibit n-type transistor behaviors with excellent current-voltage characteristics and large on/off ratio (>10 6 ). The device threshold voltage, conductance, mobility, and subthreshold swing have been studied and compared at different temperatures. It is found that the subthreshold swings as a function of temperature have an apparent response to the SnTe phase transition between cubic and rhombohedral structures at 110 K. The abnormal and rapid increase in subthreshold swing around the phase transition temperature may be due to the soft phonon/structure change which causes the large increase in SnTe dielectric constant. Such an interesting and remarkable electrical response to phase transition at different temperatures makes the small SnTe transistor attractive for various electronic devices.

  4. POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING THERMOELECTRIC EVENTS IN LIGHT-EMITTING BIPOLAR SEMICONDUCTOR STRUCTURES

    Directory of Open Access Journals (Sweden)

    P. A. Magomedova

    2017-01-01

    Full Text Available Objective. The development of light-emitting bipolar semiconductor structures having a low level of parasitic heat release.Methods. A method for converting thermoelectric heat in bipolar semiconductor structures into optical radiation to divert the excess energy into the environment was developed. At the same time, the cooling effect on thermoelectric junctions remains. Instead of an inertial process of conductive or convective heat transfer, practically instantaneous heat removal from electronic components to the environment takes place.Results. As a result, light-emitting bipolar semiconductor structures will allow more powerful devices with greater speed and degree of integration to be created. It is possible to produce transparent LED matrices with a two-way arrangement of transparent solar cells and mirror metal electrodes along the perimeter. When current is applied, the LED matrix on one of the transitions will absorb thermal energy; on other electrodes, it will emit radiation that is completely recovered into electricity by means of transparent solar cells following repeated reflection between the mirror electrodes. The low efficiency of solar cells will be completely compensated for with the multiple passages of photons through these batteries.Conclusion. Light-emitting bipolar semiconductor structures will not only improve the reliability of electronic components in a wide range of performance characteristics, but also improve energy efficiency through the use of optical radiation recovery. Semiconductor thermoelectric devices using optical phenomena in conjunction with the Peltier effect allow a wide range of energy-efficient components of radio electronic equipment to be realised, both for discrete electronics and for microsystem techniques. Systems for obtaining ultra-low temperatures in order to achieve superconductivity are of particular value. 

  5. Relationship between structural abnormalities in the cerebellum and dementia, posttraumatic stress disorder and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Leonardo Baldaçara

    Full Text Available ABSTRACT. New evidence suggests that the cerebellum has structural and functional abnormalities in psychiatric disorders. Objective: In this research, the goal was to measure the volume of the cerebellum and its subregions in individuals with psychiatric disorders and to relate these findings to their symptoms. Methods: Patients with different degrees of cognitive impairment (Epidemiology of the Elderly - UNIFESP and patients with post-traumatic stress disorder (PTSD from population studies were analyzed. Also, patients with bipolar disorder from an outpatient clinic (Center for the Study of Mood and Anxiety Disorders, Universidade Federal da Bahia were recruited for this study. All subjects underwent a 1.5T structural magnetic resonance scan. Volumetric measures and symptom measurements, by psychometric scales, were performed and compared between patients and controls. Results: The cerebellum volume was reduced in patients with cognitive impairment without dementia and with dementia, in patients with PTSD, and in patients with bipolar disorder compared to controls. In dementia and PTSD, the left cerebellar hemisphere and vermis volume were reduced. In bipolar disorder, volumes of both hemispheres and the vermis were reduced. In the first two studies, these cerebellar volumetric reductions correlated with symptoms of the disease. Conclusion: The exact nature of cerebellar involvement in mental processes is still not fully understood. However, abnormalities in cerebellar structure and its functions have been reported in some of these diseases. Future studies with larger samples are needed to clarify these findings and investigate whether they are important for treatment and prognosis.

  6. Relationship between structural abnormalities in the cerebellum and dementia, posttraumatic stress disorder and bipolar disorder.

    Science.gov (United States)

    Baldaçara, Leonardo; Borgio, João Guilherme Fiorani; Araújo, Célia; Nery-Fernandes, Fabiana; Lacerda, Acioly Luiz Taveres; Moraes, Walter André Dos Santos; Montaño, Maria Beatriz Marcondes Macedo; Rocha, Marlos; Quarantini, Lucas C; Schoedl, Aline; Pupo, Mariana; Mello, Marcelo F; Andreoli, Sergio B; Miranda-Scippa, Angela; Ramos, Luiz Roberto; Mari, Jair J; Bressan, Rodrigo Affonseca; Jackowski, Andrea Parolin

    2012-01-01

    New evidence suggests that the cerebellum has structural and functional abnormalities in psychiatric disorders. In this research, the goal was to measure the volume of the cerebellum and its subregions in individuals with psychiatric disorders and to relate these findings to their symptoms. Patients with different degrees of cognitive impairment (Epidemiology of the Elderly - UNIFESP) and patients with post-traumatic stress disorder (PTSD) from population studies were analyzed. Also, patients with bipolar disorder from an outpatient clinic (Center for the Study of Mood and Anxiety Disorders, Universidade Federal da Bahia) were recruited for this study. All subjects underwent a 1.5T structural magnetic resonance scan. Volumetric measures and symptom measurements, by psychometric scales, were performed and compared between patients and controls. The cerebellum volume was reduced in patients with cognitive impairment without dementia and with dementia, in patients with PTSD, and in patients with bipolar disorder compared to controls. In dementia and PTSD, the left cerebellar hemisphere and vermis volume were reduced. In bipolar disorder, volumes of both hemispheres and the vermis were reduced. In the first two studies, these cerebellar volumetric reductions correlated with symptoms of the disease. The exact nature of cerebellar involvement in mental processes is still not fully understood. However, abnormalities in cerebellar structure and its functions have been reported in some of these diseases. Future studies with larger samples are needed to clarify these findings and investigate whether they are important for treatment and prognosis.

  7. Effect of ion-beam gettering on the GaAs transistor structure parameters under neutron irradiation

    International Nuclear Information System (INIS)

    Obolenskij, S.V.; Skupov, V.D.

    2000-01-01

    It is established that the neutron irradiation negative effect on the parameters of the field transistors with the Schottky shut-off on the basis of the epitaxial gallium arsenide is essentially reduced when the argon ions are preliminary implanted into structure on the substrate side. The above effect is explained through remotely controlled gettering by ion irradiation of admixtures and defects in the transistor active areas related with origination of deep levels under the neutron fluence [ru

  8. A new structure for a superconducting field effect transistor

    International Nuclear Information System (INIS)

    Tyc, S.; Schuhl, A.

    1992-01-01

    In this paper a new structure is proposed and described which can solve the most severe drawbacks of current architectures for Josephson FETs. Its advantages are discussed, and several realizations are suggested

  9. Investigation of Impact of the Gate Circuitry on IGBT Transistor Dynamic Parameters

    Directory of Open Access Journals (Sweden)

    Vytautas Bleizgys

    2011-03-01

    Full Text Available The impact of Insulated Gate Bipolar Transistor driver circuit parameters on the rise and fall time of the collector current and voltage collector-emitter was investigated. The influence of transistor driver circuit parameters on heating of Insulated Gate Bipolar Transistors was investigated as well.Article in Lithuanian

  10. Dielectric strength of SiO2 in a CMOS transistor structure

    International Nuclear Information System (INIS)

    Soden, J.M.

    1979-01-01

    The distribution of experimental dielectric strengths of SiO 2 gate dielectric in a CMOS transistor structure is shown to be composed of a primary, statistically-normal distribution of high dielectric strength and a secondary distribution spread through the lower dielectric strength region. The dielectric strength was not significantly affected by high level (1 x 10 6 RADS (Si)) gamma radiation or high temperature (200 0 C) stress. The primary distribution breakdowns occurred at topographical edges, mainly at the gate/field oxide interface, and the secondary distribution breakdowns occurred at random locations in the central region of the gate

  11. A New XOR Structure Based on Resonant-Tunneling High Electron Mobility Transistor

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Sharifi

    2009-01-01

    Full Text Available A new structure for an exclusive-OR (XOR gate based on the resonant-tunneling high electron mobility transistor (RTHEMT is introduced which comprises only an RTHEMT and two FETs. Calculations are done by utilizing a new subcircuit model for simulating the RTHEMT in the SPICE simulator. Details of the design, input, and output values and margins, delay of each transition, maximum operating frequency, static and dynamic power dissipations of the new structure are discussed and calculated and the performance is compared with other XOR gates which confirm that the presented structure has a high performance. Furthermore, to the best of authors' knowledge, it has the least component count in comparison to the existing structures.

  12. Correlating charge transport to structure in deconstructed diketopyrrolopyrrole oligomers: A case study of a monomer in field-effect transistors

    DEFF Research Database (Denmark)

    Pickett, Alec; Torkkeli, Mika; Mukhopadhyay, Tushita

    2018-01-01

    Copolymers based on diketopyrrolopyrrole (DPP) cores have attracted a lot of attention due to their high p-type as well as n-type carrier mobilities in organic field-effect transistors (FETs) and high power conversion efficiencies in solar cell structures. We report the structural and charge tran...

  13. An optically controlled SiC lateral power transistor based on SiC/SiCGe super junction structure

    International Nuclear Information System (INIS)

    Pu Hongbin; Cao Lin; Ren Jie; Chen Zhiming; Nan Yagong

    2010-01-01

    An optically controlled SiC/SiCGe lateral power transistor based on superjunction structure has been proposed, in which n-SiCGe/p-SiC superjunction structure is employed to improve device figure of merit. Performance of the novel optically controlled power transistor was simulated using Silvaco Atlas tools, which has shown that the device has a very good response to the visible light and the near infrared light. The optoelectronic responsivities of the device at 0.5 μm and 0.7 μm are 330 mA/W and 76.2 mA/W at 2 V based voltage, respectively. (semiconductor devices)

  14. An optically controlled SiC lateral power transistor based on SiC/SiCGe super junction structure

    Energy Technology Data Exchange (ETDEWEB)

    Pu Hongbin; Cao Lin; Ren Jie; Chen Zhiming; Nan Yagong, E-mail: puhongbin@xaut.edu.c [Xi' an University of Technology, Xi' an 710048 (China)

    2010-04-15

    An optically controlled SiC/SiCGe lateral power transistor based on superjunction structure has been proposed, in which n-SiCGe/p-SiC superjunction structure is employed to improve device figure of merit. Performance of the novel optically controlled power transistor was simulated using Silvaco Atlas tools, which has shown that the device has a very good response to the visible light and the near infrared light. The optoelectronic responsivities of the device at 0.5 {mu}m and 0.7 {mu}m are 330 mA/W and 76.2 mA/W at 2 V based voltage, respectively. (semiconductor devices)

  15. Programmable automated transistor test system

    International Nuclear Information System (INIS)

    Truong, L.V.; Sundberg, G.R.

    1986-01-01

    The paper describes a programmable automated transistor test system (PATTS) and its utilization to evaluate bipolar transistors and Darlingtons, and such MOSFET and special types as can be accommodated with the PATTS base-drive. An application of a pulsed power technique at low duty cycles in a non-destructive test is used to examine the dynamic switching characteristic curves of power transistors. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software. In addition a library of test data is established on disks, tapes, and hard copies for future reference

  16. Performance Enhancement of Power Transistors and Radiation effect

    International Nuclear Information System (INIS)

    Hassn, Th.A.A.

    2012-01-01

    The main objective of this scientific research is studying the characteristic of bipolar junction transistor device and its performance under radiation fields and temperature effect as a control element in many power circuits. In this work we present the results of experimental measurements and analytical simulation of gamma – radiation effects on the electrical characteristics and operation of power transistor types 2N3773, 2N3055(as complementary silicon power transistor are designed for general-purpose switching and amplifier applications), three samples of each type were irradiated by gamma radiation with doses, 1 K rad, 5 K rad, 10 K rad, 30 K rad, and 10 Mrad, the experimental data are utilized to establish an analytical relation between the total absorbed dose of gamma irradiation and corresponding to effective density of generated charge in the internal structure of transistor, the electrical parameters which can be measured to estimate the generated defects in the power transistor are current gain, collector current and collected emitter leakage current , these changes cause the circuit to case proper functioning. Collector current and transconductance of each device are calibrated as a function of irradiated dose. Also the threshold voltage and transistor gain can be affected and also calibrated as a function of dose. A silicon NPN power transistor type 2N3773 intended for general purpose applications, were used in this work. It was designed for medium current and high power circuits. Performance and characteristic were discusses under temperature and gamma radiation doses. Also the internal junction thermal system of the transistor represented in terms of a junction thermal resistance (Rjth). The thermal resistance changed by ΔRjth, due to the external intended, also due to the gamma doses intended. The final result from the model analysis reveals that the emitter-bias configuration is quite stable by resistance ratio RB/RE. Also the current

  17. Confirmatory factor analysis reveals a latent cognitive structure common to bipolar disorder, schizophrenia, and normal controls.

    Science.gov (United States)

    Schretlen, David J; Peña, Javier; Aretouli, Eleni; Orue, Izaskun; Cascella, Nicola G; Pearlson, Godfrey D; Ojeda, Natalia

    2013-06-01

    We sought to determine whether a single hypothesized latent factor structure would characterize cognitive functioning in three distinct groups. We assessed 576 adults (340 community controls, 126 adults with bipolar disorder, and 110 adults with schizophrenia) using 15 measures derived from nine cognitive tests. Confirmatory factor analysis (CFA) was conducted to examine the fit of a hypothesized six-factor model. The hypothesized factors included attention, psychomotor speed, verbal memory, visual memory, ideational fluency, and executive functioning. The six-factor model provided an excellent fit for all three groups [for community controls, root mean square error of approximation (RMSEA) schizophrenia, RMSEA = 0.06 and CFI = 0.98]. Alternate models that combined fluency with processing speed or verbal and visual memory reduced the goodness of fit. Multi-group CFA results supported factor invariance across the three groups. Confirmatory factor analysis supported a single six-factor structure of cognitive functioning among patients with schizophrenia or bipolar disorder and community controls. While the three groups clearly differ in level of performance, they share a common underlying architecture of information processing abilities. These cognitive factors could provide useful targets for clinical trials of treatments that aim to enhance information processing in persons with neurological and neuropsychiatric disorders. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The effects of lithium and anticonvulsants on brain structure in bipolar disorder.

    Science.gov (United States)

    Germaná, C; Kempton, M J; Sarnicola, A; Christodoulou, T; Haldane, M; Hadjulis, M; Girardi, P; Tatarelli, R; Frangou, S

    2010-12-01

    To investigate the effect of lithium, anticonvulsants and antipsychotics on brain structure in bipolar disorder (BD). A cross-sectional structural brain magnetic resonance imaging study of 74 remitted patients with BD, aged 18-65, who were receiving long-term prophylactic treatment with lithium or anticonvulsants or antipsychotics. Global and regional grey matter, white matter, and cerebrospinal fluid volumes were compared between treatment groups. Grey matter in the subgenual anterior cingulate gyrus on the right (extending into the hypothalamus) and in the postcentral gyrus, the hippocampus/amygdale complex and the insula on the left was greater in BD patients on lithium treatment compared to all other treatment groups. Lithium treatment in BD has a significant effect on brain structure particularly in limbic/paralimbic regions associated with emotional processing. © 2010 John Wiley & Sons A/S.

  19. Low-background transistors for application in nuclear electronics

    International Nuclear Information System (INIS)

    Krasnokutskij, R.N.; Kurchaninov, L.L.; Fedyakin, N.N.; Shuvalov, R.S.

    1988-01-01

    Investigations of silicon transistors were carried out to determine transistors with low value of base distributed resistance (R). Measurement results for R and current amplification coefficient β are presented for bipolar transistor several types. Correlations between R and β were studied. KT 399A, 2T640A and KT3117B transistors are found to be most adequate ones as a base for low-background amplifier development

  20. High-performance silicon nanowire bipolar phototransistors

    Science.gov (United States)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  1. Charge collection mechanisms in MOS/SOI transistors irradiated by energetic heavy ions

    International Nuclear Information System (INIS)

    Musseau, O.; Leray, J.L.; Ferlet, V.; Umbert, A.; Coic, Y.M.; Hesto, P.

    1991-01-01

    We have investigated with both experimental and numerical methods (Monte Carlo and drift-diffusion models) various charge collection mechanisms in NMOS/SOI transistors irradiated by single energetic heavy ions. Our physical interpretations of data emphasize the influence of various parasitic structures of the device. Two charge collection mechanisms are detailed: substrate funneling in buried MOS capacitor and latching of the parasitic bipolar transistor. Based on carrier transport and charge collection, the sensitivity of future scaled down CMOS/SOI technologies is finally discussed

  2. BDNF and BMI effects on brain structures of bipolar offspring: results from the global mood and brain science initiative.

    Science.gov (United States)

    Mansur, R B; Brietzke, E; McIntyre, R S; Cao, B; Lee, Y; Japiassú, L; Chen, K; Lu, R; Lu, W; Li, T; Xu, G; Lin, K

    2017-12-01

    To compare brain-derived neurotrophic factor (BDNF) levels between offspring of individuals with bipolar disorders (BD) and healthy controls (HCs) and investigate the effects of BDNF levels and body mass index (BMI) on brain structures. Sixty-seven bipolar offspring and 45 HCs were included (ages 8-28). Structural images were acquired using 3.0 Tesla magnetic resonance imaging. Serum BDNF levels were measured using enzyme-linked immunosorbent assay. Multivariate and univariate analyses of covariance were conducted. Significantly higher BDNF levels were observed among bipolar offspring, relative to HCs (P > 0.025). Offspring status moderated the association between BDNF and BMI (F 1 =4.636, P = 0.034). After adjustment for relevant covariates, there was a trend for a significant interaction of group and BDNF on neuroimaging parameters (Wilks'λ F 56,94 =1.463, P = 0.052), with significant effects on cerebellar white matter and superior and middle frontal regions. Brain volume and BDNF were positively correlated among HCs and negatively correlated among bipolar offspring. Interactions between BDNF and BMI on brain volumes were non-significant among HCs (Wilks'λ F 28,2 =2.229, P = 0.357), but significant among bipolar offspring (Wilks'λ F 28,12 =2.899, P = 0.028). Offspring status and BMI moderate the association between BDNF levels and brain structures among bipolar offspring, underscoring BDNF regulation and overweight/obesity as key moderators of BD pathogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Thienoacene-fused pentalenes: Syntheses, structures, physical properties and applications for organic field-effect transistors

    KAUST Repository

    Dai, Gaole

    2014-11-27

    Three soluble and stable thienoacene-fused pentalene derivatives (1-3) with different π-conjugation lengths were synthesized. X-ray crystallographic analysis and density functional theory (DFT) calculations revealed their unique geometric and electronic structures due to the interaction between the aromatic thienoacene units and antiaromatic pentalene moiety. As a result, they all possess a small energy gap and show amphoteric redox behaviour. Time dependent (TD) DFT calculations were used to explain their unique electronic absorption spectra. These new compounds exhibited good thermal stability and ordered packing in solid state and thus their applications in organic field-effect transistors (OFETs) were also investigated. The highest field-effect hole mobility of 0.016, 0.036 and 0.001 cm2 V-1 s-1 was achieved for solution-processed thin films of 1-3, respectively.

  4. Dianthraceno[a,e]pentalenes: Synthesis, crystallographic structures and applications in organic field-effect transistors

    KAUST Repository

    Dai, Gaole

    2015-01-01

    Two soluble and stable dianthraceno[a,e]pentalenes with two (DAP1) and six (DAP2) phenyl substituents were synthesized. Both compounds possess a small energy band gap and show amphoteric redox behaviour due to intramolecular donor-accepter interactions. X-ray crystallographic analysis revealed that DAP2 has a closely packed structure with multi-dimensional [C-H⋯π] interactions although there are no π-π interactions between the dianthraceno[a,e]pentalene cores. As a result, solution-processed field effect transistors based on DAP2 exhibited an average hole mobility of 0.65 cm2 V-1 s-1. Under similar conditions, DAP1 showed an average field effect hole mobility of 0.001 cm2 V-1 s-1. This journal is

  5. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  6. Impact of repeated uniaxial mechanical strain on flexible a-IGZO thin film transistors with symmetric and asymmetric structures

    Science.gov (United States)

    Liao, Po-Yung; Chang, Ting-Chang; Su, Wan-Ching; Chen, Bo-Wei; Chen, Li-Hui; Hsieh, Tien-Yu; Yang, Chung-Yi; Chang, Kuan-Chang; Zhang, Sheng-Dong; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan

    2017-06-01

    This letter investigates repeated uniaxial mechanical stress-induced degradation behavior in flexible amorphous In-Ga-Zn-O thin-film transistors (TFTs) of different geometric structures. Two types of via-contact structure TFTs are investigated: symmetrical and UI structure (TFTs with I- and U-shaped asymmetric electrodes). After repeated mechanical stress, I-V curves for the symmetrical structure show a significant negative threshold voltage (VT) shift, due to mechanical stress-induced oxygen vacancy generation. However, degradation in the UI structure TFTs after stress is a negative VT shift along with the parasitic transistor characteristic in the forward-operation mode, with this hump not evident in the reverse-operation mode. This asymmetrical degradation is clarified by the mechanical strain simulation of the UI TFTs.

  7. Relation between Amygdala Structure and Function in Adolescents with Bipolar Disorder

    Science.gov (United States)

    Kalmar, Jessica H.; Wang, Fei; Chepenik, Lara G.; Womer, Fay Y.; Jones, Monique M.; Pittman, Brian; Shah, Maulik P.; Martin, Andres; Constable, R. Todd; Blumberg, Hilary P.

    2009-01-01

    Adolescents with bipolar disorder showed decreased amygdala volume and increased amygdala response to emotional faces. Amygdala volume is inversely related to activation during emotional face processing.

  8. Nonvolatile field effect transistors based on protons and Si/SiO2Si structures

    International Nuclear Information System (INIS)

    Warren, W.L.; Vanheusden, K.; Fleetwood, D.M.; Schwank, J.R.; Winokur, P.S.; Knoll, M.G.; Devine, R.A.B.

    1997-01-01

    Recently, the authors have demonstrated that annealing Si/SiO 2 /Si structures in a hydrogen containing ambient introduces mobile H + ions into the buried SiO 2 layer. Changes in the H + spatial distribution within the SiO 2 layer were electrically monitored by current-voltage (I-V) measurements. The ability to directly probe reversible protonic motion in Si/SiO 2 /Si structures makes this an exemplar system to explore the physics and chemistry of hydrogen in the technologically relevant Si/SiO 2 structure. In this work, they illustrate that this effect can be used as the basis for a programmable nonvolatile field effect transistor (NVFET) memory that may compete with other Si-based memory devices. The power of this novel device is its simplicity; it is based upon standard Si/SiO 2 /Si technology and forming gas annealing, a common treatment used in integrated circuit processing. They also briefly discuss the effects of radiation on its retention properties

  9. Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering

    Directory of Open Access Journals (Sweden)

    Ning Cui

    2012-06-01

    Full Text Available Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs. In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.

  10. Effect of NiO growth conditions on the bipolar resistance memory switching of Pt/NiO/SRO structure

    International Nuclear Information System (INIS)

    Kurnia, F.; Hadiyawarman, H.; Jung, C. U.; Liu, C. L.; Lee, S. B.; Yang, S. M.; Park, H. W.; Song, S. J.; Hwang, C. S.

    2010-01-01

    We deposited NiO thin films with SrRuO 3 bottom electrodes on SrTiO 3 (001) substrates by using pulsed laser deposition. The growth temperature and the oxygen pressure were varied in order to obtain NiO films with different structural and electrical properties. We investigated the I-V characteristics of the Pt/NiO/SRO structures and observed a strong dependence of bipolar resistance switching on the growth conditions of the NiO thin films. Stable bipolar memory resistance switching was observed only in the devices with NiO films deposited at 400 .deg. C and 10 mTorr of O 2 . The off-state I-V curve of bipolar switching showed a linear fitting to the Schottky effect, indicating its origin in the NiO/SRO interface. Our results suggest that the growth conditions of NiO may affect the bipolar switching behavior through the film's resistance, the film's crystallinity, or the status of the grain boundaries.

  11. Indium–gallium–zinc oxide thin film transistors with a hybrid-channel structure for defect suppression and mobility improvement

    International Nuclear Information System (INIS)

    Lin, Huang-Kai; Su, Liang-Yu; Hung, Chia-Chin; Huang, JianJang

    2013-01-01

    In this work, we explore an indium gallium zinc oxide (IGZO) thin film transistor structure with a vacuum annealed IGZO thin film inserted between the dielectric and typical channel layers. The device demonstrates a better subthreshold swing and field-effect mobility due to the suppression of defects in the channel and the channel/dielectric interface. The hybrid channel structure also exhibits the flexibility of adjusting the threshold voltage. The superior carrier mobility was then verified from the transient response of the inverter circuit constructed by the devices. - Highlights: • Additional in-situ annealed In–Ga–ZnO film was inserted in thin film transistor (TFT). • Traps are suppressed and field effect mobility is improved in the TFT. • An inverter with the device structure has a better transient response

  12. Indium–gallium–zinc oxide thin film transistors with a hybrid-channel structure for defect suppression and mobility improvement

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huang-Kai; Su, Liang-Yu; Hung, Chia-Chin [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Huang, JianJang, E-mail: jjhuang@cc.ee.ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Department of Electrical Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China)

    2013-07-01

    In this work, we explore an indium gallium zinc oxide (IGZO) thin film transistor structure with a vacuum annealed IGZO thin film inserted between the dielectric and typical channel layers. The device demonstrates a better subthreshold swing and field-effect mobility due to the suppression of defects in the channel and the channel/dielectric interface. The hybrid channel structure also exhibits the flexibility of adjusting the threshold voltage. The superior carrier mobility was then verified from the transient response of the inverter circuit constructed by the devices. - Highlights: • Additional in-situ annealed In–Ga–ZnO film was inserted in thin film transistor (TFT). • Traps are suppressed and field effect mobility is improved in the TFT. • An inverter with the device structure has a better transient response.

  13. Multimodal Neuroimaging of Frontolimbic Structure and Function Associated With Suicide Attempts in Adolescents and Young Adults With Bipolar Disorder.

    Science.gov (United States)

    Johnston, Jennifer A Y; Wang, Fei; Liu, Jie; Blond, Benjamin N; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T; Purves, Kirstin L; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A; Blumberg, Hilary P

    2017-07-01

    Bipolar disorder is associated with high risk for suicidal behavior that often develops in adolescence and young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents and young adults with bipolar disorder with and without a history of suicide attempts combines structural, diffusion tensor, and functional MR imaging methods to investigate implicated abnormalities in the morphology and structural and functional connectivity within frontolimbic systems. The study had 26 participants with bipolar disorder who had a prior suicide attempt (the attempter group) and 42 participants with bipolar disorder without a suicide attempt (the nonattempter group). Regional gray matter volume, white matter integrity, and functional connectivity during processing of emotional stimuli were compared between groups, and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Compared with the nonattempter group, the attempter group showed significant reductions in gray matter volume in the orbitofrontal cortex, hippocampus, and cerebellum; white matter integrity in the uncinate fasciculus, ventral frontal, and right cerebellum regions; and amygdala functional connectivity to the left ventral and right rostral prefrontal cortex. In exploratory analyses, among attempters, there was a significant negative correlation between right rostral prefrontal connectivity and suicidal ideation and between left ventral prefrontal connectivity and attempt lethality. Adolescent and young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral frontolimbic neural system subserving emotion regulation. Among attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicidal ideation and attempt lethality.

  14. Amorphous Oxide Thin Film Transistors with Nitrogen-Doped Hetero-Structure Channel Layers

    Directory of Open Access Journals (Sweden)

    Haiting Xie

    2017-10-01

    Full Text Available The nitrogen-doped amorphous oxide semiconductor (AOS thinfilm transistors (TFTs with double-stacked channel layers (DSCL were prepared and characterized. The DSCL structure was composed of nitrogen-doped amorphous InGaZnO and InZnO films (a-IGZO:N/a-IZO:N or a-IZO:N/a-IGZO:N and gave the corresponding TFT devices large field-effect mobility due to the presence of double conduction channels. The a-IZO:N/a-IGZO:N TFTs, in particular, showed even better electrical performance (µFE = 15.0 cm2・V−1・s−1, SS = 0.5 V/dec, VTH = 1.5 V, ION/IOFF = 1.1 × 108 and stability (VTH shift of 1.5, −0.5 and −2.5 V for positive bias-stress, negative bias-stress, and thermal stress tests, respectively than the a-IGZO:N/a-IZO:N TFTs. Based on the X-ray photoemission spectroscopy measurements and energy band analysis, we assumed that the optimized interface trap states, the less ambient gas adsorption, and the better suppression of oxygen vacancies in the a-IZO:N/a-IGZO:N hetero-structures might explain the better behavior of the corresponding TFTs.

  15. Bipolar resistive switching in graphene oxide based metal insulator metal structure for non-volatile memory applications

    Science.gov (United States)

    Singh, Rakesh; Kumar, Ravi; Kumar, Anil; Kashyap, Rajesh; Kumar, Mukesh; Kumar, Dinesh

    2018-05-01

    Graphene oxide based devices have attracted much attention recently because of their possible application in next generation electronic devices. In this study, bipolar resistive switching characteristics of graphene oxide based metal insulator metal structure were investigated for nonvolatile memories. The graphene oxide was prepared by the conventional Hummer's method and deposited on ITO coated glass by spin-coating technique. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament inside the graphene oxide. The conduction mechanism for low and high resistance states are dominated by two mechanism the ohmic conduction and space charge limited current (SCLC) mechanism, respectively. Atomic Force Microscopy, X-ray diffraction, Cyclic-Voltammetry were conducted to observe the morphology, structure and behavior of the material. The fabricated device with Al/GO/ITO structure exhibited reliable bipolar resistive switching with set & reset voltage of -2.3 V and 3V respectively.

  16. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder.

    Science.gov (United States)

    Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N

    2017-12-01

    Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.

  17. Structural brain network analysis in families multiply affected with bipolar I disorder.

    Science.gov (United States)

    Forde, Natalie J; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J; Cannon, Dara M; Murray, Robin M; McDonald, Colm

    2015-10-30

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Transistor data book

    International Nuclear Information System (INIS)

    1988-03-01

    It introduces how to use this book. It lists transistor data and index, which are Type No, Cross index, Germanium PNP low power transistors, silicon NPN low power transistors, Germanium PNP high power transistors, Switching transistors, transistor arrays, Miscellaneous transistors, types with U.S military specifications, direct replacement transistors, suggested replacement transistors, schematic drawings, outline drawings, device number keys and manufacturer's logos.

  19. Structure-Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors.

    Science.gov (United States)

    Kim, Min Je; Jung, A-Ra; Lee, Myeongjae; Kim, Dongjin; Ro, Suhee; Jin, Seon-Mi; Nguyen, Hieu Dinh; Yang, Jeehye; Lee, Kyung-Koo; Lee, Eunji; Kang, Moon Sung; Kim, Hyunjung; Choi, Jong-Ho; Kim, BongSoo; Cho, Jeong Ho

    2017-11-22

    We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 10 7 . The highest hole mobility of 1.51 cm 2 V -1 s -1 and the highest electron mobility of 0.85 cm 2 V -1 s -1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.

  20. Physical limits of silicon transistors and circuits

    International Nuclear Information System (INIS)

    Keyes, Robert W

    2005-01-01

    A discussion on transistors and electronic computing including some history introduces semiconductor devices and the motivation for miniaturization of transistors. The changing physics of field-effect transistors and ways to mitigate the deterioration in performance caused by the changes follows. The limits of transistors are tied to the requirements of the chips that carry them and the difficulties of fabricating very small structures. Some concluding remarks about transistors and limits are presented

  1. The relationship between genetic risk variants with brain structure and function in bipolar disorder

    DEFF Research Database (Denmark)

    Pereira, Licia P; Köhler, Cristiano A; de Sousa, Rafael T

    2017-01-01

    Genetic-neuroimaging paradigms could provide insights regarding the pathophysiology of bipolar disorder (BD). Nevertheless, findings have been inconsistent across studies. A systematic review of gene-imaging studies involving individuals with BD was conducted across electronic major databases fro...

  2. Electroluminescence from single-wall carbon nanotube network transistors.

    Science.gov (United States)

    Adam, E; Aguirre, C M; Marty, L; St-Antoine, B C; Meunier, F; Desjardins, P; Ménard, D; Martel, R

    2008-08-01

    The electroluminescence (EL) properties from single-wall carbon nanotube network field-effect transistors (NNFETs) and small bundle carbon nanotube field effect transistors (CNFETs) are studied using spectroscopy and imaging in the near-infrared (NIR). At room temperature, NNFETs produce broad (approximately 180 meV) and structured NIR spectra, while they are narrower (approximately 80 meV) for CNFETs. EL emission from NNFETs is located in the vicinity of the minority carrier injecting contact (drain) and the spectrum of the emission is red shifted with respect to the corresponding absorption spectrum. A phenomenological model based on a Fermi-Dirac distribution of carriers in the nanotube network reproduces the spectral features observed. This work supports bipolar (electron-hole) current recombination as the main mechanism of emission and highlights the drastic influence of carrier distribution on the optoelectronic properties of carbon nanotube films.

  3. BUBBLES AND KNOTS IN THE KINEMATICAL STRUCTURE OF THE BIPOLAR PLANETARY NEBULA NGC 2818

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, Roberto, E-mail: vazquez@astro.unam.mx [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, BC (Mexico)

    2012-06-01

    High-resolution Hubble Space Telescope archive imaging and high-dispersion spectroscopy are used to study the complex morphological and kinematical structure of the planetary nebula, NGC 2818. We analyze narrowband H{alpha}, [O III], [N II], [S II], and He II images, addressing important morphological features. Ground-based long-slit echelle spectra were obtained crossing NGC 2818 at five different positions to precisely determine kinematical features in the structure of the nebula. A distance of 2.5 kpc was used to determine physical scales. Constructing models to fit the data with modern computational tools, we find NGC 2818 is composed of (1) a non-uniform bipolar structure with a semimajor axis of 0.92 pc (75''), possibly deformed by the stellar wind, (2) a 0.17 pc (14'') diameter central region, which is potentially the remnant of an equatorial enhancement, and (3) a great number of cometary knots. These knots are preferentially located inside a radius of 0.24 pc (20'') around the central star. The major axis of the main structure is oriented at i {approx_equal} 60 Degree-Sign with respect to the line of sight and at P.A. = +89 Degree-Sign on the plane of the sky. Expansion velocities of this nebula are V{sub pol} = 105 km s{sup -1} and V{sub eq} = 20 km s{sup -1}, which lead to our estimate of the kinematical age of {tau}{sub k} {approx_equal} 8400 {+-} 3400 yr (assuming homologous expansion). Our observations do not support the idea that high-velocity collimated ejections are responsible for the formation of microstructures inside the nebula. We determine the systemic velocity of NGC 2818 to be V{sub HEL} = +26 {+-} 2 km s{sup -1}.

  4. Differentiating between bipolar and unipolar depression in functional and structural MRI studies.

    Science.gov (United States)

    Han, Kyu-Man; De Berardis, Domenico; Fornaro, Michele; Kim, Yong-Ku

    2018-03-28

    Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Bipolar Disorder

    Science.gov (United States)

    Bipolar disorder is a serious mental illness. People who have it go through unusual mood changes. They go ... The down feeling is depression. The causes of bipolar disorder aren't always clear. It runs in families. ...

  6. Vertical organic transistors.

    Science.gov (United States)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  7. The Smallest Transistor-Based Nonautonomous Chaotic Circuit

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, Arunas

    2005-01-01

    A nonautonomous chaotic circuit based on one transistor, two capacitors, and two resistors is described. The mechanism behind the chaotic performance is based on “disturbance of integration.” The forward part and the reverse part of the bipolar transistor are “fighting” about the charging...

  8. Method for double-sided processing of thin film transistors

    Science.gov (United States)

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  9. Outlook and Emerging Semiconducting Materials for Ambipolar Transistors

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta

    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great

  10. On the 50th Anniversary of the Transistor

    DEFF Research Database (Denmark)

    Stassen, Flemming

    1997-01-01

    This paper celebrates the 50th anniversary of the invention of the bipolar transistor in 1947. Combined with the inventions of integration and planar technology, the invention of the transistor marks the beginning of a period of unprecedented growth, the industrialization of electronics....

  11. Application of the Johnson criteria to graphene transistors

    International Nuclear Information System (INIS)

    Kelly, M J

    2013-01-01

    For 60 years, the Johnson criteria have guided the development of materials and the materials choices for field-effect and bipolar transistor technology. Intrinsic graphene is a semi-metal, precluding transistor applications, but only under lateral bias is a gap opened and transistor action possible. This first application of the Johnson criteria to biased graphene suggests that this material will struggle to ever achieve competitive commercial applications. (fast track communication)

  12. Micro-structure-mobility correlation in self-organised, conjugated polymer field-effect transistors

    NARCIS (Netherlands)

    Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.J.; Meijer, E.W.

    2000-01-01

    We have investigated the correlation between polymer microstructure and charge carrier mobility in high-mobility, self-organised field-effect transistors of poly-3-hexyl-thiophene (P3HT). Two different preferential orientations of the microcrystalline P3HT domains with respect to the substrate have

  13. Adjustable threshold-voltage in all-inkjet-printed organic thin film transistor using double-layer dielectric structures

    International Nuclear Information System (INIS)

    Wu, Wen-Jong; Lee, Chang-Hung; Hsu, Chun-Hao; Yang, Shih-Hsien; Lin, Chih-Ting

    2013-01-01

    An all-inkjet-printed organic thin film transistor (OTFT) with a double-layer dielectric structure is proposed and implemented in this study. By using the double-layer structure with different dielectric materials (i.e., polyvinylphenol with poly(vinylidene fluoride-co-hexafluoropropylene)), the threshold-voltage of OTFT can be adjusted. The threshold-voltage shift can be controlled by changing the composition of dielectric layers. That is, an enhancement-mode OTFT can be converted to a depletion-mode OTFT by selectively printing additional dielectric layers to form a high-k/low-k double-layer structure. The printed OTFT has a carrier mobility of 5.0 × 10 −3 cm 2 /V-s. The threshold-voltages of the OTFTs ranged between − 13 V and 10 V. This study demonstrates an additional design parameter for organic electronics manufactured using inkjet printing technology. - Highlights: • A double-layer dielectric organic thin film transistor, OTFT, is implemented. • The threshold voltage of OTFT can be configured by the double dielectric structure. • The composition of the dielectric determines the threshold voltage shift. • The characteristics of OTFTs can be adjusted by double dielectric structures

  14. Unijunction transistors

    International Nuclear Information System (INIS)

    1981-01-01

    The electrical characteristics of unijunction transistors can be modified by irradiation with electron beams in excess of 400 KeV and at a dose rate of 10 13 to 10 16 e/cm 2 . Examples are given of the effect of exposing the emitter-base junctions of transistors to such lattice defect causing radiation for a time sufficient to change the valley current of the transistor. (U.K.)

  15. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  16. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  17. Bipolar disorders

    DEFF Research Database (Denmark)

    Vieta, Eduard; Berk, Michael; Schulze, Thomas G

    2018-01-01

    Bipolar disorders are chronic and recurrent disorders that affect >1% of the global population. Bipolar disorders are leading causes of disability in young people as they can lead to cognitive and functional impairment and increased mortality, particularly from suicide and cardiovascular disease...... and accurate diagnosis is difficult in clinical practice as the onset of bipolar disorder is commonly characterized by nonspecific symptoms, mood lability or a depressive episode, which can be similar in presentation to unipolar depression. Moreover, patients and their families do not always understand...... a bipolar disorder from other conditions. Optimal early treatment of patients with evidence-based medication (typically mood stabilizers and antipsychotics) and psychosocial strategies is necessary....

  18. Characterization of 6,13-bis(triisopropylsilylethynyl) pentacene organic thin film transistors fabricated using pattern-induced confined structure

    International Nuclear Information System (INIS)

    Kim, Kyohyeok; Kwon, Namyong; Chung, Ilsub

    2014-01-01

    Bottom gate organic thin film transistors (OTFTs) were fabricated on polyethersulphone substrate using an ink jet printing method. 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene and poly-4-vinylphenol (PVP) were used as an active material and as a gate insulator, respectively. In an attempt to reduce the coffee stain effect, TIPS pentacene active layer was printed onto the pattern-induced confined structure (PICS) which had been obtained by orthogonally printing Ag electrodes on the pre-printed PVP layer. The resolution of Ag patterns was obtained by modifying the surface energy using UV irradiation and substrate temperature. The channel lengths of the aforementioned PICS OTFTs were in the range of 10 μm to 50 μm. The average mobility and on/off ratio of PICS OTFTs were 0.034 cm 2 /Vs and 10 3 , respectively. - Highlights: • Ink-jet printed bottom gate organic thin film transistor on plastic substrate • Ag lines orthogonally printed on pre-printed poly-4-vinylphenol lines • Pattern-induced confined structures obtained • UV irradiation affects the surface energy and the resolution of the Ag patterns

  19. Characterization of 6,13-bis(triisopropylsilylethynyl) pentacene organic thin film transistors fabricated using pattern-induced confined structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyohyeok; Kwon, Namyong [Sungkyunkwan University Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Chung, Ilsub, E-mail: ichung@skku.ac.kr [Sungkyunkwan University Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-01-01

    Bottom gate organic thin film transistors (OTFTs) were fabricated on polyethersulphone substrate using an ink jet printing method. 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene and poly-4-vinylphenol (PVP) were used as an active material and as a gate insulator, respectively. In an attempt to reduce the coffee stain effect, TIPS pentacene active layer was printed onto the pattern-induced confined structure (PICS) which had been obtained by orthogonally printing Ag electrodes on the pre-printed PVP layer. The resolution of Ag patterns was obtained by modifying the surface energy using UV irradiation and substrate temperature. The channel lengths of the aforementioned PICS OTFTs were in the range of 10 μm to 50 μm. The average mobility and on/off ratio of PICS OTFTs were 0.034 cm{sup 2}/Vs and 10{sup 3}, respectively. - Highlights: • Ink-jet printed bottom gate organic thin film transistor on plastic substrate • Ag lines orthogonally printed on pre-printed poly-4-vinylphenol lines • Pattern-induced confined structures obtained • UV irradiation affects the surface energy and the resolution of the Ag patterns.

  20. The Complete Semiconductor Transistor and Its Incomplete Forms

    International Nuclear Information System (INIS)

    Jie Binbin; Sah, C.-T.

    2009-01-01

    This paper describes the definition of the complete transistor. For semiconductor devices, the complete transistor is always bipolar, namely, its electrical characteristics contain both electron and hole currents controlled by their spatial charge distributions. Partially complete or incomplete transistors, via coined names or/and designed physical geometries, included the 1949 Shockley p/n junction transistor (later called Bipolar Junction Transistor, BJT), the 1952 Shockley unipolar 'field-effect' transistor (FET, later called the p/n Junction Gate FET or JGFET), as well as the field-effect transistors introduced by later investigators. Similarities between the surface-channel MOS-gate FET (MOSFET) and the volume-channel BJT are illustrated. The bipolar currents, identified by us in a recent nanometer FET with 2-MOS-gates on thin and nearly pure silicon base, led us to the recognition of the physical makeup and electrical current and charge compositions of a complete transistor and its extension to other three or more terminal signal processing devices, and also the importance of the terminal contacts.

  1. Evaluation of Anisotropic Biaxial Stress Induced Around Trench Gate of Si Power Transistor Using Water-Immersion Raman Spectroscopy

    Science.gov (United States)

    Suzuki, Takahiro; Yokogawa, Ryo; Oasa, Kohei; Nishiwaki, Tatsuya; Hamamoto, Takeshi; Ogura, Atsushi

    2018-05-01

    The trench gate structure is one of the promising techniques to reduce on-state resistance (R on) for silicon power devices, such as insulated gate bipolar transistors and power metal-oxide-semiconductor field-effect transistors. In addition, it has been reported that stress is induced around the trench gate area, modifying the carrier mobilities. We evaluated the one-dimensional distribution and anisotropic biaxial stress by quasi-line excitation and water-immersion Raman spectroscopy, respectively. The results clearly confirmed anisotropic biaxial stress in state-of-the-art silicon power devices. It is theoretically possible to estimate carrier mobility using piezoresistance coefficients and anisotropic biaxial stress. The electron mobility was increased while the hole mobility was decreased or remained almost unchanged in the silicon (Si) power device. The stress significantly modifies the R on of silicon power transistors. Therefore, their performance can be improved using the stress around the trench gate.

  2. Bipolar Disorder.

    Science.gov (United States)

    Spearing, Melissa

    Bipolar disorder, a brain disorder that causes unusual shifts in a person's mood, affects approximately one percent of the population. It commonly occurs in late adolescence and is often unrecognized. The diagnosis of bipolar disorder is made on the basis of symptoms, course of illness, and when possible, family history. Thoughts of suicide are…

  3. Structural brain alterations in bipolar disorder II: a combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study.

    Science.gov (United States)

    Ambrosi, Elisa; Rossi-Espagnet, Maria Camilla; Kotzalidis, Georgios D; Comparelli, Anna; Del Casale, Antonio; Carducci, Filippo; Romano, Andrea; Manfredi, Giovanni; Tatarelli, Roberto; Bozzao, Alessandro; Girardi, Paolo

    2013-09-05

    Brain structural changes have been described in bipolar disorder (BP), but usually studies focused on both I and II subtypes indiscriminately and investigated changes in either brain volume or white matter (WM) integrity. We used combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analysis to track changes in the grey matter (GM) and WM in the brains of patients affected by BPII, as compared to healthy controls. Using VBM and DTI, we scanned 20 DSM-IV-TR BPII patients in their euthymic phase and 21 healthy, age- and gender-matched volunteers with no psychiatric history. VBM showed decreases in GM of BPII patients, compared to controls, which were diffuse in nature and most prominent in the right middle frontal gyrus and in the right superior temporal gurus. DTI showed significant and widespread FA reduction in BPII patients in all major WM tracts, including cortico-cortical association tracts. The small sample size limits the generalisability of our findings. Reduced GM volumes and WM integrity changes in BPII patients are not prominent like those previously reported in bipolar disorder type-I and involve cortical structures and their related association tracts. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. In-situ SiN{sub x}/InN structures for InN field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zervos, Ch., E-mail: hzervos@physics.uoc.gr; Georgakilas, A. [Microelectronics Research Group (MRG), Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas - FORTH, P.O. Box 1385, GR-70013 Heraklion, Crete (Greece); Department of Physics, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete (Greece); Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G. [Microelectronics Research Group (MRG), Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas - FORTH, P.O. Box 1385, GR-70013 Heraklion, Crete (Greece); Beleniotis, P. [Department of Physics, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete (Greece)

    2016-04-04

    Critical aspects of InN channel field-effect transistors (FETs) have been investigated. SiN{sub x} dielectric layers were deposited in-situ, in the molecular beam epitaxy system, on the surface of 2 nm InN layers grown on GaN (0001) buffer layers. Metal-insulator-semiconductor Ni/SiN{sub x}/InN capacitors were analyzed by capacitance-voltage (C-V) and current-voltage measurements and were used as gates in InN FET transistors (MISFETs). Comparison of the experimental C-V results with self-consistent Schrödinger-Poisson calculations indicates the presence of a positive charge at the SiN{sub x}/InN interface of Q{sub if} ≈ 4.4 – 4.8 × 10{sup 13 }cm{sup −2}, assuming complete InN strain relaxation. Operation of InN MISFETs was demonstrated, but their performance was limited by a catastrophic breakdown at drain-source voltages above 2.5–3.0 V, the low electron mobility, and high series resistances of the structures.

  5. Indium-gallium-zinc-oxide thin-film transistor with a planar split dual-gate structure

    Science.gov (United States)

    Liu, Yu-Rong; Liu, Jie; Song, Jia-Qi; Lai, Pui-To; Yao, Ruo-He

    2017-12-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with a planar split dual gate (PSDG) structure has been proposed, fabricated and characterized. Experimental results indicate that the two independent gates can provide dynamical control of device characteristics such as threshold voltage, sub-threshold swing, off-state current and saturation current. The transconductance extracted from the output characteristics of the device increases from 4.0 × 10-6S to 1.6 × 10-5S for a change of control gate voltage from -2 V to 2 V, and thus the device could be used in a variable-gain amplifier. A significant advantage of the PSDG structure is its flexibility in controlling the device performance according to the need of practical applications.

  6. Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures

    International Nuclear Information System (INIS)

    Dabiran, A. M.; Wowchak, A. M.; Osinsky, A.; Xie, J.; Hertog, B.; Cui, B.; Chow, P. P.; Look, D. C.

    2008-01-01

    Low defect AlN/GaN high electron mobility transistor (HEMT) structures, with very high values of electron mobility (>1800 cm 2 /V s) and sheet charge density (>3x10 13 cm -2 ), were grown by rf plasma-assisted molecular beam epitaxy (MBE) on sapphire and SiC, resulting in sheet resistivity values down to ∼100 Ω/□ at room temperature. Fabricated 1.2 μm gate devices showed excellent current-voltage characteristics, including a zero gate saturation current density of ∼1.3 A/mm and a peak transconductance of ∼260 mS/mm. Here, an all MBE growth of optimized AlN/GaN HEMT structures plus the results of thin-film characterizations and device measurements are presented

  7. Characteristics in AlN/AlGaN/GaN Multilayer-Structured High-Electron-Mobility Transistors

    International Nuclear Information System (INIS)

    Gui-Zhou, Hu; Ling, Yang; Li-Yuan, Yang; Si, Quan; Shou-Gao, Jiang; Ji-Gang, Ma; Xiao-Hua, Ma; Yue, Hao

    2010-01-01

    A new multilayer-structured AlN/AlGaN/GaN heterostructure high-electron-mobility transistor (HEMT) is demonstrated. The AlN/AlGaN/GaN HEMT exhibits the maximum drain current density of 800 mA/mm and the maximum extrinsic transconductance of 170 mS/mm. Due to the increase of the distance between the gate and the two-dimensional electron-gas channel, the threshold voltage shifts slightly to the negative. The reduced drain current collapse and higher breakdown voltage are observed on this AlN/AlGaN/GaN HEMT. The current gain cut-off frequency and the maximum frequency of oscillation are 18.5 GHz and 29.0 GHz, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Correlations between brain structure and symptom dimensions of psychosis in schizophrenia, schizoaffective, and psychotic bipolar I disorders.

    Science.gov (United States)

    Padmanabhan, Jaya L; Tandon, Neeraj; Haller, Chiara S; Mathew, Ian T; Eack, Shaun M; Clementz, Brett A; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S

    2015-01-01

    Structural alterations may correlate with symptom severity in psychotic disorders, but the existing literature on this issue is heterogeneous. In addition, it is not known how cortical thickness and cortical surface area correlate with symptom dimensions of psychosis. Subjects included 455 individuals with schizophrenia, schizoaffective, or bipolar I disorders. Data were obtained as part of the Bipolar Schizophrenia Network for Intermediate Phenotypes study. Diagnosis was made through the Structured Clinical Interview for DSM-IV. Positive and negative symptom subscales were assessed using the Positive and Negative Syndrome Scale. Structural brain measurements were extracted from T1-weight structural MRIs using FreeSurfer v5.1 and were correlated with symptom subscales using partial correlations. Exploratory factor analysis was also used to identify factors among those regions correlating with symptom subscales. The positive symptom subscale correlated inversely with gray matter volume (GMV) and cortical thickness in frontal and temporal regions, whereas the negative symptom subscale correlated inversely with right frontal cortical surface area. Among regions correlating with the positive subscale, factor analysis identified four factors, including a temporal cortical thickness factor and frontal GMV factor. Among regions correlating with the negative subscale, factor analysis identified a frontal GMV-cortical surface area factor. There was no significant diagnosis by structure interactions with symptom severity. Structural measures correlate with positive and negative symptom severity in psychotic disorders. Cortical thickness demonstrated more associations with psychopathology than cortical surface area. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Organic transistors fabricated by contact coating at liquid-solid interface for nano-structures

    Directory of Open Access Journals (Sweden)

    Yu-Wen Cheng

    2015-10-01

    Full Text Available A contact coating method is developed to cover the nano-channels with 100 nm or 200 nm diameter and 400 nm depth with a poly(4-vinylphenol (PVP. In such coating the nano-channels faces downwards and its vertical position is controlled by a motor. The surface is first lowered to be in immediate contact with the polyvinylpyrrolidone (PVPY water solution with concentration from 1 to 5 wt%, then pulled at the speed of 0.004 to 0.4 mm/s. By tuning the pulling speed and concentration we can realize conformal, filled, top-only, as well as floating film morphology. For a reproducible liquid detachment from the solid, the sample has a small tilt angle of 3 degree. Contact coating is used to cover the Al grid base of the vertical space-charge-limited transistor with PVPY. Poly(3-hexylthiophene-2,5-diyl (P3HT as the semiconductor. The transistor breakdown voltage is raised due to base coverage achieved by contact coating.

  10. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO_x–Al_2O_3 thin film structure

    International Nuclear Information System (INIS)

    Li, H. K.; Chen, T. P.; Liu, P.; Zhang, Q.; Hu, S. G.; Liu, Y.; Lee, P. S.

    2016-01-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al_2O_3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al_2O_3 interface and/or in the Al_2O_3 layer.

  11. A novel Tunneling Graphene Nano Ribbon Field Effect Transistor with dual material gate: Numerical studies

    Science.gov (United States)

    Ghoreishi, Seyed Saleh; Saghafi, Kamyar; Yousefi, Reza; Moravvej-farshi, Mohammad Kazem

    2016-09-01

    In this work, we present Dual Material Gate Tunneling Graphene Nano-Ribbon Field Effect Transistors (DMG-T-GNRFET) mainly to suppress the am-bipolar current with assumption that sub-threshold swing which is one of the important characteristics of tunneling transistors must not be degraded. In the proposed structure, dual material gates with different work functions are used. Our investigations are based on numerical simulations which self-consistently solves the 2D Poisson based on an atomistic mode-space approach and Schrodinger equations, within the Non-Equilibrium Green's (NEGF). The proposed device shows lower off-current and on-off ratio becomes 5order of magnitude greater than the conventional device. Also two different short channel effects: Drain Induced Barrier Shortening (DIBS) and hot-electron effect are improved in the proposed device compare to the main structure.

  12. Determination of parameters of the Gummel-Pun model of bipolar transistors with account of Kirk effect and ionizing radiation effects; Opredelenie parametrov modeli Gummelya-Puna bipolyarnykh tranzistiorov s uchetom ehffekta Kirka i vozdejstviya ioniziruyushchego izlucheniya

    Energy Technology Data Exchange (ETDEWEB)

    Ragozin, A Yu [and others

    1994-12-31

    Gamma radiation effect on the parameters Gummel-Pun model n-p-n transistors with different resistance of the collector layer is investigated. A method for their determination on the base of vol-ampere characteristics is proposed.

  13. Transistor Effect in Improperly Connected Transistors.

    Science.gov (United States)

    Luzader, Stephen; Sanchez-Velasco, Eduardo

    1996-01-01

    Discusses the differences between the standard representation and a realistic representation of a transistor. Presents an experiment that helps clarify the explanation of the transistor effect and shows why transistors should be connected properly. (JRH)

  14. Charge movement in a GaN-based hetero-structure field effect transistor structure with carbon doped buffer under applied substrate bias

    International Nuclear Information System (INIS)

    Pooth, Alexander; Uren, Michael J.; Cäsar, Markus; Kuball, Martin; Martin, Trevor

    2015-01-01

    Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure field effect transistor (HFET) has been investigated under both positive and negative substrate bias. Clear evidence of redistribution of charges in the carbon doped region by thermally generated holes is seen, with electron injection and capture observed during positive bias. Excellent agreement is found with simulations. It is shown that these effects are intrinsic to the carbon doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs

  15. Infrared-transmittance tunable metal-insulator conversion device with thin-film-transistor-type structure on a glass substrate

    Directory of Open Access Journals (Sweden)

    Takayoshi Katase

    2017-05-01

    Full Text Available Infrared (IR transmittance tunable metal-insulator conversion was demonstrated on a glass substrate by using thermochromic vanadium dioxide (VO2 as the active layer in a three-terminal thin-film-transistor-type device with water-infiltrated glass as the gate insulator. Alternative positive/negative gate-voltage applications induce the reversible protonation/deprotonation of a VO2 channel, and two-orders of magnitude modulation of sheet-resistance and 49% modulation of IR-transmittance were simultaneously demonstrated at room temperature by the metal-insulator phase conversion of VO2 in a non-volatile manner. The present device is operable by the room-temperature protonation in an all-solid-state structure, and thus it will provide a new gateway to future energy-saving technology as an advanced smart window.

  16. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Po-Tsun, E-mail: ptliu@mail.nctu.edu.tw; Chang, Chih-Hsiang; Chang, Chih-Jui [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-27

    This study investigates the instability induced by bias temperature illumination stress (NBTIS) for an amorphous indium-tungsten-oxide thin film transistor (a-IWO TFT) with SiO{sub 2} backchannel passivation layer (BPL). It is found that this electrical degradation phenomenon can be attributed to the generation of defect states during the BPL process, which deteriorates the photo-bias stability of a-IWO TFTs. A method proposed by adding an oxygen-rich a-IWO thin film upon the a-IWO active channel layer could effectively suppress the plasma damage to channel layer during BPL deposition process. The bi-layer a-IWO TFT structure with an oxygen-rich back channel exhibits superior electrical reliability of device under NBTIS.

  17. Nanoscale structural and chemical analysis of F-implanted enhancement-mode InAlN/GaN heterostructure field effect transistors

    Science.gov (United States)

    Tang, Fengzai; Lee, Kean B.; Guiney, Ivor; Frentrup, Martin; Barnard, Jonathan S.; Divitini, Giorgio; Zaidi, Zaffar H.; Martin, Tomas L.; Bagot, Paul A.; Moody, Michael P.; Humphreys, Colin J.; Houston, Peter A.; Oliver, Rachel A.; Wallis, David J.

    2018-01-01

    We investigate the impact of a fluorine plasma treatment used to obtain enhancement-mode operation on the structure and chemistry at the nanometer and atomic scales of an InAlN/GaN field effect transistor. The fluorine plasma treatment is successful in that enhancement mode operation is achieved with a +2.8 V threshold voltage. However, the InAlN barrier layers are observed to have been damaged by the fluorine treatment with their thickness being reduced by up to 50%. The treatment also led to oxygen incorporation within the InAlN barrier layers. Furthermore, even in the as-grown structure, Ga was unintentionally incorporated during the growth of the InAlN barrier. The impact of both the reduced barrier thickness and the incorporated Ga within the barrier on the transistor properties has been evaluated theoretically and compared to the experimentally determined two-dimensional electron gas density and threshold voltage of the transistor. For devices without fluorine treatment, the two-dimensional electron gas density is better predicted if the quaternary nature of the barrier is taken into account. For the fluorine treated device, not only the changes to the barrier layer thickness and composition, but also the fluorine doping needs to be considered to predict device performance. These studies reveal the factors influencing the performance of these specific transistor structures and highlight the strengths of the applied nanoscale characterisation techniques in revealing information relevant to device performance.

  18. Doping Nitrogen in InGaZnO Thin Film Transistor with Double Layer Channel Structure.

    Science.gov (United States)

    Chang, Sheng-Po; Shan, Deng

    2018-04-01

    This paper presents the electrical characteristics of doping nitrogen in an amorphous InGaZnO thin film transistor. The IGZO:N film, which acted as a channel layer, was deposited using RF sputtering with a nitrogen and argon gas mixture at room temperature. The optimized parameters of the IGZO:N/IGZO TFT are as follows: threshold voltage is 0.5 V, field effect mobility is 14.34 cm2V-1S-1. The on/off current ratio is 106 and subthreshold swing is 1.48 V/decade. The positive gate bias stress stability of InGaZnO doping with nitrogen shows improvement compared to doping with oxygen.

  19. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    Science.gov (United States)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  20. Factor structure of cognition and functional capacity in two studies of schizophrenia and bipolar disorder: Implications for genomic studies.

    Science.gov (United States)

    Harvey, Philip D; Aslan, Mihaela; Du, Mengtian; Zhao, Hongyu; Siever, Larry J; Pulver, Ann; Gaziano, J Michael; Concato, John

    2016-01-01

    Impairments in cognition and everyday functioning are common in schizophrenia and bipolar disorder (BPD). In this article, we present factor analyses of cognitive and functional capacity (FC) measures based on 2 studies of schizophrenia (SCZ) and bipolar I disorder (BPI) using similar methods. The overall goal of these analyses was to determine whether performance-based assessments should be examined individually, or aggregated on the basis of the correlational structure of the tests, as well as to evaluate the similarity of factor structures of SCZ and BPI. Veterans Affairs Cooperative Studies Program Study #572 (Harvey et al., 2014) evaluated cognitive and FC measures among 5,414 BPI and 3,942 SCZ patients. A 2nd study evaluated similar neuropsychological (NP) and FC measures among 368 BPI and 436 SCZ patients. Principal components analysis, as well as exploratory and CFAs, were used to examine the data. Analyses in both datasets suggested that NP and FC measures were explained by a single underlying factor in BPI and SCZ patients, both when analyzed separately or as in a combined sample. The factor structure in both studies was similar, with or without inclusion of FC measures; homogeneous loadings were observed for that single factor across cognitive and FC domains across the samples. The empirically derived factor model suggests that NP performance and FC are best explained as a single latent trait applicable to people with SCZ and BPD. This single measure may enhance the robustness of the analyses relating genomic data to performance-based phenotypes. (c) 2015 APA, all rights reserved).

  1. Modelling ionising radiation induced defect generation in bipolar oxides with gated diodes

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.; Schrimpf, R.D.; Kosier, St.; Fouillat, P.; Montagner, X.

    1999-01-01

    Radiation-induced oxide defects that degrade electrical characteristics of bipolar junction transistor (BJTs) can be measured with the use of gated diodes. The buildup of defects and their effect on device radiation response are modeled with computer simulation. (authors)

  2. Brain Structure and Function in Women with Comorbid Bipolar and Premenstrual Dysphoric Disorder

    Directory of Open Access Journals (Sweden)

    Sabrina K. Syan

    2018-01-01

    Full Text Available IntroductionHormonal fluctuations associated with female reproductive life events may precipitate or worsen affective episodes in women with bipolar disorder (BD. Previous studies have shown that women with BD report higher rates of premenstrual dysphoric disorder (PMDD than controls. Further, bipolar women who report premenstrual worsening of mood display a worse course of their bipolar illness. Despite this, the neural correlates of comorbid BD and PMDD have not been investigated.MethodologyEighty-five [CTRL, n = 25; PMDD, n = 20; BD, n = 21; BD with comorbid PMDD (BDPMDD, n = 19], regularly cycling women, not on hormonal contraception, underwent two MRI scans: during their mid-follicular and late luteal menstrual phases. We investigated resting-state functional connectivity (Rs-FC, cortical thickness, and subcortical volumes of brain regions associated with the pathophysiology of BD and PMDD between groups, in the mid-follicular and late luteal phases of the menstrual cycle. All BD subjects were euthymic for at least 2 months prior to study entry.ResultsWomen in the BDPMDD group displayed greater disruption in biological rhythms and more subthreshold depressive and anxious symptoms through the menstrual cycle compared to other groups. Rs-FC was increased between the L-hippocampus and R-frontal cortex and decreased between the R-hippocampus and R-premotor cortex in BDPMDD vs. BD (FDR-corrected, p < 0.05. Cortical thickness analysis revealed decreased cortical thickness of the L-pericalcarine, L-superior parietal, R-middle temporal, R-rostral middle frontal, and L-superior frontal, as well as increased cortical thickness of the L-superior temporal gyri in BDPMDD compared to BD. We also found increased left-caudate volume in BDPMDD vs. BD (pCORR < 0.05.ConclusionWomen with BD and comorbid PMDD display a distinct clinical and neurobiological phenotype of BD, which suggests differential sensitivity to endogenous hormones.

  3. Various aspects of ionic machining applied to metallic systems in microwave dipolar transistors

    International Nuclear Information System (INIS)

    Pestie, J.P.; Dumontet, H.; Andrieu, J.P.

    1974-01-01

    The positive benefit of ion bombardment machining in fabricating bipolar microwave transistors is shown. Ion cleaning, especially for P type silicon with high boron concentration allows reproducible surface resistivities to be reached 10 -6 ohms/cm 2 ) and the spurious resistance of the basis to be minimized. Ionic etching of metallic layers allowed 1μm stepped geometric structures to be realized. The multilayer Ti-Pt-Au system was associated to the finest geometries through a finite number of operations [fr

  4. CENP-W plays a role in maintaining bipolar spindle structure.

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarczyk

    Full Text Available The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. 'Spindle free' nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction

  5. CENP-W Plays a Role in Maintaining Bipolar Spindle Structure

    Science.gov (United States)

    Kaczmarczyk, Agnieszka; Sullivan, Kevin F.

    2014-01-01

    The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. ‘Spindle free’ nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction forces exerted

  6. Multimodal Neuroimaging of Fronto-limbic Structure and Function Associated with Suicide Attempts in Adolescents and Young Adults with Bipolar Disorder

    Science.gov (United States)

    Johnston, Jennifer A. Y.; Wang, Fei; Liu, Jie; Blond, Benjamin N.; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T.; Purves, Kirstin L.; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A.; Blumberg, Hilary P.

    2018-01-01

    Objective Bipolar disorder is associated with high risk for suicide behavior that often develops in adolescence/young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents/young adults with bipolar disorder with and without history of suicide attempts combines structural, diffusion tensor and functional magnetic resonance imaging methods to investigate implicated abnormalities in structural and functional connectivity within fronto-limbic systems. Method Participants with bipolar disorder included 26 with a prior suicide attempt and 42 without attempts. Regional gray matter volume, white matter integrity and functional connectivity during processing of emotional stimuli were compared between groups and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Results Compared to the non-attempter group, the attempter group showed reductions in gray matter volume in orbitofrontal cortex, hippocampus and cerebellum; white matter integrity in uncinate fasciculus, ventral frontal and right cerebellum regions; and amygdala functional connectivity to left ventral and right rostral prefrontal cortex (pAdolescent/young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral fronto-limbic neural system subserving emotion regulation. Among suicide attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicide ideation and attempt lethality. PMID:28135845

  7. Vertical organic transistors

    International Nuclear Information System (INIS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-01-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted. (topical review)

  8. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

    Science.gov (United States)

    Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri

    2018-05-01

    We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.

  9. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

    Science.gov (United States)

    Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri

    2018-03-01

    We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.

  10. Capacitorless one-transistor dynamic random-access memory based on asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor with n-doped boosting layer and drain-underlap structure

    Science.gov (United States)

    Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man

    2018-04-01

    In this work, we present a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on an asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor (TFET) for DRAM applications. The n-doped boosting layer and gate2 drain-underlap structure is employed in the device to obtain an excellent 1T-DRAM performance. The n-doped layer inserted between the source and channel regions improves the sensing margin because of a high rate of increase in the band-to-band tunneling (BTBT) probability. Furthermore, because the gate2 drain-underlap structure reduces the recombination rate that occurs between the gate2 and drain regions, a device with a gate2 drain-underlap length (L G2_D-underlap) of 10 nm exhibited a longer retention performance. As a result, by applying the n-doped layer and gate2 drain-underlap structure, the proposed device exhibited not only a high sensing margin of 1.11 µA/µm but also a long retention time of greater than 100 ms at a temperature of 358 K (85 °C).

  11. On theory of single-molecule transistor

    International Nuclear Information System (INIS)

    Tran Tien Phuc

    2009-01-01

    The results of the study on single-molecule transistor are mainly investigated in this paper. The structure of constructed single-molecule transistor is similar to a conventional MOSFET. The conductive channel of the transistors is a single-molecule of halogenated benzene derivatives. The chemical simulation software CAChe was used to design and implement for the essential parameter of the molecules utilized as the conductive channel. The GUI of Matlab has been built to design its graphical interface, calculate and plot the output I-V characteristic curves for the transistor. The influence of temperature, length and width of the conductive channel, and gate voltage is considered. As a result, the simulated curves are similar to the traditional MOSFET's. The operating temperature range of the transistors is wider compared with silicon semiconductors. The supply voltage for transistors is only about 1 V. The size of transistors in this research is several nanometers.

  12. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Padilla, J. L.; Alper, C.; Ionescu, A. M.; Medina-Bailón, C.; Gámiz, F.

    2015-01-01

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I ON levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures

  13. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Medina-Bailón, C.; Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.

  14. Performance improvement inpolymer-based thin film transistor using modified bottom-contact structures with etched SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Woo [R and D Center, Samsung Corning Precision Materials Co., Ltd, Asan (Korea, Republic of); You, Young Jun; Shim, Jae Won [Dept. of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul (Korea, Republic of)

    2017-02-15

    Polymer-based thin film transistors (TFTs) with a modified bottom-contact structure and etched SiO{sub 2} layer were developed and investigated. An increase in the field-effect mobility in the developed TFTs compared to TFTs with a normal bottom-contact structure was ascertained. A bottom-contact structure and the photolithographic processing method were used to ensure that the developed TFTs were suitable for commercial applications. Increased mobility of the modified bottom-contact structure was attributed to direct contact of the Au electrode with the active polymer layer.

  15. Transistor regenerative spectrometer for 14N nuclear quadrupole resonance study

    International Nuclear Information System (INIS)

    Anferov, V.P.; Mikhal'kov, V.M.

    1981-01-01

    Improvement of the Robinson transducer for investigations of nuclear quadrupole resonance (NQR) in 14 N is described. Amplifier of the suggested transducer is made using p-n field effect transistor and small-noise SHF bipolar transistor. Such a circuit permits to obtain optimal relation between input resistance, low-frequency noises and transconductance which provides uniform gain of the transducer in the frequency range of 0.6-12 MHz and permits to construct a transistor spectrometer of NQR not yielding to a lamp spectrometer in sensitivity [ru

  16. Bipolar Disorder

    Science.gov (United States)

    ... one or other traumatic event Drug or alcohol abuse Complications Left untreated, bipolar disorder can result in serious problems that affect every area of your life, such as: Problems related to drug and alcohol use Suicide or suicide attempts Legal or financial problems Damaged ...

  17. Nonlinear System Analysis in Bipolar Integrated Circuits.

    Science.gov (United States)

    1980-01-01

    H2 (fl,f 6), H2 (f2,f4), and H2 (f3,f4) are all equal, Equation (7-8) can be written as v M(t) = mA2 H2 (fl’-f 2) cos[27(f ,-f2)t] (7-9) The AF...and R. A. AMADORI: Micro- wave Interference Effect in Bipolar Transistors, IEEE Trans. EMC, Vol. EMC-17, pp. 216-219, November 1975. 55. KAPLAN , G

  18. Converter Structure-Based Power Loss and Static Thermal Modeling of The Press-Pack IGBT Three-Level ANPC VSC Applied to Multi-MW Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2011-01-01

    performance, the converter structure-based power loss and thermal models are developed in this study for the medium-voltage (MV) three-level active neutral-point-clamped voltage source converter (3L-ANPC-VSC) utilizing 4500 V-1800 A press-pack insulated-gate bipolar transistor-diode pairs and interfacing a 6...

  19. Co-altered functional networks and brain structure in unmedicated patients with bipolar and major depressive disorders.

    Science.gov (United States)

    He, Hao; Sui, Jing; Du, Yuhui; Yu, Qingbao; Lin, Dongdong; Drevets, Wayne C; Savitz, Jonathan B; Yang, Jian; Victor, Teresa A; Calhoun, Vince D

    2017-12-01

    Bipolar disorder (BD) and major depressive disorder (MDD) share similar clinical characteristics that often obscure the diagnostic distinctions between their depressive conditions. Both functional and structural brain abnormalities have been reported in these two disorders. However, the direct link between altered functioning and structure in these two diseases is unknown. To elucidate this relationship, we conducted a multimodal fusion analysis on the functional network connectivity (FNC) and gray matter density from MRI data from 13 BD, 40 MDD, and 33 matched healthy controls (HC). A data-driven fusion method called mCCA+jICA was used to identify the co-altered FNC and gray matter components. Comparing to HC, BD exhibited reduced gray matter density in the parietal and occipital cortices, which correlated with attenuated functional connectivity within sensory and motor networks, as well as hyper-connectivity in regions that are putatively engaged in cognitive control. In addition, lower gray matter density was found in MDD in the amygdala and cerebellum. High accuracy in discriminating across groups was also achieved by trained classification models, implying that features extracted from the fusion analysis hold the potential to ultimately serve as diagnostic biomarkers for mood disorders.

  20. Dosimetric properties of MOS transistors

    International Nuclear Information System (INIS)

    Frank, H.; Petr, I.

    1977-01-01

    The structure of MOS transistors is described and their characteristics given. The experiments performed and data in the literature show the following dosimetric properties of MOS transistors: while for low gamma doses the transistor response to exposure is linear, it shows saturation for higher doses (exceeding 10 3 Gy in tissue). The response is independent of the energy of radiation and of the dose rate (within 10 -2 to 10 5 Gy/s). The spontaneous reduction with time of the spatial charge captured by the oxide layer (fading) is small and acceptable from the point of view of dosimetry. Curves are given of isochronous annealing of the transistors following irradiation with 137 Cs and 18 MeV electrons for different voltages during irradiation. The curves show that in MOS transistors irradiated with high-energy electrons the effect of annealing is less than in transistors irradiated with 137 Cs. In view of the requirement of using higher temperatures (approx. 400 degC) for the complete ''erasing'' of the captured charge, unsealed systems must be used for dosimetric purposes. The effect was also studied of neutron radiation, proton radiation and electron radiation on the MOS transistor structure. For MOS transistor irradiation with 14 MeV neutrons from a neutron generator the response was 4% of that for gamma radiation at the same dose equivalent. The effect of proton radiation was studied as related to the changes in MOS transistor structure during space flights. The response curve shapes are similar to those of gamma radiation curves. The effect of electron radiation on the MOS structure was studied by many authors. The experiments show that for each thickness of the SiO 2 layer an electron energy exists at which the size of the charge captured in SiO 2 is the greatest. All data show that MOS transistors are promising for radiation dosimetry. The main advantage of MOS transistors as gamma dosemeters is the ease and speed of evaluation, low sensitivity to neutron

  1. High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank Structure.

    Science.gov (United States)

    Zhang, Qing; Shao, Shuangshuang; Chen, Zheng; Pecunia, Vincenzo; Xia, Kai; Zhao, Jianwen; Cui, Zheng

    2018-05-09

    A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 μm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 10 8 , maximum mobility of 3.3 cm 2 V -1 s -1 , negligible hysteresis, and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high-resolution printing displays.

  2. Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor

    International Nuclear Information System (INIS)

    Li, Hung-Hsien; Yang, Chi-En; Kei, Chi-Chung; Su, Chung-Yi; Dai, Wei-Syuan; Tseng, Jung-Kuei; Yang, Po-Yu; Chou, Jung-Chuan; Cheng, Huang-Chung

    2013-01-01

    An extended-gate field-effect transistor (EGFET) of coaxial-structured ZnO/silicon nanowires as pH sensor was demonstrated in this paper. The oriented 1-μm-long silicon nanowires with the diameter of about 50 nm were vertically synthesized by the electroless metal deposition method at room temperature and were sequentially capped with the ZnO films using atomic layer deposition at 50 °C. The transfer characteristics (I DS –V REF ) of such ZnO/silicon nanowire EGFET sensor exhibited the sensitivity and linearity of 46.25 mV/pH and 0.9902, respectively for the different pH solutions (pH 1–pH 13). In contrast to the ZnO thin-film ones, the ZnO/silicon nanowire EGFET sensor achieved much better sensitivity and superior linearity. It was attributed to a high surface-to-volume ratio of the nanowire structures, reflecting a larger effective sensing area. The output voltage and time characteristics were also measured to indicate good reliability and durability for the ZnO/silicon nanowires sensor. Furthermore, the hysteresis was 9.74 mV after the solution was changed as pH 7 → pH 3 → pH 7 → pH 11 → pH 7. - Highlights: ► Coaxial-structured ZnO/silicon nanowire EGFET was demonstrated as pH sensor. ► EMD and ALD methods were proposed to fabricate ZnO/silicon nanowires. ► ZnO/silicon nanowire EGFET sensor achieved better sensitivity and linearity. ► ZnO/silicon nanowire EGFET sensor had good reliability and durability

  3. Correlating Charge Transport with Structure in Deconstructed Diketopyrrolopyrrole Oligomers: A Case Study of a Monomer in Field-Effect Transistors.

    Science.gov (United States)

    Pickett, Alec; Torkkeli, Mika; Mukhopadhyay, Tushita; Puttaraju, Boregowda; Laudari, Amrit; Lauritzen, Andreas E; Bikondoa, Oier; Kjelstrup-Hansen, Jakob; Knaapila, Matti; Patil, Satish; Guha, Suchismita

    2018-06-13

    Copolymers based on diketopyrrolopyrrole (DPP) cores have attracted a lot of attention because of their high p-type as well as n-type carrier mobilities in organic field-effect transistors (FETs) and high power conversion efficiencies in solar cell structures. We report the structural and charge transport properties of n-dialkyl side-chain-substituted thiophene DPP end-capped with a phenyl group (Ph-TDPP-Ph) monomer in FETs which were fabricated by vacuum deposition and solvent coating. Grazing-incidence X-ray diffraction (GIXRD) from bottom-gate, bottom-contact FET architectures was measured with and without biasing. Ph-TDPP-Ph reveals a polymorphic structure with π-conjugated stacking direction oriented in-plane. The unit cell comprises either one monomer with a = 20.89 Å, b = 13.02 Å, c = 5.85 Å, α = 101.4°, β = 90.6°, and γ = 94.7° for one phase (TR1) or two monomers with a = 24.92 Å, b = 25.59 Å, c = 5.42 Å, α = 80.3°, β = 83.5°, and γ = 111.8° for the second phase (TR2). The TR2 phase thus signals a shift from a coplanar to herringbone orientation of the molecules. The device performance is sensitive to the ratio of the two triclinic phases found in the film. Some of the best FET performances with p-type carrier mobilities of 0.1 cm 2 /V s and an on/off ratio of 10 6 are for films that comprise mainly the TR1 phase. GIXRD from in operando FETs demonstrates the crystalline stability of Ph-TDPP-Ph.

  4. Effects of structural modification via high-pressure annealing on solution-processed InGaO films and thin-film transistors

    International Nuclear Information System (INIS)

    Rim, You Seung; Choi, Hyung-Wook; Kim, Kyung Hwan; Kim, Hyun Jae

    2016-01-01

    We investigated the structural modification of solution-processed nanocrystalline InGaO films via high-pressure annealing and fabricated thin-film transistors. The grain size of InGaO films annealed in the presence of oxygen under high pressure was significantly changed compared the films annealed without high pressure ambient. The O1s XPS peak distribution of InGaO films annealed under high pressure at 350 °C showed a peak similar to that of the non-pressure annealed film at 500 °C. The high-pressure annealing process promoted the elimination of organic residues and dehydroxylation of the metal hydroxide (M–OH) complex. We confirmed the improved device performance of high-pressure annealed InGaO-based thin-film transistors owing to the reduction in charge-trap density. (paper)

  5. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  6. Transistor Small Signal Analysis under Radiation Effects

    International Nuclear Information System (INIS)

    Sharshar, K.A.A.

    2004-01-01

    A Small signal transistor parameters dedicate the operation of bipolar transistor before and after exposed to gamma radiation (1 Mrad up to 5 Mrads) and electron beam(1 MeV, 25 mA) with the same doses as a radiation sources, the electrical parameters of the device are changed. The circuit Model has been discussed.Parameters, such as internal emitter resistance (re), internal base resistance, internal collector resistance (re), emitter base photocurrent (Ippe) and base collector photocurrent (Ippe). These parameters affect on the operation of the device in its applications, which work as an effective element, such as current gain (hFE≡β)degradation it's and effective parameter in the device operation. Also the leakage currents (IcBO) and (IEBO) are most important parameters, Which increased with radiation doses. Theoretical representation of the change in the equivalent circuit for NPN and PNP bipolar transistor were discussed, the input and output parameters of the two types were discussed due to the change in small signal input resistance of the two types. The emitter resistance(re) were changed by the effect of gamma and electron beam irradiation, which makes a change in the role of matching impedances between transistor stages. Also the transistor stability factors S(Ico), S(VBE) and S(β are detected to indicate the transistor operations after exposed to radiation fields. In low doses the gain stability is modified due to recombination of induced charge generated during device fabrication. Also the load resistance values are connected to compensate the effect

  7. Bipolar Treatment: Are Bipolar I and Bipolar II Treated Differently?

    Science.gov (United States)

    ... The diagnosis and management of bipolar I and bipolar II disorders: Clinical practice update. Mayo Clinic Proceedings. 2017;92:1532. Haynes PL, et al. Social rhythm therapies for mood disorders: An update. Current Psychiatry Reports. ...

  8. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  9. Cortical brain structure and sexual orientation in adult females with bipolar disorder or attention deficit hyperactivity disorder.

    Science.gov (United States)

    Abé, Christoph; Rahman, Qazi; Långström, Niklas; Rydén, Eleonore; Ingvar, Martin; Landén, Mikael

    2018-05-29

    Nonheterosexual individuals have higher risk of psychiatric morbidity. Together with growing evidence for sexual orientation-related brain differences, this raises the concern that sexual orientation may be an important factor to control for in neuroimaging studies of neuropsychiatric disorders. We studied sexual orientation in adult psychiatric patients with bipolar disorder (BD) or ADHD in a large clinical cohort (N = 154). We compared cortical brain structure in exclusively heterosexual women (HEW, n = 29) with that of nonexclusively heterosexual women (nHEW, n = 37) using surface-based reconstruction techniques provided by FreeSurfer. The prevalence of nonheterosexual sexual orientation was tentatively higher than reported in general population samples. Consistent with previously reported cross-sex shifted brain patterns among homosexual individuals, nHEW patients showed significantly larger cortical volumes than HEW in medial occipital brain regions. We found evidence for a sex-reversed difference in cortical volume among nonheterosexual female patients, which provides insights into the neurobiology of sexual orientation, and may provide the first clues toward a better neurobiological understanding of the association between sexual orientation and mental health. We also suggest that sexual orientation is an important factor to consider in future neuroimaging studies of populations with certain mental health disorders. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  10. Bipolar electrochemistry.

    Science.gov (United States)

    Fosdick, Stephen E; Knust, Kyle N; Scida, Karen; Crooks, Richard M

    2013-09-27

    A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multimodal assessments of the hippocampal formation in schizophrenia and bipolar disorder: Evidences from neurobehavioral measures and functional and structural MRI

    Directory of Open Access Journals (Sweden)

    Christian Knöchel

    2014-01-01

    Full Text Available A potential clinical and etiological overlap between schizophrenia (SZ and bipolar disorder (BD has long been a subject of discussion. Imaging studies imply functional and structural alterations of the hippocampus in both diseases. Thus, imaging this core memory region could provide insight into the pathophysiology of these disorders and the associated cognitive deficits. To examine possible shared alterations in the hippocampus, we conducted a multi-modal assessment, including functional and structural imaging as well as neurobehavioral measures of memory performance in BD and SZ patients compared with healthy controls. We assessed episodic memory performance, using tests of verbal and visual learning (HVLT, BVMT in three groups of participants: BD patients (n = 21, SZ patients (n = 21 and matched (age, gender, education healthy control subjects (n = 21. In addition, we examined hippocampal resting state functional connectivity, hippocampal volume using voxel-based morphometry (VBM and fibre integrity of hippocampal connections using diffusion tensor imaging (DTI. We found memory deficits, changes in functional connectivity within the hippocampal network as well as volumetric reductions and altered white matter fibre integrity across patient groups in comparison with controls. However, SZ patients when directly compared with BD patients were more severely affected in several of the assessed parameters (verbal learning, left hippocampal volumes, mean diffusivity of bilateral cingulum and right uncinated fasciculus. The results of our study suggest a graded expression of verbal learning deficits accompanied by structural alterations within the hippocampus in BD patients and SZ patients, with SZ patients being more strongly affected. Our findings imply that these two disorders may share some common pathophysiological mechanisms. The results could thus help to further advance and integrate current pathophysiological models of SZ and BD.

  12. Structural correlates of creative thinking in patients with bipolar disorder and healthy controls-a voxel-based morphometry study.

    Science.gov (United States)

    Tu, Pei-Chi; Kuan, Yi-Hsuan; Li, Cheng-Ta; Su, Tung-Ping

    2017-06-01

    This study investigated the structural correlates of creative thinking in patients with bipolar disorder (BD) to understand the possible neural mechanism of creative thinking in BD. We recruited 59 patients with BD I or BD II (35.3±8.5 y) and 56 age- and sex-matched controls (HCs; 34±7.4 y). Each participant underwent structural magnetic resonance imaging and evaluation of creative thinking, which was assessed using two validated tools: the Chinese version of the Abbreviated Torrance Test for Adults for divergent thinking and the Chinese Word Remote Associates Test for remote association. Voxel-based morphometry was performed using SPM12. In patients with BD, divergent thinking positively correlated with the gray matter volume (GMV) in right medial frontal gyrus (Brodmann area [BA] 9), and remote association positively correlated with the GMV in the medial prefrontal gyrus (BA 10). In the HCs, divergent thinking negatively correlated with the GMV in left superior frontal gyrus (BA 8) and positively correlated with the GMV in the precuneus and occipital regions, and remote association positively correlated with the GMV in the hippocampus. Patients with BD were receiving various dosages of antipsychotics, antidepressants and mood stabilizer. These medications may confound the GMV-creative thinking relationship in patients with BD. Our findings indicate that medial prefrontal cortex plays a major and positive role in creative thinking in patients with BD. By contrary, creative thinking involves more diverse structures, and the prefrontal cortex may have an opposite effect in HCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Transtorno bipolar

    Directory of Open Access Journals (Sweden)

    Alda Martin

    1999-01-01

    Full Text Available Os resultados de estudos de famílias sugerem que o transtorno bipolar tenha uma base genética. Essa hipótese foi reforçada em estudos de adoção e de gêmeos. A herança do transtorno bipolar é complexa, envolve vários genes, além de apresentar heterogeneidade e interação entre fatores genéticos e não-genéticos. Achados, que já foram replicados, já implicaram os cromossomos 4, 12, 18 e 21, entre outros, na busca por genes de suscetibilidade. Os resultados mais promissores foram obtidos através de estudos de ligação. Por outro lado, os estudos de associação geraram dados interessantes, mas ainda vagos. Os estudos de populações de pacientes homogêneos e a melhor definição do fenótipo deverão contribuir para avanços futuros. A identificação dos genes relacionados ao transtorno bipolar irá permitir o melhor entendimento e tratamento dessa doença.

  14. Radiation tolerance of NPN bipolar technology with 30 GHz Ft

    International Nuclear Information System (INIS)

    Flament, O.; Synold, S.; Pontcharra, J. de; Niel, S.

    1999-01-01

    The ionizing dose and neutron radiation tolerance of Si QSA bipolar technology has been investigated. The transistors exhibit good radiation tolerance up to 100 krad and 5 10 13 n/cm 2 without any special fabrication steps to harden the technology to the studied effects. (authors)

  15. 10 K gate I(2)L and 1 K component analog compatible bipolar VLSI technology - HIT-2

    Science.gov (United States)

    Washio, K.; Watanabe, T.; Okabe, T.; Horie, N.

    1985-02-01

    An advanced analog/digital bipolar VLSI technology that combines on the same chip 2-ns 10 K I(2)L gates with 1 K analog devices is proposed. The new technology, called high-density integration technology-2, is based on a new structure concept that consists of three major techniques: shallow grooved-isolation, I(2)L active layer etching, and I(2)L current gain increase. I(2)L circuits with 80-MHz maximum toggle frequency have developed compatibly with n-p-n transistors having a BV(CE0) of more than 10 V and an f(T) of 5 GHz, and lateral p-n-p transistors having an f(T) of 150 MHz.

  16. Structural Modification of Organic Thin-Film Transistors for Photosensor Application

    Science.gov (United States)

    Jeong, Hyeon Seok; Bae, Jin-Hyuk; Lee, Hyeonju; Ndikumana, Joel; Park, Jaehoon

    2018-05-01

    We investigated the light response characteristics of bottom-gate/top-contact organic TFTs fabricated using pentacene and polystyrene as an organic semiconductor and a polymeric insulator, respectively. The pentacene TFT with overlaps (50 μm) between the source and gate electrodes as well as between the drain and gate electrodes exhibited negligible hysteresis in its transfer characteristics upon reversal of the gate voltage sweep direction. When the TFTs were structurally modified to produce an underlap structure between the source and gate electrodes, clockwise hysteresis and a drain-current decrease were observed, which were further augmented by increasing the gate underlap (from 30 μm to 50 μm and 70 μm). Herein, these results are explained in terms of space charge formation and accumulation capacitance reduction. Importantly, we found that space charges formed under the source electrode contributed to the drain currents via light irradiation through the underlap region. Under constant bias conditions, the TFTs with gate underlap structures thus exhibited on-state drain current changes in response to light signals. In our study, an optimal photosensitivity exceeding 11 was achieved by the TFT with a 30 μm gate underlap. Consequently, we suggest that gate underlap structure modification is a viable means of implementing light responsiveness in organic TFTs.

  17. Parasitic bipolar amplification in a single event transient and its temperature dependence

    International Nuclear Information System (INIS)

    Liu Zheng; Chen Shu-Ming; Chen Jian-Jun; Qin Jun-Rui; Liu Rong-Rong

    2012-01-01

    Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied. We quantify the contributions of different current components in a SET current pulse, and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both 130-nm and 90-nm technologies. The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified. The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature, which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor

  18. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  19. Structural and morphological changes in P3HT thin film transistors applying an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Deepak Kumar; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany); Flesch, Heinz; Resel, Roland [University of Siegen (Germany); Graz University of Technology (Austria)

    2010-07-01

    We report on electric field dependent crystalline structure and morphological changes of drop casting and spin coated poly(3-hexylthiophene) (P3HT) thin films. In order to probe the morphological changes induced by an applied electric field the samples were covered with thin source/drain electrodes separated by a small channel of 2 mm width. A series of x-ray reflectivity, X-ray grazing incidence out-of-plane and in-plane scans have been performed as function of the applied electric voltage. The (100) peak shows a decrease in intensity with increase of the applied electric field. This might be caused by Joule heating and the creation of current induced defects in the P3HT film. On other hand the (020) peak intensity shows much stronger changes with applied field. Considering the *-* stacking direction the measured effect can be directly related to a change in the electric transport. The observed changes in structure are reversible and the current-voltage cycle can be repeated several times. For X-ray reflectivity major changes have been found close to critical angle of total external reflection indicating the film becomes less dense and increases in surface roughness with increase of the voltage. This change in surface behaviour could be confirmed by in-situ AFM measurements.

  20. Structural and electrical characteristics of high-κ ErTixOy gate dielectrics on InGaZnO thin-film transistors

    International Nuclear Information System (INIS)

    Chen, Fa-Hsyang; Her, Jim-Long; Shao, Yu-Hsuan; Li, Wei-Chen; Matsuda, Yasuhiro H.; Pan, Tung-Ming

    2013-01-01

    In this paper, we investigated the structural properties and electrical characteristics of high-κ ErTi x O y gate dielectrics on indium-gallium-zinc oxide thin-film transistors (IGZO TFTs). We used X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy to investigate the structural and morphological features of these dielectric films after they had been subjected to annealing at various temperatures. The high-κ ErTi x O y IGZO TFT device annealed at 400 °C exhibited better electrical characteristics in terms of a large field-effect mobility (8.24 cm 2 /V-s), low threshold voltage (0.36 V), small subthreshold swing (130 mV/dec), and high I on/off ratio(3.73 × 10 6 ). These results are attributed to the reduction of the trap states and oxygen vacancies between the ErTi x O y film and IGZO active layer interface during high-temperature annealing in oxygen ambient. The reliability of voltage stress also can be improved by the oxygen annealing at 400 °C. - Highlights: • ErTi x O y InGaZnO thin-film transistors (TFT). • Structural and electrical properties of the TFT were investigated. • TFT device annealed at 400 °C exhibited better electrical characteristics. • Reliability of TFT device can be improved by annealing at 400 °C

  1. Alcoholism and anxiety in bipolar illness : Differential lifetime anxiety comorbidity in bipolar I women with and without alcoholism

    NARCIS (Netherlands)

    Levander, Eric; Frye, Mark A.; McElroy, Susan; Suppes, Trisha; Grunze, Heinz; Nolen, Willem A.; Kupka, Ralph; Keck, Paul E.; Leverich, Gabriele S.; Altshuler, Lori L.; Hwang, Sun; Mintz, Jim; Post, Robert M.

    Introduction: This study was undertaken to evaluate the prevalence rate of anxiety comorbidity in bipolar subjects with and without alcohol use disorders (AUD). Methods: Bipolar men and women who entered the Stanley Foundation Bipolar Network (SFBN) underwent a Structured Clinical Interview for

  2. Theoretical and experimental studies of the current–voltage and capacitance–voltage of HEMT structures and field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Tarasova, E. A.; Obolenskaya, E. S., E-mail: obolensk@rf.unn.ru; Hananova, A. V.; Obolensky, S. V. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation); Zemliakov, V. E.; Egorkin, V. I. [National Research University of Electronic Technology (MIET) (Russian Federation); Nezhenzev, A. V. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation); Saharov, A. V.; Zazul’nokov, A. F.; Lundin, V. V.; Zavarin, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Medvedev, G. V. [JSC RPE Salut (Russian Federation)

    2016-12-15

    The sensitivity of classical n{sup +}/n{sup –} GaAs and AlGaN/GaN structures with a 2D electron gas (HEMT) and field-effect transistors based on these structures to γ-neutron exposure is studied. The levels of their radiation hardness were determined. A method for experimental study of the structures on the basis of a differential analysis of their current–voltage characteristics is developed. This method makes it possible to determine the structure of the layers in which radiation-induced defects accumulate. A procedure taking into account changes in the plate area of the experimentally measured barrier-contact capacitance associated with the emergence of clusters of radiation-induced defects that form dielectric inclusions in the 2D-electron-gas layer is presented for the first time.

  3. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning.

    Science.gov (United States)

    Laksshman, Sundaram; Bhat, Rajendra Rana; Viswanath, Vivek; Li, Xiaolin

    2017-09-01

    Bipolar disorder, also known as manic depression, is a brain disorder that affects the brain structure of a patient. It results in extreme mood swings, severe states of depression, and overexcitement simultaneously. It is estimated that roughly 3% of the population of the United States (about 5.3 million adults) suffers from bipolar disorder. Recent research efforts like the Twin studies have demonstrated a high heritability factor for the disorder, making genomics a viable alternative for detecting and treating bipolar disorder, in addition to the conventional lengthy and costly postsymptom clinical diagnosis. Motivated by this study, leveraging several emerging deep learning algorithms, we design an end-to-end deep learning architecture (called DeepBipolar) to predict bipolar disorder based on limited genomic data. DeepBipolar adopts the Deep Convolutional Neural Network (DCNN) architecture that automatically extracts features from genotype information to predict the bipolar phenotype. We participated in the Critical Assessment of Genome Interpretation (CAGI) bipolar disorder challenge and DeepBipolar was considered the most successful by the independent assessor. In this work, we thoroughly evaluate the performance of DeepBipolar and analyze the type of signals we believe could have affected the classifier in distinguishing the case samples from the control set. © 2017 Wiley Periodicals, Inc.

  4. Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Liu, E-mail: liuyan@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wei, Chen; Shanchao, Yang; Xiaoming, Jin [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); Chaohui, He [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-09-21

    This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.

  5. Increase in electron mobility of InGaAs/InP composite channel high electron mobility transistor structure due to SiN passivation

    International Nuclear Information System (INIS)

    Liu Yuwei; Wang Hong; Radhakrishnan, K.

    2007-01-01

    The influence of silicon nitride passivation on electron mobility of InGaAs/InP composite channel high electron mobility transistor structure has been studied. Different from the structures with single InGaAs channel, an increase in effective mobility μ e with a negligible change of sheet carrier density n s after SiN deposition is clearly observed in the composite channel structures. The enhancement of μ e could be explained under the framework of electrons transferring from the InP sub-channel into InGaAs channel region due to the energy band bending at the surface region caused by SiN passivation, which is further confirmed by low temperature photoluminescence measurements

  6. Bipolar disorder in adolescence.

    Science.gov (United States)

    DeFilippis, Melissa; Wagner, Karen Dineen

    2013-08-01

    Bipolar disorder is a serious psychiatric condition that may have onset in childhood. It is important for physicians to recognize the symptoms of bipolar disorder in children and adolescents in order to accurately diagnose this illness early in its course. Evidence regarding the efficacy of various treatments is necessary to guide the management of bipolar disorder in youth. For example, several medications commonly used for adults with bipolar disorder have not shown efficacy for children and adolescents with bipolar disorder. This article reviews the prevalence, diagnosis, course, and treatment of bipolar disorder in children and adolescents and provides physicians with information that will aid in diagnosis and treatment.

  7. Metalorganic chemical vapor deposition growth and thermal stability of the AlInN/GaN high electron mobility transistor structure

    International Nuclear Information System (INIS)

    Yu, Hongbo; Ozturk, Mustafa; Demirel, Pakize; Cakmak, Huseyin; Bolukbas, Basar; Caliskan, Deniz; Ozbay, Ekmel

    2011-01-01

    The Al x In 1−x N barrier high electron mobility transistor (HEMT) structure has been optimized with varied barrier composition and thickness grown by metalorganic chemical vapor deposition. After optimization, a transistor structure comprising a 7 nm thick nearly lattice-matched Al 0.83 In 0.17 N barrier exhibits a sheet electron density of 2.0 × 10 13 cm −2 with a high electron mobility of 1540 cm 2 V −1 s −1 . An Al 0.83 In 0.17 N barrier HEMT device with 1 µm gate length provides a current density of 1.0 A mm −1 at V GS = 0 V and an extrinsic transconductance of 242 mS mm −1 , which are remarkably improved compared to that of a conventional Al 0.3 Ga 0.7 N barrier HEMT. To investigate the thermal stability of the HEMT epi-structures, post-growth annealing experiments up to 800 °C have been applied to Al 0.83 In 0.17 N and Al 0.3 Ga 0.7 N barrier heterostructures. As expected, the electrical properties of an Al 0.83 In 0.17 N barrier HEMT structure showed less stability than that of an Al 0.3 Ga 0.7 N barrier HEMT to the thermal annealing. The structural properties of Al 0.83 In 0.17 N/GaN also showed more evidence for decomposition than that of the Al 0.3 Ga 0.7 N/GaN structure after 800 °C post-annealing

  8. Transistor design considerations for low-noise preamplifiers

    International Nuclear Information System (INIS)

    Fair, R.B.

    1976-01-01

    A review is presented of design considerations for GaAs Schottky-barrier FETs and other types of transistors in low-noise amplifiers for capacitive sources which are used in nuclear radiation detectors and high speed fiber-optic communication systems. Ultimate limits on performance are evaluated in terms of the g/sub m//C/sub i/ ratio and the gate leakage current to minimize the noise sources. Si bipolar transistors and the future prospects of GaAs, Si and InAs MISFETs are discussed, and performance is compared to FETs currently being used in low-noise preamplifiers

  9. Growth parameter optimization and interface treatment for enhanced electron mobility in heavily strained GaInAs/AlInAs high electron mobility transistor structures

    International Nuclear Information System (INIS)

    Fedoryshyn, Yuriy; Ostinelli, Olivier; Alt, Andreas; Pallin, Angel; Bolognesi, Colombo R.

    2014-01-01

    The optimization of heavily strained Ga 0.25 In 0.75 As/Al 0.48 In 0.52 As high electron mobility transistor structures is discussed in detail. The growth parameters and the channel layer interfaces were optimized in order to maximize the mobility of the two-dimensional electron gas. Structures composed of an 11 nm thick channel layer and a 4 nm thick spacer layer exhibited electron mobilities as high as 15 100 cm 2 /Vs and 70 000 cm 2 /Vs at 300 and 77 K, respectively, for channels including InAs strained layers. The sheet carrier density was kept above 2.5 × 10 12  cm −2 throughout the entire study

  10. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  11. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    International Nuclear Information System (INIS)

    Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki

    2015-01-01

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale

  12. Leakage current suppression with a combination of planarized gate and overlap/off-set structure in metal-induced laterally crystallized polycrystalline-silicon thin-film transistors

    Science.gov (United States)

    Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki

    2018-04-01

    A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.

  13. Genetics of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Kerner B

    2014-02-01

    Full Text Available Berit Kerner Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA Abstract: Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a “risk” allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders. In many Mendelian syndromes, psychiatric symptoms are prevalent. Although these conditions do not fit the classic description of any specific psychiatric disorder, they often show nonspecific psychiatric symptoms that cross diagnostic boundaries, including intellectual disability, behavioral abnormalities, mood disorders, anxiety disorders, attention deficit, impulse control deficit, and psychosis. Although testing for chromosomal disorders and monogenic Mendelian disorders is well established, testing for common variants is still controversial. The standard concept of genetic testing includes at least three broad criteria that need to be fulfilled before new genetic tests should be introduced: analytical validity, clinical validity, and clinical utility. These criteria are

  14. Bipolar disorder diagnosis: challenges and future directions

    Science.gov (United States)

    Phillips, Mary L; Kupfer, David J

    2018-01-01

    Bipolar disorder refers to a group of affective disorders, which together are characterised by depressive and manic or hypomanic episodes. These disorders include: bipolar disorder type I (depressive and manic episodes: this disorder can be diagnosed on the basis of one manic episode); bipolar disorder type II (depressive and hypomanic episodes); cyclothymic disorder (hypomanic and depressive symptoms that do not meet criteria for depressive episodes); and bipolar disorder not otherwise specified (depressive and hypomanic-like symptoms that do not meet the diagnostic criteria for any of the aforementioned disorders). Bipolar disorder type II is especially difficult to diagnose accurately because of the difficulty in differentiation of this disorder from recurrent unipolar depression (recurrent depressive episodes) in depressed patients. The identification of objective biomarkers that represent pathophysiologic processes that differ between bipolar disorder and unipolar depression can both inform bipolar disorder diagnosis and provide biological targets for the development of new and personalised treatments. Neuroimaging studies could help the identification of biomarkers that differentiate bipolar disorder from unipolar depression, but the problem in detection of a clear boundary between these disorders suggests that they might be better represented as a continuum of affective disorders. Innovative combinations of neuroimaging and pattern recognition approaches can identify individual patterns of neural structure and function that accurately ascertain where a patient might lie on a behavioural scale. Ultimately, an integrative approach, with several biological measurements using different scales, could yield patterns of biomarkers (biosignatures) to help identify biological targets for personalised and new treatments for all affective disorders. PMID:23663952

  15. Cytokines in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Vedel Kessing, Lars

    2012-01-01

    BACKGROUND: Current research and hypothesis regarding the pathophysiology of bipolar disorder suggests the involvement of immune system dysfunction that is possibly related to disease activity. Our objective was to systematically review evidence of cytokine alterations in bipolar disorder according...... to affective state. METHODS: We conducted a systemtic review of studies measuring endogenous cytokine concentrations in patients with bipolar disorder and a meta-analysis, reporting results according to the PRISMA statement. RESULTS: Thirteen studies were included, comprising 556 bipolar disorder patients...

  16. Oxide bipolar electronics: materials, devices and circuits

    International Nuclear Information System (INIS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; Von Wenckstern, Holger

    2016-01-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo 2 O 4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization. (topical review)

  17. High mobility and quantum well transistors design and TCAD simulation

    CERN Document Server

    Hellings, Geert

    2013-01-01

    For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Qu...

  18. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    Science.gov (United States)

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  19. Transistor-based particle detection systems and methods

    Science.gov (United States)

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad Ashraful

    2015-06-09

    Transistor-based particle detection systems and methods may be configured to detect charged and non-charged particles. Such systems may include a supporting structure contacting a gate of a transistor and separating the gate from a dielectric of the transistor, and the transistor may have a near pull-in bias and a sub-threshold region bias to facilitate particle detection. The transistor may be configured to change current flow through the transistor in response to a change in stiffness of the gate caused by securing of a particle to the gate, and the transistor-based particle detection system may configured to detect the non-charged particle at least from the change in current flow.

  20. Doped Organic Transistors.

    Science.gov (United States)

    Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl

    2016-11-23

    Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.

  1. SOI Transistor measurement techniques using body contacted transistors

    International Nuclear Information System (INIS)

    Worley, E.R.; Williams, R.

    1989-01-01

    Measurements of body contacted SOI transistors are used to isolate parameters of the back channel and island edge transistor. Properties of the edge and back channel transistor have been measured before and after X-ray irradiation (ARACOR). The unique properties of the edge transistor are shown to be a result of edge geometry as confirmed by a two dimensional transistor simulator

  2. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO{sub x}–Al{sub 2}O{sub 3} thin film structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. K.; Chen, T. P., E-mail: echentp@ntu.edu.sg; Liu, P.; Zhang, Q. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, S. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Liu, Y. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Lee, P. S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-06-28

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al{sub 2}O{sub 3}) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al{sub 2}O{sub 3} interface and/or in the Al{sub 2}O{sub 3} layer.

  3. Abnormal functional-structural cingulum connectivity in mania: combined functional magnetic resonance imaging-diffusion tensor imaging investigation in different phases of bipolar disorder.

    Science.gov (United States)

    Martino, M; Magioncalda, P; Saiote, C; Conio, B; Escelsior, A; Rocchi, G; Piaggio, N; Marozzi, V; Huang, Z; Ferri, F; Amore, M; Inglese, M; Northoff, G

    2016-10-01

    The objective of the study was to investigate the relationship between structural connectivity (SC) and functional connectivity (FC) in the cingulum in bipolar disorder (BD) and its various phases. We combined resting-state functional magnetic resonance imaging and probabilistic tractographic diffusion tensor imaging to investigate FC and SC of the cingulum and its portions, the SC-FC relationship, and their correlations with clinical and neurocognitive measures on sustained attention in manic (n = 21), depressed (n = 20), and euthymic (n = 20) bipolar patients and healthy controls (HC) (n = 42). First, we found decreased FC between the anterior and posterior parts of the cingulum in manic patients when compared to depressed patients and HC. Second, we observed decreased SC of the cingulum bundle, particularly in its anterior part, in manic patients when compared to HC. Finally, alterations in the cingulum FC (but not SC) correlated with clinical severity scores while changes in the cingulum SC (but not FC) were related with neurocognitive deficits in sustained attention in BD. We demonstrate for the first time a reduction in FC and concomitantly in SC of the cingulum in mania, which correlated with psychopathological and neurocognitive parameters, respectively, in BD. This supports the central role of cingulum connectivity specifically in mania. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Thermal Analysis of AlGaN/GaN High-Electron-Mobility Transistor and Its RF Power Efficiency Optimization with Source-Bridged Field-Plate Structure.

    Science.gov (United States)

    Kwak, Hyeon-Tak; Chang, Seung-Bo; Jung, Hyun-Gu; Kim, Hyun-Seok

    2018-09-01

    In this study, we consider the relationship between the temperature in a two-dimensional electron gas (2-DEG) channel layer and the RF characteristics of an AlGaN/GaN high-electron-mobility transistor by changing the geometrical structure of the field-plate. The final goal is to achieve a high power efficiency by decreasing the channel layer temperature. First, simulations were performed to compare and contrast the experimental data of a conventional T-gate head structure. Then, a source-bridged field-plate (SBFP) structure was used to obtain the lower junction temperature in the 2-DEG channel layer. The peak electric field intensity was reduced, and a decrease in channel temperature resulted in an increase in electron mobility. Furthermore, the gate-to-source capacitance was increased by the SBFP structure. However, under the large current flow condition, the SBFP structure had a lower maximum temperature than the basic T-gate head structure, which improved the device electron mobility. Eventually, an optimum position of the SBFP was used, which led to higher frequency responses and improved the breakdown voltages. Hence, the optimized SBFP structure can be a promising candidate for high-power RF devices.

  5. Nutrition and Bipolar Depression.

    Science.gov (United States)

    Beyer, John L; Payne, Martha E

    2016-03-01

    As with physical conditions, bipolar disorder is likely to be impacted by diet and nutrition. Patients with bipolar disorder have been noted to have relatively unhealthy diets, which may in part be the reason they also have an elevated risk of metabolic syndrome and obesity. An improvement in the quality of the diet should improve a bipolar patient's overall health risk profile, but it may also improve their psychiatric outcomes. New insights into biological dysfunctions that may be present in bipolar disorder have presented new theoretic frameworks for understanding the relationship between diet and bipolar disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    Science.gov (United States)

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  7. X-ray diffraction study of InAlAs-InGaAs on InP high electron mobility transistor structure prepared by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Liu, H.Y.; Kao, Y.C.; Kim, T.S.

    1990-01-01

    High-electron mobility transistors (HEMTs) can be prepared by growing alternating epitaxial layers of InAlAs and InGaAs on InP substrates. Lattice matched HEMTs are obtained by growing layers of IN x Al (1-x) As and In y Ga (1-y) As with x ≅ 0.5227 and y ≅ 0.5324. Varying the values of x and y by controlling the individual flux during molecular-beam epitaxial (MBE) growth, one can obtain pseudomorphic HEMTs. Pseudomorphic HEMTs may have superior electronic transport properties and larger conduction band discontinuity when compared to an unstrained one. The precise control of the composition is thus important to the properties of HEMTs. This control is however very difficult and the values of x and y may vary from run to run. The authors demonstrate in this paper the capability of a double crystal rocking curve (DCRC) on the structure characterization

  8. A Novel Multi-Finger Gate Structure of AlGaN/GaN High Electron Mobility Transistor

    International Nuclear Information System (INIS)

    Cui Lei; Wang Quan; Wang Xiao-Liang; Xiao Hong-Ling; Wang Cui-Mei; Jiang Li-Juan; Feng Chun; Yin Hai-Bo; Gong Jia-Min; Li Bai-Quan; Wang Zhan-Guo

    2015-01-01

    A novel multi-finger gate high electron mobility transistor (HEMT) is designed to reduce the peak electric field value at the drain-side gate edge when the device is at off-state. The effective gate length (L_e_f_f) of the multi-finger gate device is smaller than that of the field plate gate device. In this work, field plate gate, five-finger gate and ten-finger gate devices are simulated. The results of the simulation indicate that the multi-finger gate device has a lower peak value than the device with the gate field plate. Moreover, this value would be further reduced when the number of gate fingers is increased. In addition, it has the potential to make the HEMT work in a higher frequency since it has a lower effective length of gate. (paper)

  9. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  10. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    Science.gov (United States)

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.

  11. Transfer-free fabrication of graphene transistors

    OpenAIRE

    Wessely, P.J.; Wessely, F.; Birinci, E.; Schwalke, U.; Riedinger, B.

    2012-01-01

    The authors invented a method to fabricate graphene transistors on oxidized silicon wafers without the need to transfer graphene layers. To stimulate the growth of graphene layers on oxidized silicon, a catalyst system of nanometer thin aluminum/nickel double layer is used. This catalyst system is structured via liftoff before the wafer enters the catalytic chemical vapor deposition (CCVD) chamber. In the subsequent methane-based growth process, monolayer graphene field-effect transistors and...

  12. Relaxation of Si-SiO2 interfacial stress in bipolar screen oxides due to ionizing radiation

    International Nuclear Information System (INIS)

    Witczak, S.C.; Galloway, K.F.; Schrimpf, R.D.; Suehle, J.S.

    1995-01-01

    Current gain degradation due to ionizing radiation in complementary single-crystalline emitter bipolar transistors was found to grow progressively worse upon subjecting the transistors to repeated cycles of radiation exposure and high-temperature anneal. The increase in radiation sensitivity is independent of the emitter polarity or geometry and is most dramatic between the first and second radiation and anneal cycles. In parallel with the current gain measurements, samples from a monitor wafer simulating the screen oxide region above the extrinsic base in the npn transistors were measured for mechanical stress while undergoing similar cycles of irradiation and anneal. The oxide on the monitor wafer consisted of a 45 nm thermal layer and a 640 nm deposited layer. The results indicate that ionizing radiation helped relieve compressive stress at the Si surface. The magnitude of the stress change due to radiation is smaller than the stress induced by the emitter contact metallization followed by a post-metallization anneal. Correlation of radiation sensitivity in the bipolar transistors and mechanical stress in the monitor wafer suggests that mechanical stress may be influential in determining the radiation hardness of bipolar transistors and lends validation to previously reported observations that Si-SiO 2 interfaces are increasingly more susceptible to radiation damage with decreasing Si compressive stress. Possible mechanisms for the observed changes in stress and their effect on the radiation sensitivity of the bipolar transistors are discussed

  13. Hetero-gate-dielectric double gate junctionless transistor (HGJLT) with reduced band-to-band tunnelling effects in subthreshold regime

    International Nuclear Information System (INIS)

    Ghosh, Bahniman; Mondal, Partha; Akram, M. W.; Bal, Punyasloka; Salimath, Akshay Kumar

    2014-01-01

    We propose a hetero-gate-dielectric double gate junctionless transistor (HGJLT), taking high-k gate insulator at source side and low-k gate insulator at drain side, which reduces the effects of band-to-band tunnelling (BTBT) in the sub-threshold region. A junctionless transistor (JLT) is turned off by the depletion of carriers in the highly doped thin channel (device layer) which results in a significant band overlap between the valence band of the channel region and the conduction band of the drain region, due to off-state drain bias, that triggers electrons to tunnel from the valence band of the channel region to the conduction band of the drain region leaving behind holes in the channel. These effects of band-to-band tunnelling increase the sub-threshold leakage current, and the accumulation of holes in the channel forms a parasitic bipolar junction transistor (n–p–n BJT for channel JLT) in the lateral direction by the source (emitter), channel (base) and drain (collector) regions in JLT structure in off-state. The proposed HGJLT reduces the subthreshold leakage current and suppresses the parasitic BJT action in off-state by reducing the band-to-band tunnelling probability. (semiconductor devices)

  14. Excellent selector performance in engineered Ag/ZrO2:Ag/Pt structure for high-density bipolar RRAM applications

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-12-01

    Full Text Available A high-performance selector with bidirectional threshold switching (TS characteristics of Ag/ZrO2/Pt structure was prepared by incorporating metallic Ag into the ZrO2 matrix. The bidirectional TS device exhibited excellent switching uniformity, forming-free behavior, ultra-low off current of <1 nA and adjustable selectivity (from 102 to 107. The experiment results confirmed that metallic Ag clusters were penetrated into the ZrO2 matrix during the annealing process, which would function as an effective active source responsible for the bidirectional TS. The volatile behavior could be explained by the self-dissolution of unstable filaments caused by minimization of the interfacial energy and thermal effect. Furthermore, a bipolar-type one selector-one resistor (1S-1R memory device was successfully fabricated and exhibited significant suppression of the undesired sneak current, indicating the great potential as selector in a cross-point array.

  15. Excellent selector performance in engineered Ag/ZrO2:Ag/Pt structure for high-density bipolar RRAM applications

    Science.gov (United States)

    Wang, Chao; Song, Bing; Zeng, Zhongming

    2017-12-01

    A high-performance selector with bidirectional threshold switching (TS) characteristics of Ag/ZrO2/Pt structure was prepared by incorporating metallic Ag into the ZrO2 matrix. The bidirectional TS device exhibited excellent switching uniformity, forming-free behavior, ultra-low off current of selectivity (from 102 to 107). The experiment results confirmed that metallic Ag clusters were penetrated into the ZrO2 matrix during the annealing process, which would function as an effective active source responsible for the bidirectional TS. The volatile behavior could be explained by the self-dissolution of unstable filaments caused by minimization of the interfacial energy and thermal effect. Furthermore, a bipolar-type one selector-one resistor (1S-1R) memory device was successfully fabricated and exhibited significant suppression of the undesired sneak current, indicating the great potential as selector in a cross-point array.

  16. Recent progress in photoactive organic field-effect transistors.

    Science.gov (United States)

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-04-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.

  17. Recent progress in photoactive organic field-effect transistors

    International Nuclear Information System (INIS)

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-01-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts. (review)

  18. Effects of Si3N4 passivation on the dc and RF characteristics of metamorphic high-electron-mobility transistors depending on the gate-recess structures

    International Nuclear Information System (INIS)

    Oh, J H; Han, M; Baek, Y H; Moon, S W; Rhee, J K; Kim, S D

    2009-01-01

    Effects of the Si 3 N 4 passivation on the dc and RF characteristics of a 0.1 µm metamorphic high-electron-mobility transistor (HEMT) are investigated for narrow and wide gate-recess structures. Maximum drain-source saturation current (I dss,max ) and maximum extrinsic transconductance (g m,max ) are reduced by ∼14.8 and ∼11.6%, respectively, in the wide gate-recess structure after the passivation; on the other hand, only ∼5.7 and ∼4.9% reductions are measured from I dss,max and g m,max , respectively, in the narrow gate-recess structure. We examine the passivation-induced degradation by using a modified charge control model assuming the charged surface states on the Si 3 N 4 interface and a comparative study of the hydrodynamic device simulation with the experimental measurement. From the analysis, it is proposed that the difference of degradation in two different gate structures is due to an approximately three times higher charged surface state density of ∼4.5 × 10 11 cm −2 in the wide gate-recess structure than ∼1.6 × 10 11 cm −2 in the narrow gate-recess structure. The cut-off frequency (f T ) of the wide gate-recess structure also exhibits a greater reduction of ∼14.5%, while the f T of the narrow gate-recess structure is reduced by only ∼6.6% after the passivation. This is mainly due to the passivation-induced surface states of a higher density in the wide gate-recess structure. A great increase of the gate-to-drain parasitic capacitance in the wide gate-recess structure makes a major contribution to ∼13.5% degradation of the maximum frequency of oscillation

  19. Strain-Gated Field Effect Transistor of a MoS2-ZnO 2D-1D Hybrid Structure.

    Science.gov (United States)

    Chen, Libo; Xue, Fei; Li, Xiaohui; Huang, Xin; Wang, Longfei; Kou, Jinzong; Wang, Zhong Lin

    2016-01-26

    Two-dimensional (2D) molybdenum disulfide (MoS2) is an exciting material due to its unique electrical, optical, and piezoelectric properties. Owing to an intrinsic band gap of 1.2-1.9 eV, monolayer or a-few-layer MoS2 is used for fabricating field effect transistors (FETs) with high electron mobility and on/off ratio. However, the traditional FETs are controlled by an externally supplied gate voltage, which may not be sensitive enough to directly interface with a mechanical stimulus for applications in electronic skin. Here we report a type of top-pressure/force-gated field effect transistors (PGFETs) based on a hybrid structure of a 2D MoS2 flake and 1D ZnO nanowire (NW) array. Once an external pressure is applied, the piezoelectric polarization charges created at the tips of ZnO NWs grown on MoS2 act as a gate voltage to tune/control the source-drain transport property in MoS2. At a 6.25 MPa applied stimulus on a packaged device, the source-drain current can be tuned for ∼25%, equivalent to the results of applying an extra -5 V back gate voltage. Another type of PGFET with a dielectric layer (Al2O3) sandwiched between MoS2 and ZnO also shows consistent results. A theoretical model is proposed to interpret the received data. This study sets the foundation for applying the 2D material-based FETs in the field of artificial intelligence.

  20. Radiation effect on silicon transistors in mixed neutrons-gamma environment

    Science.gov (United States)

    Assaf, J.; Shweikani, R.; Ghazi, N.

    2014-10-01

    The effects of gamma and neutron irradiations on two different types of transistors, Junction Field Effect Transistor (JFET) and Bipolar Junction Transistor (BJT), were investigated. Irradiation was performed using a Syrian research reactor (RR) (Miniature Neutron Source Reactor (MNSR)) and a gamma source (Co-60 cell). For RR irradiation, MCNP code was used to calculate the absorbed dose received by the transistors. The experimental results showed an overall decrease in the gain factors of the transistors after irradiation, and the JFETs were more resistant to the effects of radiation than BJTs. The effect of RR irradiation was also greater than that of gamma source for the same dose, which could be because neutrons could cause more damage than gamma irradiation.

  1. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Shabir

    2017-06-01

    Full Text Available Bipolar soft topological spaces are mathematical expressions to estimate interpretation of data frameworks. Bipolar soft theory considers the core features of data granules. Bipolarity is important to distinguish between positive information which is guaranteed to be possible and negative information which is forbidden or surely false. Connectedness and compactness are the most important fundamental topological properties. These properties highlight the main features of topological spaces and distinguish one topology from another. Taking this into account, we explore the bipolar soft connectedness, bipolar soft disconnectedness and bipolar soft compactness properties for bipolar soft topological spaces. Moreover, we introduce the notion of bipolar soft disjoint sets, bipolar soft separation, and bipolar soft hereditary property and study on bipolar soft connected and disconnected spaces. By giving the detailed picture of bipolar soft connected and disconnected spaces we investigate bipolar soft compact spaces and derive some results related to this concept.

  2. AlGaAs/InGaAs/AlGaAs double pulse doped pseudomorphic high electron mobility transistor structures on InGaAs substrates

    Science.gov (United States)

    Hoke, W. E.; Lyman, P. S.; Mosca, J. J.; McTaggart, R. A.; Lemonias, P. J.; Beaudoin, R. M.; Torabi, A.; Bonner, W. A.; Lent, B.; Chou, L.-J.; Hsieh, K. C.

    1997-10-01

    Double pulse doped AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor (PHEMT) structures have been grown on InxGa1-xAs (x=0.025-0.07) substrates using molecular beam epitaxy. A strain compensated, AlGaInAs/GaAs superlattice was used for improved resistivity and breakdown. Excellent electrical and optical properties were obtained for 110-Å-thick InGaAs channel layers with indium concentrations up to 31%. A room temperature mobility of 6860 cm2/V s with 77 K sheet density of 4.0×1012cm-2 was achieved. The InGaAs channel photoluminescence intensity was equivalent to an analogous structure on a GaAs substrate. To reduce strain PHEMT structures with a composite InGaP/AlGaAs Schottky layer were also grown. The structures also exhibited excellent electrical and optical properties. Transmission electron micrographs showed planar channel interfaces for highly strained In0.30Ga0.70As channel layers.

  3. Comparison of recessed gate-head structures on normally-off AlGaN/GaN high-electron-mobility transistor performance.

    Science.gov (United States)

    Khan, Mansoor Ali; Heo, Jun-Woo; Kim, Hyun-Seok; Park, Hyun-Chang

    2014-11-01

    In this work, different gate-head structures have been compared in the context of AlGaN/GaN-based high-electron-mobility transistors (HEMTs). Field-plate (FP) technology self-aligned to the gate electrode leads to various gate-head structures, most likely gamma (γF)-gate, camel (see symbol)-gate, and mushroom-shaped (T)-gate. In-depth comparison of recessed gate-head structures demonstrated that key performance metrics such as transconductance, output current, and breakdown voltage are better with the T-gate head structure. The recessed T-gate with its one arm toward the source side not only reduces the source-access resistance (R(g) +R(gs)), but also minimizes the source-side dispersion and current leakage, resulting in high transconductance (G(m)) and output current (I(DS)). At the same time, the other arm toward the drain-side reduces the drain-side dispersion and tends to distribute electric field peaks uniformly, resulting in high breakdown voltage (V(BR)). DC and RF analysis showed that the recessed T-gate FP-HEMT is a suitable candidate not only for high-frequency operation, but also for high-power applications.

  4. Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance.

    Science.gov (United States)

    Hutchins, Daniel Orrin; Weidner, Tobias; Baio, Joe; Polishak, Brent; Acton, Orb; Cernetic, Nathan; Ma, Hong; Jen, Alex K-Y

    2013-01-04

    A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH 2 ) 12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm 2 V -1 s -1 . It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm 2 V -1 s -1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed.

  5. Bipolar characteristics of AlGaN/AlN/GaN/AlGaN double heterojunction structure with AlGaN as buffer layer

    International Nuclear Information System (INIS)

    Peng, Enchao; Wang, Xiaoliang; Xiao, Hongling; Wang, Cuimei; Yin, Haibo; Chen, Hong; Feng, Chun; Jiang, Lijuan; Hou, Xun; Wang, Zhanguo

    2013-01-01

    Highlights: •2DEG and 2DHG coexist in the AlGaN/AlN/GaN/AlGaN DH-structure. •The sheet densities of 2DEG and 2DHG vary with buffer Al content and GaN thickness. •The conditions for the disappearance of 2DHG are discussed. •Increasing buffer Al content provides better electron confinement. •Dislocation scattering is reduced in the DH-structure. -- Abstract: This is a theoretical study of AlGaN/AlN/GaN/AlGaN double heterojunction (DH) structure with AlGaN as buffer layer. Our calculation shows that as the buffer Al content increases, though two-dimensional electron gas (2DEG) sheet density decreases, the channel back-barrier caused by polarization-induced electric field in GaN provides better electron confinement. And under certain conditions the DH-structure shows bipolar characteristics, with an additional two-dimensional hole gas (2DHG) formed at GaN/AlGaN interface. The influence of the buffer Al content and GaN channel thickness on the 2DEG and 2DHG sheet densities are investigated, and the conditions for the disappearance of 2DHG are discussed. Also, the mobility inhibited by dislocation scattering is enhanced in DH-structure due to the enhancement of screening effect of the 2DEG

  6. The thermodynamics of bipolarity: a bifurcation model of bipolar illness and bipolar character and its psychotherapeutic applications.

    Science.gov (United States)

    Sabelli, H C; Carlson-Sabelli, L; Javaid, J I

    1990-11-01

    Two models dominate current formulations of bipolar illness: the homeostatic model implicit in Freud's psychodynamics and most neuroamine deficit/excess theories; and the oscillatory model of exaggerated biological rhythms. The homeostatic model is based on the closed systems approach of classic thermodynamics, while the oscillatory model requires the open systems approach of modern thermodynamics. Here we present a thermodynamic model of bipolarity that includes both homeostatic and oscillatory features and adds the most important feature of open systems thermodynamics: the creation of novel structures in bifurcation processes. According to the proposed model, bipolarity is the result of exaggerated biological energy that augments homeostatic, oscillatory and creative psychological processes. Only low-energy closed systems tend to rest ("point attractor") and entropic disorder. Open processes containing and exchanging energy fluctuate between opposite states ("periodic attractors"); they are characteristic of most physiological rhythms and are exaggerated in bipolar subjects. At higher energies, their strong fluctuations destroy pre-existing patterns and structures, produce turbulence ("chaotic attractors"), which sudden switches between opposite states, and create new and more complex structures. Likewise, high-energy bipolars develop high spontaneity, great fluctuations between opposite moods, internal and interpersonal chaos, and enhanced creativity (personal, artistic, professional) as well as psychopathology (personality deviations, psychotic delusions). Offered here is a theoretical explanation of the dual--creative and destructive--nature of bipolarity in terms of the new enantiodromic concept of entropy generalized by process theory. Clinically, this article offers an integrative model of bipolarity that accounts for many clinical features and contributes to a definition of the bipolar personality.

  7. Genetics Home Reference: bipolar disorder

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions Bipolar disorder Bipolar disorder Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Bipolar disorder is a mental health condition that causes extreme ...

  8. BIPOLAR DISORDER: A REVIEW

    OpenAIRE

    Pathan Dilnawaz N; Ziyaurrahaman A.R; Bhise K.S.

    2010-01-01

    Bipolar disorder (BD) is a severe psychiatric disorder that results in poor global functioning, reduced quality of life and high relapse rates. Research finds that many adults with bipolar disorder identify the onset of symptoms in childhood and adolescence, indicating the importance of early accurate diagnosis and treatment. Accurate diagnosis of mood disorders is critical for treatment to be effective. Distinguishing between major depression and bipolar disorders, especially the depressed p...

  9. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations.

    Science.gov (United States)

    Lee, H-P; Perozek, J; Rosario, L D; Bayram, C

    2016-11-21

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {Al x Ga 1-x N}/AlN, (b) Thin-GaN/3 × {Al x Ga 1-x N}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm 2 /V∙s) and 2DEG carrier concentration (>1.0 × 10 13  cm -2 ) on Si(111) substrates.

  10. Surface morphology of Al0.3Ga0.7N/Al2O3-high electron mobility transistor structure.

    Science.gov (United States)

    Cörekçi, S; Usanmaz, D; Tekeli, Z; Cakmak, M; Ozçelik, S; Ozbay, E

    2008-02-01

    We present surface properties of buffer films (AIN and GaN) and Al0.3Gao.zN/Al2O3-High Electron Mobility Transistor (HEMT) structures with/without AIN interlayer grown on High Temperature (HT)-AIN buffer/Al2O3 substrate and Al2O3 substrate. We have found that the GaN surface morphology is step-flow in character and the density of dislocations was about 10(8)-10(9) cm(-2). The AFM measurements also exhibited that the presence of atomic steps with large lateral step dimension and the surface of samples was smooth. The lateral step sizes are in the range of 100-250 nm. The typical rms values of HEMT structures were found as 0.27, 0.30, and 0.70 nm. HT-AIN buffer layer can have a significant impact on the surface morphology of Al0.3Ga0.7N/Al2O3-HEMT structures.

  11. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    Science.gov (United States)

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  12. Bipolar Disorder in Women

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2013-06-01

    Full Text Available The research on gender's role in bipolar disorders has drawn significant interest recently. The presentation and course of bipolar disorder differs between women and men. Women experience depressive episodes, dysphoric mood, mixed states, rapid cycling and seasonal patterns more often than men. Comorbidity, particularly thyroid disease, migraine, obesity, and anxiety disorders laso occur more frequently in women than men. On the other hand men with bipolar disorder are also more likely than women to have problems with drug or alcohol abuse. The pregnancy and postpartum period is a time of high risk for onset and recurrence of bipolar disorder in women.

  13. Effects of emitter junction and passive base region on low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Pershenkov, V.S.; Cherepko, S.V.; Maslov, V.B.; Belyakov, V.V.; Sogoyan, A.V.; Ulimov, N.; Emelianov, V.V.

    1999-01-01

    Low dose rate effect in bipolar devices consists in the increase of peripheral surface recombination current with dose rate decrease. This is due to the more rapid positive oxide charge and interface trap density build-up as the dose rate becomes lower. High dose rate elevated temperature irradiation is proposed for simulation if the low dose rate effect. In the present we tried to separate the effect of radiation-induced charge in the thick passivation oxide over the emitter junction and passive base regions of npn bipolar transistor. Its goal is to improve bipolar device design for use in space environments and nuclear installations. Three experiments were made during this work. 1. Experiment on radiation-induced charge neutralization (RICN) effect under elevated temperature was performed to show transistor degradation dependence on emitter-base bias. 2. High dose rate elevated and room temperature irradiation of bipolar transistors were performed to separate effects of emitter-junction and passive base regions. 3. Pre- and post- irradiation hydrogen ambient storage was used to investigate its effect on radiation-induced charge build-up over the passive base region. All experiments were performed with npn and pnp transistors. (authors)

  14. Suicide attempts and clinical features of bipolar patients

    OpenAIRE

    Berkol, Tongu? D.; ?slam, Serkan; K?rl?, Ebru; P?narba??, Rasim; ?zy?ld?r?m, ?lker

    2016-01-01

    Objectives: To identify clinical predictors of suicide attempts in patients with bipolar disorder. Methods: This study included bipolar patients who were treated in the Psychiatry Department, Haseki Training and Research Hospital, Istanbul, Turkey, between 2013 and 2014; an informed consent was obtained from the participants. Two hundred and eighteen bipolar patients were assessed by using the structured clinical interview for Diagnostic and Statistical Manual of Mental Disorders, 4th edition...

  15. Preparation of bipolar membranes by electrospinning

    International Nuclear Information System (INIS)

    Pan, Jiefeng; Hou, Linxiao; Wang, Qiuyue; He, Yubin; Wu, Liang; Mondal, Abhishek N.; Xu, Tongwen

    2017-01-01

    A new preparative pathway for the bipolar membranes was initiated via the electrospinning and hot-press process. The prepared bipolar membrane was consisting of sulfonated poly (phenylene oxide), polyethylene glycol, and quaternized poly (phenylene oxide). The above mentioned membrane was fabricated by the continuous electrospinning of the respective layer, followed by the solvent atmosphere treatment and hot-pressing, to obtain a transparent and dense structure. The thickness of each layer can be easily tuned by controlling the electrospinning parameters. The clear interfacial structure was observed and confirmed by the scanning electron microscope. The bipolar performance is evaluated by the current–voltage curves and production yield of acid and base. The final optimized bipolar membrane had similar yield of acid and base as the casting membrane. However, extremely lower potential drop value was observed when they are applied for the production of acid and base. The experimental results showed that, electrospinning is an effective and well controlled way to fabricate bipolar membranes, in which anion or cation exchange layer as well as interfacial layer can be easily changed or added as requested. - Highlights: • Bipolar membranes were prepared through electrospinning followed by post-treatment. • As-prepared membranes were successfully applied in electrodialysis for production of acid and base. • Electrospun membranes exhibit better performance than the casting ones.

  16. Preparation of bipolar membranes by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jiefeng; Hou, Linxiao; Wang, Qiuyue; He, Yubin; Wu, Liang; Mondal, Abhishek N.; Xu, Tongwen, E-mail: twxu@ustc.edu.cn

    2017-01-15

    A new preparative pathway for the bipolar membranes was initiated via the electrospinning and hot-press process. The prepared bipolar membrane was consisting of sulfonated poly (phenylene oxide), polyethylene glycol, and quaternized poly (phenylene oxide). The above mentioned membrane was fabricated by the continuous electrospinning of the respective layer, followed by the solvent atmosphere treatment and hot-pressing, to obtain a transparent and dense structure. The thickness of each layer can be easily tuned by controlling the electrospinning parameters. The clear interfacial structure was observed and confirmed by the scanning electron microscope. The bipolar performance is evaluated by the current–voltage curves and production yield of acid and base. The final optimized bipolar membrane had similar yield of acid and base as the casting membrane. However, extremely lower potential drop value was observed when they are applied for the production of acid and base. The experimental results showed that, electrospinning is an effective and well controlled way to fabricate bipolar membranes, in which anion or cation exchange layer as well as interfacial layer can be easily changed or added as requested. - Highlights: • Bipolar membranes were prepared through electrospinning followed by post-treatment. • As-prepared membranes were successfully applied in electrodialysis for production of acid and base. • Electrospun membranes exhibit better performance than the casting ones.

  17. Effect of annealing temperature on structural and electrical properties of high-κ YbTixOy gate dielectrics for InGaZnO thin film transistors

    International Nuclear Information System (INIS)

    Pan, Tung-Ming; Chen, Fa-Hsyang; Hung, Meng-Ning

    2015-01-01

    This paper describes the effect of annealing temperature on the structural properties and electrical characteristics of high–κ YbTi x O y gate dielectrics for indium–gallium–zinc–oxide (IGZO) thin-film transistors (TFTs). X-ray diffraction, x-ray photoelectron spectroscopy and atomic force microscopy were used to study the structural, chemical and morphological features, respectively, of these dielectric films annealed at 200, 300 and 400 °C. The YbTi x O y IGZO TFT that had been annealed at 400 °C exhibited better electrical characteristics, such as a small threshold voltage of 0.53 V, a large field-effect mobility of 19.1 cm 2 V −1 s −1 , a high I on /I off ratio of 2.8 × 10 7 , and a low subthreshold swing of 176 mV dec. −1 , relative to those of the systems that had been subjected to other annealing conditions. This result suggests that YbTi x O y dielectric possesses a higher dielectric constant as well as lower oxygen vacancies (or defects) in the film. In addition, the instability of YbTi x O y IGZO TFT was studied under positive gate-bias stress and negative gate-bias stress conditions. (paper)

  18. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures

    International Nuclear Information System (INIS)

    Zhou Shu-Xing; Qi Ming; Ai Li-Kun; Xu An-Huai; Wang Li-Dan; Ding Peng; Jin Zhi

    2015-01-01

    The InGaAs/InAlAs/InP high electron mobility transistor (HEMT) structures with lattice-matched and pseudomorphic channels are grown by gas source molecular beam epitaxy. Effects of Si δ-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si δ-doping concentration (N_d) is about 5.0 × 10"1"2 cm"−"2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission electron microscopy. An InGaAs/InAlAs/InP HEMT device with a gate length of 100 nm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits f_T = 249 GHz and f_m_a_x > 400 GHz. (paper)

  19. Evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistors by structure function method

    International Nuclear Information System (INIS)

    Zhang Guang-Chen; Feng Shi-Wei; Zhou Zhou; Li Jing-Wan; Guo Chun-Sheng

    2011-01-01

    The evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the AlGaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger AlGaN/GaN HEMT with 400-μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged AlGaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip-level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Origin of fine oscillations in the photoluminescence spectrum of 2-dimensional electron gas formed in AlGaN/GaN high electron mobility transistor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Dipankar, E-mail: dip2602@gmail.com; Porwal, S.; Oak, S. M.; Sharma, T. K., E-mail: tarun@rrcat.gov.in [Semiconductor Physics and Devices Laboratory, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India); Jain, Anubha [Solid State Physics Laboratory, Lucknow Road, New Delhi 110054 (India)

    2015-10-28

    An unambiguous identification of the fine oscillations observed in the low temperature photoluminescence (PL) spectra of AlGaN/GaN based high electron mobility transistor (HEMT) structures is carried out. In literature, such oscillations have been erroneously identified as the sub-levels of 2-dimensional electron gas (2DEG) formed at AlGaN/GaN heterointerface. Here, the origin of these oscillations is probed by performing the angle dependent PL and reflectivity measurements under identical conditions. Contrary to the reports available in literature, we find that the fine oscillations are not related to 2DEG sub-levels. The optical characteristics of these oscillations are mainly governed by an interference phenomenon. In particular, peculiar temperature dependent redshift and excitation intensity dependent blueshift, which have been interpreted as the characteristics of 2DEG sub-levels in HEMT structures by other researchers, are understood by invoking the wavelength and temperature dependence of the refractive index of GaN within the framework of interference phenomenon. The results of other researchers are also consistently explained by considering the fine oscillatory features as the interference oscillations.

  1. Fabrication of field-effect transistor utilizing oriented thin film of octahexyl-substituted phthalocyanine and its electrical anisotropy based on columnar structure

    Science.gov (United States)

    Ohmori, Masashi; Nakatani, Mitsuhiro; Kajii, Hirotake; Miyamoto, Ayano; Yoneya, Makoto; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Field-effect transistors with molecularly oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which characteristically form a columnar structure, have been fabricated, and the electrical anisotropy of C6PcH2 has been investigated. The molecularly oriented thin films of C6PcH2 were prepared by the bar-coating technique, and the uniform orientation in a large area and the surface roughness at a molecular level were observed by polarized spectroscopy and atomic force microscopy, respectively. The field effect mobilities parallel and perpendicular to the column axis of C6PcH2 were estimated to be (1.54 ± 0.24) × 10-2 and (2.10 ± 0.23) × 10-3 cm2 V-1 s-1, respectively. The electrical anisotropy based on the columnar structure has been discussed by taking the simulated results obtained by density functional theory calculation into consideration.

  2. Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor

    Science.gov (United States)

    Zhao, Xiaofeng; Li, Dandan; Yu, Yang; Wen, Dianzhong

    2017-07-01

    Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors ({R}1, {R}2, {R}3 and {R}4) locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator (SOI) wafer by micro electromechanical system (MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity (TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/°C, respectively. Through varying the ratio of the base region resistances {r}1 and {r}2, the TCS for the sensor with the compensation circuit is -127 ppm/°C. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor. Project supported by the National Natural Science Foundation of China (No. 61471159), the Natural Science Foundation of Heilongjiang Province (No. F201433), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. 2015018), and the Special Funds for Science and Technology Innovation Talents of Harbin in China (No. 2016RAXXJ016).

  3. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    Directory of Open Access Journals (Sweden)

    Fan Ren

    2012-11-01

    Full Text Available We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs as well as Heterojunction Bipolar Transistors (HBTs in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate, and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  4. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    Science.gov (United States)

    Cheney, David J.; Douglas, Erica A.; Liu, Lu; Lo, Chien-Fong; Gila, Brent P.; Ren, Fan; Pearton, Stephen J.

    2012-01-01

    We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs) as well as Heterojunction Bipolar Transistors (HBTs) in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate), and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  5. Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism

    NARCIS (Netherlands)

    Santato, C.; Capelli, R.; Loi, M.A.; Murgia, M.; Cicoira, F.; Roy, Arunesh; Stallinga, P; Zamboni, R.; Rost, C.; Karg, S.F.; Muccini, M.

    2004-01-01

    Optoelectronic properties of light-emitting field-effect transistors (LETs) fabricated on bottom-contact transistor structures using a tetracene film as charge-transport and light-emitting material are investigated. Electroluminescence generation and transistor current are correlated, and the bias

  6. Comparative familial aggregation of bipolar disorder in patients with bipolar I and bipolar II disorders.

    Science.gov (United States)

    Parker, Gordon B; Romano, Mia; Graham, Rebecca K; Ricciardi, Tahlia

    2018-05-01

    We sought to quantify the prevalence and differential prevalence of a bipolar disorder among family members of patients with a bipolar I or II disorder. The sample comprised 1165 bipolar and 1041 unipolar patients, with the former then sub-typed as having either a bipolar I or II condition. Family history data was obtained via an online self-report tool. Prevalence of a family member having a bipolar disorder (of either sub-type) was distinctive (36.8%). Patients with a bipolar I disorder reported a slightly higher family history (41.2%) compared to patients with a bipolar II disorder (36.3%), and with both significantly higher than the rate of bipolar disorder in family members of unipolar depressed patients (18.5%). Findings support the view that bipolar disorder is heritable. The comparable rates in the two bipolar sub-types support the positioning of bipolar II disorder as a valid condition with strong genetic underpinnings.

  7. The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls.

    Science.gov (United States)

    Soeiro-de-Souza, Márcio Gerhardt; Otaduy, Maria Concepción Garcia; Dias, Carolina Zadres; Bio, Danielle S; Machado-Vieira, Rodrigo; Moreno, Ricardo Alberto

    2012-12-01

    Impairments in facial emotion recognition (FER) have been reported in bipolar disorder (BD) during all mood states. FER has been the focus of functional magnetic resonance imaging studies evaluating differential activation of limbic regions. Recently, the α1-C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene has been described as a risk gene for BD and its Met allele found to increase CACNA1C mRNA expression. In healthy controls, the CACNA1C risk (Met) allele has been reported to increase limbic system activation during emotional stimuli and also to impact on cognitive function. The aim of this study was to investigate the impact of CACNA1C genotype on FER scores and limbic system morphology in subjects with BD and healthy controls. Thirty-nine euthymic BD I subjects and 40 healthy controls were submitted to a FER recognition test battery and genotyped for CACNA1C. Subjects were also examined with a 3D 3-Tesla structural imaging protocol. The CACNA1C risk allele for BD was associated to FER impairment in BD, while in controls nothing was observed. The CACNA1C genotype did not impact on amygdala or hippocampus volume neither in BD nor controls. Sample size. The present findings suggest that a polymorphism in calcium channels interferes FER phenotype exclusively in BD and doesn't interfere on limbic structures morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Structure provided by parents in middle childhood predicts cortisol reactivity in adolescence among the offspring of parents with bipolar disorder and controls.

    Science.gov (United States)

    Ellenbogen, Mark A; Hodgins, Sheilagh

    2009-06-01

    Recent studies suggest that childhood exposure to adversity influences later functioning of the hypothalamic-pituitary-adrenal (HPA) axis. Parenting style in childhood, a putative moderator of adversity, may be important in determining HPA reactivity in adolescence. As part of a prospective, longitudinal study, saliva was collected at awakening and 30 and 60 min later over 2 days among 27 offspring of parents with bipolar disorder (high risk; 16.7+/-1.5 years) and 26 offspring of parents with no mental disorders (low risk; 16.2+/-1.7 years). In addition, 24 of the high risk and 22 of the low risk adolescents completed the "Trier Social Stress Test" (TSST). Parents had rated their parenting style when their offspring were 6-13 years of age. Low levels of structure (i.e. organization and consistency) provided by parents in middle childhood were predictive of an elevated cortisol response following awakening (beta=-0.36; padolescents' mood and behavior. The level of structure provided by parents in childhood predicted independent measures of cortisol reactivity in adolescence, suggesting that parenting style may regulate different aspects of HPA reactivity.

  9. Calculation of comparators of analog-to-digital converters with account of electric regime of transistor operation and ionizing radiation effect; Raschet komparatov analogo-tsifrovykh preobrazovatelej s uchetom ehlektricheskogo rezhima raboty tranzistorov i vozdejstviya ioniziruyushchego izlucheniya

    Energy Technology Data Exchange (ETDEWEB)

    Ragozin, A Yu

    1994-12-31

    Zero shift voltage in comparators of analog-to-digital converters under gamma irradiation with regard to electric mode effect on bipolar transistor degradation is calculated. It is shown that the input range of comparators such weak units are represented by comparators of bipolar and lower grades.

  10. Classification of cognitive performance in bipolar disorder.

    Science.gov (United States)

    Sparding, Timea; Silander, Katja; Pålsson, Erik; Östlind, Josefin; Ekman, Carl Johan; Sellgren, Carl M; Joas, Erik; Hansen, Stefan; Landén, Mikael

    2017-09-01

    To understand the etiology of cognitive impairment associated with bipolar disorder, we need to clarify potential heterogeneity in cognitive functioning. To this end, we used multivariate techniques to study if the correlation structure of cognitive abilities differs between persons with bipolar disorder and controls. Clinically stable patients with bipolar disorder (type I: n = 64; type II: n = 44) and healthy controls (n = 86) were assessed with a wide range of cognitive tests measuring executive function, speed, memory, and verbal skills. Data were analysed with multivariate techniques. A distinct subgroup (∼30%) could be identified that performed significantly poorer on tests concerning memory function. This cognitive phenotype subgroup did not differ from the majority of bipolar disorder patients with respect to other demographic or clinical characteristics. Whereas the majority of patients performed similar to controls, a subgroup of patients with bipolar disorder differed substantially from healthy controls in the correlation pattern of low-level cognitive abilities. This suggests that cognitive impairment is not a general trait in bipolar disorder but characteristic of a cognitive subgroup. This has important clinical implications for cognitive rehabilitation and remediation.

  11. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  12. "Is it menopause or bipolar?": a qualitative study of the experience of menopause for women with bipolar disorder.

    Science.gov (United States)

    Perich, Tania; Ussher, Jane; Parton, Chloe

    2017-11-16

    Menopause can be a time of change for women and may be marked by disturbances in mood. For women living with a mental illness, such as bipolar disorder, little is known about how they experience mood changes during menopause. This study aimed to explore how women with bipolar disorder constructed mood changes during menopause and how this impacted on treatment decisions. Semi-structured interviews were undertaken with fifteen women who reported they had been diagnosed with bipolar disorder. Data was analysed using thematic analysis guided by a social constructionist framework. Themes identified included 'Constructions of mood change: menopause or bipolar disorder?',' Life events, bipolar disorder and menopause coming together'; 'Treatment choices for mood change during menopause'. The accounts suggested that women related to the experience of mood changes during menopause through the lens of their existing framework of bipolar disorder, with implications for understanding of self and treatment choices.

  13. Effect of Ti Doping to Maintain Structural Disorder in InOx-Based Thin-Film Transistors Fabricated by RF Magnetron Sputtering

    Science.gov (United States)

    Aikawa, Shinya

    2017-12-01

    The effect of Ti doping in an indium oxide (InOx)-based semiconductor is investigated for the thin-film transistor (TFT) property and crystal structure of the film. InOx and Ti-doped InOx (InTiOx) films deposited by RF magnetron sputtering under the same O2 partial pressure conditions were systematically compared. The TFT behavior of the InOx showed higher conductivity than that of the InTiOx and was drastically changed to metallic conduction after annealing at 150 °C. Under the annealing conditions when the electrical transition to the metallic behavior occurred, the InOx film was crystallized. The X-ray diffraction analysis revealed that the shrinkage of the In2O3 unit cell is pronounced in the case of InOx films. Thus, Ti dopants may play the role as a suppressor for shrinkage of the unit cell, i.e. maintaining neighboring In-In distances, in addition to suppression of oxygen vacancies. The In-In distance, which is related to the overlapping of In 5 s orbitals, is considered to be one of the key factor for which InOx-based materials are utilized as conducting films or semiconducting channels.

  14. Properties of Bipolar Fuzzy Hypergraphs

    OpenAIRE

    Akram, M.; Dudek, W. A.; Sarwar, S.

    2013-01-01

    In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of $A-$ tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs.

  15. Outlook and emerging semiconducting materials for ambipolar transistors.

    Science.gov (United States)

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta

    2014-02-26

    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it [MR-Lab, Center for Mind/Brain Science, University of Trento, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  17. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    International Nuclear Information System (INIS)

    Minati, Ludovico

    2014-01-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties

  18. Evolution of Defect Structures and Deep Subgap States during Annealing of Amorphous In-Ga-Zn Oxide for Thin-Film Transistors

    Science.gov (United States)

    Jia, Junjun; Suko, Ayaka; Shigesato, Yuzo; Okajima, Toshihiro; Inoue, Keiko; Hosomi, Hiroyuki

    2018-01-01

    We investigate the evolution behavior of defect structures and the subgap states in In-Ga-Zn oxide (IGZO) films with increasing postannealing temperature by means of extended x-ray absorption fine-structure (EXAFS) measurements, positron annihilation lifetime spectroscopy (PALS), and cathodoluminescence (CL) spectroscopy, aiming to understand the relationship between defect structures and subgap states. EXAFS measurements reveal the varied oxygen coordination numbers around cations during postannealing and confirm two types of point defects, namely, excess oxygen around Ga atoms and oxygen deficiency around In and/or Zn atoms. PALS suggests the existence of cation-vacancy (VM )-related clusters with neutral or negative charge in both amorphous and polycrystalline IGZO films. CL spectra show a main emission band at approximately 1.85 eV for IGZO films, and a distinct shoulder located at about 2.15 eV for IGZO films postannealed above 600 °C . These two emission bands are assigned to a recombination between the electrons in the conduction band and/or in the shallow donor levels near the conduction band and the acceptors trapped above the valence-band maximum. The shallow donors are attributed to the oxygen deficiency, and the acceptors are thought to possibly arise from the excess oxygen or the VM-related clusters. These results open up an alternative route for understanding the device instability of amorphous IGZO-based thin-film transistors, especially the presence of the neutral or negatively charged VM-related clusters in amorphous IGZO films.

  19. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  20. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Ró isí n M.; Berggren, Magnus; Malliaras, George G.

    2018-01-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume

  1. Bipolar Disorder in Children

    Science.gov (United States)

    2014-01-01

    Although bipolar disorder historically was thought to only occur rarely in children and adolescents, there has been a significant increase in children and adolescents who are receiving this diagnosis more recently (Carlson, 2005). Nonetheless, the applicability of the current bipolar disorder diagnostic criteria for children, particularly preschool children, remains unclear, even though much work has been focused on this area. As a result, more work needs to be done to further the understanding of bipolar symptoms in children. It is hoped that this paper can assist psychologists and other health service providers in gleaning a snapshot of the literature in this area so that they can gain an understanding of the diagnostic criteria and other behaviors that may be relevant and be informed about potential approaches for assessment and treatment with children who meet bipolar disorder criteria. First, the history of bipolar symptoms and current diagnostic criteria will be discussed. Next, assessment strategies that may prove helpful for identifying bipolar disorder will be discussed. Then, treatments that may have relevance to children and their families will be discussed. Finally, conclusions regarding work with children who may have a bipolar disorder diagnosis will be offered. PMID:24800202

  2. Functional connectivity and neuronal variability of resting state activity in bipolar disorder--reduction and decoupling in anterior cortical midline structures.

    Science.gov (United States)

    Magioncalda, Paola; Martino, Matteo; Conio, Benedetta; Escelsior, Andrea; Piaggio, Niccolò; Presta, Andrea; Marozzi, Valentina; Rocchi, Giulio; Anastasio, Loris; Vassallo, Linda; Ferri, Francesca; Huang, Zirui; Roccatagliata, Luca; Pardini, Matteo; Northoff, Georg; Amore, Mario

    2015-02-01

    The cortical midline structures seem to be involved in the modulation of different resting state networks, such as the default mode network (DMN) and salience network (SN). Alterations in these systems, in particular in the perigenual anterior cingulate cortex (PACC), seem to play a central role in bipolar disorder (BD). However, the exact role of the PACC, and its functional connections to other midline regions (within and outside DMN) still remains unclear in BD. We investigated functional connectivity (FC), standard deviation (SD, as a measure of neuronal variability) and their correlation in bipolar patients (n = 40) versus healthy controls (n = 40), in the PACC and in its connections in different frequency bands (standard: 0.01-0.10 Hz; Slow-5: 0.01-0.027 Hz; Slow-4: 0.027-0.073 Hz). Finally, we studied the correlations between FC alterations and clinical-neuropsychological parameters and we explored whether subgroups of patients in different phases of the illness present different patterns of FC abnormalities. We found in BD decreased FC (especially in Slow-5) from the PACC to other regions located predominantly in the posterior DMN (such as the posterior cingulate cortex (PCC) and inferior temporal gyrus) and in the SN (such as the supragenual anterior cingulate cortex and ventrolateral prefrontal cortex). Second, we found in BD a decoupling between PACC-based FC and variability in the various target regions (without alteration in variability itself). Finally, in our subgroups explorative analysis, we found a decrease in FC between the PACC and supragenual ACC (in depressive phase) and between the PACC and PCC (in manic phase). These findings suggest that in BD the communication, that is, information transfer, between the different cortical midline regions within the cingulate gyrus does not seem to work properly. This may result in dysbalance between different resting state networks like the DMN and SN. A deficit in the anterior DMN-SN connectivity

  3. About influence of buffer porous layers between epitaxial layers of heterostructure on distributions of concentrations of dopants in heterobipolar transistors

    Directory of Open Access Journals (Sweden)

    E Pankratov

    2016-10-01

    Full Text Available In this paper we introduce an approach to manufacture a heterobipolar transistors. Framework this approach we consider doping by diffusion or by ion implantation of required parts of a heterostructure with special configuration and optimization of annealing of dopant and/or radiation defects. In this case one have possibility to manufacture bipolar transistors, which include into itself p-n-junctions with higher sharpness and smaller dimensions. We also consider influence of presents of buffer porous layers between epitaxial layers of heterostructure on distributions of concentrations of dopants in the considered transistors. An approach to decrease value of mismatch-induced stress has been considered.

  4. Discharge dynamics of self-oriented microplasma coupling between cross adjacent cavities in micro-structure device driven by a bipolar pulse waveform

    Science.gov (United States)

    Wang, Yaogong; Zhang, Xiaoning; Liu, Lingguang; Zhou, Xuan; Liu, Chunliang; Zhang, Qiaogen

    2018-04-01

    The excitation dynamics and self-oriented plasma coupling of a micro-structure plasma device with a rectangular cross-section are investigated. The device consists of 7 × 7 microcavity arrays, which are blended into a unity by a 50 μm-thick bulk area above them. The device is operated in argon with a pressure of 200 Torr, driven by a bipolar pulse waveform of 20 kHz. The discharge evolution is characterized by means of electrical measurements and optical emission profiles. It has been found that different emission patterns are observed within microcavities. The formation of these patterns induced by the combined action between the applied electric field and surface deactivation is discussed. The microplasma distribution in some specific regions along the diagonal direction of cavities in the bulk area is observed, and self-oriented microplasma coupling is explored, while the plasma interaction occurred between cross adjacent cavities, contributed by the ionization wave propagation. The velocity of ionization wave propagation is measured to be 1.2 km/s to 3.5 km/s. The exploration of this plasma interaction in the bulk area is of value to applications in electromagnetics and signal processing.

  5. Fabrication of a Silicon MOSFET Device with Bipolar Transistor Source,

    Science.gov (United States)

    1980-07-01

    NEGATIVE PHOTORESIST PROCEDURE ’•J n •:• fi >. 3 u i fc- Process Coat wafer Air dry Pre bake the resist coating Expose Develop Method Time...Orange (rather broad for orange) 0.82 Salmon 0.85 Dull, light red-violet 0.86 Violet £ 0.87 Blue-violet 0.89 Blue ::’ 0.92 V Blue-green •I 0.95

  6. Development of insulated gate bipolar transistor-based power ...

    Indian Academy of Sciences (India)

    [5] S V Nakhe et al, National Laser Symposium, 81–82 (2001). [6] E G Cook et al, 8th IEEE Pulsed Power Conference, June 1991. [7] L Druckmann et al, IEEE Power Modulator Symposium, 213–216 (1992). [8] Hybrid gate drivers and gate drive power supplies, M57962L datasheet from Mitsubishi. Electric Corpn. Pramana ...

  7. Heuristic for Learning Common Emitter Amplification with Bipolar Transistors

    Science.gov (United States)

    Staffas, Kjell

    2017-01-01

    Mathematics in engineering education causes many thresholds in the courses because of the demand of abstract conceptualisation. Electronics depend heavily on more or less complex mathematics. Therefore the concepts of analogue electronics are hard to learn since a great deal of students struggle with the calculations and procedures needed. A…

  8. What is Bipolar Disorder?

    Science.gov (United States)

    ... down” Have trouble sleeping Think about death or suicide Can someone have bipolar disorder along with other problems? Yes. Sometimes people having very strong mood episodes may have psychotic symptoms. Psychosis affects thoughts ...

  9. InAlGaAs/InP light-emitting transistors operating near 1.55 μm

    International Nuclear Information System (INIS)

    Huang Yong; Zhang Xuebing; Ryou, Jae-Hyun; Dupuis, Russell D.; Dixon, Forest; Holonyak, Nick Jr.; Feng, Milton

    2008-01-01

    Light-emitting transistors (LETs) operating at around 1.55 μm were investigated using InP/InAlGaAs heterostructures grown by metal organic chemical vapor deposition. By incorporating InGaAs quantum wells (QWs) in the base region of the N-InP/p-InAlGaAs/N-InAlAs heterojunction bipolar transistors, LET structures were achieved with a current gain of 45 and light emission at a wavelength of 1.65 μm. The light output was found to be dependent on the base current. The larger the number of QWs incorporated in the base of the LETs, the larger the light output, with correspondingly reduced current gain. Secondary ion mass spectroscopy shows that the p-type dopant, zinc (Zn), which is commonly used in the growth of InAlGaAs, diffuses into the emitter and the base active QW region, leading to compromised electrical performance and light output intensity. Increasing the Zn doping level in the barrier layers of the QW structure causes the photoluminescence efficiency to decrease rapidly. Consequently, an alternative low-diffusivity dopant, carbon (C), was studied and a LET with a C-doped base was grown and fabricated. The highest light output was demonstrated for the C-doped LETs owing to the improved quality of the active layer

  10. The Integration and Applications of Organic Thin Film Transistors and Ferroelectric Polymers

    Science.gov (United States)

    Hsu, Yu-Jen

    Organic thin film transistors and ferroelectric polymer (polyvinylidene difluoride) sheet material are integrated to form various sensors for stress/strain, acoustic wave, and Infrared (heat) sensing applications. Different from silicon-based transistors, organic thin film transistors can be fabricated and processed in room-temperature and integrated with a variety of substrates. On the other hand, polyvinylidene difluoride (PVDF) exhibits ferroelectric properties that are highly useful for sensor applications. The wide frequency bandwidth (0.001 Hz to 10 GHz), vast dynamic range (100n to 10M psi), and high elastic compliance (up to 3 percent) make PVDF a more suitable candidate over ceramic piezoelectric materials for thin and flexible sensor applications. However, the low Curie temperature may have impeded its integration with silicon technology. Organic thin film transistors, however, do not have the limitation of processing temperature, hence can serve as transimpedance amplifiers to convert the charge signal generated by PVDF into current signal that are more measurable and less affected by any downstream parasitics. Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation which have complicated the development of array-based PVDF sensors. We have used organic field effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer,PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal which can be detected even in the presence of parasitic capacitances. The device couples the voltage generated by the PVDF film under strain into the gate of the organic thin film transistors (OFET) using an arrangement that allows the full piezoelectric voltage to couple to the channel, while also increasing the charge retention time. A bipolar detector is created by

  11. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  12. Carrier doping into a superconducting BaPb0.7Bi0.3O3‑δ epitaxial film using an electric double-layer transistor structure

    Science.gov (United States)

    Komori, S.; Kakeya, I.

    2018-06-01

    Doping evolution of the unconventional superconducting properties in BaBiO3-based compounds has yet to be clarified in detail due to the significant change of the oxygen concentration accompanied by the chemical substitution. We suggest that the carrier concentration of an unconventional superconductor, BaPb0.7Bi0.3O3‑δ , is controllable without inducing chemical or structural changes using an electric double-layer transistor structure. The critical temperature is found to decrease systematically with increasing carrier concentration.

  13. Electron irradiation of power transistors

    International Nuclear Information System (INIS)

    Hower, P.L.; Fiedor, R.J.

    1982-01-01

    A method for reducing storage time and gain parameters in a semiconductor transistor includes the step of subjecting the transistor to electron irradiation of a dosage determined from measurements of the parameters of a test batch of transistors. Reduction of carrier lifetime by proton bombardment and gold doping is mentioned as an alternative to electron irradiation. (author)

  14. Cylindrical Field Effect Transistor: A Full Volume Inversion Device

    KAUST Repository

    Fahad, Hossain M.

    2010-01-01

    inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors

  15. A pattern recognition approach to transistor array parameter variance

    Science.gov (United States)

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  16. Common and distinct structural features of schizophrenia and bipolar disorder: The European Network on Psychosis, Affective disorders and Cognitive Trajectory (ENPACT study.

    Directory of Open Access Journals (Sweden)

    Eleonora Maggioni

    Full Text Available Although schizophrenia (SCZ and bipolar disorder (BD share elements of pathology, their neural underpinnings are still under investigation. Here, structural Magnetic Resonance Imaging (MRI data collected from a large sample of BD and SCZ patients and healthy controls (HC were analyzed in terms of gray matter volume (GMV using both voxel based morphometry (VBM and a region of interest (ROI approach.The analysis was conducted on two datasets, Dataset1 (802 subjects: 243 SCZ, 176 BD, 383 HC and Dataset2, a homogeneous subset of Dataset1 (301 subjects: 107 HC, 85 BD and 109 SCZ. General Linear Model analyses were performed 1 at the voxel-level in the whole brain (VBM study, 2 at the regional level in the anatomical regions emerged from the VBM study (ROI study. The GMV comparison across groups was integrated with the analysis of GMV correlates of different clinical dimensions.The VBM results of Dataset1 showed 1 in BD compared to HC, GMV deficits in right cingulate, superior temporal and calcarine cortices, 2 in SCZ compared to HC, GMV deficits in widespread cortical and subcortical areas, 3 in SCZ compared to BD, GMV deficits in insula and thalamus (p<0.05, cluster family wise error corrected. The regions showing GMV deficits in the BD group were mostly included in the SCZ ones. The ROI analyses confirmed the VBM results at the regional level in most of the clusters from the SCZ vs. HC comparison (p<0.05, Bonferroni corrected. The VBM and ROI analyses of Dataset2 provided further evidence for the enhanced GMV deficits characterizing SCZ. Based on the clinical-neuroanatomical analyses, we cannot exclude possible confounding effects due to 1 age of onset and medication in BD patients, 2 symptoms severity in SCZ patients.Our study reported both shared and specific neuroanatomical characteristics between the two disorders, suggesting more severe and generalized GMV deficits in SCZ, with a specific role for insula and thalamus.

  17. Common and distinct structural features of schizophrenia and bipolar disorder: The European Network on Psychosis, Affective disorders and Cognitive Trajectory (ENPACT) study

    Science.gov (United States)

    Crespo-Facorro, Benedicto; Nenadic, Igor; Benedetti, Francesco; Gaser, Christian; Sauer, Heinrich; Roiz-Santiañez, Roberto; Poletti, Sara; Marinelli, Veronica; Bellani, Marcella; Perlini, Cinzia; Ruggeri, Mirella; Altamura, A. Carlo; Diwadkar, Vaibhav A.; Brambilla, Paolo

    2017-01-01

    Introduction Although schizophrenia (SCZ) and bipolar disorder (BD) share elements of pathology, their neural underpinnings are still under investigation. Here, structural Magnetic Resonance Imaging (MRI) data collected from a large sample of BD and SCZ patients and healthy controls (HC) were analyzed in terms of gray matter volume (GMV) using both voxel based morphometry (VBM) and a region of interest (ROI) approach. Methods The analysis was conducted on two datasets, Dataset1 (802 subjects: 243 SCZ, 176 BD, 383 HC) and Dataset2, a homogeneous subset of Dataset1 (301 subjects: 107 HC, 85 BD and 109 SCZ). General Linear Model analyses were performed 1) at the voxel-level in the whole brain (VBM study), 2) at the regional level in the anatomical regions emerged from the VBM study (ROI study). The GMV comparison across groups was integrated with the analysis of GMV correlates of different clinical dimensions. Results The VBM results of Dataset1 showed 1) in BD compared to HC, GMV deficits in right cingulate, superior temporal and calcarine cortices, 2) in SCZ compared to HC, GMV deficits in widespread cortical and subcortical areas, 3) in SCZ compared to BD, GMV deficits in insula and thalamus (p<0.05, cluster family wise error corrected). The regions showing GMV deficits in the BD group were mostly included in the SCZ ones. The ROI analyses confirmed the VBM results at the regional level in most of the clusters from the SCZ vs. HC comparison (p<0.05, Bonferroni corrected). The VBM and ROI analyses of Dataset2 provided further evidence for the enhanced GMV deficits characterizing SCZ. Based on the clinical-neuroanatomical analyses, we cannot exclude possible confounding effects due to 1) age of onset and medication in BD patients, 2) symptoms severity in SCZ patients. Conclusion Our study reported both shared and specific neuroanatomical characteristics between the two disorders, suggesting more severe and generalized GMV deficits in SCZ, with a specific role for

  18. 75 GHz InP DHBT power amplifier based on two-stacked transistors

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Midili, Virginio; Johansen, Tom Keinicke

    2017-01-01

    In this paper we present the design and measurements of a two-stage 75-GHz InP Double Heterojunction Bipolar Transistor (DHBT) power amplifier (PA). An optimized two-stacked transistor power cell has been designed, which represents the building block in the power stage as well as in the driver st......, the power amplifier exhibits a small signal gain of G = 12.6 dB, output power at 1-dB compression of Pout, 1dB = 18.6 dBm and a saturated output power of Psat > 21.4 dBm....

  19. Bipolar Affective Disorder and Migraine

    Directory of Open Access Journals (Sweden)

    Birk Engmann

    2012-01-01

    Full Text Available This paper consists of a case history and an overview of the relationship, aetiology, and treatment of comorbid bipolar disorder migraine patients. A MEDLINE literature search was used. Terms for the search were bipolar disorder bipolar depression, mania, migraine, mood stabilizer. Bipolar disorder and migraine cooccur at a relatively high rate. Bipolar II patients seem to have a higher risk of comorbid migraine than bipolar I patients have. The literature on the common roots of migraine and bipolar disorder, including both genetic and neuropathological approaches, is broadly discussed. Moreover, bipolar disorder and migraine are often combined with a variety of other affective disorders, and, furthermore, behavioural factors also play a role in the origin and course of the diseases. Approach to treatment options is also difficult. Several papers point out possible remedies, for example, valproate, topiramate, which acts on both diseases, but no first-choice treatments have been agreed upon yet.

  20. Depression and Bipolar Support Alliance

    Science.gov (United States)

    Depression and Bipolar Support Alliance Crisis Hotline Information Coping with a Crisis Suicide Prevention Information Psychiatric Hospitalization ... sign-up Education info, training, events Mood Disorders Depression Bipolar Disorder Anxiety Screening Center Co-occurring Illnesses/ ...

  1. Contribution to the study of the behaviour of silicon planar transistors exposed to the 60Co γ rays

    International Nuclear Information System (INIS)

    Le Ber, J.

    1967-05-01

    This report gives an account of studies carried out on bipolar silicon planar transistors irradiated by 60 Co γ rays. The author describes the interactions on the matter of the different types of particles and he gives a brief bibliographical recall of foreign studies. The technological structure of the planar transistors is then described in order to help the understanding of the phenomena, general comments are made about the choice of measured parameters and on the statistical interpretation of results. An automatic instrument for the measurement of the gain is described and the reproducibility of the results is stated The complexity of the problem and the difficulty to predict the behaviour of the semiconductors components are clearly shown. It is stated that the observed dispersions depend on: - the electrical bias during irradiation - the injection level in the emitter-base junction during the measurement - the manufacturer for a given type - the instantaneous dose rate - the geometry used The problem is then examined from the reliability point of view and methods are given to evaluate the reliability for a given dose - 'Worst case' method - moment method - Monte Carlo method. (author) [fr

  2. [Differences in Subjective Experience Between Unipolar and Bipolar Depression].

    Science.gov (United States)

    Fierro, Marco; Bustos, Andrés; Molina, Carlos

    2016-01-01

    It is important to make distinction between bipolar and unipolar depression because treatment and prognosis are different. Since the diagnosis of the two conditions is purely clinical, find symptomatic differences is useful. Find differences in subjective experience (first person) between unipolar and bipolar depression. Phenomenological-oriented qualitative exploratory study of 12 patients (7 with bipolar depression and 5 with unipolar depression, 3 men and 9 women). We used a semi-structured interview based on Examination of Anomalous Self-Experience (EASE). The predominant mood in bipolar depression is emotional dampening, in unipolar is sadness. The bodily experience in bipolar is of a heavy, tired body; an element that inserts between the desires of acting and performing actions and becomes an obstacle to the movement. In unipolar is of a body that feels more comfortable with the stillness than activity, like laziness of everyday life. Cognition and the stream of consciousness: in bipolar depression, compared with unipolar, thinking is slower, as if to overcome obstacles in their course. There are more difficult to understand what is heard or read. Future perspective: in bipolar depression, hopelessness is stronger and broader than in unipolar, as if the very possibility of hope was lost. Qualitative differences in predominant mood, bodily experience, cognition and future perspective were found between bipolar and unipolar depression. Copyright © 2015 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  3. Bipolar Disorder and Cancer

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2012-06-01

    Full Text Available Prevalence studies and studies on causation relations have shown that the relation between psychiatric disorders and chronic physical diseases is neglected. For heterogeneous diseases an increasing number of susceptibility variants are being defined. Alzheimer disease, bipolar disorder, breast and prostate cancer, coronary artery disease, Chron's disease, systemic lupus eritematosus, type 1 and type 2 diabetes mellitus are mentioned together with epigenetic concept. In acrocentric zone of chromosome 13, breast cancer, retinoblastoma, chronic Iymphocytic leukemia genes with B cells, dopamin loci of bipolar disorder are found together. Among bipolar and healthy individuals, an increase risk of breast cancer in female cases has been resported. On the other hand, psychosocial factors that affect stress and response to stress itself may be important variables in prognosis and progression of different cancer types. During the course of many cancer types –especially brain tumors- and during treatment of chemotherapeutic agents, bipolar symptomatology may appear. In this article, it is reviewed with relevant literature that whether an etiological relation between bipolar disorder and cancer exist and how both diseases affect each other's course and treatment.

  4. A study of genetic and environmental contributions to structural brain changes over time in twins concordant and discordant for bipolar disorder

    NARCIS (Netherlands)

    Bootsman, F.; Brouwer, R. M.; Schnack, H. G.; Kemner, S. M.; Hillegers, M. H. J.; Sarkisyan, G.; van der Schot, A. C.; Vonk, R.; Pol, H. E. Hulshoff; Nolen, W. A.; Kahn, R. S.; van Haren, N. E. M.

    This is the first longitudinal twin study examining genetic and environmental contributions to the association between liability to bipolar disorder (BD) and changes over time in global brain volumes, and global and regional measures of cortical surface area, cortical thickness and cortical volume.

  5. A Built-In Self-Test Structure (BIST) for Resistive RAMs characterization: Application to bipolar OxRRAM

    Science.gov (United States)

    Aziza, H.; Bocquet, M.; Moreau, M.; Portal, J.-M.

    2015-01-01

    Resistive Random Access Memory (RRAM) is a form of nonvolatile storage that operates by changing the resistance of a specially formulated solid dielectric material [1]. Among RRAMs, oxide-based Resistive RAMs (so-called OxRRAMs) are promising candidates due their compatibility with CMOS processes and high ON/OFF resistance ratio. Common problems with OxRRAM are related to high variability in operating conditions and low yield. OxRRAM variability mainly impact ON/OFF resistance ratio. This ratio is a key parameter to determine the overall performance of an OxRRAM memory. In this context, the presented built-in structure allows collecting statistical data related to the OxRRAM memory array (ON/OFF resistance distributions) for reliability assessment of the technology.

  6. Accelerating the life of transistors

    International Nuclear Information System (INIS)

    Qi Haochun; Lü Changzhi; Zhang Xiaoling; Xie Xuesong

    2013-01-01

    Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object, the test of accelerating life is conducted in constant temperature and humidity, and then the data are statistically analyzed with software developed by ourselves. According to degradations of such sensitive parameters as the reverse leakage current of transistors, the lifetime order of transistors is about more than 10 4 at 100 °C and 100% relative humidity (RH) conditions. By corrosion fracture of transistor outer leads and other failure modes, with the failure truncated testing, the average lifetime rank of transistors in different distributions is extrapolated about 10 3 . Failure mechanism analyses of degradation of electrical parameters, outer lead fracture and other reasons that affect transistor lifetime are conducted. The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation. (semiconductor devices)

  7. Attention deficit hyperactivity disorder and bipolar mood disorder in ...

    African Journals Online (AJOL)

    2009-06-19

    Jun 19, 2009 ... Bipolar mood disorder (BMD) has traditionally been seen as an adult disorder and .... antisocial behaviour, such as conduct disorder.3. In young ... In personality structure and temperament, children with BMD are more likely to ...

  8. Large magnetocurrents in double-barrier tunneling transistors

    International Nuclear Information System (INIS)

    Lee, J.H.; Jun, K.-I.; Shin, K.-H.; Park, S.Y.; Hong, J.K.; Rhie, K.; Lee, B.C.

    2005-01-01

    Magnetic tunneling transistors (MTT) with double tunneling barriers are fabricated. The structure of the transistor is AFM/FM/I/FM/I/FM/AFM, and ferromagnetic layers serve as the emitter, base and collector. This double-barrier tunneling transistor (DBTT) has an advantage of controlling the potential between the base and collector, compared to the Schottky-barrier-based base and collector of MTT. We found that the collector current density of DBTT is at least 10 3 times larger than that of conventional MTT, since tunneling through AlO x barrier provides much larger current density than that through Schottky barrier

  9. Organic semiconductors for organic field-effect transistors

    International Nuclear Information System (INIS)

    Yamashita, Yoshiro

    2009-01-01

    The advantages of organic field-effect transistors (OFETs), such as low cost, flexibility and large-area fabrication, have recently attracted much attention due to their electronic applications. Practical transistors require high mobility, large on/off ratio, low threshold voltage and high stability. Development of new organic semiconductors is key to achieving these parameters. Recently, organic semiconductors have been synthesized showing comparable mobilities to amorphous-silicon-based FETs. These materials make OFETs more attractive and their applications have been attempted. New organic semiconductors resulting in high-performance FET devices are described here and the relationship between transistor characteristics and chemical structure is discussed. (topical review)

  10. Organic semiconductors for organic field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yoshiro Yamashita

    2009-01-01

    Full Text Available The advantages of organic field-effect transistors (OFETs, such as low cost, flexibility and large-area fabrication, have recently attracted much attention due to their electronic applications. Practical transistors require high mobility, large on/off ratio, low threshold voltage and high stability. Development of new organic semiconductors is key to achieving these parameters. Recently, organic semiconductors have been synthesized showing comparable mobilities to amorphous-silicon-based FETs. These materials make OFETs more attractive and their applications have been attempted. New organic semiconductors resulting in high-performance FET devices are described here and the relationship between transistor characteristics and chemical structure is discussed.

  11. Photosensitive graphene transistors.

    Science.gov (United States)

    Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng

    2014-08-20

    High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Differential pattern of semantic memory organization between bipolar I and II disorders.

    Science.gov (United States)

    Chang, Jae Seung; Choi, Sungwon; Ha, Kyooseob; Ha, Tae Hyon; Cho, Hyun Sang; Choi, Jung Eun; Cha, Boseok; Moon, Eunsoo

    2011-06-01

    Semantic cognition is one of the key factors in psychosocial functioning. The aim of this study was to explore the differences in pattern of semantic memory organization between euthymic patients with bipolar I and II disorders using the category fluency task. Study participants included 23 euthymic subjects with bipolar I disorder, 23 matched euthymic subjects with bipolar II disorder and 23 matched control subjects. All participants were assessed for verbal learning, recall, learning strategies, and fluency. The combined methods of hierarchical clustering and multidimensional scaling were used to compare the pattern of semantic memory organization among the three groups. Quantitative measures of verbal learning, recall, learning strategies, and fluency did not differ between the three groups. A two-cluster structure of semantic memory organization was identified for the three groups. Semantic structure was more disorganized in the bipolar I disorder group compared to the bipolar II disorder. In addition, patients with bipolar II disorder used less elaborate strategies of semantic memory organization than those of controls. Compared to healthy controls, strategies for categorization in semantic memory appear to be less knowledge-based in patients with bipolar disorders. A differential pattern of semantic memory organization between bipolar I and II disorders indicates a higher risk of cognitive abnormalities in patients with bipolar I disorder compared to patients with bipolar II disorder. Exploring qualitative nature of neuropsychological domains may provide an explanatory insight into the characteristic behaviors of patients with bipolar disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Structural stability of naphthyl end-capped oligothiophenes in organic field-effect transistors measured by grazing-incidence X-ray diffraction in operando

    DEFF Research Database (Denmark)

    Huss-Hansen, Mathias K.; Lauritzen, Andreas E.; Bikondoa, Oier

    2017-01-01

    We report on microstructural durability of 5,5′-bis(naphth-2-yl)-2,2′-bithiophene (NaT2) in organic field-effect transistors (OFETs) in operando monitored by grazing-incidence X-ray diffraction (GIXRD). NaT2 maintains its monoclinic bulk motif in operating OFETs with a=20.31±0.06 Å, b=6.00±0.01 Å...

  14. Confirming the structure of negative beliefs about psychosis and bipolar disorder: A confirmatory factor analysis study of the Personal Beliefs about Experience Questionnaire and Personal Beliefs about Illness Questionnaire.

    Science.gov (United States)

    Taylor, Peter J; Pyle, Melissa; Schwannauer, Matthias; Hutton, Paul; Morrison, Anthony

    2015-11-01

    Negative beliefs about psychosis and other mental health difficulties may contribute to depression and distress in individuals with these experiences. The Personal Beliefs about Experience Questionnaire (PBEQ) and Personal Beliefs about Illness Questionnaire (PBIllQ) are two widely used measures of these beliefs. It is currently uncertain how the items on these measures map onto different underlying factors. This study therefore aimed to test the factor structure of these two measures. Confirmatory factor analysis (CFA) was used to test three alternative, pre-specified, factor structures for the PBIllQ and PBEQ in a sample of individuals diagnosed with bipolar disorder (n = 202) and a sample of individuals with experien-ces of psychosis (n = 362). Associations with depressive symptoms were also examined. A three-factor structure was supported for both measures, which included Negative Expectations/Appraisals (NEA), Internal Shame/Defectiveness (ISD) and External Shame (ES) factors. The NEA and ISD subscales also had consistent independent associations with depressive symptoms. The results suggest that the PBIllQ and PBEQ may capture three distinct sets of negative beliefs in individuals with psychosis or bipolar disorder and that these beliefs may have important consequences for subsequent difficulties in these populations such as depression. Both measures may be helpful in supporting assessment and formulation in clinical practice and in evaluating belief change in intervention trials. However, when used in these settings, the three subscales identified in this study may be the most valid way of calculating scores on these measures. Negative personal beliefs about the causes, meaning and consequences of psychosis and bipolar disorder are associated with greater distress and depression. Two related measures, the PBIllQ and PBEQ, have been developed to assess these beliefs. Our analyses suggest that scores on these questionnaires are best broken down into three

  15. Types of Bipolar Disorder

    Science.gov (United States)

    ... Events Home Science News Meetings and Events Multimedia Social Media Press Resources Newsletters NIMH News Feeds About Us ... has a lot of money, or has special powers. Someone having psychotic symptoms ... Substance Abuse: People with bipolar disorder may also misuse alcohol ...

  16. Discrete bipolar universal integrals

    Czech Academy of Sciences Publication Activity Database

    Greco, S.; Mesiar, Radko; Rindone, F.

    2014-01-01

    Roč. 252, č. 1 (2014), s. 55-65 ISSN 0165-0114 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : bipolar integral * universal integral * Choquet integral Subject RIV: BA - General Mathematics Impact factor: 1.986, year: 2014 http://library.utia.cas.cz/separaty/2014/E/mesiar-0432224.pdf

  17. El trastorno bipolar

    OpenAIRE

    Freaza Rodríguez, Paula

    2014-01-01

    Se exponen los aspectos más relevantes del trastorno bipolar, entender qué significa este concepto, conocer los tipos que existen, qué otros trastornos suelen aparecer al mismo tiempo y qué tratamientos son los que dan mejores resultados

  18. Investigations of Tunneling for Field Effect Transistors

    OpenAIRE

    Matheu, Peter

    2012-01-01

    Over 40 years of scaling dimensions for new and continuing product cycles has introduced new challenges for transistor design. As the end of the technology roadmap for semiconductors approaches, new device structures are being investigated as possible replacements for traditional metal-oxide-semiconductor field effect transistors (MOSFETs). Band-to-band tunneling (BTBT) in semiconductors, often viewed as an adverse effect of short channel lengths in MOSFETs, has been discussed as a promising ...

  19. Electrical characteristics of vapor deposited amorphous MoS2 two-terminal structures and back gate thin film transistors with Al, Au, Cu and Ni-Au contacts

    International Nuclear Information System (INIS)

    Kouvatsos, Dimitrios N.; Papadimitropoulos, Georgios; Spiliotis, Thanassis; Vasilopoulou, Maria; Davazoglou, Dimitrios; Barreca, Davide; Gasparotto, Alberto

    2015-01-01

    Amorphous molybdenum sulphide (a-MoS 2 ) thin films were deposited at near room temperature on oxidized silicon substrates and were electrically characterized with the use of two-terminal structures and of back-gated thin film transistors utilizing the substrate silicon as gate. Current-voltage characteristics were extracted for various metals used as pads, showing significant current variations attributable to different metal-sulphide interface properties and contact resistances, while the effect of a forming gas anneal was determined. With the use of heavily doped silicon substrates and aluminum backside deposition, thin film transistor (TFT) structures with the a-MoS 2 film as active layer were fabricated and characterized. Transfer characteristics showing a gate field effect, despite a leakage often present, were extracted for these devices, indicating that high mobility devices can be fabricated. SEM and EDXA measurements were also performed in an attempt to clarify issues related to material properties and fabrication procedures, so as to achieve a reliable and optimized a-MoS 2 TFT fabrication process. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Geometrical relationship of flare-generated solar wind structures to the magnetic axes of bipolar sunspot groups adjacent to their originating solar flares

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Evdokimova, L.V.; Mikerina, N.V.

    1982-01-01

    Occurrences of interplanetary shock waves near the Earth after the powerful isolated flares of 1957-1978 are investigated. The close connection between the occurrences of shock waves and the positions of magnetic axes of bipolar groups of sunspots is suggested on the basis of a statistical study. The shock waves are principally observed when the Earth finds itself near the planes that are projected through the flares in parallel to the appropriate magnetic axes of the nearest bipolar groups. This regularity is interpreted as an indirect argument for a three-dimensional geometry for the interplanetary shock waves which, when projected on these flattened to corresponding planes, are traces of large circular arcs. The typical angular scales of isolated interplanetary shock waves are estimated as approx. equal to 150 0 and approx. equal to 30 0 parallel and perpendicular, respectively, to the magnetic axes correspondingly. (orig.)

  1. Multichannel monolithic front-end system design. Part II. Microwave bipolar-JFET process for low-noise charge-sensitive preamplifiers

    International Nuclear Information System (INIS)

    Baturitsky, M.A.; Reutovich, S.I.; Solomashenko, N.F.

    1996-01-01

    For pt. I see ibid., vol.378, p.564-569, 1996. New monolithic low-noise process has been developed for simultaneous fabrication of high-speed low-noise 4-terminal and 3-terminal pJFETs and microwave low-noise npn BJTs. A new ion-implanted 4-terminal structure of JFET having 300 MHz cut-off frequency is designed. The process provides direct contact to a top gate and independent access to the top and bottom gates. Application of p-channel implant makes it possible to optimize the JFET pinch-off voltage without deterioration of bipolar transistor characteristics: f T ≥3 GHz, current gain β≥150, R bb' ≤15-40 Ω. (orig.)

  2. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    Science.gov (United States)

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  3. ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS

    OpenAIRE

    Said Broumi; Mohamed Talea; Assia Bakali; Florentin Smarandache

    2016-01-01

    In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.

  4. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Wu, Chao-Hsin, E-mail: chaohsinwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei106, Taiwan (China)

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  5. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  6. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...

  7. Organic electrochemical transistors

    Science.gov (United States)

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Róisín M.; Berggren, Magnus; Malliaras, George G.

    2018-02-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  8. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan

    2018-01-16

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  9. Investigation of structural, optical, and electrical characteristics of an AlGaN/GaN high electron mobility transistor structure across a 200 mm Si(1 1 1) substrate

    International Nuclear Information System (INIS)

    Perozek, J; Lee, H-P; Bayram, C; Krishnan, B; Paranjpe, A; Reuter, K B; Sadana, D K

    2017-01-01

    An AlGaN/GaN high electron mobility transistor (HEMT) structure is grown on a 200 mm Si(1 1 1) substrate. The AlGaN/AlN/GaN heterostructure atop, which forms the 2D electron gas, is studied via transmission electron microscopy (TEM), scanning tunneling microscopy, and TEM chemical analysis. To quantify the uniformity of structural, optical, and electrical properties of these AlGaN/GaN HEMT structures, scanning electron microscopy, optical microscopy, atomic-force microscopy, x-ray diffraction ( ω /2 θ scan and reciprocal space mapping) and Hall effect measurements are employed across the center, middle, and edge of the 200 mm wafer. Small thickness (<3%) and Al-content (<3%) variations in (Al)GaN layers across the wafer are recorded whereas a considerable change (28%) in the electron mobility is observed across the wafer that correlates with variations in surface roughness, defectivity, and layer stress. We attribute the higher mobility in the middle of the wafer to lower interface scattering, thanks to lower surface roughness and less edge-type dislocation density. Additionally, argon (Ar) ion implantation is used as a means for planar electrical isolation, and a seven orders of magnitude decrease in leakage current is achieved when an optimum Ar dose of 10 13 cm −2 is used. The feasibility of scaling AlGaN/GaN HEMTs on a 200 mm Si(1 1 1) platform is discussed. (paper)

  10. An investigation of coated aluminium bipolar plates for PEMFC

    International Nuclear Information System (INIS)

    Lin, Chien-Hung; Tsai, Sung-Ying

    2012-01-01

    Highlights: ► Coated aluminium bipolar plates demonstrate the hydrophobic property than the raw material. ► The corrosion behaviour of bipolar plate decreases the PEMFC performance severely. ► These PEMFCs are measured by current–voltage (I–V) curve test. ► The oxide film increases the interfacial contact resistance. -- Abstract: The performance of Al-alloy bipolar plates for the PEMFC (proton exchange membrane fuel cell) system is investigated in this paper. The metallic bipolar plates are modified with a Ni–P coating. The performance of the Al-alloy bipolar plates is evaluated by the coating structure, corrosion resistance, contact angle and single cell performance. The results indicate that the coated aluminium bipolar plates demonstrate hydrophobic and anti-corrosive properties. The hydrophobic property increases the contact angle on the surface from 46.08° to 80.51°. Meanwhile, the corrosion rate of the Ni–P coating can be over 1 order of magnitude lower than that of the substrate. Hence, the substrate with the coating maintains superior performance under the long term test. The present study proves that both the hydrophobicity and corrosion resistance significantly affect the metallic bipolar plate.

  11. Suicide attempts and clinical features of bipolar patients.

    Science.gov (United States)

    Berkol, Tonguç D; İslam, Serkan; Kırlı, Ebru; Pınarbaşı, Rasim; Özyıldırım, İlker

    2016-06-01

    To identify clinical predictors of suicide attempts in patients with bipolar disorder. This study included bipolar patients who were treated in the Psychiatry Department, Haseki Training and Research Hospital, Istanbul, Turkey, between 2013 and 2014; an informed consent was obtained from the participants. Two  hundred and eighteen bipolar patients were assessed by using the structured clinical interview for Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) Axis-I (SCID-I) in order to detect all possible psychiatric comorbid diagnoses. Clinical predictors of suicide attempts were examined in attempters and non-attempters. The study design was retrospective. The lifetime suicide attempt rate for the entire sample was 19.2%. Suicide attempters with bipolar disorder had more lifetime comorbidity of eating disorder. Female gender and family history of mood disorder were significant predictors for suicide attempts. There was no difference between groups in terms of bipolar disorder subtype, onset age of bipolar disorder, total number of episodes, first and predominant episode type, suicide history in first degree relatives, severity of episodes, and hospitalization and being psychotic. Our study revealed that female gender, family history of mood disorder, and eating disorder are more frequent in bipolar patients with at least one suicide attempt.

  12. Interface Engineering for Precise Threshold Voltage Control in Multilayer-Channel Thin Film Transistors

    KAUST Repository

    Park, Jihoon

    2016-11-29

    Multilayer channel structure is used to effectively manipulate the threshold voltage of zinc oxide transistors without degrading its field-effect mobility. Transistors operating in enhancement mode with good mobility are fabricated by optimizing the structure of the multilayer channel. The optimization is attributed to the formation of additional channel and suppression of the diffusion of absorbed water molecules and oxygen vacancies.

  13. Interface Engineering for Precise Threshold Voltage Control in Multilayer-Channel Thin Film Transistors

    KAUST Repository

    Park, Jihoon; Alshammari, Fwzah Hamud; Wang, Zhenwei; Alshareef, Husam N.

    2016-01-01

    Multilayer channel structure is used to effectively manipulate the threshold voltage of zinc oxide transistors without degrading its field-effect mobility. Transistors operating in enhancement mode with good mobility are fabricated by optimizing the structure of the multilayer channel. The optimization is attributed to the formation of additional channel and suppression of the diffusion of absorbed water molecules and oxygen vacancies.

  14. Field emission current from a junction field-effect transistor

    International Nuclear Information System (INIS)

    Monshipouri, Mahta; Abdi, Yaser

    2015-01-01

    Fabrication of a titanium dioxide/carbon nanotube (TiO 2 /CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO 2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO 2 /CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO 2 /CNT hetero-structure is also investigated, and well modeled

  15. The bipolar puzzle, adding new pieces. Factors associated with bipolar disorder, Genetic and environmental influences

    NARCIS (Netherlands)

    van der Schot, A.C.

    2009-01-01

    The focus of this thesis is twofold. The first part will discuss the structural brain abnormalities and schoolperformance associated with bipolar disorder and the influence of genetic and/or environmental factors to this association. It is part of a large twin study investigating several potential

  16. Bias-induced migration of ionized donors in amorphous oxide semiconductor thin-film transistors with full bottom-gate and partial top-gate structures

    Directory of Open Access Journals (Sweden)

    Mallory Mativenga

    2012-09-01

    Full Text Available Bias-induced charge migration in amorphous oxide semiconductor thin-film transistors (TFTs confirmed by overshoots of mobility after bias stressing dual gated TFTs is presented. The overshoots in mobility are reversible and only occur in TFTs with a full bottom-gate (covers the whole channel and partial top-gate (covers only a portion of the channel, indicating a bias-induced uneven distribution of ionized donors: Ionized donors migrate towards the region of the channel that is located underneath the partial top-gate and the decrease in the density of ionized donors in the uncovered portion results in the reversible increase in mobility.

  17. BUSFET -- A radiation-hardened SOI transistor

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-01-01

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, the authors propose a partially-depleted SOI transistor structure for mitigating the effects of trapped charge in the buried oxide on radiation hardness. They call this structure the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU or dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration, and the depth of the source. 3-D simulations show that for a body doping concentration of 10 18 cm -3 , a drain bias of 3 V, and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3 x 10 17 cm -3 , a thicker silicon film (300 nm) must be used

  18. Correlation Between Two-Dimensional Electron Gas Mobility and Crystal Quality in AlGaN/GaN High-Electron-Mobility Transistor Structure Grown on 4H-SiC.

    Science.gov (United States)

    Heo, Cheon; Jang, Jongjin; Lee, Kyngjae; So, Byungchan; Lee, Kyungbae; Ko, Kwangse; Nam, Okhyun

    2017-01-01

    We investigated the correlation between the crystal quality and two-dimensional electron gas (2DEG) mobility of an AlGaN/GaN high-electron-mobility transistor (HEMT) structure grown by metal-organic chemical vapor deposition. For the structure with an AlN nucleation layer grown at 1100 °C, the 2DEG mobility and sheet carrier density were 1627 cm²/V·s and 3.23 × 10¹³ cm⁻², respectively, at room temperature. Further, it was confirmed that the edge dislocation density of the GaN buffer layer was related to the 2DEG mobility and sheet carrier density in the AlGaN/GaN HEMT.

  19. Life expectancy in bipolar disorder

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Vradi, Eleni; Andersen, Per Kragh

    2015-01-01

    OBJECTIVE: Life expectancy in patients with bipolar disorder has been reported to be decreased by 11 to 20 years. These calculations are based on data for individuals at the age of 15 years. However, this may be misleading for patients with bipolar disorder in general as most patients have a later...... onset of illness. The aim of the present study was to calculate the remaining life expectancy for patients of different ages with a diagnosis of bipolar disorder. METHODS: Using nationwide registers of all inpatient and outpatient contacts to all psychiatric hospitals in Denmark from 1970 to 2012 we...... remaining life expectancy in bipolar disorder and that of the general population decreased with age, indicating that patients with bipolar disorder start losing life-years during early and mid-adulthood. CONCLUSIONS: Life expectancy in bipolar disorder is decreased substantially, but less so than previously...

  20. Identifying early indicators in bipolar disorder: a qualitative study.

    Science.gov (United States)

    Benti, Liliane; Manicavasagar, Vijaya; Proudfoot, Judy; Parker, Gordon

    2014-06-01

    The identification of early markers has become a focus for early intervention in bipolar disorder. Using a retrospective, qualitative methodology, the present study compares the early experiences of participants with bipolar disorder to those with unipolar depression up until their first diagnosed episode. The study focuses on differences in early home and school environments as well as putative differences in personality characteristics between the two groups. Finally we a compare and contrast prodromal symptoms in these two populations. Thirty-nine participants, 20 diagnosed with unipolar depression and 19 diagnosed with bipolar disorder, took part in the study. A semi-structured interview was developed to elicit information about participants' experiences prior to their first episode. Participants with bipolar disorder reported disruptive home environments, driven personality features, greater emotion dysregulation and adverse experiences during the school years, whereas participants with depression tended to describe more supportive home environments, and more compliant and introvert personality traits. Retrospective data collection and no corroborative evidence from other family members. No distinction was made between bipolar I and bipolar II disorder nor between melancholic and non-melancholic depression in the sample. Finally the study spanned over a 12-month period which does not allow for the possibility of diagnostic reassignment of some of the bipolar participants to the unipolar condition. These findings indicate that there may be benefits in combining both proximal and distal indicators in identifying a bipolar disorder phenotype which, in turn, may be relevant to the development of early intervention programs for young people with bipolar disorder.

  1. Atypical transistor-based chaotic oscillators: Design, realization, and diversity

    Science.gov (United States)

    Minati, Ludovico; Frasca, Mattia; OświÈ©cimka, Paweł; Faes, Luca; DroŻdŻ, Stanisław

    2017-07-01

    In this paper, we show that novel autonomous chaotic oscillators based on one or two bipolar junction transistors and a limited number of passive components can be obtained via random search with suitable heuristics. Chaos is a pervasive occurrence in these circuits, particularly after manual adjustment of a variable resistor placed in series with the supply voltage source. Following this approach, 49 unique circuits generating chaotic signals when physically realized were designed, representing the largest collection of circuits of this kind to date. These circuits are atypical as they do not trivially map onto known topologies or variations thereof. They feature diverse spectra and predominantly anti-persistent monofractal dynamics. Notably, we recurrently found a circuit comprising one resistor, one transistor, two inductors, and one capacitor, which generates a range of attractors depending on the parameter values. We also found a circuit yielding an irregular quantized spike-train resembling some aspects of neural discharge and another one generating a double-scroll attractor, which represent the smallest known transistor-based embodiments of these behaviors. Through three representative examples, we additionally show that diffusive coupling of heterogeneous oscillators of this kind may give rise to complex entrainment, such as lag synchronization with directed information transfer and generalized synchronization. The replicability and reproducibility of the experimental findings are good.

  2. [Bipolar disorder in adolescence].

    Science.gov (United States)

    Brunelle, Julie; Milhet, Vanessa; Consoli, Angèle; Cohen, David

    2014-04-01

    Juvenile mania is a concept widely developed but also highly debated since the 1990s. In the heart of this debate, Severe Mood Dysregulation (SMD) and "Temper Dysregulation disorder with Dysphoria" (recently integrated in DSM-5) showed their interest. Actually, the objective is to distinguish two clinical phenotypes in order to avoid confusion between (1) what would raise more of mood dysregulation with chronic manic like symptoms, and (2) bipolar disorder type I with episodic and acute manic episodes. Therapeutic stakes are major. In adolescents, even if DSM adult diagnostic criteria can be used and bipolar disorder type I clearly established, differential diagnostic at onset between acute manic episode and schizophrenia onset remain sometimes difficult to assess. Furthermore, it is crucial to better assess outcome of these adolescents, in terms of morbidity and potential prognosis factors, knowing that a younger age at onset is associated with a poorer outcome according to several adult studies. Therapeutic implications could then be drawn.

  3. Depressive and bipolar disorders

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Hansen, Hanne Vibe; Demyttenaere, Koen

    2005-01-01

    of the patients (40-80%) had erroneous views as to the effect of antidepressants. Older patients (over 40 years of age) consistently had a more negative view of the doctor-patient relationship, more erroneous ideas concerning the effect of antidepressants and a more negative view of antidepressants in general....... Moreover, their partners agreed on these negative views. Women had a more negative view of the doctor-patient relationship than men, and patients with a depressive disorder had a more negative view of antidepressants than patients with bipolar disorder. The number of psychiatric hospitalizations......BACKGROUND: There is increasing evidence that attitudes and beliefs are important in predicting adherence to treatment and medication in depressive and bipolar disorders. However, these attitudes have received little study in patients whose disorders were sufficiently severe to require...

  4. Bipolar Plates for PEM Systems

    OpenAIRE

    Lædre, Sigrid

    2016-01-01

    Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...

  5. Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer

    Directory of Open Access Journals (Sweden)

    Shijiao Han

    2016-07-01

    Full Text Available To investigate the origins of hydroxyl groups in a polymeric dielectric and its applications in organic field-effect transistors (OFETs, a polar polymer layer was inserted between two polymethyl methacrylate (PMMA dielectric layers, and its effect on the performance as an organic field-effect transistor (OFET was studied. The OFETs with a sandwiched dielectric layer of poly(vinyl alcohol (PVA or poly(4-vinylphenol (PVP containing hydroxyl groups had shown enhanced characteristics compared to those with only PMMA layers. The field-effect mobility had been raised more than 10 times in n-type devices (three times in the p-type one, and the threshold voltage had been lowered almost eight times in p-type devices (two times in the n-type. The on-off ratio of two kinds of devices had been enhanced by almost two orders of magnitude. This was attributed to the orientation of hydroxyl groups from disordered to perpendicular to the substrate under gate-applied voltage bias, and additional charges would be induced by this polarization at the interface between the semiconductor and dielectrics, contributing to the accumulation of charge transfer.

  6. [Creativity and bipolar disorder].

    Science.gov (United States)

    Maçkalı, Zeynep; Gülöksüz, Sinan; Oral, Timuçin

    2014-01-01

    The relationship between creativity and bipolar disorder has been an intriguing topic since ancient times. Early studies focused on describing characteristics of creative people. From the last quarter of the twentieth century, researchers began to focus on the relationship between mood disorders and creativity. Initially, the studies were based on biographical texts and the obtained results indicated a relationship between these two concepts. The limitations of the retrospective studies led the researchers to develop systematic investigations into this area. The systematic studies that have focused on artistic creativity have examined both the prevalence of mood disorders and the creative process. In addition, a group of researchers addressed the relationship in terms of affective temperaments. Through the end of the 90's, the scope of creativity was widened and the notion of everyday creativity was proposed. The emergence of this notion led researchers to investigate the associations of the creative process in ordinary (non-artist) individuals. In this review, the descriptions of creativity and creative process are mentioned. Also, the creative process is addressed with regards to bipolar disorder. Then, the relationship between creativity and bipolar disorder are evaluated in terms of aforementioned studies (biographical, systematic, psychobiographical, affective temperaments). In addition, a new model, the "Shared Vulnerability Model" which was developed to explain the relationship between creativity and psychopathology is introduced. Finally, the methodological limitations and the suggestions for resolving these limitations are included.

  7. Reviewing metallic PEMFC bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Turner, J.A. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-08-15

    A bipolar plate is one of the most important components in a polymer exchange membrane fuel cell (PEMFC) stack and has multiple functions. Metallic bipolar plate candidates have advantages over composite rivals in excellent electrical and thermal conductivity, good mechanical strength, high chemical stability, very wide alloy choices, low cost and, most importantly, existing pathways for high-volume, high-speed mass production. The challenges with metallic bipolar plates are the higher contact resistance and possible corrosion products, which may contaminate the membrane electrode assembly. This review evaluates the candidate metallic and coating materials for bipolar plates and gives the perspective of the research trends. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Self-Referential Thinking, Suicide, and Function of the Cortical Midline Structures and Striatum in Mood Disorders: Possible Implications for Treatment Studies of Mindfulness-Based Interventions for Bipolar Depression

    Directory of Open Access Journals (Sweden)

    William R. Marchand

    2012-01-01

    Full Text Available Bipolar depression is often refractory to treatment and is frequently associated with anxiety symptoms and elevated suicide risk. There is a great need for adjunctive psychotherapeutic interventions. Treatments with effectiveness for depressive and anxiety symptoms as well as suicide-related thoughts and behaviors would be particularly beneficial. Mindfulness-based interventions hold promise, and studies of these approaches for bipolar disorder are warranted. The aim of this paper is to provide a conceptual background for such studies by reviewing key findings from diverse lines of investigation. Results of that review indicate that cortical midline structures (CMS appear to link abnormal self-referential thinking to emotional dysregulation in mood disorders. Furthermore, CMS and striatal dysfunction may play a role in the neuropathology underlying suicide-related thoughts and behaviors. Thus, combining studies of mindfulness interventions targeting abnormal self-referential thinking with functional imaging of CMS and striatal function may help delineate the neurobiological mechanisms of action of these treatments.

  9. Direct coupled amplifiers using field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-03-15

    The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with

  10. Dosimetric properties of MOS transistors

    International Nuclear Information System (INIS)

    Peter, I.; Frank, G.

    1977-01-01

    The performance of MOS transistors as gamma detectors has been tested. The dosimeter sensitivity has proved to be independent on the doses ranging from 10 3 to 10 6 R, and gamma energy of 137 Cs, 60 Co - sources and 5 - 18 MeV electrons. Fading of the space charge trapped by the SiO 2 layer of the transistor has appeared to be neglegible at room temperature after 400 hrs. The isochronous annealing in the temperature range of 40-260 deg C had a more substantial effect on the space charge of the transistor irradiated with 18 MeV electrons than on the 137 Cs gamma-irradiated transistors. This proved a repeated use of γ-dosemeters. MOS transistors are concluded to be promising for gamma dosimetry [ru

  11. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  12. Experimental demonstration on the ultra-low source/drain resistance by metal-insulator-semiconductor contact structure in In0.53Ga0.47As field-effect transistors

    Directory of Open Access Journals (Sweden)

    M.-H. Liao

    2013-09-01

    Full Text Available In this work, we demonstrate the ultra-low contact resistivity of 6.7 × 10−9 Ω/cm2 by inserting 0.6-nm-ZnO between Al and InGaAs(Si: 1.5 × 1019 cm−3. The metal-insulator-semiconductor tunneling diode with 0.6-nm-ZnO exhibits nearly zero (0.03 eV barrier height. We apply this contact structure on the source/drain of implant-free In0.53Ga0.47As quantum-well metal-oxide-semiconductor field- effect transistors. The excellent on-state performance such as saturation drain current of 3 × 10−4 A/μm and peak transconductance of 1250 μS/μm is obtained which is attributed to the ultra-low source/drain resistance of 190 Ω-μm.

  13. A study on low-power, nanosecond operation and multilevel bipolar resistance switching in Ti/ZrO2/Pt nonvolatile memory with 1T1R architecture

    International Nuclear Information System (INIS)

    Wu, Ming-Chi; Tseng, Tseung-Yuen; Jang, Wen-Yueh; Lin, Chen-Hsi

    2012-01-01

    Low-power, bipolar resistive switching (RS) characteristics in the Ti/ZrO 2 /Pt nonvolatile memory with one transistor and one resistor (1T1R) architecture were reported. Multilevel storage behavior was observed by modulating the amplitude of the MOSFET gate voltage, in which the transistor functions as a current limiter. Furthermore, multilevel storage was also executed by controlling the reset voltage, leading the resistive random access memory (RRAM) to the multiple metastable low resistance state (LRS). The experimental results on the measured electrical properties of the various sized devices confirm that the RS mechanism of the Ti/ZrO 2 /Pt structure obeys the conducting filaments model. In application, the devices exhibit high-speed switching performances (250 ns) with suitable high/low resistance state ratio (HRS/LRS > 10). The LRS of the devices with 10 year retention ability at 80 °C, based on the Arrhenius equation, is also demonstrated in the thermal accelerating test. Furthermore, the ramping gate voltage method with fixed drain voltage is used to switch the 1T1R memory cells for upgrading the memory performances. Our experimental results suggest that the ZrO 2 -based RRAM is a prospective alternative for nonvolatile multilevel memory device applications. (paper)

  14. Scientific attitudes towards bipolar disorders

    Directory of Open Access Journals (Sweden)

    Mohammad-Hossein Biglu

    2014-02-01

    Full Text Available Introduction: Bipolar disorder is a psychiatric condition that is also called manic-depressive disease. It causes unusual changes in mood, energy, activity levels, and the ability to carry out day-to-day tasks. In the present study, 3 sets of data were considered and analyzed: first, all papers categorized under Bipolar Disorders in Science Citation Index Expanded (SCI-E database through 2001-2011; second, papers published by the international journal of Bipolar Disorders indexed in SCI-E during a period of 11 years; and third, all papers distributed by the international journal of Bipolar Disorders indexed in MEDLINE during the period of study. Methods: The SCI-E database was used to extract all papers indexed with the topic of Bipolar Disorders as well as all papers published by The International Journal of Bipolar Disorders. Extraction of data from MEDLINE was restricted to the journals name from setting menu. The Science of Science Tool was used to map the co-authorship network of papers published by The International Journal of Bipolar Disorders through 2009-2011. Results: Analysis of data showed that the majority of publications in the subject area of bipolar disorders indexed in SCI-E were published by The International Journal of Bipolar Disorders. Although journal articles consisted of 59% of the total publication type in SCI-E, 65% of publications distributed by The Journal of Bipolar Disorders were in the form of meetingabstracts. Journal articles consisted of only 23% of the total publications. USA was the leading country regarding sharing data in the field of bipolar disorders followed by England, Canada, and Germany. Conclusion: The editorial policy of The International Journal of Bipolar Disorders has been focused on new themes and new ways of researching in the subject area of bipolar disorder. Regarding the selection of papers for indexing, the SCI-E database selects data more comprehensively than MEDLINE. The number of papers

  15. Electric double layer transistors with ferroelectric BaTiO3 channels

    NARCIS (Netherlands)

    Ito, M.; Matsubara, Y.; Kozuka, Y.; Takahashi, K. S.; Kagawa, F.; Ye, J. T.; Iwasa, Y.; Ueno, K.; Tokura, Y.; Kawasaki, M.

    2014-01-01

    We report the surface conduction of a BaTiO3 thin film using electric double layer transistor (EDLT) structure. A transistor operation was observed at 220 K with an on/off ratio exceeding 10(5), demonstrating that ionic liquid gating is effective to induce carriers at the surface of ferroelectric

  16. Epidemiology in Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Caner Mutlu

    2015-12-01

    Full Text Available Childhood and adolescent bipolar disorder diagnosis has been increasing recently. Since studies evaluating attempted suicide rates in children and adolescents have shown bipolarity to be a significant risk factor, diagnosis and treatment of bipolarity has become a very important issue. Since there is a lack of specific diagnostic criteria for especially preadolescent samples and evaluations are made mostly symptomatically, suspicions about false true diagnosis and increased prevalence rates have emerged. This situation leads to controversial data about the prevalence rates of bipolar disorder in children and adolescents. The aim of this article is to review the prevalence of childhood and adolescent bipolar disorder in community, inpatient and outpatient based samples in literature.

  17. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  18. Early Intervention in Bipolar Disorder.

    Science.gov (United States)

    Vieta, Eduard; Salagre, Estela; Grande, Iria; Carvalho, André F; Fernandes, Brisa S; Berk, Michael; Birmaher, Boris; Tohen, Mauricio; Suppes, Trisha

    2018-05-01

    Bipolar disorder is a recurrent disorder that affects more than 1% of the world population and usually has its onset during youth. Its chronic course is associated with high rates of morbidity and mortality, making bipolar disorder one of the main causes of disability among young and working-age people. The implementation of early intervention strategies may help to change the outcome of the illness and avert potentially irreversible harm to patients with bipolar disorder, as early phases may be more responsive to treatment and may need less aggressive therapies. Early intervention in bipolar disorder is gaining momentum. Current evidence emerging from longitudinal studies indicates that parental early-onset bipolar disorder is the most consistent risk factor for bipolar disorder. Longitudinal studies also indicate that a full-blown manic episode is often preceded by a variety of prodromal symptoms, particularly subsyndromal manic symptoms, therefore supporting the existence of an at-risk state in bipolar disorder that could be targeted through early intervention. There are also identifiable risk factors that influence the course of bipolar disorder, some of them potentially modifiable. Valid biomarkers or diagnosis tools to help clinicians identify individuals at high risk of conversion to bipolar disorder are still lacking, although there are some promising early results. Pending more solid evidence on the best treatment strategy in early phases of bipolar disorder, physicians should carefully weigh the risks and benefits of each intervention. Further studies will provide the evidence needed to finish shaping the concept of early intervention. AJP AT 175 Remembering Our Past As We Envision Our Future April 1925: Interpretations of Manic-Depressive Phases Earl Bond and G.E. Partridge reviewed a number of patients with manic-depressive illness in search of a unifying endo-psychic conflict. They concluded that understanding either phase of illness was "elusive" and

  19. Novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs

    OpenAIRE

    Muhammad, Akram; Musavarah, Sarwar

    2016-01-01

    In this research study, we introduce the concept of bipolar neutrosophic graphs. We present the dominating and independent sets of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs. We also develop an algorithm for computing domination in bipolar neutrosophic graphs.

  20. The functional neuroanatomy of bipolar disorder: a consensus model

    Science.gov (United States)

    Strakowski, Stephen M; Adler, Caleb M; Almeida, Jorge; Altshuler, Lori L; Blumberg, Hilary P; Chang, Kiki D; DelBello, Melissa P; Frangou, Sophia; McIntosh, Andrew; Phillips, Mary L; Sussman, Jessika E; Townsend, Jennifer D

    2013-01-01

    Objectives Functional neuroimaging methods have proliferated in recent years, such that functional magnetic resonance imaging, in particular, is now widely used to study bipolar disorder. However, discrepant findings are common. A workgroup was organized by the Department of Psychiatry, University of Cincinnati (Cincinnati, OH, USA) to develop a consensus functional neuroanatomic model of bipolar I disorder based upon the participants’ work as well as that of others. Methods Representatives from several leading bipolar disorder neuroimaging groups were organized to present an overview of their areas of expertise as well as focused reviews of existing data. The workgroup then developed a consensus model of the functional neuroanatomy of bipolar disorder based upon these data. Results Among the participants, a general consensus emerged that bipolar I disorder arises from abnormalities in the structure and function of key emotional control networks in the human brain. Namely, disruption in early development (e.g., white matter connectivity, prefrontal pruning) within brain networks that modulate emotional behavior leads to decreased connectivity among ventral prefrontal networks and limbic brain regions, especially amygdala. This developmental failure to establish healthy ventral prefrontal–limbic modulation underlies the onset of mania and ultimately, with progressive changes throughout these networks over time and with affective episodes, a bipolar course of illness. Conclusions This model provides a potential substrate to guide future investigations and areas needing additional focus are identified. PMID:22631617

  1. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    International Nuclear Information System (INIS)

    Ravikiran, L.; Radhakrishnan, K.; Ng, G. I.; Munawar Basha, S.; Dharmarasu, N.; Agrawal, M.; Manoj kumar, C. M.; Arulkumaran, S.

    2015-01-01

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr 4 beam equivalent pressure of 1.86 × 10 −7 mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffers also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics

  2. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@e.ntu.edu.sg; Ng, G. I. [NOVITAS-Nanoelectronics, Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Munawar Basha, S.; Dharmarasu, N.; Agrawal, M.; Manoj kumar, C. M.; Arulkumaran, S. [Temasek Laboratories@NTU, Nanyang Technological University, Singapore 637553 (Singapore)

    2015-06-28

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr{sub 4} beam equivalent pressure of 1.86 × 10{sup −7} mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffers also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics.

  3. Deformable Organic Nanowire Field-Effect Transistors.

    Science.gov (United States)

    Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan

    2018-02-01

    Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of 1MeV electron beam on transistors and circuits

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1998-02-01

    It has been known that semiconductor devices operating in a radiation environment exhibited significant alterations of their electrical responses. Since an electron beam bombardment produces lattice damage in Si and charged defects in SiO 2 , several electrical parameters of transistors exhibit significant changes. Those parameters are the current gain of BJT (Bipolar Junction Transistor) and the threshold voltage of MOSFET (Metal Oxide Semiconductor Field Effect Transistor). The degradation of transistors brings about that of circuits. This paper presents the results of experiments and simulations performed to study the effects of 1MeV electron beam irradiation on selected silicon transistors and circuits. For BJTs, the current gains of npn (2N3904) and pnp (2N3906) linearly decreased as the irradiation dose increased, and from this result, the damage constants, Ks were obtained as 13.65 for 2N3904 and 22.52 for 2N3906 in MGy, indicating a more stable operation in the electron radiation environment for pnp than that for npn. The decrease of current gain was due to that of minority-carrier lifetime in the base region. For MOSFETs (CD4007s), the threshold voltages of NMOS and PMOS shifted to the lower values, which was resulted from the accumulation of charge in SiO 2 . The charges could be categorized into fixed oxide charge and interfacial trap charge. From experimental results, the amounts of the induced charges could be quantitatively estimated. These degradations of transistors brought about the decrease in the voltage gain of CE (Common Emitter) amplifier and the shifts in the inverting voltage of inverter. Additionally, PSpice simulations of these circuits were carried out by modeling of irradiated transistors. The comparison of simulation with experiment showed the relatively good agreement of simulation for the degradation of circuits after irradiation

  5. Features of carrier tunneling between the silicon valence band and metal in devices based on the Al/high-K oxide/SiO_2/Si structure

    International Nuclear Information System (INIS)

    Vexler, M. I.; Grekhov, I. V.

    2016-01-01

    The features of electron tunneling from or into the silicon valence band in a metal–insulator–semiconductor system with the HfO_2(ZrO_2)/SiO_2 double-layer insulator are theoretically analyzed for different modes. It is demonstrated that the valence-band current plays a less important role in structures with HfO_2(ZrO_2)/SiO_2 than in structures containing only silicon dioxide. In the case of a very wide-gap high-K oxide ZrO_2, nonmonotonic behavior related to tunneling through the upper barrier is predicted for the valence-band–metal current component. The use of an insulator stack can offer certain advantages for some devices, including diodes, bipolar tunnel-emitter transistors, and resonant-tunneling diodes, along with the traditional use of high-K insulators in a field-effect transistor.

  6. Bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  7. Transistor and integrated circuit manufacture

    International Nuclear Information System (INIS)

    Colman, D.

    1978-01-01

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry. (author)

  8. High transconductance organic electrochemical transistors

    Science.gov (United States)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-07-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.

  9. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz; Lussem, Bjorn; Liu, Shiyi

    2017-01-01

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer

  10. High transconductance organic electrochemical transistors

    Science.gov (United States)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-01-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications. PMID:23851620

  11. Transistor and integrated circuit manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Colman, D

    1978-09-27

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry.

  12. Planar-Processed Polymer Transistors.

    Science.gov (United States)

    Xu, Yong; Sun, Huabin; Shin, Eul-Yong; Lin, Yen-Fu; Li, Wenwu; Noh, Yong-Young

    2016-10-01

    Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Prevalences of autoimmune diseases in schizophrenia, bipolar I and II disorder, and controls.

    Science.gov (United States)

    Cremaschi, Laura; Kardell, Mathias; Johansson, Viktoria; Isgren, Anniella; Sellgren, Carl M; Altamura, A Carlo; Hultman, Christina M; Landén, Mikael

    2017-12-01

    Previous studies on the relationship between autoimmune diseases, schizophrenia, and bipolar disorder are mainly based on hospital discharge registers with insufficient coverage of outpatient data. Furthermore, data is scant on the prevalence of autoimmune diseases in bipolar subgroups. Here we estimate the self-reported prevalences of autoimmune diseases in schizophrenia, bipolar disorder type I and II, and controls. Lifetime prevalence of autoimmune diseases was assessed through a structured interview in a sample of 9076 patients (schizophrenia N = 5278, bipolar disorder type I N = 1952, type II N = 1846) and 6485 controls. Comparative analyses were performed using logistic regressions. The prevalence of diabetes type 1 did not differ between groups. Hyperthyroidism, hypothyroidism regardless of lithium effects, rheumatoid arthritis, and polymyalgia rheumatica were most common in bipolar disorder. Systemic lupus erythematosus was less common in bipolar disorder than in the other groups. The rate of autoimmune diseases did not differ significantly between bipolar subgroups. We conclude that prevalences of autoimmune diseases show clear differences between schizophrenia and bipolar disorder, but not between the bipolar subgroups. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bipolar disorder and the risk of fracture: A nationwide population-based cohort study.

    Science.gov (United States)

    Su, Jian-An; Cheng, Bi-Hua; Huang, Yin-Cheng; Lee, Chuan-Pin; Yang, Yao-Hsu; Lu, Mong-Liang; Hsu, Chung-Yao; Lee, Yena; McIntyre, Roger S; Chin Lin, Tzu; Chin-Hung Chen, Vincent

    2017-08-15

    The co-primary aims are: 1) to compare the risk of fracture between adults with bipolar disorder and those without bipolar disorder; and 2) to assess whether lithium, anticonvulsants and antipsychotics reduce risk of fracture among individuals with bipolar disorder. The analysis herein is a population-based retrospective cohort study, utilizing the National Health Insurance (NHI) medical claims data collected between 1997 and 2013 in Taiwan. We identified 3705 cases with incident diagnoses of bipolar disorder during study period and 37,050 matched controls without bipolar diagnoses. Incident diagnosis of fracture was operationalized as any bone fracture after the diagnosis of bipolar disorder or after the matched index date for controls. Bipolar patients had significantly higher risk of facture when compared to matched controls (17.6% versus 11.7%, respectively pbipolar disorder and a prior history of psychiatric hospitalization were had higher risk for bone fracture than those without prior history of psychiatric hospitalization when compared to match controls. Higher cumulative dose of antipsychotics or mood stabilizers did not increase the risk of fracture. The diagnoses of bipolar disorder were not confirmed with structured clinical interview. Drug adherence, exact exposure dosage, smoking, lifestyle, nutrition and exercise habits were unable to be assessed in our dataset. Bipolar disorder is associated with increased risk of fracture, and higher cumulative dose of mood stabilizers and antipsychotics did not further increase the risk of fracture. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Rapid detection of cardiac troponin I using antibody-immobilized gate-pulsed AlGaN/GaN high electron mobility transistor structures

    Science.gov (United States)

    Yang, Jiancheng; Carey, Patrick; Ren, Fan; Wang, Yu-Lin; Good, Michael L.; Jang, Soohwan; Mastro, Michael A.; Pearton, S. J.

    2017-11-01

    We report a comparison of two different approaches to detecting cardiac troponin I (cTnI) using antibody-functionalized AlGaN/GaN High Electron Mobility Transistors (HEMTs). If the solution containing the biomarker has high ionic strength, there can be difficulty in detection due to charge-screening effects. To overcome this, in the first approach, we used a recently developed method involving pulsed biases applied between a separate functionalized electrode and the gate of the HEMT. The resulting electrical double layer produces charge changes which are correlated with the concentration of the cTnI biomarker. The second approach fabricates the sensing area on a glass slide, and the pulsed gate signal is externally connected to the nitride HEMT. This produces a larger integrated change in charge and can be used over a broader range of concentrations without suffering from charge-screening effects. Both approaches can detect cTnI at levels down to 0.01 ng/ml. The glass slide approach is attractive for inexpensive cartridge-type sensors.

  16. Pituitary gland volumes in bipolar disorder.

    Science.gov (United States)

    Clark, Ian A; Mackay, Clare E; Goodwin, Guy M

    2014-12-01

    Bipolar disorder has been associated with increased Hypothalamic-Pituitary-Adrenal axis function. The mechanism is not well understood, but there may be associated increases in pituitary gland volume (PGV) and these small increases may be functionally significant. However, research investigating PGV in bipolar disorder reports mixed results. The aim of the current study was twofold. First, to assess PGV in two novel samples of patients with bipolar disorder and matched healthy controls. Second, to perform a meta-analysis comparing PGV across a larger sample of patients and matched controls. Sample 1 consisted of 23 established patients and 32 matched controls. Sample 2 consisted of 39 medication-naïve patients and 42 matched controls. PGV was measured on structural MRI scans. Seven further studies were identified comparing PGV between patients and matched controls (total n; 244 patients, 308 controls). Both novel samples showed a small (approximately 20mm(3) or 4%), but non-significant, increase in PGV in patients. Combining the two novel samples showed a significant association of age and PGV. Meta-analysis showed a trend towards a larger pituitary gland in patients (effect size: .23, CI: -.14, .59). While results suggest a possible small difference in pituitary gland volume between patients and matched controls, larger mega-analyses with sample sizes greater even than those used in the current meta-analysis are still required. There is a small but potentially functionally significant increase in PGV in patients with bipolar disorder compared to controls. Results demonstrate the difficulty of finding potentially important but small effects in functional brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Asenapine for bipolar disorder

    Directory of Open Access Journals (Sweden)

    Scheidemantel T

    2015-12-01

    Full Text Available Thomas Scheidemantel,1 Irina Korobkova,2 Soham Rej,3,4 Martha Sajatovic1,2 1University Hospitals Case Medical Center, 2Case Western Reserve University School of Medicine, Cleveland, OH, USA; 3Department of Psychiatry, University of Toronto, Toronto, ON, 4Geri PARTy Research Group, Jewish General Hospital, Montreal, QC, Canada Abstract: Asenapine (Saphris® is an atypical antipsychotic drug which has been approved by the US Food and Drug Administration for the treatment of schizophrenia in adults, as well as the treatment of acute manic or mixed episodes of bipolar I in both adult and pediatric populations. Asenapine is a tetracyclic drug with antidopaminergic and antiserotonergic activity with a unique sublingual route of administration. In this review, we examine and summarize the available literature on the safety, efficacy, and tolerability of asenapine in the treatment of bipolar disorder (BD. Data from randomized, double-blind trials comparing asenapine to placebo or olanzapine in the treatment of acute manic or mixed episodes showed asenapine to be an effective monotherapy treatment in clinical settings; asenapine outperformed placebo and showed noninferior performance to olanzapine based on improvement in the Young Mania Rating Scale scores. There are limited data available on the use of asenapine in the treatment of depressive symptoms of BD, or in the maintenance phase of BD. The available data are inconclusive, suggesting the need for more robust data from prospective trials in these clinical domains. The most commonly reported adverse effect associated with use of asenapine is somnolence. However, the somnolence associated with asenapine use did not cause significant rates of discontinuation. While asenapine was associated with weight gain when compared to placebo, it appeared to be modest when compared to other atypical antipsychotics, and its propensity to cause increases in hemoglobin A1c or serum lipid levels appeared to be

  18. Growth of high mobility GaN and AlGaN/GaN high electron mobility transistor structures on 4H-SiC by ammonia molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Webb, James B.; Tang, H.; Bardwell, J. A.; Coleridge, P.

    2001-01-01

    Ammonia molecular-beam epitaxy has been used to grow high-quality epilayers of GaN and AlGaN/GaN heterostructure field-effect transistor (HFET) structures on insulating 4H-SiC. The growth process, which used a magnetron sputter epitaxy deposited buffer layer of AlN, has been described previously. Ex situ pretreatment of the SiC substrate was found to be unnecessary. For a single 2.0 μm thick silicon doped epilayer, a room temperature (RT) electron mobility of 500 cm2/Vs was measured at a carrier density of 6.6x10 16 cm -3 . For the HFET structure, a room temperature mobility of 1300 cm2/Vs at a sheet carrier density of 3.3x10 12 cm -2 was observed, increasing to 11000 cm2/Vs at 77 K. The surface morphology of the layers indicated a coalesced mesa structure similar to what we observed for growth on sapphire, but with a lower overall defect density and correspondingly larger grain size. The observation of well-resolved Shubnikov de Haas oscillations at fields as low as 3 T indicated a relatively smooth interface. [copyright] 2001 American Institute of Physics

  19. A bipolar analog front-end integrated circuit for the SDC silicon tracker

    International Nuclear Information System (INIS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1993-11-01

    A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDC silicon tracker. The IC was designed and tested at LBL and was fabricated using AT ampersand T's CBIC-U2, 4 GHz f T complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 μm pitch double-sided silicon strip detector. The chip measures 6.8 mm x 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16 nsec time-walk for 1.25 to 10fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a Φ=10 14 protons/cm 2 have been performed on the IC, demonstrating the radiation hardness of the complementary bipolar process

  20. Conductivity-limiting bipolar thermal conductivity in semiconductors

    Science.gov (United States)

    Wang, Shanyu; Yang, Jiong; Toll, Trevor; Yang, Jihui; Zhang, Wenqing; Tang, Xinfeng

    2015-01-01

    Intriguing experimental results raised the question about the fundamental mechanisms governing the electron-hole coupling induced bipolar thermal conduction in semiconductors. Our combined theoretical analysis and experimental measurements show that in semiconductors bipolar thermal transport is in general a “conductivity-limiting” phenomenon, and it is thus controlled by the carrier mobility ratio and by the minority carrier partial electrical conductivity for the intrinsic and extrinsic cases, respectively. Our numerical method quantifies the role of electronic band structure and carrier scattering mechanisms. We have successfully demonstrated bipolar thermal conductivity reduction in doped semiconductors via electronic band structure modulation and/or preferential minority carrier scatterings. We expect this study to be beneficial to the current interests in optimizing thermoelectric properties of narrow gap semiconductors. PMID:25970560

  1. Cortical complexity in bipolar disorder applying a spherical harmonics approach.

    Science.gov (United States)

    Nenadic, Igor; Yotter, Rachel A; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian

    2017-05-30

    Recent studies using surface-based morphometry of structural magnetic resonance imaging data have suggested that some changes in bipolar disorder (BP) might be neurodevelopmental in origin. We applied a novel analysis of cortical complexity based on fractal dimensions in high-resolution structural MRI scans of 18 bipolar disorder patients and 26 healthy controls. Our region-of-interest based analysis revealed increases in fractal dimensions (in patients relative to controls) in left lateral orbitofrontal cortex and right precuneus, and decreases in right caudal middle frontal, entorhinal cortex, and right pars orbitalis, and left fusiform and posterior cingulate cortices. While our analysis is preliminary, it suggests that early neurodevelopmental pathologies might contribute to bipolar disorder, possibly through genetic mechanisms. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Self-Consistent Study of Conjugated Aromatic Molecular Transistors

    International Nuclear Information System (INIS)

    Jing, Wang; Yun-Ye, Liang; Hao, Chen; Peng, Wang; Note, R.; Mizuseki, H.; Kawazoe, Y.

    2010-01-01

    We study the current through conjugated aromatic molecular transistors modulated by a transverse field. The self-consistent calculation is realized with density function theory through the standard quantum chemistry software Gaussian03 and the non-equilibrium Green's function formalism. The calculated I – V curves controlled by the transverse field present the characteristics of different organic molecular transistors, the transverse field effect of which is improved by the substitutions of nitrogen atoms or fluorine atoms. On the other hand, the asymmetry of molecular configurations to the axis connecting two sulfur atoms is in favor of realizing the transverse field modulation. Suitably designed conjugated aromatic molecular transistors possess different I – V characteristics, some of them are similar to those of metal-oxide-semiconductor field-effect transistors (MOSFET). Some of the calculated molecular devices may work as elements in graphene electronics. Our results present the richness and flexibility of molecular transistors, which describe the colorful prospect of next generation devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Modeling suicide in bipolar disorders.

    Science.gov (United States)

    Malhi, Gin S; Outhred, Tim; Das, Pritha; Morris, Grace; Hamilton, Amber; Mannie, Zola

    2018-02-19

    Suicide is a multicausal human behavior, with devastating and immensely distressing consequences. Its prevalence is estimated to be 20-30 times greater in patients with bipolar disorders than in the general population. The burden of suicide and its high prevalence in bipolar disorders make it imperative that our current understanding be improved to facilitate prediction of suicide and its prevention. In this review, we provide a new perspective on the process of suicide in bipolar disorder, in the form of a novel integrated model that is derived from extant knowledge and recent evidence. A literature search of articles on suicide in bipolar disorder was conducted in recognized databases such as Scopus, PubMed, and PsycINFO using the keywords "suicide", "suicide in bipolar disorders", "suicide process", "suicide risk", "neurobiology of suicide" and "suicide models". Bibliographies of identified articles were further scrutinized for papers and book chapters of relevance. Risk factors for suicide in bipolar disorders are well described, and provide a basis for a framework of epigenetic mechanisms, moderated by neurobiological substrates, neurocognitive functioning, and social inferences within the environment. Relevant models and theories include the diathesis-stress model, the bipolar model of suicide and the ideation-to-action models, the interpersonal theory of suicide, the integrated motivational-volitional model, and the three-step theory. Together, these models provide a basis for the generation of an integrated model that illuminates the suicidal process, from ideation to action. Suicide is complex, and it is evident that a multidimensional and integrated approach is required to reduce its prevalence. The proposed model exposes and provides access to components of the suicide process that are potentially measurable and may serve as novel and specific therapeutic targets for interventions in the context of bipolar disorder. Thus, this model is useful not only

  4. Bipolar explosion models for hypernovae

    International Nuclear Information System (INIS)

    Maeda, Keiichi; Nomoto, Ken'ichi

    2003-01-01

    Bipolar explosion models for hypernovae (very energetic supernovae) are presented. These models provide a favorable situation to explain some unexpected features in observations of hypernovae, e.g., high velocity matter dominated by Fe and low velocity matter dominated by O. The overall abundance of these models gives a good fit, at least qualitatively, to abundances in extremely metal-poor stars. We suggest hypernovae be driven by bipolar jets and contribute significantly to the early Galactic chemical evolution

  5. Functional remediation for bipolar disorder

    OpenAIRE

    Martínez-Arán, Anabel, 1971-; Torrent, C.; Solé, B.; Bonnín, C.M.; Rosa, A.R.; Sánchez-Moreno, J.; Vieta i Pascual, Eduard, 1963-

    2014-01-01

    Neurocognitive impairment constitutes a core feature of bipolar illness. The main domains affected are verbal memory, attention, and executive functions. Deficits in these areas as well as difficulties to get functional remission seem to be increased associated with illness progression. Several studies have found a strong relationship between neurocognitive impairment and low functioning in bipolar disorder, as previously reported in other illnesses such as schizophrenia. Cognitive remediatio...

  6. Planar transistors and impatt diodes with ion implantation

    International Nuclear Information System (INIS)

    Dorendorf, H.; Glawischnig, H.; Grasser, L.; Hammerschmitt, J.

    1975-03-01

    Low frequency planar npn and pnp transistors have been developed in which the base and emitter have been fabricated using ion implantation of boron and phosphorus by a drive-in diffusion. Electrical parameters of the transistors are comparable with conventionally produced transistors; the noise figure was improved and production tolerances were significantly reduced. Silicon-impatt diodes for the microwave range were also fabricated with implanted pn junctions and tested for their high frequency characteristics. These diodes, made in an improved upside down technology, delivered output power up to 40 mW (burn out power) at 30 GHz. Reverse leakage current and current carrying capability of these diodes were comparable to diffused structures. (orig.) 891 ORU 892 MB [de

  7. Transport Mechanisms in Organic Thin-Film Transistors

    Science.gov (United States)

    Fung, A. W. P.

    1996-03-01

    Recent success in fabricating field-effect transistors with polycrystalline α-sexithiophene (α-6T) has allowed us to study charge transport in this organic semiconductor. The appealing structural property that the oligomer chains are seated almost perpendicular to the substrate provides a model π-conjugated system which we find exhibits band transport at low temperatures. We observe a behavioral transition around 50K which is consistent with the metal-insulator transition in Holstein's small-polaron theory. The fact that we can observe intrinsic behavior means that the ambient-temperature mobility obtained in these transistors is optimal for α-6T. Agreement with the Holstein theory provides us with a prescription for rational design of materials for organic transistor applications. Work done in collaboration with L. Torsi, A. Dodabalapur, L. J. Rothberg and H. E. Katz.

  8. The total dose effects on the 1/f noise of deep submicron CMOS transistors

    International Nuclear Information System (INIS)

    Hu Rongbin; Wang Yuxin; Lu Wu

    2014-01-01

    Using 0.18 μm CMOS transistors, the total dose effects on the 1/f noise of deep-submicron CMOS transistors are studied for the first time in mainland China. From the experimental results and the theoretic analysis, we realize that total dose radiation causes a lot of trapped positive charges in STI (shallow trench isolation) SiO 2 layers, which induces a current leakage passage, increasing the 1/f noise power of CMOS transistors. In addition, we design some radiation-hardness structures on the CMOS transistors and the experimental results show that, until the total dose achieves 750 krad, the 1/f noise power of the radiation-hardness CMOS transistors remains unchanged, which proves our conclusion. (semiconductor devices)

  9. Contribution to the study of ionizing radiation effects on bipolar technologies: application to the hardening of integrated circuits

    International Nuclear Information System (INIS)

    Briand, R.

    2001-01-01

    The use of analog integrated circuits in radiation environments raises the problem of their behaviour with respect to the different effects induced by particles and radiations. The first chapter of this thesis presents the origins of radiations and the different topologies of bipolar transistors. The effects of ionizing radiations on bipolar components, like cumulative dose, dose rates, and single events, are detailed in three distinct chapters with the same scientifical approach. The simulation of the physical degradation phenomena of the components allows to establish original electrical models coming from the understanding of the induced mechanisms. These models are used to evaluate the degradations occurring in linear analogic circuits. Common and original hardening methods are presented, some of which are applied to bipolar integrated circuit technologies. Finally, experimental laser beam test techniques are presented, which are used to reproduce the dose rate and the single events. (J.S.)

  10. The dual role of multiple-transistor charge sharing collection in single-event transients

    International Nuclear Information System (INIS)

    Guo Yang; Chen Jian-Jun; He Yi-Bai; Liang Bin; Liu Bi-Wei

    2013-01-01

    As technologies scale down in size, multiple-transistors being affected by a single ion has become a universal phenomenon, and some new effects are present in single event transients (SETs) due to the charge sharing collection of the adjacent multiple-transistors. In this paper, not only the off-state p-channel metal—oxide semiconductor field-effect transistor (PMOS FET), but also the on-state PMOS is struck by a heavy-ion in the two-transistor inverter chain, due to the charge sharing collection and the electrical interaction. The SET induced by striking the off-state PMOS is efficiently mitigated by the pulse quenching effect, but the SET induced by striking the on-state PMOS becomes dominant. It is indicated in this study that in the advanced technologies, the SET will no longer just be induced by an ion striking the off-state transistor, and the SET sensitive region will no longer just surround the off-state transistor either, as it is in the older technologies. We also discuss this issue in a three-transistor inverter in depth, and the study illustrates that the three-transistor inverter is still a better replacement for spaceborne integrated circuit design in advanced technologies. (condensed matter: structural, mechanical, and thermal properties)

  11. Comparison of MOS capacitor and transistor postirradiation response

    International Nuclear Information System (INIS)

    McWhorter, P.J.; Fleetwood, D.M.; Pastorek, R.A.; Zimmerman, G.T.

    1989-01-01

    The postirradiation response of MOS capacitors and transistors fabricated on the same chip has been examined as a function of dose and anneal bias. A variety of analysis techniques are used to evaluate the postirradiation response of these structures, including low and high frequency capacitance-voltage techniques, subthreshold current-voltage techniques, and charge pumping. Though there are changes in the postirradiation energy spectrum of ΔD it , no clear evidence of defect transformation is observed on transistors or capacitors under any conditions examined. Postirradiation response at 80 degrees C is found to be similar in the two structures for low levels of damage (100 krad). For both structures, interface-trap densities continue to grow following irradiation under these conditions. In contrast, the postirradiation response of capacitors and transistors can differ qualitatively at higher levels of damage (1 Mrad), with interface-traps increasing postirradiation at 80 degrees C for transistors and annealing for capacitors. These results indicate that capacitor structures may not be suitable for hardness assurance studies that involve elevated temperature irradiations or postirradiation anneals

  12. BUSFET - A Novel Radiation-Hardened SOI Transistor

    International Nuclear Information System (INIS)

    Dodd, P.E.; Draper, B.L.; Schwank, J.R.; Shaneyfelt, M.R.

    1999-01-01

    A partially-depleted SOI transistor structure has been designed that does not require the use of specially-processed hardened buried oxides for total-dose hardness and maintains the intrinsic SEU and dose rate hardness advantages of SOI technology

  13. Nanoscaled biological gated field effect transistors for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Andersen, Karsten Brandt

    2014-01-01

    Cytogenetic analysis is the study of chromosome structure and function, and is often used in cancer diagnosis, as many chromosome abnormalities are linked to the onset of cancer. A novel label free detection method for chromosomal translocation analysis using nanoscaled field effect transistors...

  14. Diakoptical reliability analysis of transistorized systems

    International Nuclear Information System (INIS)

    Kontoleon, J.M.; Lynn, J.W.; Green, A.E.

    1975-01-01

    Limitations both on high-speed core availability and computation time required for assessing the reliability of large-sized and complex electronic systems, such as used for the protection of nuclear reactors, are very serious restrictions which continuously confront the reliability analyst. Diakoptic methods simplify the solution of the electrical-network problem by subdividing a given network into a number of independent subnetworks and then interconnecting the solutions of these smaller parts by a systematic process involving transformations based on connection-matrix elements associated with the interconnecting links. However, the interconnection process is very complicated and it may be used only if the original system has been cut in such a manner that a relation can be established between the constraints appearing at both sides of the cut. Also, in dealing with transistorized systems, one of the difficulties encountered is that of modelling adequately their performance under various operating conditions, since their parameters are strongly affected by the imposed voltage and current levels. In this paper a new interconnection approach is presented which may be of use in the reliability analysis of large-sized transistorized systems. This is based on the partial optimization of the subdivisions of the torn network as well as on the optimization of the torn paths. The solution of the subdivisions is based on the principles of algebraic topology, with an algebraic structure relating the physical variables in a topological structure which defines the interconnection of the discrete elements. Transistors, and other nonlinear devices, are modelled using their actual characteristics, under normal and abnormal operating conditions. Use of so-called k factors is made to facilitate accounting for use of electrical stresses. The approach is demonstrated by way of an example. (author)

  15. Nanofluidic Transistor Circuits

    Science.gov (United States)

    Chang, Hsueh-Chia; Cheng, Li-Jing; Yan, Yu; Slouka, Zdenek; Senapati, Satyajyoti

    2012-02-01

    Non-equilibrium ion/fluid transport physics across on-chip membranes/nanopores is used to construct rectifying, hysteretic, oscillatory, excitatory and inhibitory nanofluidic elements. Analogs to linear resistors, capacitors, inductors and constant-phase elements were reported earlier (Chang and Yossifon, BMF 2009). Nonlinear rectifier is designed by introducing intra-membrane conductivity gradient and by asymmetric external depletion with a reverse rectification (Yossifon and Chang, PRL, PRE, Europhys Lett 2009-2011). Gating phenomenon is introduced by functionalizing polyelectrolytes whose conformation is field/pH sensitive (Wang, Chang and Zhu, Macromolecules 2010). Surface ion depletion can drive Rubinstein's microvortex instability (Chang, Yossifon and Demekhin, Annual Rev of Fluid Mech, 2012) or Onsager-Wien's water dissociation phenomenon, leading to two distinct overlimiting I-V features. Bipolar membranes exhibit an S-hysteresis due to water dissociation (Cheng and Chang, BMF 2011). Coupling the hysteretic diode with some linear elements result in autonomous ion current oscillations, which undergo classical transitions to chaos. Our integrated nanofluidic circuits are used for molecular sensing, protein separation/concentration, electrospray etc.

  16. Logarithmic current-measuring transistor circuits

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1967-01-01

    Describes two transistorized circuits for the logarithmic measurement of small currents suitable for nuclear reactor instrumentation. The logarithmic element is applied in the feedback path of an amplifier, and only one dual transistor is used as logarithmic diode and temperature compensating...... transistor. A simple one-amplifier circuit is compared with a two-amplifier system. The circuits presented have been developed in connexion with an amplifier using a dual m.o.s. transistor input stage with diode-protected gates....

  17. Distributed amplifier using Josephson vortex flow transistors

    International Nuclear Information System (INIS)

    McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.

    1986-01-01

    A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz

  18. Quetiapine monotherapy for bipolar depression

    Directory of Open Access Journals (Sweden)

    Michael E Thase

    2008-03-01

    Full Text Available Michael E ThaseDepartments of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; the Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA; and the University of Pittsburgh Medical Center, Pittsburgh, PA, USAAbstract: Bipolar depression is more common, disabling, and difficult-to-treat than the manic and hypomanic phases that define bipolar disorder. Unlike the treatment of so-called “unipolar” depressions, antidepressants generally are not indicated as monotherapies for bipolar depressions and recent studies suggest that - even when used in combination with traditional mood stabilizers – antidepressants may have questionable value for bipolar depression. The current practice is that mood stabilizers are initiated first as monotherapies; however, the antidepressant efficacy of lithium and valproate is modest at best. Within this context the role of atypical antipsychotics is being evaluated. The combination of olanzapine and the antidepressant fluoxetine was the first treatment to receive regulatory approval in the US specifically for bipolar I depression. Quetiapine was the second medication to be approved for this indication, largely as the result of two pivotal trials known by the acronyms of BOLDER (BipOLar DEpRession I and II. Both studies demonstrated that two doses of quetiapine (300 mg and 600 mg given once daily at bedtime were significantly more effective than placebo, with no increased risk of patients switching into mania. Pooling the two studies, quetiapine was effective for both bipolar I and bipolar II depressions and for patients with (and without a history of rapid cycling. The two doses were comparably effective in both studies. Although the efficacy of quetiapine monotherapy has been established, much additional research is necessary. Further studies are needed to more fully investigate dose-response relationships and comparing quetiapine monotherapy to other mood stabilizers

  19. The point of practical use for the transistor circuit

    International Nuclear Information System (INIS)

    1996-01-01

    This is comprised of eight chapters and goes as follows; what is transistor? the first step for use of transistor such as connection between power and signal source, static characteristic of transistor and equivalent circuit of transistor, design of easy small-signal amplifier circuit, design for amplification of electric power and countermeasure for prevention of trouble, transistor concerned interface, transistor circuit around micro computer, transistor in active use of FET and power circuit and transistor. It has an appendix on transistor and design of bias of FET circuits like small signal transistor circuit and FET circuit.

  20. ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina

    Science.gov (United States)

    Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.

    2012-01-01

    Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441

  1. Mechanisms underlying the benefits of anticonvulsants over lithium in the treatment of bipolar disorder.

    Science.gov (United States)

    Corrado, Alisa C; Walsh, John P

    2016-02-10

    Close to 3% of the world's population suffers from bipolar disease (I and II). Of this 3%, bipolar disease affects largely women (∼ 3 : 2 compared with men). The median age of diagnosis is 25 in women and even lower in men. A diagnosis of bipolar disease is an expensive psychiatric diagnosis, costing patients more than twice as much money as a diagnosis of unipolar depression. Bipolar I is characterized by one or more manic or mixed episodes, with both mania and depression occurring each day for at least 1 week, whereas bipolar II is characterized by one or more major depressive episode and at least one episode of hypomania. Bipolar I is the more severe diagnosis. A wide range of medications are available to help patients maintain a healthy lifestyle, including lithium, antidepressants, and anticonvulsants. Improved methods for identifying bipolar disease, including a more structured approach and a more complete use of medical records, have increased the rate of diagnosis, especially in children, which underscores the need for innovation in development and in practice of new treatment options for treating bipolar disease. Although lithium has been the 'gold standard' for treating bipolar disorder for decades, new research into other forms of treatment has shown anticonvulsants to be a particularly useful therapy for treating bipolar disease. Anticonvulsants have remarkable mood-stabilization abilities and they do not lead to serious side effects, which increases the tolerability, and consequently, patient adherence to this form of treatment. Recent studies have shown that anticonvulsants improve behavior in bipolar disease by modulating the balance of excitatory and inhibitory synapses through a number of complementary molecular cascades that affect gene expression and cell survival.

  2. Perisylvian GABA levels in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Atagün, Murat İlhan; Şıkoğlu, Elif Muazzez; Soykan, Çağlar; Serdar Süleyman, Can; Ulusoy-Kaymak, Semra; Çayköylü, Ali; Algın, Oktay; Phillips, Mary Louise; Öngür, Dost; Moore, Constance Mary

    2017-01-10

    The aim of this study is to measure GABA levels of perisylvian cortices in schizophrenia and bipolar disorder patients, using proton magnetic resonance spectroscopy ( 1 H-MRS). Patients with schizophrenia (n=25), bipolar I disorder (BD-I; n=28) and bipolar II disorder (BD-II; n=20) were compared with healthy controls (n=30). 1 H-MRS data was acquired using a Siemens 3T whole body scanner to quantify right and left perisylvian structures' (including superior temporal lobes) GABA levels. Right perisylvian GABA values differed significantly between groups [χ 2 =9.62, df: 3, p=0.022]. GABA levels were significantly higher in the schizophrenia group compared with the healthy control group (p=0.002). Furthermore, Chlorpromazine equivalent doses of antipsychotics correlated with right hemisphere GABA levels (r 2 =0.68, p=0.006, n=33). GABA levels are elevated in the right hemisphere in patients with schizophrenia in comparison to bipolar disorder and healthy controls. The balance between excitatory and inhibitory controls over the cortical circuits may have direct relationship with GABAergic functions in auditory cortices. In addition, GABA levels may be altered by brain regions of interest, psychotropic medications, and clinical stage in schizophrenia and bipolar disorder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Integrated neurobiology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Vladimir eMaletic

    2014-08-01

    Full Text Available From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity—reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition—limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional unified field theory of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia—the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the HPA axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the great

  4. Morphology of bipolar planetary nebulae. I. Two-dimensional spectrophotometry

    International Nuclear Information System (INIS)

    Pascoli, G.

    1990-01-01

    Two-dimensional spectrophotometric observations of bipolar planetary nebulae were performed by using a CCD detector mounted at the Cassegrain focus of either 1.54 m Danish Telescope or 2.2 m German Telescope at La Silla (ESO) in Chile. Emission lines have been selected with the help of narrow band-pass interference filters (Δλ∼ 10 - 20 A). Isophotal maps in various lines Hα, [NII] λ 6584, [OIII] λ 5007 and [SII] λλ 6717-6731 are presented. Particular attention has been given to scrutinize the symmetries inside a few bipolar planetary nebulae, in order to subsequently investigate their space structure

  5. Transistor challenges - A DRAM perspective

    International Nuclear Information System (INIS)

    Faul, Juergen W.; Henke, Dietmar

    2005-01-01

    Key challenges of the transistor scaling from a DRAM perspective will be reviewed. Both, array transistors as well as DRAM support devices face challenges that differ essentially from high performance logic device scaling. As a major difference, retention time and standby current requirements characterize special boundary conditions in the DRAM device design. Array device scaling is determined by a chip size driven aggressive node scaling. To continue scaling, major innovations need to be introduced into state-of-the-art planar array transistors. Alternatively, non planar device concepts will have to be evaluated. Support device design for DRAMs is driven by today's market demand for increased chip performances at little to no extra cost. Major innovations are required to continue that path. Besides this strive for performance increase, special limitations for 'on pitch' circuits at the array edge will come up due to the aggressive cell size scaling

  6. Bipolar Disorder and Alcoholism: Are They Related?

    Science.gov (United States)

    ... Are they related? Is there a connection between bipolar disorder and alcoholism? Answers from Daniel K. Hall-Flavin, M.D. Bipolar disorder and alcoholism often occur together. Although the association ...

  7. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors.

    Science.gov (United States)

    Chen, Fa-Hsyang; Her, Jim-Long; Shao, Yu-Hsuan; Matsuda, Yasuhiro H; Pan, Tung-Ming

    2013-01-08

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric.

  8. Structural Evaluation of 5,5′-Bis(naphth-2-yl)-2,2′-bithiophene in Organic Field-Effect Transistors with n-Octadecyltrichlorosilane Coated SiO2 Gate Dielectric

    DEFF Research Database (Denmark)

    Lauritzen, Andreas E.; Torkkeli, Mika; Bikondoa, Oier

    2018-01-01

    We report on the structure and morphology of 5,5′-bis(naphth-2-yl)-2,2′-bithiophene (NaT2) films in bottom-contact organic field-effect transistors (OFETs) with octadecyltrichlorosilane (OTS) coated SiO2 gate dielectric, characterized by atomic force microscopy (AFM), grazing-incidence X......-ray diffraction (GIXRD), and electrical transport measurements. Three types of devices were investigated with the NaT2 thin-film deposited either on (1) pristine SiO2 (corresponding to higher surface energy, 47 mJ/m2) or on OTS deposited on SiO2 under (2) anhydrous or (3) humid conditions (corresponding to lower...... surface energies, 20–25 mJ/m2). NaT2 films grown on pristine SiO2 form nearly featureless three-dimensional islands. NaT2 films grown on OTS/SiO2 deposited under anhydrous conditions form staggered pyramid islands where the interlayer spacing corresponds to the size of the NaT2 unit cell. At the same time...

  9. Impulse control disorder comorbidity among patients with bipolar I disorder.

    Science.gov (United States)

    Karakus, Gonca; Tamam, Lut

    2011-01-01

    Impulsivity is associated with mood instability, behavioral problems, and action without planning in patients with bipolar disorder. Increased impulsivity levels are reported at all types of mood episodes. This association suggests a high comorbidity between impulse control disorders (ICDs) and bipolar disorder. The aim of this study is to compare the prevalence of ICDs and associated clinical and sociodemographic variables in euthymic bipolar I patients. A total of 124 consecutive bipolar I patients who were recruited from regular attendees from the outpatient clinic of our Bipolar Disorder Unit were included in the study. All patients were symptomatically in remission. Diagnosis of bipolar disorder was confirmed using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Impulse control disorders were investigated using the modified version of the Minnesota Impulsive Disorders Interview. Impulsivity was measured with the Barratt Impulsiveness Scale Version 11. Furthermore, all patients completed the Zuckerman Sensation-Seeking Scale Form V. The prevalence rate of all comorbid ICDs in our sample was 27.4% (n = 34). The most common ICD subtype was pathologic skin picking, followed by compulsive buying, intermittent explosive disorder, and trichotillomania. There were no instances of pyromania or compulsive sexual behavior. There was no statistically significant difference between the sociodemographic characteristics of bipolar patients with and without ICDs with regard to age, sex, education level, or marital status. Comorbidity of alcohol/substance abuse and number of suicide attempts were higher in the ICD(+) group than the ICD(-) group. Length of time between mood episodes was higher in the ICD(-) group than the ICD(+) group. There was a statistically significant difference between the total number of mood episodes between the 2 groups, but the number of depressive episodes was higher in the ICD(+) patients

  10. The burden on informal caregivers of people with bipolar disorder.

    Science.gov (United States)

    Ogilvie, Alan D; Morant, Nicola; Goodwin, Guy M

    2005-01-01

    Caregivers of people with bipolar disorder may experience a different quality of burden than is seen with other illnesses. A better understanding of their concerns is necessary to improve the training of professionals working with this population. Conceptualizing caregiver burden in a conventional medical framework may not focus enough on issues important to caregivers, or on cultural and social issues. Perceptions of caregivers about bipolar disorder have important effects on levels of burden experienced. It is important to distinguish between caregivers' experience of this subjective burden and objective burden as externally appraised. Caregivers' previous experiences of health services may influence their beliefs about the illness. Caregiver burden is associated with depression, which affects patient recovery by adding stress to the living environment. The objective burden on caregivers of patients with bipolar disorder is significantly higher than for those with unipolar depression. Caregivers of bipolar patients have high levels of expressed emotion, including critical, hostile, or over-involved attitudes. Several measures have been developed to assess the care burden of patients with depressive disorders, but may be inappropriate for patients with bipolar disorder because of its cyclical nature and the stresses arising from manic and hypomanic episodes. Inter-episode symptoms pose another potential of burden in patients with bipolar disorder. Subsyndromal depressive symptoms are common in this phase of the illness, resulting in severe and widespread impairment of function. Despite the importance of assessing caregiver burden in bipolar disorder, relevant literature is scarce. The specific effects of mania and inter-episode symptoms have not been adequately addressed, and there is a lack of existing measures to assess burden adequately, causing uncertainty regarding how best to structure family interventions to optimally alleviate burden. The relatively few

  11. Room Temperature Silicene Field-Effect Transistors

    Science.gov (United States)

    Akinwande, Deji

    Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.

  12. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  13. Photon-gated spin transistor

    OpenAIRE

    Li, Fan; Song, Cheng; Cui, Bin; Peng, Jingjing; Gu, Youdi; Wang, Guangyue; Pan, Feng

    2017-01-01

    Spin-polarized field-effect transistor (spin-FET), where a dielectric layer is generally employed for the electrical gating as the traditional FET, stands out as a seminal spintronic device under the miniaturization trend of electronics. It would be fundamentally transformative if optical gating was used for spin-FET. We report a new type of spin-polarized field-effect transistor (spin-FET) with optical gating, which is fabricated by partial exposure of the (La,Sr)MnO3 channel to light-emitti...

  14. Programmable, automated transistor test system

    Science.gov (United States)

    Truong, L. V.; Sundburg, G. R.

    1986-01-01

    A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.

  15. The fitting parameters extraction of conversion model of the low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Bakerenkov, Alexander

    2011-01-01

    The Enhanced Low Dose Rate Sensitivity (ELDRS) in bipolar devices consists of in base current degradation of NPN and PNP transistors increase as the dose rate is decreased. As a result of almost 20-year studying, the some physical models of effect are developed, being described in detail. Accelerated test methods, based on these models use in standards. The conversion model of the effect, that allows to describe the inverse S-shaped excess base current dependence versus dose rate, was proposed. This paper presents the problem of conversion model fitting parameters extraction.

  16. Interactions between bipolar disorder and antisocial personality disorder in trait impulsivity and severity of illness.

    Science.gov (United States)

    Swann, A C; Lijffijt, M; Lane, S D; Steinberg, J L; Moeller, F G

    2010-06-01

    We investigated trait impulsivity in bipolar disorder and antisocial personality disorder (ASPD) with respect to severity and course of illness. Subjects included 78 controls, 34 ASPD, 61 bipolar disorder without Axis II disorder, and 24 bipolar disorder with ASPD, by Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) (SCID-I and -II). Data were analyzed using general linear model and probit analysis. Barratt Impulsiveness Scale (BIS-11) scores were higher in ASPD (effect sizes 0.5-0.8) or bipolar disorder (effect size 1.45) than in controls. Subjects with both had more suicide attempts and previous episodes than bipolar disorder alone, and more substance-use disorders and suicide attempts than ASPD alone. BIS-11 scores were not related to severity of crimes. Impulsivity was higher in bipolar disorder with or without ASPD than in ASPD alone, and higher in ASPD than in controls. Adverse effects of bipolar disorder in ASPD, but not of ASPD in bipolar disorder, were accounted for by increased impulsivity.

  17. CarbonNanoTubes (CNT) in bipolar plates for PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Grundler, M.; Derieth, T.; Beckhaus, P.; Heinzel, A. [centre for fuel cell technology ZBT GmbH (Germany)

    2010-07-01

    Using standard mass production techniques for the fabrication of fuel cell components, such as bipolar plates, is a main issue for the commercialisation of PEM fuel cell systems. Bipolar plates contribute significantly to the cost structure of PEM stacks. In an upcoming fuel cell market a large number of bipolar plates with specific high-quality standards will be needed. At the Centre for Fuel Cell Technology (ZBT) together with the University of Duisburg-Essen fuel cell stacks based on injection moulded bipolar plates have been developed and demonstrated successfully [1]. This paper focuses on the interactions between carbon filling materials (graphite, carbon black and carbon nanotubes (CNT)) in compound based bipolar plates and especially the potential of CNTs, which were used in bipolar plates for the first time. The entire value added chain based on the feedstock, the compounding and injection moulding process, the component bipolar plate, up to the operation of a PEM single fuel cell stack with CNT-based bipolar plates is disclosed. (orig.)

  18. Bipolar outflow in B335

    International Nuclear Information System (INIS)

    Hirano, N.; Kameya, O.; Nakayama, M.; Takakubo, K.

    1988-01-01

    The high-velocity (C-12)O (J = 1-0) emission in B335 with a high angular resolution of 16 arcsec has been mapped. The high-velocity emission shows distinct bipolar pattern centered at IRAS 19345+0727, toward which a strong high-velocity (C-12)O emission has been detected. The bipolar lobes delineate remarkable collimation toward the IRAS source, indicating that the flow is focused within 0.02 pc of the driving source. Each lobe is accompanied by significant wing emission with the opposite velocity shift, which clearly shows the association with IRAS 19345+0727. This feature is well explained as a bipolar flow the axis of which is nearly perpendicular to the line of sight. There is no evidence of another evolved bipolar flow which does not associate with any dense core as previously suggested. This suggests that B335 is a site of very recent star formation, containing a single bipolar flow with an age of about 30,000 yr. 15 references

  19. Exercising control over bipolar disorder.

    Science.gov (United States)

    Malhi, Gin S; Byrow, Yulisha

    2016-11-01

    Following extensive research exercise has emerged as an effective treatment for major depressive disorder, and it is now a recognised therapy alongside other interventions. In contrast, there is a paucity of research examining the therapeutic effects of exercise for those with bipolar disorder. Given that dysfunctional reward processing is central to bipolar disorder, research suggests that exercise can perhaps be framed as a reward-related event that may have the potential to precipitate a manic episode. The behavioural activation system (BAS) is a neurobehavioural system that is associated with responding to reward and provides an appropriate framework to theoretically examine and better understand the effects of exercise treatment on bipolar disorder. This article discusses recent research findings and provides an overview of the extant literature related to the neurobiological underpinnings of BAS and exercise as they relate to bipolar disorder. This is important clinically because depending on mood state in bipolar disorder, we postulate that exercise could be either beneficial or deleterious with positive or negative effects on the illness. Clearly, this complicates the evaluation of exercise as a potential treatment in terms of identifying its optimal characteristics in this population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Late Onset Bipolar Disorder: Case Report

    OpenAIRE

    Filipa Araújo; Adriana Horta

    2016-01-01

    Background: Bipolar disorder affects approximately 1% of the population, with diagnosis often being made during late adolescence and early adulthood, and only rarely (0.1%) in the elderly. Late onset bipolar disorder in the elderly has a impact on the nature and course of bipolar disorder. Aims: The authors report a case of bipolar disorder emerging in late life  (76years old) with no cleary identified organic cause. Conclusion: This case highlights the importance of a broad different...

  1. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  2. Differences in clinical presentation between bipolar I and II disorders in the early stages of bipolar disorder

    DEFF Research Database (Denmark)

    Vinberg, Maj; Mikkelsen, Rie Lambaek; Kirkegaard, Thomas

    2017-01-01

    Aim In a naturalistic clinical study of patients in the early stages of bipolar disorders the aim was to assess differences between patients with bipolar I (BD I) and bipolar II (BD II) disorders on clinical characteristics including affective symptoms, subjective cognitive complaints, functional...... level, the presence of comorbid personality disorders and coping strategies. Methods Diagnoses were confirmed using the Structured Clinical Interview for DSM-IV Disorders. Clinical symptoms were rated with the Young Mania Rating Scale and the Hamilton Depression Rating Scale, and functional status using...... Inventory for Stressful Situations. Results In total, 344 patients were included (BD I (n=163) and BD II (n=181). Patients with BD II presented with significantly more depressive symptoms, more cognitive complaints, lower overall functioning, and a higher prevalence of comorbid personality disorders...

  3. Imunologia do transtorno bipolar Immunology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Izabela Guimarães Barbosa

    2009-01-01

    Full Text Available OBJETIVO: Pesquisas recentes têm implicado fatores imunes na patogênese de diversos transtornos neuropsiquiátricos. O objetivo do presente trabalho é revisar os trabalhos que investigaram a associação entre transtorno bipolar e alterações em parâmetros imunes. MÉTODOS: Artigos que incluíam as palavras-chave: "bipolar disorder", "mania", "immunology", "cytokines", "chemokines", "interleukins", "interferon" e "tumor necrosis factor" foram selecionados em uma revisão sistemática da literatura. As bases de dados avaliadas foram MedLine e Scopus, entre os anos de 1980 e 2008. RESULTADOS: Foram identificados 28 trabalhos que estudaram alterações imunes em pacientes com transtorno bipolar. Seis artigos investigaram genes relacionados à resposta imune; cinco, autoanticorpos; quatro, populações leucocitárias; 13, citocinas e/ou moléculas relacionadas à resposta imune e seis, leucócitos de pacientes in vitro. CONCLUSÕES: Embora haja evidências na literatura correlacionando o transtorno bipolar a alterações imunes, os dados não são conclusivos. O transtorno bipolar parece estar associado a níveis mais elevados de autoanticorpos circulantes, assim como à tendência à ativação imune com produção de citocinas pró-inflamatórias e redução de parâmetros anti-inflamatórios.OBJECTIVE: Emerging research has implicated immune factors in the pathogenesis of a variety of neuropsychiatric disorders. The objective of the present paper is to review the studies that investigated the association between bipolar disorder and immune parameters. METHODS: Papers that included the keywords "bipolar to disorder", "mania", "immunology", "cytokines", "chemokines", "interleukins", "interferon" and "tumor necrosis factor" were selected in a systematic review of the literature. The evaluated databases were MedLine and Scopus in the period between 1980 and 2008. RESULTS: Twenty eight works were found. Six studies investigated immune response

  4. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group

    NARCIS (Netherlands)

    Hibar, D. P.; Westlye, L. T.; Doan, N. T.; Jahanshad, N.; Cheung, J. W.; Ching, C. R. K.; Versace, A.; Bilderbeck, A. C.; Uhlmann, A.; Mwangi, B.; Krämer, B.; Overs, B.; Hartberg, C. B.; Abé, C.; Dima, D.; Grotegerd, D.; Sprooten, E.; Bøen, E.; Jimenez, E.; Howells, F. M.; Delvecchio, G.; Temmingh, H.; Starke, J.; Almeida, J. R. C.; Goikolea, J. M.; Houenou, J.; Beard, L. M.; Rauer, L.; Abramovic, L.; Bonnin, M.; Ponteduro, M. F.; Keil, M.; Rive, M. M.; Yao, N.; Yalin, N.; Najt, P.; Rosa, P. G.; Redlich, R.; Trost, S.; Hagenaars, S.; Fears, S. C.; Alonso-Lana, S.; van Erp, T. G. M.; Nickson, T.; Chaim-Avancini, T. M.; Meier, T. B.; Elvsåshagen, T.; Haukvik, U. K.; Lee, W. H.; Schene, A. H.; Lloyd, A. J.; Young, A. H.; Nugent, A.; Dale, A. M.; Pfennig, A.; McIntosh, A. M.; Lafer, B.; Baune, B. T.; Ekman, C. J.; Zarate, C. A.; Bearden, C. E.; Henry, C.; Simhandl, C.; McDonald, C.; Bourne, C.; Stein, D. J.; Wolf, D. H.; Cannon, D. M.; Glahn, D. C.; Veltman, D. J.; Pomarol-Clotet, E.; Vieta, E.; Canales-Rodriguez, E. J.; Nery, F. G.; Duran, F. L. S.; Busatto, G. F.; Roberts, G.; Pearlson, G. D.; Goodwin, G. M.; Kugel, H.; Whalley, H. C.; Ruhe, H. G.; Soares, J. C.; Fullerton, J. M.; Rybakowski, J. K.; Savitz, J.; Chaim, K. T.; Fatjó-Vilas, M.; Soeiro-de-Souza, M. G.; Boks, M. P.; Zanetti, M. V.; Otaduy, M. C. G.; Schaufelberger, M. S.; Alda, M.; Ingvar, M.; Phillips, M. L.; Kempton, M. J.; Bauer, M.; Landén, M.; Lawrence, N. S.; van Haren, N. E. M.; Horn, N. R.; Freimer, N. B.; Gruber, O.; Schofield, P. R.; Mitchell, P. B.; Kahn, R. S.; Lenroot, R.; Machado-Vieira, R.; Ophoff, R. A.; Sarró, S.; Frangou, S.; Satterthwaite, T. D.; Hajek, T.; Dannlowski, U.; Malt, U. F.; Arolt, V.; Gattaz, W. F.; Drevets, W. C.; Caseras, X.; Agartz, I.; Thompson, P. M.; Andreassen, O. A.

    2017-01-01

    Despite decades of research, the pathophysiology of bipolar disorder (BD) is still not well understood. Structural brain differences have been associated with BD, but results from neuroimaging studies have been inconsistent. To address this, we performed the largest study to date of cortical gray

  5. Analysing organic transistors based on interface approximation

    International Nuclear Information System (INIS)

    Akiyama, Yuto; Mori, Takehiko

    2014-01-01

    Temperature-dependent characteristics of organic transistors are analysed thoroughly using interface approximation. In contrast to amorphous silicon transistors, it is characteristic of organic transistors that the accumulation layer is concentrated on the first monolayer, and it is appropriate to consider interface charge rather than band bending. On the basis of this model, observed characteristics of hexamethylenetetrathiafulvalene (HMTTF) and dibenzotetrathiafulvalene (DBTTF) transistors with various surface treatments are analysed, and the trap distribution is extracted. In turn, starting from a simple exponential distribution, we can reproduce the temperature-dependent transistor characteristics as well as the gate voltage dependence of the activation energy, so we can investigate various aspects of organic transistors self-consistently under the interface approximation. Small deviation from such an ideal transistor operation is discussed assuming the presence of an energetically discrete trap level, which leads to a hump in the transfer characteristics. The contact resistance is estimated by measuring the transfer characteristics up to the linear region

  6. Mathematical models of bipolar disorder

    Science.gov (United States)

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.

    2009-07-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.

  7. Is bipolar always bipolar? Understanding the controversy on bipolar disorder in children

    Science.gov (United States)

    Grimmer, Yvonne; Hohmann, Sarah

    2014-01-01

    Dramatically increasing prevalence rates of bipolar disorder in children and adolescents in the United States have provoked controversy regarding the boundaries of manic symptoms in child and adolescent psychiatry. The serious impact of this ongoing debate on the treatment of affected children is reflected in the concomitant increase in prescription rates for antipsychotic medication. A key question in the debate is whether this increase in bipolar disorder in children and adolescents is based on a better detection of early-onset bipolar disorder—which can present differently in children and adolescents—or whether it is caused by an incorrect assignment of symptoms which overlap with other widely known disorders. So far, most findings suggest that the suspected symptoms, in particular chronic, non-episodic irritability (a mood symptom presenting with easy annoyance, temper tantrums and anger) do not constitute a developmental presentation of childhood bipolar disorder. Additional research based on prospective, longitudinal studies is needed to further clarify the developmental trajectories of bipolar disorder and the diagnostic status of chronic, non-episodic irritability. PMID:25580265

  8. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    Energy Technology Data Exchange (ETDEWEB)

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W., E-mail: leesw@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Na, J.; Kim, G. T. [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, B. J.; Kim, J. J.; Jeong, G. H. [Department of Nano Applied Engineering, Kangwon National University, Kangwon-do 200-701 (Korea, Republic of); Lee, I.; Kim, K. S. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  9. AlN/GaN heterostructures for normally-off transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, K. S., E-mail: zhur@isp.nsc.ru; Malin, T. V.; Mansurov, V. G.; Tereshenko, O. E. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Abgaryan, K. K.; Reviznikov, D. L. [Dorodnicyn Computing Centre of the Russian Academy of Sciences (Russian Federation); Zemlyakov, V. E.; Egorkin, V. I. [National Research University of Electronic Technology (MIET) (Russian Federation); Parnes, Ya. M.; Tikhomirov, V. G. [Joint Stock Company “Svetlana-Electronpribor” (Russian Federation); Prosvirin, I. P. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation)

    2017-03-15

    The structure of AlN/GaN heterostructures with an ultrathin AlN barrier is calculated for normally-off transistors. The molecular-beam epitaxy technology of in situ passivated SiN/AlN/GaN heterostructures with a two-dimensional electron gas is developed. Normally-off transistors with a maximum current density of ~1 A/mm, a saturation voltage of 1 V, a transconductance of 350 mS/mm, and a breakdown voltage of more than 60 V are demonstrated. Gate lag and drain lag effects are almost lacking in these transistors.

  10. Bipolar dislocation of the clavicle

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2012-01-01

    Full Text Available Bipolar dislocation of the clavicle at acromioclavicular and sternoclavicular joint is an uncommon traumatic injury. The conservative treatments adopted in the past is associated with redislocation dysfunction and deformity. A 41 years old lady with bipolar dislocation of right shoulder is treated surgically by open reduction and internal fixation by oblique T-plate at sternoclavicular joint and Kirschner wire stabilization at acromioclavicular joint. The patient showed satisfactory recovery with full range of motion of the right shoulder and normal muscular strength. The case reported in view of rarity and at 2 years followup.

  11. Transcultural aspects of bipolar disorder

    OpenAIRE

    Sanches, Marsal; Jorge, Miguel Roberto

    2004-01-01

    Considerando-se que existem diferenças importantes na maneira como as emoções são vivenciadas e expressas em diferentes culturas, a apresentação e o manejo do transtorno afetivo bipolar sofrem influência de fatores culturais. O presente artigo realiza uma breve revisão da evidência referente aos aspectos transculturais do transtorno bipolar.Cultural variations in the expression of emotions have been described. Consequently, there are cross-cultural influences on the diagnosis and management o...

  12. Bipolar disorders and Wilson’s disease

    Directory of Open Access Journals (Sweden)

    Carta Mauro

    2012-05-01

    Full Text Available Abstract Background The aim of this study was to determine the risk for Bipolar Disorder (BD in Wilson’s disease (WD and to measure the impaired Quality of Life (QL in BD with WD using standardized psychiatric diagnostic tools and a case control design. Methods This was a case control study. The cases were 23 consecutive patients with WD treated at the University Hospital in Cagliari, Italy, and the controls were 92 sex- and age-matched subjects with no diagnosis of WD who were randomly selected from a database used previously for an epidemiological study. Psychiatric diagnoses according to DSM-IV criteria were determined by physicians using structured interview tools (ANTAS-SCID. QL was measured by means of SF-12. Results Compared to controls, WD patients had lower scores on the SF-12 and higher lifetime prevalence of DSM-IV major depressive disorders (OR = 5.7, 95% CI 2.4–17.3 and bipolar disorders (OR = 12.9, 95% CI 3.6–46.3. BD was associated with lower SF-12 in WD patients. Conclusions This study was the first to show an association between BD and WD using standardized diagnostic tools and a case control design. Reports in the literature about increased schizophrenia-like psychosis in WD and a lack of association with bipolar disorders may thus have been based on a more inclusive diagnosis of schizophrenia in the past. Our findings may explain the frequent reports of loss of emotional control, hyperactivity, loss of sexual inhibition, and irritability in WD patients. This study was limited by a small sample size.

  13. Cognitions in bipolar affective disorder and unipolar depression: imagining suicide.

    Science.gov (United States)

    Hales, Susie A; Deeprose, Catherine; Goodwin, Guy M; Holmes, Emily A

    2011-01-01

    Bipolar disorder has the highest rate of suicide of all the psychiatric disorders. In unipolar depression, individuals report vivid, affect-laden images of suicide or the aftermath of death (flashforwards to suicide) during suicidal ideation but this phenomenon has not been explored in bipolar disorder. Therefore the authors investigated and compared imagery and verbal thoughts related to past suicidality in individuals with bipolar disorder (n = 20) and unipolar depression (n = 20). The study used a quasi-experimental comparative design. The Structured Clinical Interview for DSM-IV was used to confirm diagnoses. Quantitative and qualitative data were gathered through questionnaire measures (e.g., mood and trait imagery use). Individual interviews assessed suicidal cognitions in the form of (i) mental images and (ii) verbal thoughts. All participants reported imagining flashforwards to suicide. Both groups reported greater preoccupation with these suicide-related images than with verbal thoughts about suicide. However, compared to the unipolar group, the bipolar group were significantly more preoccupied with flashforward imagery, rated this imagery as more compelling, and were more than twice as likely to report that the images made them want to take action to complete suicide. In addition, the bipolar group reported a greater trait propensity to use mental imagery in general. Suicidal ideation needs to be better characterized, and mental imagery of suicide has been a neglected but potentially critical feature of suicidal ideation, particularly in bipolar disorder. Our findings suggest that flashforward imagery warrants further investigation for formal universal clinical assessment procedures. © 2011 John Wiley and Sons A/S.

  14. Instrument employing a charge flow transistor

    International Nuclear Information System (INIS)

    1981-01-01

    The invention concerns instruments employing charge-flow transistors that operate to sense a property in the surrounding environment. It is based on a particular sensor principle, thin-film conduction. The instruments described include a charge-flow transistor with semiconductor substrate, a source region, a drain region, a gate insulator, and a gapped electrode structure with a thin-film sensor material in the gap. The sensor material has an electrical conductance that is sensitive to a property of the ambient environment and has a surface conductance that differs substantially from its bulk conductance. The main object is to provide a low-cost instrument for early-warning fire-detection devices: in this case the property detected would be the products of combustion. Other properties that can be sensed include gases or vapors, free radicals, vapor electromagnetic radiation, subatomic particles, atomic or molecular beams, changes in ambient pressure or temperature, the chemical composition and the electrochemical potential of a solution. (U.K.)

  15. Instrument employing a charge flow transistor

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-11

    The invention concerns instruments employing charge-flow transistors that operate to sense a property in the surrounding environment. It is based on a particular sensor principle, thin-film conduction. The instruments described include a charge-flow transistor with semiconductor substrate, a source region, a drain region, a gate insulator, and a gapped electrode structure with a thin-film sensor material in the gap. The sensor material has an electrical conductance that is sensitive to a property of the ambient environment and has a surface conductance that differs substantially from its bulk conductance. The main object is to provide a low-cost instrument for early-warning fire-detection devices: in this case the property detected would be the products of combustion. Other properties that can be sensed include gases or vapors, free radicals, vapor electromagnetic radiation, subatomic particles, atomic or molecular beams, changes in ambient pressure or temperature, the chemical composition and the electrochemical potential of a solution.

  16. A III-V nanowire channel on silicon for high-performance vertical transistors.

    Science.gov (United States)

    Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi

    2012-08-09

    Silicon transistors are expected to have new gate architectures, channel materials and switching mechanisms in ten years' time. The trend in transistor scaling has already led to a change in gate structure from two dimensions to three, used in fin field-effect transistors, to avoid problems inherent in miniaturization such as high off-state leakage current and the short-channel effect. At present, planar and fin architectures using III-V materials, specifically InGaAs, are being explored as alternative fast channels on silicon because of their high electron mobility and high-quality interface with gate dielectrics. The idea of surrounding-gate transistors, in which the gate is wrapped around a nanowire channel to provide the best possible electrostatic gate control, using InGaAs channels on silicon, however, has been less well investigated because of difficulties in integrating free-standing InGaAs nanostructures on silicon. Here we report the position-controlled growth of vertical InGaAs nanowires on silicon without any buffering technique and demonstrate surrounding-gate transistors using InGaAs nanowires and InGaAs/InP/InAlAs/InGaAs core-multishell nanowires as channels. Surrounding-gate transistors using core-multishell nanowire channels with a six-sided, high-electron-mobility transistor structure greatly enhance the on-state current and transconductance while keeping good gate controllability. These devices provide a route to making vertically oriented transistors for the next generation of field-effect transistors and may be useful as building blocks for wireless networks on silicon platforms.

  17. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1)

  18. Electronic monitoring in bipolar disorder.

    Science.gov (United States)

    Faurholt-Jepsen, Maria

    2018-03-01

    Major reasons for the insufficient effects of current treatment options in bipolar disorder include delayed intervention for prodromal depressive and manic symptoms and decreased adherence to psychopharmacological treatment. The reliance on subjective information and clinical evaluations when diagnosing and assessing the severity of depressive and manic symptoms calls for less biased and more objective markers. By using electronic devices, fine-grained data on complex psychopathological aspects of bipolar disorder can be evaluated unobtrusively over the long term. Moreover, electronic data could possibly represent candidate markers of diagnosis and illness activity in bipolar disorder and allow for early and individualized intervention for prodromal symptoms outside clinical settings. 
The present dissertation concerns the use of electronic monitoring as a marker and treatment intervention in bipolar disorder and investigated the scientific literature and body of evidence within the area, which includes ten original study reports and two systematic reviews, one of which included a meta-analysis, conducted by the author of the dissertation. 
Taken together, the literature presented in this dissertation illustrates that 1) smartphone-based electronic self-monitoring of mood seems to reflect clinically assessed depressive and manic symptoms and enables the long-term characterization of mood

instability in bipolar disorder; 2) preliminary results suggest that smartphone-based automatically generated data (e.g. the number of text messages sent/day; the number of incoming and outgoing calls/day; the number of changes in cell tower IDs/day; and voice features) seem to reflect clinically assessed depressive and manic symptoms in bipolar disorder; 3) smartphone-based electronic self-monitoring had no effects on the severity of depressive and manic symptoms in bipolar disorder, according to a randomized controlled trial; and 4) electronic monitoring of psychomotor

  19. Lateral and Vertical Organic Transistors

    Science.gov (United States)

    Al-Shadeedi, Akram

    An extensive study has been performed to provide a better understanding of the operation principles of doped organic field-effect transistors (OFETs), organic p-i-n diodes, Schottky diodes, and organic permeable base transistors (OPBTs). This has been accomplished by a combination of electrical and structural characterization of these devices. The discussion of doped OFETs focuses on the shift of the threshold voltage due to increased doping concentrations and the generation and transport of minority charge carriers. Doping of pentacene OFETs is achieved by co-evaporation of pentacene with the n-dopant W2(hpp)4. It is found that pentacene thin film are efficiently doped and that a conductivity in the range of 2.6 x 10-6 S cm-1 for 1 wt% to 2.5 x 10-4 S cm-1 for 16 wt% is reached. It is shown that n-doped OFET consisting of an n-doped channel and n-doped contacts are ambipolar. This behavior is surprising, as n-doping the contacts should suppress direct injection of minority charge carriers (holes). It was proposed that minority charge carrier injection and hence the ambipolar characteristic of n-doped OFETs can be explained by Zener tunneling inside the intrinsic pentacene layer underneath the drain electrode. It is shown that the electric field in this layer is indeed in the range of the breakdown field of pentacene based p-i-n Zener homodiodes. Doping the channel has a profound influence on the onset voltage of minority (hole) conduction. The onset voltage can be shifted by lightly n-doping the channel. The shift of onset voltage can be explained by two mechanisms: first, due to a larger voltage that has to be applied to the gate in order to fully deplete the n-doped layer. Second, it can be attributed to an increase in hole trapping by inactive dopants. Moreover, it has been shown that the threshold voltage of majority (electron) conduction is shifted by an increase in the doping concentration, and that the ambipolar OFETs can be turned into unipolar OFETs at

  20. Enhanced transconductance in a double-gate graphene field-effect transistor

    Science.gov (United States)

    Hwang, Byeong-Woon; Yeom, Hye-In; Kim, Daewon; Kim, Choong-Ki; Lee, Dongil; Choi, Yang-Kyu

    2018-03-01

    Multi-gate transistors, such as double-gate, tri-gate and gate-all-around transistors are the most advanced Si transistor structure today. Here, a genuine double-gate transistor with a graphene channel is experimentally demonstrated. The top and bottom gates of the double-gate graphene field-effect transistor (DG GFET) are electrically connected so that the conductivity of the graphene channel can be modulated simultaneously by both the top and bottom gate. A single-gate graphene field-effect transistor (SG GFET) with only the top gate is also fabricated as a control device. For systematical analysis, the transfer characteristics of both GFETs were measured and compared. Whereas the maximum transconductance of the SG GFET was 17.1 μS/μm, that of the DG GFET was 25.7 μS/μm, which is approximately a 50% enhancement. The enhancement of the transconductance was reproduced and comprehensively explained by a physics-based compact model for GFETs. The investigation of the enhanced transfer characteristics of the DG GFET in this work shows the possibility of a multi-gate architecture for high-performance graphene transistor technology.